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Abstract

This contribution describes a novel approach to entropy coding. The basic idea of the presented entropy coding concept is the usage of multiple parallel binary encoders/decoders that operate at fixed probabilities. The entropy coding concept supports a high degree of decoder parallel processing and can be configured in a way that it operates at a complexity level of variable-length coding without any loss in coding efficiency relative to the use of arithmetic codes. 
1 Overview
We present a novel approach for entropy coding, which consists of a binarization, an adaptive context modeling, a probability quantization, and multiple binary entropy coders with fixed probabilities. The concepts for binarization and context modeling are basically the same as in the CABAC framework of H.264/AVC. However, the actual coding of the bins is based on a novel concept that has been introduced in order to support parallelized implementations of entropy encoding and decoding as well as for decreasing the computational complexity of the entropy decoding.
1.1 Novel entropy coding concept
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Fig. 1:  Illustration of the novel entropy coding concept

In Fig. 1, the basic entropy coding concept is illustrated. If a syntax element does not already represent a binary syntax element, it is first binarizied, i.e., it is mapped onto a sequence of binary decisions (bins). For each bin a context is selected. A context represents a (binary) probability model for a class of bins; it is characterized by the probability and the value of the less significant bin (LPB). In our implementation, the LPB probability is represented by one out of 64 states (as in the CABAC framework of H.264/AVC). At the beginning of the encoding/decoding of a slice, the probability models are initialized using fixed values (as in CABAC of H.264/AVC). And after encoding/decoding a bin with a particular model, the model (i.e., the corresponding probability and value of the LPB) is updated. The probability model update, i.e., the probability estimation process is the same as in CABAC of H.264/AVC. The association of a bin with a context model is also similar as in CABAC of H.264/AVC. It depends on the syntax element, the bin number, and, for some bins, the values of neighboring syntax elements.
The above described binarization and association of the bins with context models is basically the same as in CABAC of H.264/AVC. The main difference is the next step. Instead of arithmetically coding the bins with the associated probability models using a single arithmetic coding engine as in CABAC of H.264/AVC, the estimated LPB probabilities are quantized, i.e., they are mapped onto a small number of LPB probability intervals and for each of these probability intervals a separate bin encoder/decoder is operated. In our implementation, we used 12 probability intervals and thus 12 different bin encoders/decoders. Each bin encoder/decoder operates at a fixed LPB probability, which can be considered as the representative probability for an LPB interval. The selection of a bin encoder/decoder is implemented via a look-up table that associates a bin encoder with each of the 64 state indices for the LPB probability. Hence, the 64 states that are used for estimating the LPB probability of a context model are mapped onto 12 probability classes, for each of which a separate bin encoder/decoder is operated. The partial bitstreams that are generated by the bin encoders can be written to different partitions of a NAL unit (with the partitioning of the NAL unit being indicated in the slice header) or they can be interleaved into a single bitstream.
For the bin encoders and decoders two alternatives have been implemented. In a first version, the bin encoders and decoders represent arithmetic encoding and decoder engines, respectively, which are similar to the arithmetic coding engines used in CABAC of H.264/AVC. In a second version, the bin encoders and decoders represent simple variable length codes, by which a variable number of bins is mapped onto variable length codewords and vice versa. Both versions have a very similar coding efficiency.
1.1.1 Bin encoders using arithmetic coding
As mentioned above, arithmetic coding engines (similar to the coding engines that are used for CABAC in H.264/AVC) can be used for the separate bin encoder. The corresponding 12 arithmetic codewords are written to different partitions of the slice data NAL units; the corresponding partitioning information is transmitted in the slice header. An obvious advantage of this approach is that the arithmetic decoding can be parallelized. All 12 arithmetic decoding engines can be operated in parallel and write the sequences of decoded bins into particular bin buffers. The remaining entropy decoding process can then simply read the bins from the corresponding 12 bin buffers without the need to wait until a bin is arithmetically decoded before proceeding with the next bin. This is in particular a very useful feature for slice data NAL units that contain a large number of bits.

