	[image: image569.png]

[image: image570.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
1st Meeting: Dresden, DE, 15-23 April, 2010
	Document: JCTVC-A032

	Title:
	Novel entropy coding concept

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Authors:
	Detlev Marpe, Heiko Schwarz, Thomas Wiegand

	Contact:
	Thomas Wiegand
Fraunhofer HHI
Einsteinufer 37
10587 Berlin, Germany
	
Tel:
Email:
	
+49-30-31002-617
wiegand@hhi.de

	Source:
	Fraunhofer HHI

Abstract

This contribution describes a novel approach to entropy coding. The basic idea of the presented entropy coding concept is the usage of multiple parallel binary encoders/decoders that operate at fixed probabilities. The entropy coding concept supports a high degree of decoder parallel processing and can be configured in a way that it operates at a complexity level of variable-length coding without any loss in coding efficiency relative to the use of arithmetic codes.
1 Overview
We present a novel approach for entropy coding, which consists of a binarization, an adaptive context modeling, a probability quantization, and multiple binary entropy coders with fixed probabilities. The concepts for binarization and context modeling are basically the same as in the CABAC framework of H.264/AVC. However, the actual coding of the bins is based on a novel concept that has been introduced in order to support parallelized implementations of entropy encoding and decoding as well as for decreasing the computational complexity of the entropy decoding.
1.1 Novel entropy coding concept

[image: image1.wmf]binarizer

syntax

element

context

modeler

bin

probability

quantizer

bin

LPB

probability

bin encoder

0

bin encoder

1

bin encoder K

-

1

bin

bin

bin

muliplexer

bitstream

Fig. 1: Illustration of the novel entropy coding concept

In Fig. 1, the basic entropy coding concept is illustrated. If a syntax element does not already represent a binary syntax element, it is first binarizied, i.e., it is mapped onto a sequence of binary decisions (bins). For each bin a context is selected. A context represents a (binary) probability model for a class of bins; it is characterized by the probability and the value of the less significant bin (LPB). In our implementation, the LPB probability is represented by one out of 64 states (as in the CABAC framework of H.264/AVC). At the beginning of the encoding/decoding of a slice, the probability models are initialized using fixed values (as in CABAC of H.264/AVC). And after encoding/decoding a bin with a particular model, the model (i.e., the corresponding probability and value of the LPB) is updated. The probability model update, i.e., the probability estimation process is the same as in CABAC of H.264/AVC. The association of a bin with a context model is also similar as in CABAC of H.264/AVC. It depends on the syntax element, the bin number, and, for some bins, the values of neighboring syntax elements.
The above described binarization and association of the bins with context models is basically the same as in CABAC of H.264/AVC. The main difference is the next step. Instead of arithmetically coding the bins with the associated probability models using a single arithmetic coding engine as in CABAC of H.264/AVC, the estimated LPB probabilities are quantized, i.e., they are mapped onto a small number of LPB probability intervals and for each of these probability intervals a separate bin encoder/decoder is operated. In our implementation, we used 12 probability intervals and thus 12 different bin encoders/decoders. Each bin encoder/decoder operates at a fixed LPB probability, which can be considered as the representative probability for an LPB interval. The selection of a bin encoder/decoder is implemented via a look-up table that associates a bin encoder with each of the 64 state indices for the LPB probability. Hence, the 64 states that are used for estimating the LPB probability of a context model are mapped onto 12 probability classes, for each of which a separate bin encoder/decoder is operated. The partial bitstreams that are generated by the bin encoders can be written to different partitions of a NAL unit (with the partitioning of the NAL unit being indicated in the slice header) or they can be interleaved into a single bitstream.
For the bin encoders and decoders two alternatives have been implemented. In a first version, the bin encoders and decoders represent arithmetic encoding and decoder engines, respectively, which are similar to the arithmetic coding engines used in CABAC of H.264/AVC. In a second version, the bin encoders and decoders represent simple variable length codes, by which a variable number of bins is mapped onto variable length codewords and vice versa. Both versions have a very similar coding efficiency.
1.1.1 Bin encoders using arithmetic coding
As mentioned above, arithmetic coding engines (similar to the coding engines that are used for CABAC in H.264/AVC) can be used for the separate bin encoder. The corresponding 12 arithmetic codewords are written to different partitions of the slice data NAL units; the corresponding partitioning information is transmitted in the slice header. An obvious advantage of this approach is that the arithmetic decoding can be parallelized. All 12 arithmetic decoding engines can be operated in parallel and write the sequences of decoded bins into particular bin buffers. The remaining entropy decoding process can then simply read the bins from the corresponding 12 bin buffers without the need to wait until a bin is arithmetically decoded before proceeding with the next bin. This is in particular a very useful feature for slice data NAL units that contain a large number of bits.

For small slice data NAL units, a parallelized decoding is usually not required. And since the partitioning information can represent a significant amount of the overall number of bits of a NAL unit, we adaptively switch between the presented coding with 12 arithmetic coding engines (and codewords) and the coding with a single arithmetic coding engines with variable LPB probabilities as it is found in CABAC of H.264/AVC. It is signaled in the slice header which of these variants (single-codeword arithmetic coding or multi-codeword arithmetic coding) is used.
1.1.2 Bin encoders using variable length codes
Instead of using arithmetic coding for the bin encoders (cp. Fig. 1), it is also possible to employ simple variable length codes. It should be again noted that each bin encoder operates at a fixed LPB probability. And for a fixed LPB probability, we can simple construct a code that maps a variable number of bins onto a variable length codeword and vice versa. As a particular example, the following table shows an example for such a mapping. In the example the bins "0" represent the more probable bin values and the bins "1" represent the less probable bin values. The example code has been designed for a LPB probability of 0.15 and it yields a redundancy of only 0.25 % relative to the entropy limit for this probability. Generally, it is possible to get closer to the entropy limit when the table size is increased.
Table 1: Example for a mapping between a variable number of bins and variable length codewords

	sequence of bins
(bin order is from left to right)
	codewords
(bits order is from left to right)

	0000
	1

	01
	001

	10
	010

	001
	011

	0001 00
	0001

	11
	0000 1

	0001 1
	0000 00

	0001 01
	0000 01

At the end of a slice, it is possible that a bin sequence does not represent any bin sequence that is associated with a codeword. In order to terminate the codeword, the shortest codeword for a bin sequence that contains the current bin sequence as prefix is written. At the decoder side, the additionally decoded bins are discarded. As an example, we could use the mapping in the above table and have a bin sequence "00" at the end of a slice. Then we would write the codeword "1" (corresponding to the bin sequence "0000"). At the decoder side, the codeword "1" would be translated into the bin sequence "0000", but the decoder would discard (ignore) the last two decoded bins.

Similarly to the above presented concept with arithmetic coding engines, the partial bitstreams can be written to different partitions of the slice data NAL unit (with transmitting the partitioning information in the slice header). It is, however, also possible to interleave the codewords into one single bitstream with any overhead. This is in particular beneficial for small slice data NAL units, for which parallelized bin decoding is not required. In order to realize such an interleaving a codeword buffer for variable-length codewords can be introduced at the encoder side. When a particular bin encoder starts the encoding of a new bin sequence (i.e., the bin encoder receives the first bin after the previous codeword has been written), it reserves the next variable-length codeword entry in the codeword buffer. And when the bin sequence is finished (i.e., when the received bins represent a bin sequence that corresponds to a codeword), the codeword is written to the previously reserved codeword entry. Examples for the codeword buffer status are illustrated in Fig. 2. At the decoder side, the codewords can be directly read from the bitstream in decoding order.
[image: image2.wmf]0100

(

complete codeword

,

bin encoder

2

)

reserved codeword

,

bin encoder

3

reserved codeword

,

bin encoder

3

reserved codeword

,

bin encoder

3

11110

(

complete codeword

,

bin encoder

1

)

reserved codeword

,

bin encoder

1

reserved codeword

,

bin encoder

1

next free codeword buffer entry

reserved codeword

,

bin encoder

3

reserved codeword

,

bin encoder

3

11110

(

complete codeword

,

bin encoder

1

)

1010

(

complete codeword

,

bin encoder

1

)

reserved codeword

,

bin encoder

1

01

(

complete codeword

,

bin encoder

2

)

reserved codeword

,

bin encoder

2

next free codeword buffer entry

p

r

o

c

e

s

s

i

n

g

o

r

d

e

r

p

r

o

c

e

s

s

i

n

g

o

r

d

e

r

(

a

)

(

b

)

maximum

codeword

size

4

6

6

6

5

5

5

maximum

codeword

size

1

3

3

7

7

7

1

Fig. 2: Examples for the codeword buffer status

It is also possible to combine the codeword interleaving with a low-delay buffer control. That means, we can suitably restrict the buffer delay that is introduced by the codeword interleaving. With such a low-delay control, a particular codeword is terminated when the maximum number of bits (this maximum number of bits represents the maximum codeword length for a particular bin encoder and is given by the corresponding mapping table) that are associated with the reserved or completed buffer entries following the buffer entry for the particular codeword is greater than a particular threshold. At the decoder side, the extra decoded bins must be discarded; this can be done by using the same measure of the maximum number of bits as at the encoder side.
2 Theoretical analysis of the entropy coding concept
In the following section, a theoretical analysis of the entropy coding concept is present.
2.1 Event Space Projection

Consider the sequence of coding symbols
[image: image3.wmf]}

,

,

{

1

0

-

N

s

s

K

. Each symbol is drawn from an alphabet
[image: image4.wmf]i

i

A

s

Î

. The alphabets
[image: image5.wmf]}

,

,

{

=

1

0

K

i

i

i

a

a

A

 contain two or more letters each being associated with a probability estimate
[image: image6.wmf])

(

i

m

s

a

p

. The probability estimates
[image: image7.wmf])

(

i

m

s

a

p

 are known to encoder and decoder and may be fixed or variable. It is assumed that variable probabilities are simultaneously estimated at encoder and decoder. The alphabets
[image: image8.wmf]i

A

 may either be identical for the sequence of symbols or different symbol types are associated with different alphabets. In the latter case, it is assumed that the decoder knows the alphabet of each symbol in the sequence. This assumption is justified as practical source codec descriptions contain a syntax that stipulates the order of symbols and their alphabets.

