
	[image: image72.png]

[image: image73.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
1st Meeting: Dresden, DE, 15-23 April, 2010
	Document: JCTVC-A106

	Title:
	Description of video coding technology proposal: self derivation of motion estimation and adaptive (Wiener) loop filtering

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Yi-Jen Chiu
2200 Mission College Blvd.
Santa Clara CA USA 95054
	
Tel:
Email:
	
408-765-9494
yi-jen.chiu@intel.com

	
	Lidong Xu
8F Raycom Infotech Park A, No. 2 KeXueYuan South Rd., Haidian District, Beijing, China, 100190
	
Tel:
Email:
	
86-10-82171425
lidong.xu@intel.com

	
	Wenhao Zhang
8F Raycom Infotech Park A, No. 2 KeXueYuan South Rd., Haidian District, Beijing, China, 100190
	
Tel:
Email:
	
86-10-82171917
wenhao.zhang@intel.com

	
	Hong Jiang
2200 Mission College Blvd.
Santa Clara CA USA 95054
	
Tel:
Email:
	
916-356-0457
hong.h.jiang@intel.com

	
	
	
	

	Source:
	Intel Corp.

Abstract

This contribution contains mainly two techniques, Self Derivation of Motion Estimation (SDME) and Adaptive Loop (Wiener) Filter (ALF), to be considered as the video coding tools to improve the coding efficiency for the incoming new generation of video compression standard. With the motion vector information is self derived at video decoder side from SDME, the transmission of motion vector from video encoder side to video decoder side is skipped and thus better coding efficiency is achieved. Compared to the anchor bitstreams for the test scenario of Constraints Set 1, an average 13.91% BD Bitrate reduction and 0.47dB BD PSNR improvement is achieved for the SDME technology and an average 18.53% BD Bitrate reduction and 0.77dB BD PSNR improvement is achieved for the combined case of SDME + ALF on top of the baseline average 7.18% BD Bitrate reduction and 0.30dB BD PSNR improvement observed in the baseline KTA software version 2.6r1. Compared to the anchor bitstreams for the test scenario of Constraints Set 2, an average 5.96% BD Bitrate reduction and 0.22dB BD PSNR improvement is achieved for the ALF technology on top of the baseline average 0.49% BD Bitrate reduction and 0.01dB BD PSNR improvement observed in the baseline KTA software version 2.6r1.

Contents
1Abstract

2Contents

41
Introduction

42
Algorithm description

42.1
Motion representation

42.2
Intra-frame prediction

42.3
Spatial transforms

42.4
Quantization

42.5
In-loop filtering

42.5.1
Introduction

42.5.2
Algorithm description

72.6
Entropy coding

72.7
Self derivation of motion estimation

72.7.1
Introduction

72.7.2
Algorithm description

143
Compression performance discussion

143.1
Objective versus subjective compression performance

153.2
Constraint set 1 configuration relative to Alpha anchor

153.2.1
Class A

153.2.2
Class B

153.2.3
Class C

153.2.4
Class D

163.2.5
Overall

193.3
Constraint set 2 configuration relative to Beta and Gamma anchors

193.3.1
Class B

193.3.2
Class C

193.3.3
Class D

193.3.4
Class E

193.3.5
Overall

214
Complexity analysis

214.1
Encoding time and measurement methodology

234.2
Decoding time and measurement methodology and comparison vs. anchor bitstreams decoded by JM 17.0

244.3
Description of computing platform used to determine encoding and decoding times reported in sections 4.1 and 4.2

254.4
Expected memory usage of encoder

254.5
Expected memory usage of decoder

254.6
Complexity characteristics of encoder motion estimation and motion segmentation selection

254.7
Complexity characteristics of decoder motion compensation

254.8
Complexity characteristics of encoder intra-frame prediction type selection

254.9
Complexity characteristics of decoder intra-frame prediction operation

264.10
Complexity characteristics of encoder transforms and transform type selection

264.11
Complexity characteristics of decoder inverse transform operation

264.12
Complexity characteristics of encoder quantization and quantization type selection

264.13
Complexity characteristics of decoder inverse quantization

264.14
Complexity characteristics of encoder in-loop filtering type selection

264.15
Complexity characteristics of decoder in-loop filtering operation

264.16
Complexity characteristics of encoder entropy coding type selection

264.17
Complexity characteristics of decoder entropy decoding operation

264.18
Degree of capability for encoder parallel processing

264.19
Degree of capability for decoder parallel processing

265
Algorithmic characteristics

265.1
Random access characteristics

275.2
Delay characteristics

276
Software implementation description

277
Highlighted aspects discussion

278
Closing remarks

289
Patent rights declaration(s)

1 Introduction

This contribution is to respond to the Joint Call for Proposals on Video Compression Technology issued by ISO/IEC JTC1/SC29/WG11 (MPEG) and ITU-T SG16 Q.6 (VCEG) on January 2010 [1]. Mainly two techniques are presented in this contribution to be considered as the video coding tools to improve the coding efficiency: Self Derivation of Motion Estimation (SDME), and Adaptive Loop (Wiener) Filter (ALF).

2 Algorithm description

2.1 Motion representation
This section does not apply. A related topic of motion estimation tool about self derivation of motion estimation can be found in section 2.7.
2.2 Intra-frame prediction
This section does not apply.
2.3 Spatial transforms
This section does not apply.
2.4 Quantization
This section does not apply.
2.5 In-loop filtering

2.5.1 Introduction

Wiener filter is the well-known optimal linear filter to cope with the pictures degraded by the Gaussian noise, blurring and distortion. In [2], the utilization of the Wiener filter has been proposed to look for interpolation filter coefficients at the half/quarter pixel level used for the modules of ME/MC to better predict the picture in order to improve the coding efficiency on top of H.264/MPEG-4 Part 10 AVC system. In [3], the Wiener filter was used as the post filter hints to be applied out-of-loop of the core coding loop to improve the picture quality. In [4,5], two proposals to utilize the in-loop adaptive (Wiener) filter on top of the de-blocked picture to produce the improved picture is used as the reference pictures for the later incoming pictures. A quadtree-based technique to encode the chosen blocks were presented in [6] to achieve improved coding efficiency, and the further improvement to explore the adaptive quadtree-based structure, time-delayed filter coefficient were presented in [7]. In the next sections, the key concept of ALF is introduced.
2.5.2 Algorithm description
Figure 1 illustrates the addition of the module of the adaptive filter in between the modules of the deblocking filter and of motion compensation/estimation to improve the quality of the deblocked picture as well as to be served as the improved reference picture for the phase of the motion estimation of the next encoding pictures.

[image: image1.emf]Transform/

Quantization

Inverse

Quantization

Motion

Estimation

Adaptive

Loop Filter

Motion

Compensation

Intra

Interpolation

In-loop

Deblocking

Inverse

Transform

Entropy Encoding

CABAC/CAVLC

Current

Video

+

+

+

-

Channel

output

Intra

Prediction

Entropy Decoding

CABAC/CAVLC

Inverse

Quantization

Inverse

Transform

Adaptive

Loop Filter

Motion

Compensation

+

+

In-loop

Deblocking

Intra

Interpolation

Channel

input

Figure 1: The flow of the adaptive loop filter for the typical H.264/MPEG-4 Part 10 AVC based video encoder and video decoder (top: video encoder, bottom: video decoder).
Filter Coefficient derivation

Consider the input pixel xk and the output of the Wiener filter zk consisting of the reconstructed mapped pixel yi in the filter support {S}, sized as L+1, with the weight ci. The adaptive filter formula is

[image: image2.wmf]i

i

S

i

k

c

y

z

×

=

å

Î

}

{

2‑1
The Wiener filter is optimal by minimizing the residual signal
[image: image3.wmf]k

k

k

x

z

error

-

=

with the filter taps {ci}

[image: image4.wmf]]

[

min

arg

2

k

i

error

E

c

=

2‑2
Where E[] is the expectation of the square of the residual signal for the pixels inside a picture.

The autocorrelation function of {y} is denoted as the below Equation 2-3 and the cross-correlation function among {y} and {x} is denoted as below Equation 2-4.

[image: image5.wmf]]

[

)

(

i

k

k

yy

y

y

E

i

r

+

=

2‑3

[image: image6.wmf]]

[

)

(

i

k

k

xy

y

x

E

i

r

+

=

2‑4
The equation to minimize the residual error can be written in Equation 2-5 in the matrix form

[image: image7.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

-

-

)

(

)

1

(

)

0

(

)

0

(

)

1

(

)

(

)

1

(

)

0

(

)

1

(

)

(

)

1

(

)

0

(

1

0

L

r

r

r

c

c

c

r

L

r

L

r

L

r

r

r

L

r

r

r

xy

xy

xy

L

yy

yy

yy

yy

yy

yy

yy

yy

yy

M

M

L

M

O

M

M

L

L

2‑5
The Wiener filter tap set {C} can be derived in the matrix format

[image: image8.wmf]xy

yy

xy

yy

R

R

C

R

C

R

·

=

=>

=

×

-

1

2‑6
Where Ryy-1 is the inverse of the auto-correlation matrix consisting of the auto-correlation element in Equation 2-3.
The Equations 2-3 and 2-4 can be expressively indexed in the 2D format in the below Equations 2-7 and 2-8 for a non-separable filter with the size L+1=(2l+1)*(2l+1)

[image: image9.wmf]n

j

m

i

l

height

j

l

j

l

width

i

l

i

j

i

n

j

m

i

height

j

j

width

i

i

j

i

yy

y

y

y

y

n

m

r

+

+

-

-

=

=

-

-

=

=

+

+

-

=

=

-

=

=

×

»

×

=

å

å

å

å

,

1

1

,

,

1

0

1

0

,

)

,

(

2‑7

[image: image10.wmf]n

j

m

i

l

height

j

l

j

l

width

i

l

i

j

i

n

j

m

i

height

j

j

width

i

i

j

i

xy

y

x

y

x

n

m

r

+

+

-

-

=

=

-

-

=

=

+

+

-

=

=

-

=

=

×

»

×

=

å

å

å

å

,

1

1

,

,

1

0

1

0

,

)

,

(

2‑8
Where m, n are in the range of (-l, l).
Filter side information
The filter side information includes the filter type (symmetric), filter size (5x5, 7x7, 9x9, or else) and filter coefficient quantization bit. The symmetric filter could benefit the RD performance for low resolution video sequences such as QCIF and CIF. Similarly, using the adaptive filter size and the adaptive filter coefficient quantization bit can balance the distortion and
[image: image11.wmf]coef

R

 for the content of different spatial resolutions. The decoder requires these filter side information for the proper operation of decoding. The filter side information can be set in sequence level and transmitted through sequence parameter set (SPS).
Filter coefficient prediction coding

The predictive coding can be used to reduce the bit counts in the transfer of Wiener filter coefficients. The prediction modes include temporal prediction and spatial prediction. The direct mode and the temporal mode could be used when the symmetric filter is selected on the filter side.

