ITU – Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group (Question 15)

Eighth Meeting: Berlin, 03-06 August, 1999
Document Q15-H-12
Filename: q15h12.doc

Generated: 28 July ’99

Question:
Q.15/SG16

Source:
Miska Hannuksela
Nokia Research Center
P.O. Box 100
33721 Tampere
Finland

Tel:
Fax:
Email:

+358 3 2725309
+358 3 2725241
miska.hannuksela@nokia.com

Title:
Proposal for Error Resilience Function in Supplemental Enhancement Information

Purpose:
Proposal for H.263++

1
Introduction

A general video communications system is presented in figure below. Let us assume that the source coder and decoder follow the H.263 recommendation. Due to the fact that there are different kinds of transmission channels, such as an IP network or a circuit-switched GSM data channel, there are different kinds of transport coding methods too. For example, RTP is commonly used in IP networks whereas H.223 is used for circuit-switched mobile and PSTN videophone applications. Transport coding adds redundancy to the coded data so that the errors introduced in the transmission channel can be corrected or concealed in the receiver.

 [image: image1.wmf]Source

Coder

Input Video

Waveform

Coder

Entropy

Coder

Transport

Coder

Channel

Transport Decoder

Entropy Decoder

Waveform Decoder

Output Video

Source Decoder

Some parts of H.263 picture layer information are essential in order to be able to decode a particular picture. For example, one cannot decode a picture if the picture coding type (INTRA, INTER, etc.) is missing or corrupted. In order to protect oneself from picture layer data corruption or loss, redundancy should be added to the transmitted data. The redundancy should enable the receiver to recover the most vital parts of the picture layer information so that the corresponding picture could be decoded at least partially. In some video communications applications the transport coder can add this kind of redundancy. For example, the RTP encapsulation of H.263 allows repetition of vital picture layer fields. However, some transport coders, such as H.223, do not have means to add such redundancy. In such cases, the required redundancy needs to be added in the source coding level.

H.263 includes a powerful mechanism to help in picture layer data recovery. GOB Frame ID (GFID) is a part of each GOB and slice header. GFID shall have the same value within one picture. Moreover, GFID shall have the same value as in the previous picture if certain fields in picture layer data remain in effect as for the previous picture. Otherwise, GFID shall be different than that for the previous picture.

If the receiver detects that the picture layer data of a certain picture is corrupted or missing, it can search for the next picture segment (GOB or slice) header. If the GFID of the header is the same as in the previous picture, the picture data can be decoded using the picture layer data from the previous picture. However, if the GFID of the header differs from the GFID(s) in the previous picture, the picture data cannot be reliably decoded. Q15-G-37 proposed that a change in GFID should reflect a certain transition in picture coding type. For example, if the previous picture was coded as INTER and the current GFID differs from the one in the previous picture, it was suggested that picture layer data from the previous picture should be applied except for that picture coding type should be changed to INTRA. According to the Monterrey meeting minutes, Q15-G-48, this technique was not considered robust enough, since GFID can be different from the one in the previous picture due to a change in usage of optional annexes, for example. Therefore the method suggested in Q15-G-37 was not adopted into the test model. This proposal tackles the problem of protecting picture layer data in another way.

2
Proposed Method

The proposal is based on a new function in Supplemental Enhancement Information (Annex L). The function enables repetition of certain picture layer fields of the previous picture in the supplemental enhancement information fields of the current picture. (Picture layer fields are not repeated within the same picture since they are in danger to be corrupted at the same time than the picture layer data itself.)

Notice that the proposed method inherits a considerable delay when recovering a corrupted picture header, since the recovery cannot take place until the beginning of the next picture is received. Since the operation of a decoder is typically faster than real-time at least at low frame rates, the decoder is likely to be able to catch up the time spent for waiting the next picture to arrive.

2.1
Encoder Operation

One possible way to implement an encoder utilizing the proposal is presented in a flowchart below. From now on, picture header refers to picture layer data preceding Supplemental Enhancement Information in bit stream syntax (even though this is not exactly the same definition as used in section 5.1 of the H.263 recommendation).

