ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group

Portland, 24-27 June 1997�Document Q15-A-34R1

Filename: q15a34r1.doc��

Question:�Q.15/16��Source:

Contact:�Japan

Yuichiro Nakaya, Yoshinori Suzuki, and Satoshi Misaka�Hitachi, Ltd.�y-nakaya@crl.hitachi.co.jp��Title:�Reduction of computational complexity in bilinear warping��Purpose:�Proposal��_____________________________

1. Introduction

The bilinear warping method specified in Annex P (Reference Picture Resampling mode) of the current H.263+ draft has high computational complexity since: 1/16 pel accuracy motion vectors are used; and two conditional operations is needed to for each pixel. Two proposals for solving these problems are described in this document. These are:

The usage of half pel accuracy motion vectors as an option of the RPR mode.

The adoption of the fast bilinear warping algorithm.

2. Problems in the current specification

(1) Accuracy of motion vectors

The 1/16-pel accuracy motion vectors adopted in Annex P requires at least three multiplications for each pixel in the bilinear interpolation of pixel values.

(2) Bilinear warping algorithm

In the current specification of the warping algorithm for the RPR mode, the following two conditional operations (if-clauses) are executed for each pixel:

if(cx >= d) {

bx++;

cx -= d;

}

if(cy >= d) {

by++;

cy -= d;

}

Due to the pipelined architecture of recent processors, the existence of if-clauses causes a bad effect on the execution time of a software.

3. Proposed solutions

3.1 Half-pel accuracy motion vectors for warping

The multiplications in the bilinear interpolation process can be removed by adopting half-pel accuracy motion vectors. The usage of half-pel accuracy motion vectors may cause degradation of the decoded images in some occasions (i.e. when no error coding is applied to the resampled image), but in most cases the degradation is unrecognizable.

3.2 Fast bilinear warping

3.2.1 Description of the method

The two if-clauses for each pixel in the warping algorithm can be removed by using a warping method named fast bilinear warping or virtual frame warping. The adoption of this method does not require syntax changes to the current H.263+ specification.

In the current specification of RPR, the motion vectors at (0, 0), (H, 0), (0, V), and (H, V) are parameterized and transmitted (H and V are the horizontal and vertical size of the image). This causes division by d=4SHV in the warping algorithm. The basic idea of fast bilinear warping is to assume the existence of a virtual image with H' (V' pixels as shown in figure 1, and replace the division by a shift operation.

H' and V' are defined as the smallest integers that satisfy the following condition:

H' (H, H' = 2m , V' (V, V' = 2n , and n and m are non-negative integers.

 	 (0, 0) (H, 0) (H', 0)

	 +-----------+---------+

 	 | | |

	 | | |

	 | | |

	 (0, V) +-----------+ |

	 | (H, V) |

	 | |

	 +---------------------+

	 (0, V') (H', V')

Figure 1. Virtual image for fast bilinear interpolation

The proposed warping algorithm consists of 3 steps. These are:

(1) Bilinear extrapolation for obtaining the corner vector of the virtual frame

Assuming that (u(x, y),v(x, y)) denotes the motion vector at (x, y) in half pel accuracy (i.e. the actual motion vectors are obtained by dividing u(x,y) and v(x,y) by 2), the extrapolated motion vectors (U(x, y),V(x, y)) are obtained in 1/32 pel accuracy by performing "bilinear extrapolation" as follows:

U(0, 0) = u(0, 0) << 4;

V(0, 0) = v(0, 0) << 4;

U(H',0) = (((H-H') u(0, 0) + H' u(H, 0)) << 4) // H

V(H',0) = (((H-H') v(0, 0) + H' v(H, 0)) << 4) // H

U(0,V') = (((V-V') u(0,0) + V' u(0,V)) << 4) // V

V(0,V') = (((V-V') v(0,0) + V' v(0,V)) << 4) // V

U(H',V') = (((V-V')((H-H') u(0,0) + H' u(H,0)) + V'((H-H') u(0,V) + H' u(H,V))) << 4) // (H V)

V(H',V') = (((V-V')((H-H') v(0,0) + H' v(H,0)) + V'((H-H') v(0,V) + H' v(H,V))) << 4) // (H V),

where "//" rounds the quotient to the nearest integer, and half integer values away from zero.

