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Abstract

This contribution contains mainly two techniques, Self Derivation of Motion Estimation (SDME) and Adaptive Loop (Wiener) Filter (ALF), to be considered as the video coding tools to improve the coding efficiency for the incoming new generation of video compression standard. With the motion vector information is self derived at video decoder side from SDME, the transmission of motion vector from video encoder side to video decoder side is skipped and thus better coding efficiency is achieved. Compared to the anchor bitstreams for the test scenario of Constraints Set 1, an average 13.91% BD Bitrate reduction and 0.47dB BD PSNR improvement is achieved for the SDME technology and an average 18.53% BD Bitrate reduction and 0.77dB BD PSNR improvement is achieved for the combined case of SDME + ALF on top of the baseline average 7.18% BD Bitrate reduction and 0.30dB BD PSNR improvement observed in the baseline KTA software version 2.6r1. Compared to the anchor bitstreams for the test scenario of Constraints Set 2, an average 5.96% BD Bitrate reduction and 0.22dB BD PSNR improvement is achieved for the ALF technology on top of the baseline average 0.49% BD Bitrate reduction and 0.01dB BD PSNR improvement observed in the baseline KTA software version 2.6r1.
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1 Introduction

This contribution is to respond to the Joint Call for Proposals on Video Compression Technology issued by ISO/IEC JTC1/SC29/WG11 (MPEG) and ITU-T SG16 Q.6 (VCEG) on January 2010 [1]. Mainly two techniques are presented in this contribution to be considered as the video coding tools to improve the coding efficiency: Self Derivation of Motion Estimation (SDME), and Adaptive Loop (Wiener) Filter (ALF). 

2 Algorithm description

2.1 Motion representation
This section does not apply. A related topic of motion estimation tool about self derivation of motion estimation can be found in section 2.7. 
2.2 Intra-frame prediction
This section does not apply. 
2.3 Spatial transforms
This section does not apply.
2.4 Quantization
This section does not apply.
2.5 In-loop filtering

2.5.1 Introduction

Wiener filter is the well-known optimal linear filter to cope with the pictures degraded by the Gaussian noise, blurring and distortion. In [2], the utilization of the Wiener filter has been proposed to look for interpolation filter coefficients at the half/quarter pixel level used for the modules of ME/MC to better predict the picture in order to improve the coding efficiency on top of H.264/MPEG-4 Part 10 AVC system. In [3], the Wiener filter was used as the post filter hints to be applied out-of-loop of the core coding loop to improve the picture quality. In [4,5], two proposals to utilize the in-loop adaptive (Wiener) filter on top of the de-blocked picture to produce the improved picture is used as the reference pictures for the later incoming pictures. A quadtree-based technique to encode the chosen blocks were presented in [6] to achieve improved coding efficiency, and the further improvement to explore the adaptive quadtree-based structure, time-delayed filter coefficient were presented in [7]. In the next sections, the key concept of ALF is introduced.
2.5.2 Algorithm description
Figure 1 illustrates the addition of the module of the adaptive filter in between the modules of the deblocking filter and of motion compensation/estimation to improve the quality of the deblocked picture as well as to be served as the improved reference picture for the phase of the motion estimation of the next encoding pictures.
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Figure 1: The flow of the adaptive loop filter for the typical H.264/MPEG-4 Part 10 AVC based video encoder and video decoder (top: video encoder, bottom: video decoder).
Filter Coefficient derivation

Consider the input pixel xk and the output of the Wiener filter zk consisting of the reconstructed mapped pixel yi in the filter support {S}, sized as L+1, with the weight ci. The adaptive filter formula is 
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2‑1                                                                             
The Wiener filter is optimal by minimizing the residual signal 
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2‑2
Where E[] is the expectation of the square of the residual signal for the pixels inside a picture.

The autocorrelation function of {y} is denoted as the below Equation 2-3 and the cross-correlation function among {y} and {x} is denoted as below Equation 2-4.
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The equation to minimize the residual error can be written in Equation 2-5 in the matrix form

[image: image7.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

-

-

)

(

)

1

(

)

0

(

)

0

(

)

1

(

)

(

)

1

(

)

0

(

)

1

(

)

(

)

1

(

)

0

(

1

0

L

r

r

r

c

c

c

r

L

r

L

r

L

r

r

r

L

r

r

r

xy

xy

xy

L

yy

yy

yy

yy

yy

yy

yy

yy

yy

M

M

L

M

O

M

M

L

L


2‑5
The Wiener filter tap set {C} can be derived in the matrix format
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Where Ryy-1 is the inverse of the auto-correlation matrix consisting of the auto-correlation element in Equation 2-3.
The Equations 2-3 and 2-4 can be expressively indexed in the 2D format in the below Equations 2-7 and 2-8 for a non-separable filter with the size L+1=(2l+1)*(2l+1)
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Where m, n are in the range of (-l, l).
Filter side information
The filter side information includes the filter type (symmetric), filter size (5x5, 7x7, 9x9, or else) and filter coefficient quantization bit. The symmetric filter could benefit the RD performance for low resolution video sequences such as QCIF and CIF. Similarly, using the adaptive filter size and the adaptive filter coefficient quantization bit can balance the distortion and
[image: image11.wmf]coef
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 for the content of different spatial resolutions. The decoder requires these filter side information for the proper operation of decoding. The filter side information can be set in sequence level and transmitted through sequence parameter set (SPS). 
Filter coefficient prediction coding

The predictive coding can be used to reduce the bit counts in the transfer of Wiener filter coefficients. The prediction modes include temporal prediction and spatial prediction. The direct mode and the temporal mode could be used when the symmetric filter is selected on the filter side. 

Filter coefficient entropy coding

The Exp-Golomb coder could be applied in coding the prediction error of the Wiener filter coefficient for the case of high filter coefficient quantization bit (8 bit by default). 
Quadtree coding of the filter blocks

In addition to apply the ALF operation pixel to pixel, ALF can be applied in the unit of the block to achieve better coding efficiency. The block size could be 8x8. The RD criterion can be applied to determine if a block to be filtered or not. The pattern of the blocks to be filtered can be efficiently represented by the quadtree order block-based structure in [6]
The BD Bitrate and BD PSNR experiment result of ALF here is demonstrated based on the QALF implementation in KTA software version 2.6r1.

2.6 Entropy coding

This section does not apply.
2.7 Self derivation of motion estimation
2.7.1 Introduction

In the video coding standards such as H.264/MPEG-4 Part 10 AVC, an MB can be partitioned into smaller blocks for encoding, e.g., 4x4, and the motion vector can be assigned to each sub-partitioned block. These smaller block sizes lead to much bandwidth to transmit motion vector information from a video encoder to a video decoder. To save the bandwidth for motion vector information, techniques to derive motion vectors at the video decoder side was presented in [8] about a technique by replacing the original B-Skip mode with a new mirror-based motion search operation to derive a motion vector. This motion vector is derived among the previously decoded pictures and can be fully operating at video decoder side. 
In this proposal, the work of self derivation of motion estimation is further explored to design a new SDME coding mode with the merit of extending block size to increase the prediction accuracy, of including the neighboring reconstructed pixels in the current picture into cost metric to reduce the prediction error and of an adaptive motion search range technique to achieve better coding efficiency with the increase computational complexity of both video encoder and video decoder. The detail of the algorithm description follows as below.
2.7.2 Algorithm description

System Flow
Figure 2 illustrates a typical H.264/MPEG-4 Part 10 AVC video encoder flow with the module of the self derivation of motion estimation (SDME). Figure 3 illustrates the corresponding flow in the video decoder. The identical module of the SDME locates at both video encoder and video decoder where the video encoder needs to synchronize the SDME operation same as the SDME operation at the video decoder side to ensure there is no error propagation at the video decoder side for the long video sequence.
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Figure 2: The flow of a typical H.264/MPEG-4 Part 10 AVC video encoder system with the module of self derivation of motion estimation.
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Figure 3: The flow of a typical H.264/MPEG-4 Part 10 AVC video decoder system with the module of self derivation of motion estimation.
B-Picture Motion Estimation

Motion estimation aims to improve video coding efficiency by removing or reducing the temporal redundancy among the video frames. The motion estimation can be forward, backward or bi-directional, where backward and bi-directional motion estimation are only used in B picture coding while forward motion estimation can be used for both P and B pictures. Figure 4 shows the ME for B frame where MV0 is forward motion vector obtained by forward motion search within the search window in forward reference picture, and MV1 is the backward motion vector obtained by backward motion search within the search window in backward reference picture. In forward motion estimation, the reference block pointed by MV0 is used as the prediction of current block from forward reference picture. In backward motion estimation, the reference block pointed by MV1 is used as the prediction of current block from backward reference picture. And in bi-directional motion estimation, the average of the two reference blocks pointed by MV0 and MV1 is used as the prediction of current block from both reference pictures. 
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Figure 4: Motion estimation for B picture
The motion of an object or the background in the consecutive pictures is usually modeled as a smooth trajectory, i.e., the motion in consecutive pictures have a very strong temporal correlations. Capitalized on this temporal correlation, a motion vector for the target block could be self derived at the decode-side on the reconstructed reference pictures instead of performing the traditional encoder side motion estimation. With the motion vector is derived at video decoder side locally, the bits for encoding the motion vectors can be saved to improve the coding efficiency.
Mirror Motion Estimation
Mirror motion estimation has been explored on SDME to predict the motion vector among forward and backward reference pictures. Figure 5 illustrates how mirror motion estimation is performed for the scenario of two B pictures between forward and backward reference picture. Consider B0 as the current encoding picture. When encoding a target block in B0, the SDME can be described as follows.

