	[image: image1.png]

	INTERNATIONAL TELECOMMUNICATION UNION

	
	

	ITU-T
	Z.168

	TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU
	(11/2007)

	
	SERIES Z: LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) – Testing and Test Control Notation (TTCN)

	
	The Testing and Test Control Notation version 3: The IDL to TTCN-3 Mapping

	
	CAUTION !

PREPUBLISHED RECOMMENDATION

This prepublication is an unedited version of a recently approved Recommendation. It will be replaced by the published version after editing. Therefore, there will be differences between this prepublication and the published version.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of tele​com​mu​ni​ca​tions. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU‑T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU [had/had not] received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.
	ITU-T Recommendation Z.168
The Testing and Test Control Notation version 3: The IDL to TTCN-3 Mapping

	Summary

This Recommendation defines the mapping rules for CORBA IDL (as defined in chapter 3 in [OMG CORBA REF REF_OMG_CORBA \h
]) to TTCN-3 (as defined in [ITU-T Z.161]) to enable testing of CORBA-based systems. The principles of mapping CORBA IDL to TTCN-3 can be also used for the mapping of interface specification languages of other object-/component-based technologies.
The specification of other mappings is outside the scope of this Recommendation.

	Source

ITU‑T Recommendation Z.168 was approved on 13 November 2007 by ITU‑T Study Group 17 (2005-2008) under the ITU‑T Recommendation A.8 procedure.

CONTENTS

Page
41
Scope

42
References

43
Abbreviations

54
Approach

55
Lexical conventions

55.1
Comments

55.2
Identifiers

55.3
Keywords

55.4
Literals

66
Pre-processing

67
IDL specification

67.1
Module declaration

77.2
Interface declaration

87.3
Value declaration

87.4
Constant declaration

98
Type declaration

98.1
IDL basic types

108.2
Constructed types

138.3
Template types

148.4
Complex declarator

149
Exception declaration

1510
Operation declaration

1611
Attribute declaration

1612
Names and scoping

18Annex A Examples

18A.1
Example

24Annex B Mapping lists

24B.1
IDL keyword and concept mapping list

25B.2
Comparison of IDL, ASN.1, TTCN-2 and TTCN-3 data types

26Bibliography

Introduction

Object-based technologies (such as CORBA, DCOM, DCE) and component-based technologies (such as CCM, EJB, .NET) use interface specifications to describe the structure of an object-/component-based system and its operations and capabilities to interact with the environment. These interface specifications support interoperability and reusability of objects/components.

The techniques used for interface specifications are often called Interface Definition Language (IDL), for example CORBA IDL, Microsoft IDL or DCE IDL. These languages are comparable in their abilities to define system interfaces, operations at system interfaces and system structures to various extends. They differ in details of the object/component model.

When considering the testing of object-/component-based systems with TTCN-3, one is faced with the problem of accessing the systems to be tested via the system interfaces as described in an IDL specification. In particular, for TTCN-3 based test systems a direct import of IDL specifications into the test specifications for the use of e.g., system's interface, operation and exception definitions is prevalent to any manual transformation into TTCN-3.

This Recommendation discusses the mapping of CORBA IDL specifications into TTCN-3. This mapping rules out the principles not only for CORBA IDL, but also for other interface specification languages. The mapping can be adapted to the details of other interface specification languages.

The Interface Definition Language (IDL) (chapter 3 in [OMG CORBA]) is a base of the whole Common Object Request Broker Architecture (CORBA) [OMG CORBA REF REF_OMG_CORBA \h

 REF REF_OMG_CORBA \h
] and an important point in developing distributed systems with CORBA. It allows the reuse and interoperability of objects in a system. A mapping between IDL and a programming language is defined in the CORBA standard. IDL is very similar to C++ containing pre-processor directives (include, comments, etc.), grammar as well as constant, type and operation declarations. There are no programming language features like, e.g., if‑statements.

The core language of TTCN-3 is defined in [ITU-T Z.161] and provides a full text-based syntax, static semantics and operational semantics as well as a definition for the use of the language with ASN.1. The IDL mapping provides a definition for the use of the core language with IDL (figure 1).

[image: image2.wmf]

TTCN

-

3

Core

Language

Presentation

format

n

TTCN

-

3 User

ASN.1

types

and v

alues

Other t

ypes

and v

alues

 n

Graphical

format

IDL t

ypes

and v

alues

The shaded boxes are not

defined in th

e present

document

Tabular

format

Figure 1 – User's view of the core language and the various presentation formats

It makes no difference for the mapping if requested or provided interfaces are required by the test system and SUT. Hence, TTCN can be used on client and server side without modifications to the mapping rules.

The further document is structured similar to the IDL specification document to provide easy access to the mapping of each IDL element.

ITU-T Recommendation Z.168
The Testing and Test Control Notation version 3: The IDL to TTCN-3 Mapping
1
Scope

This Recommendation defines the mapping rules for CORBA IDL (as defined in chapter 3 in [OMG CORBA]) to TTCN-3 (as defined in [ITU-T Z.161]) to enable testing of CORBA-based systems. The principles of mapping CORBA IDL to TTCN-3 can be also used for the mapping of interface specification languages of other object-/component-based technologies.
The specification of other mappings is outside the scope of this Recommendation.

