	
STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)

54th Meeting: 15–26 October 2016, Chengdu, CN
	Document: VCEG-BB07 (-v1)

	Question:
	Q.6/SG16 (VCEG)

	Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11
25th Meeting: Chengdu, CN, 14–21 October 2016
	Document: JCTVC-Y0024 (-v1)

	Title:
	Centralized Texture Depth Packing SEI Message for HEVC

	Status:
	Input Document to JCT-VC – Revision of Output Document JCT3V-O1004

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Jar-Ferr Yang (NCKU, Taiwan)
Guan-Cheng Chen
We-Jong Yang

	
Tel:
Email:
	
+886-6-2757575#62362
jefyang@mail.ncku.edu.tw

	Source:
	National Cheng Kung University (NCKU),

1 University Road, Tainan, Taiwan 701

Abstract

This document is the revision of JCT3V-O1004 [1], which was generated in the 15th JCT-3V meeting. The purpose of the proposed “Centralized Texture Depth Packing SEI message for AVC” is to allow delivering one texture view plus one depth map or two texture views plus two depth maps packed into the samples of a monoscopic (texture only) stream for HEVC. To further improve the packing performance without changing the syntax stated in [1], the linear transformation between Cb/Cr components and the residuals of DPCM representation of depths is modified to a new piece-wise linear transformation in this document.
1 Centralized_texture_depth_packing SEI Message Syntax
Replace specifications in clause 7.4.4 by the following:
general_non_packed_constraint_flag equal to 1 specifies that there are neither frame packing arrangement SEI messages nor segmented rectangular frame packing arrangement SEI messages nor centralized texture depth packing SEI messages present in the CVS. general_non_packed_constraint_flag equal to 0 indicates that there may or may not be one or more frame packing arrangement SEI messages, segmented rectangular frame packing arrangement SEI messages or centralized texture depth packing SEI messages present in the CVS.
NOTE 2– Decoders may ignore the value of general_non_packed_constraint_flag, as there are no decoding process requirements associated with the presence or interpretation of frame packing arrangement SEI messages, segmented rectangular frame packing arrangement SEI messages or centralized texture depth packing SEI messages.
In Subclause D.2.1 - General SEI message syntax, add the following:
	

else if(payloadType == X)
	Descriptor

	

centralized_texture_depth_packing (payloadSize) /* specified in Annex D */
	

where “X” is an appropriate payloadType number in the sequence of defined payloadType numbers of the respective specification.

Add a new Subclause D.2.X “centralized_texture_depth_packing SEI message syntax”, where. X will be replaced with an appropriate subclause number in the sequence of subclauses present in the text of the respective standard.

D.2.X
Centralized texture depth packing (CTDP) SEI message syntax
	centralized_texture depth_packing(payloadSize) {
	Descriptor

	
centralized_texture_depth_packing_cancel_flag
	u(1)

	
if(! centralized_texture_depth_packing_cancel_flag) {
	

	
centralized_texture_depth_packing_type
	u(3)

	
quarter_depth_size
	u(12)

	
depth_spatial_flipping_flag
	u(1)

	 two_views_texture_packing_type
	u(2)

	 baseline_dist_flag
	u(1)

	 focal_length_flag
	u(1)

	 z_near_flag
	u(1)

	z_far_flag
	u(1)

	d_min_flag
	u(1)

	d_max_flag
	u(1)

	depth_representation_type
	ue(v)

	if(baseline_dist_flag)
	

	view_syn_rep_info_element(BdistanceSign, BdistanceExp, BdistanceMantissa, BdistanceManLen)
	

	if(focal_length_pixel_flag)
	

	view_syn_rep_info_element(FlengthSign, FlengthExp, FlengthMantissa, FlengthManLen)
	

	if(z_near_flag)
	

	view_syn_rep_info_element(ZNearSign, ZNearExp, ZNearMantissa, ZNearManLen)
	

	if(z_far_flag)
	

	view_syn_rep_info_element (ZFarSign, ZFarExp, ZFarMantissa, ZFarManLen)
	

	if(d_min_flag)
	

	view_syn_rep_info_element (DMinSign, DMinExp, DMinMantissa, DMinManLen)
	

	if(d_max_flag)
	

	view_syn_rep_info_element (DMaxSign, DMaxExp, DMaxMantissa, DMaxManLen)
	

	if(depth_representation_type = = 3) {
	

	depth_nonlinear_representation_num_minus1
	ue(v)

	for(i = 1; i <= depth_nonlinear_representation_num_minus1 + 1; i++)
	

	depth_nonlinear_representation_model[i] }
	

	
centralized_texture_depth_packing_persistence_flag
	u(1)

