

Description of video coding technology proposal by JVC

JCTVC-A108

Satoru Sakazume, Motoharu Ueda, Shigeru Fukushima, Hiroya Nakamura, Kazumi Arakage, Toru Kumakura

JVC KENWOOD Holdings, Inc. (JVC)

Outline

- Overview of Proposed Codec
- Proposed Tools
 - Motion Representation
 - GTP: Geometric Transform Prediction
 - DBBD: Decoder-side Block Boundary Decision Motion Compensation
 - RMC: Refinement Motion Compensation using Decoder-side Motion Estimation
 - Intra-frame Prediction
 - AC Prediction using DC and intra prediction mode
- Experimental Results
- Conclusion

Overview of Proposed Codec

GTP: Geometric Transform Prediction

DBBD: Decoder-side Block Boundary Decision Motion Compensation

RMC: Refinement Motion Compensation using Decoder-side Motion Estimation

Conventional Inter Prediction

1 MV is coded/decoded.

Conventional Inter Prediction

Each MV for 16 sub-macroblocks partitions is coded/decoded.

GTP: Geometric Transform Prediction

- Only each MV for 4 representative pixels is coded/decoded.
- The other MVs are interpolated in horizontal and vertical direction.

Motivation of DBBD

(Decoder-side Block Boundary Decision Motion Compensation)

It is desirable to support various block patterns without additional coding bits for MC.

Algorithm of DBBD

(Decoder-side Block Boundary Decision Motion Compensation)

Advantage

MC with various block patterns without additional coding bits

- the block boundary is decided on the decoder side

Decoding process

- 1. Generate two predicted pictures based on two MVs by the size of macroblock.
- 2. Decide a real boundary to evaluate each candidate boundary on two predicted pictures.
- 3. Get a final MC picture using the real boundary.

Concept of RMC

(Refinement Motion Compensation using Decoder-side Motion Estimation)

Coding distortion of reference influences the MC efficiency

Necessity of smooth distortion and restoration of texture for reference picture

New MC block (RMC block)

Uni-predictive MC block leads other reference picture with Decoder-side ME approach

Conventional vs. RMC

Conventional MC ref 1 ref 2 (reference for anchor) encode picture ref 1 ref 2 encode picture (anchor) mvCol mvL0 mvL0 mvL1 mvL1 **Bi-predictive Temporal Direct** ■ send mvL0 and mvL1 send no vector no influence for temporal correlation effective for "high spatial and temporal correlation"

Concept of

JVC KENWOOD The Perfect Experience HOLDINGS

AC prediction using DC and intra prediction mode

- AVC-based intra pred. is performed at first.
- AC-pred. signal is obtained from DC and intra pred. mode. It is not coded.
- AC-pred. signal passes through two points:
 - average(DC) of AVC residual at the center in the current block.
 - Zero at an reference position.
- AC-pred. signal slopes along intra pred. mode.
- A flag which indicates whether the AC pred. is applied is sent by each block.

Decoder block diagram of AC prediction using DC and intra prediction mode

- if ac_pred_enable_flag is true
 - AC-pred. signal is created from DC coeff. and intra pred. mode.
 - Decoded signal is the sum of intra pred. signal, AC-pred. signal and AC residual.
- otherwise
 - Decoded signal is obtained by the AVC procedure.

Experimental Results

Bitrate reduction

- average 9.27% and up to 24.09% for C1 compared with alpha anchor.
- average 3.18% and up to 22.71% for C2 compared with beta anchor.
- average 26.49% and up to 53.66% for C2 compared with gamma anchor.

Encoder common settings		
Parameter Name	Value	
HierarchicalCoding	3	
NumberReferenceFrames	4	
SymbolMode	1	
Transform8x8Mode	1	
ScalingMatrixPresentFlag	0	
RDOptimization	1	
UseRDOQuant	1	
RDOQ_Fast	1	
RDOQ_QP_Num	1	
WeightedPrediction	1	
WeightedBiprediction	1	
SearchMode	3	
SearchRange	128	

Individual Settings		
Parameter Name	C1 Value	C2 Value
EnableOpenGOP	1	0
LowDelay	0	1
IntraPeriod	24-64	0
ReferenceReorder	1	2
MemoryManagement	1	2
PReplaceBSlice	0	1
NumberBFrames	7	3

Conclusion

- Proposed Techniques
 - Motion Representation
 - GTP: Geometric Transform Prediction
 - DBBD: Decoder-side Block Boundary Decision Motion Compensation
 - RMC: Refinement Motion Compensation using Decoder-side Motion Estimation
 - Intra-frame Prediction
 - AC Prediction using DC and intra prediction mode
- JM16.2-based.
- Bitrate Reduction
 - average 9.27% for C1 compared with alpha anchor.
 - average 3.18% for C2 compared with beta anchor.
 - average 26.49% for C2 compared with gamma anchor.

JVC KENWOOD HOLDINGS

