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Abstract
This contribution presents 6 new tools to enhance the coding performance of AVC (ISO/IEC 14496-10 | ITU-T Rec. H.264) with the potential to form the basis for HVC codec architecture. The tools are classified into 3 categories - prediction, transform and motion vector coding (MV coding). 
Prediction includes Recursive Adaptive Interpolation Filter (RAIF), Separable Fixed Interpolation Filter (SFIF) and Separable Adaptive Interpolation Filter (SAIF), Separable Adaptive Loop Filter (SALF). RAIF generalizes the fractional pel interpolation concept and due to its recursive nature it can spatially adapt to image local characteristics. Note that there is no need to transmit filter coefficients.
since the decoder can derive the filter coefficients based on the reconstructed neighboring samples. 
 SFIF refers to a set of fixed, high precision and separable filters that are used for fractional pel interpolation in reference frames. They are designed in such a way to minimize the error accumulation due to rounding and clipping. SAIF filters are separable Wiener filters derived separately for B and P pictures. In addition, the overhead due to the transmission of filter coefficients for B pictures is reduced  based onusing symmetry assumption.    .  
Separable Adaptive Loop Filter (SALF) refers to a set of Wiener filters placed in the loop filter between the deblocking filter and the reference frame buffer. They are used to minimize the MSE between the original frame and the deblocking filter output. The key characteristics of these filters are in their lower complexity as well as in their frame/slice based adaptivity. 

For transform of intra block residuals, two types of transforms are introduced: Directional Discrete Cosine Transforms (DDCT) and Directional Discrete Wavelet Transform (DDWT). They are applied along and perpendicular to the direction of the intra prediction mode on either 4x4 or 8x8 blocks.  In addition, a function of QP and prediction direction based fixed scanning pattern for scanning of the transform coefficients is also proposed. 

Finally, in MV coding the proposal is to use the temporal predictor in addition to the spatial predictor for motion vector prediction. The temporal predictor refers to the motion vector of the co-located block in the reference frame. . 
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1 Introduction

 In this document we give a description and performance in terms of coding efficiency and codec complexity of our proposed tools that are integrated into AVC.
2 Algorithm description

Application of the proposed tools is shown in Figure 1. As shown, DDWT/DDCT is used for directional transform of intra residual blocks. To improve inter prediction and MV coding performance we have introduced 4 new tools: RAIF, SFIF/SAIF and a new MV coding tool. Finally for in-loop filter we also describe a separable loop filter to minimize the error between the original and deblocked signal for storing in frame reference buffer.
2.1 Codec architecture
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Figure 1: Codec architecture and our proposals

In the following clause, the detail of the addition tools to AVC is described. Other parts of coding tools are the same as AVC.
2.2 Motion representation
2.2.1 Motion compensation interpolation filter
2.2.1.1 Separable fixed interpolation filter (SFIF)
In AVC, 2 tap interpolation filter is used for MC interpolation filter at 1/2 pel position and 6 tap filter is used at 1/4 pel position. In our 6 tap separable interpolation filter is used for MC interpolation at all pixel positions. The definition of the sub pel position is the same as Figure 2. Figure 2 indicates the sub pel position for MC interpolation. The light blue squares are the reference pixels stored in coded picture buffer. E, F, G, H, I, J are integer pixels. h[sub pel][z] is the z-th filter coefficient at the sub pel position. 
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Figure 2: Sub pel position
The interpolation filter is defined as Equation 1 and Equation 2. In case of AVC, to calculate quarter pel, rounding and clipping is done to obtain half pel (b-position). It reduces the accuracy of the prediction, because of the accumulation of error. In our proposal, both quarter pel and half pel value are derived directly by separable interpolation filter as specified in Equation 1 and Equation 2. 

Step 1:
Horizontal interpolation is applied to derive pixels a, b and c using Equation 1.
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Equation 1: Horizontal interpolation filter
The pixels a1-a5, b1-b5, c1-c5 are derived in the same way as specified in Equation 1. The following filter coefficients are used.
· h[a][0] = h[c][5] = 3 /128
· h[a][1] = h[c][4] = -15 /128
· h[a][2] = h[c][3] = 111 /128
· h[a][3] = h[c][2] = 37 /128
· h[a][4] = h[c][1] = -10 /128
· h[a][5] = h[c][0] = 2 /128
· h[b][0] = h[b][5] = 3 /128
· h[b][1] = h[b][4] = -17 /128
· h[b][2] = h[b][3] = 78 /128

In order to obtain e, f, g, i, j, k, m, n, o positions, the values of a1-a5, b1-b5, c1-c5 positions are necessary and those values are stored at memory.
Step 2:
Vertical interpolation is applied to derive pixels d-o using 
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Equation 2: Vertical interpolation filter

The following filter coefficients are used.
· h[d][0] = h[e][0] = h[f][0] = h[g][0] = h[l][5] = h[m][5] = h[n][5] = h[o][5] = 3 /128
· h[d][1] = h[e][1] = h[f][1] = h[g][1] = h[l][4] = h[m][4] = h[n][4] = h[o][4] = -15 /128
· h[d][2] = h[e][2] = h[f][2] = h[g][2] = h[l][3] = h[m][3] = h[n][3] = h[o][3] = 111 /128
· h[d][3] = h[e][3] = h[f][3] = h[g][3] = h[l][2] = h[m][2] = h[n][2] = h[o][2] = 37 /128
· h[d][4] = h[e][4] = h[f][4] = h[g][4] = h[l][1] = h[m][1] = h[n][1] = h[o][1] = -10 /128
· h[d][5] = h[e][5] = h[f][5] = h[g][5] = h[l][0] = h[m][0] = h[n][0] = h[o][0] = 2 /128
· h[h][0] = h[i][0] = h[j][0] = h[k][0] = h[h][5] = h[i][5] = h[j][5] = h[k][5] = 3 /128
· h[h][1] = h[i][1] = h[j][1] = h[k][1] = h[h][4] = h[i][4] = h[j][4] = h[k][4] = -17 /128
· h[h][2] = h[i][2] = h[j][2] = h[k][2] = h[h][3] = h[i][3] = h[j][3] = h[k][3] = 78 /128

Therefore, the number of filter coefficients in Equation 1 and Equation 2 is 18. The filter coefficient is fixed for entire sequence for SFIF.
2.2.1.2 Separable adaptive interpolation filter (SAIF) and coefficients reduction in B-slice
2.2.1.2.1 Separable adaptive interpolation filter with overhead reduction
6 tap separable adaptive Wiener filter is used for MC interpolation filter. This method is referred to as “SAIF”. SAIF filter coefficients are encoded in each slice. The different symmetry assumption is applied to P and B slice to reduce the number of interpolation filter coefficients (overhead).
2.2.1.2.2 Background
The size of generated bits in B-slices is normally lower than that in P or I slices, especially at low bit rate (large QP). The size of SAIF filter coefficients (overhead) becomes a large portion of the generated bits in B-slice. The examples of the amount of generated bits in B-slice are shown in Figure 3.
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Figure 3: The size of generated bits in B-slice
The vertical axis is the average generated bits in logarithmic scale and the horizontal axis is QP. When QP is large, the size of generated bits is lower than 1000 bits/picture in some cases, especially for small picture.
Without SAIF filter coefficients reduction, the size of SAIF filter coefficients (51 coefficients by encoding UVLC as described in 2.7.1) is about 400-500 bits/picture. The portion of the SAIF filter coefficients (overhead) is larger and can not therefore be ignored. Due to this overhead, R&D optimization does not select often SAIF thus resulting in lower gain in B-slice. Reduction of SAIF filter coefficients is therefore the key to improve coding efficiency of SAIF in B-slice. 
In order to reduce the size of SAIF filter coefficients, strong symmetry assumption is applied.
2.2.1.2.3 Method to reduce filter coefficients
The method to reduce filter coefficients in B-slice is explained in this sub-clause. The definition of MC interpolation filter is the same as SFIF specified by Equation 1 and Equation 2. But in case of SAIF, the number of filter coefficients of those equations is 51. The strong symmetry assumption shown in Table 1 is introduced for B picture to reduce the number of filter coefficients. If single/bi-pred filter separation is used in B slice, two sets of filter coefficients are encoded. In this case, total number of filter coefficients for B slice is 36.
	Sub pel posision
	P slice
	B slice

	a
	6
	6

	b
	3
	3

	c
	6
	same as reflection of a

	d
	6
	6

	e
	6
	same as reflection of d

	f
	6
	same as reflection of d

	g
	6
	same as reflection of d

	h
	3
	3

	i
	3
	same as h

	j
	3
	same as h

	k
	3
	same as h

	l
	same as reflection of d
	same as reflection of d

	m
	same as reflection of e
	same as reflection of d

	n
	same as reflection of f
	same as reflection of d

	o
	same as reflection of g
	same as reflection of d

	Total of number of coefficients
	51
	18 (36 if two sets of filters are used)


Table 1: Number of filter coefficients
2.2.1.3 Single/Bi-pred filter separation
2.2.1.3.1 Background
When Bi-pred is used, high frequency is lost by 2 tap filter (average of L0 and L1 references). It reduces the efficiency of SAIF in B-slice. Coding efficiency can be improved to design interpolation filter for bi-pred taking such strong low pass characteristics into account. Two sets of interpolation filter coefficients are used in B-slice. One is for single pred and the other is for bi-pred.
2.2.1.3.2 Filter coefficients for adaptive interpolation filter
Wiener filter coefficients are derived for single pred and bi-pred. Those two sets of filter coefficients are encoded in the bitstreams. As explained in 2.2.1.2.3, the number of filter coefficients is reduced to 18 for one set of interpolation filter coefficients. Since two sets of interpolation filter coefficients are encoded, the number of filter coefficients is 32 (18x2). Filter coefficients are derived for each slice. Decoder switches the interpolation filter whether MB is coded by single pred or bi-pred.

