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Abstract

We propose a video coding system with both higher coding efficiency and higher parallelization than state-of-the-art.  The system is well suited for transmitting modern video content that is acquired by both professional and consumer methods.  Moreover, it is well suited for both sequential and parallel processing architectures.  This level of performance is achieved by combining concepts of larger block sizes, adaptive interpolation and loop filters, and higher bit-depth processing with parallel designs for entropy coding and intra prediction.  The resulting system provides a 21% bit-rate reduction in higher delay mode, 34% bit-rate reduction in low delay mode, and higher parallelization when compared to the anchors provided by MPEG, ITU-T and JCT-VC in the Joint Call for Proposals.
1 Introduction

There is an ever increasing need for higher video coding efficiency.  Higher coding efficiency reduces the cost of transmitting higher quality video content to the consumer and, simultaneous, enables new video delivery applications.  With the current MPEG, ITU-T and JCT-VC Joint Call for Proposals, it is stated that there is again a need for higher coding efficiency.  We agree with this need, and emphasize that the higher coding efficiency is most needed in the area of higher resolutions.  This includes current high definition content and also future, ultra high definition content.  Moreover, we assert that there is also a need for new application targets for future standards.  For example, we advocate the need for higher coding efficiency for high resolution on mobile devices.  Additionally, we advocate the need for high parallelization in both the encoder and decoder due to the increasing use of multi-core programmable processors as well as the inherent parallelism with dedicated hardware.

We believe that the needs stated above are best met by the traditional, high level approach of using block based, motion compensated and transform coding.  This approach must obviously be adapted to attain the new goals, with additional tools to address the higher correlations within modern content and the larger variety of camera types and qualities used to capture modern content.  Moreover, the approach requires modification to balance the need highly parallel coding with the inherent coding efficiency loss introduces by parallelism (due to the removal of dependencies).  Finally, the importance of mobile application also requires modification to the approach.

In this document, we propose our vision of the next generation of video coding systems.  The system is block based and combines motion compensation, spatial prediction, residual coding and loop filtering.  As these stages also exist in the current, state-of-the-art MPEG-AVC/ITU-T H.264 video coding standard, we choose to describe our proposal in comparison to this existing video coding standard.  Please note that by using this convention, we do not advocate that the next generation video coding standard must be a direct extension of existing standards.

Major differences between our proposal and existing standards are as follows.  First, we incorporate a larger block size and larger transforms.  Specifically, we advocate the use of a 32x32 superblock, which is a collection of four 16x16 macroblocks.  Each of these 16x16 macroblocks uses a 16x16, 8x8 or 4x4 transform.  Second, we incorporate an adaptive interpolation filter for motion compensation.  This filter is controlled by the encoder.  Third, we incorporate an advanced loop filter.  The loop filter consists of a de-blocking stage, a filtering stage and constraint stage.  Fourth, we address the serial bottlenecks of spatial prediction with a parallel intra-prediction design.  The parallel intra-prediction approach partitions a super-/macroblock into two partitions – all blocks in the first partition are predicted without reference to each other; similarly, all blocks in the second partition are predicted with reference to the first partition but also without reference to each other.  To further improve the system, we introduce additional prediction modes to exploit the new neighborhood structure and also improve the fundamental quality of the predications.  Fifth, we address the serial bottlenecks of entropy coding with a parallel entropy coding design.  This design allows an encoder to separate a bit-stream into reconstruction and entropy slices (or units).  The advantage of this approach is two-fold.  First, the entropy decoding may be made highly parallel on a variety of platforms – including multi-core, FPGA and ASIC.  Second, the specification of the degree of parallelism is straightforward and tractable.  We assert that this is a critical issue for the successful standardization of a highly parallel architecture.
In the rest of this document, we will describe our proposal in more detail.  In Section 2, we provide a description of the algorithm.  In Section 3, we provide an evaluation of the algorithm performance.  In Section 4, we provide a discussion of the algorithm complexity.  In Section 5, we provide a discussion of additional algorithm characteristics.  In Section 6, we describe the current implementation of the algorithm.  In Section 7, we present conclusions. 
2 Algorithm description

In this section, we describe the proposed algorithm in more detail.  The section is organized as follows: In Section 2.1, we describe the motion representation used for exploiting the temporal correlation between frames.  In Section 2.2, we describe the intra-frame prediction methods used to exploit the spatial correlation within a frame.  In Section 2.3, we describe the spatial transform used to de-correlate residual data.  In Section 2.4, we describe the in-loop filtering process to improve the visual and prediction quality of reconstructed frames.  In Section 2.5, we describe the method for entropy coding.
2.1 Motion representation

Our proposed system employs a translational motion model.  The translational motion is signaled with quarter-pixel accuracy, and the interpolation filters used for deriving the non-integer pixel positions are also signaled by the encoder.  Motion vectors may be signaled for a variety of block sizes.  As in state-of-the-art MPEG-4 AVC/ITU-T H.264 [MPEG-4 AVC/ITU-T H.264], we support transmitting motion vectors for 16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4 pixel regions.  In addition, we employ the concept of a super-macroblock, or superblock.  These superblocks represent a 32x32 pixel region.  We use the superblock concept to signal motion vectors for 32x32, 32x16 and 16x32 regions.

In the rest of this sub-section, we describe our method for transmitting the motion vectors and interpolation filters.  Superblocks are discussed in Section 2.1.1, motion vectors issues are discussed in Section 2.1.2, and interpolation filters are discussed in Section 2.1.3.
2.1.1 Superblock
In our proposal, images are processed in the units of 2x2 macroblocks, where each macroblock is a 16x16 group of pixels.  The encoder can adaptively select between coding the superblock as a single entity or coding each 16x16 macroblock individually.  For the case of intra coding, macroblocks within the superblock are restricted to have the same partition (e.g., 4x4, 8x8 or 16x16) when coding the superblock as a single entity.  For the case of inter-coding, the superblock may be partitioned into 32x32, 32x16 or 16x32 pixel blocks.  Each of these pixel blocks use a single motion vector and reference index.  In addition, the skip and direct modes of MPEG-4 AVC/ITU-T H.264 are also supported in the superblock by direct extension of existing techniques.

Signaling when the superblock is transmitted as a single entity (as opposed to individual macroblocks) is achieved with a flag.  The syntax and semantics of this “superblock_flag” is provided in detail at the end of this sub-section.  Please note that no matter the value of the superblock_flag, the first macroblock in the superblock is transmitted by the same process.  In the case of an inter-coded block, this macroblock contains partition information, motion vectors, reference indices, residual, etc.  For other macroblocks in the superblock, only residual information is transmitted when the superblock_flag is true.  The remaining information is derived from the first macroblock by mapping the 16x16 data to the 32x32 superblock.  For example, when the superblock_flag is equal to 1 and the first 16x16 macroblock is signaled to have an 8x16 partition, then the partition information is mapped to a 16x32 partitioning of the superblock.  Motion vectors, reference indices and all other prediction information are mapped similarly.

In addition to the superblock_flag, we also introduce a superblock_cbp flag.  This flag is equal to 0 when there is no residual information in the entire superblock. The syntax of macroblock_layer is similar to the macroblock_layer syntax in MPEG-4 AVC/ITU-T H.264, with the exception that the cbp can be signaled at either the superblock or macroblock layer.  To fully explain the signaling within our system, we provide a modified syntax table in Table 1.2 with some common syntaxes in MPEG-4 AVC/ITU-T H.264 omitted. 
Table 1.1 Syntax of superblock
	slice_data( ) {
	C
	Descriptor

	   . ……
	
	

	
moreDataFlag = 1
	
	

	
prevMbSkipped = 0
	
	

	  superblock_flag =0
	
	

	
do {                // process a group of macroblocks
	
	

	     if( slice_type  !=  I  &&  slice_type  !=  SI ) {
	
	

	       superblock_flag  
	2
	u(1) | ae(v)

	
  if (superblock_flag) {
	
	

	        superblock_cbp_1bit
	2
	u(1) | ae(v)

	


if( !entropy_coding_mode_flag ) {
	
	

	



superblock_skip_run
	2
	ue(v)

	



prevMbSkipped = ( superblock_skip_run > 0 )
	
	

	



for( i=0; i<superblock_skip_run; i++ )
	
	

	




CurrMbAddr = NextSuperblockAddress( CurrMbAddr )
	
	

	



moreDataFlag = more_rbsp_data( )
	
	

	


} else {
	
	

	          superblock_skip_flag
	2
	u(1) | ae(v)

	          moreDataFlag = !superblock_skip_flag
	
	

	        }
	
	

	        For (mb=0; mb < superblock_size && moreDataFlag; mb++) {
	
	

	           If (mb=0 || is_intra) {        
	
	

	               macroblock_layer();
	
	

	               extract_and_save_superblock_info();
	
	

	
         }    
	
	

	           else { 
	
	

	             copy_macroblock_info_from_superblock(mb);
	
	

	             If (superblock_cbp_1bit != 0) {
	
	

	


        coded_block_pattern
	2
	me(v) | ae(v)

	


        residual( )
	
	

	             } 
	
	

	          }  
	
	

	        }// end for loop
	
	

	     }
	
	

	     else {          // not superblock
	
	

	       for (mb=0; mb <superblock_size; mb++) {
	
	

	              // process as a regular macroblock as usual
	
	

	              …
	
	

	              macroblock_layer();  
	
	

	               ….
	
	

	        }
	
	

	    }
	
	

	   CurrMbAddr = NextSuperblockAddress( CurrMbAddr )
	
	

	  } while ( moreDataFlag )
	
	

	}
	
	

	
	
	


Table 1.2 Syntax of macroblock_layer

	macroblock_layer( ) {
	C
	Descriptor

	
mb_type
	2
	ue(v) | ae(v)

	
	
	

	………
	
	

	

if( MbPartPredMode( mb_type, 0 )  !=  Intra_16x16 && superblock_cbp_1bit != 0 ) {
	
	

	


coded_block_pattern
	2
	me(v) | ae(v)

	


if( CodedBlockPatternLuma > 0  &&





 transform_8x8_mode_flag  &&  mb_type  !=  I_NxN  &&





 noSubMbPartSizeLessThan8x8Flag  &&





 ( mb_type  !=  B_Direct_16x16  | |  direct_8x8_inference_flag ) )
	
	

	



transform_size_8x8_flag
	2
	u(1) | ae(v)

	

}
	
	

	

if( CodedBlockPatternLuma > 0  | |  CodedBlockPatternChroma > 0  | |



MbPartPredMode( mb_type, 0 )  = =  Intra_16x16 ) {
	
	

	


mb_qp_delta
	2
	se(v) | ae(v)

	


residual( )
	3 | 4
	

	

}
	
	

	
}
	
	

	}
	
	


superblock_flag: specifies whether this group of macroblocks is a superblock or not.
superblock_cbp_1bit: specifies whether this superblock has any coefficient.

superblock_skip_run specifies the number of consecutive skipped superblocks for which, when decoding a P or SP slice, mb_type of macroblocks within the superblock shall be inferred to be P_Skip and the macroblock type is collectively referred to as a P macroblock type, or for which, when decoding a B slice, mb_type shall be inferred to be B_Skip and the macroblock type is collectively referred to as a B macroblock type. 

superblock_skip_flag equal to 1 specifies that for the current superblock, when decoding a P or SP slice, mb_type of macroblocks within the superblock shall be inferred to be P_Skip and the macroblock type is collectively referred to as P macroblock type, or for which, when decoding a B slice, mb_type shall be inferred to be B_Skip and the macroblock type is collectively referred to as B macroblock type.  superblock_skip_flag equal to 0 specifies that the current superblock is not skipped.

Variable superblock_size denotes the number of macroblocks in the superblock. For example, for a 32x32 superblock, the superblock_size is 4 except at the picture boundary where it may not be a multiple of 32.

extract_and_save_superblock_info () and copy_macroblock_info_from_superblock() stand for functions to get the superblock syntaxes, save and fill them into the macroblocks.

NextSuperblockAddress () returns the start MB address of the next superblock.
2.1.2 MV Competition [MVComp]
MVComp is a competition-based scheme for the prediction of the motion vectors, and the basic idea was introduced in VCEG-AC06 [AC06].  For this proposal, we have extended the method to also support superblocks.  In the scheme, the encoder selects one predictor from two candidate predictors.  This information on the selected predictor, called PMV index, is sent in the bitstream unless the two candidates are equal.  The bitstream structure corresponding to one motion vector is shown in Figure 1.

Figure 1: Example of bitstream syntax of motion vectors
The following four predictors could be used as candidate PMV. Up to two candidates can be used per macroblock, and the rule to determine the candidates is summarized in Table 2.
1) mv_h264 is the same as the predictor of MPEG-4 AVC/ITU-T H.264.