For small slice data NAL units, a parallelized decoding is usually not required. And since the partitioning information can represent a significant amount of the overall number of bits of a NAL unit, we adaptively switch between the presented coding with 12 arithmetic coding engines (and codewords) and the coding with a single arithmetic coding engines with variable LPB probabilities as it is found in CABAC of H.264/AVC. It is signaled in the slice header which of these variants (single-codeword arithmetic coding or multi-codeword arithmetic coding) is used.
1.1.2 Bin encoders using variable length codes
Instead of using arithmetic coding for the bin encoders (cp. Fig. 1), it is also possible to employ simple variable length codes. It should be again noted that each bin encoder operates at a fixed LPB probability. And for a fixed LPB probability, we can simple construct a code that maps a variable number of bins onto a variable length codeword and vice versa. As a particular example, the following table shows an example for such a mapping. In the example the bins "0" represent the more probable bin values and the bins "1" represent the less probable bin values. The example code has been designed for a LPB probability of 0.15 and it yields a redundancy of only 0.25 % relative to the entropy limit for this probability. Generally, it is possible to get closer to the entropy limit when the table size is increased.
Table 1: Example for a mapping between a variable number of bins and variable length codewords

	sequence of bins
(bin order is from left to right)
	codewords
(bits order is from left to right)

	0000
	1

	01
	001

	10
	010

	001
	011

	0001 00
	0001

	11
	0000 1

	0001 1
	0000 00

	0001 01
	0000 01


At the end of a slice, it is possible that a bin sequence does not represent any bin sequence that is associated with a codeword. In order to terminate the codeword, the shortest codeword for a bin sequence that contains the current bin sequence as prefix is written. At the decoder side, the additionally decoded bins are discarded. As an example, we could use the mapping in the above table and have a bin sequence "00" at the end of a slice. Then we would write the codeword "1" (corresponding to the bin sequence "0000"). At the decoder side, the codeword "1" would be translated into the bin sequence "0000", but the decoder would discard (ignore) the last two decoded bins.

Similarly to the above presented concept with arithmetic coding engines, the partial bitstreams can be written to different partitions of the slice data NAL unit (with transmitting the partitioning information in the slice header). It is, however, also possible to interleave the codewords into one single bitstream with any overhead. This is in particular beneficial for small slice data NAL units, for which parallelized bin decoding is not required. In order to realize such an interleaving a codeword buffer for variable-length codewords can be introduced at the encoder side. When a particular bin encoder starts the encoding of a new bin sequence (i.e., the bin encoder receives the first bin after the previous codeword has been written), it reserves the next variable-length codeword entry in the codeword buffer. And when the bin sequence is finished (i.e., when the received bins represent a bin sequence that corresponds to a codeword), the codeword is written to the previously reserved codeword entry. Examples for the codeword buffer status are illustrated in Fig. 2. At the decoder side, the codewords can be directly read from the bitstream in decoding order.
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Fig. 2:  Examples for the codeword buffer status

It is also possible to combine the codeword interleaving with a low-delay buffer control. That means, we can suitably restrict the buffer delay that is introduced by the codeword interleaving. With such a low-delay control, a particular codeword is terminated when the maximum number of bits (this maximum number of bits represents the maximum codeword length for a particular bin encoder and is given by the corresponding mapping table) that are associated with the reserved or completed buffer entries following the buffer entry for the particular codeword is greater than a particular threshold. At the decoder side, the extra decoded bins must be discarded; this can be done by using the same measure of the maximum number of bits as at the encoder side.
2 Theoretical analysis of the entropy coding concept
In the following section, a theoretical analysis of the entropy coding concept is present.
2.1 Event Space Projection
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 contain two or more letters each being associated with a probability estimate 
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 are known to encoder and decoder and may be fixed or variable. It is assumed that variable probabilities are simultaneously estimated at encoder and decoder. The alphabets 
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 may either be identical for the sequence of symbols or different symbol types are associated with different alphabets. In the latter case, it is assumed that the decoder knows the alphabet of each symbol in the sequence. This assumption is justified as practical source codec descriptions contain a syntax that stipulates the order of symbols and their alphabets.