	
}
	

	}
	

In Table F.4, add a the persistence scope for centralized_texture depth_packing SEI message as follows:
	SEI message
	Persistence scope

	centralized_texture depth_packing
	Specified by the syntax of the SEI message

Add a new Subclause D.3.X “centralized texture depth packing SEI message semantics” where X will be replaced with an appropriate subclause number in the sequence of subclauses present in the text. In the following Subclause D.3.X, the numbers of tables, figures, and equations started from Table D-X1, Figure D-X1, D-X1 will be also replaced with an appropriate numbers in the sequence of tables, figures, and equations present in the text, respectively.

D.3.X Centralized texture depth packing SEI message semantics

This SEI message informs the decoder that the output cropped decoded picture contains a specific packing arrangement of texture and depth samples, associated with one or two views. This information can be used by a process applied after decoding to appropriately interpret the samples and process them appropriately for display of 3D video or other purposes (which are outside the scope of this Specification).

When general_non_packed_constraint_flag is equal to 1 in the active SPS for the current layer, there shall be no centralized texture depth packing SEI message applicable for any picture of the CLVS of the current layer.

When a frame packing arrangement SEI message or a segmented rectangular frame packing arrangement SEI message is applicable for any picture of the CLVS of the current layer, there shall be no centralized texture depth packing SEI messages applicable for any picture of the CLVS of the current layer.

centralized_texture_depth_packing_cancel_flag equal to 1 indicates that the centralized texture_depth packing (CTDP) arrangement SEI message cancels the persistence of any previous centralized texture depth packing SEI message in output order. centralized_texture_depth_packing_cancel_flag equal to 0 indicates that centralized texture depth packing is applicable.

centralized_texture_depth_packing_type indicates the intended interpretation of the constituent frames as specified in Table D‑X1.
Table D‑X1 – Definition of centralized_texture_depth_packing _type

	Value
	Interpretation

	0
	Indicates the CTDP-1TB type with an arrangement of subsample depth top (SDT), subsample texture (ST), and subsample depth bottom (SDB) regions from top to bottom, as illustrated in Figure D‑X1.

	1
	Indicates the CTDP-1LR type with an arrangement of subsample depth left (SDL), subsample texture (ST), and_subsample depth right (SDR) regions from left to right, as illustrated in Figure D‑X2.

	2
	Indicates the CTDP-2TB type with an arrangement of_subsample depth leftview top (SDLT), subsample texture leftview (STL), and_subsample depth leftview bottom (SDLB) regions in the left-half picture and subsample depth rightview top (SDRT), subsample texture rightview (STR), and subsample depth rightview bottom (SDRB) regions in the right-half picture from top to bottom, as illustrated in Figure D‑X3.

	3
	Indicates the CTDP-2LR type that the CTDP packed frame is arranged in the order of subsample depth topview left (SDTL), subsample texture topview (STT), and_subsample depth topview right (SDTR) regions in the top-half picture and_subsample depth bottomview left (SDBL), subsample texture bottomview (STB), and subsample depth bottomview right (SDBR) regions in the bottom-half picture from left to right, as illustrated in Figure D‑X4.

Values of centralized_texture_depth_packing_type that do not appear in Table D‑X1 are reserved for future specification by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this version of this Specification. Decoders shall ignore centralized texture depth packing SEI messages that contain reserved values of centralized_texture_depth_packing type. Subsequently, centralized_texture_depth_packing type is simply called as packing type.
quarter_depth_size multiplied by four indicates the number of lines carrying the vertically subsampled depth map if centralized_texture_depth_packing_type is equal to 0 or 2. It indicates the number of columns carrying the horizontally subsampled depth map if centralized_texture_depth_packing_type is equal to 1 or 3. The quarter_depth_size specifies the arrangements of subsample texture and subsample depth information. When centralized_texture_depth_packing_type is not equal to 0, 1, 2, or 3, quarter_depth_size is ignored and reserved for future use by ITU-T | ISO/IEC. The detailed interpretation how the subsampled texture positions relate to the original full resolution positions of the texture frame is addressed and the detailed interpretation how the subsampled depth positions relate to the original full resolution positions of the depth map is given as follows.