2.2.1.3.3 Interpolation filter for single pred and bi-pred
Due to the loss of high frequency using 2 tap average filter we propose to transmit two sets of filter coefficients for adaptive Bi/single separable filters. For bi-pred, we expect to improve the quality of reconstructed picture by designing interpolation filter that enhances the mid-frequency range in order to compensate for high frequency loss due to 2 tap filter.
For single pred, enhancement of mid frequency range enhances, unnecessarily, the high frequency, which could result in reduced coding efficiency. Suppression of high frequency is thus more desirable for single prediction.
2.2.1.3.4 Frequency response of interpolation filter 
The example of frequency response of interpolation filter for single pred and bi-pred is described in this sub clause. Figure 4 shows examples of frequency response of the wiener filter for both single pred and bi-pred. This figure is an example obtained at the position “a”. Each line in different color is for different picture. The test sequence to obtain these interpolation filters is “CrowdRun”. The frequency is normalized so that the Nyquist frequency is 0.5 rad. 
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Figure 4: Frequency response at position “a” without separation of single pred and bi-pred
Figure 5 shows the frequency response of our proposed method using the same test sequence. Compared with Figure 4, the amplitude around 0.25 rad (mid frequency) is kept and is rather enhanced in some frames to compensate strong 2 tap filter of bi-pred. 
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Figure 5: Frequency respose at position “a” (proposal)
2.2.1.4 Recursive adaptive interpolation filter(RAIF)
For motion compensated prediction, a motion vector 
[image: image11.wmf]d
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 is assigned to each block, referring to the corresponding position of its reference signal already transmitted. Motion vectors with a fractional-pel resolution may refer to positions in the reference image, located between the sampled positions of the image signal and thus have to be interpolated. In AVC this interpolation is performed utilizing invariant filters. In this section, we propose a method called the Recursive Adaptive Interpolation Filtering (RAIF) which can be used in either in a single-pass or in a two-pass encoder with the objective of minimizing the residual energy. Since the design of these filters is based on the previously reconstructed sample values, the filters change on-the-fly as the encoder progresses with the coding of an image. This method has two key characteristics: 1) The decoder can perform exactly the same computation; thus eliminating the need to transmit filter coefficients; 2) It allows spatial adaptivity within an image.

The motion compensated prediction module utilizes the already transmitted signal in order to obtain a prediction. For this purpose, the spatial sampling rate of the reference image is increased by a factor of M (e.g., M=4 for quarter-pel resolution) and filtered with a set of interpolation filters {Hk}, (k=0, ..., M2(1 ), where k represent the indices of the filters. Then, the interpolated signal is shifted according to the estimated motion vector 
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, referred to as motion compensation, and then down sampled by a factor M to produce the prediction signal. Note that the index of the filter k is also reflected by the sub-pel position of the motion vector. For quarter-pel motion vector resolution, k is in the range of 0~15 (range of 0~M2-1, for 1/M fractional pel). The interpolation filters {Hk} can be a fixed set of filters as in AVC or can be adaptive, i.e., functions of time, for instance.
Let y denote the current block and x be its reference block appointed by a motion vector 
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. Then, assuming a mean squared error optimization, the best interpolation filter is the well-known Wiener filter, i.e.,
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(Equation 3)

where 
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 are the auto- and cross-correlation matrices, respectively. However, since the decoder has no access to the signal y, either the encoder has to signal the optimal filter set {Hk} as side information to the decoder, or the decoder has to derive {Hk} based on past statistics utilizing the reconstructed sample values. In RAIF, the latter approach is adopted.

In the proposed approach the interpolation filters {Hk} are both a function of time instance and location in the image. These filters are updated at specific (pre-defined) points in the video signal, referred to as “update points”. As illustrated in Figure 1, at update point i+1, the set of filters {Hk} are updated, by incorporating the statistics between the update points i and i+1, and the updated set of filters are to be used between update points i+1 and i+2.

The initial set of filters 
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  (Equation 4)
where the initial auto- and cross-correlation matrices 
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 are collected over a training set, at each sub-pel position k. 
[image: image22.wmf](

)

{

}

0

k

xx

R

 and 
[image: image23.wmf](

)

{

}

0

k

xy

R

 are hard wired into the decoder and it is not necessary to transmit them.
Upon reaching the update point i+1, we compute the updating auto- and cross-correlation matrices 
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, using the reconstructed image signal between i and i+1 and its motion compensated reference. The statistics updating is performed as
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  (Equation 5)
where ( is a small positive number. Note that only the filters that are used between update points i and i+1 are updated. Then the new set of filters
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Figure 6. Demonstration of the filter update process in an image.

The decoder also performs similar computation to update its set of filters and therefore always stays in synchronization with the encoder. 

In RAIF, the selection of update points can be arbitrary. In our current implementation, the statistics are updated every one Macroblock. The update points i and i+1 can be across frames. That is, the statistics of the previously coded frame can be used for the next frame. However, at an IDR picture, the statistics has to be reset to 
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In a single pass implementation, a 1-bit signal is transmitted for each Macroblock to switch between RAIF and AVC filters. For blocks that AVC filters are used, the auto- and cross-correlation are still computed for the update of RAIF, such that the set of filters in RAIF are gradually adapted to the local statistics. In a two-pass implementation a 1-bit signaling at the slice level is used to indicate whether RAIF is used.

Note that modifying ( value we could change the speed of adaptation. 
2.2.2 Motion vector coding
Other than temporal direct mode, AVC standard only employs median predictior for motion vector coding: pmvsp, the predictor of the motion vector for the current block is determined as:

pmvsp = median(mvA, mvB, mvC)

where mvA, mvB, and mvC are the motion vectors of the surrounding blocks, A, B and C, of the current block X as shown in Figure 7. 

The motion vector data mvd for current motion compensated block in the bitstream is calculated as:

mvd = mvx - pmvsp
where mvX is the motion vector of the the current block X.

In addition to this spatial predictor, the temporal predictor pmvtp, can also be used as a motion vector predictor in our proposal. 
pmvtp = mvcol
 where mvcol is the motion vector of the co-located block Y in the reference frame as shown in Figure 7.

A one-bit flag is defined to indicate which of the spatial or temporal predictor is applied for the each  motion compensation block.
Furthermore a user can define code number assignment for each of the motion vector predictors at slice level. That is, a one-bit flag mv_prediction_definition_flag is contained in every slice header. 
mv_prediction_definition_flag=0 means that code number 0 is assigned for the spatial predictor pmvsp and code number 1 is assigned for the temporal predictor pmvtp.. That is, 

pmv(code_number=0) = pmvsp
pmv(code_number=1) = pmvtp
mv_prediction_definition_flag=1 means that code number 0 is assigned for the temporal predictor pmvtp and code number 1 is assigned for the spatial predictor pmvsp That is,

pmv(code_number=0) = pmvtp
pmv(code_number=1) = pmvsp
The value of mv_prediction_definition_flag can be specified for Skip and P-picture and B-picture independently.
So in our proposal the motion vector data for each of the motion compensated blocks in the bitstream becomes

mvd = mvx - pmv(code_number)

and together with mvd, code_number is transmitted in the bitstream. Both of these parameters are encoded either with CABAC or CAVLC.
At the encoder which of the predictors to be used is determined based on RD-optimized mode decision.

For each predictor cost function is calculate as

cost_func(code_number) = D + λ(Rmotion + Rmode + Rpredictor)

Where

D is distortion

Rmotion is rate for motion vector data mvd

Rmode is rate for mode information

Rpredictor is rate for the code_number of the motion vector predictor

The predictor that gives smaller value of the cost function is selected for the current motion compensated block.
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Figure 7: Spatial and Temporal Motion Vector Predictors
Both the spatial and the temporal predictors have their  pros & cons: for some sequences the former works better and for other sequences the latter works better. Especially with the sequences where camera is fixed and still background is contained in the scene, the temporal predictor generally works better than the spatial predictor.

However if RD-optimized mode decision is employed the predictor with smaller code number is more likely to be selected especially at lower bitrate regardless of the characteristics of the scene, because a flag with smaller code number requires less bit and gives smaller cost function value.
For example, with the sequence BasketballDrill (Class C), even if both the spatial predictor pmvsp and the temporal predictor pmvtp are employed, severe image degradation can be observed between the moving persons and the floor (still background) in the case of mv_prediction_definition_flag = 0 (code number 0 is assigned for the spatial predictor pmvsp and code number 1 is assigned for the temporal predictor pmvtp) especially at low bitrate both in the case where CAVLC or CABAC is applied. 

This is due to the fact that if spatial predictor is employed the motion vectors of the moving persons affects the motion vector predictors of the still background as shown in Figure 8 and causes error propagation of motion vectors . This image degradation can be avoided by setting as mv_prediction_definition_flag = 0 (code number 0 is assigned for the temporal predictor pmvtp and code number 1 is assigned for the spatial predictor pmvsp). This setting improves coding efficiency as well as visual quality.
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Figure 8: Example of the case that temporal predictor works better
2.3 Intra-frame prediction

Intra-frame prediction is the same as AVC.
2.4 Spatial transforms

2.4.1 Directional discrete cosine transform (DDCT)
The Directional Discrete Cosine Transforms (DDCT) is a set of transform to apply to the intra prediction errors in the video compression framework AVC. In this section, description and properties of DDCT will be described. 
2.4.1.1 Intra coding in AVC and where DDCT fits in
Intra coding predicts the image content based on the value of previously decoded pixels. It has 9 prediction modes for 4x4 blocks, 9 prediction modes for 8x8 blocks, and 4 prediction modes for 16x16 blocks. For each intra prediction mode, an intra prediction algorithm is used to predict the image content in the current block based on decoded neighbors. The intra prediction errors are transformed using a DCT-like transform. The transform coefficients are then quantized, scanned into a 1D signal, and entropy coded using CAVLC or CABAC.

In this framework, DDCT is to replace the AVC transforms by a set of transforms that taking into account the prediction mode of the current block. Hence, DDCT provides 9 transforms for 4x4, 9 transforms for 8x8, and 4 transforms for 16x16, although many of them are the same or can be simply inferred from a core transform. For each transform, the DDCT also provides a fixed scanning pattern based on the QP and the intra prediction mode to replace the zigzag scanning pattern of DCT coefficients in AVC.