The sequence of symbols
[image: image9.wmf]}

,

,

{

1

0

-

N

s

s

K

 is converted into a sequence of binary symbols, which are also referred to as bins. For each symbol
[image: image10.wmf]i

s

, the binarization

[image: image11.wmf])

(

=

}

{

=

0

i

i

b

i

i

s

b

g

K

b

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (1)

represents a bijective mapping of the alphabet letters
[image: image12.wmf]i

m

a

 onto ordered sets of bins
[image: image13.wmf]i

m

b

. The binarization mapping
[image: image14.wmf]i

b

g

 can be different for different symbols
[image: image15.wmf]i

s

 or symbol categories. Each bin sequence
[image: image16.wmf]i

b

 for a particular symbol
[image: image17.wmf]i

s

 consists of one or more bins
[image: image18.wmf]i

k

b

. At the decoder side, a symbol
[image: image19.wmf]i

s

 can be reconstructed by the inverse mapping
[image: image20.wmf])

(

)

(

=

1

i

i

b

i

s

b

-

g

 given the sequence of bins
[image: image21.wmf]i

b

. As a result of the binarization, a sequence of bins
[image: image22.wmf]}

,

,

{

1

0

-

B

b

b

K

 is obtained that represents the sequence of source symbols
[image: image23.wmf]}

,

,

{

1

0

-

N

s

s

K

.

All bins
[image: image24.wmf]j

b

 are associated with the same binary alphabet
[image: image25.wmf]{0,1}

=

B

, but the corresponding binary pmfs
[image: image26.wmf]}

,

{

1

0

j

j

p

p

, with
[image: image27.wmf]j

j

p

p

0

1

=

, are usually different. A binary pmf
[image: image28.wmf]}

,

{

1

0

j

j

p

p

 can be described by the less probable bin (LPB) value
[image: image29.wmf]j

LPB

b

 and its probability
[image: image30.wmf]j

LPB

p

 (with
[image: image31.wmf]0.5

£

j

LPB

p

). This binary probability description
[image: image32.wmf]}

,

{

j

LPB

j

LPB

p

b

 can be directly derived from the probability estimates
[image: image33.wmf])

(

i

m

s

a

p

 for the symbol alphabets given the binarization mappings
[image: image34.wmf]i

b

g

. It is also possible (and often preferable) to directly estimate
[image: image35.wmf]}

,

{

j

LPB

j

LPB

p

b

 simultaneously at encoder and decoder side. Therefore, the bins can be associated with a probability model (which is also referred to as context) based on the syntax and previously coded symbols or bins. And for each probability model, the probability description
[image: image36.wmf]}

,

{

j

LPB

j

LPB

p

b

 can be estimated based on the values of the bins that are coded with the probability model. An example for such an binary probability modeling is probability modeling of CABAC in H.264/AVC.

Since the binary entropy function

[image: image37.wmf])

(1

log

)

(1

)

(

log

=

)

(

2

2

p

p

p

p

p

H

-

-

-

-

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (2)

is symmetric around
[image: image38.wmf]0.5

=

p

, the same binary coder can be used for coding all bins that are associated with the same LPB probability
[image: image39.wmf]j

LPB

p

, independent of the value of
[image: image40.wmf]j

LPB

b

. Therefore, the sequence of bins
[image: image41.wmf]}

,

,

{

1

0

-

B

b

b

K

 is converted into a sequence of coding bins
[image: image42.wmf]}

,

,

{

1

0

c

B

c

b

b

-

K

. For each bin
[image: image43.wmf]j

b

, the corresponding bijective mapping
[image: image44.wmf]j

c

g

 is specified by

[image: image45.wmf]j

LPB

j

j

j

c

c

j

b

b

b

b

Å

=

)

(

=

g

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (3)

where
[image: image46.wmf]Å

 denotes the exclusive or operator. At the decoder side, the bins
[image: image47.wmf]j

b

 can be reconstructed given the coding bins
[image: image48.wmf]c

j

b

 and the corresponding LPB value
[image: image49.wmf]j

LPB

b

 by the inverse mapping
[image: image50.wmf]j

LPB

c

j

c

j

j

c

j

b

b

b

b

Å

-

=

)

(

)

(

=

1

g

. A coding bin
[image: image51.wmf]0

=

c

j

b

 specifies that the value of corresponding bin
[image: image52.wmf]j

b

 is equal to the LPB value
[image: image53.wmf]j

LPB

b

 and a coding bin
[image: image54.wmf]1

=

c

j

b

 specifies that the value of the corresponding bin
[image: image55.wmf]j

b

 is equal to the more probable bin (MPB) value
[image: image56.wmf]j

LPB

b

-

1

.

The sequence of coding bins
[image: image57.wmf]}

,

,

{

1

0

c

B

c

b

b

-

K

 does uniquely represent the sequence of source symbols
[image: image58.wmf]}

,

,

{

1

0

-

N

s

s

K

 and the corresponding probability estimates, which can be employed for entropy coding, are completely described by the LPB probabilities
[image: image59.wmf]j

LPB

p

 (with
[image: image60.wmf]0.5

£

j

LPB

p

). Hence, only probabilities in the half-open interval
[image: image61.wmf](0,0.5]

 need to be considered for designing the binary entropy coder for the coding bins
[image: image62.wmf]c

i

b

.

For the actual binary entropy coding, the sequence of coding bins
[image: image63.wmf]}

,

,

{

1

0

c

B

c

b

b

-

K

 is projected onto a small number of probability intervals
[image: image64.wmf]k

I

. The LPB probability interval
[image: image65.wmf](0,0.5]

 is partitioned into
[image: image66.wmf]K

 intervals
[image: image67.wmf]]

,

(

=

1

+

k

k

k

p

p

I

[image: image68.wmf]j

k

for

I

I

and

I

j

k

k

K

k

¹

Æ

-

=

(0,0.5]

=

1

0

=

I

U

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (4)

The set of
[image: image69.wmf]K

 intervals is characterized by
[image: image70.wmf]1

-

K

 intervals borders
[image: image71.wmf]k

p

 with
[image: image72.wmf]1

,

1,

=

-

K

k

K

. Without loss of generality we assume
[image: image73.wmf]1

<

+

k

k

p

p

 for
[image: image74.wmf]K

k

,

0,

=

K

. The outer interval borders are fixed and given by
[image: image75.wmf]0

=

0

p

 and
[image: image76.wmf]0.5

=

K

p

. A simple non-adaptive binary entropy coder is designed for each interval
[image: image77.wmf]k

I

. All coding bin
[image: image78.wmf]c

j

b

 with associated LPB probabilities
[image: image79.wmf]k

j

LPB

I

p

Î

 are assigned to the interval
[image: image80.wmf]k

I

 and are coded with the corresponding fixed entropy coder.

In the following description, all bins represent coding bins
[image: image81.wmf]c

j

b

 and all probabilities
[image: image82.wmf]p

 are LPB probabilities
[image: image83.wmf]j

LPB

p

.

2.2 Probability Interval Discretization

For investigating the impact of the probability interval discretization on the coding efficiency, we assume that we can design an optimal entropy coder for a fixed probability that achieves the entropy bound. Each probability interval
[image: image84.wmf]]

,

(

=

1

+

k

k

k

p

p

I

 is associated with a representative probability
[image: image85.wmf]k

k

I

I

p

Î

 and the corresponding optimal entropy coder shall achieve the entropy limit for this representative probability. Under these assumption, the rate for coding a bin with probability
[image: image86.wmf]p

 using the optimal entropy coder for the interval representative
[image: image87.wmf]k

I

p

 is given by

[image: image88.wmf])

(

)

(

)

(

=

)

(1

log

)

(1

)

(

log

=

)

,

(

2

2

k

I

k

I

k

I

k

I

k

I

k

I

p

H

p

p

p

H

p

p

p

p

p

p

R

¢

-

+

-

-

-

-

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (5)

where
[image: image89.wmf])

(

p

H

 represents the binary entropy function (2)

 and

[image: image90.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

¢

p

p

p

H

1

log

=

)

(

2

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (6)

is its first derivative. We further assume that the distribution of the probabilities in the interval
[image: image91.wmf](0,0.5]

 is given by
[image: image92.wmf])

(

p

f

, with
[image: image93.wmf]1

=

)

(

0.5

0

dp

p

f

ò

. Then, the expected rate, in bits per bin, for a given set of
[image: image94.wmf]K

 intervals
[image: image95.wmf]}

{

k

I

 with corresponding representative probabilities
[image: image96.wmf]}

{

k

I

p

 can be written as

[image: image97.wmf]÷

÷

ø

ö

ç

ç

è

æ

ò

å

+

-

p

d

p

f

p

p

R

p

I

R

R

k

I

k

p

k

p

K

k

k

I

k

)

(

)

,

(

=

})

{

},

({

=

1

1

0

=

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (7)

The first partial derivative with respect to any representative probability
[image: image98.wmf]k

I

p

, with
[image: image99.wmf]1

,

0,

=

-

K

k

K

, is given by

[image: image100.wmf]2

ln

)

(1

)

(

)

(

=

1

1

k

I

k

I

k

p

k

p

k

p

k

p

k

I

k

I

p

p

p

d

p

f

p

p

d

p

f

p

R

p

-

-

¶

¶

ò

ò

+

+

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (8)

The equation
[image: image101.wmf]0

=

R

p

k

I

¶

¶

 has a single solution

[image: image102.wmf]p

d

p

f

p

d

p

f

p

p

k

p

k

p

k

p

k

p

k

I

)

(

)

(

=

1

1

ò

ò

+

+

*

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (9)

for the representative probability
[image: image103.wmf]k

I

p

 inside the domain of definition
[image: image104.wmf]k

I

. The second partial derivative for this solution

[image: image105.wmf]2

ln

)

(1

)

(

=

)

(

1

2

2

*

*

+

*

-

¶

¶

ò

k

I

k

I

k

p

k

p

k

I

k

I

p

p

p

d

p

f

p

R

p

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (10)

is always greater than zero if

[image: image106.wmf]0

>

)

(

1

p

d

p

f

k

p

k

p

ò

+

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (11)

Hence, if condition
(11)

 is fulfilled, the value GOTOBUTTON GrindEQequation12 given in eq.
(9)

 is the representative probability for an interval GOTOBUTTON GrindEQequation10 that minimizes the expected overall rate
[image: image109.wmf]R

 given the interval boundaries
[image: image110.wmf]k

p

 and
[image: image111.wmf]1

+

k

p

. Otherwise, no bin is projected to the interval
[image: image112.wmf]k

I

 and the representative probability
[image: image113.wmf]k

k

I

I

p

Î

 can be arbitrarily chosen without any impact on the overall rate
[image: image114.wmf]R

; but such a configuration should be avoided, since the interval
[image: image115.wmf]k

I

 would not be employed for entropy coding.