Let W and H be the width and height expressing pic_width_in_luma_samples and pic_height_in_luma_samples, respectively, of the decoded picture output from the decoder. It is assumed that the original texture and depth pictures are both of size WxH.

In case of packing type equal 0 or 2 ,the packed frame from top to bottom is horizontally divided into top subsample depth, subsample texture, and bottom subsample depth regions. The height of top and bottom subsample depth regions in units of frame luma samples is given as

HHD = 2*quarter_depth_size, (D-X1)

while the height of subsample texture regions in units of frame luma samples becomes:

HST = H 4*quarter_depth_size. (D‑X2)
When packing type is equal to 0 as illustrated in Figure D‑X1, the packed frame with HHD and HST is divided into SDT, ST and SDB regions. The width of SDT, ST and SDB regions is W in units of frame luma samples. When packing type is equal to 2, as illustrated in Figure D‑X3, they are further vertically divided into two left and right half regions to obtain top subsample depth leftview and top subsample depth rightview, subsample texture leftview and subsample texture rightview, bottom subsample depth leftview and bottom subsample depth rightview respectively identified as SDLT and SDRT, STL and STR, and SDLB, and SDRB, whose width becomes W/2 in units of frame luma samples.

In case of packing type equal 1 or 3, the packed frame from left to right is vertically divided into left subsample depth, subsample texture, and right subsample depth regions. The width of top and bottom subsample depth regions in units of frame luma samples is given as

WHD = 2*quarter_depth_size, (D-X3)
while the width of subsample texture regions in units of frame luma samples becomes:

WST = W 4*quarter_depth_size.
 (D‑X4)
When packing type is equal to 1, as illustrated in Figure D‑X2, the packed frame with WHD and WST is divided into SDL, ST, and SDR regions. The height of SDL, ST and SDR regions is H in units of frame luma samples. When packing type is equal to 3, as illustrated in Figure D‑X4, these three regions are further horizontally divided into top and bottom half regions to obtain left subsample depth topview and left subsample depth bottomview, subsample texture topview and subsample texture bottomview, right subsample depth topview and right subsample depth bottomview respectively identified as SDTL, SDBL, STT, STB, SDTR and SDBR regions, whose height becomes H/2 in units of frame luma samples.

[image: image1.emf]W

ST

SD

T

SD

B

H

HD

H

HD

H

ST

W

H

T

SD

T

SD

B

2H

HD

H

ST

SD

6H

HD

W

H

D

W

3. Flip & Merge

1. Texture

& Depth

Splitting

H

HD

H

HD

2. Texture

Vertical

Upsampling

5. Depth

Vertical

Upsampling

CTDP Depacking

CTDP-1TB Type

Texture

Depth

H

W

ST

SD

Subsample Texture

Subsample Depth in Single-Pixel Formation

Subsample

Depth in YCbCr

Representation

4. Colour Depacking from

4 emulated YCbCr pixel to

12 depth pixels conversion

Figure D-X1 Arrangement of the CTDP-1TB type and its depacking steps (packing type = 0)

[image: image2.emf]W

ST

ST

W

T

2W

HD

2. Texture

Horizontal

Upsampling

6W

HD

SD

5

. Depth Horizontal

Upsampling

W

3. Flip & Merge

1. Texture

& Depth

Splitting

W

ST

ST

H

W

HD

SD

L

SD

R

W

W

HD

SD

L

SD

R

W

HD

W

HD

SD

H

CTDP Depacking

CTDP-1LR Type

Texture

D

H

H

H

H

Depth

Subsample Texture

Subsample Depth

Subsample

Depth in YCbCr

Representation

4

.