2) mv_extmed is:
      median of mv_a, mv_b, and mv_c (if mv_a, mv_b, and mv_c are available)

      mv_a (otherwise if mv_a is available)

      mv_b (otherwise if mv_b is available)

      mv_c (otherwise if mv_c is available)

      zero (otherwise)
3) mv_temp is a temporal predictor which is derived from the collocated motion vector mvcol (the corresponding motion vector at the same position in the frame as shown in Table 3) and scaled using temporal difference information POC.
4) mv_a is the motion vector of the left neighboring block. 
Table 2: Motion vector predictors in MVComp
	
	P Slice
	B Slice

	
	skip
	non-skip
	skip
	non-skip

	Predictor1
	mv_extmed
	mv_h264
	mv_h264
	mv_h264

	Predictor2
	mv_a
	mv_temp
	-
	mv_temp


Table 3: The corresponding motion vector of mv_temp

	
	
	the correspond motion vector
	Note

	P slice
	Forward
	the forward motion vector of

the minimum index frame of List0
	if available

	
	
	(0, 0)
	Otherwise

	B slice
	Forward
	the forward motion vector of

the minimum index frame of List1
	if available

	
	
	the backward motion vector of

the minimum index frame of List1
	if the above is not available and this is available

	
	
	(0, 0)
	Otherwise

	
	Backward
	the forward motion vector of

the minimum index frame of List1
	if available

	
	
	the backward motion vector of

the minimum index frame of List1
	if the above is not available and this is available

	
	
	(0, 0)
	Otherwise


As for the selection of PMV at the encoder, a rate-distortion (RD) optimization technique is used.  In skip mode, the encoder checks the RD costs of each candidate and selects the minimum cost case.  In non-skip mode, the encoder checks the rate costs of each candidate and selects the minimum cost case.
At the decoder side, PMV candidates are first derived.  If the candidates are equal, the predictor is determined immediately, and PMV index decoding is skipped.  Otherwise the PMV index is decoded from the bitstream, and the candidate to be used is determined.  The syntax of the motion information is shown in Table 4 (undefined terms are the same as in MPEG-AVC/ITU-T H.264).

Table 4: The example syntax of motion information
	skip_information {
	C
	Descriptor

	mb_skip_flag
	2
	

	if (mb_skip_flag != 0 && mv_extmed != mv_a)
	
	

	pmv_index_l0[0][0]
	2
	u(1) | ae(v)

	}
	
	


	mb_motion_information {
	C
	Descriptor

	  if(NumMbPart( mb_type ) = = 4 )
	
	

	    sub_mb_pred( mb_type )
	2
	

	else
	
	

	  mb_pred( mb_type )
	2
	

	}
	
	


	mb_pred( mb_type ) {
	C
	Descriptor

	  if( MbPartPredMode( mb_type, 0 ) = = Intra_4x4 | | MbPartPredMode( mb_type, 0 ) = = Intra_16x16 ) {
	
	

	    …
	
	

	} else if( MbPartPredMode( mb_type, 0 ) != Direct ) {
	
	

	for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)
	
	

	if(num_ref_idx_l0_active_minus1 > 0 &&

MbPartPredMode( mb_type, mbPartIdx ) != Pred_L1 )
	
	

	ref_idx_l0[ mbPartIdx ]
	2
	te(v) | ae(v)

	for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)
	
	

	if(num_ref_idx_l1_active_minus1 > 0 &&

MbPartPredMode( mb_type, mbPartIdx ) != Pred_L0 )
	
	

	ref_idx_l1[ mbPartIdx ]
	2
	te(v) | ae(v)

	for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)
	
	

	if( MbPartPredMode ( mb_type, mbPartIdx ) != Pred_L1 ) {
	
	

	for( compIdx = 0; compIdx < 2; compIdx++ )
	
	

	mvd_l0[ mbPartIdx ][ 0 ][ compIdx ]
	2
	te(v) | ae(v)

	if ( mv_h264 != mv_col)
	
	

	pmv_index_l0[ mbPartIdx ][ 0 ]
	2
	u(1) | ae(v)

	}
	
	

	for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)
	
	

	if( MbPartPredMode( mb_type, mbPartIdx ) != Pred_L0 ) {
	
	

	for( compIdx = 0; compIdx < 2; compIdx++ )
	
	

	mvd_l1[ mbPartIdx ][ 0 ][ compIdx ]
	2
	te(v) | ae(v)

	if ( mv_h264 != mv_col)
	
	

	pmv_index_l1[ mbPartIdx ][ 0 ]
	2
	u(1) | ae(v)

	}
	
	

	  }
	
	

	}
	
	


	sub_mb_pred( mb_type ) {
	C
	Descriptor

	  for( mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++ )
	
	

	    sub_mb_type[ mbPartIdx ]
	2
	te(v) | ae(v)

	for( mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++ )
	
	

	if(num_ref_idx_l0_active_minus1 > 0 &&

mb_type != P_8x8ref0 &&

sub_mb_type[ mbPartIdx ] != B_Direct_8x8 &&

SubMbPredMode( sub_mb_type[ mbPartIdx ] ) != Pred_L1 )
	
	

	
	
	

	ref_idx_l0[ mbPartIdx ]
	2
	te(v) | ae(v)

	for( mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++ )
	
	

	if( (num_ref_idx_l1_active_minus1 > 0 ) &&

sub_mb_type[ mbPartIdx ] != B_Direct_8x8 &&

SubMbPredMode( sub_mb_type[ mbPartIdx ] ) != Pred_L0 )
	
	

	ref_idx_l1[ mbPartIdx ]
	2
	te(v) | ae(v)

	for( mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
	
	

	if( sub_mb_type[ mbPartIdx ] != B_Direct_8x8 &&

SubMbPredMode( sub_mb_type[ mbPartIdx ] ) != Pred_L1 )
	
	

	for( subMbPartIdx = 0;

subMbPartIdx < NumSubMbPart( sub_mb_type[ mbPartIdx ] );

subMbPartIdx++)
	
	

	for( compIdx = 0; compIdx < 2; compIdx++ )
	
	

	mvd_l0[ mbPartIdx ][ subMbPartIdx ][ compIdx ]
	2
	te(v) | ae(v)

	if ( mv_h264 != mv_col)
	
	

	pmv_index_l0[ mbPartIdx ][ subMbPartIdx ]
	2
	u(1) | ae(v)

	}
	
	

	for( mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
	
	

	if( sub_mb_type[ mbPartIdx ] != B_Direct_8x8 &&

SubMbPredMode( sub_mb_type[ mbPartIdx ] ) != Pred_L0 )
	
	

	for( subMbPartIdx = 0;

subMbPartIdx < NumSubMbPart( sub_mb_type[ mbPartIdx ] );

subMbPartIdx++)
	
	

	for( compIdx = 0; compIdx < 2; compIdx++ )
	
	

	mvd_l1[ mbPartIdx ][ subMbPartIdx ][ compIdx ]
	2
	te(v) | ae(v)

	if ( mv_h264 != mv_col)
	
	

	pmv_index_l1[ mbPartIdx ][ subMbPartIdx ]
	2
	u(1) | ae(v)

	}
	
	

	  }
	
	

	}
	
	


skip_information is included in a slice or macroblock layer, which indicates whether a super-block or a macroblock is skip or not. In MVComp, pmv_index_l0[0][0] is added to the syntax if mb_skip_flag is true.
mb_motion_information is included in a macroblock layer syntax and indicates macroblock motion information. This syntax is omitted if mb_skip_flag is true.

mb_skip_flag equal to 1 specifies that for the current macroblock, when decoding a P or SP slice, mb_type shall be

inferred to be P_Skip and the macroblock type is collectively referred to as P macroblock type, or for which, when

decoding a B slice, mb_type shall be inferred to be B_Skip and the macroblock type is collectively referred to as B

macroblock type.  mb_skip_flag equal to 0 specifies that the current macroblock is not skipped.

pmv_index_l0[ mbPartIdx ][ 0 ] when present, specifies the PMV index in forward motion vector. When the macroblock is skip mode, mbPartIdx is always zero.
pmv_index_l1[ mbPartIdx ][ 0 ] has the same semantics as pmv_index_l0, with l1 and forward replaced by backward, respectively.
ref_idx_l0[ mbPartIdx ] when present, specifies the index in list 0 of the reference picture to be used for prediction.
ref_idx_l1[ mbPartIdx ] has the same semantics as ref_idx_l0, with l0 and list 0 replaced by l1 and list 1, respectively.
mvd_l0[ mbPartIdx ][ 0 ][ compIdx ] specifies the difference between a vector component to be used and its prediction.

mvd_l1[ mbPartIdx ][ 0 ][ compIdx ] has the same semantics as mvd_l0, with l0 and L0 replaced by l1 and L1,

respectively.
2.1.3 Multiple Enhanced Adaptive Interpolation Filter [MEAIF]

We call our adaptive interpolation filter the Multiple Enhanced Adaptive Interpolation Filter (MEAIF).  The tool has three interpolation filtering modes: standard filtering mode, E-AIF filtering mode, and MEAIF mode.  Standard filtering mode is the same as MPEG-4 AVC/ITU-T H.264, while E-AIF filtering mode is the same as Enhanced AIF (E-AIF) [C464][AI38].  The remaining mode, MEAIF is discussed in more detail in this sub-section.
In MEAIF mode, motion compensation is carried out with two set of adaptive filter coefficients and offsets.  (We will call these coefficients and offsets an “AIF parameter group” also in this sub-section).  Each of the two parameter groups is assigned to a reference list (List0 and List1) of the current referencing picture.  One MEAIF filter consists of up to nine filters: an integer (full-pel) position filter and 8 non-integer (sub-pel) position filters.  As in E-AIF, the use of a filter at each full-pel and sub-pel position is signaled by estimating the expected RD gain.  If a position is disabled, the standard filter is used for the position.
To determine the AIF parameter groups, a multi-pass encoding process is used. This process is shown in Figure 2 and further described below.  Please note that the description of this process follows our implementation, but that we have not exerted significant effort to optimize it.
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Figure 2: Process overview of MEAIF

Interpolation filtering mode selection and associated AIF parameter group derivation

The encoding process is as follows:

1) First pass (standard filter mode)

In the first pass, encoding is carried out by using a fixed interpolation filter (which is the same filter as specified in MPEG-4 AVC/ITU-T H.264) in the motion estimation/compensation process; a picture RD cost of this standard filter mode is then calculated.  In this pass, AIF parameter groups for MEAIF mode and E-AIF mode are also derived.  At the end of the first pass encoding, the encoder calculates two AIF parameter groups, F0 and F1.  F0 and F1 are determined by the least-square method to minimize two types of prediction error, the List 0 and List 1 prediction error, respectively.  The amount of the processes required to determine F0 or F1 is comparable to the processes in E-AIF.
2) Second pass (MEAIF mode)

In the second pass, MEAIF is enabled.  The encoder employs two AIF parameter groups, F0 and F1 derived in the first pass.  As shown in Figure 3, the adaptive filter F0 is used for interpolating pictures on List 0, and adaptive filter F1 is used for List 1.  Because F0 and F1 were derived based on the result of the motion estimation/compensation of the first pass, the motion vectors and other motion estimation/compensation parameters determined in the first pass can be re-utilized in the second pass.  At the end of the second pass, a picture RD cost of MEAIF mode is calculated.
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Figure 3: Selection of multiple adaptive filters
3) RD optimization / additional pass (E-AIF mode)

After the second pass, the picture RD cost of standard filter mode and that of MEAIF mode are compared.
3-1) MEAIF mode is selected as AIF mode if the RD cost of MEAIF mode is smaller than that of standard filter mode.
3-2) Otherwise, the encoder tries an additional pass to calculate a picture RD cost of E-AIF mode.  In this pass, an AIF parameter group for E-AIF derived from the result of the first pass is used.  The picture RD cost of E-AIF mode is compared with the one of standard filter mode.

3-2-1) If the RD cost of standard filter mode is smaller, the standard filter mode is selected. (In that case, AIF is totally disabled.)
3-2-2) Otherwise, the E-AIF mode is selected.
Signaling

The bitstream structure of MEAIF is shown in Figure 4, and example syntax table for MEAIF is shown in Table 5.  At each slice header, AIF mode is signaled to indicate which motion compensation mode is selected: standard, E-AIF, or MEAIF. If MEAIF mode or E-AIF mode is selected, one or more AIF parameter groups are also signaled. The structure of the AIF parameter group is basically the same in both modes except that two AIF parameter groups are signaled in MEAIF mode. 
	AIF mode
	(AIF parameter group 0)
	(AIF parameter group 1)

	
	filter flags
	coeffs
	offsets
	filter flags
	coeffs
	offsets


Figure 4: Bitstream structure of MEAIF parameters
Table 5: Example syntax table of MEAIF 
	slice_header() {
	C
	Descriptor

	
…

	
	

	
adaptive_filter_mode
	
	u(3)

	
…
	
	

	
if (adaptive_filter _mode != StdFilter) {
	
	

	

AIF_parameter_group()
	
	

	

if (adaptive_filter_mode == MEAIF) {
	
	

	


AIF_parameter_group()
	
	

	

}
	
	

	
}
	
	

	
…
	
	

	}
	
	

	
	
	

	AIF_parameter_group() {
	
	

	
if (adaptive_filter_mode == MEAIF) {
	
	

	

standard_filter_flag
	
	u(1)

	
}
	
	

	
if (adaptive_filter_mode == EAIF || standard_filter_flag == 0) {
	
	

	

for (i=0; i<8;i++) {
	
	

	


subpel_filter_flag[i]
	
	u(1)

	

}
	
	

	

for (pos=0; pos<8; pos++) {
	
	

	


if (subpel_filter_flag[pos]) {
	
	

	



filter_coef(NumSubpelFilterCoef[pos])
	
	

	



filter_offset(pos)
	
	

	


}
	
	

	

}
	
	

	

fullpel_filter_flag
	
	u(1)

	

if (fullpel_filter_flags) {
	
	

	


filter_coef(NumFullpelFilterCoef)
	
	

	


filter_offset(FullPelPos)
	
	

	

}
	
	

	
}
	
	

	}
	
	

	
	
	

	filter_coef(num) {
	
	

	
for (i=0; i<num; i++) {
	
	

	

filter_coef_prefix[i]
	
	u(v)

	

filter_coef_suffix[i]
	
	u(v)

	

if (abs_filter_coef != 0) {
	
	

	


filter_coef_sign[i]
	
	u(1)

	

}
	
	

	
}
	
	

	}
	
	

	
	
	

	filter_offset(pos) {
	
	

	
filter_offset_int[pos]
	
	se(v)

	
if (FilterOffsetFracCodeLen[filter_offset_int] > 0) {
	
	

	

filter_offset_frac[pos]
	
	u(v)

	
}
	
	

	
if (filter_offset_int[pos] > 0 && filter_offset_frac[pos] > 0) {
	
	

	

filter_offset_sign[pos]
	
	u(1)

	
}
	
	

	}
	
	



Note: the default value of each variable which is not capitalized is zero.