Filter coefficient entropy coding

The Exp-Golomb coder could be applied in coding the prediction error of the Wiener filter coefficient for the case of high filter coefficient quantization bit (8 bit by default).
Quadtree coding of the filter blocks

In addition to apply the ALF operation pixel to pixel, ALF can be applied in the unit of the block to achieve better coding efficiency. The block size could be 8x8. The RD criterion can be applied to determine if a block to be filtered or not. The pattern of the blocks to be filtered can be efficiently represented by the quadtree order block-based structure in [6]
The BD Bitrate and BD PSNR experiment result of ALF here is demonstrated based on the QALF implementation in KTA software version 2.6r1.

2.6 Entropy coding

This section does not apply.
2.7 Self derivation of motion estimation
2.7.1 Introduction

In the video coding standards such as H.264/MPEG-4 Part 10 AVC, an MB can be partitioned into smaller blocks for encoding, e.g., 4x4, and the motion vector can be assigned to each sub-partitioned block. These smaller block sizes lead to much bandwidth to transmit motion vector information from a video encoder to a video decoder. To save the bandwidth for motion vector information, techniques to derive motion vectors at the video decoder side was presented in [8] about a technique by replacing the original B-Skip mode with a new mirror-based motion search operation to derive a motion vector. This motion vector is derived among the previously decoded pictures and can be fully operating at video decoder side.
In this proposal, the work of self derivation of motion estimation is further explored to design a new SDME coding mode with the merit of extending block size to increase the prediction accuracy, of including the neighboring reconstructed pixels in the current picture into cost metric to reduce the prediction error and of an adaptive motion search range technique to achieve better coding efficiency with the increase computational complexity of both video encoder and video decoder. The detail of the algorithm description follows as below.
2.7.2 Algorithm description

System Flow
Figure 2 illustrates a typical H.264/MPEG-4 Part 10 AVC video encoder flow with the module of the self derivation of motion estimation (SDME). Figure 3 illustrates the corresponding flow in the video decoder. The identical module of the SDME locates at both video encoder and video decoder where the video encoder needs to synchronize the SDME operation same as the SDME operation at the video decoder side to ensure there is no error propagation at the video decoder side for the long video sequence.

[image: image12.emf]Transform/

Quantization

Inverse

Quantization

Motion

Estimation

Self Derived

Motion

Estimation

Motion

Compensation

Intra

Interpolation

In-loop

Deblocking

Inverse

Transform

Entropy Encoding

CABAC/CAVLC

Current

Video

+

+

+

-

Channel

output

Intra

Prediction

Figure 2: The flow of a typical H.264/MPEG-4 Part 10 AVC video encoder system with the module of self derivation of motion estimation.

[image: image13.emf]Entropy Decoding

CABAC/CAVLC

Inverse

Quantization

Inverse

Transform

Self Derived

Motion

Estimation

Motion

Compensation

+

+

In-loop

Deblocking

Intra

Interpolation

Channel

input

Figure 3: The flow of a typical H.264/MPEG-4 Part 10 AVC video decoder system with the module of self derivation of motion estimation.
B-Picture Motion Estimation

Motion estimation aims to improve video coding efficiency by removing or reducing the temporal redundancy among the video frames. The motion estimation can be forward, backward or bi-directional, where backward and bi-directional motion estimation are only used in B picture coding while forward motion estimation can be used for both P and B pictures. Figure 4 shows the ME for B frame where MV0 is forward motion vector obtained by forward motion search within the search window in forward reference picture, and MV1 is the backward motion vector obtained by backward motion search within the search window in backward reference picture. In forward motion estimation, the reference block pointed by MV0 is used as the prediction of current block from forward reference picture. In backward motion estimation, the reference block pointed by MV1 is used as the prediction of current block from backward reference picture. And in bi-directional motion estimation, the average of the two reference blocks pointed by MV0 and MV1 is used as the prediction of current block from both reference pictures.

[image: image14.emf]t t

0

t

0

-n

t

0

+ m

B picture FW Ref BW Ref

MV0

MV1

Ref block

Search window

Current

block

Figure 4: Motion estimation for B picture
The motion of an object or the background in the consecutive pictures is usually modeled as a smooth trajectory, i.e., the motion in consecutive pictures have a very strong temporal correlations. Capitalized on this temporal correlation, a motion vector for the target block could be self derived at the decode-side on the reconstructed reference pictures instead of performing the traditional encoder side motion estimation. With the motion vector is derived at video decoder side locally, the bits for encoding the motion vectors can be saved to improve the coding efficiency.
Mirror Motion Estimation
Mirror motion estimation has been explored on SDME to predict the motion vector among forward and backward reference pictures. Figure 5 illustrates how mirror motion estimation is performed for the scenario of two B pictures between forward and backward reference picture. Consider B0 as the current encoding picture. When encoding a target block in B0, the SDME can be described as follows.

1. Specify a search window in the forward reference picture.
2. Specify a search pattern in the forward search window in B0. Full search or simplified search patterns can be the options to select and the same search pattern will apply on both video encoder side and video decoder side.
3. For the MV0 in the forward search window, the mirror motion vector MV1 in the backward search window is derived in Equation 2-9 based on the temporal picture distance where d0 is the distance between the current picture and the forward reference picture and d1 is the distance among the current picture and the forward reference picture.

[image: image15.wmf]0

1

0

1

MV

d

d

MV

-

=

2‑9
4. Calculate the cost metric of motion search SAD between the reference block (pointed by MV0) in the forward reference picture and the reference block (pointed by MV1) in the backward reference picture.
5. The SDME motion vector is selected as the MV0 candidate with the minimum SAD value in spiral order of all candidates in the search pattern.

[image: image16.emf]B0 FW Ref BW Ref

Ref block

Search window

MV0

MV1

B1

d

0

d

1

t t

0

t

0

-1 t

0

+ 2 t

0

+ 1

Current

block

Figure 5: Mirror ME on decoder side
Mirror ME compensation

With the mirror ME, a pair of motion vectors MV0 and MV1 is derived. The forward prediction pixel in forward reference picture
[image: image17.wmf]0

R

, denoted as
[image: image18.wmf])

0

(

0

MV

R

, can be found in the collocated current block location displaced by MV0 in the forward reference picture. The backward prediction pixel in backward reference picture
[image: image19.wmf]1

R

, denoted as
[image: image20.wmf])

1

(

1

MV

R

, can be found in the collocated current block location displaced by MV1 in the backward reference picture. The bi-directional prediction of SDME could be

· the average of
[image: image21.wmf])

0

(

0

MV

R

and
[image: image22.wmf])

1

(

1

MV

R

· Or, the weighted average [
[image: image23.wmf])

0

(

0

MV

R

* d1 +
[image: image24.wmf])

1

(

1

MV

R

* d0 + (d0+d1)/2] / (d0 + d1).
SDME Block Partition
Multiple block partitions can be available for SDME. The encoder and decoder should adopt the same partition pattern through the coding syntax agreed at both sides. The block partitions of 16x16, 16x8, 8x16and 8x8 have been applied to the bi-prediction coding mode, and the 8x8 is in use only in the direct_8x8 coding mode.

Currently, the SDME technique is applied to the following traditional coding modes with a flag control bit in use to signal if SDME or the traditional H.264/MPEG-4 Part 10 AVC method is applied to derive the motion vector):
B_Skip, B_Direct_16x16, B_Bi_16x16
B_L0_Bi_16x8, B_L0_Bi_8x16, B_Bi_L0_16x8, B_Bi_L0_8x16,

B_L1_Bi_16x8, B_L1_Bi_8x16, B_Bi_L1_16x8, B_Bi_L1_8x16,
B_Bi_Bi_16x8, B_Bi_Bi_8x16.
B_Direct_8x8 (Use SDME directly for Direct_8x8. No flag bit is needed)
Extended block Size in the reference blocks
The cost of motion search metric is the sum of absolute difference (SAD) between the two mirror blocks in the two reference pictures. Consider the block size of
[image: image25.wmf]N

M

´

and the motion vector
[image: image26.wmf])

_

,

_

(

0

0

0

y

mv

x

mv

MV

=

 in the forward search window and the motion vector
[image: image27.wmf])

_

,

_

(

1

1

1

y

mv

x

mv

MV

=

 in the backward reference window. The cost of motion search
[image: image28.wmf]J

 is as followed.

[image: image29.wmf]å

å

-

=

-

=

+

+

+

+

-

+

+

+

+

=

=

1

0

1

0

1

1

1

0

0

0

0

|

)

_

,

_

(

)

_

,

_

(

|

N

j

M

i

j

y

mv

y

i

x

mv

x

R

j

y

mv

y

i

x

mv

x

R

J

J

2‑10
The cost of motion search metric SAD can be improved by extending the block size for the scenario of SDME. Consider the block size of
[image: image30.wmf]N

M

´

and the block is extended on the four borders with the sizes of
[image: image31.wmf]0

W

,
[image: image32.wmf]1

W

,
[image: image33.wmf]0

H

and
[image: image34.wmf]1

H

, the pictorial illustration of the block is depicted in Figure 6.

[image: image35.emf]Ref Block

Extended Ref Block

W

0

W

1

H

0

H

1

Figure 6: Reference block and the extension area
The cost of motion search
[image: image36.wmf]1

J

 is defined as followed.

[image: image37.wmf]0

1

1

1

1

1

0

0

0

1

1

0

1

0

|

)

_

,

_

(

)

_

,

_

(

|

J

j

y

mv

y

i

x

mv

x

R

j

y

mv

y

i

x

mv

x

R

J

H

N

H

j

W

M

W

i

-

+

+

+

+

-

+

+

+

+

=

å

å

-

+

-

=

-

+

-

=

 2‑11
The cost of motion search
[image: image38.wmf]J

with the extended block size in the reference block is defined as below.

[image: image39.wmf]1

1

0

J

J

J

a

+

=

2‑12

[image: image40.wmf]1

a

is a constant (=1 by default).
[image: image41.wmf]0

W

,
[image: image42.wmf]1

W

,
[image: image43.wmf]0

H

 and
[image: image44.wmf]1

H

could be constants. (=8 by default)
Extended block Size to include the reconstructed neighbors in the current picture
The cost of motion search metric SAD can be further improved for the scenario of SDME by extending the block size to include the neighbor pixels which has been reconstructed according to the decoding order in raster scan order. Consider the block size of
[image: image45.wmf]N

M

´

with the neighboring area extended with the sizes of
[image: image46.wmf]R

W

,
[image: image47.wmf]L

W

and
[image: image48.wmf]T

H

.