Colour

Depacking

from

1

YCbCr

pixel to 3

dept

pixels conversion

Figure D‑X2 Arrangement of the CTDP-1LR type and its depacking steps (packing type = 1)

[image: image3.emf]W/2 W/2

H

ST

W

W

W/2 W/2

H

TL

W/2

H

ST

STR

H

DR

3. Flip & Merge

1. Texture

& Depth

Splitting

2H

HD

SDL

6H

HD

SDL

SDL

T

SDL

B

H

HD

H

HD

2. Texture Horizontal

2:1 Upsampling

& Vertical Upsampling

5. Depth Horizontal

2:1 Upsampling

& Vertical

Upsampling

g

W/2

H

ST

STL

H

TR

SDST

SDR

B

H

HD

H

HD

2H

HD

SDR

6H

HD

SDR

STL

SDL

T

SDL

B

H

HD

H

HD

STR

SDR

T

SDR

B

H

DL

CTDP Depacking

CTDP-2TB Type

Texture (Leftview)

Texture (Rightview)

Depth (Leftview)

Depth (Rightview)

W

H

Subsample Depth

(Rightview)

Subsample Depth

(Leftview)

Subsample

Depth YCbCr

(Rightview)

Subsample

Depth YCbCr

(Leftview)

Subsample Texture (Leftview)

Subsample Texture (Rightview)

4. Colour depacking from

4 emulated YCbCr pixel to

12 depth pixels conversion

Figure D‑X3 Arrangement of the CTDP-2TB type and its depacking steps (packing type = 2)

[image: image4.emf]H/2

H/2

H/2

W

W

W

ST

H/2

H/2

H

TT

2. Texture

Vertical (2:1)

&Horizontal

Upsampling

5

. Depth vertical (2:1) &

Horizontal

Upsampling

3. Flip & Merge

1. Texture

& Depth

Splitting

W

ST

STT

W

HD

W

HD

SDT

L

SDT

R

W

HD

H/2

2W

HD

SDT

6W

HD

SDT

H/2

STT

STB

H

W

HD

SDT

L

SDT

R

SDB

R

SDB

L

W

HD

SDB

L

SDB

R

W

HD

W

ST

STB

H

TB

H

DT

H

DB

2W

HD

SDB

6W

HD

SDB

H/2

CTDP Depacking

CTDP-2LR Type

Texture (Topview)

Texture (Bottomview)

W

Depth (Bottomview)

Depth (Topview)

Subsample Depth

(Bottomview)

Subsample Depth

(Topview)

Subsample

Depth YCbCr

(Topview)

Subsample

Depth YCbCr

(Bottomview)

Subsample Texture (Topview)

Subsample Texture (Bottomview)

4

.

Colour

depacking

from 1 4

emulated

YCbCr

to 12

depth pixels conversions

Figure D‑X4 Arrangement of the CTDP-2LR type and its depacking steps (packing type = 3)

depth_spatial_flipping_flag indicates that the sample positions in the subsampled depth regions are spatially flipped relative to the original positions.

When depth_spatial_flipping_flag is equal to 1, all the subsample depth regions are spatially flipped as follows:

–
If packing type is equal to 0 or 2, the indicated depth spatial flipping is performed vertically. As shown in Figures D-X1 and D-X3, the subsample depth region, which is SDT, SDB, SDLT, SDRT, SDLB, or SDRB in YCbCr representation is vertically flipped. If the subsample depth region is denoted as SDXs, the subsample depth spatial vertical flipping process is given as:

for(x = 0; x < Wd; x++)

for(y = 0; y < quarter_depth_size; y++)

{

temp= SDXs [x][y]
SDXs[x][y] = SDXs[x][HHD−y−1]

SDXs[x][HHD−y−1] = temp

}
where quarter_depth_size is the half of the height of the subsample depth regions in units of frame luma samples. If SDXs is SDT or SDB region, with Wd= W in units of frame luma samples, the flipped result, SDXs is still named SDT or SDB region, respectively. If SDXs is SDLT, SDRT, SDLB, or SDRB region, with Wd= W/2 in units of frame luma samples, the flipped result is still named as SDLT, SDRT, SDLB, or SDRB region, respectively,
–
If packing type is equal to 1 or 3, the indicated depth spatial flipping is performed horizontally. As shown in Figures D-X2 and D-X4, the subsample depth region, which is SDL, SDR, SDTL, SDBL, SDTR, or SDBR in YCbCr representation is horizontally flipped. If the subsample depth region is denoted as SDXs, the subsample depth spatial horizontal flipping process is given as:
for(x = 0; x < quarter_depth_size; x++)

for(y = 0; y < Hd; y++)