AIF mode indicates which interpolation filtering mode is used. Either MEAIF mode, E-AIF mode or standard filter mode can be identified with the syntax. The number of AIF parameter group to be sent is changed from 0 to 2 according to AIF mode selection.  Full semantics are as follow:
adaptive_filter_mode is encoded in each slice header to indicate which interpolation filtering mode is used in that slice. adaptive_filter_mode is equal to 0 when no AIF is used, 5 when E-AIF is used and equal to 6 when MEAIF is used. E-AIF mode needs an AIF parameter group and MEAIF mode needs two AIF parameter groups described below.

standard_filter_flag is equal to 1 when all of subpel_filter_flags for the current AIF parameter group are 0. In other words, when an AIF turned out to be the standard filter at all positions, standard_filter_flag is set equal to 1 and all other parameters of the AIF are omitted. This flag is used only when MEAIF mode is selected. When standard_filter_flag is not present, it shall be inferred to be equal to 0.
subpel_filter_flag is an array of flags which specifies to enable or disable the adaptive filter for each sub-pel position.
fullpel_filter_flag is an array of flags which specifies to enable or disable the adaptive filter for each full-pel position.
filter_coef_prefix[], filter_coef_suffix[] and filter_coef_sign[] make up coefficients using the same scheme as E-AIF.
filter_offset_int[], filter_offset_frac[] and filter_offset_sign[] make up filter offsets using the same scheme as E-AIF.
2.2 Intra-frame prediction
To exploit the spatial correlation within an image frame, the proposed system uses a spatial prediction model.  The process uses the extrapolation of neighboring pixel values to predict the current block.  Compared to state-of-the-art video coding systems though, the prediction strategy has two important differences.  First, it is designed to enable highly parallel encoding and decoding.  This is achieved by partitioning the blocks to be predicted into two sets.  The first set is is predicted from pixels along the boundary of the macroblock; the second set is predicted from the reconstructed first set.  Second, it is designed for improved coding efficiency.  This is achieved by using an adaptive multi-dimensional tool intra prediction tool, bi-directional prediction and content adaptive mode restriction for overhead.  The spatial prediction model is applied to 4x4 and 8x8 partitions of a macro-block.  For larger partitions, we use the same prediction method as MPEG-4 AVC/ITU-T H.264.

The entire system is described in more detail in the following sub-sections.  To ease the description, we elect to describe the system as three components.  In Section 2.2.1, we describe the parallel intra prediction technique.  In Section 2.2.2, we describe the adaptive multi-dimensional intra-prediction (AMIP) separately.  In Section 2.2.3, we describe the combination of parallel and adaptive multi-dimensional intra-prediction.  It is this combination that is reported in the later results. Finally, in Section 2.2.4, we describe the adaptive selection of candidate predictors for blocks within the second partition.
2.2.1 Parallel Intra Prediction
In state-of-the-art MPEG-4 AVC/ITU-T H.264, a macroblock is partitioned into blocks and each block is predicted and refined sequentially.  These serial dependencies result in significant complexity for both the encoder and decoder processes.  Here, we employ an alternative technique that enables parallel intra prediction for both 4x4 and 8x8 partition sizes with negligible loss in coding efficiency.  To understand the benefit of the approach, recall that state-of-the-art MPEG-4 AVC/ITU-T H.264 requires 16 prediction and refinement steps to decode a macro-block using 4x4 partitions.  By comparison, we decode a macro-block that uses 4x4 partitions with 2 prediction and refinement steps.  Similarly, MPEG-4 AVC/ITU-T H.264 requires 4 prediction and refinement steps to decode a macro-block using 8x8 partitions.  Our method again requires 2 prediction and refinement steps.

The proposed parallel intra prediction tool has the following steps:
Partition a macroblock to two sets

First, we partition a macroblock into two sets of blocks.  Specifically, for parallel intra 4x4 prediction within a macroblock, the sixteen 4x4 blocks are grouped to two sets of 8 blocks according to a checker-board pattern.  The green shaded blocks are one set and the white blocks are the other set.  The first set of blocks are processed in parallelt, and then the second set of blocks are processed in parallel.  This provides a degree of parallelism of eight, and therefore an 8x speed up the intra 4x4 prediction.  For a superblock with N blocks, this can provide a degree of parallelism of N/2. 

The order of processing among different sets can be made flexible.  However, in this proposal we use the check-board pattern shown in Figure 5.  Here, the green set is the first set in processing order.  The white set is the second set in processing order. 
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Figure 5: Illustrations of the two sets of blocks for parallel intra prediction
Coding the first set of blocks

For the first set of blocks, we use pixels from the upper and left macro-block boundaries for spatial prediction.  For example, when coding block #13 in Figure 5, we use the pixels above and to the left of the block (but in the neighboring macroblock) for prediction.  By comparison, MPEG-4 AVC/ITU-T H.264 uses the pixels from block #7 as the vertical neighbor.  For the sake of understanding, assume that the prediction is performed in a similar manner to the current intra 4x4 prediction.  (The specific prediction strategy will be fully understood after reading the entire section.)  In this case, the prediction approach is illustrated in Figure 6.  Also, pseudo code of predicting Diagonal Down Left Mode appears below. 

	// Diagonal Down Left

// pU and pL denotes upper and left neighbor with range [-1,BLOCK_SIZE]

// Actually if block_size = 4 or 8, this formula is the same as the intra 4x4 

// and intra 8x8 formula in MPEG-4 AVC/ITU-T H.264 standard

BLCOK_SIZE = 16;         

bound=BLOCK_SIZE-1;

for (y=0; y<block_size;y++)

for (x=0; x<block_size; x++)

{

      if (x!=bound || y!=bound)

        pred[y][x] = (pU[x+y]+2*pU[x+y+1]+pU[x+y+2]+2)>>2;

      else

      pred[y][x] = (pU[bound*2]+3*pU[bound*2+1]+2)>>2;

  }

}


[image: image4.png]



Figure 6: Intra prediction using macroblock neighbor pixels

Having introduced the general approach for decoding the first partition of macro-blocks.  We now introduce additional tools necessary for efficient coding.  The first is called “Weighted DC prediction”.  This is an intuitive modification of traditional DC for the case that neighboring pixels are not the same distance from the predicted block.  (To be clear, notice that in Figure 6, the block in green is closer to the vertical neighbor than the horizontal neighbor.)  To address this case, we include the distance value in the calculation of the DC.

The second is the signaling of the intra prediction mode.  In state-of-the-art MPEG-4 AVC/ITU-T H.264, the intra-prediction mode is predicted from the intra-prediction mode of the horizontal and vertical neighbors.  This improves coding efficiency.  In our approach though, the horizontal and vertical neighbors are not available for most blocks in the first partition.  Instead, we use the horizontal and vertical neighbors that are either in the first partition or in neighboring macro-blocks. For example, in Figure 7 below, block 6 will use the mode of block 1 as its upper mode (intraMxMPredModeB ) instead of block 4, and use the mode of the block 2 as the left mode (intraMxMPredModeA) instead of block 3, to predict the mode.  The mode will then be predicted as follows.
	predIntra4x4PredMode = Min(intraMxMPredModeA, intraMxMPredModeB)

where intraMxMPredModeA denotes the mode of left neighbor block, and intraMxMPredModeB denotes the mode of upper block.


Note that for blocks in the second partition, we do not apply this technique and the approach is similar/identical to the method in state-of-the-art MPEG-4 AVC/ITU-T H.264. 

[image: image5.emf]15 14 11 10

13 12 9 8

7 6 3 2 AA

5 4 1 0

BB


Figure 7: Illustrations of intra mode prediction
While not explored further here, we mention that our method for predicting the intra-prediction mode is not parallel.  Our assessment is that the serial processing within this step is lightweight and negligible.  However, if others disagree, we advocate the use of the intra-prediction modes within neighboring macro-blocks for the prediction of the intra-prediction mode.  For example, the top neighbor of a current block may be defined as the nearest block in the vertical direction that is outside of the current macroblock.  In this case, block 6 in Figure 7 will use the mode of block BB as the upper mode (intraMxMPredModeB ), and use the mode of the block AA as the left mode (intraMxMPredModeA).

Coding the second set of blocks

For the second set of blocks, e.g. the white blocks in Figure 5, in addition to the upper and left block neighbors, it is possible to have right and bottom neighbors available as well.  For example, blocks numbered as 0, 4, 3, 8, 12 have both right and bottom block neighbors, and block 11 has the right block neighbors, and block 7 has the bottom block neighbors. These additional neighbor pixels can be used to improve the intra prediction.

For example, notice that block #3 in Figure 5 has top, bottom, left and right neighbors (blocks #1, 2, 6 and 9).  These neighboring pixels are shown in Figure 8, where p(y,x) denotes the pixel at column y and row x.  Here, pixel values at locations A-L and X are the neighbor pixels used for intra prediction in MPEG-4 AVC/ITU-T H.264.  For our second set of blocks, the additional pixel values at locations AA-DD, and II-LL are also potentially available..  Notice that X, E, X2 and X3 denote the corner neighbor pixels, and that the corner neighbor pixels are not available if they are within the same macroblock (because they also belong to the blocks in the second set).  In this case, the corner neighbor pixels are interpolated from the available neighbor pixels as follows: 
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With the additional right and bottom neighbors, we modify existing modes in MPEG-4 AVC/ITU-T H.264 to use the additional pixels.  Specifically, Horizontal Up mode uses the bottom neighbors when available, and Diagonal Down Left and Vertical left modes uses the right neighbors when available.  Algorithmically, this is expressed for the Horizontal Up mode as follows.  First, for sake of understanding, we note that the prediction for the Horizontal Up mode in MPEG-4 AVC/ITU-T H.264 is given as:
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Figure 8: Example block with 4 surrounding neighbor blocks
With our method, we incorporate the lower pixels and replace the expressions above with the following:
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In addition to extending the existing modes of MPEG-4 AVC/ITU-T H.264, we also construct additional modes.  These modes are shown in Figure 9, and they are realized my rotating the formula of the existing modes.   
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	Mode
Name of Mode
9
Vertical 2
10
Horizontal 2
11
DC 2
12
Diagonal Down Left 2
13
Diagonal Down Right 2
14
Vertical Right 2
15
Horizontal Down 2
16
Vertical Left 2
17
Horizontal Up 2


	 Figure 9:New intra prediction modes



In our proposal, we do not use these additional modes explicitly.  Instead, we use the weighted combination of the additional mode with the rotated mode.  For example, we use the weighted combination of mode 9 (Vertical 2) and mode 0 (Vertical).  The weighting tables are shown in Figure 10, and the design of these tables is motivated so that the weights are roughly in proportional to the distance to the neighbors.  The tables are also reflect the angle of the modes.  

The weighting process is given as follows
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where w denotes the weight and may be a fractional number, p1(y,x) and p2(y,x) denote the predicted values using the first mode and a second mode respectively.
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Figure 10: Example weighting tables for selected modes

We now discuss the signaling of the new modes.

In our proposal, we signal the modes as a combination of a mode number (in the set [0,8]) and a flag called “intra4x4_pred_weighted_flag”.  When intra4x4_pred_weighted_flag is true, then the new modes described above are used for intra-prediction.  When the intra4x4_pred_weighted_flag is false, then the modes corresponding to the nine modes with MPEG-4 AVC/ITU-T H.264 (but modified as described previously) are used.  Note that with this approach, a mode is always in the set [0,8] and so it can be used for predicting the intra-prediction mode of any block.  Example syntax is shown in the Table 6 below.  Here, a flag “MB_has_weighted_intra_block_flag” is  signaled to indicate whether this macroblock has weighted intra blocks or not.  Then, it is determined if bottom and/or right neighbors exist to allow for the weighted intra prediction.  For blocks that weighted intra prediction is possible, we then send the flag “intra4x4_pred_weighted_flag[luma4x4blkIdx]” to signal if weighted prediction is used or not. 

Table 6: Example syntax table for parallel intra 4x4 prediction

	
	C
	Descriptor

	mb_pred(mb_type)
	
	

	 ……………….
	
	

	
If( MbPartPredMode( mb_type, 0 )  = =  Intra_4x4) {
	
	

	

MB_has_weighted_intra_block_flag
	2
	u(1) | ae(v)

	

for( luma4x4BlkIdx=0; luma4x4BlkIdx<16; luma4x4BlkIdx++ ) {
	
	

	             If (!MB_has_weighted_intra_block_flag || 









!weighted_intra_possible(luma4x4BlkIdx)) {
	
	

	



prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ]
	2
	u(1) | ae(v)

	



if( !prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ] )
	
	

	




rem_intra4x4_pred_mode[ luma4x4BlkIdx ]
	2
	u(3) | ae(v)

	


} else {
	
	

	                intra4x4_pred_weighted_flag[ luma4x4BlkIdx ]
	2
	u(1) | ae(v)

	



prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ]
	2
	u(1) | ae(v)

	



if( !prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ] )
	
	

	




rem_intra4x4_pred_mode[ luma4x4BlkIdx ]
	2
	u(3) | ae(v)

	


}
	
	

	
}
	
	


Signaling of residual data

To better enable parallelization, we also re-organize the transmission of the residual data.  Here, we signal the residual in the new block coding order.  Specifically, residuals of the blocks in the first partition are transmitted prior to blocks in the second partition.  This allows the decoder able to start reconstructing the first set of blocks immediately after entropy decoding the residual data.  Syntax of this is listed below, and the flag parallelResidualSignaling is sent in either the sequence parameter set or picture parameter set.
	residual( ) {
	C
	Descriptor

	……..
	
