ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group (Question 15)

Ninth Meeting: Red Bank, New Jersey, 19-22 October, 1999
Document Q15-I-53
Filename: q15i53.doc

Generated: 15 Oct. ’99

Question:
Q.15/SG16

Source:
Stephan Wenger
TU Berlin Sekr. FR 6-3
Franklinstr. 28-29
D-10587 Berlin
Germany

Bindignavile Srinivas, Ph.D.

Nokia Research Center

6565 Macarthur Boulevard

Irving, TX-75039

USA

Tel:
Fax:
Email:

Tel:

Fax:

Email:

+49-172-300-0813
+49-30-314-25156
stewe@cs.tu-berlin.de
+1-972-894-6798

+1-972-894-4589

Bindignavile.Srinivas@nokia.com

Title:
Mobile Mux Simulation Tools

Purpose:
Information

Out of the recent reflector discussions an upgraded set of mobile simulation tools resulted. A complete set of these tools can be found in the accompanying zip file, along with a DOS .bat file that shows their use.

A few minor changed were made in all files to fix bugs such as uninitialized file pointers for error messages, inconsistent usage messages, and similar. Furthermore, to avoid future confusion regarding mobile and Internet simulations environments, the filenames for the packetizer and depacketizer tool were changed to mpacket.c and mdepacket.c. No changes in functionality were made.

Two problems of the software package, especially of the mux, are known:

a) It was reported that the mux cannot be used in a Sun environment as it crashes there. I was unable to reproduce this behavior on my Solaris machine. Maybe the problem is related to b) below, or to the uninitialized file pointers. Further info is solicited.

b) When compiling the psudomux in release mode under VC5.0/DevStudio97, an Internal Compiler Error is reported. Note that VC5.0 is not a new release, and that an upgrade to more modern compiler versions will likely solve the problem. No errors are reported in debug configuration, and the resulting .EXE file can be used without problems.

How to use the environment:

1. Use your favorite H.263 coder to generate a bitstream. This bitstream should include error resilience information, such as GOB headers and/or INTRA macroblocks. Note that mpacket.c specifically searches for GOB and Picture headers to use them as packetization boundaries, but NOT for Slice headers. When your coder uses Slice Structured mode then you will have to change mpacket.c

2. mpacket <your H.263 file> <packet file> <error info file>. The resulting <packet file> is used by the pseudomux. The <error info file>, opened in append mode, contains info about the packetization process.

3. Q15G42r3 <errs> <ChanBitRate> <ErrStart> <In> <Out> <Msg>. This is the pseudomux that simulates a mobile H.223 Annex B connection. <errs> should be one of the error patterns files made available by Q.11. You might additionally want to use an error pattern file containing all binary zeros to simulate error-free H.223 transmission to determine the video bit rate (see below). <ChanBitRate> is the total channel bit rate, which includes system overhead as determined by the pseudomux, and one audio channel. Note that the the video bitrate is, of course, determined by subtracting overhead and audio from <ChanBitRate>. The rate control parameters used in step 1 have, at least roughly, to correspond to this reported video bitrate, determined by the pseudomux. Future implementations might employ a feedback loop for this purpose. <ErrStart> can be set to skip unusual error bursts at the begin of the error pattern file, which was deemed to be necessary for some WCDMA patterns. See the latest common conditions documents for details. <In> is the error-free Input packet file, which is the output of step 2. <Out> is the error prone output packet file, generated by the pseudomux and the input for step 4. <Msg> collects the output messages of the pseudomux including a statistic summary.

4. Mdepacket <in> <out> <Flag> Here, the error prone packet stream <in> is converted back to the H.263 bitstream <out>. <Flag> determines whether AL3 SDUs whose CRC check failed should be written in the <out> file. If <flag> is set to 0, as used by TMN11 and by the mobile anchors, no known-as-corrupt information is written to the <out> file. As the 16 bit CRC check of AL3 is fairly reliable, a decoder can, therefore, expect bit-error-free GOBs for decoding. Some GOBs, however, might be missing. If <flag> is set to 1, all information is written to the <out> file, disregarding the CRC check results. Note that even those bitstreams might not contain all sent information, as mux errors might lead to the drop of Mux PDUs. Consequently, complete AL3 SDUs (corresponding to coded GOBs, and generated in step 2) might be lost. It is also possible that, in case of bigger AL3 SDUs that do not fit into a single mux packet, a whole bit string anywhere in the GOB is lost. A decoder has to be tolerant to all three error types.

5. Decode and quality-assess the resulting H.263 file, employing error concealment as needed.