2.4.1.2 Directional discrete cosine transform (DDCT)
Transforms: DDCT provide 9 transforms for 4x4, 9 transforms for 8x8, and 4 transforms for 16x16. For each intra prediction mode, DDCT transform consists of two stages:

· Stage 1 – along the prediction direction: pixels that align along the prediction direction are grouped together and feed into a DCT transform. Note that, in cases of prediction modes that are neither horizontal nor vertical, the DCT transforms used are of different sizes.  

· Stage 2 – across the prediction direction: another stage of DCT is applied to the transform coefficients resulted in the first stage. Again, the DCT transforms may be of different sizes. 

To make the transform sizes more balanced, the DDCT transforms group pixels in the corners together in order to use DCT of longer size, hence more efficient in terms of compression. For example, in Figure 9, for 8x8 intra prediction mode 4, six pixels at the bottom-left corner and upper-right corner are grouped together for a 6-point DCT. Note that the pixel order as numbered in the figure is important for the effectiveness of the DCT. Figure 9 to Figure 12 show the DDCT transforms for other block size and prediction modes. 

Fixed scanning: Once the transforms are applied to the prediction errors a fixed scanning pattern based on the QP and the intra prediction mode is used to order the transform coefficients into a 1D signal, similar to the role of zigzag scanning of DCT coefficients in AVC. 
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Figure 9: DDCT for 8x8 intra prediction mode 4 (diagonal down right). Left – the first stage, and right – the second stage. Each component transform is a DCT transform, may be of different size.
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Figure 10: DDCT for 8x8 intra prediction mode 5 (down down right). Left – the first stage, and right – the second stage. Each component transform is a DCT transform, may be of different size.
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Figure 11: DDCT for 4x4 intra prediction mode 4 (down right). Left – the first stage, and right – the second stage. Each component transform is a DCT transform, may be of different size.
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Figure 12: DDCT for 4x4 intra prediction mode 5 (down down right). Left – the first stage, and right – the second stage. Each component transform is a DCT transform, may be of different size.
2.4.1.3 Properties of DDCT
The DDCT possesses the following properties: adaptivity, directionality, symmetry, and complexity (to the order of separable transforms).

Adaptivity: 
Unlike AVC in which the same DCT-like transform is applied at the intra prediction errors for all intra prediction modes of the same block size (4x4, 8x8, or 16x16), DDCT assigns a different transform and scanning pattern to each intra prediction mode. These transforms and scanning pattern are designed taking into account the intra prediction direction. 

Directionality: 
Since the intra prediction mode is known, the DDCT transform is designed with the knowledge of the intra prediction direction. By first applying the transform along the prediction direction, DDCT has the potential to minimize the artifact around the object boundaries. 

Symmetry: 
Although there are 22 DDCT transforms for 22 intra prediction modes (9 modes for 4x4, 9 modes for 8x8, and 4 modes for 16x16), these transforms can be derived, using simple operators such as rotation and/ or reflection, from only 7 different core transforms:

· 16x16: one transform for all 16x16 modes

· 8x8 and 4x4:

· Modes 0, 1: same transform similar to AVC, DCT is used, first horizontally, then vertically, 

· Modes 3 and 4: the DDCT transform for mode 4 can be obtained from the transform for mode 3 using a reflection on the vertical line at the center of the block 

· Modes 5 to 8: the DDCT transforms for mode 6-8 can be derived from one of mode 3 using reflection and rotation.

2.4.1.4 Implementation

2.4.1.4.1 Matrix implementation of DCT

For simplicity of implementation, the basis DCT transforms in DDCT are implemented as matrix operators whose matrix entries are quantized to 7 bit precision. For future work, fast implementation and integer arithmetic can be used to replace the current implementation to obtain better performance as well as smaller dynamic range [6,7]. 

The transform matrices 
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for DCT of size N and its inverse 
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The above transform matrices are obtained by scaling the DCT transform by 2^7 = 128. Since the DDCT transforms are two-stage transforms, the transform coefficients are scaled by 2^14 overall. Hence, it is necessary to scale back the transform coefficients. In the implementation of DDCT, this process is done by integrating the scaling factor 2^14 into the quantization process. 

2.4.1.4.2 Special implementation of mode 2 

For simplicity of implementation, in 4x4 and 8x8 cases, the intra prediction mode 2 (the DC mode) uses the original implementation of AVC. Their corresponding transforms are DCT-like with integer arithmetic. However, the transforms for mode 0 and 1, although theoretically being the same, use matrix implementation instead of fast implementation as in mode 2. The performance of DDCT hence can be slightly improved by using the AVC implementation. 

2.4.2 Directional discrete wavelet transform (DDWT)
2.4.2.1 DDWT and its relation to DDCT
DDWT can be considered as a variation of DDCT, designed to improve the visual quality by choosing basis functions that have compact spatial supports..

2.4.2.2 Intra coding in AVC and where DDWT fits in
In this framework, DDWT is to replace the AVC transforms by a set of transforms that taking into account the prediction mode of the current block. Hence, DDWT provides 9 transforms for 4x4, 9 transforms for 8x8, and 4 transforms for 16x16, although many of them are the same or can be simply inferred from a core transform. For each transform, the DDWT also provides a fixed scanning pattern based on the QP and the intra prediction mode to replace the zigzag scanning pattern of DCT coefficients in AVC.

2.4.2.3 DDWT
DDWT are two-stage transforms, with the first stage conducted along the prediction direction and the second stage applied across the prediction direction (please refer to Figure 13 to Figure 16). 

Transforms: DDWT provide 9 transforms for 4x4, 9 transforms for 8x8, and 4 transforms for 16x16. For each intra prediction mode, DDWT transform consists of two stages:

· Stage 1 – along the prediction direction: pixels that align along the prediction direction are grouped together and feed into an intermediate transform derived from the Haar wavelet. Note that, in cases of prediction modes that are neither horizontal nor vertical, the intermediate transforms used are of different sizes.  

· Stage 2 – across the prediction direction: another stage of intermediate transforms is applied to the transform coefficients resulted in the first stage. Again, the intermediate transforms may be of different sizes. 

Fixed scanning: Once the transforms are applied to the prediction errors a fixed scanning pattern based on the QP and the intra prediction mode is used to order the transform coefficients into a 1D signal, similar to the role of zigzag scanning of DCT coefficients in AVC. 


[image: image56]
Figure 13: DDWT for 8x8 intra prediction mode 4 (diagonal down right). Left – the first stage, and right – the second stage. Each intermediate transform is derived from the Haar wavelet transform, and may be of different size. At the second stage, pixels of the same color go through the same intermediate transform.

[image: image57]
Figure 14: DDWT for 8x8 intra prediction mode 5 (down down right). Left – the first stage, and right – the second stage. Each intermediate transform is derived from the Haar wavelet transform, and may be of different size. At the second stage, pixels of the same color go through the same intermediate transform.

[image: image58]
Figure 15: DDWT for 4x4 intra prediction mode 4 (down right). Left – the first stage, and right – the second stage. Each intermediate transform is derived from the Haar wavelet transform, and may be of different size. At the second stage, pixels of the same color go through the same intermediate transform.

[image: image59]
Figure 16: DDWT for 4x4 intra prediction mode 5 (down down right). Left – the first stage, and right – the second stage. Each intermediate transform is derived from the Haar wavelet transform, and may be of different size. At the second stage, pixels of the same color go through the same intermediate transform.
2.4.2.4 Properties of DDWT
The DDWT possesses the following properties: localization, adaptivity, directionality, symmetry, and complexity (to the order of separable transforms).

Localization:
The basis vectors of the intermediate transforms have compact spatial support; hence the effect of quantization tends not to spread out around the edges. This helps to preserve the visual quality of the reconstructed images. 
Adaptivity: 

Unlike AVC in which the same DCT-like transform is applied at the intra prediction errors for all intra prediction modes of the same block size (4x4, 8x8, or 16x16), DDWT assigns a different transform and scanning pattern to each the intra prediction mode. These transforms and scanning pattern are designed taking into account the intra prediction direction. 

Directionality: 

Since the intra prediction mode is known, the DDWT transform is designed with the knowledge of the intra prediction direction. By first applying the transform along the prediction direction, DDWT has the potential to minimize the artifact around the object boundaries. 

Symmetry: 

Although there are 22 DDWT transforms for 22 intra prediction modes (9 modes for 4x4, 9 modes for 8x8, and 4 modes for 16x16), these transforms can be derived, using simple operators such as rotation and/ or reflection, from only 7 different core transforms:

· 16x16: one transform for all 16x16 modes

· 8x8 and 4x4:

· Modes 0, 1: same transform 

· Modes 3 and 4: the DDWT transform for mode 4 can be obtained from the transform for mode 3 using a reflection on the vertical line at the center of the block 

· Modes 5 to 8: the DDWT transforms for mode 6-8 can be derived from that of mode 3 using reflection and/or rotation.

2.4.2.5 Implementation
2.4.2.5.1 Matrix implementation of intermediate transform
For simplicity of implementation, the intermediate transforms in DDWT are implemented as matrix operators whose matrix entries are quantized to 7 bit precision. For future work, fast implementation and integer arithmetic can be used to replace the current implementation to obtain better performance as well as smaller dynamic range. 

The transform matrices 
[image: image60.wmf]N

W

for the intermediate transform of size N and its inverse 
[image: image61.wmf]1

-

N

W

are given as follows.
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Transforms of the “DC” coefficients:
It can be seen from the transform matrices that the first coefficients of the intermediate transform at the first stage are in fact the same as the DC coefficients of the DCT. In the second stage, these coefficients need a special treatment other than using the intermediate transforms provided above. Below are the transform matrices when working with these “DC” coefficients at the second stage.
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The above transform matrices are obtained by scaling appropriate orthonormal matrices by 2^7 = 128. Since the DDWT transforms are two-stage transforms, the transform coefficients are scaled by 2^14 overall. Hence, it is necessary to scale back the transform coefficients. In the implementation of DDWT, this process is done by integrating the scaling factor 2^14 into the quantization process. 