	

	if( MbPartPredMode( mb_type, 0 )  = =  Intra_4x4 

     && parallelResidualSignaling ) {
	
	

	      for( 4x4 block in first set of blocks) {
	
	

	
     Residual_block()
	
	

	     }
	
	

	      for( 4x4 block in second set of blocks) {
	
	

	       residual_block()
	
	

	
}
	
	

	}
	
	

	……
	
	


2.2.2 AMIP: Adaptive Multi-directional Intra Prediction
AMIP is a coding technique that enables the selection of one intra prediction mode set out of several candidate prediction mode sets, and then to select one intra prediction mode from the selected intra prediction mode set [AG05].  By selecting a set suitable for the local characteristics of the block to be predicted, the accuracy of the prediction image is improved at the cost of bits needed for signaling the selected mode set, which is no more than two bits per macroblock.

Definition of intra prediction mode sets

In the proposed system, three intra prediction mode sets are defined, each of which consists of 9 intra prediction modes.  Three intra prediction mode sets can be identified by amip_mode ID. The default intra prediction mode set, to which ID 0 is assigned, is equivalent to the one used in MPEG-4 AVC/ITU-T H.264.  Other two mode sets, to which ID 1 or 2 are assigned, are designed to be effective to the area where nearly horizontal or nearly vertical edges are dominant.  Intra prediction modes included in those mode sets are depicted in Figure 11.  To identify an intra prediction mode in a certain mode set, mode IDs ranging from 0 to 8 are assigned to each mode in a mode set as in MPEG-4 AVC/ITU-T H.264.  To identify the property of each prediction mode, pType is assigned to each mode as shown in Figure 11.

[image: image15]
Figure 11: Definition of intra prediction mode sets

Signaling of selected intra prediction mode set and intra prediction mode
A new syntax amip_mode, which corresponds to the ID of mode set, is added in macroblock layer to signal the selected mode set.  It is signaled when Intra 4x4 or Intra 8x8 prediction is used.  The syntax amip_mode is encoded in the similar way as that of intra prediction mode in MPEG-4 AVC/ITU-T H.264.  The detailed encoding process is as follows.
1) Calculate the predictor of the amip_mode using the amip_mode of top and left neighboring macroblocks.  If both neighboring macroblocks are available, the smaller of the two amip_mode of the neighboring macroblocks is set as the predictor.  If one of the neighboring macroblock is not available, the predictor is set equal to amip_mode of the available neighboring macroblock.  If both of neighboring macroblocks are not available, the predictor is set equal to zero.

2) Variable amipModeFlag, indicating whether the derived predictor is true or false, is derived and encoded.
3) If amipMode Flag is false, variable amipModeRem is derived by the equation below and encoded.
amipModeRem = (amip_mode > amipModePred) ? (amip_mode - 1) : amip_mode
Encoding of intra prediction mode is the same as in MPEG-4 AVC/ITU-T H.264.  Since all intra prediction mode sets consist of 9 modes, no special treatment is needed even if neighboring blocks are using the different intra prediction mode sets.

Prediction image generation based on the prediction mode
This is an explanation on how the prediction image of each NxN block is generated according to the intra prediction mode identified by pType.

If pType equals to one of the intra prediction modes included in the default mode set, the prediction image is generated based on the corresponding process specified in MPEG-4 AVC/ITU-T H.264. 
Otherwise, the following process is applied to generate prediction image.

lBound = N - 1

uBound = 2 * N - 1

pL(j) = imgRec(blkX-1, blkY+j)   (-1 ( j ( lBound)

pU(i) = imgRec(blkX+i, blkY-1)   (-1 ( i ( uBound)

Where imgRec(i, j) is pixel value of reconstructed image, and (blkX, blkY) is position of the top-left corner of the block to be predicted in a frame.

For each pixel in the NxN block, the pixel value of the prediction image is derived by the following ordered steps.
1) Let (x, y) be the position of the pixel to be predicted in the block.

2) Variable predDir is set equal to the angle, in the unit of degree, between prediction direction and horizontal axis. Relation between pType and predDir can be referred in Table 7.

3) Variable tanX is the approximate value of tan (predDir), and it is also defined in Table 7.

Table 7: Definition of predDir and tanX

	pType
	HOR_M15
	HOR_M10
	HOR_M5
	HOR_P5
	HOR_P10
	HOR_P15

	predDir
	-15
	-10
	-5
	5
	10
	15

	tanX
	-0.2679
	-0.1763
	-0.0875
	0.0875
	0.1763
	0.2679


	pType
	VERT_M15
	VERT_M10
	VERT_M5
	VERT_P5
	VERT_P10
	VERT_P15

	predDir
	75
	80
	85
	95
	100
	105

	tanX
	11.4301
	5.6713
	3.7321
	-3.7321
	-5.6713
	-11.4301


4) Derive Ax and Ay using the following equations.  Note that the line, which pass (x, y) and have the direction of predDir, is supposed to pass (Ax, -1) and (-1, Ay).
Ax = x - (1+y) / tanX
Ay = y - (1+x) * tanX

5)  Variable useLeft, indicating whether left neighboring pixels are used for prediction or not, is derived as follows.

 - If predDir < 0, useLeft = 1.

 - Otherwise, if predDir ( 90, useLeft = 0.

 - Otherwise, if Ax ( 1, useLeft = 1.

 - Otherwise, useLeft = 0.

6)  Variable posInt, posRem, nBound, and array of neighboring pixels pN are derived as follows.

 - If useLeft == 1, 

  posInt = floor(Ay), posRem = (Ay - posInt), nBound=lBound, and pN=pL.

 - Otherwise,

  posInt = floor(Ax), posRem = (Ax - posInt), nBound=uBound, and pN=pU. 

7)  The pixel value of the prediction image for the pixel (x,y) is derived as follows;

 - If posInt == -1 and posRem == 0,



p (x, y) = (pL[0] + (p[-1]<<1) + pU[0] + 2) >> 2

 - Otherwise, if posInt ( nBound, p (x, y) = pN[nBound].

 - Otherwise, 

p (x, y) = floor (pN[posInt] * (1.0 – posRem) + pN[posInt+1] * (posRem) + 0.5)
2.2.3 AMIP combined with Parallel Intra Prediction
In the proposed system, AMIP is used in combination with parallel intra prediction.  Some of the prediction processes are different from the AMIP processes without parallel intra prediction.

Prediction for the first set of blocks
If a prediction mode is one of those included in the default mode set, the prediction image is generated as described in the section “coding of first set of blocks” in Parallel Intra Prediction (2.2.1).  Neighboring macroblocks instead of neighboring blocks are used in the process.
Otherwise, the prediction process for AMIP is modified to utilize neighboring macroblocks for prediction.  Specifically, the process described in the section “Prediction image generation based on the prediction mode” of sub-section 2.2.2 with modification of the following variables.

lBound = 15

uBound = 31

pL(j) = imgRec (blkX – blkOffsetX – 1, blkY – blkOffsetY + j)   (-1 ( j ( lBound)

pU(i) = imgRec (blkX – blkOffsetX + i, blkY – blkOffsetY – 1)   (-1 ( i ( uBound)

Ax = (x - (1+y+blkOffsetY) / tanX) - blkOffsetX;

Ay = (y - (1+x+blkOffsetX) * tanX) - blkOffsetY;
Where (blkOffsetX, blkOffsetY) is the location of the top-left corner pixel of the block to be predicted relative to the corner pixel of the macroblock containing the block.
Prediction for the second set of blocks
If the intra prediction mode corresponds to one of those in the default mode set, the prediction image is generated as described in the section “coding of the second set of blocks” in Parallel Intra Prediction (2.2.1).  In addition to left and up neighboring blocks, right and bottom neighboring blocks, if available, are used for the prediction.
Otherwise, for those prediction mode that are not included in the default mode set, reverse prediction and weighted prediction as explained in Parallel Intra Prediction should be made in addition to the standard (forward) prediction.  For that purpose, the following ordered steps are applied.

1) Depending on pType, derive variables fwdAvailable and revAvailable by referring to Table 8. If the neighboring blocks marked ‘x’ in Table 8 are all available, fwdAvailable or revAvailable of the corresponding row is set equal to 1.  Otherwise, it is set equal to 0.

2)  If fwdAvailable == 1, derive the forward prediction image by the following steps.

 - rotateType = ROTATE_UL

 - revFlag = 0

 - Process described in the section “Prediction based on pType, revFlag, and rotateType” (which follows this sub-section) is used with pType, revFlag, and rotateType as input, and the output prediction image is used as the forward prediction image.

3) If revAvailable == 1, derive the reverse prediction image by the following steps.

- Depending on pType, rotateType is set by referring to Table 9.
 - revFlag = 1

- Process described in sub-section “Prediction based on pType, revFlag, and rotateType” is used with pType, revFlag, and rotateType as input, and the output prediction image is used as the reverse prediction image.

Table 8: Neighboring block used to determine fwdAvailable / revAvailable

	pType
	fwd / rev
	LEFT
	UP
	RIGHT
	BOTTOM

	HOR_P15
HOR_P10

HOR_P5
	fwdAvailable
	x
	x
	-
	-

	
	revAvailable
	-
	-
	X
	x

	HOR_M15
HOR_M10
HOR_M5
	fwdAvailable
	x
	-
	-
	-

	
	revAvailable
	-
	x
	X
	-

	VERT_P15
VERT_P10
VERT_P5
	fwdAvailable
	-
	x
	-
	-

	
	revAvailable
	x
	-
	-
	x

	VERT_M15
VERT_M10
VERT_M5
	fwdAvailable
	x
	x
	-
	-

	
	revAvailable
	-
	-
	X
	x


Table 9: Definition of predDir and rotateType when revFlag equals to 1

	pType
	HOR_M15
	HOR_M10
	HOR_M5
	HOR_P5
	HOR_P10
	HOR_P15

	predDir
	75
	80
	85
	5
	10
	15

	rotateType
	ROTATE_RU
	ROTATE_BR


	pType
	VERT_M15
	VERT _M10
	VERT _M5
	VERT _P5
	VERT _P10
	VERT _P15

	predDir
	75
	80
	85
	5
	10
	15

	rotateType
	ROTATE_BR
	ROTATE_LB


4) The prediction image of the block is derived as follows.

 - If fwdAvailable == 1 and revAvailable == 1, output prediction image is generated by weighting forward prediction image and reverse prediction image in order to make final prediction image.  Weighting of the two prediction image is done by the equation below.

p (x, y) = floor (w(k) * p_fwd (x, y) + (1 – w(k)) * p_rev (x, y) + 0.5)

Where p_fwd (x, y) and p_rev (x, y) are pixel value of forward and reverse prediction image, respectively.  When pType equals to either VERT_M5, VERT_M10, VERT_M15, VERT_P5, VERT_P10, or VERT_P15, k = y.  Otherwise (pType equals to HOR_xx), k = x. And w(k) is weighting factor and calculated by the equation below.

w (k) = (N – k) / (N + 1)

 - Otherwise, if fwdAvailable == 1, forward prediction image is used as output prediction image.

 - Otherwise, if revAvailable == 1, reverse prediction image is used as output prediction image.

 - Otherwise, output prediction image for pType is marked as unavailable.

Prediction based on pType, revFlag, and rotateType
In this process, prediction image is generated by either forward prediction or reverse prediction.  Which prediction is used is indicated by revFlag.  The neighboring pixels of up to two sides of the block are used.  The sides of the block to be used can be identified by the variable rotateType.

(Note that when the process described in this section is applied, the intra prediction mode identified by pType should not equal to one of those prediction mode included in the default mode set.)

bound = N – 1 (N equals to either 4 or 8 depending on the transform size used for the block.)

pU(i) = imgRec (blkX - 1, blkY + j)   (-1 ( j ( bound)

pL(i) = imgRec (blkX + i, blkY - 1)   (-1 ( i ( bound)
pB(i) = imgRec (blkX + i, blkY + N)   (-1 ( i ( bound)
pR(i) = imgRec (blkX + N, blkY + j)   (-1 ( i ( bound)
Depending on rotateType, the following is applied.

 - If rotateType == ROTATE_UL, 

-- xp = x, yp = y, pX = pU, and pY = pL.

 - Otherwise, if rotateType == ROTATE_LB,

-- xp = yBound – y, yp = x, pX = pR, and pY = pU.

 - Otherwise, if rotateType == ROTATE_BR,

-- xp = xBound – x, yp = yBound – y, pX = pB, and pY = pR.

 - Otherwise, (if rotateType == ROTATE_RU)

-- xp = x, yp = xBound – x, pX = pL, and pY = pB.

For each pixel in the NxN block, the pixel value of the prediction image is derived by the following ordered steps.

1) Let (x, y) be the position of the pixel to be predicted in the NxN block.

2) Depending on the revFlag and pType, variable predDir is derived. When revFlag equals to 0, Table 7 is used to derive predDir. When revFlag equals to 1, Table 9 is used to derive predDir.

3) Variable tanX is the approximate value of tan (predDir), and its value is derived by referring Table 7 using predDir as index.

4) Derive Ax and Ay using the following equations.