2
References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is published regularly. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T Z.161]
ITU-T Recommendation Z.161 (200x), Testing and Test Control Notation version 3 (TTCN-3): Core language.

[ITU-T T.50]
ITU-T Recommendation T.50 (1992), International Reference Alphabet (IRA) (Formerly International Alphabet No. 5 or IA5) – Information technology – 7-bit coded character set for information interchange.

ISO/IEC 646, Information technology - ISO 7-bit coded character set for information interchange.
[ISO/IEC 10646]
ISO/IEC 10646, Information technology – Universal Multiple-Octet Coded Character Set (UCS).
[OMG CORBA]
OMG Formal Document, The Common Object Request Broker - Architecture and Specification.
[ITU-T X.680]

ITU-T Recommendation X.680, Information technology - Abstract Syntax Notation One (ASN.1): Specification of basic notation.
[IEEE 754]

IEEE 754, IEEE Standard for Binary Floating-Point Arithmetic.
[ISO/IEC 8859]
ISO/IEC 8859, 8-bit single-byte coded graphic character sets.
3
Abbreviations
This Recommendation uses the following abbreviations and acronyms.
ASN.1
Abstract Syntax Notation One

CCM
CORBA Component Model

NOTE – By OMG.

CORBA
Common Object Request Broker Architecture

NOTE – By OMG.

DCE
Distributed Computing Environment

NOTE – By OSF.

EJB
Enterprise JavaBeans

NOTE – By Sun.

IDL
Interface Definition Language

NET
XML-based component technology

NOTE – By Microsoft.

OMG
Object Management Group

OSF
Open Software Foundation

SUT
System Under Test

TTCN
Testing and Test Control Notation

XML
eXtended Markup Language

4
Approach

Two different approaches can be identified: the use of either implicit or explicit mapping. The implicit mapping makes use of the import mechanism of TTCN-3, denoted by the keywords language and import. It facilitates the immediate use of data specified in other languages. Therefore, the definition of a specific data interface for each of these languages is required. Currently, ASN.1 data can be used besides the native TTCN-3 types (see clause D.1 in [ITU-T Z.161]).

This Recommendation follows the approach of explicit mapping, i.e., IDL data are translated into appropriate TTCN-3 data. And only those TTCN-3 data are further used in the test specification.

5
Lexical conventions

The lexical conventions of IDL define the comments, identifiers, keywords and literals conventions which are described below.

5.1
Comments

Comment definitions in TTCN-3 and IDL are the same and therefore, no conversion of comments is necessary.

5.2
Identifiers

IDL identifier rules define a subset of the TTCN-3 rules in which no conversion is necessary.

5.3
Keywords

When IDL is used with TTCN-3 the keywords of TTCN-3 shall not be used as identifiers in an IDL module.

5.4
Literals

The definition of literals differs slightly between IDL and TTCN-3 why some modifications have to be made. Table 1 gives the mapping for each literal type.

Table 1 – Literal mapping

	Literal
	IDL
	TTCN

	Integer
	no "0" as first digit
	no "0" as first digit

	Octet
	"0" as first digit
	'FF96'O

	Hex
	"0X" or "0x" as first digits
	'AB01D'H

	Floating
	1222.44E5 (Base 10)
	1222.44E5 (Base 10)

	Char
	'A'
	"A"

	Wide char
	L"A"
	"A"

	Boolean
	TRUE, FALSE
	true, false

	String
	"text"
	"text"

	Wide string
	L"text"
	"text"

	Fixed point
	33.33D
	(see useful type IDLfixed)

IDL uses the ISO Latin-1 character set for string and wide string literals and TTCN-3 uses [ITU-T T.50] for string literals and [ISO/IEC 10646ISO/IEC 10646

 REF REF_ISOIEC10646 \h
ISO/IEC 10646ISO/IEC 10646] for wide string literals.

6
Pre-processing

Pre-processor statements are not matched to TTCN-3 because the IDL specification must be used after pre-processing it.

7
IDL specification

The module, interface, value and constant declaration are described now and the type and exception declaration as well as the bodies of interfaces are described later.

7.1
Module declaration

IDL modules are mapped to TTCN-3 modules. Nested IDL modules must be flattened accordingly to TTCN-3 modules.

As one IDL module can contain many nested IDL modules where several nested modules can have equal names in different scopes, these names can clash. Hence, module names identifiers are to be used which are composed of the identifiers of the upper level IDL modules (from hierarchical point of view) and the nested IDL module name, separated one from each other by two underscores.

According the IDL scoping rules nested modules have access to the scope of upper level modules. As there are no nested modules in TTCN-3, TTCN-3 modules have to import upper level modules. For avoiding name clashes, a prefix for the imported definitions composed of the identifier of the module from which it is imported shall be used. The prefix and the identifier are separated by a dot (.) as defined in TTCN-3.