2.4.2.5.2 Special implementation of mode 2
For simplicity of implementation, in 4x4 and 8x8 cases, the intra prediction mode 2 (the DC mode) uses the original implementation of AVC. Their corresponding transforms are DCT-like with integer arithmetic. However, the transforms for mode 0 and 1, although theoretically being the same, use matrix implementation instead of fast implementation as in mode 2. The performance of DDWT hence can be slightly improved by using the AVC implementation. 
2.5 Quantization

2.5.1 Quantization of DDCT
Quantization:
 The DDCT transforms are orthogonal whose basis functions all have the same norm 2^14. Hence, this scaling factor needs to be compensated in the quantization process similar to MDDT [5].
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Dequantization:
 The de-quantization formula is
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Reconstruction:
 Since the inverse DDCT transforms are also scaled by 2^14, the reconstructed prediction errors 
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also need to be compensated for the scaling factor:
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2.5.2 Quantization of DDWT

Quantization: 
The DDWT transforms are orthogonal whose basis functions all have the same norm 2^14. Hence, this scaling factor needs to be compensated in the quantization process similar to MDDT [5].


[image: image93.wmf])

6

/

22

(

]

)

6

%

(

[

QP

f

QP

Q

Y

Y

enc

Q

+

>>

+

×

=


where the pre-scaling factors 


[image: image94.wmf]]

231

260

287

328

364

410

[

=

Q

, 

and the offset number is


[image: image95.wmf]3

/

2

6

/

22

QP

enc

f

+

=


Dequantization: 
The de-quantization formula is
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Reconstruction: 
Since the inverse DDWT transforms are also scaled by 2^14, the reconstructed prediction errors 
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also need to be compensated for the scaling factor:
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2.6 In-loop filtering

2.6.1 Separable adaptive loop filter (SALF)
2.6.1.1 Non-Separable and Separable ALF
In AVC, a deblocking loop filter is applied in the decoding loop to the reconstructed picture to improve picture quality. In this proposal, an adaptive loop filter (ALF) is added to the decoding loop after the deblocking filter to further improve the decoded picture quality. To maintain picture quality and to reduce computation, non-separable filters are applied to filter the I pictures and separable filters are applied to filter the P and B pictures.

QALF [3] divides a picture into quadtree blocks and each quadtree block is partite into quadtree structure. Figure 17 shows an example on how a quadatree block is partited into sub-blocks,   As shown in Figure 17, the quadtree sub-blocks  indicated by “ON” are filtered by a FIR loop filter and the quadtree sub-blocks indicated by “OFF” are not filtered. The loop filter is a least squares filter, and it is optimized by a conventional bottom-up rate-distortion optimization of quadtree data structure [4]. 

The filter in the QALF can be implemented as a non-separable filter or a separable filter. In this proposal, non-separable zero-phase FIR filters are used in the filtering of the I pictures to maximize picture quality, and separable non-zero phase filters are used in the filtering of the P and B pictures to minimize computation.
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Figure 17: Quadtree partition and data structure
2.6.1.2 Design of least squares filter
The non-separable and separable adaptive filters are least squares filter and they are determined in the following manor:

Let 
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 be the original pixels inside the “ON” regions of all quadtree structures, 
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. Let 
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 be the decoded image. The goal of the least squares filtering is to find a 2 dimensional FIR filter  
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   (Equation 6)
  The 2D filter)is obtained by solving the following equations
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(Equation 7)
. For both non-separable and separable filter, 
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is either a 5x5, 7x7, or 9x9 filter. The filter size for the loop filter is selected by a rate-distortion criterion.

2.6.1.3 Design of separable least squares filter

The separable loop filters for the P and B picture are  determined by finding the best non-separable filter which minimizes 
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. To find the best separable loop filter, the best non-separable filter is first determined and then it is used to derive  the best separable loop filter by means of iteratively method as described in the followings.

In general a 
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(Equation 8)
To reduce computation in the decoder and to maintain picture quality, this proposal constrains the filter 
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 for P and B pictures to be separable filters. In other words, we assume
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(Equation 9)
where 
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The optimal separable filter is obtained by iteratively minimizing the sum of squares error under the constraint of separability. 
2.6.1.4 Quantization of separable loop filter coefficients

The non-separable and separable QALF filter coefficients are quantized in the same way.. In particular, each filter coefficient is scaled by 256 and clipped to the integer range of
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. The DC bias is scaled by 256 and clipped to the integer range of
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2.7 Entropy coding

2.7.1 Entropy coding of SAIF filter coefficients

In SAIF, one set of interpolation filter coefficients (51 coefficients) for single pred is encoded in P slice, and two sets of interpolation filter coefficients (36 coefficients) for single/bi-pred are encoded in B slice. For each coefficient residue from SFIF filter coefficient is calculated. Each residue is normalized into 9 bit integer value and then encoded by Universal VLC (UVLC). The filter coefficients are encoded at slice header. 
2.7.2 Entropy coding of loop filter coefficients and quadtree data structure

The quantized separable and non-separable QALF coefficients are differentially encoded, and the differences are encoded in the slice header by UVLC. The quadtree data structure is also encoded in the slice header by UVLC where each of the block partition flag and filter on/off_flag are encoded by one bit.

In non-separable QALF , each 
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 loop filter has zero phase and it has 
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 independent coefficients and a DC bias. Each non-separable QALF loop filter has a total of 
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 coefficients encoded in the slice header by UVLC.

In contrast, SQALF has two one-dimensional filters and a DC bias.  The vertical filter 
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 has 
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 by construction, the horizontal filter 
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has 
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 independent coefficients. Consequently, the SQALF loop filter has a total of 
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 coefficients encoded in the slice header by UVLC.
3 Compression performance discussion
3.1 Objective versus subjective compression performance

 The conparisons with anchors are summarized in this clause. BD bitrate is shown in Figure 18 and Figure 19. The constraint set 1 results are compared with alpha anchors and the constraint set 2 results are compared with beta anchors. RD curves are summarized in the attached Excel sheet.
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Figure 19: BD bitrate comparison with anchors
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Figure 20: BD bitrate comparison with gamma anchors

3.2 Constraint set 1 configuration relative to Alpha anchor

The results of the constraint set 1 are compared with alpha anchors.
3.2.1 Class A

	Sequence
	R1-R4
	R2-R5
	Average

	PeopleOnStreet
	-16.95 
	-14.62 
	-15.79 

	Traffic
	-20.92 
	-19.15 
	-20.03 


Table 2: BD bitrate (class A, constraint 1)
3.2.2 Class B
	Sequence
	R1-R4
	R2-R5
	Average

	Kimono1
	-25.06 
	-22.81 
	-23.94 

	ParkScene
	-14.85 
	-11.20 
	-13.02 

	BasketballDrive
	-22.86 
	-19.66 
	-21.26 

	BQTerrace
	-25.69 
	-26.69 
	-26.19 

	Cactus
	-16.43 
	-15.79 
	-16.11 


Table 3: BD bitrate (class B, constraint 1)
3.2.3 Class C
	Sequence
	R1-R4
	R2-R5
	Average

	BasketballDrill
	-19.32 
	-18.70 
	-19.01 

	BQMall
	-21.31 
	-18.78 
	-20.05 

	PartyScene
	-18.16 
	-16.90 
	-17.53 

	RaceHorses
	-22.36 
	-19.58 
	-20.97 


Table 4: BD bitrate (class C, constraint 1)
3.2.4 Class D
	Sequence
	R1-R4
	R2-R5
	Average

	BasketballPass
	-12.92 
	-10.80 
	-11.86 

	BlowingBubbles
	-12.63 
	-14.35 
	-13.49 

	BQSquare
	-32.38 
	-31.69 
	-32.04 

	RaceHorses
	-12.24 
	-10.33 
	-11.29 


Table 5: BD bitrate (class D, constraint 1)
3.2.5 Overall

The overall comparison is summarized in the following table.
	
	R1-R4
	R2-R5
	Average

	C1 Overall
	-19.60 
	-18.07 
	-18.84 


Table 6: BD bitrate (overall, constraint 1)
3.3 Constraint set 2 configuration relative to Beta and Gamma anchors
The results of the constraint set 2 are compared with beta and gamma anchors.

3.3.1 Class B
	Sequence
	R1-R4
	R2-R5
	Average

	Kimono1
	-30.81 
	-29.13 
	-29.97 

	ParkScene
	-7.99 
	-4.93 
	-6.46 

	BasketballDrive
	-26.38 
	-24.09 
	-25.23 

	BQTerrace
	-20.76 
	-20.66 
	-20.71 

	Cactus
	-13.51 
	-12.83 
	-13.17 


Table 7: BD bitrate (class B, constraint 2, comparison with beta anchors)

	Sequence
	R1-R4
	R2-R5
	Average

	Kimono1
	-47.03 
	-46.29 
	-46.66 

	ParkScene
	-31.61 
	-28.61 
	-30.11 

	BasketballDrive
	-42.81 
	-40.58 
	-41.70 

	BQTerrace
	-51.27 
	-48.18 
	-49.73 

	Cactus
	-36.83 
	-35.61 
	-36.22 


Table 8: BD bitrate (class B, constraint 2, comparison with gamma anchors)
3.3.2 Class C
	Sequence
	R1-R4
	R2-R5
	Average

	BasketballDrill
	-8.42 
	-7.11 
	-7.76 

	BQMall
	-21.46 
	-17.45 
	-19.45 

	PartyScene
	-17.93 
	-15.92 
	-16.93 

	RaceHorses
	-16.24 
	-14.35 
	-15.29 


Table 9: BD bitrate (class C, constraint 2, comparison with beta anchors)
	Sequence
	R1-R4
	R2-R5
	Average

	BasketballDrill
	-32.45 
	-32.10 
	-32.27 

	BQMall
	-38.90 
	-35.31 
	-37.11 

	PartyScene
	-44.10 
	-42.33 
	-43.21 

	RaceHorses
	-26.66 
	-24.41 
	-25.54 


Table 10: BD bitrate (class C, constraint 2, comparison with gamma anchors)
3.3.3 Class D
	Sequence
	R1-R4
	R2-R5
	Average