Ax = xp - (1+yp) / tanX
Ay = yp - (1+xp) * tanX

5) Variable useX is derived as follows.

 - If predDir < 0, useX = 1.

 - Otherwise, if predDir ( 90, useX = 0.

 - Otherwise, if Ax ( 1, useX = 1.

 - Otherwise, useX = 0.

6) Variable posInt, posRem, nBound, and array of neighboring pixels pN are derived as follows.

 - If use_left_neighbor equals to 1, 

  -- If rotateType == ROTATE_RU or rotateType == ROTATE_BR, Ay = yBound – Ay.

  -- posInt = floor(Ay), posRem = (Ay - posFrac), nBound=yBound, and pN=pY.

 - Otherwise,

  -- If rotateType == ROTATE_LB or roateType == ROTATE_BR, Ax = xBound – Ax.

  -- posInt = floor(Ax), posRem = (Ax - posFrac), nBound=xBound, and pN=pX. 

7) The pixel value of the prediction image for the pixel (x,y) is derived as follows.
 - If posInt == -1 and posRem == 0,



p (x, y) = (pL[0] + (p[-1]<<1) + pU[0] + 2) >> 2

 - Otherwise, if posInt ( nBound, p (x, y) = pN[nBound].

 - Otherwise, 

p (x, y) = floor (pN[posInt] * (1.0 – posRem) + pN[posInt+1] * (posRem) + 0.5)
2.2.4 Reduced prediction modes for the second set of blocks
When using Parallel Intra Prediction, the blocks in a macroblock are divided into two sets of bocks, the first set and the second set. By utilizing the correlation between intra prediction modes used in the first set and those used in the second set, bits needed for intra prediction modes can be saved. Specifically, the possible intra prediction mode for the second set is reduced by the use of intra prediction modes of the first set in the same macroblock.  
In the proposed system, the intra prediction modes used in the first set of blocks are added as the candidate intra prediction modes for the second set of blocks in the same macroblock. It is only applied to intra 4x4.  In addition, if the number of candidates is equal to 4, the intra prediction mode, which have the smallest index in the modes that are not used in the first set, is added. In a similar fashion, if the number of candidates is equal to 6, 7, or 8, all 9 intra prediction modes are set available in the second set.  This reduction is only applied to intra 4x4. (Because, a macroblock has too few blocks in the first set when intra 8x8 is used.)
2.2.5 Summary of spatial prediction

In this proposal, we have described our method for spatial prediction is detail.  However, it is good to remember our high level goals and system design as well.  Specifically, we have developed a method for spatial prediction that is both highly efficient and highly parallel.  This is done by partitioning the blocks in a macroblock and using only pixel values in neighboring macroblocks for the predicting the values of the first set.  We then use these reconstructed blocks to predict the second set of blocks.  For the first set of blocks, we employ an adaptive multi-dimensional intra prediction tool that supports prediction modes beyond those in state-of-the-art MPEG-4 AVC/ITU-T H.264.  For the second set of blocks, we employ prediction tools that use pixel values available from the top, bottom, left and right neighbors (when available).  Additionally, we reduce the bit-rate overhead by adapting the set of prediction modes within this second partition.
2.3 Spatial transform
The proposed system supports three transform sizes -- 4x4, 8x8 and 16x16.  Each transform is expressed in fixed point and allows for drift-free operation between an encoder and decoder.  We assert that any reasonable transform design is appropriate for our applications of interest.  Here though, we utilize the 4x4 and 8x8 transforms defined in [MPEG-4 AVC/ITU-T H.264], and the 16x16 transform defined in [C123].  Please note that unlike state-of-the-art MPEG-AVC/ITU-T H.264, the 16x16 transform used here is a single-level transform.
2.4 In Loop Filter
The proposed system processes the reconstructed image frames before outputting the frames for display and, optionally, storing the frames for future reference.  The goal of this approach is to improve the quality of the reconstructed frames for both prediction and visual appeal.

The process is a three stage procedure.  As a first stage, we use the deblocking operation specified in [MPEG-4 AVC/ITU-T H.264].  This operation is well understood by the video coding community, and it reduces the blocking artifacts that appear due to block-based processing.  As a second stage, we use the block-based adaptive loop filter that is specified in [C181].  This filter provides additional noise removal and enhancement by applying a non-linear combination of the output of multiple linear filters.  Finally, as a third stage, we employ a “codeword restriction” tool.  The goal of the codeword restriction process is to use knowledge of the pixel values in the original image frame to restrict the output of the deblocking and adaptive loop filter process.  

The codeword restriction operation works as follows.  First, a set of allowable codewords is received in the bit-stream.  These codewords are sent in either the sequence parameter set and/or picture parameter set.  After determining the allowable codewords, the decoder then restricts the output of the adaptive loop filter to this set.  The “restriction” process is a clipping operation, and it replaces the clipping stage that is normally associated within filtering to ensure that the result fits within the allowable bit-depth of the implementation.  Here though, we support a smaller range of codewords than those allowed by the bit-depth.

Syntax for the codewords is as follows
	pic_parameter_set_rbsp( ) {
	C
	Descriptor

	
pic_parameter_set_id
	1
	ue(v)

	
seq_parameter_set_id
	1
	ue(v)

	
…
	
	

	
codeword_restrict_flag
	1
	u(1)

	
if( codeword_restrict_flag )
	
	

	
{
	
	

	

codeword_restrict_blegal_flag
	1
	u(1)

	

if( !codeword_restrict_blegal_flag )
	
	

	

{
	
	

	


codeword_restrict_sameC_data_flag
	1
	u(1)

	


codeword_restrict_minY
	1
	ue(v)

	


codeword_restrict_maxY
	1
	ue(v)

	


codeword_restrict_minCr
	1
	ue(v)

	


codeword_restrict_maxCr
	1
	ue(v)

	


if( codeword_restrict_sameC_data_flag )
	
	

	


{
	
	

	



codeword_restrict_minCb = codeword_restrict_min_Cr
	
	

	



codeword_restrict_maxCb = codeword_restrict_max_Cr
	
	

	


} else {
	
	

	



codeword_restrict_minCr
	1
	ue(v)

	



codeword_restrict_maxCr
	1
	ue(v)

	


}
	
	

	

}
	
	

	
	
	


Semantices

codeword_restrict_flag equal to 1 denotes that codeword restrictions are signaled in the bit-stream and that the codeword restriction process is enabled prior to storing frames in the prediction buffer.

codeword_restrict_blegal_flag equal to 1 denotes that codeword restriction operator shall use the broadcast legal codewords in the restriction process.  When this flag is true, codeword_restrict_minY shall be 16, codeword_restrict_maxY shall be 235, codeword_restrict_minCb and codeword_restrict_minCr shall be 16 and codeword_restrict_maxCb and codeword_restrict_maxCr shall be 240.

codeword_restrict_sameC_data_flag equal to 1 denotes that codeword restrictions are the same for all chroma channels.

codeword_restrict_minY defines the minimum allowable codeword for the luma channel.  Codewords less than this minimum value shall be replaced by the minimum value.

codeword_restrict_maxY defines the maximum allowable codeword for the luma channel.  Codewords greater than this maximum value shall be replaced by the maximum value.

codeword_restrict_minCb defines the minimum allowable codeword for the Cb channel.  Codewords less than this minimum value shall be replaced by the minimum value.

codeword_restrict_maxCb defines the maximum allowable codeword for the Cb channel.  Codewords greater than this maximum value shall be replaced by the maximum value.

codeword_restrict_minCr defines the minimum allowable codeword for the Cr channel.  Codewords less than this minimum value shall be replaced by the minimum value.

codeword_restrict_maxCr defines the maximum allowable codeword for the Cr channel.  Codewords greater than this maximum value shall be replaced by the maximum value.

2.5 Entropy Coding
The proposed system employs a highly parallel entropy coding strategy to transmit symbols from the encoder and decoder.  The strategy extends the CAVLC and CABAC methods in state-of-the-art MPEG-AVC/ITU-T H.264 to better support modern, highly parallel encoding and decoding platforms.  Moreover, the system has the distinct advantage of not increasing the entropy coding complexity for sequential processing applications compared to the complexity of state-of-the-art.  The system also has the advantage that it enables simple and straightforward profile and level definitions that specify the degree of parallelization.
The "Entropy Slice" Concept

Entropy slices address the problem of highly parallel decoding in UltraHD applications and allow the slice concept to be applied for entropy decoding without modifying the reconstruction loop.  An entropy slice contains a sequence of superblocks. Similar to a standard slice, entropy slices break the context model dependency of entropy decoding among entropy slices.  Unlike a standard slice though, entropy slices do not affect the intra and inter prediction within the reconstruction or deblocking loop.
In detail, the special features of entropy slices are:

1) Special signaling indicating start of an entropy slice.  Only a small header is needed.

2) Context models are initialized or reset to predefined models at the start of each entropy slice.  The context models are updated only within an entropy slice -- there is no context model update across the entropy slice boundary. 

3) Alternative neighborhood definition for context model selection.  The blocks in other entropy slices are marked as unavailable for entropy decoding but are available for reconstruction. 

One very useful feature of the entropy slice is that it has a very small impact on the operation of a serial encoder or decoder.  Specifically, the only difference is that the availability of block neighbors differs between entropy decoding and reconstruction.  For example, consider the two hypothetical decoder implementations in Figure 12 and Figure 13. Figure 12 shows the process of decoding a slice and an entropy slice in sequential mode; Figure 13 is an example of the entropy decoding in parallel mode.  Note that the entropy slice concept is very similar to the current slice mode when decoding sequentially. 
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Figure 12: Decoding process of a slice and an entropy slice in sequential mode
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Figure 13: Decoding process with parallel entropy decoding

Syntax and semantics

Entropy slices share most of the slice attributes as the preceding regular slice header. So it only needs a small header. This is for the decoder to quickly identify the start of an entropy slice and start parallel entropy decoding. At the start of a picture or a slice, it shall be a regular slice header 

Here, we propose to signal the entropy slice by adding a flag, entropy_slice_flag.  This identifies the slice as a "regular" slice or "entropy" slice. 
	slice_header( ) {
	C
	Descriptor

	    entropy_slice_flag
	2
	u(1)

	
if   (entropy_slice_flag) {
	
	

	         first_mb_in_slice
	2
	ue(v)

	
    if( entropy_coding_mode_flag  &&  slice_type  !=  I  &&  slice_type  !=  SI )
	
	

	

   cabac_init_idc
	2
	ue(v)

	
    }
	
	

	    }  
	
	

	   else  {
	
	

	     a regular slice header ……..
	
	

	  }
	
	

	}
	
	


“first_mb_in_slice” specifies the address of the first Macroblock In the entropy slice. This is for the case where an entropy slice consists of a sequence of Macroblocks. 

"cabac_init_idc “ specifies the index for determining the initialization table used in the initialization process for context mode.

Profiling

An additional advantage of the entropy slice concept is that it enables straightforward specification of conformance points.  Specifically, by defining the maximum number of bins within an entropy slice as well as the maximum number of bins within a frame (or superblock), a recommendation can specify the degree of parallelism clearly.  Additionally, encoders can generate parallel friendly bitstreams by simply ensuring that the number of bins within the slice satisfies the conformance definition.
3 Compression performance discussion
We now consider the performance of the proposed system.  In Section 3.1, we discuss the objective versus subjective compression performance.  In Section 3.2, we describe our configuration for CS1 (CS1).  In Section 3.2, we describe our configuration for CS2 (CS2).
3.1 Objective versus subjective compression performance
Objective compression performance is measured using five rate points BD-SNR / BD-rate calculation [m16894].  The CS1 result is shown in Figure 14 and Table 10, and the CS2 result is shown in Figure 15 and Table 11.  As shown, the proposed system provides 20.73% bitrate reduction (equivalently 0.844 dB gain) on average over all CS1 sequences.  In constraints set 2 sequences, bitrate reduction is 12.21% ( equivalently 0.494 dB gain) to the Beta anchor, and bitrate reduction is 34.31% ( equivalently 1.564 dB gain) to the Gamma anchor.  On most of sequences, the proposed system achieves a significant performance improvement in all constraint sets.  For some sequences, such as PartyScene, BQSquare and Blowing Bubbles, the performance is not good when it is compared with Beta anchor.  The explanation for that is that Hierarchical P structure, which is used in the Beta anchor and not used in the proposed system, has crucial effectiveness to those sequences.
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Figure 14: Objective performance in CS1.
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Figure 15: Objective performance in CS2.
Table 10: Objective performance in CS1.
	Sxx
	Name
	ΔBitrate(%)
	ΔPSNR(dB) 

	S01
	Traffic
	-22.06
	0.875

	S02
	People on Street
	-16.54
	0.916

	S03
	Kimono
	-25.06
	0.876

	S04
	ParkScene
	-14.76
	0.579

	S05
	Cactus
	-18.62
	0.596

	S06
	BasketballDrive
	-23.4
	0.811

	S07
	BQTerrace
	-32.39
	0.629

	S08
	BasketballDrill
	-18.16
	0.821

	S09
	BQMall
	-21.78
	1.15

	S10
	PartyScene
	-20.28
	0.839

	S11
	RaceHorces
	-20.29
	0.909

	S12
	BasketballPass
	-12.97
	0.682

	S13
	BQSquare
	-34.78
	1.524

	S14
	BlowingBubbles
	-17.69
	0.808

	S15
	RaceHorses
	-12.15
	0.646

	
	avg classA
	-19.3
	0.896

	
	avg classB
	-22.85
	0.698

	
	avg classC
	-20.13
	0.93

	
	avg classD
	-19.4
	0.915

	
	avg ALL
	-20.73
	0.844


Table 11: Objective performance in CS2.
	C2
	
	ΔBitrate(%)
	