IDL example:

module identifier1 {

typedef long mylong1;

module identifier2 {

typedef string mystring2;

typedef mylong1 mylong2;

module identifier3 {

typedef mylong1 long_from_module_1;

typedef mystring2 string_from_module_2;

typedef mylong2 long_from_module_1_2;

};

};

};

TTCN example:

module identifier1 {

type long mylong1;

}

module identifier1__identifier2 {

import from identifier1 all;

type iso8859string mystring2;

type identifier1.mylong1 mylong2;

}

module identifier1__identifier2__identifier3 {

import from identifier1 all;

import from identifier1__identifier2 all;

type identifier1.mylong1 long_from_module_1;

type identifier1__identifier2.mystring2 string_from_module_2;

type identifier1__identifier2.mylong2 long_from_module_1_2;

};

7.2
Interface declaration

Interfaces are flattened and all interface definitions are stored in one group. In contrast to interfaces in IDL, groups in TTCN-3 do not create a scope. Therefore, prefixes for all identifiers of type definitions inside of the interface shall be used, which are a combination of the interface name and two underscores as the prefix.

Import of single interface definitions from other modules via the importing group statement is possible. This can be used if inheritance is used in the IDL specification.

For each interface, a procedure-based port type is defined for the test specification. It is associated with signatures translated from attributes and operations of the interface.

An IDL attribute is mapped to two signatures: one for the setting of a value and one for getting it. These signatures have names composed of the prefix (interface name and two underscores), attribute name and the word "Set" (except for "readonly") or "Get" correspondingly.

Since an interface can be used in operation parameters to pass object references, an address type is also declared in the data part. Components are used as collection of interfaces, or objects.

IDL example:

interface identifier {

attribute long attributeId ;

void operationname (in string param_value) raises (ExceptionType) ;

... other body definitions ...

};

TTCN example:

group identifierInterface {

signature identifier__attributeIdGet () return long;

signature identifier__attributeIdSet (in long identifier__attributeId);

signature identifier__operationname (in iso8859string identifier__param_value)

exception (ExceptionType) ;

...other body definitions ...

type port identifier procedure { ... }

type address identifierObject;

}

Interface inheritance is executed by rolling out all inherited elements. Thus, they have to be handled as defined in the interface itself. Multiple inheritance elements have to be inherited only once! As normally an inherited IDL interface uses types defined in the module, usually it is essential to import the complete mapped TTCN-3 module. All inherited elements have to be rolled out directly in the TTCN-3 group for the interface, even if the inheritance is multiple

Forward references of interfaces are provided by forward referencing the according port of the interface. Local interfaces are treated as normal interfaces. However, it is recommend not to use forward references and to move a TTCN-3 definition of the interface (group) to a place where a forward definition is used first time.
7.3
Value declaration

In contrast to type interface, the IDL type value has local operations that are not used outside the object, and are therefore not relevant from the functional testing point of view. However, since the public attributes of value instances are used to communicate object states, the IDL value type is mapped to the record type in TTCN-3

The example below shows how to map valuetype and was used from section 5.2.5 in [OMG CORBA REF REF_OMG_CORBA \h
].

IDL example:

valuetype EmployeeRecord {

 // note this is not a CORBA::Object

 // state definition

 private string name;

 private string email;

 private string SSN;

 // initializer

 factory init(

 in string name, in string SSN);

};

TTCN example:
type record EmployeeRecord {

 iso8859string name,

 iso8859string email,

 iso8859string SSN

}

7.4
Constant declaration

Constant declarations can be transformed by use of literal (see Table 1) and operator mapping for floating-point and integer values (see Table 2).

Table 2 – Operators for constant expressions

	Operator
	IDL
	TTCN

	Unary floating-point
	
	

	Positive
	+
	+

	Negative
	–
	–

	Binary floating-point
	
	

	Addition
	+
	+

	Subtraction
	–
	–

	Multiplication
	*
	*

	Division
	/
	/

	Unary integer
	
	

	Positive
	+
	+

	Negative
	–
	–

	Bit-complement
	~
	not4b

	Binary integer
	
	

	Addition
	+
	+

	Subtraction
	–
	–

	Multiplication
	*
	*

	Division
	/
	/

	Modulo
	%
	mod

	Shift left
	<<
	<<

	Shift right
	>>
	>>

	Bitwise and
	&
	and4b

	Bitwise or
	|
	or4b

	Bitwise xor
	^
	xor4b

IDL example:

const long number = 017; // 017 == 0xF == 15

const long size = ((number << 3) % 0x1F) & 0123;

TTCN example:

const long number := "17"O;

const long size := ((number << 3) mod '1F'H) and4b '0123'O;

8
Type declaration

Type declaration mapping will be shown in the following clauses.

A construct for naming data types and defining new types by using the keyword typedef is provided by IDL. This can be done under TTCN-3 via the keyword type, too.

To enhance readability and to provide a clear distinction, mapped IDL data types get the prefix IDL and the extension attribute "variant" as done in TTCN-3 for type IDLfixed (see clause E.2.4.0 in [ITU-T Z.161]).

8.1
IDL basic types

IDL basic data types are mapped to predefined or useful types in TTCN-3.

8.1.1
Integer and floating-point types

Integer and floating-point types are mapped onto the corresponding useful types short, unsignedshort, long, unsignedlong, longlong, unsignedlonglong, IEEE754float, IEEE754double, and IEEE754extdouble.