(2) Vertical linear interpolation

The motion vectors at (0, j+1/2) and (H', j+1/2) are calculated in 1/32 pel accuracy using the corner vectors by performing one dimensional linear interpolation as follows:

uL(j) = ((2V'-2j-1) U(0,0) + (2j+1) U(0,V')) // (2V')

vL(j) = ((2V'-2j-1) V(0,0) + (2j+1) V(0,V')) // (2V')

uR(j) = ((2V'-2j-1) U(H',0) + (2j+1) U(H',V')) // (2V')

vR(j) = ((2V'-2j-1) V(H',0) + (2j+1) V(H',V')) // (2V')

where (uL(j), vL(j)) denotes the motion vector at (0,j+1/2) and (uR(j), vR(j)) denotes the motion vector at (H', j+1/2). According to the definition of V', the division by 2V' can be replaced by a shift operation.

(3) Horizontal linear interpolation

The motion vector of a pixel located at (I+1/2, j+1/2) is calculated in 1/2 or 1/16 pel accuracy by performing one dimensional linear interpolation as follows:

uP(i, j) = ((2H'-2j-1) uL(j) + (2j+1) uR(j)) /// (H'AS)

vP(i, j) = ((2H'-2j-1) vL(j) + (2j+1) vR(j)) /// (H'AS)

where (uP(j), vP(j)) denotes the motion vector of a pixel located at (i+1/2, j+1/2) in 1/2 or 1/16 pel accuracy (the actual motion vector is obtained by dividing this value by 2 or 16). The value of A is 16 and 2 in the 1/2 and 1/16 pel accuracy case, respectively. The value of S is 2 for luminance and 4 for chrominance. "///" rounds the quotient to the nearest integer, and half integer values towards the positive infinity. As in step (2), the division by H'AS can be replaced by a shift operation.

In this algorithm, the integer part of a motion vector can be obtained by an m+6 bit right shift at step (3). The number of shifted bits, therefore, is not larger than 16 bits if the width of the image is not larger than 1024. This means that it is possible to have the integer part of the motion vector (or a coordinate of the reference image) in the upper 16 bits and the fractional part in the lower 16 bits of a 32 bit register. This property makes a smart implementation of the warping algorithm possible.

3.2.2 Error analysis

In the fast bilinear warping method, the extrapolated motion vectors located at the corners of the virtual image are rounded to 1/32 pel accuracy. Thus an error E within the region of -1/64 (E (1/64 is included to the horizontal and vertical components of these vectors (the extrapolated motion vector at (0, 0) is error-free). The error E’, included in uL(j), vL(j), uR(j), and vR(j) which are obtained by linear interpolation using the extrapolated corner vectors and rounded to 1/32 pel accuracy, is within the region of and -1/32 < E’ < 1/32 for uL(j) and vL(j), and -1/32 (E’ (3/32 for uR(j) and vR(j). Since the motion vectors of the pixels inside the image are obtained by interpolating these values, the absolute errors for the horizontal and vertical components of these motion vectors are smaller than 1/32 before being rounded to 1/16 pel accuracy. This means that the absolute value of the error after rounding the motion vector components to 1/16 pel accuracy is not larger than 1/16 (not larger that 1/2 when half pel accuracy is adopted). Note that the warping method currently described in Annex P also causes errors not larger than 1/16, due to the usage of the lookup table.

In the case of image size conversion (i.e. when u(0,0)=u(0,V), u(H,0)=u(H,V), v(0,0)=v(H,0), and v(0,V)=v(H,V)), the fast warping method causes no errors to the motion vectors of the pixels in the image if the following condition is satisfied:

8(u(H,0) - u(0,0)) is divisible by H, and 8(v(0,V) - v(0,0)) is divisible by V.

Since H and V are always divisible by 4, the above condition indicates that no error is introduced by the usage of fast bilinear warping if the image size conversion ratio (H/HR and V/VR) is p/8, where p is an integer.

4. Simulation results

4.1 Comparison of coding performance

The global motion compensation functionality of the RPR mode improves the coding performance of the H.263+ encoder when:

(a) The value of QUANT is large

Global motion compensation reduces the amount of motion information and macroblock header information (i.e. MCBPC and CBPY) by increasing the number of zero vectors in block matching. This means that global motion compensation improves the coding efficiency when DCT coefficients does not occupy a large portion of the coded information.

(b) The input sequence includes motion vectors longer than the search range of block matching

The motion vector range of the RPR mode is larger than that of block matching in H.263+. The lack of motion vector length for block matching causes a serious effect to the reconstructed image especially when a large portion of the image moves quickly (fast panning). Global motion compensation is very useful in such cases.