1. Specify a search window in the forward reference picture.
2. Specify a search pattern in the forward search window in B0. Full search or simplified search patterns can be the options to select and the same search pattern will apply on both video encoder side and video decoder side. 
3. For the MV0 in the forward search window, the mirror motion vector MV1 in the backward search window is derived in Equation 2-9 based on the temporal picture distance where d0 is the distance between the current picture and the forward reference picture and d1 is the distance among the current picture and the forward reference picture. 
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4. Calculate the cost metric of motion search SAD between the reference block (pointed by MV0) in the forward reference picture and the reference block (pointed by MV1) in the backward reference picture. 
5. The SDME motion vector is selected as the MV0 candidate with the minimum SAD value in spiral order of all candidates in the search pattern. 
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Figure 5: Mirror ME on decoder side
Mirror ME compensation

With the mirror ME, a pair of motion vectors MV0 and MV1 is derived. The forward prediction pixel in forward reference picture
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SDME Block Partition  
Multiple block partitions can be available for SDME. The encoder and decoder should adopt the same partition pattern through the coding syntax agreed at both sides. The block partitions of 16x16, 16x8, 8x16and 8x8 have been applied to the bi-prediction coding mode, and the 8x8 is in use only in the direct_8x8 coding mode.

Currently, the SDME technique is applied to the following traditional coding modes with a flag control bit in use to signal if SDME or the traditional H.264/MPEG-4 Part 10 AVC method is applied to derive the motion vector):
B_Skip, B_Direct_16x16, B_Bi_16x16
B_L0_Bi_16x8, B_L0_Bi_8x16, B_Bi_L0_16x8, B_Bi_L0_8x16, 

B_L1_Bi_16x8, B_L1_Bi_8x16, B_Bi_L1_16x8, B_Bi_L1_8x16,
B_Bi_Bi_16x8, B_Bi_Bi_8x16.
B_Direct_8x8 (Use SDME directly for Direct_8x8. No flag bit is needed)
Extended block Size in the reference blocks
The cost of motion search metric is the sum of absolute difference (SAD) between the two mirror blocks in the two reference pictures. Consider the block size of 
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The cost of motion search metric SAD can be improved by extending the block size for the scenario of SDME. Consider the block size of 
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, the pictorial illustration of the block is depicted in Figure 6.
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Figure 6: Reference block and the extension area
The cost of motion search 
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The cost of motion search
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with the extended block size in the reference block is defined as below.
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Extended block Size to include the reconstructed neighbors in the current picture
The cost of motion search metric SAD can be further improved for the scenario of SDME by extending the block size to include the neighbor pixels which has been reconstructed according to the decoding order in raster scan order. Consider the block size of 
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Figure 7: The current block with the neighboring blocks
There are four possible available spatial neighboring blocks reconstructed in the raster scan order: left
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. The availability of the neighboring blocks is conditioned on the location of the target block to be on the picture border. The availability flags for the neighboring blocks are denoted as
[image: image54.wmf]0

g

,
[image: image55.wmf]1

g

,
[image: image56.wmf]2

g

and
[image: image57.wmf]3

g

. An area is available if the flag is equal to 1; otherwise the area is not available (equal to 0). An available area is denoted as 
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The cost of motion search 
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Where
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are two weighting factor to be set according to the temporal picture distance or to be simply set to be 0.5
The cost of motion search
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with the extended block size in the reference block is defined as below.
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Motion Search Pattern
Motion search pattern is identical on both the encoder and decoder sides to ensure the synchronization of the operation at both sides. Two integer pixel motion searches are first performed, followed by a fractional pixel motion search. In the integer pixel motion search, a spiral order full search is performed around two search centers: (0, 0) of current target block location and the predicted motion vector (PMV) location obtained based on H.264/MPEG-4 Part 10 AVC protocol. An adaptive search range or a fixed search range can be applied to the search process around the search center to achieve better coding efficiency. A best integer motion vector candidate is obtained with the motion vector candidate of the minimal cost metric among many search candidates of these two integer motion searches. Then, a spiral order full search is performed in quarter pixel precision around the best integer motion vector candidate to work out the final quarter-based motion vector. 
Adaptive Search Range
The motion search range of SDME can be an agreed area concurred by both video encoder and video decoder, and there is no requirement to set the search ranges in horizontal and vertical direction to be identical. The size of the motion search range is usually a tradeoff of computational complexity and coding efficiency. An improvement is observed to use the average of the size of all of the motion vector of previous pictures collected from the video decoder at picture level to achieve better coding efficiency with the adaptive search range which may vary picture to picture.
New coding mode Syntax
SDME can be defined as a new MB coding mode to work with the existing coding modes. A control flag is needed to signal this SDME mode in the bitstream to synchronize the operation of video encoder and video decoder. The below Tables 1-3 illustrate the syntax which SDME is realized in the framework of H.264/MPEG-4 Part 10 AVC.
Table 1 - Slice data syntax
	slice_data( ) {
	C
	Descriptor

	
if( entropy_coding_mode_flag )
	
	

	

while( !byte_aligned( ) )
	
	

	


cabac_alignment_one_bit
	2
	f(1)

	
CurrMbAddr = first_mb_in_slice * ( 1 + MbaffFrameFlag )
	
	

	
moreDataFlag = 1
	
	

	
prevMbSkipped = 0
	
	

	
do {
	
	

	

if( slice_type  !=  I  &&  slice_type  !=  SI )
	
	

	


If( !entropy_coding_mode_flag ) {
	
	

	



mb_skip_run
	2
	ue(v)

	



prevMbSkipped = ( mb_skip_run > 0 )
	
	

	



for( i=0; i<mb_skip_run; i++ )
	
	

	




CurrMbAddr = NextMbAddress( CurrMbAddr )
	
	

	



moreDataFlag = more_rbsp_data( )
	
	

	


} else {
	
	

	



mb_skip_flag
	2
	ae(v)

	



if( mb_skip_flag  &&  slice_type == B)
	
	

	




bskip_sdme_flag
	2
	ae(v)

	



moreDataFlag = !mb_skip_flag
	
	

	


}
	
	

	

…
	
	

	
} while( moreDataFlag )
	
	

	}
	
	


Table 2 - Macroblock layer syntax

	macroblock_layer( ) {
	C
	Descriptor

	
mb_type
	2
	ue(v) | ae(v)

	
if( mb_type  = =  B_Direct_16x16 ||  mb_type  = =  B_Bi_16x16 ||
mb_type  = =  B_L_Bi_16x8 ||  mb_type  = =  B_L_Bi_8x16 ||

mb_type  = =  B_Bi_L_16x8 ||  mb_type  = =  B_Bi_L_8x16 ||

mb_type  = =  B_Bi_Bi_16x8 ||  mb_type  = =  B_Bi_Bi_8x16)
	
	

	
for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)
	
	

	       If(MbPartPredMode ( mb_type, mbPartIdx )  ==  BiPred)
	
	

	

mb_part_sdme_flag[mbPartIdx]
	2
	ae(v)

	
if( mb_type = = I_PCM ) {
	
	

	

…
	
	

	
} else {
	
	

	

if( MbPartPredMode( mb_type, 0 )  !=  Intra_4x4  &&  




MbPartPredMode( mb_type, 0 )  !=  Intra_16x16  &&



NumMbPart( mb_type )  = =  4 ) 
	
	

	


sub_mb_pred( mb_type )
	2
	

	

Else
	
	

	


mb_pred( mb_type )
	2
	

	

if( MbPartPredMode( mb_type, 0 )  !=  Intra_16x16 )
	
	

	


coded_block_pattern
	2
	me(v) | ae(v)

	

if( CodedBlockPatternLuma > 0  | | CodedBlockPatternChroma > 0  | |  



MbPartPredMode( mb_type, 0 )  = =  Intra_16x16 ) {
	
	

	


mb_qp_delta
	2
	se(v) | ae(v)

	


residual( )
	3 | 4
	

	

}
	
	

	
}
	
	

	}
	
	