	BasketballPass
	-9.40 
	-7.52 
	-8.46 

	BlowingBubbles
	-4.71 
	-4.07 
	-4.39 

	BQSquare
	-17.95 
	-15.68 
	-16.81 

	RaceHorses
	-7.79 
	-6.80 
	-7.29 


Table 11: BD bitrate (class D, constraint 2, comparison with beta anchors)
	Sequence
	R1-R4
	R2-R5
	Average

	BasketballPass
	-22.68 
	-21.40 
	-22.04 

	BlowingBubbles
	-32.93 
	-32.27 
	-32.60 

	BQSquare
	-58.68 
	-55.52 
	-57.10 

	RaceHorses
	-16.84 
	-14.84 
	-15.84 


Table 12: BD bitrate (class D, constraint 2, comparison with gamma anchors)

3.3.4 Class E
	Sequence
	R1-R4
	R2-R5
	Average

	E.vidyo1
	-33.08 
	-31.86 
	-32.47 

	E.vidyo3
	-23.33 
	-23.81 
	-23.57 

	E.vidyo4
	-33.09 
	-29.93 
	-31.51 


Table 13: BD bitrate (class E, constraint 2, comparison with beta anchors)
	Sequence
	R1-R4
	R2-R5
	Average

	E.vidyo1
	-48.78 
	-48.82 
	-48.80 

	E.vidyo3
	-42.54 
	-42.48 
	-42.51 

	E.vidyo4
	-50.85 
	-50.47 
	-50.66 


Table 14: BD bitrate (class E, constraint 2, comparison with gamma anchors)
3.3.5 Overall
	
	R1-R4
	R2-R5
	Average

	C2 Overall
	-18.30 
	-16.63 
	-17.47 


Table 15: BD bitrate (overall, constraint 2, comparison with beta anchors)

	
	R1-R4
	R2-R5
	Average

	C2 Overall
	-39.06 
	-37.45 
	-38.26 


Table 16: BD bitrate (overall, constraint 2, comparison with gamma anchors)

4 Complexity analysis
4.1 Encoding time and measurement methodology

4.1.1 Encoding time
The encoding time of the bitstreams is summarized in Table 17. 
Table 17: Encoding time to generate bitstreams
	File name
	Class
	Sequence name
	Encoding time (s)

	S01R1C1
	A
	Traffic
	59690(A) 

	S01R2C1
	A
	Traffic
	58181(A) 

	S01R3C1
	A
	Traffic
	59081(A) 

	S01R4C1
	A
	Traffic
	61343(A) 

	S01R5C1
	A
	Traffic
	64809(A) 

	S02R1C1
	A
	PeopleOnStreet
	61476(A) 

	S02R2C1
	A
	PeopleOnStreet
	63310(A) 

	S02R3C1
	A
	PeopleOnStreet
	65886(A) 

	S02R4C1
	A
	PeopleOnStreet
	72924(A) 

	S02R5C1
	A
	PeopleOnStreet
	78213(A) 

	S03R1C1
	B1
	Kimono1
	60626(A) 

	S03R2C1
	B1
	Kimono1
	62751(A) 

	S03R3C1
	B1
	Kimono1
	64579(A) 

	S03R4C1
	B1
	Kimono1
	67142(A) 

	S03R5C1
	B1
	Kimono1
	70608(A) 

	S04R1C1
	B1
	ParkScene
	46541(A) 

	S04R2C1
	B1
	ParkScene
	51667(A) 

	S04R3C1
	B1
	ParkScene
	49105(A) 

	S04R4C1
	B1
	ParkScene
	51976(A) 

	S04R5C1
	B1
	ParkScene
	54017(A) 

	S05R1C1
	B2
	Cactus
	124756(A) 

	S05R2C1
	B2
	Cactus
	126636(A) 

	S05R3C1
	B2
	Cactus
	109551(A) 

	S05R4C1
	B2
	Cactus
	114143(A) 

	S05R5C1
	B2
	Cactus
	119079(A) 

	S06R1C1
	B2
	BasketballDrive
	129852(A) 

	S06R2C1
	B2
	BasketballDrive
	134081(A) 

	S06R3C1
	B2
	BasketballDrive
	137574(A) 

	S06R4C1
	B2
	BasketballDrive
	142810(A) 

	S06R5C1
	B2
	BasketballDrive
	146647(A) 

	S07R1C1
	B2
	BQTerrace
	151512(A) 

	S07R2C1
	B2
	BQTerrace
	154242(A) 

	S07R3C1
	B2
	BQTerrace
	158514(A) 

	S07R4C1
	B2
	BQTerrace
	163114(A) 

	S07R5C1
	B2
	BQTerrace
	144995(A) 

	S08R1C1
	C
	BasketballDrill
	24338 

	S08R2C1
	C
	BasketballDrill
	25017 

	S08R3C1
	C
	BasketballDrill
	25596 

	S08R4C1
	C
	BasketballDrill
	26467 

	S08R5C1
	C
	BasketballDrill
	27862 

	S09R1C1
	C
	BQMall
	32675 

	S09R2C1
	C
	BQMall
	30846 

	S09R3C1
	C
	BQMall
	31547 

	S09R4C1
	C
	BQMall
	32310 

	S09R5C1
	C
	BQMall
	33974 

	S10R1C1
	C
	PartyScene
	24811 

	S10R2C1
	C
	PartyScene
	25225 

	S10R3C1
	C
	PartyScene
	25668 

	S10R4C1
	C
	PartyScene
	27010 

	S10R5C1
	C
	PartyScene
	28578 

	S11R1C1
	C
	RaceHorses
	15835 

	S11R2C1
	C
	RaceHorses
	16307 

	S11R3C1
	C
	RaceHorses
	17719 

	S11R4C1
	C
	RaceHorses
	18346 

	S11R5C1
	C
	RaceHorses
	19377 

	S12R1C1
	D
	BasketballPass
	7364 

	S12R2C1
	D
	BasketballPass
	7806 

	S12R3C1
	D
	BasketballPass
	8068 

	S12R4C1
	D
	BasketballPass
	8605 

	S12R5C1
	D
	BasketballPass
	9091 

	S13R1C1
	D
	BQSquare
	9377 

	S13R2C1
	D
	BQSquare
	9795 

	S13R3C1
	D
	BQSquare
	10199 

	S13R4C1
	D
	BQSquare
	11050 

	S13R5C1
	D
	BQSquare
	9969 

	S14R1C1
	D
	BlowingBubbles
	7420 

	S14R2C1
	D
	BlowingBubbles
	7852 

	S14R3C1
	D
	BlowingBubbles
	8162 

	S14R4C1
	D
	BlowingBubbles
	10075 

	S14R5C1
	D
	BlowingBubbles
	7921 

	S15R1C1
	D
	RaceHorses
	4881 

	S15R2C1
	D
	RaceHorses
	5019 

	S15R3C1
	D
	RaceHorses
	5487 

	S15R4C1
	D
	RaceHorses
	5897 

	S15R5C1
	D
	RaceHorses
	6334 

	S03R1C2
	B1
	Kimono1
	52858 

	S03R2C2
	B1
	Kimono1
	53908 

	S03R3C2
	B1
	Kimono1
	51213 

	S03R4C2
	B1
	Kimono1
	59425 

	S03R5C2
	B1
	Kimono1
	63111 

	S04R1C2
	B1
	ParkScene
	52048 

	S04R2C2
	B1
	ParkScene
	52535 

	S04R3C2
	B1
	ParkScene
	56258 

	S04R4C2
	B1
	ParkScene
	60087 

	S04R5C2
	B1
	ParkScene
	63372 

	S05R1C2
	B2
	Cactus
	92584 

	S05R2C2
	B2
	Cactus
	95846 

	S05R3C2
	B2
	Cactus
	100113 

	S05R4C2
	B2
	Cactus
	104926 

	S05R5C2
	B2
	Cactus
	108785 

	S06R1C2
	B2
	BasketballDrive
	95453 

	S06R2C2
	B2
	BasketballDrive
	98652 

	S06R3C2
	B2
	BasketballDrive
	102317 

	S06R4C2
	B2
	BasketballDrive
	107223 

	S06R5C2
	B2
	BasketballDrive
	110480 

	S07R1C2
	B2
	BQTerrace
	112967 

	S07R2C2
	B2
	BQTerrace
	117505 

	S07R3C2
	B2
	BQTerrace
	123490 

	S07R4C2
	B2
	BQTerrace
	127461 

	S07R5C2
	B2
	BQTerrace
	131871 

	S08R1C2
	C
	BasketballDrill
	27824 

	S08R2C2
	C
	BasketballDrill
	18792 

	S08R3C2
	C
	BasketballDrill
	19224 

	S08R4C2
	C
	BasketballDrill
	20303 

	S08R5C2
	C
	BasketballDrill
	21361 

	S09R1C2
	C
	BQMall
	31050 

	S09R2C2
	C
	BQMall
	31433 

	S09R3C2
	C
	BQMall
	28723 

	S09R4C2
	C
	BQMall
	30663 

	S09R5C2
	C
	BQMall
	32724 

	S10R1C2
	C
	PartyScene
	23555 

	S10R2C2
	C
	PartyScene
	24414 

	S10R3C2
	C
	PartyScene
	25228 

	S10R4C2
	C
	PartyScene
	22280 

	S10R5C2
	C
	PartyScene
	22770 

	S11R1C2
	C
	RaceHorses
	12466 

	S11R2C2
	C
	RaceHorses
	12950 

	S11R3C2
	C
	RaceHorses
	13606 

	S11R4C2
	C
	RaceHorses
	14512 

	S11R5C2
	C
	RaceHorses
	15639 

	S12R1C2
	D
	BasketballPass
	5951 

	S12R2C2
	D
	BasketballPass
	6255 

	S12R3C2
	D
	BasketballPass
	6363 

	S12R4C2
	D
	BasketballPass
	6547 

	S12R5C2
	D
	BasketballPass
	6853 

	S13R1C2
	D
	BQSquare
	8693 

	S13R2C2
	D
	BQSquare
	10226 

	S13R3C2
	D
	BQSquare
	9939 

	S13R4C2
	D
	BQSquare
	10608 

	S13R5C2
	D
	BQSquare
	10893 

	S14R1C2
	D
	BlowingBubbles
	7035 

	S14R2C2
	D
	BlowingBubbles
	7974 

	S14R3C2
	D
	BlowingBubbles
	8249 

	S14R4C2
	D
	BlowingBubbles
	8842 

	S14R5C2
	D
	BlowingBubbles
	9761 

	S15R1C2
	D
	RaceHorses
	4137 

	S15R2C2
	D
	RaceHorses
	4270 

	S15R3C2
	D
	RaceHorses
	4424 

	S15R4C2
	D
	RaceHorses
	4680 

	S15R5C2
	D
	RaceHorses
	4902 

	S16R1C2
	E
	vidyo1
	37948(A) 