For finding a condition for optimal interval borders, we investigate the first derivatives of the expected overall rate
[image: image116.wmf]R

 with respect to the interval borders
[image: image117.wmf]k

p

 with
[image: image118.wmf]1

,

1,

=

-

K

k

K

. If
[image: image119.wmf]0

>

)

(

p

f

 for all
[image: image120.wmf])

,

[

1

k

I

k

I

p

p

p

-

Î

, the equation
[image: image121.wmf]0

=

R

p

k

¶

¶

 has a single solution

[image: image122.wmf])

(

)

(

)

(

)

(

)

(

)

(

=

1

1

1

1

k

I

k

I

k

I

k

I

k

I

k

I

k

I

k

I

k

p

H

p

H

p

H

p

p

H

p

H

p

p

H

p

¢

-

¢

¢

+

-

¢

-

-

-

-

-

*

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (12)

for the interval border
[image: image123.wmf]k

p

 inside the domain of definition
[image: image124.wmf])

,

[

1

k

I

k

I

p

p

-

 and the second partial derivative for this solution

[image: image125.wmf](

)

)

(

)

(

)

(

=

)

(

1

2

2

k

I

k

I

k

k

k

p

H

p

H

p

f

p

R

p

¢

-

¢

¶

¶

-

*

*

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (13)

is always greater than zero, so that
[image: image126.wmf]*

k

p

 is the interval border
[image: image127.wmf])

,

[

1

k

I

k

I

k

p

p

p

-

Î

 that minimizes the expected overall rate
[image: image128.wmf]R

 given the interval representatives
[image: image129.wmf]1

-

k

I

p

 and
[image: image130.wmf]k

I

p

. If there exist probabilities
[image: image131.wmf])

,

[

1

k

I

k

I

p

p

p

-

Î

 with
[image: image132.wmf]0

=

)

(

p

f

, the equation
[image: image133.wmf]0

=

R

p

k

¶

¶

 has multiple solutions, but
[image: image134.wmf]*

k

p

 as given in eq. (12)

 is still optimal even though further optimal solutions may exist.

Given the number of intervals
[image: image135.wmf]K

 and the probability distribution
[image: image136.wmf])

(

p

f

, the interval borders
[image: image137.wmf]k

p

, with
[image: image138.wmf]1

,

1,

=

-

K

k

K

, and the interval representatives
[image: image139.wmf]k

I

p

, with
[image: image140.wmf]1

,

0,

=

-

K

k

K

, that minimize the expected overall rate
[image: image141.wmf]R

 can be obtained by solving the equation system given by eqs.
(11)

 for (12)

 subject to the conditions (9)

 and GOTOBUTTON GrindEQequation10 . This can be achieved with the following iterative algorithm.

Algorithm 1:

1. Partition the interval
[image: image143.wmf](0,0.5]

 into
[image: image144.wmf]K

 arbitrary intervals
[image: image145.wmf]]

,

(

=

1

+

k

k

k

p

p

I

 with
[image: image146.wmf]0

=

0

p

,
[image: image147.wmf]0.5

=

K

p

, and
[image: image148.wmf]1

<

+

k

k

p

p

 for all
[image: image149.wmf]1

,

0,

=

-

K

k

K

 in a way that the conditions
(11)

 are obeyed for all GOTOBUTTON GrindEQequation12 .

2. Update the representatives
[image: image151.wmf]k

I

p

 with
[image: image152.wmf]1

,

0,

=

-

K

k

K

 according to eq. (9)

3. Update the interval borders
[image: image153.wmf]k

p

 with
[image: image154.wmf]1

,

1,

=

-

K

k

K

 according to eq. (12)

4. Repeat the previous two steps until convergence
Fig. 3 shows an example for the optimal interval discretization using the described algorithm. For this example, we assumed a uniform probability distribution
[image: image155.wmf]2

=

)

(

p

f

 for
[image: image156.wmf]0.5

<

0

£

p

 and partitioned the probability interval
[image: image157.wmf](0,0.5]

 into
[image: image158.wmf]4

=

K

 intervals. It can be seen that the probability interval discretization leads to a piecewise linear approximation
[image: image159.wmf])

(

p

A

 of the binary entropy function
[image: image160.wmf])

(

p

H

 with
[image: image161.wmf])

(

)

(

p

H

p

A

³

 for all
[image: image162.wmf](0,0.5]

Î

p

.

[image: image163.wmf]0.0

0.2

0.4

0.6

0.8

1.0

0

0.1

0.2

0.3

0.4

0.5

probability p

expected rate per bin [bit]

entropy limit

approximation by

interval discretization

probability

interval

interval

representative

Fig. 3: Optimal probability interval discretization into
[image: image164.wmf]4

=

K

 intervals
 assuming a uniform probability distribution in
[image: image165.wmf](0,0.5]

As measure for the impact of the interval discretization on the coding efficiency the expected overall rate increase relative to the entropy limit

[image: image166.wmf]1

)

(

)

(

=

0.5

0

-

ò

p

d

p

f

p

H

R

r

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (14)

can be used. For the particular example of Fig. 3, the expectation value of the entropy
[image: image167.wmf]p

d

p

f

p

H

H

)

(

)

(

=

0.5

0

ò

 is equal to
[image: image168.wmf]2)

ln

1/(2

 bit per bin and the rate overhead
[image: image169.wmf]r

 is equal to 1.01 %. Table 2 lists rate overheads
[image: image170.wmf]uni

r

 and
[image: image171.wmf]lin

r

 for the uniform probability distribution and a linear increasing probability distribution
[image: image172.wmf]p

p

f

8

=

)

(

 with
[image: image173.wmf](0,0.5]

Î

p

, respectively, for selected numbers of intervals
[image: image174.wmf]K

.

Table 2: Rate overhead vs. the number of probability intervals for the uniform and a linear increasing probability distribution

	
[image: image175.wmf]K

	1
	2
	4
	8
	12
	16

	
[image: image176.wmf]uni

r

 [%]
	12.47
	3.67
	1.01
	0.27
	0.12
	0.07

	
[image: image177.wmf]lin

r

 [%]
	5.68
	1.77
	0.50
	0.14
	0.06
	0.04

The investigations in this section showed that the discretization of the LPB probability interval
[image: image178.wmf](0,0.5]

 into a small number of intervals with a fixed probability (e.g., 8 to 10 intervals) has a very small impact on the coding efficiency.

2.3 Entropy Coding for Probability Intervals

In the following, we first show how an simple code can be designed for fixed probabilities. Given these results, we develop an algorithms that jointly optimizes the code design and the partitioning of the LPB probability interval
[image: image179.wmf](0,0.5]

.

2.3.1 Entropy coding with fixed probabilities

The entropy coding for fixed probabilities
[image: image180.wmf]k

I

p

p

=

 can be done using arithmetic coding or variable length coding. For the latter case, the following approach appears to be simple and very efficient.

[image: image181.wmf]q

p

p

2

p q

q

2

q

3

q p

q

2

p

0.2383

0.1461

0.2356

0.2356

0.1444

10

111

00

01

110

p

l

Code

Fig. 4: Tree of binary events for an LPB probability of
[image: image182.wmf]0.38

=

p

 and an associated variable length code obtained by the Huffman algorithm

We consider a binary entropy coding scheme by which a variable number of bins is mapped onto variable length codewords. For unique decodability, the inverse mapping of a codeword to a bin sequence must be unique. And since we want to design a code that approaches the entropy limit as close as possible, we constrain our considerations to bijective mappings. Such a bijective mapping can be represented by a binary tree where all leaf nodes are associated with codewords, as depicted in Fig. 4. The tree edges represent binary events. In the example of Fig. 4, the lower edges represent the LPB bin value and the upper edges represent the MPB bin value. The binary tree represents a prefix code for the bins if it is a full binary tree, i.e., if every node is either a leaf or has two descendants. Each leaf node is associated with a probability based on the given LPB probability
[image: image183.wmf]p

. The root node has the probability
[image: image184.wmf]1

=

root

p

. The probability for all other nodes is obtained by multiplying the probability of the corresponding ancestor with
[image: image185.wmf]p

 for the LPB descendants and
[image: image186.wmf]p

q

-

1

=

 for the MPB descendants. Each leaf node
[image: image187.wmf]l

L

 is characterized by the number of LPB edges
[image: image188.wmf]l

a

 and the number MPB edges
[image: image189.wmf]l

b

 from the root node to the leaf node. For a particular LPB probability
[image: image190.wmf]p

, the probability
[image: image191.wmf]l

p

 for a leaf node
[image: image192.wmf]}

,

{

=

l

l

l

b

a

L

 is equal to

[image: image193.wmf]l

b

l

a

l

p

p

p

)

(1

=

-

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (15)

The binary tree
[image: image194.wmf]T

 is fully characterized by the number of leaf nodes
[image: image195.wmf]L

 and the associated pairs
[image: image196.wmf]}

,

{

l

l

b

a

 with
[image: image197.wmf]1

,

0,

=

-

L

l

K

.