	ΔPSNR(dB) 
	

	Sxx
	Name
	c2(to Beta)
	c2(to Gamma)
	c2(to Beta)
	c2(to Gamma)

	S03
	Kimono
	-28.5
	-45.19
	1.202
	2.177

	S04
	ParkScene
	-8.05
	-30.37
	0.301
	1.314

	S05
	Cactus
	-10.66
	-33.95
	0.349
	1.296

	S06
	BasketballDrive
	-25.76
	-41.8
	0.973
	1.859

	S07
	BQTerrace
	-26.95
	-53.19
	0.596
	1.717

	S08
	BasketballDrill
	-10.88
	-34.48
	0.445
	1.616

	S09
	BQMall
	-14.63
	-32.79
	0.741
	1.858

	S10
	PartyScene
	0.41
	-31.29
	-0.009
	1.245

	S11
	RaceHorces
	-14.21
	-24.31
	0.594
	1.069

	S12
	BasketballPass
	-9.22
	-22.68
	0.461
	1.195

	S13
	BQSquare
	7.5
	-44.33
	-0.229
	1.807

	S14
	BlowingBubbles
	8.73
	-22.77
	-0.332
	1.022

	S15
	RaceHorses
	-9.13
	-17.01
	0.473
	0.922

	S16
	vidyo1
	-20.75
	-39.16
	0.928
	2.066

	S17
	vidyo3
	-12.71
	-33.81
	0.563
	1.778

	S18
	vidyo4
	-20.56
	-41.84
	0.848
	2.077

	
	avg classB
	-19.98
	-40.9
	0.684
	1.673

	
	avg classC
	-9.83
	-30.72
	0.443
	1.447

	
	avg classD
	-0.53
	-26.7
	0.094
	1.236

	
	avg classE
	-18.01
	-38.27
	0.78
	1.974

	
	avg ALL
	-12.21
	-34.31
	0.494
	1.564


The proposed system also provides subjective quality improvement.  In the decoded image of the anchor bitstream (anchor image), significant visible artifacts are found – especially at rate 1 and rate 2.  While in the decoded image of the proposed bitstream (proposed image), the visible artifact are either removed for significantly reduces.  Examples of the artifacts are as follows:

· Temporal

· variance in consistent region

· disappearance, appearance
· remnant

· double image
· Spatial

· blurring
· blockiness
· non-uniformity in smooth region
Figure 16 to Figure 18 show examples of the artifacts eased in the proposed image.  The upper part of each figure represents the anchor image; the lower part of each figure represents proposed image.  In Figure 16 and Figure 17, two temporally consecutive frames are shown so that the temporal changes can be observed.  All examples are encoded in rate 2.
In Figure 16, the artifacts such as disappearance and vagueness are resolved.  In Figure 17, the artifacts such as remnant, double image and jaggies are resolved.  In Figure 18, the artifact non-uniformity in smooth region is resolved.
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Figure 16: Example of subjective quality improvement (CS1)
[image: image21.png]anchor #41





Figure 17: Example of subjective quality improvement (CS1)
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Figure 18: Example of subjective quality improvement (CS2)

3.2 CS1 configuration relative to Alpha anchor 
The CS1 configuration is shown in Table 12.  In the experiments, this configuration was used to overwrite the base configuration file “encoder_VCEGAJ10r1_high_profile.cfg” [AJ10].

Table 12: Configuration of CS1
	Parameter
	Value

	
	Proposal
	Alpha anchor

	EnableOpenGOP
	1
	1

	SendAUD
	1
	1

	ResendSPS
	3
	3

	NumberBFrames
	7
	7

	BList0References
	2
	2

	BList1References
	2
	2

	HierarchicalCoding
	3
	3

	ExplicitHierarchyFormat
	"b3r0b1r1b0e2b2e2b5r1b4e2b6e2"
	"b3r0b1r1b0e2b2e2b5r1b4e2b6e2"

	SearchRange
	128
	128

	BiPredMESearchRange
	128
	128

	BiPredSearch16x16
	1
	1

	BiPredSearch16x8
	1
	1

	BiPredSearch8x16
	1
	1

	BiPredSearch8x8
	1
	0

	FastCrIntraDecision
	0
	1

	RDOQ_QP_Num
	1
	1

	RDOQ_CP_Mode
	1
	1

	RDOQ_CP_MV
	1
	1

	RDOQ_Fast
	1
	1

	AdaptiveRounding
	0
	0

	ChromaMCBuffer
	0
	1


In the proposal, the following additional coding tools are enabled.
- Entropy Slice

- Superblock
- MEAIF

- MVComp
- Parallel Intra Prediction

- AMIP
- 16x16 DCT
- QALF
- Codeword Restriction
The list of QP and QP change information for CS1 is shown in Table 13.

Table 13: List of QP and QP change information (CS1)
	Class
	Sequence
	QPISlice / ChangeQPI / ChangeQPStart

	
	
	R1
	R2
	R3
	R4
	R5

	A
	S01:
	33/34/15
	31/32/103
	28/29/45
	25/26/90
	21/22/22

	
	S02:
	45/44/117
	42/41/46
	39/38/25
	34/33/131
	29/28/148

	B
	S03:
	34/35/26
	31/32/167
	27/28/79
	24/24/0
	21/22/175

	
	S04:
	36/37/108
	33/34/163
	30/31/204
	26/27/35
	24/24/0

	
	S05:
	36/37/350
	33/34/464
	30/30/0
	26/27/39
	24/25/74

	
	S06:
	37/38/425
	33/34/109
	30/31/220
	27/28/324
	25/25/0

	
	S07:
	34/35/552
	31/32/143
	29/30/143
	27/28/156
	26/27/419

	C
	S08:
	40/41/245
	38/39/425
	34/35/74
	31/32/349
	27/28/365

	
	S09:
	41/40/105
	38/37/590
	35/34/447
	32/31/62
	28/27/19

	
	S10:
	42/41/332
	40/40/0
	38/37/230
	35/34/282
	32/31/105

	
	S11:
	39/40/14
	38/38/0
	35/36/260
	31/32/44
	27/28/11

	D
	S12:
	37/36/357
	34/33/314
	32/31/214
	28/27/177
	23/22/313

	
	S13:
	34/35/300
	31/32/239
	29/30/239
	26/27/419
	22/23/192

	
	S14:
	35/36/350
	32/33/175
	30/31/154
	27/28/449
	22/23/29

	
	S15:
	35/34/94
	32/31/103
	30/29/56
	26/25/56
	21/20/150


3.3 CS2 configuration relative to Beta and Gamma anchors
The CS2 configuration is shown in Table 14.
Table 14: Configuration of CS2
	Parameter
	Value

	
	Proposal
	Beta Anchor
	Gamma Anchor

	IntraPeriod
	0
	0
	0

	EnableOpenGOP
	0
	0
	0

	SendAUD
	0
	0
	0

	ResendSPS
	0
	0
	0

	NumberBFrames
	0
	0
	0

	BList0References
	2
	2
	2

	BList1References
	1
	1
	1

	HierarchicalCoding
	0
	3
	0

	SearchRange
	128
	128
	128

	BiPredMESearchRange
	128
	128
	128

	FastCrIntraDecision
	0
	1
	0

	RDOQ_QP_Num
	1
	1
	1

	RDOQ_CP_Mode
	1
	1
	1

	RDOQ_CP_MV
	1
	1
	1

	RDOQ_Fast
	1
	1
	1

	AdaptiveRounding
	0
	0
	0

	WPMCPrecision
	0
	0
	0

	FastCrIntraDecision
	0
	1
	0

	ChromaMCBuffer
	0
	1
	1


In the proposal, the following additional coding tools are enabled.

- Entropy Slice

- Superblock
- MEAIF

- MVComp
- Parallel Intra Prediction

- AMIP
- 16x16 DCT
- QALF
- Codeword Restriction
The list of QP and QP change information for CS2 is shown in Table 15.

Table 15: List of QP and QP change information (CS2)
	Class
	Sequence
	QPISlice / ChangeQPI / ChangeQPStart

	
	
	R1
	R2
	R3
	R4
	R5

	B
	S03
	36/37/108
	33/34/215
	29/30/47
	26/27/204
	23/24/167

	
	S04
	35/36/38
	33/34/215
	30/31/95
	27/28/35
	25/26/88

	
	S05
	37/36/482
	35/34/90
	32/31/253
	29/28/365
	27/26/318

	
	S06
	39/39/0
	36/36/0
	33/33/0
	29/30/74
	27/28/275

	
	S07
	35/34/376
	33/32/440
	31/30/584
	30/29/289
	29/28/206

	C
	S08
	41/42/250
	39/40/324
	36/37/324
	33/34/449
	29/30/300

	
	S09
	41/40/597
	39/38/544
	36/35/563
	33/32/456
	30/29/72

	
	S10
	43/42/40
	41/40/307
	39/38/238
	37/36/99
	34/33/169

	
	S11
	40/41/53
	38/39/14
	36/37/102
	33/34/42
	30/31/53

	D
	S12
	39/38/352
	36/35/434
	34/33/400
	31/30/137
	26/25/400

	
	S13
	35/36/78
	34/35/528
	32/33/29
	30/31/89
	28/29/522

	
	S14
	36/37/445
	33/34/35
	32/33/350
	29/30/279
	26/27/390

	
	S15
	36/35/263
	34/33/78
	32/31/105
	28/27/238
	24/23/218

	E
	S16
	38/37/470
	35/34/173
	32/31/582
	29/28/257
	26/25/87

	
	S17
	39/38/447
	36/35/309
	34/33/156
	30/29/449
	27/26/390

	
	S18
	37/38/570
	33/34/168
	31/32/239
	28/29/456
	25/26/215


4 Complexity analysis
In this section, we provide information on the complexity of the proposed system.  This includes execution time measures of our encoder and decoder implementations (Sections 4.1-4.2), discussion of the expected memory usage of the encoder and decoder (Sections 4.3-4.4), and complexity characteristics of the motion compensation and intra-prediction tools (Sections 4.5-4.8).  Please note that we have not spent significant effort in optimizing our implementation, and so any metrics derived from actual simulations and/or implementation may significantly over-estimate the complexity of the system and tools.
4.1 Encoding time and measurement methodology

Encoding measurement methodology and encoding environment is shown in Table 16.  As shown, encoding time has been derived from encoder log’s description “Total encoding time for the seq” measured with a POSIX function gettimeofday.  Encoding was processed with some grid system having various diskless nodes.  The number of cores and the size of memory are various.  In nodes with dual or quad core multiple encoding jobs were executed in parallel.  The decoding time is summarized in Table 17.  Details are shown in Table 18 and Table 19.

Table 16: Encoding measurement methodology and encoding environment
	Measure
	Software internal timer 

	Timer function
	gettimeofday
[POSIX C function]

	Platform
	Linux (kernel version 2.6)

	CPU
	Various

- Intel Pentium4, Core 2, AMD Opteron, …
- Mono, Dual, Quad CPU

- 1.8 to 3.2 GHz

	Memory
	Various

1.00 GB to 8.00 GB


Table 17: Summary of encoding time
	
	CS1
	CS2

	Class A
	276420.3
	-

	Class B
	308072.6
	202154

	Class C
	92826.63
	55279.4

	Class D
	19718.3
	13714.28

	Class E
	-
	94314.15

	All
	169558.9
	98105.43


Table 18: Encoding time (CS1)
	Class
	Sxx
	Sequence
	Encoding Time [s]

	
	
	
	R1
	R2
	R3
	R4
	R5

	A
	S01
	Traffic
	284327.5
	246374.2
	279475
	273955.4
	280675.4

	
	S02
	People on Street
	233158.1
	302185.9
	245264
	306564.8
	312222.7

	B
	S03
	Kimono
	158183.4
	159759.2
	162094.3
	168532.1
	174392

	
	S04
	ParkScene
	165754.6
	166722.5
	168809.1
	175855.6
	182964.1

	
	S05
	Cactus
	345184.9
	348979.1
	360037.1
	374967.5
	395981.7

	
	S06
	BasketballDrive 
	353901.7
	358339.5
	366666.8
	375745.8
	387866.2

	
	S07
	BQTerrace
	448298.5
	455741.2
	471029
	484747
	491261

	C
	S08
	BasketballDrill
	104935.9
	63823.8
	102912.6
	107258.2
	125143.6

	
	S09
	BQMall
	191959.8
	85924.9
	87581.8
	134000.8
	102632.7

	
	S10
	PartyScene
	103368.5
	157876.4
	78220.7
	93677.21
	89349.95

	
	S11
	RaceHorses
	37265.3
	61210.93
	41368.12
	42185.45
	45835.99

	D
	S12
	BasketballPass
	37868.28
	15893.55
	17020.28
	19266.28
	23314.15

	
	S13
	BQSquare
	21011.81
	22085.39
	23976.48
	24802.98
	27269.22

	
	S14
	BlowingBubbles
	15467.38
	16654.8
	17587.53
	19614.79
	22462.18

	
	S15
	RaceHorses
	11202.5
	11566.16
	10644
	17544.28
	19114.01


Table 19: Encoding time (CS2)
	Class
	Sxx
	Sequence
	Encoding Time [s]

	
	
	
	R1
	R2
	R3
	R4
	R5

	B
	S03
	Kimono
	85366.06
	87578.96
	89604.52
	91754.08
	95316.67

	
	S04
	ParkScene
	110708
	107143.4
	99521.24
	98201.74
	100135.7

	
	S05
	Cactus
	437670
	244551.9
	230663.4
	259918.5
	252717.1

	
	S06
	BasketballDrive 
	233318.7
	223997.1
	226176.3
	233131
	241654

	
	S07
	BQTerrace
	258985.6
	288146.7
	311021.7
	309533.5
	337032.9

	C
	S08
	BasketballDrill
	50219.86
	49055.53
	50241.47
	51986.94
	53481.53

	
	S09
	BQMall
	97518.17
	65690.28
	68574.98
	69217.78
	68680.66

	
	S10
	PartyScene
	50168.07
	50208.37
	55899.66
	53431.17
	63553.54

	
	S11
	RaceHorses
	32617.06
	32329.4
	52020.93
	54384.09
	36308.44

	D
	S12
	BasketballPass
	13455.4
	13615.22
	11995.87
	12324.7
	51440.86

	
	S13
	BQSquare
	12452.18
	12277.28
	11660.99
	11719.58
	12231.06

	
	S14
	BlowingBubbles
	13292.54
	13445.73
	13269.46
	13011.87
	13703.39

	
	S15
	RaceHorses
	7972.088
	7931.102
	9687.732
	9188.915
	9609.629

	E
	S16
	Vidyo1
	98832.19
	97770.65
	106138.8
	100396.1
	90422.28

	
	S17
	Vidyo3
	97913.48
	98173.14
	99936.57
	98026.13
	99937.51

	
	S18
	Vidyo4
	91001.35
	81350.03
	82978.2
	84578.76
	87256.94


4.2 Decoding time and measurement methodology
Decoding measurement methodology and decoding environment is shown in Table 20. As shown, decoding time was derived from decoder log’s description “Total decoding time” measured with a Win32 timer function QueryPerformanceCounter.  It has been confirmed that the results is relevant to “real time” value in the result of the “time” command on cygwin.  The decoding time is summarized in Table 21.  Details are also shown in Table 22 and Table 23.