	S16R2C2
	E
	vidyo1
	38377(A) 

	S16R3C2
	E
	vidyo1
	38759(A) 

	S16R4C2
	E
	vidyo1
	39976(A) 

	S16R5C2
	E
	vidyo1
	41418(A) 

	S17R1C2
	E
	vidyo3
	39255(A) 

	S17R2C2
	E
	vidyo3
	39686(A) 

	S17R3C2
	E
	vidyo3
	40056(A) 

	S17R4C2
	E
	vidyo3
	40506(A) 

	S17R5C2
	E
	vidyo3
	41800(A) 

	S18R1C2
	E
	vidyo4
	34695(A) 

	S18R2C2
	E
	vidyo4
	38799(A) 

	S18R3C2
	E
	vidyo4
	39457(A) 

	S18R4C2
	E
	vidyo4
	40360(A) 

	S18R5C2
	E
	vidyo4
	41530(A) 


4.1.2 Measurement methodology
To measure the decoding time, a “time” command in Linux system was used. PC platforms with difference computational resources were used to generate the bitstreams. The PC platforms can be classified into two groups (A and B) as below. In Table 17, platform A was used if it is indicated in “Encoding time” column. Otherwise, platform B was used.
Platform A:
OS:


Linux 64bit
CPU:

Intel(R) Core(TM) i7 CPU 860  @ 2.80GHz

Cache size: 

8192 KB

CPU cores: 

4

Memory: 

16GB
Platform B:
OS:


Linux 64bit
CPU:
Quad-Core AMD Opteron(tm) Processor 2378 @ 2.40GHz
Cache size:
512 KB

CPU cores:
4

Intel(R) Xeon(R) CPU 3060 @ 2.40GHz

Cache size:
4096 KB

Cpu cores:
2

Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz

Cache size:
6144 KB
CPU cores:
2

Memory : 8 GB
4.2 Decoding time and measurement methodology and comparison vs. anchor bitstreams decoded by JM 17.0
Comparison to anchor is with YUV output enabled and reference input disabled.
4.2.1 Decoding time
The decoding time for constraint 1 is summarized in Table 18.
Table 18: Decoding time for constraint 1
	Constraint 1 bitstreams
	Decoding time (s)

	Name of bitstreams
	Sony
	Anchor

	S01R1C1
	174 
	127 

	S01R2C1
	172 
	128 

	S01R3C1
	175 
	131 

	S01R4C1
	177 
	133 

	S01R5C1
	182 
	139 

	S02R1C1
	186 
	126 

	S02R2C1
	182 
	129 

	S02R3C1
	181 
	131 

	S02R4C1
	183 
	133 

	S02R5C1
	184 
	138 

	S03R1C1
	235 
	118 

	S03R2C1
	238 
	113 

	S03R3C1
	252 
	119 

	S03R4C1
	256 
	123 

	S03R5C1
	261 
	126 

	S04R1C1
	146 
	112 

	S04R2C1
	152 
	116 

	S04R3C1
	157 
	120 

	S04R4C1
	166 
	123 

	S04R5C1
	167 
	126 

	S05R1C1
	346 
	210 

	S05R2C1
	330 
	212 

	S05R3C1
	285 
	215 

	S05R4C1
	290 
	219 

	S05R5C1
	296 
	227 

	S06R1C1
	453 
	230 

	S06R2C1
	458 
	238 

	S06R3C1
	468 
	240 

	S06R4C1
	469 
	245 

	S06R5C1
	484 
	254 

	S07R1C1
	446 
	291 

	S07R2C1
	461 
	293 

	S07R3C1
	476 
	294 

	S07R4C1
	489 
	297 

	S07R5C1
	394 
	300 

	S08R1C1
	83 
	40 

	S08R2C1
	85 
	41 

	S08R3C1
	83 
	41 

	S08R4C1
	77 
	43 

	S08R5C1
	71 
	44 

	S09R1C1
	118 
	52 

	S09R2C1
	117 
	53 

	S09R3C1
	108 
	53 

	S09R4C1
	98 
	55 

	S09R5C1
	92 
	55 

	S10R1C1
	80 
	44 

	S10R2C1
	74 
	44 

	S10R3C1
	73 
	46 

	S10R4C1
	74 
	46 

	S10R5C1
	75 
	48 

	S11R1C1
	82 
	27 

	S11R2C1
	84 
	28 

	S11R3C1
	35 
	29 

	S11R4C1
	59 
	29 

	S11R5C1
	55 
	30 

	S12R1C1
	14 
	12 

	S12R2C1
	14 
	13 

	S12R3C1
	15 
	14 

	S12R4C1
	16 
	13 

	S12R5C1
	17 
	15 

	S13R1C1
	21 
	15 

	S13R2C1
	24 
	16 

	S13R3C1
	25 
	17 

	S13R4C1
	25 
	17 

	S13R5C1
	25 
	18 

	S14R1C1
	15 
	12 

	S14R2C1
	16 
	13 

	S14R3C1
	17 
	13 

	S14R4C1
	18 
	14 

	S14R5C1
	19 
	15 

	S15R1C1
	9 
	8 

	S15R2C1
	9 
	8 

	S15R3C1
	10 
	9 

	S15R4C1
	10 
	9 

	S15R5C1
	11 
	10 

	Average
	159 
	99 


The decoding time of the bitstreams for constraint 2 is summarized in Table 19.
Table 19: Decoding time for constraint 2
	Constraint 2 bitstreams
	Decoding time (s)

	Name of bitstreams
	Sony
	Anchor

	S03R1C2
	498 
	86 

	S03R2C2
	335 
	90 

	S03R3C2
	147 
	93 

	S03R4C2
	167 
	98 

	S03R5C2
	166 
	102 

	S04R1C2
	220 
	84 

	S04R2C2
	179 
	90 

	S04R3C2
	149 
	92 

	S04R4C2
	155 
	97 

	S04R5C2
	161 
	99 

	S05R1C2
	216 
	160 

	S05R2C2
	222 
	167 

	S05R3C2
	230 
	172 

	S05R4C2
	237 
	176 

	S05R5C2
	244 
	182 

	S06R1C2
	274 
	171 

	S06R2C2
	288 
	181 

	S06R3C2
	298 
	189 

	S06R4C2
	305 
	195 

	S06R5C2
	316 
	201 

	S07R1C2
	287 
	214 

	S07R2C2
	295 
	218 

	S07R3C2
	307 
	224 

	S07R4C2
	317 
	232 

	S07R5C2
	321 
	239 

	S08R1C2
	118 
	31 

	S08R2C2
	43 
	31 

	S08R3C2
	45 
	33 

	S08R4C2
	50 
	35 

	S08R5C2
	52 
	37 

	S09R1C2
	285 
	40 

	S09R2C2
	273 
	42 

	S09R3C2
	54 
	42 

	S09R4C2
	176 
	43 

	S09R5C2
	113 
	46 

	S10R1C2
	41 
	33 

	S10R2C2
	203 
	34 

	S10R3C2
	111 
	36 

	S10R4C2
	64 
	38 

	S10R5C2
	62 
	40 

	S11R1C2
	27 
	22 

	S11R2C2
	29 
	23 

	S11R3C2
	32 
	23 

	S11R4C2
	36 
	25 

	S11R5C2
	39 
	26 

	S12R1C2
	12 
	10 

	S12R2C2
	12 
	11 

	S12R3C2
	14 
	10 

	S12R4C2
	15 
	11 

	S12R5C2
	16 
	12 

	S13R1C2
	16 
	12 

	S13R2C2
	21 
	13 

	S13R3C2
	22 
	13 

	S13R4C2
	23 
	14 

	S13R5C2
	23 
	15 

	S14R1C2
	43 
	10 

	S14R2C2
	36 
	10 

	S14R3C2
	23 
	11 

	S14R4C2
	18 
	12 

	S14R5C2
	19 
	12 

	S15R1C2
	8 
	7 

	S15R2C2
	9 
	7 

	S15R3C2
	9 
	7 

	S15R4C2
	10 
	8 

	S15R5C2
	11 
	8 

	S16R1C2
	99 
	77 

	S16R2C2
	101 
	80 

	S16R3C2
	102 
	80 

	S16R4C2
	106 
	82 

	S16R5C2
	109 
	86 

	S17R1C2
	103 
	78 

	S17R2C2
	104 
	79 

	S17R3C2
	106 
	81 

	S17R4C2
	109 
	82 

	S17R5C2
	109 
	84 

	S18R1C2
	101 
	79 

	S18R2C2
	103 
	81 

	S18R3C2
	104 
	81 

	S18R4C2
	107 
	83 

	S18R5C2
	108 
	87 

	Average
	126 
	75 


4.2.2 Measurement methodology
To measure the decoding time, a “time” command in Linux system was used. The following PC platform was used to measure the decoding time.
Platform:
OS:


Linux 64bit
CPU:

Intel(R) Xeon(R) CPU 3060 @ 2.40GHz

Cache size:

4096 KB

CPU cores:

2

Memory:

4 GB
4.3 Description of computing platform used to determine encoding and decoding times reported in sections 4.1 and 4.2
The measurement methodology is described in 4.1.2 and 4.2.2.
4.4 Expected memory usage of encoder

The number of reference frame of inter-frame prediction is the same as AVC. Other memory to store parameters is described in the following sub-clause.
4.5 Expected memory usage of decoder

The number of reference frame of inter-frame prediction is the same as AVC. Other memory to store parameters is described in the following sub-clause.
4.6 Complexity characteristics of encoder motion estimation and motion segmentation selection
4.6.1 Encoding of separable adaptive interpolation filter
Complexity and memory analysis

The filter coefficients of adaptive interpolation filter are determined by frame level 2 pass encoding. In the first pass, 
In the first pass, SFIF interpolation filter is used for ME and MC. Then MV, reference picture index, and single/bi-pred for each MB are obtained. Using these information, wiener filter coefficients are derived by LMSE method solving Wiener-Hopf equation. In the second pass, interpolation mode (fixed interpolation filter or adaptive interpolation filter) is determined by Lagrange optimization.
Memory
For P slice, and for half-pel position, each auto-correlation matrix is 3x3 , and cross-correlation vector is 3 and its corresponding filter is 3. For quarter-pel position, each auto-correlation matrix is 6x6 , and cross-correlation vector is 6 and its corresponding filter is 6. For quarter-pel position, there is 6 filters ( each a, c, d, e, f, and g-position ). For half-pel position, there is 5 filters (each b, h, i, j, and k-position).
1) For half-pel, 5 x (3x3) matrix and vector for auto-correlation and cross- correlation.