Given a full binary tree
[image: image198.wmf]T

 and a LPB probability
[image: image199.wmf]p

, the optimal assignment of codewords to the leaf nodes can be obtained by the Huffmann algorithm. The resulting variable number of bits to variable length codewords (VNB2VLC) mapping
[image: image200.wmf]C

 is characterized by the number of codewords
[image: image201.wmf]L

, which is identical to the number of leaf nodes, and the tuples
[image: image202.wmf]}

,

,

{

l

l

l

l

b

a

 for
[image: image203.wmf]1

,

0,

=

-

L

l

K

, where
[image: image204.wmf]l

l

 represents the codeword length that is associated with the corresponding leaf node
[image: image205.wmf]}

,

{

=

l

l

l

b

a

L

. It should be noted that there are multiple possibilities for the codeword assignment given the codeword lengths
[image: image206.wmf]}

{

l

l

 and the actual codeword assignment is not important as long as the codewords represent a uniquely decodable prefix code. The expected rate
[image: image207.wmf])

,

(

C

p

R

 in bits per bin for a given code
[image: image208.wmf]C

 and an LPB probability
[image: image209.wmf]p

 is the ratio of the expected codeword length and the expected number of bins per codeword

[image: image210.wmf])

(

)

(1

)

(1

=

)

(

=

)

,

(

1

0

=

1

0

=

1

0

=

1

0

=

l

l

l

b

l

a

L

l

l

l

b

l

a

L

l

l

l

l

L

l

l

l

L

l

b

a

p

p

l

p

p

b

a

p

l

p

C

p

R

+

-

-

+

å

å

å

å

-

-

-

-

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (16)

The code design is often limited by factors as the maximum number of codewords
[image: image211.wmf]L

, the maximum number of bins per codeword, or the maximum codeword length, or it is restricted to codes of particular structures (e.g., for allowing optimized parsing). If we assume that the set
[image: image212.wmf]C

S

 of usuable codes for a particular application is given, the optimum code
[image: image213.wmf]C

S

C

Î

*

 for a particular LPB probability
[image: image214.wmf]p

 can be found by minimizing the expected rate
[image: image215.wmf])

,

(

C

p

R

[image: image216.wmf])

,

(

min

arg

=

)

(

C

p

R

p

C

C

S

C

Î

"

*

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (17)

As faster alternative, the minimization can also proceed over a given set of binary trees
[image: image217.wmf]T

S

 and for each tree only one VNB2VLC code
[image: image218.wmf]C

 that is obtained by the Huffmann algorithm is considered. As an example, we designed VNB2VLC codes for various LPB probabilities
[image: image219.wmf]p

 by considering all binary trees
[image: image220.wmf]T

 for which the number of leaf nodes
[image: image221.wmf]L

 is less than or equal to a given maximum
[image: image222.wmf]m

L

. In Fig. 5, the relative rate increase
[image: image223.wmf])

(

))/

(

,

(

=

))

(

,

(

p

H

p

C

p

R

p

C

p

*

*

r

 is plotted over the LPB probability
[image: image224.wmf]p

 for selected maximum table sizes
[image: image225.wmf]m

L

. The rate increase
[image: image226.wmf])

(

p

r

 can usually be reduced by allowing larger table sizes. For larger LPB probabilities, a small table size
[image: image227.wmf]L

 of 8 to 16 codewords is usually sufficient for keeping the rate increase
[image: image228.wmf])

(

p

r

 reasonably small, but for smaller LPB probabilities (e.g.,
[image: image229.wmf]0.1

<

p

), larger table sizes
[image: image230.wmf]L

 are required.

[image: image231.emf]0%

1%

2%

3%

4%

5%

0 0.1 0.2 0.3 0.4 0.5

LPB probability p

relative expected rate overhead

Lm=3

Lm=4

Lm=5

Lm=6

Lm=8

Lm=16

Fig. 5: Relative bit rate increase
[image: image232.wmf])

,

(

C

p

r

 for optimal codes
[image: image233.wmf]C

 given a maximum number of table entries
[image: image234.wmf]m

L

2.3.2 Combined code design and interval partitioning

In the previous sections, we considered the optimal probability discretization assuming optimal codes and the code design for fixed LPB probabilities. But since, in general, we cannot achieve the entropy limit with real VNB2VLC codes of limited table sizes, the code design and the partitioning of the LPB probability interval
[image: image235.wmf](0,0.5]

 must be jointly considered for obtaining an optimized entropy coding design.

For a given interval
[image: image236.wmf]]

,

(

=

1

+

k

k

k

p

p

I

, a code
[image: image237.wmf]k

C

 of a given set
[image: image238.wmf]C

S

 in an optimal code
[image: image239.wmf]*

k

C

 if it minimizes the expected rate
[image: image240.wmf]p

d

p

f

C

p

R

R

k

k

p

k

p

)

(

)

,

(

=

1

ò

+

 for the given interval.

[image: image241.wmf]p

d

p

f

C

p

R

C

k

k

p

k

p

C

S

k

C

k

)

(

)

,

(

min

arg

=

1

ò

+

Î

"

*

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (18)

For practical designs, the minimization of the integral in eq.
(18)

 can be simplified, with a minor impact on the coding efficiency, by first determining an optimal representative probability GOTOBUTTON GrindEQequation19 for the interval
[image: image243.wmf]k

I

 according to eq.
(9)

 and then choosing the optimal code GOTOBUTTON GrindEQequation10 of the given set
[image: image245.wmf]C

S

 for the representive probability
[image: image246.wmf]*

k

I

p

 according to eq. (17)

.

Optimal interval borders
[image: image247.wmf]k

p

, with
[image: image248.wmf]1

,

1,

=

-

K

k

K

, given the set of codes
[image: image249.wmf]k

C

, with
[image: image250.wmf]1

,

0,

=

-

K

k

K

, can be derived by minimizing the expected overall rate

[image: image251.wmf]÷

÷

ø

ö

ç

ç

è

æ

ò

å

+

-

p

d

p

f

C

p

R

C

p

R

R

k

k

p

k

p

K

k

k

k

)

(

)

,

(

=

})

{

},

({

=

1

1

0

=

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (19)

Setting the first derivatives with respect to the interval borders equal to zero,
[image: image252.wmf]0

=

R

p

k

¶

¶

, for
[image: image253.wmf]1

,

1,

=

-

K

k

K

, yields

[image: image254.wmf])

,

(

=

)

,

(

=

1

k

k

k

k

k

k

C

p

R

C

p

R

with

p

p

-

*

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (20)

Similarly as for eq.
(12)

, it can be shown that GOTOBUTTON GrindEQequation13 is always an optimal solution, but depending on the probability distribution
[image: image256.wmf])

(

p

f

 further optimal solutions might exist. Hence, an optimal interval border
[image: image257.wmf]*

k

p

 between two intervals
[image: image258.wmf]1

-

k

I

 and
[image: image259.wmf]k

I

 with given associated codes
[image: image260.wmf]1

-

k

C

 and
[image: image261.wmf]k

C

, respectively, is the intersection point of the functions
[image: image262.wmf])

,

(

1

-

k

C

p

R

 and
[image: image263.wmf])

,

(

k

C

p

R

.

Consequently, the following iterative algorithm can be used for jointly deriving the probability interval partitioning and the associated codes given the number
[image: image264.wmf]K

 of probability intervals, the set of possible codes
[image: image265.wmf]C

S

, and the probability distribution
[image: image266.wmf])

(

p

f

, with
[image: image267.wmf](0,0.5]

Î

p

.

Algorithm 2:

1. Derive initial probability interval boundaries
[image: image268.wmf]k

p

, with
[image: image269.wmf]K

k

,

0,

=

K

, using algorithm 1 specified in sec. 2.2
2. Derive representatives
[image: image270.wmf]k

I

p

 for the probability intervals
[image: image271.wmf]k

I

, with
[image: image272.wmf]1

,

0,

=

-

K

k

K

, according to eq. (9)

3. Derive codes
[image: image273.wmf]C

k

S

C

Î

 for the interval representatives
[image: image274.wmf]k

I

p

, with
[image: image275.wmf]1

,

0,

=

-

K

k

K

, according to eq. (17)

4. Update the interval borders
[image: image276.wmf]k

p

, with
[image: image277.wmf]1

,

1,

=

-

K

k

K

, according to eq. (20)

5. Repeat the previous three steps until convergence
The steps 2 and 3 in algorithm 2 could also be replaced by a direct derivation of the codes
[image: image278.wmf]C

k

S

C

Î

, with
[image: image279.wmf]1

,

0,

=

-

K

k

K

, based on the interval borders
[image: image280.wmf]k

p

, with
[image: image281.wmf]K

k

,

0,

=

K

, according to eq. 2.3.1(18)

. And, as mentioned in sec. GOTOBUTTON GrindEQequation19 , the minimization in step 3 can also proceed over a given set of binary trees
[image: image282.wmf]T

S

 where for each binary tree
[image: image283.wmf]T

 only one VNB2VLC code
[image: image284.wmf]k

C

 obtained by the Huffmann algorithm is considered.

As an example, we jointly derived the partitioning into
[image: image285.wmf]12

=

K

 probability intervals and corresponding VNB2VLC codes using algorithm 2. At this, the minimization in step 3 of the algorithm was replaced with an equivalent minimization over a given set of binary trees
[image: image286.wmf]T

S

 where the evaluated code
[image: image287.wmf]C

 for each tree
[image: image288.wmf]T

 was obtained by the Huffmann algorithm. We considered trees
[image: image289.wmf]T

 with a maximum number of
[image: image290.wmf]65

=

m

L

 leaf nodes and hence codes
[image: image291.wmf]C

 with up to 65 table entries. All binary trees
[image: image292.wmf]T

 with up to 16 leaf nodes have been evaluated in the minimization; for trees with more than 16 leaf nodes, we employed a suboptimal search given the best results for trees with a smaller number of leaf nodes.