Table 20: Decoding measurement methodology and decoding environment
	Measure
	Software internal timer 

	Timer function
	QueryPerformanceCounter [Win32 C function]

	Platform
	Windows VISTATM Enterprise

	CPU
	Intel Core 2 Quad CPU

Q9660 @ 3.00GHz

	Memory
	4.00 GB


Table 21: Summary of decoding time
	Class
	Decoding Time [s]
	Ratio to Anchors

	
	Alpha anchor
	Beta

Anchor
	Gamma anchor
	Proposal
C1
	Proposal
C2
	Ratio of 

Proposal C1 to Alpha anchor
	Ratio of

Proposal C2 to

Beta anchor
	Ratio of

Proposal C2 to Gamma anchor

	A
	32.169
	
	
	241.46
	
	7.54
	
	

	B
	51.136
	45.702
	44.79
	307.158
	243.027
	5.88
	5.37
	5.49

	C
	8.337
	7.6
	7.346
	42.77
	35.222
	5.12
	4.66
	4.85

	D
	1.992
	1.878
	1.664
	11.807
	9.849
	5.74
	5.31
	5.94

	E
	
	21.257
	21.032
	149.134
	65.5
	
	3.07
	3.11

	All
	24.089
	20.637
	20.193
	
	99.495
	5.86
	4.75
	4.99


Table 22: Decoding Time (CS1)
	Class
	Sxx
	Sequence
	Rate
	Anchor Decoding Time [s]
	Proposal Decoding Time [s]
	Ratio

	A
	S01
	Traffic
	R1
	30.264
	301.033
	9.95

	
	
	
	R2
	30.396
	307.707
	10.12

	
	
	
	R3
	31.204
	285.81
	9.16

	
	
	
	R4
	33.689
	269.571
	8

	
	
	
	R5
	37.164
	253.055
	6.81

	
	S02
	People on Street
	R1
	31.719
	160.929
	5.07

	
	
	
	R2
	31.124
	183.938
	5.91

	
	
	
	R3
	31.763
	206.81
	6.51

	
	
	
	R4
	30.392
	227.038
	7.47

	
	
	
	R5
	33.97
	218.704
	6.44

	B
	S03
	Kimono
	R1
	28.934
	168.646
	5.83

	
	
	
	R2
	27.933
	178.467
	6.39

	
	
	
	R3
	30.801
	174.421
	5.66

	
	
	
	R4
	31.917
	189.506
	5.94

	
	
	
	R5
	33.775
	208.063
	6.16

	
	S04
	ParkScene
	R1
	27.265
	151.333
	5.55

	
	
	
	R2
	29.114
	156.343
	5.37

	
	
	
	R3
	30.935
	164.521
	5.32

	
	
	
	R4
	31.86
	177.153
	5.56

	
	
	
	R5
	32.487
	194.653
	5.99

	
	S05
	Cactus
	R1
	53.678
	194.954
	3.63

	
	
	
	R2
	53.561
	225.769
	4.22

	
	
	
	R3
	55.232
	258.099
	4.67

	
	
	
	R4
	56.758
	284.848
	5.02

	
	
	
	R5
	65.293
	345.284
	5.29

	
	S06
	BasketballDrive 
	R1
	60.025
	338.296
	5.64

	
	
	
	R2
	59.832
	357.574
	5.98

	
	
	
	R3
	63.572
	375.571
	5.91

	
	
	
	R4
	65.818
	395.277
	6.01

	
	
	
	R5
	67.902
	416.567
	6.13

	
	S07
	BQTerrace
	R1
	70.329
	519.245
	7.38

	
	
	
	R2
	74.681
	532.655
	7.13

	
	
	
	R3
	73.019
	546.49
	7.48

	
	
	
	R4
	76.51
	554.427
	7.25

	
	
	
	R5
	77.174
	570.79
	7.4

	C
	S08
	BasketballDrill
	R1
	7.734
	25.29
	3.27

	
	
	
	R2
	7.903
	31.514
	3.99

	
	
	
	R3
	7.889
	39.293
	4.98

	
	
	
	R4
	8.708
	46.39
	5.33

	
	
	
	R5
	9.099
	54.386
	5.98

	
	S09
	BQMall
	R1
	9.755
	36.034
	3.69

	
	
	
	R2
	10.362
	42.556
	4.11

	
	
	
	R3
	10.642
	49.729
	4.67

	
	
	
	R4
	10.829
	56.069
	5.18

	
	
	
	R5
	10.998
	64.062
	5.82

	
	S10
	PartyScene
	R1
	8.197
	33
	4.03

	
	
	
	R2
	8.152
	38.924
	4.77

	
	
	
	R3
	9.04
	47.27
	5.23

	
	
	
	R4
	9.166
	64.457
	7.03

	
	
	
	R5
	9.969
	73.624
	7.39

	
	S11
	RaceHorses
	R1
	4.889
	24.111
	4.93

	
	
	
	R2
	5.071
	26.402
	5.21

	
	
	
	R3
	5.617
	29.428
	5.24

	
	
	
	R4
	5.997
	33.821
	5.64

	
	
	
	R5
	6.716
	39.038
	5.81

	D
	S12
	BasketballPass
	R1
	1.589
	7.017
	4.42

	
	
	
	R2
	1.771
	7.827
	4.42

	
	
	
	R3
	1.964
	8.815
	4.49

	
	
	
	R4
	2.171
	10.595
	4.88

	
	
	
	R5
	2.802
	11.792
	4.21

	
	S13
	BQSquare
	R1
	1.968
	16.619
	8.44

	
	
	
	R2
	2.155
	20.808
	9.66

	
	
	
	R3
	2.222
	21.631
	9.73

	
	
	
	R4
	2.635
	22.456
	8.52

	
	
	
	R5
	3.038
	22.882
	7.53

	
	S14
	BlowingBubbles
	R1
	1.534
	6.089
	3.97

	
	
	
	R2
	1.708
	7.462
	4.37

	
	
	
	R3
	1.854
	9.357
	5.05

	
	
	
	R4
	2.111
	11.988
	5.68

	
	
	
	R5
	2.519
	13.78
	5.47

	
	S15
	RaceHorses
	R1
	1.223
	5.96
	4.87

	
	
	
	R2
	1.349
	6.426
	4.76

	
	
	
	R3
	1.46
	7.214
	4.94

	
	
	
	R4
	1.692
	8.29
	4.9

	
	
	
	R5
	2.071
	9.129
	4.41


Table 23: Decoding time (CS2)
	Class
	Sxx
	Sequence
	Rate
	Anchor Beta Decoding Time [s]
	Anchor Gamma Decoding Time [s]
	Proposal Decoding Time [s]
	Ratio to Beta
	Ratio to Gamma

	B
	S03
	Kimono
	R1
	24.648
	23.956
	138.11
	5.6
	5.77

	
	
	
	R2
	26.093
	25.077
	159.849
	6.13
	6.37

	
	
	
	R3
	26.827
	26.928
	179.745
	6.7
	6.68

	
	
	
	R4
	28.317
	28.16
	192.567
	6.8
	6.84

	
	
	
	R5
	31.398
	29.707
	200.504
	6.39
	6.75

	
	S04
	ParkScene
	R1
	23.251
	22.883
	116.859
	5.03
	5.11

	
	
	
	R2
	24.896
	24.762
	125.239
	5.03
	5.06

	
	
	
	R3
	26.05
	24.936
	139.806
	5.37
	5.61

	
	
	
	R4
	28.01
	27.361
	147.77
	5.28
	5.4

	
	
	
	R5
	30.175
	28.73
	160.21
	5.31
	5.58

	
	S05
	Cactus
	R1
	48.581
	46.582
	161.479
	3.32
	3.47

	
	
	
	R2
	50.648
	50.637
	201.044
	3.97
	3.97

	
	
	
	R3
	51.628
	51.095
	230.6
	4.47
	4.51

	
	
	
	R4
	55.488
	53.818
	258.024
	4.65
	4.79

	
	
	
	R5
	56.996
	57.028
	276.656
	4.85
	4.85

	
	S06
	BasketballDrive 
	R1
	51.063
	50.507
	243.784
	4.77
	4.83

	
	
	
	R2
	54.174
	52.155
	286.651
	5.29
	5.5

	
	
	
	R3
	54.715
	54.917
	318.852
	5.83
	5.81

	
	
	
	R4
	59.376
	56.88
	347.117
	5.85
	6.1

	
	
	
	R5
	60.568
	59.171
	359.408
	5.93
	6.07

	
	S07
	BQTerrace
	R1
	62.2
	60.578
	331.657
	5.33
	5.47

	
	
	
	R2
	63.618
	66.337
	352.161
	5.54
	5.31

	
	
	
	R3
	66.297
	63.688
	363.052
	5.48
	5.7

	
	
	
	R4
	66.215
	66.215
	382.346
	5.77
	5.77

	
	
	
	R5
	71.328
	67.634
	402.187
	5.64
	5.95

	C
	S08
	BasketballDrill
	R1
	6.993
	6.864
	22.722
	3.25
	3.31

	
	
	
	R2
	7.371
	7.305
	25.903
	3.51
	3.55

	
	
	
	R3
	7.206
	7.22
	32.274
	4.48
	4.47

	
	
	
	R4
	8.181
	7.588
	39.712
	4.85
	5.23

	
	
	
	R5
	8.982
	8.178
	47.717
	5.31
	5.83

	
	S09
	BQMall
	R1
	8.791
	8.416
	32.543
	3.7
	3.87

	
	
	
	R2
	9.092
	9.097
	34.427
	3.79
	3.78

	
	
	
	R3
	9.635
	9.336
	38.903
	4.04
	4.17

	
	
	
	R4
	9.501
	9.49
	46.218
	4.86
	4.87

	
	
	
	R5
	10.857
	9.943
	53.656
	4.94
	5.4

	
	S10
	PartyScene
	R1
	7.001
	6.935
	26.043
	3.72
	3.76

	
	
	
	R2
	7.057
	7.427
	30.348
	4.3
	4.09

	
	
	
	R3
	7.781
	7.87
	36.208
	4.65
	4.6

	
	
	
	R4
	8.422
	8.204
	44.23
	5.25
	5.39

	
	
	
	R5
	8.976
	8.574
	50.851
	5.67
	5.93

	
	S11
	RaceHorses
	R1
	4.56
	4.184
	19.851
	4.35
	4.74

	
	
	
	R2
	4.766
	4.542
	21.43
	4.5
	4.72

	
	
	
	R3
	4.98
	4.649
	28.514
	5.73
	6.13

	
	
	
	R4
	5.547
	5.019
	33.972
	6.12
	6.77

	
	
	
	R5
	6.292
	6.088
	38.921
	6.19
	6.39

	D
	S12
	BasketballPass
	R1
	1.436
	1.241
	7.32
	5.1
	5.9

	
	
	
	R2
	1.613
	1.429
	7.8
	4.84
	5.46

	
	
	
	R3
	1.697
	1.565
	8.15
	4.8
	5.21

	
	
	
	R4
	1.998
	1.89
	9.349
	4.68
	4.95

	
	
	
	R5
	2.527
	2.235
	11.384
	4.5
	5.09

	
	S13
	BQSquare
	R1
	1.571
	1.559
	12.078
	7.69
	7.75

	
	
	
	R2
	1.798
	1.731
	13.275
	7.38
	7.67

	
	
	
	R3
	1.962
	1.821
	14.424
	7.35
	7.92

	
	
	
	R4
	2.56
	2.095
	15.159
	5.92
	7.24

	
	
	
	R5
	3.039
	2.562
	15.427
	5.08
	6.02

	
	S14
	BlowingBubbles
	R1
	1.33
	1.211
	6.066
	4.56
	5.01

	
	
	
	R2
	1.701
	1.387
	7.103
	4.18
	5.12

	
	