[image: image49.emf]Current Block

W

L

H

T

W

R

A1

A0

A2

A3

Figure 7: The current block with the neighboring blocks
There are four possible available spatial neighboring blocks reconstructed in the raster scan order: left
[image: image50.wmf]0

A

, top
[image: image51.wmf]1

A

, top-left
[image: image52.wmf]2

A

top-right
[image: image53.wmf]3

A

. The availability of the neighboring blocks is conditioned on the location of the target block to be on the picture border. The availability flags for the neighboring blocks are denoted as
[image: image54.wmf]0

g

,
[image: image55.wmf]1

g

,
[image: image56.wmf]2

g

and
[image: image57.wmf]3

g

. An area is available if the flag is equal to 1; otherwise the area is not available (equal to 0). An available area is denoted as
[image: image58.wmf]avail

A

for the definition as followed.

[image: image59.wmf]3

3

2

2

1

1

0

0

A

A

A

A

A

avail

g

g

g

g

+

+

+

=

2‑13
The cost of motion search
[image: image60.wmf]2

J

 is defined as followed.

[image: image61.wmf]å

Î

+

+

+

+

+

-

=

avail

A

y

x

y

mv

y

x

mv

x

R

y

mv

y

x

mv

x

R

y

x

C

J

)

,

(

1

1

1

1

0

0

0

0

2

|

))

_

,

_

(

)

_

,

_

(

(

)

,

(

|

w

w

2‑14
Where
[image: image62.wmf])

,

(

y

x

C

are the pixels in the reconstructed neighboring blocks of the current picture,
[image: image63.wmf]0

w

 and
[image: image64.wmf]1

w

are two weighting factor to be set according to the temporal picture distance or to be simply set to be 0.5
The cost of motion search
[image: image65.wmf]J

with the extended block size in the reference block is defined as below.

[image: image66.wmf]2

2

1

1

0

J

J

J

J

a

a

+

+

=

2‑15

[image: image67.wmf]1

a

and
[image: image68.wmf]2

a

are constants (=1 by default).
[image: image69.wmf]R

W

,
[image: image70.wmf]L

W

and
[image: image71.wmf]T

H

could be constants (=8 by default).
Motion Search Pattern
Motion search pattern is identical on both the encoder and decoder sides to ensure the synchronization of the operation at both sides. Two integer pixel motion searches are first performed, followed by a fractional pixel motion search. In the integer pixel motion search, a spiral order full search is performed around two search centers: (0, 0) of current target block location and the predicted motion vector (PMV) location obtained based on H.264/MPEG-4 Part 10 AVC protocol. An adaptive search range or a fixed search range can be applied to the search process around the search center to achieve better coding efficiency. A best integer motion vector candidate is obtained with the motion vector candidate of the minimal cost metric among many search candidates of these two integer motion searches. Then, a spiral order full search is performed in quarter pixel precision around the best integer motion vector candidate to work out the final quarter-based motion vector.
Adaptive Search Range
The motion search range of SDME can be an agreed area concurred by both video encoder and video decoder, and there is no requirement to set the search ranges in horizontal and vertical direction to be identical. The size of the motion search range is usually a tradeoff of computational complexity and coding efficiency. An improvement is observed to use the average of the size of all of the motion vector of previous pictures collected from the video decoder at picture level to achieve better coding efficiency with the adaptive search range which may vary picture to picture.
New coding mode Syntax
SDME can be defined as a new MB coding mode to work with the existing coding modes. A control flag is needed to signal this SDME mode in the bitstream to synchronize the operation of video encoder and video decoder. The below Tables 1-3 illustrate the syntax which SDME is realized in the framework of H.264/MPEG-4 Part 10 AVC.
Table 1 - Slice data syntax
	slice_data() {
	C
	Descriptor

	
if(entropy_coding_mode_flag)
	
	

	

while(!byte_aligned())
	
	

	

cabac_alignment_one_bit
	2
	f(1)

	
CurrMbAddr = first_mb_in_slice * (1 + MbaffFrameFlag)
	
	

	
moreDataFlag = 1
	
	

	
prevMbSkipped = 0
	
	

	
do {
	
	

	

if(slice_type != I && slice_type != SI)
	
	

	

If(!entropy_coding_mode_flag) {
	
	

	

mb_skip_run
	2
	ue(v)

	

prevMbSkipped = (mb_skip_run > 0)
	
	

	

for(i=0; i<mb_skip_run; i++)
	
	

	

CurrMbAddr = NextMbAddress(CurrMbAddr)
	
	

	

moreDataFlag = more_rbsp_data()
	
	

	

} else {
	
	

	

mb_skip_flag
	2
	ae(v)

	

if(mb_skip_flag && slice_type == B)
	
	

	

bskip_sdme_flag
	2
	ae(v)

	

moreDataFlag = !mb_skip_flag
	
	

	

}
	
	

	

…
	
	

	
} while(moreDataFlag)
	
	

	}
	
	

Table 2 - Macroblock layer syntax

	macroblock_layer() {
	C
	Descriptor

	
mb_type
	2
	ue(v) | ae(v)

	
if(mb_type = = B_Direct_16x16 || mb_type = = B_Bi_16x16 ||
mb_type = = B_L_Bi_16x8 || mb_type = = B_L_Bi_8x16 ||

mb_type = = B_Bi_L_16x8 || mb_type = = B_Bi_L_8x16 ||

mb_type = = B_Bi_Bi_16x8 || mb_type = = B_Bi_Bi_8x16)
	
	

	
for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
	
	

	 If(MbPartPredMode (mb_type, mbPartIdx) == BiPred)
	
	

	

mb_part_sdme_flag[mbPartIdx]
	2
	ae(v)

	
if(mb_type = = I_PCM) {
	
	

	

…
	
	

	
} else {
	
	

	

if(MbPartPredMode(mb_type, 0) != Intra_4x4 &&

MbPartPredMode(mb_type, 0) != Intra_16x16 &&

NumMbPart(mb_type) = = 4)
	
	

	

sub_mb_pred(mb_type)
	2
	

	

Else
	
	

	

mb_pred(mb_type)
	2
	

	

if(MbPartPredMode(mb_type, 0) != Intra_16x16)
	
	

	

coded_block_pattern
	2
	me(v) | ae(v)

	

if(CodedBlockPatternLuma > 0 | | CodedBlockPatternChroma > 0 | |

MbPartPredMode(mb_type, 0) = = Intra_16x16) {
	
	

	

mb_qp_delta
	2
	se(v) | ae(v)

	

residual()
	3 | 4
	

	

}
	
	

	
}
	
	

	}
	
	

Table 3 - Macroblock prediction syntax
	mb_pred(mb_type) {
	C
	Descriptor

	
if(MbPartPredMode(mb_type, 0) = = Intra_4x4 | |

MbPartPredMode(mb_type, 0) = = Intra_16x16) {
	
	

	

if(MbPartPredMode(mb_type, 0) = = Intra_4x4)
	
	

	

for(luma4x4BlkIdx=0; luma4x4BlkIdx<16; luma4x4BlkIdx++) {
	
	

	

prev_intra4x4_pred_mode_flag[luma4x4BlkIdx]
	2
	u(1) | ae(v)

	

if(!prev_intra4x4_pred_mode_flag[luma4x4BlkIdx])
	
	

	

rem_intra4x4_pred_mode[luma4x4BlkIdx]
	2
	u(3) | ae(v)

	

}
	
	

	

intra_chroma_pred_mode
	2
	ue(v) | ae(v)

	
} else if(MbPartPredMode(mb_type, 0) != Direct) {
	
	

	

for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
	
	

	

if((num_ref_idx_l0_active_minus1 > 0 | |

mb_field_decoding_flag) &&

MbPartPredMode(mb_type, mbPartIdx) != Pred_L1

&& !mb_part_sdme_flag[mbPartIdx])
	
	

	

ref_idx_l0[mbPartIdx]
	2
	te(v) | ae(v)

	

for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
	
	

	

if((num_ref_idx_l1_active_minus1 > 0 | |

mb_field_decoding_flag) &&

MbPartPredMode(mb_type, mbPartIdx) != Pred_L0
&& !mb_part_sdme_flag[mbPartIdx])
	
	

	

ref_idx_l1[mbPartIdx]
	2
	te(v) | ae(v)

	

for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
	
	

	

if(MbPartPredMode (mb_type, mbPartIdx) != Pred_L1

&& !mb_part_sdme_flag[mbPartIdx])
	
	

	

for(compIdx = 0; compIdx < 2; compIdx++)
	
	

	

mvd_l0[mbPartIdx][0][compIdx]
	2
	se(v) | ae(v)

	

for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
	
	

	

If(MbPartPredMode(mb_type, mbPartIdx) != Pred_L0
&& !mb_part_sdme_flag[mbPartIdx])
	
	

	

for(compIdx = 0; compIdx < 2; compIdx++)
	
	

	

mvd_l1[mbPartIdx][0][compIdx]
	2
	se(v) | ae(v)

	
}
	
	

	}
	
	

bskip_sdme_flag specifies if the current MB applies SDME to derive the MVs for the B_Skip mode.
· If bskip_sdme_flag is equal to 0, the conventional B_Skip MV derivation method is in use.