IDL example:

const long size = ((number << 3) % 0x1F) & 0123;

const float decimal = 15.7;

TTCN example:

const long size := ((number << 3) mod '1F'H) and4b '0123'O;

const IEEE754float decimal := 15.7;

8.1.2
Char and wide char type

The IDL char and wide char type represent a single and wide character. They are mapped to the self defined type iso8859char and type universal char.

IDL example:

const char letter = 'ABCD';

const wchar wideLetter = L'ABCD';

TTCN example:

type universal char iso8859char (char (0,0,0,0) .. char (0,0,0,255)) with { variant "8 bit" };

const iso8859char letter := "ABCD";

const universal char wideLetter := "ABCD";

8.1.3
Boolean type

The IDL boolean type is equivalent to the TTCN-3 boolean type.

IDL example:

const boolean isValid = TRUE;
TTCN example:

const boolean isValid = true;
8.1.4
Octet type

Octet cannot be mapped onto an integer type because it has the special feature that it will not change its internal ordering if transferred between different system architectures. To represent it octet is mapped to octetstring.

IDL example:

const octet data = 0x55;

TTCN example:

const octetstring data = '55'H

8.1.5
Any type

The IDL any type is mapped onto anytype in TTCN-3 which was especially introduced for this mapping.

IDL example:

typedef any AllTypes;

TTCN example:

type anytype AllTypes;

8.2
Constructed types

IDL provides the three constructed types struct, union, and enum. Recursive construction of types is only permitted with the sequence template.

8.2.1
Struct

struct is used to collect ordered data in one place where it is mapped onto record in TTCN-3.

IDL example:

typedef struct NC {

 string id;

 string kind;

} NameComponent;

TTCN example:

type record NameComponent {

 iso8859string id,

 iso8859string kind

}

8.2.2
Discriminated unions

In IDL, unions are discriminated to determine the actual type. Therefore, a record type is used, which contains two members. The first one stores the discriminator information using an enumeration type. The second member is a TTCN-3 union type which members are defined according to the specified IDL union members.

In addition, two types are defined to express the link between discriminator's type and union's type: a type to reflect the discriminating type of a union and an enumeration to distinguish the discriminated cases. Using the information provided by these type definitions, the marshalling/unmarshalling for discriminated unions is possible in an unambiguous manner: to encode or decode a union value, we use the value of the kind field to resolve the corresponding chosen option and calculate then the real value for the discriminator by resolving this value in the discriminator enumeration.

IDL example 1:

union MyUnion switch(long) {

 case 0 : boolean b;

 case 1 : char c;

 case 2 : octet o;

 case 3 : short s; };

TTCN example 1:

type long MyUnion__Switch;

type union MyUnionType {

 boolean b,

 iso8859string c,

 octetstring o,

 short s }

type enumerated MyUnionEnumType {

 boolean_b, iso8859string_c, octetstring_o, short_s

}

type record MyUnion {

MyUnionEnumType kind,

MyUnionType value

}

IDL example 2:

Enum MyDiscr {

BOOLEAN_DISCR,

CHAR_DISCR,

OCTET_DISCR,

SEQ_DISCR,

SHORT_DISCR

};

union MyUnion switch(MyDiscr) {

case BOOLEAN_DISCR : boolean b;

case SHORT_DISCR : short s;

};

TTCN example 2:

type enumerated MyDiscr {

BOOLEAN_DISCR, CHAR_DISCR, OCTET_DISCR, SEQ_DISCR, SHORT_DISCR

}

type MyDiscr MyUnion__Switch;

type enumerated MyUnion__CasesType {

case_BOOLEAN_DISCR,

case_SHORT_DISCR

}

type union MyUnionType {

boolean b,

short s

}

type enumerated MyUnionEnumType {

boolean_b,

short_s

}

type record MyUnion {

MyUnionEnumType kind_,

MyUnionType value_

}

8.2.3
Enumerations

Enumerations are equally defined in IDL and TTCN-3.

IDL example:

enum NotFoundReason {

 missing_node,

 not_context,

 not_object };

TTCN example:

type enumerated NotFoundReason {

 missing_node,

 not_context,

 not_object }

8.3
Template types

IDL supports the template types sequence, string, wide string and fixed type.

8.3.1
Sequence

IDL sequence is mapped to record of in TTCN-3 to maintain order and to allow unbounded sequences.

IDL example 1:

typedef sequence<NameComponent> Name;

TTCN example 1:

type record of NameComponent Name;

IDL sequences with a specified maximum size are mapped to record of with limited number of elements to maintain order and restrict the maximum number of elements.

IDL example 2:

typedef sequence<NameComponent, maximum_size> Name;

TTCN example 2:

type record length (0, maximum_size-1) of NameComponent Name;

8.3.2
String and wstring

string and wstring types are sequences of char and wchar. Therefore, string and wstring are mapped to the useful type iso8859string and universal charstring.

IDL example:

const string name = "My String";

const wstring wideName = L"My String";

TTCN example:

const iso8859string name := "My String";

const universal charstring wideName := "My String";

8.3.3
Fixed types

The fixed type represents a fixed-point decimal number. It is mapped to the corresponding useful type IDLfixed in TTCN-3 (see clause E.2.4.0 in [ITU-T Z.161]).