[image: image293.emf]0.000

0.002

0.004

0.006

0.008

0 0.1 0.2 0.3 0.4 0.5

LPB probability p

expected rate increase [bits per bin]

optimal code assumption (theoretical)

optimal code assumption (theoretical) with additional constraint

real VNB2VLC codes (with Lm=65)

Fig. 6: Rate increase for the theoretically optimal probability interval partitioning into
[image: image294.wmf]12

=

K

 intervals
(cp. sec. 2.2) and a real design with VNB2VLC codes with a maximum number of
[image: image295.wmf]65

=

m

L

 table entries

In Fig. 6, the expected rate increase relative to the entropy limit
[image: image296.wmf])

(

)

(

=

)

(

p

H

p

R

p

R

-

D

 for the code design example is plotted over the LPB probability
[image: image297.wmf]p

. As comparison, we also plotted the expected rate increase
[image: image298.wmf]R

D

 for the theoretically optimal probability interval discretization (as developed in sec. 2.2) and the theoretically optimal probability discretization with the additional constraint
[image: image299.wmf]0.5

=

1

-

K

I

p

 inside the diagram. It can be seen that the joint probability interval discretization and VNB2VLC code design leads to a shifting of the interval borders (the interval borders
[image: image300.wmf]k

p

, with
[image: image301.wmf]1

,

1,

=

-

K

k

K

, are given by the local maxima of the
[image: image302.wmf])

(

p

R

D

 curves). The relative expected overall rate increase relative to the entropy limit for the design example with real VNB2VLC codes is
[image: image303.wmf]0.24

=

r

%, when assuming a uniform probability distribution
[image: image304.wmf])

(

p

f

. The corresponding relative rate increases for the theoretically optimal probability interval discretization and the theoretically optimal probability discretization with the additional constraint
[image: image305.wmf]0.5

=

1

-

K

I

p

 are
[image: image306.wmf]0.12

=

r

% and
[image: image307.wmf]0.13

=

r

%, respectively.

2.3.3 Codeword termination

When coding a finite sequence of symbols
[image: image308.wmf]}

,

,

{

1

0

-

N

s

s

K

, each of the
[image: image309.wmf]K

 binary encoders processes a finite sequence of coding bins
[image: image310.wmf]k

c

k

B

c

c

k

b

b

}

,

,

{

=

1

0

-

K

b

, with
[image: image311.wmf]1

,

0,

=

-

K

k

K

. And it has been to be ensured that, for each of the
[image: image312.wmf]K

 binary encoders, all coding bins of the sequence
[image: image313.wmf]k

c

k

B

c

c

k

b

b

}

,

,

{

=

1

0

-

K

b

 can be reconstructed given the codeword or sequence of codewords
[image: image314.wmf])

(

c

k

k

c

.

When employing arithmetic coding, the arithmetic codeword for the sequence of coding bins has to be terminated in a way, that all coding bins can be decoded given the codeword. For the VNB2VLC codes described above, the bins at the end of the sequence
[image: image315.wmf]c

k

b

 may not represent a bin sequence that is associated with a codeword. In such a case, any codeword that contains the remaining bin sequence as prefix can be written. The overhead can be minimized, if the corresponding codeword that has the minimum length (or one of these codewords) is chosen. At the decoder side, the additionally read bins at the end of the bin sequence, which can be identified given the bitstream syntax and binarization schemes, are discarded.

2.3.4 Simple code design example

For illustration purposes, we consider the simple example of a source
[image: image316.wmf]}

{

s

 with three letters and fixed associated probabilities of
[image: image317.wmf]0.7

=

)

(

0

a

p

s

,
[image: image318.wmf]0.18

=

)

(

1

a

p

s

, and
[image: image319.wmf]0.12

=

)

(

2

a

p

s

. The corresponding ternary choice tree can be converted into a full binary tree as shown in Fig. 7.

[image: image320.wmf]0.7

0.18

0.12

0.7

0.18

0.12

0.7

0.3

0.6

0.4

Fig. 7: Example for conversion of a ternary choice tree into a full binary choice tree

A binarization for the full binary tree in Fig. 7 is given in Table 2. The ternary symbol pmf
[image: image321.wmf]s

p

 is converted into two binary pmfs
[image: image322.wmf](0.7,0.3)

=

0

b

p

 and
[image: image323.wmf](0.6,0.4)

=

1

b

p

. For each symbol
[image: image324.wmf]s

 in the bit stream, the bin
[image: image325.wmf]0

b

 is present. When
[image: image326.wmf]0

b

 is equal to
[image: image327.wmf]0

, also
[image: image328.wmf]1

b

 is present. Note that the binarization given in Table 2 is identical to an optimal single‑letter Huffman code for the source
[image: image329.wmf]s

.

Table 3: Binarization of a three letter source. The LPB probabilities
[image: image330.wmf]LPB

p

 are
[image: image331.wmf]0.3

 for the first bin
 and
[image: image332.wmf]0.4

 for the second bin

	 Symbol
[image: image333.wmf]i

a

	 Probability
[image: image334.wmf])

(

i

a

p

	 Bin
[image: image335.wmf]0

b

	 Bin
[image: image336.wmf]1

b

	
[image: image337.wmf]0

a

	0.7
	1
	

	
[image: image338.wmf]1

a

	0.18
	0
	1

	
[image: image339.wmf]2

a

	0.12
	0
	0

	 LPB Prob.
	
[image: image340.wmf]0)

=

(

=

j

LPB

b

p

p

	0.3
	0.4

The entropy for the source
[image: image341.wmf]s

 is

[image: image342.wmf]bit/symbol

H

H

H

1726

.

1

(0.6,0.4)

0.3

(0.7,0.3)

=

0.12)

(0.7,0.18,

=

+

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (21)

The average code word length of the single-letter Huffman code is given as

[image: image343.wmf]symbol

bit

p

HC

i

i

M

i

HC

/

1.3

=

=

1

0

=

l

l

å

-

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (22)

corresponding to a redundancy of
[image: image344.wmf]0.1274

=

HC

r

 bit/symbol or
[image: image345.wmf]10.87%

 expected rate overhead.

For the particular binarization example with fixed pmfs, the bins
[image: image346.wmf]0

b

 and
[image: image347.wmf]1

b

 already represent coding bins, since for both bins the LPB value
[image: image348.wmf]j

LPB

b

 is equal to 0. The distribution
[image: image349.wmf])

(

s

f

 of the LPB probabilities is discrete, with
[image: image350.wmf]0

=

)

(

p

f

 except for
[image: image351.wmf]0.3

=

p

 and
[image: image352.wmf]0.4

=

p

. Consequently, the optimal probability discretization leads to
[image: image353.wmf]2

=

K

 intervals with the representatives
[image: image354.wmf]0.3

=

0

I

p

 and
[image: image355.wmf]0.4

=

1

I

p

. The interval border
[image: image356.wmf]1

p

 between these intervals can be arbitrarily chosen in
[image: image357.wmf][0.3,0.4)

.

For encoding the source, he sequence of source symbols is binarized into a sequence of bins. The bin
[image: image358.wmf]0

b

 is transmitted for every source symbol. The bin
[image: image359.wmf]1

b

 is only transmitted when
[image: image360.wmf]0

=

0

b

. The bins
[image: image361.wmf]0

b

 and
[image: image362.wmf]1

b

 are coded separately with constant LPB probabilities of
[image: image363.wmf]0.3

=

0

I

p

 and
[image: image364.wmf]0.4

=

1

I

p

, respectively.

An efficient coding of a binary alphabet with fixed probability can be achieved by a simple VNB2VLC mapping. Examples for VNB2VLC mappings with small coding tables for the LPB probabilities
[image: image365.wmf]0.3

=

LPB

p

 and
[image: image366.wmf]0.4

=

LPB

p

 are given in Table 4 and Table 5, respectively. The VNB2VLC mapping for
[image: image367.wmf]0.3

=

LPB

p

 yields a redundancy of
[image: image368.wmf]bin

bit

/

0.0069

 or
[image: image369.wmf]0.788%

. For the LPB probability of
[image: image370.wmf]0.4

=

LPB

p

, the redundancy is
[image: image371.wmf]bin

bit

/

0.0053

 or
[image: image372.wmf]0.548%

.

Table 4: Bin tree and codes for an LPB probability of
[image: image373.wmf]0.3

=

LPB

p

. The redundancy of this code is
[image: image374.wmf]0.788%

	 Bin Tree
	 Probability
	 Codes

	
[image: image375.wmf]1

'1

¢

	
[image: image376.wmf]0.49

=

0.7

2

	
[image: image377.wmf]1

'

¢

	
[image: image378.wmf]1

'0

¢

	
[image: image379.wmf]0.21

=

0.3

0.7

×

	
[image: image380.wmf]1

'0

¢

	
[image: image381.wmf]0

'

¢

	
[image: image382.wmf]0.3

	
[image: image383.wmf]0

'0

¢

Table 5: Bin tree and codes for an LPB probability of
[image: image384.wmf]0.4

=

LPB

p

. The redundancy of this code is
[image: image385.wmf]0.548%

	 Bin Tree
	 Probability
	 Code Tree

	
[image: image386.wmf]1

'11

¢

	
[image: image387.wmf]0.216

=

0.6

3

	
[image: image388.wmf]1

'1

¢

	
[image: image389.wmf]0

'11

¢

	
[image: image390.wmf]0.144

=

0.4

0.6

2

×

	
[image: image391.wmf]1

'00

¢

	
[image: image392.wmf]0

'1

¢

	
[image: image393.wmf]0.24

=

0.4

0.6

×

	
[image: image394.wmf]1

'1

¢

	
[image: image395.wmf]1

'0

¢

	
[image: image396.wmf]0.24

=

0.6

0.4

×

	
[image: image397.wmf]1

'0

¢

	
[image: image398.wmf]0

'0

¢

	
[image: image399.wmf]0.16

=

0.4

2

	
[image: image400.wmf]0

'00

¢

The overall expected rate incurred by the new coding method is

[image: image401.wmf]symbol

bit

b

b

NC

/

1.181

=

0.3

=

1

0

l

l

l

×

+

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (23)

The overall redundancy is
[image: image402.wmf]0.73%

 relative to the entropy limit, which represents a significant improvement in comparison to the single-letter Huffman code.

It could be argued that a similar coding efficiency improvement could be obtained by creating a run-length code. For the above example, we could construct a run-length code for the most probable symbol by considering runs of up to two symbols. Each of the events
[image: image403.wmf]}

,

,

,

,

{

2

1

2

0

1

0

0

0

a

a

a

a

a

a

a

a

 would be associated with a separate codeword. Such a code yields a redundancy of
[image: image404.wmf]1.34%

 relative to the entropy limit. Actually, the VNB2VLC codes can be considered as a generalization of run-length codes for binary symbols (the VNB2VLC code in Table 4 does effectively represent a run-length code). For a single symbol alphabet with fixed probabilities, a similar coding efficiency as for the presented approach can also be achieved by creating a code that maps a variable number of source symbols to variable length codewords. The main advantage of the presented approach is its flexibility in mapping arbitrary source symbol sequences with fixed or adapative probability estimates to a small number of simple binary coders that are operated with fixed LPB probabilities.