2) For quarter pel 6 x (6x6) matrix and vector for auto-correlation and cross- correlation
3) 5 x 3 filter coefficients for half-pel, and 6 x 6 filter coefficients for quarter-pel.
For B slice, and for quarter-pel position, there is 2 filters (each a, and d-position). For half-pel position, there is 2 filters (each b, and h -position). (Please see table 1)

And theses filter is added to bi-pred interpolation in B slice. Thus,

4) For half-pel, 2 x 2 x (3x3) matrix and vector for auto-correlation and cross- correlation.

5) For quarter pel 2 x 2 x (6x6) matrix and vector for auto-correlation and cross- correlation
6) 2 x 2 x 3 filter coefficients for half-pel, and 2 x 2 x 6 filter coefficients for quarter-pel.
Computation

1) Filter Coefficients Derivation: Solve a system of 6 linear equations. Using Gaussian elimination approach the number of operations (additions + multiplications + divisions) can be estimated as: (2x6x6x6)/3 x11 (for 11 directions)

2) Filter Application: 63 multiplication, 84 addition, 6 shift as division per pixel. Please see table 20.

3) Cross-Correlation calculation: 6X6 multiplications + 6X6 additions per pixel
4) Auto-Correlation calculation: 6X6 multiplications + 6X6 additions per pixel
4.6.2 Single/bi-pred filter separation
Complexity and memory analysis

In addition to the complexity of SFIF, the derivation of filter coefficients for bi-pred is necessary at encoder. To obtain filter coefficients, Wiener-Hopf equation (6x6) is solved. Correlation function, auto-correlation function are necessary. 
Memory
Required memory to store is double of 4.6.1
Computation

Required computation is double of 4.6.1.
4.6.3 RAIF
Complexity and memory analysis

Each auto- and cross-correlation matrix is 36x36 and its corresponding filter is 6x6. For quarter-pel motion vector resolution, there are 16 filters, thus, 16 auto- and cross-correlation matrices. If for a block within two update points, a certain filter index is observed (was selected as the best filter in motion estimation), the auto- and cross-correlation update matrices for that filter are computed using the reconstructed sample values (referred to as 
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Note that the reference block
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has a size of 9x9 (to allow filtering without having any boundary issues) and the current block 
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 is always 4x4.

After computing the update matrices for each filter k, the corresponding auto- and cross-correlation matrices  
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 are updated according to Equation 4. Finally, before reaching the next update point, the system of linear equations in Equation 3, with 36 unknowns, is solved for each filter k with updated statistics to find the updated filter. These updated filters are used for motion estimation for the blocks after the next update point. 

At the decoder the aforementioned computations are also performed to stay in synchronization with the encoder. Motion compensation in the decoder is always conducted using the latest version of the filters. This requires filtering the reference picture by a 6x6 non-separable filter.

Memory
1) Storing of 16x2 fixed 36x36 Rxx(0) & Rxy(0)
2) 16x2 36x36 Matrix for auto- and cross- correlation update matrices
3) 16x6x6 filter coefficients

Computation

1) Filter Coefficients Derivation: Solve a system of 36 linear equations. Using Guassian elimination approach the number of operations (additions + multiplications + divisions) can be estimated as: (2x36x36x36)/3 x16 (for 16 directions)
2) Filter Application: 16x6x6 multiplication & additions per pixel.
3) Cross-Correlation calculation: 4X4X6X6 multiplications + 4X4X6X6 additions
4) Auto-Correlation calculation: 4X4X6X6 multiplications + 4X4X6X6 additions
5) Integer Pel Motion Estimation & Compensation.

4.6.4 MV coding

Complexity and memory analysis

Prior to encoding, a user set the value of mv_prediction_definition_flag, like selecting spatial or temporal direct mode. For further performance improvement, it is possible that the value of mv_prediction_definition_flag is determined with RD-optimized mode decision process at slice-level. 

At motion-compensated block level, the encoder selects the predictor with code_number=0 or the one with code_number=1 based on RD-optimized mode decision process. 

A one-bit flag that indicates which predictor is used for current motion compensated block is transmitted within a bitstream. It will be encoded either with CABAC or with CAVLC. Motion vectors of the reference pictures will be stored in memory and is extracted if the temporal predictor is used. This scheme is applied only with temporal direct mode in AVC, but with applied for motion vector coding generally in our proposal. 

Memory
1) Store and extract motion vectors for each of the motion compensation block in the reference frames will be necessary for P-picture as well as B-picture encoding
Computation

1) Encoding of mv_prediction_definition_flag value at the slice header.

2) [RD-optimized] mode decision to select which of the spatial or the temporal predictor for each of the motion compensation block

3) Encoding of the code_number that indicates which predictor to be used for the current block with CABAC or CAVLC
4.7 Complexity characteristics of decoder motion compensation

4.7.1 Separable Interpolation Filter (SFIF)
Complexity and memory analysis

Memory
For P slice, and for half-pel position, each auto-correlation matrix is 3x3 , and cross-correlation vector is 3 and its corresponding filter is 3. For quarter-pel position, each auto-correlation matrix is 6x6 , and cross-correlation vector is 6 and its corresponding filter is 6. For quarter-pel position, there is 6 filters ( each a, c, d, e, f, and g-position ). For half-pel position, there is 5 filters (each b, h, i, j, and k-position).

1) For half-pel, 5 x (3x3) matrix and vector for auto-correlation and cross- correlation.
2) For quarter pel 6 x (6x6) matrix and vector for auto-correlation and cross- correlation
3) 5 x 3 filter coefficients for half-pel, and 6 x 6 filter coefficients for quarter-pel.

For B slice, and for quarter-pel position, there is 2 filters (each a, and d-position). For half-pel position, there is 2 filters (each b, and h -position). (Please see table 1)

And theses filter is added to bi-pred interpolation in B slice. Thus,

1) For half-pel, 2 x 2 x (3x3) matrix and vector for auto-correlation and cross- correlation.
2) For quarter pel 2 x 2 x (6x6) matrix and vector for auto-correlation and cross- correlation
3) 2 x 2 x 3 filter coefficients for half-pel, and 2 x 2 x 6 filter coefficients for quarter-pel.

Computation

1) Filter Coefficients Derivation: Solve a system of 6 linear equations. Using Gaussian elimination approach the number of operations (additions + multiplications + divisions) can be estimated as: (2x6x6x6)/3 x11 (for 11 directions)
2) Filter Application: 63 multiplication, 84 addition, 6 shift as division per pixel. Please see Table 20.
3) Cross-Correlation calculation: 6X6 multiplications + 6X6 additions per pixel
4) Auto-Correlation calculation: 6X6 multiplications + 6X6 additions per pixel

In case of 4x4 block, the number of operation at each pixel is summarized in Table 20.
	Sub-pixel Location
	Multiplication
	Addition
	Shift

	{a,c,d,l}
	6
	6
	1

	{b,h}
	3
	6
	1

	{e,g,m,o}
	18
	18
	1

	{f,n}
	12
	18
	1

	{i,k}
	15
	18
	1

	{j}
	9
	18
	1


Table 20: The number of operation for 4x4 block

4.7.2 RAIF

Complexity and memory analysis
Each auto- and cross-correlation matrix is 36x36 and its corresponding filter is 6x6. For quarter-pel motion vector resolution, there are 16 filters, thus, 16 auto- and cross-correlation matrices. If for a block within two update points, a certain filter index is observed (was selected as the best filter in motion estimation), the auto- and cross-correlation update matrices for that filter are computed using the reconstructed sample values (referred to as 
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Note that the reference block
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has a size of 9x9 (to allow filtering without having any boundary issues) and the current block 
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 is always 4x4.

After computing the update matrices for each filter k, the corresponding auto- and cross-correlation matrices  
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 are updated according to Equation 4. Finally, before reaching the next update point, the system of linear equations in Equation 3, with 36 unknowns, is solved for each filter k with updated statistics to find the updated filter.  These updated filters are used for motion estimation for the blocks after the next update point. 

At the decoder the aforementioned computations are also performed to stay in synchronization with the encoder. Motion compensation in the decoder is always conducted using the latest version of the filters. This requires filtering the reference picture by a 6x6 non-separable filter.
Memory
1) Storing of 16x2 fixed 36x36 Rxx(0) & Rxy(0)
2) 16x2 36x36 Matrix for auto- and cross- correlation update matrices
3) 16x6x6 filter coefficients

Computation
1) Filter Coefficients Derivation: Solve a system of 36 linear equations. Using Guassian elimination approach the number of operations (additions + multiplications + divisions) can be estimated as: (2x36x36x36)/3
2) Filter Application: 16x6x6 multiplication & additions per pixel.
3) Cross-Correlation calculation: 4X4X6X6 multiplications + 4X4X6X6 additions
4) Auto-Correlation calculation: 4X4X6X6 multiplications + 4X4X6X6 additions
5) Integer Pel Motion Compensation
4.7.3 MV decoding

Complexity and memory analysis
At slice header, the value of mv_prediction_definition_flag is extracted from the bitstream and then code_number assignment for each of the spatial and the temporal predictor is specified for the current slice. 