IDL example:
typedef fixed<12,7> myFix;

TTCN example:

template IDLfixed myFixTemplate := { 12, 7, ? }; // e.g. in module definition part

var IDLfixed myFix := { 12, 7, "12345.1234567" }; // e.g. in module control part

8.4
Complex declarator

The last kind of type declarators are the complex array and native types.

8.4.1
Arrays

IDL array is equal to the TTCN-3 array type.

IDL example:

typedef long NumberList[100];

TTCN example:

type long NumberList[100];

8.4.2
Native types

Native types are used to allow implementation of dependent types. TTCN-3 provides the type address to address entities inside a SUT. Hence, address can be used for mapping of type native and concrete implementation is left to the user.

IDL example:

typedef native MyNativeVariable;

TTCN example:

type MyNativeVariable address;

9
Exception declaration

In IDL, exceptions are used in conjunction with operations to handle exceptional conditions during an operation call. Thus, a special struct-like exception type is provided which has to be associated with each operation that can trigger this exception. TTCN-3 also supports the use of exceptions with procedure calls by binding it to signature definitions. However, it provides no special exception type. Hence, exceptions are defined by using type record.

A definition of an exception is shown in the following example. The use of exception binding in signature definitions and exception catching is shown in the context of operation declaration.

IDL example:

exception NotFoundException {

 NotFoundReason why;

 Name rest_of_name; };

TTCN example:

// definition of an exception type

type record NotFoundException {

 NotFoundReason why,

 Name rest_of_name }

// definition of a template for the

// defined exception type

template NotFoundException

 NotFoundExceptionTemplate (NotFoundReason reason, Name name) := {

 why := reason,

 rest_of_name := name }

10
Operation declaration

Apart from attributes, operations are the main part of interface definitions in IDL and are used, for instance, in the CORBA scheme as procedures which can be called by clients. Procedure calls in general are supported by TTCN-3 by means of synchronous communication operations which are used in combination with ports.

IDL supports an optional oneway attribute for operations which implies best-effort invocation semantics without a guarantee of delivery but with a most-once invocation semantics. Message or procedure-based ports can be used for oneway procedures because both would be a valid mapping based upon IDL. However, the use of procedure-based ports for oneway procedures is recommended because the IDL specification does not guarantee that oneway calls are non-blocking or asynchronous. Furthermore, CORBA implements oneway procedures by synchronous communication, too. Use of non-blocking or blocking procedures for oneway operations is left to the user. Mapped oneway operations acquire an additional variant attribute (see example).

The parameter attributes in, inout and out describe the transmission direction of parameters and can be mapped directly to the communication parameter attributes in TTCN-3 because they have the exact same semantics.

A raise expression specifies all exceptions which can be thrown by an operation. It can be mapped directly to TTCN-3 because it can be indicated by the procedure signature definition by specifying an exception. Nevertheless, each operation can trigger a standard exception.

A context expression provides access to local properties of the called operation. These properties consist of a name and a string value. The context expression can be matched by redefining the operation with the context parameters included in the operation parameters (see section 4.6, [ITU-T Z.161 REF REF_ITU_TZ161 \h
]). The additional parameter must be of type array containing a type record for each context parameter. The record itself contains two variables of type string for the context name and value.

IDL example:

// not found exception is defined in section "exception declaration"

string remoteProc1(in long Par11, out long Par12, inout string name1)

 raises(NotFound)

 context("MyContext1");

// oneway procedure: no return value and no inout or out allowed!!!

oneway void remoteProc2(in long Par21, in long Par22, in string name2);

TTCN example:

// only operation definition

type record IDLContextElement {

 iso8859string name,

 iso8859string value_

}

type record of IDLContextElement IDLContext;

signature RemoteProcSignature1(

 in long Par11, out long Par12,

 inout charstring name1, in IDLContext context)

 return iso8859string
 exception(NotFoundException);

signature RemoteProcSignature2(

 in long Par21, in long Par22,

 in iso8859string name2)

 with { variant "IDL:oneway FORMAL/01-12-01 v.2.6" };

type port RemoteProcPort procedure {

 out RemoteProcSignature1;

 out RemoteProcSignature2

}

type component CorbaSystem {

 port RemoteProcPort PCO

}

11
Attribute declaration

An attribute is like a set- and get-operation pair to access a value. If an attribute is marked as readonly, only the get-operation is used. Therefore, attribute mapping can be done by the operation mapping.

12
Names and scoping

The name definition scheme of IDL does not collide with the name definition in TTCN-3. Scoping is more restrictive in IDL than in TTCN-3, where the IDL scoping rules have to be mapped appropriately to allow seamless mapping. IDL uses nested scopes for modules, interfaces, structures, unions, operations and exceptions and identifiers are scoped in types, constants, enumeration values, exceptions, interfaces, attributes and operations. The hierarchical scopes in TTCN-3 are module, control part of module, function, testcase and statement blocks within control part of module, function and testcase.

Furthermore, TTCN-3 supports no overloading of identifiers so that no identifier name can be used more than once in a scope hierarchy. However, IDL allows redefinition of self defined types if defined inside a module, interface or valuetype. Hence, identifiers have to be mapped by using their path name including all interface and valuetype names as designated in IDL and TTCN-3. The use of module names is not necessary because they are reflected by the TTCN-3 module structure. An underscore is used as a separator and existing underscores are doubled.