· Otherwise, the SDME is performed to derive the MVs for the B_Skip mode.

mb_part_sdme_flag [mbPartIdx] specifies if the partition mbPartIdx of the current MB applies SDME to derive the MVs for the Bi-prediction mode. When mb_part_sdme_flag [mbPartIdx] is not present, the value of mb_part_sdme_flag [mbPartIdx] shall be inferred to be equal to 0.
· If mb_part_sdme_flag is equal to 0, the information of motion vector and reference index for the Bi-prediction will be obtained from the bitstream.
· Otherwise, the information of motion vector and reference index for the Bi-prediction will be derived from SDME.
3 Compression performance discussion

3.1 Objective versus subjective compression performance

3.2 Constraint set 1 configuration relative to Alpha anchor

The configuration of the test condition is same as the configuration files provided by the Alpha anchor for all Classes A - D. The description of test condition is provided in [1]. The detailed information about per-frame bit rate and PSNR is provided in the accompanied spread sheet. The SDME and ALF are implemented on top of KTA 2.6r1, and the assessment metrics of BD Bitrate and BD PSNR can be referred in [9, 10].
3.2.1 Class A
For the tests in the Class A, Table 4 lists that the baseline average 3.74% BD Bitrate reduction and 0.16dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1 compared to the anchor bitstream for the test scenario of Constraint Set 1 in [1]. Table 5 lists an average 14.32% BD Bitrate reduction and 0.65dB BD PSNR improvement is achieved for the SDME technique in KTA 2.6r1. Table 6 lists an average 9.51% BD Bitrate reduction and 0.44dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 7 lists an average 19.63% BD Bitrate reduction and 0.93dB BD PSNR improvement is achieved for the combined case of SDME + ALF in KTA 2.6r1. Table 8 lists an average 20.03% BD Bitrate reduction and 0.95dB BD PSNR improvement is achieved for the combined case of SDME + ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.
3.2.2 Class B
For the tests in the Class B, Table 4 lists that the baseline average 3.21% BD Bitrate reduction and 0.10dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1 compared to the anchor bitstream for the test scenario of Constraint Set 1 in [1]. Table 5 lists an average 11.33% BD Bitrate reduction and 0.36dB BD PSNR improvement is achieved for the SDME technique in KTA 2.6r1. Table 6 lists an average 9.45% BD Bitrate reduction and 0.27dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 7 lists an average 17.26% BD Bitrate reduction and 0.54dB BD PSNR improvement is achieved for the combined case of SDME + ALF in KTA 2.6r1. Table 8 lists an average 18.32% BD Bitrate reduction and 0.57dB BD PSNR improvement is achieved for the combined case of SDME + ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.
3.2.3 Class C
For the tests in the Class C, Table 4 lists that the baseline average 10.14% BD Bitrate reduction and 0.44dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1 compared to the anchor bitstream for the test scenario of Constraint Set 1 in [1]. Table 5 lists an average 16.88% BD Bitrate reduction and 0.75dB BD PSNR improvement is achieved for the SDME technique in KTA 2.6r1. Table 6 lists an average 13.24% BD Bitrate reduction and 0.58dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 7 lists an average 20.04% BD Bitrate reduction and 0.91dB BD PSNR improvement is achieved for the combined case of SDME + ALF in KTA 2.6r1. Table 8 lists an average 20.52% BD Bitrate reduction and 0.93dB BD PSNR improvement is achieved for the combined case of SDME + ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.
3.2.4 Class D

For the tests in the Class D, Table 4 lists that the baseline average 10.91% BD Bitrate reduction and 0.50dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1 compared to the anchor bitstream for the test scenario of Constraint Set 1 in [1]. Table 5 lists an average 13.94% BD Bitrate reduction and 0.64dB BD PSNR improvement is achieved for the SDME technique in KTA 2.6r1. Table 6 lists an average 14.83% BD Bitrate reduction and 0.68dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 7 lists an average 18.08% BD Bitrate reduction and 0.84dB BD PSNR improvement is achieved for the combined case of SDME + ALF in KTA 2.6r1. Table 8 lists an average 18.46% BD Bitrate reduction and 0.86dB BD PSNR improvement is achieved for the combined case of SDME + ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.
3.2.5 Overall
Table 4 lists that the baseline average 7.18% BD Bitrate reduction and 0.30dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1 compared to the anchor bitstream for the test scenario of Constraint set 1 in [1]. Table 5 lists an average 13.91% BD Bitrate reduction and 0.47dB BD PSNR improvement is achieved for the SDME technique in KTA 2.6r1. Table 6 lists an average 11.90% BD Bitrate reduction and 0.49dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 7 lists an average 18.53% BD Bitrate reduction and 0.77dB BD PSNR improvement is achieved for the combined case of SDME + ALF in KTA 2.6r1. Table 8 lists an average 19.17% BD Bitrate reduction and 0.80dB BD PSNR improvement is achieved for the combined case of SDME + ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.
Table 4 - Coding gains of default KTA2.6r1 compared to alpha anchor bitstreams for constraint set 1
	
	Sequence
	KTA2.6r1 Original

	
	
	BD_PSNR(Full)
	BD_Bitrate(Full)
	BD_PSNR(High)
	BD_Bitrate(High)
	BD_PSNR(Low)
	BD_Bitrate(Low)

	Class A
	Traffic
	0.1719
	-4.4891
	0.1748
	-5.0052
	0.1718
	-3.9512

	
	PeopleOnStreet
	0.1566
	-2.9893
	0.1377
	-2.6904
	0.1802
	-3.3935

	Class B
	Kimono1
	0.1535
	-4.3257
	0.1165
	-3.7698
	0.1866
	-4.5951

	
	ParkScene
	0.076
	-2.0744
	0.0631
	-1.7367
	0.0883
	-2.3142

	
	Cactus
	0.1551
	-5.1667
	0.1176
	-4.8498
	0.1921
	-5.4043

	
	BasketballDrive
	0.0634
	-2.0686
	0.0393
	-1.5347
	0.0857
	-2.3086

	
	BQTerrace
	0.0411
	-2.3958
	0.0418
	-3.409
	0.0405
	-1.8283

	Class C
	BasketballDrill
	0.3839
	-8.9794
	0.3882
	-9.2601
	0.3768
	-8.4388

	
	BQMall
	0.4463
	-9.1431
	0.4571
	-9.8336
	0.4266
	-8.0455

	
	PartyScene
	0.4261
	-11.1459
	0.402
	-10.025
	0.4575
	-13.0783

	
	RaceHorses
	0.4886
	-11.3027
	0.4955
	-11.3387
	0.4738
	-10.932

	Class D
	BasketballPass
	0.5159
	-9.9616
	0.5062
	-9.2365
	0.5333
	-11.3205

	
	BQSquare
	0.4968
	-12.9274
	0.5368
	-13.6754
	0.4326
	-11.33

	
	BlowingBubbles
	0.4957
	-11.4414
	0.5419
	-12.0928
	0.4085
	-10.0581

	
	RaceHorses
	0.4876
	-9.3059
	0.4753
	-8.6297
	0.508
	-10.5245

	Average of Class A
	0.16425
	-3.7392
	0.15625
	-3.8478
	0.176
	-3.67235

	Average of Class B
	0.0978
	-3.2062
	0.0757
	-3.0600
	0.1186
	-3.2901

	Average of Class C
	0.4362
	-10.1428
	0.4357
	-10.1144
	0.4337
	-10.1237

	Average of Class D
	0.4990
	-10.9091
	0.5151
	-10.9086
	0.4706
	-10.8083

	Overall Average
	0.3039
	-7.1811
	0.2996
	-7.1392
	0.3042
	-7.1682

	Table 5: Coding gains of SDME compared to alpha anchor bitstreams for constraint set 1
　
	Sequence
	Original KTA+SDME

	
	
	BD_PSNR
(Full)
	BD_Bitrate
(Full)
	BD_PSNR
(High)
	BD_Bitrate
(High)
	BD_PSNR
(Low)
	BD_Bitrate
(Low)

	Class A
	Traffic
	0.4177
	-11.3203
	0.3044
	-8.8136
	0.5821
	-13.9747

	
	PeopleOnStreet
	0.888
	-17.3157
	0.621
	-12.681
	1.341
	-23.8056

	Class B
	Kimono1
	0.4887
	-13.3946
	0.2862
	-9.2733
	0.6816
	-16.3816

	
	ParkScene
	0.3661
	-9.5914
	0.2183
	-5.9801
	0.5086
	-13.0406

	
	Cactus
	0.4275
	-13.8728
	0.2703
	-11.0105
	0.5835
	-15.9671

	
	BasketballDrive
	0.3447
	-10.6504
	0.1797
	-6.75
	0.505
	-13.3564

	
	BQTerrace
	0.1621
	-9.1164
	0.1062
	-8.4632
	0.2188
	-9.673

	Class C
	BasketballDrill
	0.5591
	-12.9818
	0.4983
	-11.8754
	0.6415
	-14.3079

	
	BQMall
	0.987
	-19.3371
	0.824
	-17.4464
	1.2104
	-22.1295

	
	PartyScene
	0.7364
	-18.7045
	0.6664
	-16.4565
	0.8215
	-22.4713

	
	RaceHorses
	0.7265
	-16.5147
	0.636
	-14.484
	0.8471
	-19.4258

	Class D
	BasketballPass
	0.6943
	-13.2709
	0.6293
	-11.4354
	0.7936
	-16.761

	
	BQSquare
	0.6414
	-16.5879
	0.6353
	-16.0683
	0.6522
	-17.1643

	
	BlowingBubbles
	0.6229
	-14.3041
	0.6431
	-14.3247
	0.5795
	-14.0991

	
	RaceHorses
	0.6119
	-11.612
	0.5514
	-9.9827
	0.7061
	-14.6532

	Average of Class A
	0.65285
	-14.318
	0.4627
	-10.7473
	0.96155
	-18.89015

	Average of Class B
	0.3578
	-11.3251
	0.2121
	-8.2954
	0.4995
	-13.6837

	Average of Class C
	0.7523
	-16.8845
	0.6562
	-15.0656
	0.8801
	-19.5836

	Average of Class D
	0.6426
	-13.9437
	0.6148
	-12.9528
	0.6829
	-15.6694

	Overall Average
	0.5783
	-13.9050
	0.4713
	-11.6697
	0.7115
	-16.4807

Table 6 - Coding gains of ALF to alpha anchor bitstreams for constraint set 1
	　
	Sequence
	Original KTA+ALF

	
	
	BD_PSNR
(Full)
	BD_Bitrate
(Full)
	BD_PSNR
(High)
	BD_Bitrate
(High)
	BD_PSNR
(Low)
	BD_Bitrate
(Low)

	Class A
	Traffic
	0.3894
	-9.8459
	0.3844
	-10.7444
	0.3993
	-8.8749

	
	PeopleOnStreet
	0.5004
	-9.1793
	0.5074
	-9.4897
	0.4804
	-8.7161

	Class B
	Kimono1
	0.3956
	-10.7638
	0.3671
	-11.7106
	0.4197
	-9.9636

	
	ParkScene
	0.1977
	-5.2688
	0.1877
	-5.1217
	0.2072
	-5.347

	
	Cactus
	0.2756
	-8.9823
	0.2485
	-10.0215
	0.3019
	-8.3126

	
	BasketballDrive
	0.213
	-6.5623
	0.1877
	-7.0445
	0.2363
	-6.1648

	
	BQTerrace
	0.2893
	-15.6561
	0.259
	-18.8975
	0.3216
	-14.0437

	Class C
	BasketballDrill
	0.5692
	-13.0065
	0.5869
	-13.6782
	0.5415
	-11.7751

	
	BQMall
	0.5823
	-11.7239
	0.6069
	-12.8284
	0.5415
	-10.0666

	
	PartyScene
	0.582
	-14.5956
	0.6016
	-14.3948
	0.5544
	-15.3479

	
	RaceHorses
	0.5971
	-13.6222
	0.6083
	-13.7346
	0.5757
	-13.0891

	Class D
	BasketballPass
	0.6162
	-11.7592
	0.623
	-11.2119
	0.6031
	-12.6647

	
	BQSquare
	0.9034
	-22.4431
	0.9584
	-23.3167
	0.8203
	-20.0951

	
	BlowingBubbles
	0.6549
	-14.6329
	0.7426
	-16.0618
	0.5022
	-12.0678

	
	RaceHorses
	0.5536
	-10.4744
	0.5521
	-9.9396
	0.5563
	-11.4401

	Average of Class A
	0.4449
	-9.5126
	0.4459
	-10.11705
	0.43985
	-8.7955

	Average of Class B
	0.2742
	-9.4467
	0.2500
	-10.5592
	0.2973
	-8.7663

	Average of Class C
	0.5827
	-13.2371
	0.6009
	-13.6590
	0.5533
	-12.5697

	Average of Class D
	0.6820
	-14.8274
	0.7190
	-15.1325
	0.6205
	-14.0669

	Overall Average
	0.4880
	-11.9011
	0.4948
	-12.5464
	0.4708
	-11.1979

	Table 7 - Coding gains of SDME+ALF to alpha anchor bitstreams for constraint set 1
　
	Sequence
	Original KTA +SDME+ALF