(c) The input sequence includes global motion which is not slow panning

A large amount of motion information is generated by block matching when the input sequence includes rotation or zooming. This is because most of the differential motion vectors are not zero in this case.

Considering the above conditions, the simulation was performed using “Foreman” (includes fast panning) and “MIT Sequence” (includes zooming) as the input sequences using the following simulation conditions:

The value of QUANT was fixed throughout each sequence. The tested QUANT values were 31, 20, and 10.

The picture types in the sequence were I P P P P P P P ...

The Unrestricted Motion Vector mode was used. Other options were turned off.

CIF format was used for the input and reconstructed images.

All the sequences were coded at the frame rate of 10 Hz.

Global motion compensation was applied to the original input images using the algorithm described in [2].

For “Forman”, RPR was turned on only when at least one of the extracted motion vectors at the corners of the image exceeded the search range of block matching. The RPR mode was turned on, therefore, only between the 183rd and the 216th frame (the initial frame is defined as the 0th frame).

The bitrate and PSNR of the luminance plane between the 183rd and 216th frame of “Foreman” is shown in figures 2 and 3. The bitrate and PSNR of the luminance plane for each frame of “MIT Sequence” is shown in figures 4 and 5. The results indicate that RPR is effective in reducing the bitrate when the sequence includes quick panning or zooming. The rate-distortion performance of normal Annex P warping, Annex P warping with half-pel accuracy motion vectors, fast warping with 1/16 pel motion vectors, and fast warping with 1/2 pel motion vectors were almost identical. This means that adopting fast warping with 1/2-pel accuracy is the best solution for global motion compensation.

4.2 Comparison of running time for warping

The running time of the warping subroutine was estimated, and the number of frames that can be warped in a second was obtained by calculating 1/(running time). For all the tests, the source code of the software distributed to the reflector was used.

In the simulation, CIF images were used as the input and output of warping. The following corner motion vectors used for the simulation were:

Left Top:	(50.0, 144.0)

Right Top:	(-50.0, 144.0)

Left Bottom:	(-50.0, 0.0)

Right Bottom:	(50.0, 0.0)

The results were as follows:

UltraSparc, 200MHz with gcc ver. 2.7.2 (-O3)

Annex P warping (software distributed to the reflector on May 16th)

 1/16 pel accuracy: 12.1 frames/sec

 half pel accuracy: 28.5 frames/sec

Annex P warping (software distributed to the reflector on June 16th)

 1/16 pel accuracy: 12.2 frames/sec

 half pel accuracy: 28.7 frames/sec

Fast bilinear warping (software distributed to the reflector on June 5th)

 1/16 pel accuracy: 13.8 frames/sec

 half pel accuracy: 56.0 frames/sec

�

(a) QUANT=10

�

(b) QUANT=20

�

(c) QUANT=31

Figure 2. Number of coded bits for each frame of “Foreman”. (H.263+: RPR mode OFF, Anx. P: bilinear warping using the current specification of Annex P, 1/16: 1/16 pel accuracy, 1/2: half pel accuracy)

�

(a) QUANT=10

�

(b) QUANT=20

�

(c) QUANT=31

Figure 3. PSNR for each frame of “Foreman” (H.263+: RPR mode OFF, Anx. P: bilinear warping using the current specification of Annex P, 1/16: 1/16 pel accuracy, 1/2: half pel accuracy).

�

(a) QUANT=10

�

(b) QUANT=20

�

(c) QUANT=31

Figure 4. Number of coded bits for each frame of “MIT sequence”. (H.263+: RPR mode OFF, Anx. P: bilinear warping using the current specification of Annex P, 1/16: 1/16 pel accuracy, 1/2: half pel accuracy)

�

(a) QUANT=10

�

(b) QUANT=20

�

(c) QUANT=31

Figure 5. PSNR for each frame of “MIT sequence” (H.263+: RPR mode OFF, Anx. P: bilinear warping using the current specification of Annex P, 1/16: 1/16 pel accuracy, 1/2: half pel accuracy).

Pentium, 120MHz with gcc ver. 2.7.2p (-O6)

Annex P warping (software distributed to the reflector on May 16th)

 1/16 pel accuracy: 8.3 frames/sec

 half pel accuracy: 13.4 frames/sec

 Annex P warping (software distributed to the reflector on June 16th)

 1/16 pel accuracy: 8.3 frames/sec

 half pel accuracy: 13.3 frames/sec

 Fast bilinear warping (software distributed to the reflector on June 5th)

 1/16 pel accuracy: 9.6 frames/sec

 half pel accuracy: 19.3 frames/sec

The results indicate that the execution time of RPR warping can be reduced by 78% for the UltraSparc processor and by 57% for the Pentium processor, by adopting the virtual frame warping algorithm and half pel accuracy motion vectors.