2.4 Unique Decodability

With the presented entropy coding scheme, the coding of a sequence of source symbols
[image: image405.wmf]}

,

,

{

=

1

0

-

N

s

s

K

s

 consists of the following three basic steps:

· symbol binarization
[image: image406.wmf])

(

=

}

,

,

{

=

1

0

s

b

b

B

b

b

g

-

K

 yielding a sequence of bins
[image: image407.wmf]}

,

,

{

=

1

0

-

B

b

b

K

b

· conversion of the sequence of bins
[image: image408.wmf]b

 into a sequence of coding bins
[image: image409.wmf])

(

=

}

,

,

{

=

1

0

b

b

c

c

B

c

c

b

b

g

-

K

· binary entropy coding of the sequence of coding bins
[image: image410.wmf]}

,

,

{

=

1

0

c

B

c

c

b

b

-

K

b

 using probability interval discretization and
[image: image411.wmf]K

 fixed binary coders

The symbol sequence
[image: image412.wmf]}

,

,

{

=

1

0

-

N

s

s

K

s

 is uniquely decodable, if the sequence of coding bins
[image: image413.wmf]}

,

,

{

=

1

0

c

B

c

c

b

b

-

K

b

 is uniquely decodable and the mappings
[image: image414.wmf]b

g

 and
[image: image415.wmf]c

g

 are invertible.

Let
[image: image416.wmf]e

g

 notify the encoder mapping of a sequence of one or more coding bins
[image: image417.wmf]}

,

{

=

0

K

c

c

b

b

 onto a sequence of one or more codewords
[image: image418.wmf]}

,

{

=

)

(

0

K

c

c

b

c

[image: image419.wmf])

(

=

)

(

c

e

c

b

b

c

g

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (24)

For unique decodability of a sequence of coding bins
[image: image420.wmf]c

b

 given the sequence of codewords
[image: image421.wmf])

(

c

b

c

, the encoder mapping
[image: image422.wmf]e

g

 must have the property that a unique codeword
[image: image423.wmf])

(

c

b

c

 is assigned to each possible sequence of coding bins
[image: image424.wmf]c

b

:

[image: image425.wmf])

(

)

(

,

c

j

c

i

c

j

c

i

c

j

c

i

b

c

b

c

b

b

b

b

¹

Þ

¹

"

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (25)

This property is always fulfilled when arithmetic codes or prefix codes are used. It is particularly fulfilled for the VNB2VLC codes described in sec. 2.3.1 (including the codeword termination described in sec. 2.3.3), since the VNB2VLC codes represent prefix codes for variable numbers of bins.

However, in the presented entropy coding approach, the sequence of coding bins
[image: image426.wmf]c

b

 is partitioned into
[image: image427.wmf]K

 sub-sequences
[image: image428.wmf]c

k

b

, with
[image: image429.wmf]1

,

0,

=

-

K

k

K

,

[image: image430.wmf])

(

=

}

,

,

{

1

0

c

p

c

K

c

b

b

b

g

-

K

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (26)

and to each of the sub-sequences
[image: image431.wmf]c

k

b

, a sequence of codewords
[image: image432.wmf])

(

c

k

k

b

c

 is assigned using a particular encoder mapping
[image: image433.wmf]k

e

g

. Consequently, the condition on unique decodability has to be extended. A sequence of coding bins
[image: image434.wmf]c

b

 is uniquely decodable given
[image: image435.wmf]K

 sequences of codewords
[image: image436.wmf])

(

c

k

k

b

c

, with
[image: image437.wmf]1

,

0,

=

-

K

k

K

, if each sub-sequence of coding bins
[image: image438.wmf]c

k

b

 is uniquely decodable given the corresponding codeword
[image: image439.wmf])

(

c

k

k

b

c

 and the partitioning rule
[image: image440.wmf]p

g

 is known to the decoder. The partitioning rule
[image: image441.wmf]p

g

 is given by the LPB probability interval discretization
[image: image442.wmf]}

{

k

I

 and the LPB probabilities
[image: image443.wmf]j

LPB

p

 that are associated with the coding bins
[image: image444.wmf]c

j

b

, with
[image: image445.wmf]1

,

0,

=

-

B

j

K

. Hence, the LPB probability interval discretization
[image: image446.wmf]}

{

k

I

 has to be know at the decoder side and the LPB probability
[image: image447.wmf]j

LPB

p

 for each coding bin
[image: image448.wmf]c

j

b

, with
[image: image449.wmf]1

,

0,

=

-

B

j

K

, has to derived in the same way at encoder and decoder side.

For the mapping
[image: image450.wmf]c

g

 of a sequence of bins
[image: image451.wmf]b

 onto a sequence of coding bins
[image: image452.wmf]c

b

, each single
[image: image453.wmf]j

b

, with
[image: image454.wmf]1

,

0,

=

-

B

j

K

, is converted by the binary mapping
[image: image455.wmf]j

LPB

j

j

j

c

c

j

b

b

b

b

Å

=

)

(

=

g

. At the decoder side, the bin sequence
[image: image456.wmf]b

 can be derived by the binary mappings

[image: image457.wmf]j

LPB

c

j

c

j

j

c

j

b

b

b

b

Å

-

=

)

(

)

(

=

1

g

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (27)

with
[image: image458.wmf]1

,

0,

=

-

B

j

K

. If the LPB value
[image: image459.wmf]j

LPB

b

 for each bin
[image: image460.wmf]j

b

 is derived in the same way at encoder and decoder side, these mappings
[image: image461.wmf]1

)

(

-

j

c

g

 represent the inverses of the corresponding encoder mappings
[image: image462.wmf]j

c

g

, since

[image: image463.wmf]j

j

j

LPB

j

LPB

j

j

LPB

c

j

b

b

b

b

b

b

b

=

0

=

=

Å

Å

Å

Å

 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (28)

and hence, the conversion
[image: image464.wmf]b

g

 of a sequence of bins
[image: image465.wmf]b

 into a sequence of coding bins
[image: image466.wmf]c

b

 is invertible.

Finally, we investigate the invertibility of the binarization
[image: image467.wmf])

(

=

s

b

b

g

 by which each symbol
[image: image468.wmf]i

s

, with
[image: image469.wmf]1

,

0,

=

-

N

i

K

, is mapped onto a bin sequence
[image: image470.wmf])

(

=

i

i

b

i

s

g

b

. A symbol
[image: image471.wmf]i

s

 can be uniquely decoded given the corresponding bin sequence
[image: image472.wmf]i

b

 if the binarization mapping
[image: image473.wmf]i

b

g

 assigns a different bin sequence
[image: image474.wmf]j

m

b

 to each letter
[image: image475.wmf]i

m

a

 of the alphabet
[image: image476.wmf]i

A

 for the symbol
[image: image477.wmf]i

s

. However, this condition is not sufficient, since the partitioning of the bin sequence
[image: image478.wmf]}

,

,

{

=

1

0

-

B

b

b

K

b

 into bin sequences
[image: image479.wmf]i

b

 that correspond to the symbols
[image: image480.wmf]i

s

, with
[image: image481.wmf]1

,

0,

=

-

N

i

K

, is not known to the decoder. A sufficient condition is given, when for each symbol
[image: image482.wmf]i

s

, the bin sequences
[image: image483.wmf]j

m

b

 that are associated with the letters
[image: image484.wmf]i

m

a

 of the corresponding alphabet
[image: image485.wmf]i

A

 form a prefix code and the binarization mappings
[image: image486.wmf]i

b

g

 for each symbol
[image: image487.wmf]i

s

, with
[image: image488.wmf]1

,

0,

=

-

N

i

K

, are known at the decoder side.

The conditions of unique decodability for the presented entropy coding approach can be summarized as follows:

· the binarization mappings
[image: image489.wmf]i

b

g

 represent prefix codes and are known to the decoder (in symbol coding order)

· the probability models
[image: image490.wmf])

,

(

j

LPB

j

LPB

p

b

 for all bins
[image: image491.wmf]j

b

 are derived in the same way at encoder and decoder side

· the partitioning of the LPB probability interval
[image: image492.wmf](0,0.5]

 into
[image: image493.wmf]K

 intervals
[image: image494.wmf]k

I

, with
[image: image495.wmf]1

,

0,

=

-

K

k

K

, is known to the decoder

· the mapping
[image: image496.wmf]k

e

g

 for each probability interval
[image: image497.wmf]k

I

, with
[image: image498.wmf]1

,

0,

=

-

K

k

K

, represents a uniquely decodable code

2.5 Overall encoder and decoder design

[image: image499.wmf]bin buffer

bin encoder

binarizer

probability

estimator and

assigner

coding bin

deriver

probability

quantizer

(

selector

)

c

s

s

b

c

b

binary encoder k

=

0

b

c

{

b

c

}

c

(

{

b

c

}

)

bin buffer

bin encoder

binary encoder k

=

1

b

c

{

b

c

}

c

(

{

b

c

}

)

bin buffer

bin encoder

binary encoder k

=

K

-

1

b

c

{

b

c

}

c

(

{

b

c

}

)

binary decoder k

=

0

c

(

{

b

c

}

)

bin decoder

{

b

c

}

bin buffer

probability

quantizer

(

selector

)

b

c

binary decoder k

=

1

c

(

{

b

c

}

)

bin decoder

{

b

c

}

bin buffer

b

c

binary decoder k

=

K

-

1

c

(

{

b

c

}

)

bin decoder

{

b

c

}

bin buffer

b

c

b

c

b

LPB

p

LPB

bin deriver

b

c

probability

estimator and

assigner

p

LPB

b

LPB

binarizer

c

b

b

s

c

s

transmission

or storage

(

separate or

 interleaved

)

Fig. 8: Block diagram for an example encoder (left part) and decoder (right part)

In the following, we describe examples for the overall encoder and decoder design in more detail. We concentrate on coding schemes, in which the probability models
[image: image500.wmf]}

,

{

LPB

LPB

p

b

 for the bins are directly estimated at encoder and decoder side and the
[image: image501.wmf]K

 binary coders use VNB2VLC mappings described in sec. 2.3.1. Each source symbol
[image: image502.wmf]s

 shall be associated with a symbol category
[image: image503.wmf]s

c

, which determines the type of the symbol including its range of values. The order of symbols and associated symbol categories shall be given by the syntax, which is presumed to be known at encoder and decoder side.