For each motion compensated block, a one-bit flag, which has been encoded either with CABAC or CAVLC, is extracted from the bitstream. This flag indicates which of the spatial and the temporal predictor is applied for the current motion compensated block. 
When the spatial predictor is applied, the median of the motion vectors of surrounding blocks is calculated as specified in AVC. When the temporal predictor is applied, the motion vector of the co-located block is extracted from the memory.

Memory
1) The motion vector for each blocks is stored in memory for future P-picture as well as B-picture decoding.

2) If the temporal predictor is applied, the motion vector of the co-located block in the reference frame is extracted from the memory
Computation

1) Decoding of mv_prediction_definition_flag at the slice header.

2) Decoding of one-bit flag, encoded either with CABAC or with CAVLC, that indicates which predictor is used for the current motion compensation block
4.8 Complexity characteristics of encoder intra-frame prediction type selection
Complexity of encoder intra frame prediction type selection is the same as AVC.
4.9 Complexity characteristics of decoder intra-frame prediction operation

Complexity of decoder intra frame prediction type selection is the same as AVC.
4.10 Complexity characteristics of encoder transforms and transform type selection
4.10.1 DDCT
Complexity and memory analysis
DDCT is implemented using 32-bit arithmetic.

Memory
4x4 transforms:

· Mode 0 and 1: 

· Fixed table: 4x4

· Intermediate table: 4x4

· Mode 2: similar to AVC

· Mode 3 and 4:

· Fixed table: 5x5

· Intermediate table: 5x4

· Mode 5 – 8:

· Fixed table: 5x5

· Intermediate table: 5x4

8x8 transforms:

· Mode 0 and 1: 

· Fixed table: 8x8

· Intermediate table: 8x8

· Mode 2: similar to AVC

· Mode 3 and 4:

· Fixed table: 11x11

· Intermediate table: 11x8

· Mode 5 – 8:

· Fixed table: 9x9

· Intermediate table: 9x8 

Computation

Because of the matrix implementation of DCT as the component transforms, each component transform of size N will require

· N^2 multiplications

· N^2 – N additions

Hence, for a given intra prediction mode, if the first stage DDCT consists of DCT of size N1,…, Nk1 and the second stage DDCT consists of DCT of size M1,…, Mk2, then the over all complexity for this particular mode is

Number of multiplications:
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The following complexity can be derived for DDCT:

4x4 transforms: 

· Mode 0 and 1: 


· 128 multiplications

· 96 additions

· Mode 2: similar to AVC

· Mode 3 and 4: 


· 128 multiplications 

· 96 additions

· Mode 5 to 8:

· 124 multiplications 

· 92 additions

8x8 transforms:

· Mode 0 and 1:

· 1024 multiplications

· 896 additions

· Mode 2: similar to AVC

· Mode 3 and 4:

· 1037 multiplications

· 94 additions

· Mode 5 to 8:

· 1000 multiplications

· 872 additions

4.10.2 DDWT
Complexity and memory analysis
DDWT is implemented using 32-bit arithmetic. However since DDWT transforms are made up from a series of Haar wavelet transforms, there are rooms to simplify the implementation complexity of DDWT.
Memory
4x4 transforms:
· Mode 0 and 1: 

· Fixed table: 4x4

· Intermediate table: 4x4

· Mode 2: similar to AVC

· Mode 3 and 4:

· Fixed table: 7x7

· Intermediate table: 7x4

· Mode 5 – 8:

· Fixed table: 5x5

· Intermediate table: 5x4

8x8 transforms:
· Mode 0 and 1: 

· Fixed table: 8x8

· Intermediate table: 8x8

· Mode 2: similar to AVC

· Mode 3 and 4:

· Fixed table: 15x15

· Intermediate table: 15x8

· Mode 5 – 8:

· Fixed table: 11x11

· Intermediate table: 11x8 

Computation
Because of the matrix implementation of the intermediate transforms, each component transform of size N will require

· N^2 multiplications

· N^2 – N additions

Hence, for a given intra prediction mode, if the first stage DDWT consists of intermediate transforms of size N1,…, Nk1 and the second stage DDWT consists of intermediate transforms of size M1,…, Mk2, then the over all complexity for this particular mode is

Number of multiplications:
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Note that, since the transform matrices contain many zero entries, the complexity of DDWT can be reduced. In the current implementation, the following complexity can be derived for DDWT:

4x4 transforms: 

· Mode 0 and 1: 


· 128 multiplications

· 96 additions

· Mode 2: similar to AVC

· Mode 3 and 4: 


· 128 multiplications 

· 96 additions

· Mode 5 to 8:

· 124 multiplications 

· 92 additions

8x8 transforms:

· Mode 0 and 1:

· 1024 multiplications

· 896 additions

· Mode 2: similar to AVC

· Mode 3 and 4:

· 1037 multiplications

· 94 additions

· Mode 5 to 8:

· 1000 multiplications

· 872 additions

4.11 Complexity characteristics of decoder inverse transform operation

The complexity of inverse transform is the same as forward transform.
4.12 Complexity characteristics of encoder quantization and quantization type selection

 The complexity of encoder quantization and quantization type selection is similar to AVC.
4.13 Complexity characteristics of decoder inverse quantization

The complexity of decoder quantization and quantization type selection is similar to AVC.
4.14 Complexity characteristics of encoder in-loop filtering type selection

Complexity and memory analysis
Memory
Since the memory for storing the auto-correlation and the cross-correlation of the quad-tree blocks dominated the memory needed for SQALF, it is used as an estimate of the memory required by SQALF.

In the encoder, the number of quadtree blocks is limited to 
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 blocks, and the maximum size of the filter is 
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. Since, the auto-correlation matrix is symmetric, an upperbound for the memory required to store the auto-correlation and the cross-correlation is 
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 bytes.

Computation 

Since the R-D optimization of the quadtree structure for the luminance dominates the SQALF computation, it is used as an estimate of the SQALF computation.

The R-D optimization is performed with an upper-bound of 
[image: image156.wmf]91

 passes. In each pass, 

· a 
[image: image157.wmf]nn

´

 FIR filter with 
[image: image158.wmf]5
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 could be used to filter the picture, and

· the correlations of the child blocks could be added together to form the correlations of the parent block in the quadtree block structure . 

The dominated computation per frame for the P and B picture are the followings:

1. In the initial pass, the correlation of the picture is computed with  
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multiplications and 
[image: image160.wmf]364

additions per pixel in the picture.
2. In the 90 passes, the correlation of the smaller child blocks could be added to form the correlation of the larger parent blocks. The 90 passes take approximately 
[image: image161.wmf](
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additions per pixel to add the correlations.
3. In each pass, the picture could be filtered by separable filters. The 91 passes take approximately 
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 multiplications and 
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 additions per pixel to filter the picture.
The dominated computation per frame for I picture are the followings:

1. In the initial pass, the correlation of the picture is computed with  
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 multiplications and 
[image: image165.wmf]112

additions per pixel in the picture.
2. In the 90 passes, the correlation of smaller child blocks are merged to form the correlation of the larger parent blocks. The 90 passes take approximately 
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 additions per pixel to add the correlations.
3. In each pass, the picture could be filtered by symmetric non-separable filters. For the 91 passes, it takes approximately 
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 multiplications and 
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additions per pixel.
4.15 Complexity characteristics of decoder in-loop filtering operation

Complexity and memory analysis
Memory
Since the memory required by the SQALF is dominated by the memory for one extra frame buffer to store the filtered pixels, the amount of memory allocated for the frame buffer is used as an estimate of the memory required by SQALF.

 Let 
[image: image169.wmf]wh
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 be the size of the picture. Assuming 2 bytes per luminance or chromiance pixel, An estimate of the frame memory required is 
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 bytes as in the followings:

1. For Class A, 11.8 Mb.

2. For Class B, 6.01 Mb

3. For Class C, 1.18 Mb

4. For Class D, 310 Kb

5. For Class E, 2.69Mb

Computation
Since the computation of the 2D filtering dominated the computation of the SQALF in the decoder, it is used as an estimate of the comutation of SQALF.  

The computation of the SQALF is estimated in the followings:

1. The P and B pictures are filtered by separable 
[image: image171.wmf]nn
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filter.  For luminance, the largest 
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 is 
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. For chromiance, 
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. Consequently, the computation for P and B picture is approximately 
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multiplications and 
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 additions per pixel.

2. The I picture is filtered by symmetric 
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 non-separable filter. For luminance, the largest 
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 is 
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. For chrominace, 
[image: image180.wmf]5
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. Consequently, the computation for I picture is approximately 
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 multiplications and 
[image: image182.wmf]22

925/493.5

+×=

 additions per pixel.
4.16 Complexity characteristics of encoder entropy coding type selection

Complexity of encoder entropy coding type selection is the same as AVC.
4.17 Complexity characteristics of decoder entropy decoding operation

Complexity of encoder entropy coding type selection is the same as AVC.
4.18 Degree of capability for encoder parallel processing

The capability of encoder parallel processing is in the same level as AVC.
4.19 Degree of capability for decoder parallel processing

The capability of decoder parallel processing is in the same level as AVC.
5 Algorithmic characteristics
5.1 Random access characteristics

Random access characteristics is the same as AVC. 
5.2 Delay characteristics

Delay characteristics is similar to AVC. Prediction structure (GOP structure) of constraint set 1 bitstreams is the same as alpha anchors (hierarchical B). Prediction structure of constraint set 2 bitstreams is the same as beta anchors (hierarchical P).
6 Software implementation description

The submitted decoder software was implemented on AVC reference software.
7 Closing remarks
This contribution proposes to extend AVC to improve coding efficiency. 6 new tools are proposed to enhance the coding performance of AVC (ISO/IEC 14496-10 | ITU-T Rec. H.264) with the potential to form the basis for HVC codec architecture. We believed that next generation video codec should be developed based on AVC.
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