	
	
	BD_PSNR
(Full)
	BD_Bitrate
(Full)
	BD_PSNR
(High)
	BD_Bitrate
(High)
	BD_PSNR
(Low)
	BD_Bitrate
(Low)

	Class A
	Traffic
	0.6444
	-16.6905
	0.5258
	-14.6552
	0.8152
	-18.898

	
	PeopleOnStreet
	1.2198
	-22.5648
	0.9759
	-19.038
	1.6287
	-27.6414

	Class B
	Kimono1
	0.7378
	-19.6881
	0.5525
	-17.5189
	0.9149
	-21.3475

	
	ParkScene
	0.4855
	-12.5878
	0.3435
	-9.3201
	0.6227
	-15.7607

	
	Cactus
	0.5522
	-17.5892
	0.401
	-15.9719
	0.7019
	-18.8758

	
	BasketballDrive
	0.4923
	-14.8318
	0.3288
	-12.1056
	0.6507
	-16.8394

	
	BQTerrace
	0.4074
	-21.5905
	0.3236
	-23.2844
	0.4922
	-21.0586

	Class C
	BasketballDrill
	0.7371
	-16.7473
	0.691
	-16.0642
	0.7983
	-17.3634

	
	BQMall
	1.1394
	-22.0042
	0.992
	-20.6214
	1.3403
	-24.1586

	
	PartyScene
	0.934
	-22.7223
	0.9083
	-21.4464
	0.9573
	-25.1524

	
	RaceHorses
	0.8298
	-18.6792
	0.7568
	-17.0327
	0.9247
	-20.8486

	Class D
	BasketballPass
	0.7909
	-14.9639
	0.7432
	-13.3268
	0.863
	-17.9887

	
	BQSquare
	1.0961
	-26.951
	1.0797
	-26.0891
	1.1216
	-27.3891

	
	BlowingBubbles
	0.7966
	-17.7313
	0.8528
	-18.411
	0.6945
	-16.4758

	
	RaceHorses
	0.6729
	-12.6599
	0.6224
	-11.1764
	0.7545
	-15.537

	Average of Class A
	0.9321
	-19.62765
	0.75085
	-16.8466
	1.22195
	-23.2697

	Average of Class B
	0.5350
	-17.2575
	0.3899
	-15.6402
	0.6765
	-18.7764

	Average of Class C
	0.9101
	-20.0383
	0.8370
	-18.7912
	1.0052
	-21.8808

	Average of Class D
	0.8391
	-18.0765
	0.8245
	-17.2508
	0.8584
	-19.3477

	Overall Average
	0.7691
	-18.5335
	0.6732
	-17.0708
	0.8854
	-20.3557

	Table 8 - Coding gains of SDME+ALF+CodingTools to alpha anchor bitstreams for constraint set 1
　
	Sequence
	Original KTA+KTATools+ALF+SDME

	
	
	BD_PSNR
(Full)
	BD_Bitrate
(Full)
	BD_PSNR
(High)
	BD_Bitrate
(High)
	BD_PSNR
(Low)
	BD_Bitrate
(Low)

	Class A
	Traffic
	0.6785
	-17.3837
	0.5691
	-15.7194
	0.8351
	-19.2316

	
	PeopleOnStreet
	1.2287
	-22.6805
	0.9885
	-19.2414
	1.6305
	-27.636

	Class B
	Kimono1
	0.7741
	-20.5587
	0.5942
	-18.7145
	0.9468
	-21.9848

	
	ParkScene
	0.5141
	-13.2735
	0.3778
	-10.1795
	0.6454
	-16.2786

	
	Cactus
	0.5731
	-18.1964
	0.4216
	-16.7214
	0.7238
	-19.3876

	
	BasketballDrive
	0.5394
	-16.1852
	0.3762
	-13.747
	0.6976
	-17.9592

	
	BQTerrace
	0.4464
	-23.3645
	0.3564
	-25.3386
	0.537
	-22.6157

	Class C
	BasketballDrill
	0.7546
	-17.0915
	0.722
	-16.7338
	0.7975
	-17.2659

	
	BQMall
	1.1707
	-22.5261
	1.0285
	-21.2593
	1.3651
	-24.5099

	
	PartyScene
	0.9509
	-23.1103
	0.9268
	-21.8189
	0.9724
	-25.5543

	
	RaceHorses
	0.8631
	-19.3436
	0.7945
	-17.8063
	0.9511
	-21.4118

	Class D
	BasketballPass
	0.8059
	-15.2013
	0.7647
	-13.6787
	0.8726
	-18.1336

	
	BQSquare
	1.1251
	-27.5481
	1.1097
	-26.7708
	1.1465
	-27.9255

	
	BlowingBubbles
	0.8176
	-18.1341
	0.8776
	-18.8646
	0.7101
	-16.7891

	
	RaceHorses
	0.6916
	-12.9866
	0.6446
	-11.5303
	0.7656
	-15.7389

	Average of Class A
	0.9536
	-20.0321
	0.7788
	-17.4804
	1.2328
	-23.4338

	Average of Class B
	0.5694
	-18.3157
	0.4252
	-16.9402
	0.7101
	-19.6452

	Average of Class C
	0.9348
	-20.5179
	0.8680
	-19.4046
	1.0215
	-22.1855

	Average of Class D
	0.8601
	-18.4675
	0.8492
	-17.7111
	0.8737
	-19.6468

	Overall Average
	0.7956
	-19.1723
	0.7035
	-17.8750
	0.9065
	-20.8282

3.3 Constraint set 2 configuration relative to Beta and Gamma anchors
The configuration of the test condition is same as the configuration files provided by the Beta anchor for all Classes B - E. The description of test condition is provided in [1]. The detailed information about per-frame bit rate and PSNR is provided in the accompanied spread sheet. The ALF is implemented on top of KTA 2.6r1, and the assessment metrics of BD Bitrate and BD PSNR can be referred in [9, 10].
3.3.1 Class B

For the tests in Class B, Table 9 lists that the baseline average 2.71% BD Bitrate reduction and 0.10dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1 compared to the beta bitstreams for the test scenario of constraint Set 2 in [1]. Table 10 lists an average 9.37% BD Bitrate reduction and 0.30dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 11 lists an average 10.71% BD Bitrate reduction and 0.34dB BD PSNR improvement is achieved for the combined case of ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.
3.3.2 Class C

For the tests in Class C, Table 9 lists that the baseline average 0.15% BD Bitrate reduction and 0.01dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1 compared to the beta bitstreams for the test scenario of constraint Set 2 in [1]. Table 10 lists an average 4.86% BD Bitrate reduction and 0.20dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 11 lists an average 5.42% BD Bitrate reduction and 0.23dB BD PSNR improvement is achieved for the combined case of ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.
3.3.3 Class D

For the tests in Class D, Table 9 lists that the baseline average 1.44% BD Bitrate increase and 0.07dB BD PSNR decrement is observed in the baseline KTA software version 2.6r1 compared to the beta bitstreams for the test scenario of constraint Set 2 in [1]. Table 10 lists an average 0.89% BD Bitrate reduction and 0.03dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 11 lists an average 2.32% BD Bitrate reduction and 0.09dB BD PSNR improvement is achieved for the combined case of ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.
3.3.4 Class E
For the tests in Class E, Table 9 lists that the baseline average 0.15% BD Bitrate increase and 0.01dB BD PSNR decrement is observed in the baseline KTA software version 2.6r1 compared to the beta bitstreams for the test scenario of constraint Set 2 in [1]. Table 10 lists an average 8.50% BD Bitrate reduction and 0.35dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 11 lists an average 9.47% BD Bitrate reduction and 0.39dB BD PSNR improvement is achieved for the combined case of ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.
3.3.5 Overall
Table 9 lists that the baseline average 0.50% BD Bitrate reduction and 0.01dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1 compared to the beta bitstreams for the test scenario of constraint Set 2 in [1]. Table 10 lists an average 5.96% BD Bitrate reduction and 0.22dB BD PSNR improvement is achieved for the ALF technique in KTA 2.6r1. Table 11 lists an average 7.06% BD Bitrate reduction and 0.26dB BD PSNR improvement is achieved for the combined case of ALF + available KTA tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] in KTA 2.6r1.