4.3 Computational complexity of the H.263+ decoder

An H.263+ decoder based on tmndecode-ver.1.6 was implemented, and the decoding speed of the H.263+ decoder which supports the RPR mode was tested. The conditions for this test were as follows:

 “MIT Sequence” was used as the test sequence.

the bitstreams generated by the simulation described in section 4.2 was used.

the tested QUANT values were 10, 20, and 31

decoded images displayed on an X Window display

fast IDCT

UltraSparc, 200MHz with gcc ver. 2.7.2 (-O3)

The results of this simulation is shown in table 1.

Table 1. Decoding speed of each method ([frames / sec]).

�QUANT = 10�QUANT = 20�QUANT = 31��H.263+ without RPR mode�28.9�36.5�40.0��Current RPR with 1/16 pel accuracy�7.8�8.2�8.4��Current RPR with 1/2 pel accuracy�12.3�13.4�13.9��Fast bilinear warping with 1/16 pel accuracy�8.3�8.8�9.0��Fast bilinear warping with 1/2 pel accuracy�14.5�16.1�16.7��

The results indicate that the complexity of the H.263+ decoder which supports the RPR mode can be reduced by 40% by using 1/2 pel accuracy motion vectors. The complexity can further be reduced by 17% if the fast bilinear warping method is used.

5. Conclusions

The performance of the Reference Picture Resampling mode was verified, and it was proved that the global motion compensation functionality of this mode is useful for improving the coding efficiency of H.263+.

The results indicate that the execution time of RPR warping can be reduced by 78% for the UltraSparc processor and by 57% for the Pentium processor, by adopting the fast bilinear warping algorithm and half pel accuracy motion vectors. Considering these results, we propose the following:

(1) Supported modes for negotiation

Due to the low computational complexity of arbitrary warping with half pel accuracy, it is suggested that the following three modes be negotiated for Annex P:

mode 1: factor of four size changes only at 1/16 pel accuracy

mode 2: arbitrary scaling without motion at 1/16 pel accuracy OR arbitrary warping at half pel accuracy

mode 3: arbitrary warping at 1/16 pel accuracy

The half pel / 1/16pel accuracy indication is achieved by a DA bit in the Reference Picture Resampling Parameters (RPRP) field (see section 6 of this document).

(2) Usage of the fast bilinear warping method in the RPR mode

The simulation results indicate that the execution time of the warping process is substantially reduced by the using the fast bilinear warping method, especially when half pel accuracy motion vectors are adopted. Since having two warping methods for the RPR mode should not be beneficial for the users of H.263+, we propose the adoption of the fast bilinear warping method for the RPR mode.

6. Proposed changes to the current draft

(1) Warping parameter field

Rewrite FIGURE P.2/H.263 as:

DA�WPVLC�WPCODE��FIGURE P.2/H.263

Warping parameter code format (when not a one-bit refinement)

and add the following paragraph after this figure:

The 1 bit field DA indicates the accuracy of the displacements for each pixel. A value of “0” indicates that the x- and y-displacements for each pixel are quantized to half-pixel accuracy. A value of “1” indicates that the displacements are quantized to 1/16-pixel accuracy.

(2) Description of the resampling algorithm

Rewrite section P.3 as follows:

P.3.	Resampling Algorithm

The method described in this section shall be mathematically equal in result to that used to generate the samples of the resampled reference picture. Using the integer warping parameters � EMBED Equation.2 ���and � EMBED Equation.2 ���, integer parameters � EMBED Equation.2 ���, and � EMBED Equation.2 ��� which denote the x- and y-displacements at the corners of the picture in 32-pixel accuracy (the actual displacements are obtained by dividing these values by 32) are defined as

	� EMBED Equation.2 ���

By applying bilinear extrapolation to these vectors, the integer parameters� EMBED Equation.2 ���and� EMBED Equation.2 ��� which denote the x- and y-displacements at (0, 0), (H’, 0), (0, V’), and (H’, V’) in 1/32 pel accuracy (the actual displacements are obtained by dividing these values by 32) are defined as

	� EMBED Equation.2 ���

where “//” denotes integer division that rounds the quotient to the nearest integer, and rounds half integer values away from 0. H’ and V’ are defined as the smallest integers that satisfy the following condition