2.5.1 Overview

The block diagram for an example encoder and decoder design is illustrated in Fig. 8. At the encoder side, the symbols
[image: image504.wmf]s

 with associated symbol categories
[image: image505.wmf]s

c

 are fed into the binarizer, which converts each symbol
[image: image506.wmf]s

 into a sequence of bins
[image: image507.wmf])

(

=

s

s

c

b

s

g

b

. The used binarization scheme
[image: image508.wmf]s

c

b

g

 is determined based on the symbol category
[image: image509.wmf]s

c

. In addition, the binarizer associates each bin
[image: image510.wmf]b

 of a bin sequence
[image: image511.wmf]s

b

 with a probability model indication
[image: image512.wmf]b

c

, which specifies the probability model that is used for coding the bin
[image: image513.wmf]b

. The probability model indication
[image: image514.wmf]b

c

 can be derived based on the symbol category
[image: image515.wmf]s

c

, the bin number of the current bin inside the bin sequence
[image: image516.wmf]s

b

, and/or the values of already coded bins and symbols.

The probability estimator and assigner maintains multiple probability models, which are characterized by pairs of values
[image: image517.wmf]}

,

{

LPB

LPB

p

b

. It received bins
[image: image518.wmf]b

 and associated probability model indications
[image: image519.wmf]b

c

 from the binarizer, and forwards the LPB value
[image: image520.wmf]LPB

b

 and the LPB probability
[image: image521.wmf]LPB

p

 of the indicated probability model to the coding bin deriver and the probability quantizer, respectively. Thereafter, the corresponding probability model
[image: image522.wmf]}

,

{

LPB

LPB

p

b

 is updated using the value of the received bin
[image: image523.wmf]b

.

The coding bin deriver receives bins
[image: image524.wmf]b

 and associated LPB values
[image: image525.wmf]LPB

b

 from the binarizer and the probability estimator and assigner, respectively, and sends coding bins
[image: image526.wmf]c

b

, which are derived by
[image: image527.wmf]LPB

c

b

b

b

Å

=

, to the probability quantizer. The probability quantizer forwards each coding bin
[image: image528.wmf]c

b

 to one of the
[image: image529.wmf]K

 binary encoders. It contains information about the LPB probability interval quantization
[image: image530.wmf]}

{

k

I

. The LPB probability
[image: image531.wmf]LPB

p

, which is associated with a coding bin
[image: image532.wmf]c

b

 and received from the probability estimator and assigner, is compared to the interval borders
[image: image533.wmf]}

{

k

p

 and probability interval index
[image: image534.wmf]k

, for which
[image: image535.wmf]k

LPB

I

p

Î

, is derived. Then, the coding bin
[image: image536.wmf]c

b

 is forwarded to the associated binary encoder.

Each of the
[image: image537.wmf]K

 binary encoders consists of a bin buffer and a bin encoder. The bin buffer receives coding bins
[image: image538.wmf]c

b

 from the probability quantizer and stores them in coding order. The bin encoder implements a particular VNB2VLC mapping and compares the bin sequence in the bin buffer with the bin sequences that are associated with codewords. If the bin sequence in the bin buffer is equal to one of those bin sequences, the bin encoder removes the bin sequence
[image: image539.wmf]}

{

c

b

 from the bin buffer and writes the associated codeword
[image: image540.wmf]})

({

c

b

c

 to the corresponding codeword stream. At the end of the encoding process for a symbol sequence, for all binary encoders for which the bin buffers are not empty, a terminating codeword is written as described in sec. 2.3.3.

The
[image: image541.wmf]K

 resulting codeword streams can be separately transmitted, packetized, or stored, or they can be interleaved for the purpose of transmission or storage.

At the decoder side, each of the
[image: image542.wmf]K

 binary decoders consisting of a bin decoder and a bin buffer receives one codeword stream. The bin decoder reads codewords
[image: image543.wmf]})

({

c

b

 from the codeword stream and inserts the associated bin sequence
[image: image544.wmf]}

{

c

b

, in coding order, into the bin buffer.

The decoding of the symbol sequence is driven by the underlying syntax. Requests for a symbol
[image: image545.wmf]s

 are sent together with the symbol category
[image: image546.wmf]s

c

 to the binarizer. The binarizer converts these symbol requests into request for bins. A request for a bin is associated with a probability model indication
[image: image547.wmf]b

c

, which is derived in the same way as in the encoder, and sent to the probability estimator and assigner. The probability estimator and assigner is operated similar to its counterpart at the encoder side. Based on the probability model indication
[image: image548.wmf]b

c

, it identifies a probability model and forwards its LPB value
[image: image549.wmf]LPB

b

 and LPB probability
[image: image550.wmf]LPB

p

 to the bin deriver and the probability quantizer, respectively.

The probability quantizer determines one of the
[image: image551.wmf]K

 binary decoders based on the LPB probability
[image: image552.wmf]LPB

p

, in the same way as the binary encoder is determined at the encoder side, removes the first coding bin
[image: image553.wmf]c

b

, in coding order, from the corresponding bin buffer, and forwards it to the bin deriver. The bin deriver receives coding bins
[image: image554.wmf]c

b

 and associated LPB values
[image: image555.wmf]LPB

b

 from the probability quantizer and probability estimator and assigner, respectively, and determines the bin values
[image: image556.wmf]LPB

c

b

b

b

Å

=

. As final response to a bin request sent by the binarizer, the bin deriver send the decoded bin value
[image: image557.wmf]b

 to the binarizer and the probability estimator and assigner.

In the probability estimator and assigner, the value of the decoded bin
[image: image558.wmf]b

 is used to update the probability model
[image: image559.wmf]}

,

{

LPB

LPB

p

b

, which was chosen by the associated value
[image: image560.wmf]b

c

, in the same way as at the encoder side. Finally, the binarizer adds the received bin
[image: image561.wmf]b

 to the bin sequence
[image: image562.wmf]s

b

 which has been already received for a symbol request and compares this bin sequence
[image: image563.wmf]s

b

 with the bin sequences that are associated with symbol values by the binarization scheme
[image: image564.wmf]s

c

b

g

. If the bin sequence
[image: image565.wmf]s

b

 matches one of those bin sequences, the corresponding decoded symbol
[image: image566.wmf]s

 is output as final response to the symbol request. Otherwise, the binarizer sends further bin requests until the symbol
[image: image567.wmf]s

 is decoded.

The decoding of a symbol sequence is terminated if no further symbol requests, which are driven by the syntax, are received. The coding bins
[image: image568.wmf]c

b

 that may be contained in the bin buffers at the end of the entropy decoding process (as a result of termination codewords) are discarded.