Table 3 - Macroblock prediction syntax
	mb_pred( mb_type ) {
	C
	Descriptor

	
if( MbPartPredMode( mb_type, 0 )  = =  Intra_4x4  | |  


MbPartPredMode( mb_type, 0 )  = =  Intra_16x16 ) {
	
	

	

if( MbPartPredMode( mb_type, 0 )  = =  Intra_4x4 )
	
	

	


for( luma4x4BlkIdx=0; luma4x4BlkIdx<16; luma4x4BlkIdx++ ) {
	
	

	



prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ]
	2
	u(1) | ae(v)

	



if( !prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ] )
	
	

	




rem_intra4x4_pred_mode[ luma4x4BlkIdx ]
	2
	u(3) | ae(v)

	


}
	
	

	

intra_chroma_pred_mode
	2
	ue(v) | ae(v)

	
} else if( MbPartPredMode( mb_type, 0 )  !=  Direct ) {
	
	

	

for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)
	
	

	


if( ( num_ref_idx_l0_active_minus1 > 0  | |





mb_field_decoding_flag ) &&  




MbPartPredMode( mb_type, mbPartIdx )  !=  Pred_L1





&& !mb_part_sdme_flag[mbPartIdx] )
	
	

	



ref_idx_l0[ mbPartIdx ]
	2
	te(v) | ae(v)

	

for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)
	
	

	


if( ( num_ref_idx_l1_active_minus1  >  0  | |





mb_field_decoding_flag ) &&  




MbPartPredMode( mb_type, mbPartIdx )  !=  Pred_L0
&& !mb_part_sdme_flag[mbPartIdx])
	
	

	



ref_idx_l1[ mbPartIdx ]
	2
	te(v) | ae(v)

	

for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)
	
	

	


if( MbPartPredMode ( mb_type, mbPartIdx )  !=  Pred_L1 





&& !mb_part_sdme_flag[mbPartIdx]  )
	
	

	



for( compIdx = 0; compIdx < 2; compIdx++ )
	
	

	




mvd_l0[ mbPartIdx ][ 0 ][ compIdx ]
	2
	se(v) | ae(v)

	

for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)
	
	

	


If( MbPartPredMode( mb_type, mbPartIdx )  !=  Pred_L0 
&& !mb_part_sdme_flag[mbPartIdx])
	
	

	



for( compIdx = 0; compIdx < 2; compIdx++ )
	
	

	




mvd_l1[ mbPartIdx ][ 0 ][ compIdx ]
	2
	se(v) | ae(v)

	
}
	
	

	}
	
	


bskip_sdme_flag specifies if the current MB applies SDME to derive the MVs for the B_Skip mode. 
· If bskip_sdme_flag is equal to 0, the conventional B_Skip MV derivation method is in use.

· Otherwise, the SDME is performed to derive the MVs for the B_Skip mode.

mb_part_sdme_flag [mbPartIdx] specifies if the partition mbPartIdx of the current MB applies SDME to derive the MVs for the Bi-prediction mode. When mb_part_sdme_flag [mbPartIdx] is not present, the value of mb_part_sdme_flag [mbPartIdx] shall be inferred to be equal to 0.
· If mb_part_sdme_flag is equal to 0, the information of motion vector and reference index for the Bi-prediction will be obtained from the bitstream.
· Otherwise, the information of motion vector and reference index for the Bi-prediction will be derived from SDME.
3 Compression performance discussion

3.1 Objective versus subjective compression performance

3.2 Constraint set 1 configuration relative to Alpha anchor

The configuration of the test condition is same as the configuration files provided by the Alpha anchor for all Classes A - D. The description of test condition is provided in [1]. The detailed information about per-frame bit rate and PSNR is provided in the accompanied spread sheet. The SDME and ALF are implemented on top of KTA 2.6r1, and the assessment metrics of BD Bitrate and BD PSNR can be referred in [9, 10].
3.2.1 Class A
For the tests in the Class A, Table 4 lists that the baseline average 3.74% BD Bitrate reduction and 0.16dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1 compared to the anchor bitstream for the test scenario of Constraint Set 1 in [1]. Table 5 lists an average 14.32% BD Bitrate reduction and 0.65dB BD PSNR improvement is achieved for the SDME technique in KTA 2.6r1. Table 6 lists an average 9.51% BD Bitrate reduction and 0.44dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 7 lists an average 19.63% BD Bitrate reduction and 0.93dB BD PSNR improvement is achieved for the combined case of SDME + ALF in KTA 2.6r1. Table 8 lists an average 20.03% BD Bitrate reduction and 0.95dB BD PSNR improvement is achieved for the combined case of SDME + ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.
3.2.2 Class B
For the tests in the Class B, Table 4 lists that the baseline average 3.21% BD Bitrate reduction and 0.10dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1 compared to the anchor bitstream for the test scenario of Constraint Set 1 in [1]. Table 5 lists an average 11.33% BD Bitrate reduction and 0.36dB BD PSNR improvement is achieved for the SDME technique in KTA 2.6r1. Table 6 lists an average 9.45% BD Bitrate reduction and 0.27dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 7 lists an average 17.26% BD Bitrate reduction and 0.54dB BD PSNR improvement is achieved for the combined case of SDME + ALF in KTA 2.6r1. Table 8 lists an average 18.32% BD Bitrate reduction and 0.57dB BD PSNR improvement is achieved for the combined case of SDME + ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.
3.2.3 Class C
For the tests in the Class C, Table 4 lists that the baseline average 10.14% BD Bitrate reduction and 0.44dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1 compared to the anchor bitstream for the test scenario of Constraint Set 1 in [1]. Table 5 lists an average 16.88% BD Bitrate reduction and 0.75dB BD PSNR improvement is achieved for the SDME technique in KTA 2.6r1. Table 6 lists an average 13.24% BD Bitrate reduction and 0.58dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 7 lists an average 20.04% BD Bitrate reduction and 0.91dB BD PSNR improvement is achieved for the combined case of SDME + ALF in KTA 2.6r1. Table 8 lists an average 20.52% BD Bitrate reduction and 0.93dB BD PSNR improvement is achieved for the combined case of SDME + ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.
3.2.4 Class D

For the tests in the Class D, Table 4 lists that the baseline average 10.91% BD Bitrate reduction and 0.50dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1 compared to the anchor bitstream for the test scenario of Constraint Set 1 in [1]. Table 5 lists an average 13.94% BD Bitrate reduction and 0.64dB BD PSNR improvement is achieved for the SDME technique in KTA 2.6r1. Table 6 lists an average 14.83% BD Bitrate reduction and 0.68dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 7 lists an average 18.08% BD Bitrate reduction and 0.84dB BD PSNR improvement is achieved for the combined case of SDME + ALF in KTA 2.6r1. Table 8 lists an average 18.46% BD Bitrate reduction and 0.86dB BD PSNR improvement is achieved for the combined case of SDME + ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.
3.2.5 Overall
Table 4 lists that the baseline average 7.18% BD Bitrate reduction and 0.30dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1 compared to the anchor bitstream for the test scenario of Constraint set 1 in [1]. Table 5 lists an average 13.91% BD Bitrate reduction and 0.47dB BD PSNR improvement is achieved for the SDME technique in KTA 2.6r1. Table 6 lists an average 11.90% BD Bitrate reduction and 0.49dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 7 lists an average 18.53% BD Bitrate reduction and 0.77dB BD PSNR improvement is achieved for the combined case of SDME + ALF in KTA 2.6r1. Table 8 lists an average 19.17% BD Bitrate reduction and 0.80dB BD PSNR improvement is achieved for the combined case of SDME + ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.
Table 4 - Coding gains of default KTA2.6r1 compared to alpha anchor bitstreams for constraint set 1
	
	Sequence
	KTA2.6r1 Original

	
	
	BD_PSNR(Full)
	BD_Bitrate(Full)
	BD_PSNR(High)
	BD_Bitrate(High)
	BD_PSNR(Low)
	BD_Bitrate(Low)