� EMBED Equation.2 ���

Next, the integer parameters � EMBED Equation.2 ���and � EMBED Equation.2 ���which denote the x- and y-displacements at (0, j+1/2) and (H’, j+1/2) in 1/32 pel accuracy (the actual displacements are obtained by dividing these values by 32) are defined using one dimensional linear interpolation as

	� EMBED Equation.2 ���

Finally, the parameters that specify the transformed position in the reference picture becomes

	� EMBED Equation.2 ���

where

“///”: 	integer division with rounding towards the negative infinity,

P:	accuracy of x- and y-displacements (P=2 when DA=“0” and P=16 when DA=“1”, see section P.2.1. for the definition of DA),

(IR(i, j)+1/2, JR(i, j)+1/2):	location of the transformed position in 1/P pixel accuracy (both IR(i, j) and JR(i, j) are integers),

(iR(i, j)+1/2, jR(i, j)+1/2):	location of the sampling point near the transformed position (both iR(i, j) and jR(i, j) are integers),

� EMBED Equation.2 ��� 	bilinear interpolation coefficients of the transformed position.

The computation of this equation can be simplified by replacing the divisions by shift operations, since 32SH’/P =2m+2 and P =24 (when P=4 and S=2).

Using these parameters, the sample value, EP(i, j) of the pixel located at (i+1/2, j+1/2) in the resampled picture is obtained by

	� EMBED Equation.2 ���

where “/” denotes division by truncation. iR and jR are simplified notations for iR(i, j) and jR(i, j), and ER(iR, jR) denotes the sample value of the pixel located at (iR+1/2, jR+1/2) in the reference picture.

The resampling algorithm described above can be rewritten as a psudo-code as follows. To simplify the description of the resampling algorithm, a function prior_sample is defined. Its purpose is to generate a pixel value for any integer location (m,n) relative to the prior reference picture sampling grid:

clip(xmin, x, xmax) {� if (x (xmin) {� return xmin;� } else if (x (xmax) {� return xmax;� } else {� return x;� }�}

� EMBED Equation ���

Next, a filter function that implements the bilinear interpolation is defined. It is assumed that the bilinear interpolation coefficients, Øx and Øy, are quantized in the range 0,(,P-1 (inclusive).

� EMBED Equation ���

Finally, the method for warping the reference picture to generate a prediction for the current picture can be specified in terms of these functions. The pixels of the prediction picture can be generated in a raster scan order. It is assumed that the values � EMBED Equation.2 ���and � EMBED Equation.2 ���are already calculated and loaded into variables � EMBED Equation.2 ��� and � EMBED Equation.2 ���. The sample values of the pixels in the j th line of the resampled image is obtained by the following psuedo-code:

D = 32 * S * 2m / P

� EMBED Equation.2 ��� = D * P + 2 * (� EMBED Equation.2 ��� - � EMBED Equation.2 ���);

� EMBED Equation.2 ��� = 2 * (� EMBED Equation.2 ���- � EMBED Equation.2 ���);

� EMBED Equation.2 ��� = � EMBED Equation.2 ��� * 2m+1 + (� EMBED Equation.2 ��� - � EMBED Equation.2 ���)+ D / 2;

� EMBED Equation.2 ��� = j * D * P + � EMBED Equation.2 ��� * 2m+1 + (� EMBED Equation.2 ���- � EMBED Equation.2 ���)+ D / 2;

for (j = 0; j < V; j++) {

	IR = � EMBED Equation.2 ��� /// D;

	JR = � EMBED Equation.2 ��� /// D;

	iR = IR /// P;

	jR = JR /// P;

	Øx = IR - (iR * P);

	Øy = JR - (jR * P);

	new_ref[j][i] = filter(iR, jR, Øx, Øy);

	� EMBED Equation.2 ��� += � EMBED Equation.2 ���;

	� EMBED Equation.2 ��� += � EMBED Equation.2 ���;

}

where all the variables used in this code are integer variables. According to the definition of the parameters, all the divisions and multiplications in this code can be replaced by binary shift operations.

References

[1] “Draft Text (Draft 11) of H.263+ ”, LBC-97-094R1, March 1997.

[2] “Description of core experiments on coding efficiency in MPEG-4 video”, ISO/IEC JTC 1/SC 29/WG 11N1648, April 1997.

File:� FILENAME * MERGEFORMAT �Q15A34R.DOC�	Page: � PAGE �1�	� DATE * MERGEFORMAT �97/06/22�

