
CCITT Study Group XV
Working Party XV/1
Specialists Group on Coding for Visual Telephony

Doc. #335
Mar. 1988

Source: PictureTel Corp.

Title: Some notes on Reed-Solomon codes

1 INTRODUCTION

A Reed-Solomon error correction code operates on an alphabet
of size q, and the blocklength is q-1 symbols. If each
symbol is defined to be an octet, i.e., q~256, the
blocklength is 255 • octets (2040 bits). A shorter
blocklength can be chosen by truncating the code.

To achieve the capability to correct t symbols/ 2t parity
symbols are required. A double error correcting code (t-2)
uses 4 octets of parity and can correct any 2 erroneous
octets in a block. Hence, the code can correct any two
random bit errors. It can also correct a burst that is
confined to two symbols; a 9-bit burst error can always be
corrected.

As shown in this document, a double-error correcting
Reed-Solomon code has very attractive properties:

* Good performance for random bit errors ' :

* Good performance for short error bursts

* Small overhead

* Easy implementation

2 PERFORMANCE

For random bit errors, the probability of having
uncorrectable error in a block of n B-bit symbols is

pblock = P(>t symbol errors)

an

= 1 - SUM P(i symbol errors)
i = 0

n-i i
(1-psym) psym

Page 2
#335"

where the symbol error probability psym is

B
psym = 1 - (1-ber)

and ber is the bit error probability. The mean time between
uncorrectable errors

n B
MTBE

R pblock

is plotted in Fig. 1 for t«=2, B«=8 bits/symbol, and R-320
kb/s. Curves for two blocklengths are plotted, the maximum
blocklength n-255 and a truncated code, n-128.

£ 320

Figure 1. Mean time between errors for double-error correcting
Reed-Solomon code at 320 kbit/s; B = 8 bit/symbol.

Page 3

#335- •
For approximate computations, the formula

• / n v t+1
pblock ((B ber)

\t+l/

can be used.

Redundancy and delay are listed in Table 1.

Table 1. Redundancy and delay for t=2 (double-error correcting)
Reed-Solomon codes with 8 bits/symbol.

Blocklength

Blocklength

Redundancy

Delay @ 320
u _ —— _ -

(octets)

(bits)

(%)

kbit/s (ms)

| n=255

| 2040
I
| 1.57
1
| 6.38

-t-— — — — — — — -t-
| n=128 |

| 1024 |
1 1
1 3.12 |
1 1
| 3.20 |

3 IMPLEMENTATION

3.1 Encoder :

In the encoder, the parity symbols are computed from the
information symbols as outlined in Figure 2. Essentially, a
polynomial division is performed by the circuit. Each
lookup table performs a multiply by a constant. The
registers are initialized to zero at the beginning of a
block. At the end of the block, the parity symbols are
clocked out from the registers.

Four table look-ups and four XOR operations are performed
per symbol. The number of operations per second for
double-error correcting Reed-Solomon codes are listed in
Table 2.

Table 2. Computational requirements for parity symbol
generation; t=2, B=8 bits/symbol.

r— — — — — — — - — —.—_——.— — . — . — — — _—__
Rate (kbit/s)

Table lookups (k ops/s)

XOR's (k ops/s)

| 320

| 160
1
| 160

| 1920 |
_+ —————— |

1 960 |
1 1
| 960 |

Page 4

#335
3.2 Decoder

The decoder starts by calculating syndromes according to
Figure 3. At the beginning of the block, the registers are
initialized to zero. At the end of the block, the four
syndromes are available in the registers. The number of
operations is the same as for generating the parity symbols.

If the syndromes are not zero, one or more symbols were
erroneous. The errors are found by the following steps:

1. Generate an error locator polynomial.

2. Find the zeroes of the error locator polynomial to
obtain the error locations.

3. Calculate the error-va-lues.

For double-error correction, these steps correspond to less
than 150 operations per block. They are most easily
implemented in software.

Reference: R E Blahut, Theory and Practice of Error Control
Codes, Addison-Wesley 1983.

Figure 2. Parity symbol generation

Page 5,

!
(

• — -

!

•"t
i

ii

i

i

!i
!

~

——— ;

1

i

,

1

i

l

1
i
1

i

i

'

i

',

•

1

1

'

-

1

SAT A
MJ

•

j

i

0 ,

V
'

;
—

1

y

'$

jf

B

s

'B

- y
8

;

. V.-4;
25t
L-u

>^
U

Z5*
LI

\
\

^>

Z^
•d

>^-^]
^5^
tc

1

•*̂>~
x&
-p -

1

>
* 8 ;
j T

i

X.
*>

"8
rT

FVsfa
rr

i
;

t- a^

i

- I

- i

= -I

h=

!

>-,

1

.) -

!

-'4

/ <•

/ 4

7«-

t

1

-

^

•

-

r
i

-i ...,

1

;

(

:

1 1

| !

,

I

ip-p-r-

1
i-rr

!

Figure 3. Syndrome generation