 [image: image2.wmf]

Code pic header

Skip picture?

GFID changing?

N

Save pic header

prev. picture?

GFID changed in

header as SEI

Put prev. pic

Code pic contents

Y

Y

 Get next picture

N

N

Y

The encoder gets uncompressed pictures at a certain frame rate. The bit rate control algorithm decides whether to code or to skip a particular frame. If a frame is going to be coded, the picture header is coded first. The picture header is also stored for future references to it. No more than three picture headers are needed at any moment, namely the header from the current picture and the headers from the two previous coded pictures. One can conclude whether the GFID is going to be changed in this picture (compared to the previous picture) based on the picture headers of the current and previous pictures. If the GFID of the previous picture also differed from the GFID of the picture before that, one needs the repeat the picture header of the previous picture as Supplemental Enhancement Information. Otherwise, the receiver can recover the picture header of the previous picture using the GFID of either the current picture or the picture preceding the previous picture. Finally, one can code the rest of picture. Then, the coding loop continues from the beginning.

2.2
Decoder Operation

One possible way to implement a decoder utilizing the proposal is presented in a flowchart below.

 [image: image3.wmf]N

Y

header

Get next picture

previous pic?

GFID same as in

lost picture

Actions for totally

to 1st segment

Set decoding pos

header

Recover picture

header

Decode picture

corrupted?

Picture header

header

Get 1st segment

from prev. pic?

GFID changed

header and SEI

Get next picture

hdr repetition?

SEI contains

header

Get next segment

picture contents

Get and decode

N

Y

Y

N

N

Y

The decoder operates as follows. At first, it gets the picture header of the next transmitted picture. If the header is free from errors, the decoder can decode the header without problems. Then, it can go in decoding the rest of the picture. If some errors were detected in the picture header, the decoder searches for the first error-free picture segment (GOB or slice) header of the picture. Let us call this bit stream position as the first resynchronization position. If the GFID of that header is the same as in the previous picture, the decoder can recover the crucial parts of the picture header and go on decoding starting from that particular picture segment. If the GFID differs from the one in the previous picture, the decoder searches for the next picture start code. If the picture layer data of that picture contains SEI picture header repetition, the decoder can recover the picture header of the current picture. It must also set the decoding position in the bit stream back to the first resynchronization position. If the picture layer data does not contain SEI picture header repetition, the decoder searches for the next picture segment start code and checks if the GFID in the header is the same as the GFID of the picture that is being decoded. If the GFIDs are equal, the decoder can recover the picture header and continue decoding from the first resynchronization position. If the GFIDs are different from each other, the decoder has no means to recover the corrupted picture header. In this case, it can request for an INTRA update, for example.

2.3 Simulations

Common conditions for video performance evaluation in H.324/M error-prone systems have been listed in Q15-G-46. Unfortunately, the conditions were available too late for us to perform the required simulations. Anyway, it is expected that the proposal has only a tiny negative impact on compression efficiency, since picture headers need to be repeated relatively rarely and a repeated picture header takes only a few bytes per picture. The proposal is expected to have a positive impact on error resilience if errors hit picture headers that cannot be recovered using GFID.
3
Proposed Changes in Annex L

3.1
Table L.1/H.263

Entry 13 – Picture Layer Data Repetition

3.2
Section L.15

The Picture Layer Data Repetition Function shall be used to repeat certain fields of the coded representation of the picture layer data of the previous picture. The repeated fields shall appear in natural syntactic order beginning from the Temporal Reference (TR) field. In other words, if the PEI bits were removed from the repeated picture layer data, the bit stream of the repetition would be exactly the same as the original bit stream in the corresponding position. DSIZE shall tell the number of repeated bytes. DSIZE equal to zero is reserved for future use.

File:q15h12.doc
Page: 5
Date Printed: 28.07.99