	Class A
	Traffic
	0.1719
	-4.4891
	0.1748
	-5.0052
	0.1718
	-3.9512

	
	PeopleOnStreet
	0.1566
	-2.9893
	0.1377
	-2.6904
	0.1802
	-3.3935

	Class B
	Kimono1
	0.1535
	-4.3257
	0.1165
	-3.7698
	0.1866
	-4.5951

	
	ParkScene
	0.076
	-2.0744
	0.0631
	-1.7367
	0.0883
	-2.3142

	
	Cactus
	0.1551
	-5.1667
	0.1176
	-4.8498
	0.1921
	-5.4043

	
	BasketballDrive
	0.0634
	-2.0686
	0.0393
	-1.5347
	0.0857
	-2.3086

	
	BQTerrace
	0.0411
	-2.3958
	0.0418
	-3.409
	0.0405
	-1.8283

	Class C
	BasketballDrill
	0.3839
	-8.9794
	0.3882
	-9.2601
	0.3768
	-8.4388

	
	BQMall
	0.4463
	-9.1431
	0.4571
	-9.8336
	0.4266
	-8.0455

	
	PartyScene
	0.4261
	-11.1459
	0.402
	-10.025
	0.4575
	-13.0783

	
	RaceHorses
	0.4886
	-11.3027
	0.4955
	-11.3387
	0.4738
	-10.932

	Class D
	BasketballPass
	0.5159
	-9.9616
	0.5062
	-9.2365
	0.5333
	-11.3205

	
	BQSquare
	0.4968
	-12.9274
	0.5368
	-13.6754
	0.4326
	-11.33

	
	BlowingBubbles
	0.4957
	-11.4414
	0.5419
	-12.0928
	0.4085
	-10.0581

	
	RaceHorses
	0.4876
	-9.3059
	0.4753
	-8.6297
	0.508
	-10.5245

	Average of Class A
	0.16425
	-3.7392
	0.15625
	-3.8478
	0.176
	-3.67235

	Average of Class B
	0.0978 
	-3.2062 
	0.0757 
	-3.0600 
	0.1186 
	-3.2901 

	Average of Class C
	0.4362 
	-10.1428 
	0.4357 
	-10.1144 
	0.4337 
	-10.1237 

	Average of Class D
	0.4990 
	-10.9091 
	0.5151 
	-10.9086 
	0.4706 
	-10.8083 

	Overall Average
	0.3039 
	-7.1811 
	0.2996 
	-7.1392 
	0.3042 
	-7.1682 


	Table 5: Coding gains of SDME compared to alpha anchor bitstreams for constraint set 1
　
	Sequence
	Original KTA+SDME

	
	
	BD_PSNR
(Full)
	BD_Bitrate
(Full)
	BD_PSNR
(High)
	BD_Bitrate
(High)
	BD_PSNR
(Low)
	BD_Bitrate
(Low)

	Class A
	Traffic
	0.4177
	-11.3203
	0.3044
	-8.8136
	0.5821
	-13.9747

	
	PeopleOnStreet
	0.888
	-17.3157
	0.621
	-12.681
	1.341
	-23.8056

	Class B
	Kimono1
	0.4887
	-13.3946
	0.2862
	-9.2733
	0.6816
	-16.3816

	
	ParkScene
	0.3661
	-9.5914
	0.2183
	-5.9801
	0.5086
	-13.0406

	
	Cactus
	0.4275
	-13.8728
	0.2703
	-11.0105
	0.5835
	-15.9671

	
	BasketballDrive
	0.3447
	-10.6504
	0.1797
	-6.75
	0.505
	-13.3564

	
	BQTerrace
	0.1621
	-9.1164
	0.1062
	-8.4632
	0.2188
	-9.673

	Class C
	BasketballDrill
	0.5591
	-12.9818
	0.4983
	-11.8754
	0.6415
	-14.3079

	
	BQMall
	0.987
	-19.3371
	0.824
	-17.4464
	1.2104
	-22.1295

	
	PartyScene
	0.7364
	-18.7045
	0.6664
	-16.4565
	0.8215
	-22.4713

	
	RaceHorses
	0.7265
	-16.5147
	0.636
	-14.484
	0.8471
	-19.4258

	Class D
	BasketballPass
	0.6943
	-13.2709
	0.6293
	-11.4354
	0.7936
	-16.761

	
	BQSquare
	0.6414
	-16.5879
	0.6353
	-16.0683
	0.6522
	-17.1643

	
	BlowingBubbles
	0.6229
	-14.3041
	0.6431
	-14.3247
	0.5795
	-14.0991

	
	RaceHorses
	0.6119
	-11.612
	0.5514
	-9.9827
	0.7061
	-14.6532

	Average of Class A
	0.65285
	-14.318
	0.4627
	-10.7473
	0.96155
	-18.89015

	Average of Class B
	0.3578 
	-11.3251 
	0.2121 
	-8.2954 
	0.4995 
	-13.6837 

	Average of Class C
	0.7523 
	-16.8845 
	0.6562 
	-15.0656 
	0.8801 
	-19.5836 

	Average of Class D
	0.6426 
	-13.9437 
	0.6148 
	-12.9528 
	0.6829 
	-15.6694 

	Overall Average
	0.5783 
	-13.9050 
	0.4713 
	-11.6697 
	0.7115 
	-16.4807 


Table 6 - Coding gains of ALF to alpha anchor bitstreams for constraint set 1
	　
	Sequence
	Original KTA+ALF

	
	
	BD_PSNR
(Full)
	BD_Bitrate
(Full)
	BD_PSNR
(High)
	BD_Bitrate
(High)
	BD_PSNR
(Low)
	BD_Bitrate
(Low)

	Class A
	Traffic
	0.3894
	-9.8459
	0.3844
	-10.7444
	0.3993
	-8.8749

	
	PeopleOnStreet
	0.5004
	-9.1793
	0.5074
	-9.4897
	0.4804
	-8.7161

	Class B
	Kimono1
	0.3956
	-10.7638
	0.3671
	-11.7106
	0.4197
	-9.9636

	
	ParkScene
	0.1977
	-5.2688
	0.1877
	-5.1217
	0.2072
	-5.347

	
	Cactus
	0.2756
	-8.9823
	0.2485
	-10.0215
	0.3019
	-8.3126

	
	BasketballDrive
	0.213
	-6.5623
	0.1877
	-7.0445
	0.2363
	-6.1648

	
	BQTerrace
	0.2893
	-15.6561
	0.259
	-18.8975
	0.3216
	-14.0437

	Class C
	BasketballDrill
	0.5692
	-13.0065
	0.5869
	-13.6782
	0.5415
	-11.7751

	
	BQMall
	0.5823
	-11.7239
	0.6069
	-12.8284
	0.5415
	-10.0666

	
	PartyScene
	0.582
	-14.5956
	0.6016
	-14.3948
	0.5544
	-15.3479

	
	RaceHorses
	0.5971
	-13.6222
	0.6083
	-13.7346
	0.5757
	-13.0891

	Class D
	BasketballPass
	0.6162
	-11.7592
	0.623
	-11.2119
	0.6031
	-12.6647

	
	BQSquare
	0.9034
	-22.4431
	0.9584
	-23.3167
	0.8203
	-20.0951

	
	BlowingBubbles
	0.6549
	-14.6329
	0.7426
	-16.0618
	0.5022
	-12.0678

	
	RaceHorses
	0.5536
	-10.4744
	0.5521
	-9.9396
	0.5563
	-11.4401

	Average of Class A
	0.4449
	-9.5126
	0.4459
	-10.11705
	0.43985
	-8.7955

	Average of Class B
	0.2742 
	-9.4467 
	0.2500 
	-10.5592 
	0.2973 
	-8.7663 

	Average of Class C
	0.5827 
	-13.2371 
	0.6009 
	-13.6590 
	0.5533 
	-12.5697 

	Average of Class D
	0.6820 
	-14.8274 
	0.7190 
	-15.1325 
	0.6205 
	-14.0669 

	Overall Average
	0.4880 
	-11.9011 
	0.4948 
	-12.5464 
	0.4708 
	-11.1979 


	Table 7 - Coding gains of SDME+ALF to alpha anchor bitstreams for constraint set 1
　
	Sequence
	Original KTA +SDME+ALF

	
	
	BD_PSNR
(Full)
	BD_Bitrate
(Full)
	BD_PSNR
(High)
	BD_Bitrate
(High)
	BD_PSNR
(Low)
	BD_Bitrate
(Low)