The sequence of symbols 
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 is converted into a sequence of binary symbols, which are also referred to as bins. For each symbol 
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represents a bijective mapping of the alphabet letters 
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 simultaneously at encoder and decoder side. Therefore, the bins can be associated with a probability model (which is also referred to as context) based on the syntax and previously coded symbols or bins. And for each probability model, the probability description 
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 can be estimated based on the values of the bins that are coded with the probability model. An example for such an binary probability modeling is probability modeling of CABAC in H.264/AVC.

Since the binary entropy function  
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is symmetric around 
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where 
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 denotes the exclusive or operator. At the decoder side, the bins 
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The set of 
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In the following description, all bins represent coding bins 
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2.2 Probability Interval Discretization

For investigating the impact of the probability interval discretization on the coding efficiency, we assume that we can design an optimal entropy coder for a fixed probability that achieves the entropy bound. Each probability interval 
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where 
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is its first derivative. We further assume that the distribution of the probabilities in the interval 
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The first partial derivative with respect to any representative probability 
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The equation 
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for the representative probability 
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is always greater than zero if  
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Hence, if condition 
(11)

 is fulfilled, the value  GOTOBUTTON GrindEQequation12  given in eq. 
(9)

 is the representative probability for an interval  GOTOBUTTON GrindEQequation10  that minimizes the expected overall rate 
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For finding a condition for optimal interval borders, we investigate the first derivatives of the expected overall rate 
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for the interval border 
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is always greater than zero, so that 
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4. Repeat the previous two steps until convergence
Fig. 3 shows an example for the optimal interval discretization using the described algorithm. For this example, we assumed a uniform probability distribution 
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Fig. 3:  Optimal probability interval discretization into 
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As measure for the impact of the interval discretization on the coding efficiency the expected overall rate increase relative to the entropy limit  
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can be used. For the particular example of Fig. 3, the expectation value of the entropy 
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Table 2: Rate overhead vs. the number of probability intervals for the uniform and a linear increasing probability distribution
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The investigations in this section showed that the discretization of the LPB probability interval 
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 into a small number of intervals with a fixed probability (e.g., 8 to 10 intervals) has a very small impact on the coding efficiency.

2.3 Entropy Coding for Probability Intervals

In the following, we first show how an simple code can be designed for fixed probabilities. Given these results, we develop an algorithms that jointly optimizes the code design and the partitioning of the LPB probability interval 
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Fig. 4:  Tree of binary events for an LPB probability of 
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The binary tree 
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 is fully characterized by the number of leaf nodes 
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The code design is often limited by factors as the maximum number of codewords 
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As faster alternative, the minimization can also proceed over a given set of binary trees 
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 and for each tree only one VNB2VLC code 
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Fig. 5:  Relative bit rate increase 
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2.3.2 Combined code design and interval partitioning

In the previous sections, we considered the optimal probability discretization assuming optimal codes and the code design for fixed LPB probabilities. But since, in general, we cannot achieve the entropy limit with real VNB2VLC codes of limited table sizes, the code design and the partitioning of the LPB probability interval 
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 must be jointly considered for obtaining an optimized entropy coding design.
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For practical designs, the minimization of the integral in eq. 
(18)

 can be simplified, with a minor impact on the coding efficiency, by first determining an optimal representative probability  GOTOBUTTON GrindEQequation19  for the interval 
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Setting the first derivatives with respect to the interval borders equal to zero, 
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Similarly as for eq. 
(12)

, it can be shown that  GOTOBUTTON GrindEQequation13  is always an optimal solution, but depending on the probability distribution 
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Consequently, the following iterative algorithm can be used for jointly deriving the probability interval partitioning and the associated codes given the number 
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5. Repeat the previous three steps until convergence
The steps 2 and 3 in algorithm 2 could also be replaced by a direct derivation of the codes 
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As an example, we jointly derived the partitioning into 
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Fig. 6:  Rate increase for the theoretically optimal probability interval partitioning into 
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2.3.3 Codeword termination
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When employing arithmetic coding, the arithmetic codeword for the sequence of coding bins has to be terminated in a way, that all coding bins can be decoded given the codeword. For the VNB2VLC codes described above, the bins at the end of the sequence 
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2.3.4 Simple code design example