Several new identifiers are generated during transformation of IDL types by adding to the original IDL type identifier suffixes like: "Type", "Enum", "Object", "Interface", etc. This approach and the use of TTCN-3 keywords in IDL modules can cause a name clashes, which are to be resolved by a suffix "_":

IDL example:

interface identifier {

... body definitions ...

};

//an example of the identifier, which can cause a name clash

typedef long identifierObject;

TTCN example:

group identifierInterface {

... body definitions ...

type port identifier procedure { ... }

//the suffix '_' is used only where necessary

//to resolve the name clash

type address identifierObject_;

}

type long identifierObject;

To indicate the special treatment of TTCN-3 statements derived from IDL, TTCN-3 provides a new mechanism to attach attributes to language elements. The use of attributes makes code more readable and require no special naming scheme. Therefore, the variant attribute can be used to indicate the derivation of types from IDL and the special treatment for encoding by the test system. This is used in TTCN-3 for the IDLfixed useful type:

type record
IDLfixed {

unsignedshort
digits,

short
scale,

charstring
value_

}

with { variant "IDL:fixed FORMAL/01-12-01 v.2.6" };

Names of new types which are specially defined for the IDL mapping and their use in conjunction with IDL shall always begin with the word IDL to provide better distinction.

Annex A

Examples
(This annex is informative)
A.1
Example

The following example shows how a mapping would look like if a complete IDL and TTCN-3 specification, including a test case, is used. It is only intended to give an impression of how the different elements have to be mapped and used in TTCN-3.

Some parts are used from the CORBA standard like the Naming Service with slight modifications to cover more IDL elements.

A.1.1
IDL specification

module ttcnExample

{

 // ***********

 // Basic Types

 // ***********

 const long number = 017; // 017 == 0xF == 15

 const long size = ((number << 3) % 0x1F) & 0123;

 const float decimal = 15.7;

 const char letter = 'A';

 const wchar wideLetter = L'A';

 const boolean isValid = TRUE;

 const octet anOctet = 0x55; // limited to 8 bit

 const string myName = "my name";

 const wstring wideMyName = L"my name";

 typedef string MyString;

 // *****************

 // Constructed Types

 // *****************

 typedef struct NC {

 MyString id;

 MyString kind;

 } NameComponent;

 union MyUnion switch(long) {

 case 0 : boolean b;

 case 1 : char c;

 case 2 : octet o;

 case 3 : short s;

 };

 enum NotFoundReason { missing_node,

 not_context,

 not_object };

 // **************

 // Template Types

 // **************

 typedef sequence <NameComponent> Name;

 typedef sequence <NameComponent> Key;

 typedef fixed<12,7> Fix;

 // ******************

 // Complex Declarator

 // ******************

 typedef long NumberList[100];

 native MyNativeVariable;

 // ********************

 // Valuetype Definition

 // ********************

 valuetype StringValue string;

 valuetype EmployeeRecord {

 // note this is not a CORBA::Object

 // state definition

 private string name;

 private string email;

 private string SSN;

 // initializer

 factory init(in string name, in string SSN);

 };

 // ********************

 // Interface Definition

 // ********************

 interface NamingContext {

 attribute string object_type;

 readonly attribute Key external_form_id;

 exception NotFound {

 NotFoundReason why;

 Name rest_of_name;

 };

 MyString bind(in Name n, inout Object obj, out Object myObj)

 raises(NotFound) context ("Hostname");

 oneway void rebind(in Name n, in Object obj);

 }; // end of interface NamingContext

}; // end of module ttcnExample

A.1.2
Derived TTCN-3 specification

module ttcnExample {

import from IDLaux all;

// ********************************

// Mapping of the IDL Specification

// ********************************

// **********************

// Mapping of Basic Types

// **********************

const long number := oct2int('17'O) ;

const long size := oct2int(int2oct(oct2int(int2oct(number,4)<<3) mod hex2int('1F'H),4) and4b '0123'O);

const IEEE754float decimal := 15.7;

type universal char iso8859char (char (0,0,0,0) .. char (0,0,0,255))

with { variant "8 bit" };

const iso8859char letter := "A";

const universal char wideLetter := "A";

const boolean isValid := true;

const octetstring anOctet := hex2oct('55'H);

const iso8859string myName := "my name";

const universal charstring wideMyName := "my name";

type iso8859string MyString;

// *****************

// Constructed Types

// *****************

// ******

// Struct

// ******

type record NameComponent {

MyString id,

MyString kind

};

// *****

// Union

// *****

type union MyUnion {

boolean b,

iso8859char c,

octetstring o,

short s

};

// ***********

// Enumeration

// ***********

type enumerated NotFoundReason {

missing_node,

not_context,

not_object

}

// ********

// Sequence

// ********

type record of NameComponent Name;

type record of NameComponent Key;

//******

// Fixed

// *****

// see also using of fixed in testcase below

template IDLfixed fixTemplate := { 12, 7, ? };

// ******************

// Complex Declarator

// ******************

type long numberList[100];