	Class A
	Traffic
	0.6444
	-16.6905
	0.5258
	-14.6552
	0.8152
	-18.898

	
	PeopleOnStreet
	1.2198
	-22.5648
	0.9759
	-19.038
	1.6287
	-27.6414

	Class B
	Kimono1
	0.7378
	-19.6881
	0.5525
	-17.5189
	0.9149
	-21.3475

	
	ParkScene
	0.4855
	-12.5878
	0.3435
	-9.3201
	0.6227
	-15.7607

	
	Cactus
	0.5522
	-17.5892
	0.401
	-15.9719
	0.7019
	-18.8758

	
	BasketballDrive
	0.4923
	-14.8318
	0.3288
	-12.1056
	0.6507
	-16.8394

	
	BQTerrace
	0.4074
	-21.5905
	0.3236
	-23.2844
	0.4922
	-21.0586

	Class C
	BasketballDrill
	0.7371
	-16.7473
	0.691
	-16.0642
	0.7983
	-17.3634

	
	BQMall
	1.1394
	-22.0042
	0.992
	-20.6214
	1.3403
	-24.1586

	
	PartyScene
	0.934
	-22.7223
	0.9083
	-21.4464
	0.9573
	-25.1524

	
	RaceHorses
	0.8298
	-18.6792
	0.7568
	-17.0327
	0.9247
	-20.8486

	Class D
	BasketballPass
	0.7909
	-14.9639
	0.7432
	-13.3268
	0.863
	-17.9887

	
	BQSquare
	1.0961
	-26.951
	1.0797
	-26.0891
	1.1216
	-27.3891

	
	BlowingBubbles
	0.7966
	-17.7313
	0.8528
	-18.411
	0.6945
	-16.4758

	
	RaceHorses
	0.6729
	-12.6599
	0.6224
	-11.1764
	0.7545
	-15.537

	Average of Class A
	0.9321
	-19.62765
	0.75085
	-16.8466
	1.22195
	-23.2697

	Average of Class B
	0.5350 
	-17.2575 
	0.3899 
	-15.6402 
	0.6765 
	-18.7764 

	Average of Class C
	0.9101 
	-20.0383 
	0.8370 
	-18.7912 
	1.0052 
	-21.8808 

	Average of Class D
	0.8391 
	-18.0765 
	0.8245 
	-17.2508 
	0.8584 
	-19.3477 

	Overall Average
	0.7691 
	-18.5335 
	0.6732 
	-17.0708 
	0.8854 
	-20.3557 


	Table 8 - Coding gains of SDME+ALF+CodingTools to alpha anchor bitstreams for constraint set 1
　
	Sequence
	Original KTA+KTATools+ALF+SDME

	
	
	BD_PSNR
(Full)
	BD_Bitrate
(Full)
	BD_PSNR
(High)
	BD_Bitrate
(High)
	BD_PSNR
(Low)
	BD_Bitrate
(Low)

	Class A
	Traffic
	0.6785
	-17.3837
	0.5691
	-15.7194
	0.8351
	-19.2316

	
	PeopleOnStreet
	1.2287
	-22.6805
	0.9885
	-19.2414
	1.6305
	-27.636

	Class B
	Kimono1
	0.7741
	-20.5587
	0.5942
	-18.7145
	0.9468
	-21.9848

	
	ParkScene
	0.5141
	-13.2735
	0.3778
	-10.1795
	0.6454
	-16.2786

	
	Cactus
	0.5731
	-18.1964
	0.4216
	-16.7214
	0.7238
	-19.3876

	
	BasketballDrive
	0.5394
	-16.1852
	0.3762
	-13.747
	0.6976
	-17.9592

	
	BQTerrace
	0.4464
	-23.3645
	0.3564
	-25.3386
	0.537
	-22.6157

	Class C
	BasketballDrill
	0.7546
	-17.0915
	0.722
	-16.7338
	0.7975
	-17.2659

	
	BQMall
	1.1707
	-22.5261
	1.0285
	-21.2593
	1.3651
	-24.5099

	
	PartyScene
	0.9509
	-23.1103
	0.9268
	-21.8189
	0.9724
	-25.5543

	
	RaceHorses
	0.8631
	-19.3436
	0.7945
	-17.8063
	0.9511
	-21.4118

	Class D
	BasketballPass
	0.8059
	-15.2013
	0.7647
	-13.6787
	0.8726
	-18.1336

	
	BQSquare
	1.1251
	-27.5481
	1.1097
	-26.7708
	1.1465
	-27.9255

	
	BlowingBubbles
	0.8176
	-18.1341
	0.8776
	-18.8646
	0.7101
	-16.7891

	
	RaceHorses
	0.6916
	-12.9866
	0.6446
	-11.5303
	0.7656
	-15.7389

	Average of Class A
	0.9536
	-20.0321
	0.7788
	-17.4804
	1.2328
	-23.4338

	Average of Class B
	0.5694 
	-18.3157 
	0.4252 
	-16.9402 
	0.7101 
	-19.6452 

	Average of Class C
	0.9348 
	-20.5179 
	0.8680 
	-19.4046 
	1.0215 
	-22.1855 

	Average of Class D
	0.8601 
	-18.4675 
	0.8492 
	-17.7111 
	0.8737 
	-19.6468 

	Overall Average
	0.7956 
	-19.1723 
	0.7035 
	-17.8750 
	0.9065 
	-20.8282 


3.3 Constraint set 2 configuration relative to Beta and Gamma anchors
The configuration of the test condition is same as the configuration files provided by the Beta anchor for all Classes B - E. The description of test condition is provided in [1]. The detailed information about per-frame bit rate and PSNR is provided in the accompanied spread sheet. The ALF is implemented on top of KTA 2.6r1, and the assessment metrics of BD Bitrate and BD PSNR can be referred in [9, 10].
3.3.1 Class B

For the tests in Class B, Table 9 lists that the baseline average 2.71% BD Bitrate reduction and 0.10dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1 compared to the beta bitstreams for the test scenario of constraint Set 2 in [1]. Table 10 lists an average 9.37% BD Bitrate reduction and 0.30dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 11 lists an average 10.71% BD Bitrate reduction and 0.34dB BD PSNR improvement is achieved for the combined case of ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.
3.3.2 Class C

For the tests in Class C, Table 9 lists that the baseline average 0.15% BD Bitrate reduction and 0.01dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1 compared to the beta bitstreams for the test scenario of constraint Set 2 in [1]. Table 10 lists an average 4.86% BD Bitrate reduction and 0.20dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 11 lists an average 5.42% BD Bitrate reduction and 0.23dB BD PSNR improvement is achieved for the combined case of ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.
3.3.3 Class D

For the tests in Class D, Table 9 lists that the baseline average 1.44% BD Bitrate increase and 0.07dB BD PSNR decrement is observed in the baseline KTA software version 2.6r1 compared to the beta bitstreams for the test scenario of constraint Set 2 in [1]. Table 10 lists an average 0.89% BD Bitrate reduction and 0.03dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 11 lists an average 2.32% BD Bitrate reduction and 0.09dB BD PSNR improvement is achieved for the combined case of ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.
3.3.4 Class E
For the tests in Class E, Table 9 lists that the baseline average 0.15% BD Bitrate increase and 0.01dB BD PSNR decrement is observed in the baseline KTA software version 2.6r1 compared to the beta bitstreams for the test scenario of constraint Set 2 in [1]. Table 10 lists an average 8.50% BD Bitrate reduction and 0.35dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 11 lists an average 9.47% BD Bitrate reduction and 0.39dB BD PSNR improvement is achieved for the combined case of ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.
3.3.5 Overall
Table 9 lists that the baseline average 0.50% BD Bitrate reduction and 0.01dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1 compared to the beta bitstreams for the test scenario of constraint Set 2 in [1]. Table 10 lists an average 5.96% BD Bitrate reduction and 0.22dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 11 lists an average 7.06% BD Bitrate reduction and 0.26dB BD PSNR improvement is achieved for the combined case of ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.

Table 9 - Coding gains of default KTA 2.6r1 compared to beta anchor bitstreams for constraint set 2
	 
	Sequence
	KTA2.6r1 Original

	
	
	BD_PSNR
(Full)
	BD_Bitrate
(Full)
	BD_PSNR
(High)
	BD_Bitrate
(High)
	BD_PSNR
(Low)
	BD_Bitrate
(Low)

	Class B
	Kimono1
	0.1859
	-5.1628
	0.1471
	-4.3821
	0.2183
	-5.364

	
	ParkScene
	0.1415
	-3.9121
	0.0932
	-2.5888
	0.1864
	-5.0696

	
	Cactus
	0.0341
	-1.0145
	0.026
	-0.9692
	0.0429
	-1.2301

	
	BasketballDrive
	0.0971
	-2.5973
	0.0517
	-1.6645
	0.1393
	-3.3959

	
	BQTerrace
	0.0193
	-0.8613
	0.0283
	-1.8393
	0.0098
	-0.363

	Class C
	BasketballDrill
	-0.0087
	0.2023
	-0.0745
	1.9287
	0.0706
	-1.7942

	
	BQMall
	-0.0196
	0.502
	-0.0624
	1.3664
	0.0349
	-0.6147

	
	PartyScene
	0.1091
	-2.5474
	0.0387
	-0.8212
	0.2155
	-6.0404

	
	RaceHorses
	-0.0473
	1.2403
	-0.113
	2.9729
	0.0439
	-1.1955

	Class D
	BasketballPass
	-0.0754
	1.6795
	-0.1253
	2.5325
	0.0115
	-0.2882

	
	BQSquare
	0.0866
	-2.5293
	0.0878
	-2.5033
	0.0417
	-1.3144

	
	BlowingBubbles
	-0.0706
	1.7559
	-0.1406
	3.4485
	-0.008
	0.1918

	
	RaceHorses
	-0.2139
	4.8569
	-0.2025
	4.0562
	-0.1646
	3.8316

	Class E
	Vidyo1
	-0.0181
	0.667
	-0.0666
	1.8586
	0.0384
	-0.7652

	
	Vidyo3
	-0.0973
	2.2768
	-0.1446
	3.9161
	0.0057
	-0.1242

	
	Vidyo4
	0.0818
	-2.4816
	0.0669
	-2.3219
	0.1507
	-3.1208

	Average of Class B
	0.0956 
	-2.7096 
	0.0693 
	-2.2888 
	0.1193 
	-3.0845 

	Average of Class C
	0.0084 
	-0.1507 
	-0.0528 
	1.3617 
	0.0912 
	-2.4112 

	Average of Class D
	-0.0683 
	1.4408 
	-0.0952 
	1.8835 
	-0.0299 
	0.6052 

	Average of Class E
	-0.0112 
	0.1541 
	-0.0481 
	1.1509 
	0.0649 
	-1.3367 

	Overall Average
	0.0128 
	-0.4954 
	-0.0244 
	0.3119 
	0.0648 
	-1.6661 


	Table 10 - Coding gains of ALF to beta anchor bitstreams for constraint set 2
　
	Sequence
	Original+ALF