3 Patent rights declaration(s)
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 1
Date Saved: 2010-04-13

_1332689494.unknown

_1332689656.unknown

_1332689768.unknown

_1332691041.unknown

_1332696138.unknown

_1332696344.unknown

_1332696962.unknown

_1332697038.unknown

_1332697615.unknown

_1332697788.unknown

_1332697859.unknown

_1332698352.unknown

_1332697807.unknown

_1332697754.unknown

_1332697052.unknown

_1332697064.unknown

_1332696999.unknown

_1332697017.unknown

_1332696985.unknown

_1332696556.unknown

_1332696612.unknown

_1332696664.unknown

_1332696597.unknown

_1332696372.unknown

_1332696384.unknown

_1332696362.unknown

_1332696238.unknown

_1332696291.unknown

_1332696330.unknown

_1332696257.unknown

_1332696190.unknown

_1332696202.unknown

_1332696169.unknown

_1332694523.unknown

_1332696041.unknown

_1332696086.unknown

_1332696103.unknown

_1332696070.unknown

_1332695044.unknown

_1332695755.unknown

_1332694543.unknown

_1332691160.unknown

_1332694487.unknown

_1332694504.unknown

_1332691436.unknown

_1332691122.unknown

_1332691141.unknown

_1332691090.unknown

_1332689789.unknown

_1332689808.unknown

_1332689817.unknown

_1332689822.unknown

_1332689826.unknown

_1332689828.unknown

_1332689833.unknown

_1332689836.unknown

_1332689837.unknown

_1332689835.unknown

_1332689829.unknown

_1332689827.unknown

_1332689824.unknown

_1332689825.unknown

_1332689823.unknown

_1332689819.unknown

_1332689820.unknown

_1332689818.unknown

_1332689813.unknown

_1332689815.unknown

_1332689816.unknown

_1332689814.unknown

_1332689811.unknown

_1332689812.unknown

_1332689809.unknown

_1332689798.unknown

_1332689803.unknown

_1332689805.unknown

_1332689807.unknown

_1332689804.unknown

_1332689801.unknown

_1332689802.unknown

_1332689799.unknown

_1332689794.unknown

_1332689796.unknown

_1332689797.unknown

_1332689795.unknown

_1332689792.unknown

_1332689793.unknown

_1332689791.unknown

_1332689781.unknown

_1332689785.unknown

_1332689787.unknown

_1332689788.unknown

_1332689786.unknown

_1332689783.unknown

_1332689784.unknown

_1332689782.unknown

_1332689775.unknown

_1332689777.unknown

_1332689778.unknown

_1332689776.unknown

_1332689772.unknown

_1332689773.unknown

_1332689771.unknown

_1332689723.unknown

_1332689751.unknown

_1332689759.unknown

_1332689764.unknown

_1332689766.unknown

_1332689767.unknown

_1332689765.unknown

_1332689762.unknown

_1332689763.unknown

_1332689761.unknown

_1332689755.unknown

_1332689757.unknown

_1332689758.unknown

_1332689756.unknown

_1332689753.unknown

_1332689754.unknown

_1332689752.unknown

_1332689741.unknown

_1332689746.unknown

_1332689748.unknown

_1332689749.unknown

_1332689747.unknown

_1332689743.unknown

_1332689745.unknown

_1332689742.unknown

_1332689733.unknown

_1332689736.unknown

_1332689737.unknown

_1332689735.unknown

_1332689728.unknown

_1332689731.unknown

_1332689727.unknown

_1332689702.unknown

_1332689713.unknown

_1332689718.unknown

_1332689721.unknown

_1332689722.unknown

_1332689720.unknown

_1332689716.unknown

_1332689717.unknown

_1332689715.unknown

_1332689706.unknown

_1332689711.unknown

_1332689712.unknown

_1332689707.unknown

_1332689704.unknown

_1332689705.unknown

_1332689703.unknown

_1332689689.unknown

_1332689697.unknown

_1332689700.unknown

_1332689701.unknown

_1332689699.unknown

_1332689693.unknown

_1332689696.unknown

_1332689691.unknown

_1332689670.unknown

_1332689682.unknown

_1332689684.unknown

_1332689676.unknown

_1332689668.unknown

_1332689669.unknown

_1332689664.unknown

_1332689572.unknown

_1332689619.unknown

_1332689636.unknown

_1332689645.unknown

_1332689650.unknown

_1332689654.unknown

_1332689655.unknown

_1332689651.unknown

_1332689647.unknown

_1332689649.unknown

_1332689646.unknown

_1332689641.unknown

_1332689643.unknown

_1332689644.unknown

_1332689642.unknown

_1332689639.unknown

_1332689640.unknown

_1332689637.unknown

_1332689628.unknown

_1332689632.unknown

_1332689634.unknown

_1332689635.unknown

_1332689633.unknown

_1332689630.unknown

_1332689631.unknown

_1332689629.unknown

_1332689623.unknown

_1332689625.unknown

_1332689626.unknown

_1332689624.unknown

_1332689621.unknown

_1332689622.unknown

_1332689620.unknown

_1332689601.unknown

_1332689610.unknown

_1332689614.unknown

_1332689616.unknown

_1332689618.unknown

_1332689615.unknown

_1332689612.unknown

_1332689613.unknown

_1332689611.unknown

_1332689605.unknown

_1332689608.unknown

_1332689609.unknown

_1332689606.unknown

_1332689603.unknown

_1332689604.unknown

_1332689602.unknown

_1332689592.unknown

_1332689597.unknown

_1332689599.unknown

_1332689600.unknown

_1332689598.unknown

_1332689594.unknown

_1332689595.unknown

_1332689593.unknown

_1332689588.unknown

_1332689590.unknown

_1332689591.unknown

_1332689589.unknown

_1332689581.unknown

_1332689584.unknown

_1332689577.unknown

_1332689529.unknown

_1332689552.unknown

_1332689561.unknown

_1332689565.unknown

_1332689568.unknown

_1332689569.unknown

_1332689567.unknown

_1332689563.unknown

_1332689564.unknown

_1332689562.unknown

_1332689557.unknown

_1332689559.unknown

_1332689560.unknown

_1332689558.unknown

_1332689554.unknown

_1332689556.unknown

_1332689553.unknown

_1332689538.unknown

_1332689547.unknown

_1332689549.unknown

_1332689551.unknown

_1332689548.unknown

_1332689542.unknown

_1332689546.unknown

_1332689541.unknown

_1332689534.unknown

_1332689536.unknown

_1332689537.unknown

_1332689535.unknown

_1332689532.unknown

_1332689533.unknown

_1332689531.unknown

_1332689511.unknown

_1332689520.unknown

_1332689525.unknown

_1332689527.unknown

_1332689528.unknown

_1332689526.unknown

_1332689523.unknown

_1332689524.unknown

_1332689522.unknown

_1332689516.unknown

_1332689518.unknown

_1332689519.unknown

_1332689517.unknown

_1332689514.unknown

_1332689515.unknown

_1332689513.unknown

_1332689503.unknown

_1332689507.unknown

_1332689509.unknown

_1332689510.unknown

_1332689508.unknown

_1332689505.unknown

_1332689506.unknown

_1332689504.unknown

_1332689498.unknown

_1332689500.unknown

_1332689501.unknown

_1332689499.unknown

_1332689496.unknown

_1332689497.unknown

_1332689495.unknown

_1332689330.unknown

_1332689423.unknown

_1332689458.unknown

_1332689476.unknown

_1332689485.unknown

_1332689489.unknown

_1332689491.unknown

_1332689493.unknown

_1332689490.unknown

_1332689487.unknown

_1332689488.unknown

_1332689486.unknown

_1332689480.unknown

_1332689483.unknown

_1332689484.unknown

_1332689482.unknown

_1332689478.unknown

_1332689479.unknown

_1332689477.unknown

_1332689467.unknown

_1332689471.unknown

_1332689474.unknown

_1332689475.unknown

_1332689473.unknown

_1332689469.unknown

_1332689470.unknown

_1332689468.unknown

_1332689463.unknown

_1332689465.unknown

_1332689466.unknown

_1332689464.unknown

_1332689460.unknown

_1332689461.unknown

_1332689459.unknown

_1332689440.unknown

_1332689449.unknown

_1332689454.unknown

_1332689456.unknown

_1332689457.unknown

_1332689455.unknown

_1332689451.unknown

_1332689453.unknown

_1332689450.unknown

_1332689445.unknown

_1332689447.unknown

_1332689448.unknown

_1332689446.unknown

_1332689443.unknown

_1332689444.unknown

_1332689441.unknown

_1332689431.unknown

_1332689436.unknown

_1332689438.unknown

_1332689439.unknown

_1332689437.unknown

_1332689434.unknown

_1332689435.unknown

_1332689433.unknown

_1332689427.unknown

_1332689429.unknown

_1332689430.unknown

_1332689428.unknown

_1332689425.unknown

_1332689426.unknown

_1332689424.unknown

_1332689367.unknown

_1332689405.unknown

_1332689414.unknown

_1332689418.unknown

_1332689420.unknown

_1332689421.unknown

_1332689419.unknown

_1332689416.unknown

_1332689417.unknown

_1332689415.unknown

_1332689409.unknown

_1332689411.unknown

_1332689413.unknown

_1332689410.unknown

_1332689407.unknown

_1332689408.unknown

_1332689406.unknown

_1332689395.unknown

_1332689400.unknown

_1332689403.unknown

_1332689404.unknown

_1332689402.unknown

_1332689398.unknown

_1332689399.unknown

_1332689396.unknown

_1332689371.unknown

_1332689380.unknown

_1332689388.unknown

_1332689372.unknown

_1332689369.unknown

_1332689370.unknown

_1332689368.unknown

_1332689347.unknown

_1332689356.unknown

_1332689361.unknown

_1332689363.unknown

_1332689364.unknown

_1332689362.unknown

_1332689359.unknown

_1332689360.unknown

_1332689357.unknown

_1332689352.unknown

_1332689354.unknown

_1332689355.unknown

_1332689353.unknown

_1332689350.unknown

_1332689351.unknown

_1332689348.unknown

_1332689338.unknown

_1332689343.unknown

_1332689345.unknown

_1332689346.unknown

_1332689344.unknown

_1332689341.unknown

_1332689342.unknown

_1332689340.unknown

_1332689334.unknown

_1332689336.unknown

_1332689337.unknown

_1332689335.unknown

_1332689332.unknown

_1332689333.unknown

_1332689331.unknown

_1332689256.unknown

_1332689294.unknown

_1332689312.unknown

_1332689321.unknown

_1332689325.unknown

_1332689327.unknown

_1332689328.unknown

_1332689326.unknown

_1332689323.unknown

_1332689324.unknown

_1332689322.unknown

_1332689316.unknown

_1332689318.unknown

_1332689320.unknown

_1332689317.unknown

_1332689314.unknown

_1332689315.unknown

_1332689313.unknown

_1332689303.unknown

_1332689307.unknown

_1332689310.unknown

_1332689311.unknown

_1332689308.unknown

_1332689305.unknown

_1332689306.unknown

_1332689304.unknown

_1332689298.unknown

_1332689301.unknown

_1332689302.unknown

_1332689300.unknown

_1332689296.unknown

_1332689297.unknown

_1332689295.unknown

_1332689276.unknown

_1332689285.unknown

_1332689290.unknown

_1332689292.unknown

_1332689293.unknown

_1332689291.unknown

_1332689287.unknown

_1332689288.unknown

_1332689286.unknown

_1332689281.unknown

_1332689283.unknown

_1332689284.unknown

_1332689282.unknown

_1332689278.unknown

_1332689279.unknown

_1332689277.unknown

_1332689265.unknown

_1332689269.unknown

_1332689272.unknown

_1332689273.unknown

_1332689271.unknown

_1332689267.unknown

_1332689268.unknown

_1332689266.unknown

_1332689261.unknown

_1332689263.unknown

_1332689264.unknown

_1332689262.unknown

_1332689258.unknown

_1332689259.unknown

_1332689257.unknown

_1332689220.unknown

_1332689237.unknown

_1332689246.unknown

_1332689251.unknown

_1332689254.unknown

_1332689255.unknown

_1332689253.unknown

_1332689248.unknown

_1332689249.unknown

_1332689247.unknown

_1332689242.unknown

_1332689244.unknown

_1332689245.unknown

_1332689243.unknown

_1332689239.unknown

_1332689241.unknown

_1332689238.unknown

_1332689228.unknown

_1332689233.unknown

_1332689235.unknown

_1332689236.unknown

_1332689234.unknown

_1332689231.unknown

_1332689232.unknown

_1332689230.unknown

_1332689224.unknown

_1332689226.unknown

_1332689227.unknown

_1332689225.unknown

_1332689222.unknown

_1332689223.unknown

_1332689221.unknown

_1332689202.unknown

_1332689211.unknown

_1332689215.unknown

_1332689217.unknown

_1332689218.unknown

_1332689216.unknown

_1332689213.unknown

_1332689214.unknown

_1332689212.unknown

_1332689206.unknown

_1332689208.unknown

_1332689210.unknown

_1332689207.unknown

_1332689204.unknown

_1332689205.unknown

_1332689203.unknown

_1332689187.unknown

_1332689195.unknown

_1332689197.unknown

_1332689201.unknown

_1332689196.unknown

_1332689192.unknown

_1332689193.unknown

_1332689190.unknown

_1332689183.unknown

_1332689185.unknown

_1332689186.unknown

_1332689184.unknown

_1332689181.unknown

_1332689182.unknown

_1332689180.unknown