// see using of native in testcase below

// ********************

// Valuetype Definition

// ********************

type iso8859string StringValue;

type record EmployeeRecord {

iso8859string name,

iso8859string email,

iso8859string SSN

};

// ********************

// Interface Definition

// ********************

type record IDLContextElement {

iso8859string name,

iso8859string value_

}

type record of IDLContextElement IDLContext;

group NamingContextInterface {

type address NamingContextObject;

// attribute object_type

signature NamingContext__object_typeGet () return iso8859string;

signature NamingContext__object_typeSet (in iso8859string NamingContext__object_type);

template NamingContext__object_typeSet ObjectTypeSetSignatureTemplate := {

object_type := "my object type"

}

//

// attribute external_from_id

//

signature NamingContext__external_form_idGet() return Key;

// exception notFoundException

type record NamingContext__NotFoundException {

NotFoundReason why,

Name rest_of_name

}

template NamingContext__NotFoundException

NamingContext__NotFoundExceptionTemplate (NotFoundReason reason, Name name) := {

why := reason,

rest_of_name := name

}

//

// bind procedure

//

signature NamingContext__BindSignature(in Name n, inout address obj, inout address myObj,

in IDLContext context) return MyString

exception(NamingContext__NotFoundException);

template NamingContext__BindSignature

NamingContext__BindTemplate (charstring object, IDLContext con) := {

n := { {"name", ""} },

obj := object,

myObj := ?,

context := con

}

//

// rebind procedure

//

signature NamingContext__RebindSignature(in Name n, in address obj)

with { variant "IDL:oneway FORMAL/01-12-01 v.2.6" };

template NamingContext__RebindSignature

NamingContext__RebindTemplate (address object) := {

n := { {"name", ""} },

obj := object

}

type port NamingContext procedure {

out NamingContext__object_typeGet;

out NamingContext__object_typeSet;

out NamingContext__external_form_idGet;

out NamingContext__BindSignature;

}

}

// component is necessary for test case

type component CorbaSystemInterface {

port NamingContext PCO;

}

// somewhere has main test component MyMTC to be defined

type component MyMTC {

port NamingContext NamingContextPCO;

}

// *******************

// Testcase Definition

// *******************

testcase MyNamingServiceTestCase() runs on MyMTC system CorbaSystemInterface {

// examples to show how above definitions can be used inside a

// testcase definition

var CorbaSystemInterface myCorbaSystem := CorbaSystemInterface.create;

connect(self:NamingContextPCO, myCorbaSystem:PCO);

myCorbaSystem.start;

//

// Fixed Type

//

var IDLfixed fix := { 12, 7, "12345.1234567" };

//

// Native

//

var address MyNativeVariable;

//

// Procedure Calls

//

var MyString myResult1;

var Key myResult2;

var MyString myResult3;

var address object, myObject, resultObject, resultMyObject;

var IDLContextElement contextElement := {

name := "Hostname",

value_ := "disen"

}

var IDLContext contextParameter := { contextElement };

//

// procedure get object_type

//

NamingContextPCO.call(ObjectTypeGetSignature)

{

[] NamingContextPCO.getreply(ObjectTypeGetSignature value *)

-> value myResult1 {}

}

//

// procedure set object_type

//

NamingContextPCO.call(ObjectTypeSetSignatureTemplate);

//

// procedure get external_from_id

//

NamingContextPCO.call(ExternalFormIdGetSignature)

{

[] NamingContextPCO.getreply(ExternalFormIdGetSignature value *)

-> value MyResult2 {}

}

//

// procedure bind (with template)

//

NamingContextPCO.call(BindTemplate(object, contextParameter))

{

[] NamingContextPCO.getreply(BindTemplate(*) value *)

-> value myResult3

param(resultObject, resultMYObject) sender mySender {}

[] NamingContextPCO.catch(BindSignature,

NamingContext__NotFoundExceptionTemplate)

{

setverdict(fail);

stop;

}

}

//

// procedure bind (without template)

//

NamingContextPCO.call(

 BindSignature:{ myName, object, myObject, contextParameter })

{

[] NamingContextPCO.getreply(BindSignature:{ -, *, myObject }

value *) -> value myResult3 param(resultObject, resultMYObject) sender mySender {}

}

//

// procedure rebind

//

NamingContextPCO.call(RebindSignature:{ myName, object}); // or use a template

//

// raising an exception

//

// this would be used to raise an exception inside of procedure bind

// if defined by TTCN-3 (if used on server side).

var NamingContext__NotFoundException myNotFoundException := {

why := missing_node,

rest_of_name := "noname"

}

NamingContextPCO.raise(BindSignature, myNotFoundException);

} // end of testcase MyNamingServiceTestCase

}

Annex B

Mapping lists
(This annex is informative)
B.1
IDL keyword and concept mapping list

Table B.1 lists the mapping of keywords and concepts of IDL to TTCN-3 keywords or concepts. Literal and operator mapping can be seen in Tables 1 and 2.