Table 9 - Coding gains of default KTA 2.6r1 compared to beta anchor bitstreams for constraint set 2
	
	Sequence
	KTA2.6r1 Original

	
	
	BD_PSNR
(Full)
	BD_Bitrate
(Full)
	BD_PSNR
(High)
	BD_Bitrate
(High)
	BD_PSNR
(Low)
	BD_Bitrate
(Low)

	Class B
	Kimono1
	0.1859
	-5.1628
	0.1471
	-4.3821
	0.2183
	-5.364

	
	ParkScene
	0.1415
	-3.9121
	0.0932
	-2.5888
	0.1864
	-5.0696

	
	Cactus
	0.0341
	-1.0145
	0.026
	-0.9692
	0.0429
	-1.2301

	
	BasketballDrive
	0.0971
	-2.5973
	0.0517
	-1.6645
	0.1393
	-3.3959

	
	BQTerrace
	0.0193
	-0.8613
	0.0283
	-1.8393
	0.0098
	-0.363

	Class C
	BasketballDrill
	-0.0087
	0.2023
	-0.0745
	1.9287
	0.0706
	-1.7942

	
	BQMall
	-0.0196
	0.502
	-0.0624
	1.3664
	0.0349
	-0.6147

	
	PartyScene
	0.1091
	-2.5474
	0.0387
	-0.8212
	0.2155
	-6.0404

	
	RaceHorses
	-0.0473
	1.2403
	-0.113
	2.9729
	0.0439
	-1.1955

	Class D
	BasketballPass
	-0.0754
	1.6795
	-0.1253
	2.5325
	0.0115
	-0.2882

	
	BQSquare
	0.0866
	-2.5293
	0.0878
	-2.5033
	0.0417
	-1.3144

	
	BlowingBubbles
	-0.0706
	1.7559
	-0.1406
	3.4485
	-0.008
	0.1918

	
	RaceHorses
	-0.2139
	4.8569
	-0.2025
	4.0562
	-0.1646
	3.8316

	Class E
	Vidyo1
	-0.0181
	0.667
	-0.0666
	1.8586
	0.0384
	-0.7652

	
	Vidyo3
	-0.0973
	2.2768
	-0.1446
	3.9161
	0.0057
	-0.1242

	
	Vidyo4
	0.0818
	-2.4816
	0.0669
	-2.3219
	0.1507
	-3.1208

	Average of Class B
	0.0956
	-2.7096
	0.0693
	-2.2888
	0.1193
	-3.0845

	Average of Class C
	0.0084
	-0.1507
	-0.0528
	1.3617
	0.0912
	-2.4112

	Average of Class D
	-0.0683
	1.4408
	-0.0952
	1.8835
	-0.0299
	0.6052

	Average of Class E
	-0.0112
	0.1541
	-0.0481
	1.1509
	0.0649
	-1.3367

	Overall Average
	0.0128
	-0.4954
	-0.0244
	0.3119
	0.0648
	-1.6661

	Table 10 - Coding gains of ALF to beta anchor bitstreams for constraint set 2
　
	Sequence
	Original+ALF

	
	
	BD_PSNR
(Full)
	BD_Bitrate
(Full)
	BD_PSNR
(High)
	BD_Bitrate
(High)
	BD_PSNR
(Low)
	BD_Bitrate
(Low)

	Class B
	Kimono1
	0.4457
	-11.432
	0.4315
	-12.032
	0.4546
	-10.7437

	
	ParkScene
	0.2639
	-7.1562
	0.2094
	-5.7574
	0.315
	-8.429

	
	Cactus
	0.1347
	-4.1742
	0.1281
	-4.6526
	0.1421
	-3.952

	
	BasketballDrive
	0.3055
	-8.3649
	0.2468
	-8.035
	0.3606
	-8.6289

	
	BQTerrace
	0.3411
	-15.7396
	0.3032
	-18.4457
	0.3787
	-14.5502

	Class C
	BasketballDrill
	0.2696
	-6.7156
	0.2043
	-5.3522
	0.3452
	-8.395

	
	BQMall
	0.1661
	-3.3899
	0.1297
	-2.8357
	0.2138
	-4.1299

	
	PartyScene
	0.2306
	-5.7343
	0.161
	-3.9736
	0.3376
	-9.3707

	
	RaceHorses
	0.1413
	-3.6098
	0.1318
	-3.3048
	0.1522
	-3.9883

	Class D
	BasketballPass
	0.0639
	-1.2337
	0.0374
	-0.7162
	0.1178
	-2.7845

	
	BQSquare
	0.1855
	-5.3585
	0.1695
	-4.865
	0.1717
	-5.1743

	
	BlowingBubbles
	-0.0167
	0.4081
	-0.085
	2.0869
	0.0462
	-1.1762

	
	RaceHorses
	-0.1102
	2.6195
	-0.0737
	1.4549
	-0.0907
	1.98

	Class E
	Vidyo1
	0.3703
	-8.3258
	0.29
	-7.8868
	0.4358
	-8.7854

	
	Vidyo3
	0.34
	-8.2852
	0.2658
	-7.321
	0.4841
	-9.7958

	
	Vidyo4
	0.3373
	-8.8866
	0.3086
	-9.433
	0.4331
	-8.8202

	Average of Class B
	0.2982
	-9.3734
	0.2638
	-9.7845
	0.3302
	-9.2608

	Average of Class C
	0.2019
	-4.8624
	0.1567
	-3.8666
	0.2622
	-6.4710

	Average of Class D
	0.0306
	-0.8912
	0.0121
	-0.5099
	0.0613
	-1.7888

	Average of Class E
	0.3492
	-8.4992
	0.2881
	-8.2136
	0.4510
	-9.1338

	Overall Average
	0.2168
	-5.9612
	0.1787
	-5.6918
	0.2686
	-6.6715

Table 11 - Coding gains of ALF+CodingTools to beta anchor bitstreams for constraint set 2
	　
	Sequence
	Original+KTATools+ALF

	
	
	BD_PSNR
(Full)
	BD_Bitrate
(Full)
	BD_PSNR
(High)
	BD_Bitrate
(High)
	BD_PSNR
(Low)
	BD_Bitrate
(Low)

	Class B
	Kimono1
	0.4872
	-12.3459
	0.4842
	-13.3383
	0.4854
	-11.3542

	
	ParkScene
	0.2963
	-8.0121
	0.2424
	-6.6543
	0.3464
	-9.2214

	
	Cactus
	0.1682
	-5.212
	0.1629
	-5.8772
	0.1742
	-4.8376

	
	BasketballDrive
	0.3648
	-9.8805
	0.3145
	-10.1469
	0.4106
	-9.7017

	
	BQTerrace
	0.3966
	-18.0887
	0.3504
	-21.1355
	0.4429
	-16.74

	Class C
	BasketballDrill
	0.311
	-7.7577
	0.2589
	-6.7684
	0.3702
	-8.9576

	
	BQMall
	0.211
	-4.3193
	0.1885
	-4.1184
	0.2386
	-4.6027

	
	PartyScene
	0.2259
	-5.5438
	0.1587
	-3.9066
	0.3292
	-9.1167

	
	RaceHorses
	0.1594
	-4.049
	0.16
	-3.9912
	0.1564
	-4.0764

	Class D
	BasketballPass
	0.0786
	-1.5702
	0.0557
	-1.0762
	0.1236
	-2.9173

	
	BQSquare
	0.3478
	-9.5153
	0.3797
	-10.5009
	0.2437
	-7.0714

	
	BlowingBubbles
	0.0198
	-0.5113
	-0.0295
	0.7389
	0.0513
	-1.3276

	
	RaceHorses
	-0.096
	2.3004
	-0.0588
	1.16
	-0.0838
	1.8368

	Class E
	Vidyo1
	0.4166
	-9.3551
	0.3409
	-9.1813
	0.476
	-9.5289

	
	Vidyo3
	0.374
	-8.9751
	0.3046
	-8.2728
	0.4993
	-10.1356

	
	Vidyo4
	0.3881
	-10.0792
	0.3691
	-11.0442
	0.4712
	-9.5011

	Average of Class B
	0.3426
	-10.7078
	0.3109
	-11.4304
	0.3719
	-10.3710

	Average of Class C
	0.2268
	-5.4175
	0.1915
	-4.6962
	0.2736
	-6.6884

	Average of Class D
	0.0876
	-2.3241
	0.0868
	-2.4196
	0.0837
	-2.3699

	Average of Class E
	0.3929
	-9.4698
	0.3382
	-9.4994
	0.4822
	-9.7219

	Overall Average
	0.2593
	-7.0572
	0.2301
	-7.1321
	0.2960
	-7.3283

4 Complexity analysis

4.1 Encoding time and measurement methodology

To measure the encoding time increase caused by ALF and SDME, the simulation to encode the bitstreams were going through the test cases in [1] on the modified KTA2.6r1 encoder. The portion of the encoding time spent on ALF and SDME were extracted from the total encoding time through the ftime() function in the C/C++ program.
· ALF: Table 12 reports an average 6.692% increase due to ALF in video encoding time compared to the KTA baseline with KTA Tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] enabled under constraint set 1. Table 13 reports an average 11.539% increase due to ALF in video encoding time compared to the KTA baseline with KTA Tools enabled under constraint set 2.
· SDME: Table 14 reports an average 118.508% increase in video encoding time due to SDME compared to the KTA baseline with KTA Tools enabled under constraint set 1. Fast SDME algorithms are under investigation to reduce the motion estimation complexity.
Table 12 - Encoding time increase by ALF for constraint set 1
	
	Encoding Time Increase of ALF (%)

	
	bitrate_1
	bitrate_2
	bitrate_3
	bitrate_4
	bitrate_5
	Average

	Kimono1
	6.288
	6.098
	5.930
	5.413
	4.805
	5.707

	ParkScene
	6.234
	6.141
	5.837
	5.538
	5.350
	5.820

	Cactus
	7.227
	6.990
	6.429
	5.936
	5.588
	6.434

	BasketballDrive
	6.025
	5.967
	5.846
	5.562
	5.144
	5.709

	BQTerrace
	6.795
	6.725
	6.269
	6.006
	5.643
	6.288

	BasketballDrill
	8.067
	7.881
	7.322
	6.182
	6.143
	7.119

	BQMall
	7.218
	6.679
	6.176
	5.520
	5.296
	6.178

	PartyScene
	7.513
	7.102
	6.303
	5.881
	5.596
	6.479

	RaceHorses
	6.776
	6.498
	6.151
	5.541
	5.403
	6.074

	BasketballPass
	8.134
	8.083
	7.574
	7.050
	6.337
	7.436

	BQSquare
	9.521
	9.007
	8.112
	7.415
	7.115
	8.234

	BlowingBubbles
	9.069
	8.984
	8.339
	7.756
	7.221
	8.274

	RaceHorses
	7.140
	7.630
	7.645
	7.208
	6.590
	7.243

	Average
	7.385
	7.214
	6.764
	6.231
	5.864
	6.692

Table 13 - Encoding time increase by ALF for constraint set 2
	
	Encoding Time Increase of ALF (%)