	
	
	BD_PSNR
(Full)
	BD_Bitrate
(Full)
	BD_PSNR
(High)
	BD_Bitrate
(High)
	BD_PSNR
(Low)
	BD_Bitrate
(Low)

	Class B
	Kimono1
	0.4457
	-11.432
	0.4315
	-12.032
	0.4546
	-10.7437

	
	ParkScene
	0.2639
	-7.1562
	0.2094
	-5.7574
	0.315
	-8.429

	
	Cactus
	0.1347
	-4.1742
	0.1281
	-4.6526
	0.1421
	-3.952

	
	BasketballDrive
	0.3055
	-8.3649
	0.2468
	-8.035
	0.3606
	-8.6289

	
	BQTerrace
	0.3411
	-15.7396
	0.3032
	-18.4457
	0.3787
	-14.5502

	Class C
	BasketballDrill
	0.2696
	-6.7156
	0.2043
	-5.3522
	0.3452
	-8.395

	
	BQMall
	0.1661
	-3.3899
	0.1297
	-2.8357
	0.2138
	-4.1299

	
	PartyScene
	0.2306
	-5.7343
	0.161
	-3.9736
	0.3376
	-9.3707

	
	RaceHorses
	0.1413
	-3.6098
	0.1318
	-3.3048
	0.1522
	-3.9883

	Class D
	BasketballPass
	0.0639
	-1.2337
	0.0374
	-0.7162
	0.1178
	-2.7845

	
	BQSquare
	0.1855
	-5.3585
	0.1695
	-4.865
	0.1717
	-5.1743

	
	BlowingBubbles
	-0.0167
	0.4081
	-0.085
	2.0869
	0.0462
	-1.1762

	
	RaceHorses
	-0.1102
	2.6195
	-0.0737
	1.4549
	-0.0907
	1.98

	Class E
	Vidyo1
	0.3703
	-8.3258
	0.29
	-7.8868
	0.4358
	-8.7854

	
	Vidyo3
	0.34
	-8.2852
	0.2658
	-7.321
	0.4841
	-9.7958

	
	Vidyo4
	0.3373
	-8.8866
	0.3086
	-9.433
	0.4331
	-8.8202

	Average of Class B
	0.2982 
	-9.3734 
	0.2638 
	-9.7845 
	0.3302 
	-9.2608 

	Average of Class C
	0.2019 
	-4.8624 
	0.1567 
	-3.8666 
	0.2622 
	-6.4710 

	Average of Class D
	0.0306 
	-0.8912 
	0.0121 
	-0.5099 
	0.0613 
	-1.7888 

	Average of Class E
	0.3492 
	-8.4992 
	0.2881 
	-8.2136 
	0.4510 
	-9.1338 

	Overall Average
	0.2168 
	-5.9612 
	0.1787 
	-5.6918 
	0.2686 
	-6.6715 


Table 11 - Coding gains of ALF+CodingTools to beta anchor bitstreams for constraint set 2
	　
	Sequence
	Original+KTATools+ALF

	
	
	BD_PSNR
(Full)
	BD_Bitrate
(Full)
	BD_PSNR
(High)
	BD_Bitrate
(High)
	BD_PSNR
(Low)
	BD_Bitrate
(Low)

	Class B
	Kimono1
	0.4872
	-12.3459
	0.4842
	-13.3383
	0.4854
	-11.3542

	
	ParkScene
	0.2963
	-8.0121
	0.2424
	-6.6543
	0.3464
	-9.2214

	
	Cactus
	0.1682
	-5.212
	0.1629
	-5.8772
	0.1742
	-4.8376

	
	BasketballDrive
	0.3648
	-9.8805
	0.3145
	-10.1469
	0.4106
	-9.7017

	
	BQTerrace
	0.3966
	-18.0887
	0.3504
	-21.1355
	0.4429
	-16.74

	Class C
	BasketballDrill
	0.311
	-7.7577
	0.2589
	-6.7684
	0.3702
	-8.9576

	
	BQMall
	0.211
	-4.3193
	0.1885
	-4.1184
	0.2386
	-4.6027

	
	PartyScene
	0.2259
	-5.5438
	0.1587
	-3.9066
	0.3292
	-9.1167

	
	RaceHorses
	0.1594
	-4.049
	0.16
	-3.9912
	0.1564
	-4.0764

	Class D
	BasketballPass
	0.0786
	-1.5702
	0.0557
	-1.0762
	0.1236
	-2.9173

	
	BQSquare
	0.3478
	-9.5153
	0.3797
	-10.5009
	0.2437
	-7.0714

	
	BlowingBubbles
	0.0198
	-0.5113
	-0.0295
	0.7389
	0.0513
	-1.3276

	
	RaceHorses
	-0.096
	2.3004
	-0.0588
	1.16
	-0.0838
	1.8368

	Class E
	Vidyo1
	0.4166
	-9.3551
	0.3409
	-9.1813
	0.476
	-9.5289

	
	Vidyo3
	0.374
	-8.9751
	0.3046
	-8.2728
	0.4993
	-10.1356

	
	Vidyo4
	0.3881
	-10.0792
	0.3691
	-11.0442
	0.4712
	-9.5011

	Average of Class B
	0.3426 
	-10.7078 
	0.3109 
	-11.4304 
	0.3719 
	-10.3710 

	Average of Class C
	0.2268 
	-5.4175 
	0.1915 
	-4.6962 
	0.2736 
	-6.6884 

	Average of Class D
	0.0876 
	-2.3241 
	0.0868 
	-2.4196 
	0.0837 
	-2.3699 

	Average of Class E
	0.3929 
	-9.4698 
	0.3382 
	-9.4994 
	0.4822 
	-9.7219 

	Overall Average
	0.2593 
	-7.0572 
	0.2301 
	-7.1321 
	0.2960 
	-7.3283 


4 Complexity analysis

4.1 Encoding time and measurement methodology

To measure the encoding time increase caused by ALF and SDME, the simulation to encode the bitstreams were going through the test cases in [1] on the modified KTA2.6r1 encoder. The portion of the encoding time spent on ALF and SDME were extracted from the total encoding time through the ftime() function in the C/C++ program. 
· ALF: Table 12 reports an average 6.692% increase due to ALF in video encoding time compared to the KTA baseline with KTA Tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] enabled under constraint set 1. Table 13 reports an average 11.539% increase due to ALF in video encoding time compared to the KTA baseline with KTA Tools enabled under constraint set 2.
· SDME: Table 14 reports an average 118.508% increase in video encoding time due to SDME compared to the KTA baseline with KTA Tools enabled under constraint set 1. Fast SDME algorithms are under investigation to reduce the motion estimation complexity.
Table 12 - Encoding time increase by ALF for constraint set 1
	