Table B.1 – Conceptual list of IDL mapping

	IDL
	TTCN-3
	
	IDL
	TTCN-3

	FALSE
	false
	
	module
	module

	Object
	address
	
	native
	address

	TRUE
	true
	
	octet
	octetstring

	abstract
	has to be rolled out
	
	oneway
	operation with variant attribute

	any
	anytype
	
	operation
	signature for procedure

	array
	array
	
	out
	out

	attribute
	get (and set) operation
	
	raises
	exception

	boolean
	boolean
	
	readonly
	only a get-operation for the attribute

	char
	iso8859char
(self defined type)
	
	sequence
	record of

	const
	const
	
	short
	short

	context
	additional procedure parameter of type record
	
	string
	iso8859string

	enum
	enumerated
	
	struct
	record

	exception
	record
	
	typedef
	type

	fixed
	IDLfixed
	
	union
	record, enumerated, union

	float
	IEEE754float
	
	unsigned long
	unsignedlong

	double
	IEEE754double
	
	unsigned long long
	unsignedlonglong

	long double
	IEEE754extdouble
	
	unsigned short
	unsignedshort

	in
	in
	
	valuetype
	record

	inout
	inout
	
	wchar
	universal char

	interface
	group, port
	
	wstring
	universal charstring

	local

	long
	long
	
	
	

	long long
	longlong
	
	
	

B.2
Comparison of IDL, ASN.1, TTCN-2 and TTCN-3 data types

Table B.2

	IDL
	ASN.1
	TTCN-2
	TTCN-3

	Object
	ObjectInstance (X.500 Distinguished name)
	IA5String
	address

	any
	ANY DEFINED BY [ITU-T X.680] or SEQUENCE {typecode, anyValue}
	CHOICE
	anytype

	array
	SEQUENCE OF (with sizeConstraint subtype)
	SEQUENCE SIZE(n) OF
	array

	boolean
	BOOLEAN
	BOOLEAN
	boolean

	char
	GraphicString
	GraphicString or IA5String(SIZE(1))
	iso8859char
(self defined type)

	enum
	ENUMERATED
	ENUMERATED
	enumerated

	exception
	SPECIFIC ERRORS
	SEQUENCE
	record

	fixed
	See note
	See note
	IDLfixed

	float
	REAL
	See note
	IEEE754float

	double
	REAL
	See note
	IEEE754double

	long double
	REAL
	See note
	IEEE754extdouble

	long
	INTEGER
	INTEGER
	long

	long long
	INTEGER
	INTEGER
	longlong

	native
	See note
	See note
	address

	octet
	OCTET STRING
	OCTET STRING (SIZE(1))
	octetstring

	sequence
	SEQUENCE OF (with optional sizeConstraint subtype for IDL bounds)
	SEQUENCE OF
	record of

	short
	INTEGER
	INTEGER
	short

	string
	GraphicString
	GraphicString
	iso8859string

	struct
	SEQUENCE
	SEQUENCE
	record

	union, switch, case
	CHOICE (with ASN.1 TAGS)
	SEQUENCE
	record, enumerated, union

	unsigned long
	INTEGER
	INTEGER
	unsignedlong

	unsigned long long
	INTEGER
	INTEGER
	unsignedlonglong

	unsigned short
	INTEGER
	INTEGER
	unsignedshort

	valuetype
	See note
	See note
	record

	wchar
	See note
	GraphicString or BMPString(SIZE(1))
	universal char

	wstring
	See note
	GraphicString
	universal charstring

	NOTE – Mapping of this type was not considered.

Bibliography

M. Ebner, A. Yin, and M. Li (2002): "Definition and Utilization of OMG IDL to TTCN-3 Mappings". In testing of communicating systems XIV - Application to Internet Technologies and Services, ed. I. Schieferdecker, H. König and A. Wolisz. IFIP, Kluwer Academic Publishers, pp. 443-458. ISBN 0-7923-7695-1.

M. Ebner (2001): "A Mapping of OMG IDL to TTCN-3". SIIM Technical Report SIIM‑TR-A- 01-11, Institute for Telematics, Medical University of Lübeck, Germany. Schriftenreihe der Institute für Informatik/Mathematik.

M. Ebner (2001): "Mapping CORBA IDL to TTCN-3 based on IDL to TTCN-2 mappings". In Proceedings of the 11th GI/ITG Technical Meeting on Formal Description Techniques for Distributed Systems, Bruchsal, Germany, 21-22. June 2001. International University in Germany.

A. Yin (2001): "Testing Operation-Based Interfaces Exemplified for CORBA with ADL and TTCN-3". Diplomarbeit, Telecommunication Network Group, Faculty of Electrical Engineering and Computer Science, Technical University Berlin, Germany.

A.Yin, I. Schieferdecker and M. Li (2001): "Mapping of IDL to TTCN-3". Technical Report, Fraunhofer Institute for Open Communication Systems (FOKUS), Germany.

ITU-T Recommendation X.292 (2002), OSI conformance testing methodology and framework for protocol Recommendations for ITU-T applications – The Tree and Tabular Combined Notation (TTCN).
Referenced documents from ETSI which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE – While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.

PAGE

_1227013887.doc

Tabular format

The shaded boxes are not defined in the present document

IDL types and values

Graphical format

Other types and values n

ASN.1 types and values

TTCN-3 User

Presentation format n

TTCN-3 Core

Language