For illustration purposes, we consider the simple example of a source 
[image: image316.wmf]}

{

s

 with three letters and fixed associated probabilities of 
[image: image317.wmf]0.7

=

)

(

0

a

p

s

, 
[image: image318.wmf]0.18

=

)

(

1

a

p

s

, and 
[image: image319.wmf]0.12

=

)

(

2

a

p

s

. The corresponding ternary choice tree can be converted into a full binary tree as shown in Fig. 7.  
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Fig. 7:  Example for conversion of a ternary choice tree into a full binary choice tree

A binarization for the full binary tree in Fig. 7 is given in Table 2. The ternary symbol pmf 
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The average code word length of the single-letter Huffman code is given as  
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corresponding to a redundancy of 
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An efficient coding of a binary alphabet with fixed probability can be achieved by a simple VNB2VLC mapping. Examples for VNB2VLC mappings with small coding tables for the LPB probabilities 
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Table 5:  Bin tree and codes for an LPB probability of 
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The overall expected rate incurred by the new coding method is  
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The overall redundancy is 
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 relative to the entropy limit, which represents a significant improvement in comparison to the single-letter Huffman code.

It could be argued that a similar coding efficiency improvement could be obtained by creating a run-length code. For the above example, we could construct a run-length code for the most probable symbol by considering runs of up to two symbols. Each of the events 
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 would be associated with a separate codeword. Such a code yields a redundancy of 
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 relative to the entropy limit. Actually, the VNB2VLC codes can be considered as a generalization of run-length codes for binary symbols (the VNB2VLC code in Table 4 does effectively represent a run-length code). For a single symbol alphabet with fixed probabilities, a similar coding efficiency as for the presented approach can also be achieved by creating a code that maps a variable number of source symbols to variable length codewords. The main advantage of the presented approach is its flexibility in mapping arbitrary source symbol sequences with fixed or adapative probability estimates to a small number of simple binary coders that are operated with fixed LPB probabilities.

2.4 Unique Decodability
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For unique decodability of a sequence of coding bins 
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This property is always fulfilled when arithmetic codes or prefix codes are used. It is particularly fulfilled for the VNB2VLC codes described in sec. 2.3.1 (including the codeword termination described in sec. 2.3.3), since the VNB2VLC codes represent prefix codes for variable numbers of bins.

However, in the presented entropy coding approach, the sequence of coding bins 
[image: image426.wmf]c

b

 is partitioned into 
[image: image427.wmf]K

 sub-sequences 
[image: image428.wmf]c

k

b

, with 
[image: image429.wmf]1

,

0,

=

-

K

k

K

,  



[image: image430.wmf])

(

=

}

,

,

{

1

0

c

p

c

K

c

b

b

b

g

-

K


 MACROBUTTON GrindEQ.reference.UpdateGrindeqFields (26)

and to each of the sub-sequences 
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with 
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and hence, the conversion 
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The conditions of unique decodability for the presented entropy coding approach can be summarized as follows:   
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2.5 Overall encoder and decoder design
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Fig. 8:  Block diagram for an example encoder (left part) and decoder (right part)

In the following, we describe examples for the overall encoder and decoder design in more detail. We concentrate on coding schemes, in which the probability models 
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2.5.1 Overview

The block diagram for an example encoder and decoder design is illustrated in Fig. 8. At the encoder side, the symbols 
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c

 are fed into the binarizer, which converts each symbol 
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 into a sequence of bins 
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. The used binarization scheme 
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 is determined based on the symbol category 
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. In addition, the binarizer associates each bin 
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 of a bin sequence 
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 with a probability model indication 
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, which specifies the probability model that is used for coding the bin 
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. The probability model indication 
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 can be derived based on the symbol category 
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, the bin number of the current bin inside the bin sequence 
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, and/or the values of already coded bins and symbols.

The probability estimator and assigner maintains multiple probability models, which are characterized by pairs of values 
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,
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. It received bins 
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 and associated probability model indications 
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 from the binarizer, and forwards the LPB value 
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 and the LPB probability 
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 of the indicated probability model to the coding bin deriver and the probability quantizer, respectively. Thereafter, the corresponding probability model 
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,
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 is updated using the value of the received bin 
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.

The coding bin deriver receives bins 
[image: image524.wmf]b

 and associated LPB values 
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 from the binarizer and the probability estimator and assigner, respectively, and sends coding bins 
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, which are derived by 
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b

b

Å

=

, to the probability quantizer. The probability quantizer forwards each coding bin 
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 to one of the 
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 binary encoders. It contains information about the LPB probability interval quantization 
[image: image530.wmf]}
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. The LPB probability 
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, which is associated with a coding bin 
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 and received from the probability estimator and assigner, is compared to the interval borders 
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 and probability interval index 
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, for which 
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, is derived. Then, the coding bin 
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 is forwarded to the associated binary encoder.

Each of the 
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 binary encoders consists of a bin buffer and a bin encoder. The bin buffer receives coding bins 
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b

 from the probability quantizer and stores them in coding order. The bin encoder implements a particular VNB2VLC mapping and compares the bin sequence in the bin buffer with the bin sequences that are associated with codewords. If the bin sequence in the bin buffer is equal to one of those bin sequences, the bin encoder removes the bin sequence 
[image: image539.wmf]}
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 from the bin buffer and writes the associated codeword 
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c

b

c

 to the corresponding codeword stream. At the end of the encoding process for a symbol sequence, for all binary encoders for which the bin buffers are not empty, a terminating codeword is written as described in sec. 2.3.3.

The 
[image: image541.wmf]K

 resulting codeword streams can be separately transmitted, packetized, or stored, or they can be interleaved for the purpose of transmission or storage.

At the decoder side, each of the 
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 binary decoders consisting of a bin decoder and a bin buffer receives one codeword stream. The bin decoder reads codewords 
[image: image543.wmf]})
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 from the codeword stream and inserts the associated bin sequence 
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, in coding order, into the bin buffer.

The decoding of the symbol sequence is driven by the underlying syntax. Requests for a symbol 
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 are sent together with the symbol category 
[image: image546.wmf]s

c

 to the binarizer. The binarizer converts these symbol requests into request for bins. A request for a bin is associated with a probability model indication 
[image: image547.wmf]b

c

, which is derived in the same way as in the encoder, and sent to the probability estimator and assigner. The probability estimator and assigner is operated similar to its counterpart at the encoder side. Based on the probability model indication 
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c

, it identifies a probability model and forwards its LPB value 
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 and LPB probability 
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 to the bin deriver and the probability quantizer, respectively.

The probability quantizer determines one of the 
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 binary decoders based on the LPB probability 
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p

, in the same way as the binary encoder is determined at the encoder side, removes the first coding bin 
[image: image553.wmf]c

b

, in coding order, from the corresponding bin buffer, and forwards it to the bin deriver. The bin deriver receives coding bins 
[image: image554.wmf]c
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 and associated LPB values 
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 from the probability quantizer and probability estimator and assigner, respectively, and determines the bin values 
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. As final response to a bin request sent by the binarizer, the bin deriver send the decoded bin value 
[image: image557.wmf]b

 to the binarizer and the probability estimator and assigner.

In the probability estimator and assigner, the value of the decoded bin 
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 is used to update the probability model 
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,
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, which was chosen by the associated value 
[image: image560.wmf]b
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, in the same way as at the encoder side. Finally, the binarizer adds the received bin 
[image: image561.wmf]b

 to the bin sequence 
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 which has been already received for a symbol request and compares this bin sequence 
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 with the bin sequences that are associated with symbol values by the binarization scheme 
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g

. If the bin sequence 
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 matches one of those bin sequences, the corresponding decoded symbol 
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 is output as final response to the symbol request. Otherwise, the binarizer sends further bin requests until the symbol 
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 is decoded.

The decoding of a symbol sequence is terminated if no further symbol requests, which are driven by the syntax, are received. The coding bins 
[image: image568.wmf]c

b

 that may be contained in the bin buffers at the end of the entropy decoding process (as a result of termination codewords) are discarded.
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