	Encoding Time Increase of ALF (%)

	
	bitrate_1
	bitrate_2
	bitrate_3
	bitrate_4
	bitrate_5
	Average

	Kimono1
	6.288 
	6.098 
	5.930 
	5.413 
	4.805 
	5.707 

	ParkScene
	6.234 
	6.141 
	5.837 
	5.538 
	5.350 
	5.820 

	Cactus
	7.227 
	6.990 
	6.429 
	5.936 
	5.588 
	6.434 

	BasketballDrive
	6.025 
	5.967 
	5.846 
	5.562 
	5.144 
	5.709 

	BQTerrace
	6.795 
	6.725 
	6.269 
	6.006 
	5.643 
	6.288 

	BasketballDrill
	8.067 
	7.881 
	7.322 
	6.182 
	6.143 
	7.119 

	BQMall
	7.218 
	6.679 
	6.176 
	5.520 
	5.296 
	6.178 

	PartyScene
	7.513 
	7.102 
	6.303 
	5.881 
	5.596 
	6.479 

	RaceHorses
	6.776 
	6.498 
	6.151 
	5.541 
	5.403 
	6.074 

	BasketballPass
	8.134 
	8.083 
	7.574 
	7.050 
	6.337 
	7.436 

	BQSquare
	9.521 
	9.007 
	8.112 
	7.415 
	7.115 
	8.234 

	BlowingBubbles
	9.069 
	8.984 
	8.339 
	7.756 
	7.221 
	8.274 

	RaceHorses
	7.140 
	7.630 
	7.645 
	7.208 
	6.590 
	7.243 

	Average
	7.385 
	7.214 
	6.764 
	6.231 
	5.864 
	6.692 


Table 13 - Encoding time increase by ALF for constraint set 2
	
	Encoding Time Increase of ALF (%)

	
	bitrate_1
	bitrate_2
	bitrate_3
	bitrate_4
	bitrate_5
	Average

	Kimono1
	12.846 
	12.288 
	11.985 
	11.262 
	11.151 
	11.906 

	ParkScene
	11.428 
	11.038 
	10.688 
	10.249 
	10.528 
	10.786 

	Cactus
	12.576 
	11.000 
	11.584 
	11.063 
	10.819 
	11.408 

	BasketballDrive
	11.864 
	11.640 
	11.083 
	10.815 
	10.535 
	11.187 

	BQTerrace
	13.214 
	12.999 
	12.475 
	11.932 
	11.454 
	12.415 

	BasketballDrill
	13.167 
	12.462 
	11.762 
	10.717 
	10.308 
	11.683 

	BQMall
	10.633 
	10.119 
	9.851 
	9.819 
	9.629 
	10.010 

	PartyScene
	10.941 
	10.256 
	9.654 
	9.606 
	9.690 
	10.029 

	RaceHorses
	10.037 
	9.725 
	9.743 
	9.373 
	9.569 
	9.689 

	BasketballPass
	12.536 
	12.079 
	11.507 
	11.282 
	11.069 
	11.695 

	BQSquare
	14.987 
	15.396 
	15.370 
	14.234 
	13.522 
	14.702 

	BlowingBubbles
	10.974 
	11.205 
	11.196 
	10.857 
	10.915 
	11.029 

	RaceHorses
	11.657 
	11.828 
	11.165 
	11.353 
	10.979 
	11.396 

	Vidyo1
	14.633 
	13.179 
	11.865 
	10.985 
	10.520 
	12.236 

	Vidyo3
	15.452 
	13.992 
	11.922 
	11.292 
	10.406 
	12.613 

	Vidyo4
	14.477 
	12.790 
	11.003 
	10.763 
	10.150 
	11.837 

	Average
	12.589 
	12.000 
	11.428 
	10.975 
	10.703 
	11.539 


Table 14 - Encoding time increase by SDME for constraint set 1
	
	Encoding Time Increase of ALF & SDME (%)

	
	bitrate_1
	bitrate_2
	bitrate_3
	bitrate_4
	bitrate_5
	Average

	Kimono1
	134.627 
	133.628 
	131.114 
	127.534 
	122.666 
	129.914 

	ParkScene
	98.636 
	100.350 
	99.113 
	96.061 
	95.991 
	98.030 

	Cactus
	97.422 
	94.764 
	86.836 
	80.257 
	77.552 
	87.366 

	BasketballDrive
	189.043 
	188.999 
	186.901 
	177.570 
	165.766 
	181.656 

	BQTerrace
	125.795 
	125.271 
	123.457 
	119.676 
	116.331 
	122.106 

	BasketballDrill
	124.120 
	121.877 
	115.236 
	104.326 
	100.987 
	113.309 

	BQMall
	129.644 
	123.158 
	117.131 
	112.960 
	110.620 
	118.703 

	PartyScene
	89.920 
	88.438 
	85.390 
	85.236 
	86.082 
	87.013 

	RaceHorses
	182.956 
	180.838 
	177.986 
	169.720 
	171.804 
	176.661 

	BasketballPass
	126.838 
	130.893 
	130.500 
	126.817 
	119.937 
	126.997 

	BQSquare
	85.128 
	84.359 
	83.481 
	82.039 
	80.514 
	83.104 

	BlowingBubbles
	85.044 
	90.814 
	87.877 
	85.943 
	83.522 
	86.640 

	RaceHorses
	118.805 
	129.137 
	135.087 
	132.835 
	129.669 
	129.107 

	Average
	122.152 
	122.502 
	120.008 
	115.460 
	112.419 
	118.508 


4.2 Decoding time and measurement methodology and comparison vs. anchor bitstreams decoded by JM 17.0
To measure the decoding time increase caused by ALF and SDME, instead of directly comparing the amount of the time spending on decoding the anchor bitstreams on JM17.0, the simulation to decode the bitstreams were going through the test cases in [1] on the modified KTA2.6r1 software decoder. The portion of the decoding time spent on ALF and SDME were extracted from the total decoding time through the ftime() function in the program. 

· ALF: Table 15 reports an average 14.999% increase due to ALF in video decoding time compared to the KTA baseline with KTA Tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] enabled under constraint set 1. Table 16 reports an average 13.446% increase due to ALF in video decoding time compared to the KTA baseline with KTA Tools enabled under constraint set 2.
· SDME: Table 17 reports an average 550.55% increase in video decoding time due to SDME compared to the KTA baseline with KTA Tools enabled under constraint set 1. Fast SDME algorithms are under investigation to reduce the motion estimation complexity.
Table 15 - Decoding time increase by ALF for constraint set 1
	
	Decoding Time Increase of ALF (%)

	
	bitrate_1
	bitrate_2
	bitrate_3
	bitrate_4
	bitrate_5
	Average

	Kimono1
	21.407 
	21.421 
	21.937 
	23.632 
	24.435 
	22.566 

	ParkScene
	16.962 
	19.674 
	20.257 
	20.024 
	19.645 
	19.312 

	Cactus
	13.490 
	13.133 
	11.102 
	11.345 
	9.855 
	11.785 

	BasketballDrive
	17.790 
	19.831 
	20.511 
	20.163 
	18.201 
	19.299 

	BQTerrace
	19.116 
	20.528 
	19.316 
	19.557 
	18.737 
	19.451 

	BasketballDrill
	8.986 
	13.435 
	11.070 
	8.189 
	6.338 
	9.604 

	BQMall
	14.802 
	18.356 
	15.516 
	11.077 
	8.848 
	13.720 

	PartyScene
	14.668 
	19.071 
	20.082 
	18.208 
	14.801 
	17.366 

	RaceHorses
	12.888 
	12.841 
	9.876 
	9.598 
	8.822 
	10.805 

	BasketballPass
	8.816 
	14.642 
	13.179 
	7.512 
	7.972 
	10.424 

	BQSquare
	15.610 
	17.777 
	17.325 
	19.640 
	21.512 
	18.373 

	BlowingBubbles
	12.968 
	16.492 
	16.434 
	9.159 
	8.387 
	12.688 

	RaceHorses
	9.138 
	12.311 
	8.825 
	10.338 
	7.381 
	9.599 

	Average
	14.357 
	16.886 
	15.802 
	14.496 
	13.456 
	14.999 


Table 16 Decoding time increase by ALF under constraint set 2
	
	Decoding Time Increase of ALF (%)

	
	bitrate_1
	bitrate_2
	bitrate_3
	bitrate_4
	bitrate_5
	Average

	Kimono1
	17.331 
	18.113 
	18.777 
	23.511 
	27.786 
	21.104 

	ParkScene
	16.242 
	18.044 
	18.532 
	18.382 
	19.647 
	18.169 

	Cactus
	13.480 
	12.483 
	11.797 
	11.750 
	11.092 
	12.120 

	BasketballDrive
	14.617 
	15.344 
	17.002 
	18.450 
	19.303 
	16.943 

	BQTerrace
	16.011 
	16.683 
	14.950 
	14.390 
	14.409 
	15.289 

	BasketballDrill
	11.275 
	14.266 
	16.023 
	16.285 
	13.113 
	14.192 

	BQMall
	11.712 
	14.638 
	16.595 
	16.433 
	11.779 
	14.231 

	PartyScene
	6.611 
	7.262 
	7.245 
	7.248 
	7.140 
	7.101 

	RaceHorses
	15.017 
	15.651 
	18.128 
	19.969 
	20.722 
	17.897 

	BasketballPass
	10.218 
	12.807 
	16.160 
	17.004 
	15.908 
	14.419 

	BQSquare
	2.592 
	3.275 
	4.566 
	4.275 
	8.840 
	4.710 

	BlowingBubbles
	3.174 
	5.055 
	5.412 
	3.325 
	2.937 
	3.981 

	RaceHorses
	12.647 
	17.321 
	17.722 
	20.501 
	22.687 
	18.176 

	Vidyo1
	16.745 
	14.505 
	11.227 
	6.539 
	4.193 
	10.642 

	Vidyo3
	13.650 
	14.382 
	14.016 
	12.770 
	10.793 
	13.122 

	Vidyo4
	15.164 
	15.836 
	14.832 
	12.723 
	6.679 
	13.047 

	Average
	12.280 
	13.479 
	13.937 
	13.972 
	13.564 
	13.446 


Table 17 - Decoding time increase by SDME under constraint set 1
	
	Decoding Time Increase of SDME (%)