	
	R3
	1.717
	1.558
	8.127
	4.73
	5.22

	
	
	
	R4
	2.064
	1.844
	9.819
	4.76
	5.32

	
	
	
	R5
	2.729
	2.314
	10.553
	3.87
	4.56

	
	S15
	RaceHorses
	R1
	1.058
	0.99
	6.479
	6.12
	6.54

	
	
	
	R2
	1.281
	1.286
	7.195
	5.62
	5.59

	
	
	
	R3
	1.546
	1.224
	7.973
	5.16
	6.51

	
	
	
	R4
	1.677
	1.499
	9.046
	5.39
	6.03

	
	
	
	R5
	2.264
	1.832
	10.25
	4.53
	5.59

	E
	S16
	Vidyo1
	R1
	20.792
	20.481
	44.052
	2.12
	2.15

	
	
	
	R2
	21.372
	20.567
	50.747
	2.37
	2.47

	
	
	
	R3
	20.891
	21.222
	57.353
	2.75
	2.7

	
	
	
	R4
	21.36
	21.299
	67.196
	3.15
	3.15

	
	
	
	R5
	22.114
	21.837
	85.187
	3.85
	3.9

	
	S17
	Vidyo3
	R1
	20.54
	20.274
	50.977
	2.48
	2.51

	
	
	
	R2
	21.247
	21.249
	58.346
	2.75
	2.75

	
	
	
	R3
	20.973
	20.655
	62.042
	2.96
	3

	
	
	
	R4
	21.447
	21.119
	70.893
	3.31
	3.36

	
	
	
	R5
	21.612
	20.576
	82.006
	3.79
	3.99

	
	S18
	Vidyo4
	R1
	21.155
	21.127
	52.288
	2.47
	2.47

	
	
	
	R2
	20.56
	20.783
	62.148
	3.02
	2.99

	
	
	
	R3
	21.42
	21.274
	68.043
	3.18
	3.2

	
	
	
	R4
	21.535
	21.892
	79.886
	3.71
	3.65

	
	
	
	R5
	21.83
	21.128
	91.337
	4.18
	4.32


4.3 Expected memory usage of encoder
Table 24 shows the average value of actual memory usage of the encoder on 64bit linux nodes (using CS1 and set 2 parameters, 30 frames). The memory usage is proportional to the size of image, and any significant variation is not observed among sequences in each class. For the CS2, the memory usage is a little smaller than the CS1 at all classes. 
Table 24: Memory usage of encoder

	
	Average memory usage (MB)

	Class
	CS1
	CS2

	A
	2400.5
	-

	B
	1328.2
	1245.8

	C
	321.6
	307.7

	D
	133.3
	129.1

	E
	-
	630.3


MEAIF:

In MEAIF, two quarter-pel luma frame buffers are allocated per reference frame in this implementation.  The size of each quarter-pel frame buffer is 16 times the size of luma buffer of full-pel only image.  In addition, MEAIF needs some memory for deriving and storing parameters of AIF.  However, the needed memory size for parameters is much smaller than the quarter-pel frame buffers.
Intra Prediction: There are non-significant increases of memory, such as the tables for storing weighting factor used in bi-predictive prediction process and the table for storing a map between intra prediction mode and its corresponding prediction direction depending on intra prediction mode set.

4.4 Expected memory usage of decoder 

Table 25 shows the average value of actual memory usage of the decoder on 64bit linux nodes (using CS1 and set 2 parameters, 30 frames). 
Table 25: Memory usage of decoder
	
	Average memory usage (MB)

	Class
	CS1
	CS2

	A
	486.2
	-

	B
	377.2
	333.6

	C
	180.0
	170.3

	D
	144.4
	134.1

	E
	-
	217.5


MEAIF:

In MEAIF, the decoder needs a few amount of memory for storing parameters of AIF. The interpolation process is carried out in place and any quarter-pel frame buffers will not be allocated unlike the encoder. 

Intra Prediction: As explained in the encoder memory usage, there are some non-significant memory increases.

4.5 Complexity characteristics of encoder motion estimation and motion segmentation selection
A basic motion estimation (ME) process used in the proposed system is the same as Enhanced Predictive Zonal Search (EPZS) technique in JM15.1 [JM151].  The ME is performed several times in a macroblock to determine the partition sizes and bi-predictive mode.  It is also performed some two or three times in a picture for MEAIF and weighted prediction.
MEAIF:

In MEAIF, picture level iteration is performed two or three times.  At the first pass, the motion interpolation operation is the same as that of MPEG-4 AVC/ITU-T H.264, while at the second and the third passes, the motion interpolation operation is different from that of MPEG-4 AVC/ITU-T H.264.  For 1D sub-pel positions, 6 out of 15 positions, MEAIF uses the same 6-position filter support as used in MPEG-4 AVC/ITU-T H.264.  For other sub-pel positions, 9 out of 15 positions, MEAIF uses 12-position filter, while MPEG-4 AVC/ITU-T H.264 uses two 6-position filter series of which a separable 6x6 filter consists.
MVComp:

To achive MVComp’s effectiveness, the ME process for the sub-pel (half and quarter) position is modified.  In the full-pel search, the motion is estimated so that the cost calculated using median mv predictor as motion vector predictor is minimized.  As for the sub-pel search, in addition to the costs to median mv predictor as MPEG-4 AVC/ITU-T H.264, the cost to the temporal mv predictor is also calculated, and the sub-pel position is determined so that the smaller of the two costs is minimized.  Because the overhead is restricted in the sub-pel search, the impact is small.
Motion segmentation selection:

In the proposed system, one 32x32, two 32x16, two 16x32, or four macroblock partition set is used.  In macroblock, 16x16, 16x8, 8x16, 8x8 or smaller partition set is selected and the complexity is the same as JM15.1 [JM151].  Other than that, the additional motion estimation of one 32x32, two 32x16, two 16x32 partition set is carried out.  And the segmentation is decided based on a competition of the corresponding RD costs. 

4.6 Complexity characteristics of decoder motion compensation

Decoder motion compensation (MC) consists of the following processes.
· motion derivation

· interpolation

· weighting interpolation
Motion derivation process consists of the following processes.
1) interpret mb_type to distinguish uni-prediction or bi-prediction
2) decode reference indices
3) decode PMV index for selecting the predictor (MVComp)
4) derive motion vector predictor and decode residual of motion vector
5) derive motion vector by adding the residual to the predictor

In addition to the motion derivation process of the anchor, derivating of motion vector predictor and decoding PMV index are introduced.
Interpolation processes consist of the following processes.
1) derive reference pixels

2) select interpolation filter coefficients (MEAIF]
3) multiply and sum operations to interpolation (MEAIF)
In the interpolation process, a filter decision information, filter index is derived from reference list (List0 or List1) and the filter coefficients associated with the derived filter index is used for interpolation.

As for interpolation process, For 1D sub-pel positions, 6 of 15, MEAIF uses the same 6-position filter support as used in MPEG-4 AVC/ITU-T H.264. For other sub-pel positions, 9 of 15, MEAIF uses 12-position filter, while MPEG-4 AVC/ITU-T H.264 uses two 6-position filter series of which a separable 6x6 filter consists. These operations using double-precision floating point operation are the same as E-AIF [C464]. 
For bi-prediction, the same weighting interpolation technique as in MPEG-4 AVC/ITU-T H264 is used.  Specially, two MC images are weighted into one prediction image and the calculation is carried out with 2 multiplies and 1 add and 1 shift integer operations.
4.7 Complexity characteristics of encoder intra-frame prediction type selection
The time for encoding I Slice with the proposed encoder is about 2.5 times as much as the one with the reference software when the evaluation is conducted under common PC platform.  The main reason for the increase is the increase of the number of the RD evaluation during the mode decision process.

In MPEG-4 AVC/ITU-T H.264, there are 4 modes for Intra_16x16, 9 modes for Intra_4x4, and 9 modes for Intra_8x8. Since mode decision of 4x4 or 8x8 blocks in a macroblock is done sequentially, the number of RD evaluations per macroblock can be calculated as below.


[image: image23.wmf]21

4

4

9

16

16

9

4

8

8

8

4

4

4

16

=

´

+

´

+

=

´

+

´

+

=

B

B

M

B

B

M

M

numRDEval


Where M16, M8, and M4 are numbers of modes for Intra_16x16, Intra_8x8, and Intra_4x4, respectively. B8 and B4 are numbers of blocks in a macroblock for Intra_8x8 and Intra_4x4, respectively.

In the proposed encoder, there are 4 modes for Intra_16x16.  Regarding Intra_4x4 and Intra_8x8, 3 intra prediction mode sets are defined in AMIP.  When a specific intra prediction mode set is supposed, there are 9 modes for the blocks belonging to the first set defined in Parallel intra.  For the second set, there are up to 18 modes.  Thus the number of RD evaluations per macroblock for the proposed encoder can be calculated as below.
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Where M4,1st, M8,1st are numbers of modes for the first set of blocks.  M4, 2nd, M8, 2nd are numbers of modes for the second set of blocks.  S4, S8 are the numbers of intra prediction mode sets.

Notice that the above evaluation number for the proposed encoder is the worst case.  In practice, the number would be less because the value of M4, 2nd and M8, 2nd could be smaller due to the availability of bi-prediction or due to the use of reduced intra prediction modes explained in the Section 2.2.4.  Furthermore, the increase of the encoding time introduced by the increase of the number of intra prediction mode sets could be reduced by applying appropriate encoding technique. For instance, the edge-strength of each macroblock should be utilized to prune the number of tries for each intra prediction mode set.

4.8 Complexity characteristics of decoder intra-frame prediction operation
As in MPEG-4 AVC/ITU-T H.264, there are three intra-frame coding modes in the proposed codec: intra 16x16, intra 8x8, and intra 4x4.  The prediction operation for intra 16x16 is the same as the one in MPEG-4 AVC/ITU-T H.264 and less complex than other intra modes.  The macroblock encoded with intra 4x4 is more complex to decode than the one encoded with intra 8x8.  Hence, the discussion below is limited to intra 4x4, which might be the bottleneck. 
The design of the intra-frame prediction operation results in two sets of prediction blocks.  We describe the complexity characteristics for each set below.

For a single block in the first set of blocks, the decoder complexity is equivalent to the complexity of state-of-the-art MPEG-4 AVC/ITU-T H.264.  Both the proposed and state-of-the-art system derives their prediction from top and left neighbors and uses the same source window.  The key difference is that the proposed method uses the same source pixel values for predicting pixels in multiple blocks.  The state-of-the-art system does not use the same source pixel values for predicting pixels in multiple blocks.

Given the understanding that the prediction of a single block in the first set of blocks is equivalent in the proposed and state-of-the-art system, we see that the reconstruction of the entire first set of blocks is approximately 8x faster than state-of-the-art due to the parallel construction of the algorithm.

For a single block in the second set of blocks, the decoder complexity is greater than the complexity of state-of-the-art MPEG-4 AVC/ITU-T H.264.  This is due to the use of bi-directional prediction, and the resulting use of more pixel value to compute the prediction of the second pass block.  The worst case calculation is twice the complexity of the worst case calculation in the state-of-the-art system.

Given the understanding that the prediction of a single block in the second set of block is no more than twice the complexity of the state-of-the-art system, we see that the reconstruction of the entire second set of blocks is approximately 4x than the state-of-the-art system.
When AMIP is used, the operations for the prediction become a bit more complicated for the blocks predicted with the newly introduced directional prediction mode.  Specifically, the derivation of the position of the pixel to be referenced includes floating-point division or multiplication in the implementation of the proposed system.
5 Algorithmic characteristics
Previous discussion has highlighted the key advantages of our proposed system.  Specifically, this is higher coding efficiency and highly parallel coding.  In addition to these characteristics, we note that the proposed system leverages the design of previous standards such as MPEG-AVC/ITU-T H.264 and MPEG-2 and inherits additional (and beneficial) characteristics.  For example, the proposed system has the advantage of good performance over a wide range of bit-rates, support for resolutions from QCIF to 8K-by-4K (and beyond), support for a large number of frames rates, support of inherent temporal scalability, random access, and fast forward trick modes.
6 Software implementation description
Our proposed system is implemented in the C programming language and contains necessary Makefiles and Project Files for compilation with GCC and Microsoft Visual Studio.  We have not used CPU-dependent code within the software.  Additionally, the software does not include multi-threaded functions such as pthread and OpenMP.  (Note that a version of the software does exists that contains OpenMP directives for the parallel intra prediction and parallel entropy coding technologies.)  Furthermore, we do not use external libraries for acceleration, such as OpenCL or the Intel Math Kernel libraries.

In terms of software legacy, our proposal is derived from the JM15.1 [JM151].  The tools that are described above are then integrated into this code base.
Table 26: Software implementaion
	Programming language
	C

	Base software
	JM15.1

	Compiler
	Visual Studio and
GNU Compiler Collection (gcc)

	Parallel processing
	not used

	External libraries
	not used

	Execution environment
	Windows and Linux (confirmed)


7 Closing Remarks
We have proposed a video coding system that achieves both higher compression efficiency and higher degree of parallelization than the state-of-the-art MPEG-4 AVC/ITU-T H.264.  This is achieved by designing highly parallel tools for intra-prediction and entropy coding, and combining these tools with larger block sizes, adaptive interpolation and loop filters, and higher precision processing.  The major novelties of the proposal are in the area of intra prediction, adaptive interpolation filters, parallel entropy coding and codeword restrictions to improve both the adaptive interpolation and loop filter process.  We assert that the balance of complexity and parallel-friendliness of the proposed system makes it well suited to be the baseline for developing the next generation video coding standard with the JCT-VC.
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