	
	bitrate_1
	bitrate_2
	bitrate_3
	bitrate_4
	bitrate_5
	Average

	Kimono1
	12.846
	12.288
	11.985
	11.262
	11.151
	11.906

	ParkScene
	11.428
	11.038
	10.688
	10.249
	10.528
	10.786

	Cactus
	12.576
	11.000
	11.584
	11.063
	10.819
	11.408

	BasketballDrive
	11.864
	11.640
	11.083
	10.815
	10.535
	11.187

	BQTerrace
	13.214
	12.999
	12.475
	11.932
	11.454
	12.415

	BasketballDrill
	13.167
	12.462
	11.762
	10.717
	10.308
	11.683

	BQMall
	10.633
	10.119
	9.851
	9.819
	9.629
	10.010

	PartyScene
	10.941
	10.256
	9.654
	9.606
	9.690
	10.029

	RaceHorses
	10.037
	9.725
	9.743
	9.373
	9.569
	9.689

	BasketballPass
	12.536
	12.079
	11.507
	11.282
	11.069
	11.695

	BQSquare
	14.987
	15.396
	15.370
	14.234
	13.522
	14.702

	BlowingBubbles
	10.974
	11.205
	11.196
	10.857
	10.915
	11.029

	RaceHorses
	11.657
	11.828
	11.165
	11.353
	10.979
	11.396

	Vidyo1
	14.633
	13.179
	11.865
	10.985
	10.520
	12.236

	Vidyo3
	15.452
	13.992
	11.922
	11.292
	10.406
	12.613

	Vidyo4
	14.477
	12.790
	11.003
	10.763
	10.150
	11.837

	Average
	12.589
	12.000
	11.428
	10.975
	10.703
	11.539

Table 14 - Encoding time increase by SDME for constraint set 1
	
	Encoding Time Increase of ALF & SDME (%)

	
	bitrate_1
	bitrate_2
	bitrate_3
	bitrate_4
	bitrate_5
	Average

	Kimono1
	134.627
	133.628
	131.114
	127.534
	122.666
	129.914

	ParkScene
	98.636
	100.350
	99.113
	96.061
	95.991
	98.030

	Cactus
	97.422
	94.764
	86.836
	80.257
	77.552
	87.366

	BasketballDrive
	189.043
	188.999
	186.901
	177.570
	165.766
	181.656

	BQTerrace
	125.795
	125.271
	123.457
	119.676
	116.331
	122.106

	BasketballDrill
	124.120
	121.877
	115.236
	104.326
	100.987
	113.309

	BQMall
	129.644
	123.158
	117.131
	112.960
	110.620
	118.703

	PartyScene
	89.920
	88.438
	85.390
	85.236
	86.082
	87.013

	RaceHorses
	182.956
	180.838
	177.986
	169.720
	171.804
	176.661

	BasketballPass
	126.838
	130.893
	130.500
	126.817
	119.937
	126.997

	BQSquare
	85.128
	84.359
	83.481
	82.039
	80.514
	83.104

	BlowingBubbles
	85.044
	90.814
	87.877
	85.943
	83.522
	86.640

	RaceHorses
	118.805
	129.137
	135.087
	132.835
	129.669
	129.107

	Average
	122.152
	122.502
	120.008
	115.460
	112.419
	118.508

4.2 Decoding time and measurement methodology and comparison vs. anchor bitstreams decoded by JM 17.0
To measure the decoding time increase caused by ALF and SDME, instead of directly comparing the amount of the time spending on decoding the anchor bitstreams on JM17.0, the simulation to decode the bitstreams were going through the test cases in [1] on the modified KTA2.6r1 software decoder. The portion of the decoding time spent on ALF and SDME were extracted from the total decoding time through the ftime() function in the program.

· ALF: Table 15 reports an average 14.999% increase due to ALF in video decoding time compared to the KTA baseline with KTA Tools [Adaptive Interpolation Filter (AIF) and High Precision Filter (HPF)] enabled under constraint set 1. Table 16 reports an average 13.446% increase due to ALF in video decoding time compared to the KTA baseline with KTA Tools enabled under constraint set 2.
· SDME: Table 17 reports an average 550.55% increase in video decoding time due to SDME compared to the KTA baseline with KTA Tools enabled under constraint set 1. Fast SDME algorithms are under investigation to reduce the motion estimation complexity.
Table 15 - Decoding time increase by ALF for constraint set 1
	
	Decoding Time Increase of ALF (%)

	
	bitrate_1
	bitrate_2
	bitrate_3
	bitrate_4
	bitrate_5
	Average

	Kimono1
	21.407
	21.421
	21.937
	23.632
	24.435
	22.566

	ParkScene
	16.962
	19.674
	20.257
	20.024
	19.645
	19.312

	Cactus
	13.490
	13.133
	11.102
	11.345
	9.855
	11.785

	BasketballDrive
	17.790
	19.831
	20.511
	20.163
	18.201
	19.299

	BQTerrace
	19.116
	20.528
	19.316
	19.557
	18.737
	19.451

	BasketballDrill
	8.986
	13.435
	11.070
	8.189
	6.338
	9.604

	BQMall
	14.802
	18.356
	15.516
	11.077
	8.848
	13.720

	PartyScene
	14.668
	19.071
	20.082
	18.208
	14.801
	17.366

	RaceHorses
	12.888
	12.841
	9.876
	9.598
	8.822
	10.805

	BasketballPass
	8.816
	14.642
	13.179
	7.512
	7.972
	10.424

	BQSquare
	15.610
	17.777
	17.325
	19.640
	21.512
	18.373

	BlowingBubbles
	12.968
	16.492
	16.434
	9.159
	8.387
	12.688

	RaceHorses
	9.138
	12.311
	8.825
	10.338
	7.381
	9.599

	Average
	14.357
	16.886
	15.802
	14.496
	13.456
	14.999

Table 16 Decoding time increase by ALF under constraint set 2
	
	Decoding Time Increase of ALF (%)

	
	bitrate_1
	bitrate_2
	bitrate_3
	bitrate_4
	bitrate_5
	Average

	Kimono1
	17.331
	18.113
	18.777
	23.511
	27.786
	21.104

	ParkScene
	16.242
	18.044
	18.532
	18.382
	19.647
	18.169

	Cactus
	13.480
	12.483
	11.797
	11.750
	11.092
	12.120

	BasketballDrive
	14.617
	15.344
	17.002
	18.450
	19.303
	16.943

	BQTerrace
	16.011
	16.683
	14.950
	14.390
	14.409
	15.289

	BasketballDrill
	11.275
	14.266
	16.023
	16.285
	13.113
	14.192

	BQMall
	11.712
	14.638
	16.595
	16.433
	11.779
	14.231

	PartyScene
	6.611
	7.262
	7.245
	7.248
	7.140
	7.101

	RaceHorses
	15.017
	15.651
	18.128
	19.969
	20.722
	17.897

	BasketballPass
	10.218
	12.807
	16.160
	17.004
	15.908
	14.419

	BQSquare
	2.592
	3.275
	4.566
	4.275
	8.840
	4.710

	BlowingBubbles
	3.174
	5.055
	5.412
	3.325
	2.937
	3.981

	RaceHorses
	12.647
	17.321
	17.722
	20.501
	22.687
	18.176

	Vidyo1
	16.745
	14.505
	11.227
	6.539
	4.193
	10.642

	Vidyo3
	13.650
	14.382
	14.016
	12.770
	10.793
	13.122

	Vidyo4
	15.164
	15.836
	14.832
	12.723
	6.679
	13.047

	Average
	12.280
	13.479
	13.937
	13.972
	13.564
	13.446

Table 17 - Decoding time increase by SDME under constraint set 1
	
	Decoding Time Increase of SDME (%)

	
	bitrate_1
	bitrate_2
	bitrate_3
	bitrate_4
	bitrate_5
	Average

	Kimono1
	861.107
	993.747
	1009.068
	998.923
	851.656
	942.900

	ParkScene
	485.018
	578.245
	614.093
	563.729
	504.774
	549.172

	Cactus
	887.181
	979.819
	862.023
	834.693
	758.395
	864.422

	BasketballDrive
	965.594
	1059.686
	1137.162
	1202.798
	1075.621
	1088.172

	BQTerrace
	416.505
	438.689
	390.506
	357.596
	333.903
	387.440

	BasketballDrill
	280.315
	356.945
	264.600
	185.600
	138.021
	245.096

	BQMall
	465.514
	461.843
	397.861
	321.709
	262.157
	381.817

	PartyScene
	339.439
	389.798
	358.516
	291.692
	247.379
	325.365

	RaceHorses
	664.277
	845.683
	826.089
	785.391
	693.576
	763.003

	BasketballPass
	326.802
	430.411
	450.741
	441.258
	405.878
	411.018

	BQSquare
	242.413
	262.204
	236.884
	227.173
	232.162
	240.167

	BlowingBubbles
	240.236
	286.697
	259.138
	223.595
	201.206
	242.174

	RaceHorses
	543.906
	730.292
	743.775
	815.125
	748.947
	716.409

	Average
	516.793
	601.081
	580.804
	557.637
	496.437
	550.550

4.3 Description of computing platform used to determine encoding and decoding times reported in sections 4.1 and 4.2
The configurations of the software computing platform used to determine the encoding and decoding time for the test scenario of constraint set 1 and constraint set 2 are listed in Table 18.

Table 18 - Computing platform configurations for encoding/decoding time determination
	
	Constraint set 1
	Constraint set 2

	CPU
	2 Intel Xeon CPU@ 3.16GHz (8 cores)
	2 Intel Core CPU@ 3.19GHz (8 cores)

	Memory
	16GB RAM
	8GB RAM

	OS
	WinXP Professional x64 Edition SP2
	WinXP Professional x64 Edition SP2

	Encoding
	Run 5 tasks simultaneously
	Run 5 tasks simultaneously

	Decoding
	Run 5 tasks simultaneously
	Run 5 tasks simultaneously

4.4 Expected memory usage of encoder

· ALF: There is no expected extra picture level data storage required for video encoder. There could be potentially one extra pass of memory access for the reconstructed pixels of current picture and the input pixels of current picture to derive the filter coefficients of ALF based on the prediction of current picture. This extra pass of memory access can be neglected for the scenario of deriving the filter coefficients of ALF based on the prediction of previously decoded pictures.

· SDME: There is no expected extra picture level data storage required for video encoder. There will be one pass of memory access for the reconstructed pixels in the reference picture to derive the motion vector at the video decoder loop of video encoder side.

4.5 Expected memory usage of decoder

· ALF: There is no expected extra picture level data storage required for video encoder. Depending on the implementation architecture, there could be potentially one extra pass of memory access for the reconstructed pixels to work out the filtered pixels.