	
	bitrate_1
	bitrate_2
	bitrate_3
	bitrate_4
	bitrate_5
	Average

	Kimono1
	861.107 
	993.747 
	1009.068 
	998.923 
	851.656 
	942.900 

	ParkScene
	485.018 
	578.245 
	614.093 
	563.729 
	504.774 
	549.172 

	Cactus
	887.181 
	979.819 
	862.023 
	834.693 
	758.395 
	864.422 

	BasketballDrive
	965.594 
	1059.686 
	1137.162 
	1202.798 
	1075.621 
	1088.172 

	BQTerrace
	416.505 
	438.689 
	390.506 
	357.596 
	333.903 
	387.440 

	BasketballDrill
	280.315 
	356.945 
	264.600 
	185.600 
	138.021 
	245.096 

	BQMall
	465.514 
	461.843 
	397.861 
	321.709 
	262.157 
	381.817 

	PartyScene
	339.439 
	389.798 
	358.516 
	291.692 
	247.379 
	325.365 

	RaceHorses
	664.277 
	845.683 
	826.089 
	785.391 
	693.576 
	763.003 

	BasketballPass
	326.802 
	430.411 
	450.741 
	441.258 
	405.878 
	411.018 

	BQSquare
	242.413 
	262.204 
	236.884 
	227.173 
	232.162 
	240.167 

	BlowingBubbles
	240.236 
	286.697 
	259.138 
	223.595 
	201.206 
	242.174 

	RaceHorses
	543.906 
	730.292 
	743.775 
	815.125 
	748.947 
	716.409 

	Average
	516.793 
	601.081 
	580.804 
	557.637 
	496.437 
	550.550 


4.3 Description of computing platform used to determine encoding and decoding times reported in sections 4.1 and 4.2
The configurations of the software computing platform used to determine the encoding and decoding time for the test scenario of constraint set 1 and constraint set 2 are listed in Table 18. 

Table 18 - Computing platform configurations for encoding/decoding time determination
	
	Constraint set 1
	Constraint set 2

	CPU
	2 Intel Xeon CPU@ 3.16GHz (8 cores)
	2 Intel Core CPU@ 3.19GHz (8 cores)

	Memory
	16GB RAM
	8GB RAM

	OS
	WinXP Professional x64 Edition SP2
	WinXP Professional x64 Edition SP2

	Encoding
	Run 5 tasks simultaneously
	Run 5 tasks simultaneously

	Decoding
	Run 5 tasks simultaneously
	Run 5 tasks simultaneously


4.4 Expected memory usage of encoder

· ALF: There is no expected extra picture level data storage required for video encoder. There could be potentially one extra pass of memory access for the reconstructed pixels of current picture and the input pixels of current picture to derive the filter coefficients of ALF based on the prediction of current picture. This extra pass of memory access can be neglected for the scenario of deriving the filter coefficients of ALF based on the prediction of previously decoded pictures.

· SDME: There is no expected extra picture level data storage required for video encoder. There will be one pass of memory access for the reconstructed pixels in the reference picture to derive the motion vector at the video decoder loop of video encoder side.

4.5 Expected memory usage of decoder

· ALF: There is no expected extra picture level data storage required for video encoder. Depending on the implementation architecture, there could be potentially one extra pass of memory access for the reconstructed pixels to work out the filtered pixels.

· SDME: There is no expected extra picture level data storage required for video encoder. There will be one pass of memory access for the reconstructed pixels in the reference picture to derive the motion vector at the video decoder side. A note to mark that in some software implementation there could exist extra memory buffer to store the tentative interpolated reference pictures.
4.6 Complexity characteristics of encoder motion estimation and motion segmentation selection

· SDME: The complexity of encoder motion estimation is expected to increase with one more round of motion estimation executed at the video decoder loop at video encoder side. The complexity of this extra motion estimation could be reduced with the agreed protocol among video encoder and video decoder. The complexity measurement of SDME encoding presented in this proposal is based on encoding time of CPU software implementation for the reference purpose. A note to mark that the actual complexity of SDME realization will weight differently, most likely dependent of the implementation platform such as hardware fixed function or GPU specific accelerator and the execution unit.
4.7 Complexity characteristics of decoder motion compensation

· SDME: The complexity of encoder motion estimation is expected to increase with one more round of motion estimation executed at the video decoder side. The complexity of this extra motion estimation could be reduced with the agreed protocol among video encoder and video decoder. The complexity measurement of SDME decoding presented in this proposal is based on decoding time of CPU software implementation for the reference purpose. A note to mark that the actual complexity of SDME realization will weight differently, most likely dependent of the implementation platform such as hardware fixed function or GPU specific accelerator and the execution unit.
4.8 Complexity characteristics of encoder intra-frame prediction type selection

This section does not apply.
4.9 Complexity characteristics of decoder intra-frame prediction operation

This section does not apply.
4.10 Complexity characteristics of encoder transforms and transform type selection

This section does not apply.
4.11 Complexity characteristics of decoder inverse transform operation

This section does not apply.
4.12 Complexity characteristics of encoder quantization and quantization type selection

This section does not apply.
4.13 Complexity characteristics of decoder inverse quantization

This section does not apply.
4.14 Complexity characteristics of encoder in-loop filtering type selection

The complexity of video encoder will increase due to the derivation of filter coefficients required among the reconstructed pixels and the current pixels.
4.15 Complexity characteristics of decoder in-loop filtering operation

The complexity of video decoder will increase due to the filter operation executed among the reconstructed pixels to work out the final target pixel.
4.16 Complexity characteristics of encoder entropy coding type selection

This section does not apply.
4.17 Complexity characteristics of decoder entropy decoding operation

This section does not apply.
4.18 Degree of capability for encoder parallel processing

ALF: the collection of the auto-correlation and cross-correlation function could be accumulated based on per block calculation given there is no data dependency.
SDME: the current result is based on the adaptive motion search, and this doesn’t prevent the parallel-friendly motion estimation scheme to be applied in this merit.
4.19 Degree of capability for decoder parallel processing

SDME: the current result is based on the adaptive motion search, and this doesn’t prevent the parallel-friendly motion estimation scheme to be applied in this merit.
5 Algorithmic characteristics

5.1 Random access characteristics

· ALF: It has no inherent constraint to use intra prediction type of picture (I-picture) coding. 

· SDME: It can apply inter prediction type of picture (both P-picture and B-picture) coding. Therefore, there is no specific requirement to modify GOP structure, and the simulation is based on the Anchor compliant to Alpha and Beta test configurations in the call for proposal. 

5.2 Delay characteristics

· ALF: there will be an additional pass on the video encoder side to optimize the coding efficiency by deriving the filter coefficients based on the result of current reconstructed picture. On the other hand, this additional pass can be removed by utilizing on the filter coefficients predicted based on the previously decoded pictures. There is no extra pass required on the video decoder side.

· SDME: There is no extra pass required on both video encoder side and video decoder side.
6 Software implementation description

The SW implementation is written in C/C++, based on the ITU-T VCEG KTA software version 2.6r1. 
The additional coding options in KTA have been enabled:

· Adaptive Interpolation Filter (UseAdaptiveFilter = 1) (This AIF mode is disabled for B frames when the SDME mode is in use) 
· High Precision Filter (UseHPFilter = 1) 
· Adaptive Loop Filter (UseAdaptiveLoopFilter = 1)
7 Highlighted aspects discussion
The section does not apply.
8 Closing remarks
The techniques of self derivation of motion estimation (SDME) and adaptive (Wiener) loop filter (ALF) to improve video coding efficiency are presented in this proposal. Compared to the anchor bitstreams for the test scenario of Constraints Set 1, an average 13.91% BD Bitrate reduction and 0.47dB BD PSNR improvement is achieved for the SDME technology and an average 18.53% BD Bitrate reduction and 0.77dB BD PSNR improvement is achieved for the combined case of SDME + ALF on top of the baseline average 7.18% BD Bitrate reduction and 0.30dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1. Compared to the anchor bitstreams for the test scenario of Constraints Set 2, an average 5.96% BD Bitrate reduction and 0.22dB BD PSNR improvement is achieved for the ALF technology on top of the baseline average 0.49% BD Bitrate reduction and 0.01dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1. With the evidence of coding efficiency improvement demonstrated from common test scenario, this proposal recommends JCT-VC committee to support the core experiment groups on SDME and ALF to cross study the techniques for the consideration to include them as the core video coding tools for the incoming new generation of video compression standard.
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