· SDME: There is no expected extra picture level data storage required for video encoder. There will be one pass of memory access for the reconstructed pixels in the reference picture to derive the motion vector at the video decoder side. A note to mark that in some software implementation there could exist extra memory buffer to store the tentative interpolated reference pictures.
4.6 Complexity characteristics of encoder motion estimation and motion segmentation selection

· SDME: The complexity of encoder motion estimation is expected to increase with one more round of motion estimation executed at the video decoder loop at video encoder side. The complexity of this extra motion estimation could be reduced with the agreed protocol among video encoder and video decoder. The complexity measurement of SDME encoding presented in this proposal is based on encoding time of CPU software implementation for the reference purpose. A note to mark that the actual complexity of SDME realization will weight differently, most likely dependent of the implementation platform such as hardware fixed function or GPU specific accelerator and the execution unit.
4.7 Complexity characteristics of decoder motion compensation

· SDME: The complexity of encoder motion estimation is expected to increase with one more round of motion estimation executed at the video decoder side. The complexity of this extra motion estimation could be reduced with the agreed protocol among video encoder and video decoder. The complexity measurement of SDME decoding presented in this proposal is based on decoding time of CPU software implementation for the reference purpose. A note to mark that the actual complexity of SDME realization will weight differently, most likely dependent of the implementation platform such as hardware fixed function or GPU specific accelerator and the execution unit.
4.8 Complexity characteristics of encoder intra-frame prediction type selection

This section does not apply.
4.9 Complexity characteristics of decoder intra-frame prediction operation

This section does not apply.
4.10 Complexity characteristics of encoder transforms and transform type selection

This section does not apply.
4.11 Complexity characteristics of decoder inverse transform operation

This section does not apply.
4.12 Complexity characteristics of encoder quantization and quantization type selection

This section does not apply.
4.13 Complexity characteristics of decoder inverse quantization

This section does not apply.
4.14 Complexity characteristics of encoder in-loop filtering type selection

The complexity of video encoder will increase due to the derivation of filter coefficients required among the reconstructed pixels and the current pixels.
4.15 Complexity characteristics of decoder in-loop filtering operation

The complexity of video decoder will increase due to the filter operation executed among the reconstructed pixels to work out the final target pixel.
4.16 Complexity characteristics of encoder entropy coding type selection

This section does not apply.
4.17 Complexity characteristics of decoder entropy decoding operation

This section does not apply.
4.18 Degree of capability for encoder parallel processing

ALF: the collection of the auto-correlation and cross-correlation function could be accumulated based on per block calculation given there is no data dependency.
SDME: the current result is based on the adaptive motion search, and this doesn’t prevent the parallel-friendly motion estimation scheme to be applied in this merit.
4.19 Degree of capability for decoder parallel processing

SDME: the current result is based on the adaptive motion search, and this doesn’t prevent the parallel-friendly motion estimation scheme to be applied in this merit.
5 Algorithmic characteristics

5.1 Random access characteristics

· ALF: It has no inherent constraint to use intra prediction type of picture (I-picture) coding.

· SDME: It can apply inter prediction type of picture (both P-picture and B-picture) coding. Therefore, there is no specific requirement to modify GOP structure, and the simulation is based on the Anchor compliant to Alpha and Beta test configurations in the call for proposal.

5.2 Delay characteristics

· ALF: there will be an additional pass on the video encoder side to optimize the coding efficiency by deriving the filter coefficients based on the result of current reconstructed picture. On the other hand, this additional pass can be removed by utilizing on the filter coefficients predicted based on the previously decoded pictures. There is no extra pass required on the video decoder side.

· SDME: There is no extra pass required on both video encoder side and video decoder side.
6 Software implementation description

The SW implementation is written in C/C++, based on the ITU-T VCEG KTA software version 2.6r1.
The additional coding options in KTA have been enabled:

· Adaptive Interpolation Filter (UseAdaptiveFilter = 1) (This AIF mode is disabled for B frames when the SDME mode is in use)
· High Precision Filter (UseHPFilter = 1)
· Adaptive Loop Filter (UseAdaptiveLoopFilter = 1)
7 Highlighted aspects discussion
The section does not apply.
8 Closing remarks
The techniques of self derivation of motion estimation (SDME) and adaptive (Wiener) loop filter (ALF) to improve video coding efficiency are presented in this proposal. Compared to the anchor bitstreams for the test scenario of Constraints Set 1, an average 13.91% BD Bitrate reduction and 0.47dB BD PSNR improvement is achieved for the SDME technology and an average 18.53% BD Bitrate reduction and 0.77dB BD PSNR improvement is achieved for the combined case of SDME + ALF on top of the baseline average 7.18% BD Bitrate reduction and 0.30dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1. Compared to the anchor bitstreams for the test scenario of Constraints Set 2, an average 5.96% BD Bitrate reduction and 0.22dB BD PSNR improvement is achieved for the ALF technology on top of the baseline average 0.49% BD Bitrate reduction and 0.01dB BD PSNR improvement is observed in the baseline KTA software version 2.6r1. With the evidence of coding efficiency improvement demonstrated from common test scenario, this proposal recommends JCT-VC committee to support the core experiment groups on SDME and ALF to cross study the techniques for the consideration to include them as the core video coding tools for the incoming new generation of video compression standard.
Reference
 [1]
Joint Call for Proposals on Video Compression Technology, ITU-T Q6/16 & ISO/IEC JTC1/SC29WG11, January 2010.

[2]
Y. Vatis, B. Edler, I. Wassermann, D. T. Nguyen and J. Ostermann, “Coding of Coefficients of two-dimensional non-separable Adaptive Interpolation Filter”, Visual Communications and Image Processing (VCIP), Beijing, China, July 2005.

[3]
S. Wittmann and T. Wedi, “SEI message on post-filter hints”, JVT document JVT-U035, Joint Video Team (JVT) of ISO/IEC JTC1/SC29/WG11 & ITU-T SG16 Q.6, Hangzhou, China, October, 2006.

[4]
Y. Chiu, L. Xu, “Adaptive (Wiener) Filter for Video Compression”, ITU-T Q.6/SG16 Doc., VCEG-C437, Geneva, 22 April - 2 May 2008.
[5]
T. Chujoh, A. Tanizawa, T. Yamakage, “Adaptive Loop Filter for Improving Coding Efficiency”, ITU-T Q.6/SG16, VCEG-C402, Geneva, 22 April - 2 May 2008.
[6]
T. Chujoh, N. Wada, and G. Yasuda, “Quadtree-based adaptive loop filter”, ITU-T SG16 Document, C181, Geneva, Jan. 2009.

[7]
Y. Huang, C. Fu, X Guo, S. Lei, “Improved Quadtree-based Adaptive Loop Filter”, ITU-T SG16/Q6 , London, UK, July 2009, VCEG-AL24.

[8]
T. Murakami, and S. Saito, "Advanced B Skip Mode with Decoder-side Motion Estimation", ITU-T Q.6/SG16 VCEG, VCEG-AK12, Yokohama, Japan, April 2009.
[9]
Gisle Bjontegaard, "Calculation of Average PSNR Differences between RD curves", ITU-T SG16/Q6, Austin, Texas, USA, April, 2001, VCEG-M33.
[10]
Gisle Bjontegaard, "Improvements of the BD-PSNR model", ITU-T SG16/Q6, Berlin, Germany, July, 2008, VCEG-AI11.
9 Patent rights declaration(s)
(NOTE – Activities in the JCT-VC and contributions to the JCT-VC are subject to the common patent policy for ITU-T/ITU-R/ISO/IEC. A statement of that policy can be found at
http://www.itu.int/ITU-T/dbase/patent/patent-policy.html, with further information available at http://www.itu.int/ITU-T/ipr/index.html and in the ISO/IEC Directives. The form to be used for the formal reporting of patent rights to ITU-T/ITU-R/ISO/IEC can be found at http://www.itu.int/ITU-T/ipr/index.html. Contributions to the JCT-VC proposing normative technical content shall contain a non-binding informal notice of whether the submitter may have patent rights that would be necessary for implementation of the resulting standard. The provided informal notice shall indicate the category of anticipated licensing terms according to the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form. This obligation to provide an informal notice is supplemental to, and does not replace, any existing obligations of parties with technology included in a final or draft standard to submit formal IPR declarations to ITU-T/ITU-R/ISO/IEC. An example of an informal IPR notification statement for a contribution is provided below.)

Intel Corporation may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 28
Date Saved: 2010-04-11

_1320737797.unknown

_1320738665.unknown

_1331735330.unknown

_1331741520.unknown

_1331741525.unknown

_1332247841.vsd
Transform/
Quantization

Inverse
Quantization

Motion
Estimation

Adaptive
Loop Filter

Motion
Compensation

Intra
Interpolation

In-loop
Deblocking

Inverse
Transform

Entropy Encoding
CABAC/CAVLC

Current
Video

+

+

+

-

Channel
output

Intra
Prediction

Entropy Decoding
CABAC/CAVLC

Inverse
Quantization

Inverse
Transform

Adaptive
Loop Filter

Motion
Compensation

+

+

In-loop
Deblocking

Intra
Interpolation

Channel
input

_1332257803.vsd
t

t0

t0 - n

t0 + m

B picture

FW Ref

BW Ref

MV0

MV1

Ref block

Search window

_1332359912.unknown

_1332257802.unknown

_1331741526.unknown

_1331741523.unknown

_1331741524.unknown

_1331741522.unknown

_1331741516.unknown

_1331741518.unknown

_1331741519.unknown

_1331741517.unknown

_1331741512.unknown

_1331741514.unknown

_1331741515.unknown

_1331741513.unknown

_1331738264.unknown

_1331741510.unknown

_1331741511.unknown

_1331738375.unknown

_1331738376.unknown

_1331738374.unknown

_1331735349.unknown

_1320738820.unknown

_1320739252.unknown

_1331635800.vsd
Transform/
Quantization

Inverse
Quantization

Motion
Estimation

Self Derived
Motion Estimation

Motion
Compensation

Intra
Interpolation

In-loop
Deblocking

Inverse
Transform

Entropy Encoding
CABAC/CAVLC

Current
Video

+

+

+

-

Channel
output

Intra
Prediction

_1331636160.vsd
Entropy Decoding
CABAC/CAVLC

Inverse
Quantization

Inverse
Transform

Self Derived
Motion Estimation

Motion
Compensation

+

+

In-loop
Deblocking

Intra
Interpolation

Channel
input

_1331733919.unknown

_1320739273.unknown

_1320739230.unknown

_1320738806.unknown

_1320738265.unknown

_1320738655.unknown

_1320738660.unknown

_1320738638.unknown

_1320738245.unknown

_1320738255.unknown

_1320738230.unknown

_1267727558.unknown

_1320734169.unknown

_1320737626.unknown

_1320737639.unknown

_1320737646.unknown

_1320737633.unknown

_1320737448.vsd
Current Block

WR

WL

A1

HT

A0

A2

A3

_1320737596.vsd
Ref Block

Extended Ref Block

W0

W1

H0

H1

_1320734443.unknown

_1307216429.vsd
B0

FW Ref

BW Ref

Ref block

Search window

_1320733620.unknown

_1276969215.unknown

_1267722783.unknown

_1267727235.unknown

_1267727523.unknown

_1267722822.unknown

_1267724586.unknown

_1267702360.unknown

_1267702584.unknown

_1267701690.unknown