{

 temp= SDXs[x][y]

SDXs[x][y] =SDXs[WHD−x−1][y]

 SDXs[WHD−x−1][y] = temp

}

where quarter_depth_size is the half of the width of the subsample depth regions in units of frame luma samples. If SDXs is SDL or SDR region, with Hd = H in units of frame luma samples, the flipped result is still named as SDL or SDR region, respectively. If SDXs is SDTL, SDBL, SDTR, or SDBR region, with Hd =H/2 in units of frame luma samples, the result is still named as SDTL, SDBL, SDTR, or SDBR region, respectively.
–
Otherwise (depth_spatial_flipping_flag is equal to 0), the indicated spatial flipping is not necessary.

When centralized_texture_depth_packing_type is not equal to 0, 1, 2, or 3, it is a requirement of bitstream conformance that depth_spatial_flipping_flag shall be equal to 0. When centralized_texture_depth_packing_type is not equal to 0, 1, 2, or 3, decoders shall ignore the value 1 for depth_spatial_flipping_flag.
After spatial flipping (depth_spatial_flipping_flag equal to 1) or no spatial flipping (depth_spatial_flipping_flag equal to 0), a pair of corresponding subsample depth regions should be merged together to become the subsample depth region .
–
If packing type is equal to 0 or 2, as shown in Figures D-X1 and D-X3, the pair of top and bottom subsample depth regions, which are SDT and SDB, SDLT and SDLB, or SDRT and SDRB in YCbCr representation are vertically merged. If the pair of top and bottom subsample depth regions are respectively denoted as SDXT and SDXB, the subsample depth after merging process is obtained as:

for(x = 0; x < Wd; x++)

for(y = 0; y < HHD; y++)

{

SDX[x][y] = SDXT[x][y]

SDX[x][HHD +y] = SDXB[x][y]
}
where Wd and HHD are the width and the height of top and bottom subsample depth regions in units of frame luma samples, respectively. If packing type is equal to 0, Wd = W and SDXT and SDXB respectively denote SDT and SDB regions, the merged result SDX becomes subsample depth, SD as shown in Figure D-X1. If packing type is equal to 2, Wd = W/2 and SDXT and SDXB respectively denote SDLT and SDLB or SDRT and SDRB regions, the merged result SDX becomes subsample depth leftview, SDL or subsample depth rightview, SDR, respectively as shown in Figure D-X3. After vertical merging process, the height of the subsample depth regions, SD, SDT, and SDB becomes 2HHD, while the width of the subsample depth is unchanged.
–
If packing type is equal to 1 or 3, as shown in Figures D-X2 and D-X4, the pair of left and right subsample depth regions, which are SDL and SDR, SDTL and SDTR, or SDBL and SDBR in YCbCr representation are horizontally merged. If the pair of left and right subsample depth regions are respectively denoted as SDXL and SDXR, the subsample depth after merging process is obtained as:
for(x = 0; x < WHD; x++)

for(y = 0; y < Hd; y++)

{

SDX[x][y] =SDXL[x][y]

SDX[x+WHD][y] = SDXR[x][y]
}

where WHD and Hd are the width and the height of left and right subsample depth regions in units of frame luma samples, respectively. If packing type is equal to 1, Hd = H and SDXL and SDXR respectivel denote SDL and SDR regions, the merged result SDX become the subsample depth SD as shown in Figure D-X2. if packing type is equal to 3, Hd = H/2 and SDXL and SDXR respectively denote SDTL and SDTR or SDBL and SDBR regions, the merged result SDX becomes subsample depth topview, SDT or subsample depth bottomview, SDB, respectively as shown in Figure D-X4., After horizontal merging process, the width of the subsample depth regions, SD, SDT, and SDB becomes 2WHD, while the height of the subsample depth is unchanged.
After the merging step, Y, Cb, Cr components in three separate frames are virtually merged into one, which is converted to subsample depth with single-pixel values. As shown in Figure D-X5, the subsample depth in YCbCr 444 representation is treated as the subsample depth in spatially-positioned YCbCr 444 as follows:

· If packing type is equal to 0 or 2, subsample depth, SD, SDL, or SDR region in YCbCr 444 representation is stacked together as spatial vertically-positioned YCbCr 444. The height of subsample depth, SD, SDL, or SDR is expanded 3 times to become 6HHD, while the width of the subsample depth is unchanged..
· If packing type is equal to 1 or 3, subsample depth, SD, SDT, or SDB in YCbCr 444 representation is stacked together as spatial horizontally-positioned YCbCr 444. The width of the subsample depth, SD, SDT, or SDB is expanded 3 times to become 6WHD, while the height of the subsample depth is unchanged.

[image: image5.emf]Y(0,0) Y(0,1) Y(0,2)

Y(1,0) Y(1,1) Y(1,2)

Y(2,0) Y(2,1) Y(2,2)

Y(3,0) Y(3,1) Y(3,2)

Cb(0,0) Cb(0,1) Cb(0,2)

Cb(1,0) Cb(1,1) Cb(1,2)

Cb(2,0) Cb(2,1) Cb(2,2)

Cb(3,0) Cb(3,1) Cb(3,2)

Cr(0,0) Cr(0,1) Cr(0,2)

Cr(1,0) Cr(1,1) Cr(1,2)

Cr(2,0) Cr(2,1) Cr(2,2)

Cr(3,0) Cr(3,1) Cr(3,2)

Y component

Cb component Cr component

Y(0,0) Y(0,1) Y(0,2)

Cb(0,0) Cb(0,1) Cb(0,2)

Cr(0,0) Cr(0,1) Cr(0,2)

Y(1,0) Y(1,1) Y(1,2)

Cb(1,0) Cb(1,1) Cb(1,2)

Cr(1,0) Cr(1,1) Cr(1,2)

Y(2,0) Y(2,1) Y(2,2)

Cb(2,0) Cb(2,1) Cb(2,2)

Cr(2,0) Cr(2,1) Cr(2,2)

Vertically-positioned

YCbCr Representation

Subsample Depth in YCbCr Representation

Y(0,0) Cb(0,0) Cr(0,0) Y(0,1) Cb(0,1) Cr(0,1) Y(0,2) Cb(0,2) Cr(0,2)

Y(1,0) Cb(1,0) Cr(1,0) Y(1,1) Cb(1,1) Cr(1,1) Y(1,2) Cb(1,2) Cr(1,2)

Y(2,0) Cb(2,0) Cr(2,0) Y(2,1) Cb(2,1) Cr(2,1) Y(2,2) Cb(2,2) Cr(2,2)

Y(3,0) Cb(3,0) Cr(3,0) Y(3,1) Cb(3,1) Cr(3,1) Y(3,2) Cb3,2) Cr(3,2)

Horizontally-positioned YCbCr Representation

If packing type = 0 or 2

If packing type = 1 or 3

For YCbCr 420 format, Cb(0,1), Cb(1, 0),

Cb(1,1), Cr (0,1), Cr(1.0) and Cr(1,1) in

first group are not available and the rest

groups…...

For YCbCr 422 format, Cb(1,0), Cb(1,1),

Cr(1.0), and Cr(1,1) in the first group are

not available and the rest groups ….

Figure D-X5 Virtual interpretation of spatial positions in YCbCr 444 representation of subsample depth

For subsample depth regions, Y, Cb. Cr components are grouped in every four Y, Cb, Cr components, which are marked by red rectangular in Figure D-X5. For simplicity, the grouped Y, Cb, Cr components are spatially indexed by subscripts 1, 2, 3, and 4. Referring to video coding systems, the YCbCr representations of subsample depth are different from the original YCbCr representation. The detailed depacking procedures for converting YCbCr 444, YCbCr 422, and YCbCr 420 components to depth values of subsample depth are described as follows:

For YCbCr 444 representation of subsample depth, each group contains four Y, Cb, Cr components,{Yi, Cbi, Cri, for i = 1 ,2, 3, 4}. With the same spatial position as shown in Figure D-X6, the 12 depth values, {Di1, Di2, Di3, for i = 1 ,2, 3, 4} of subsample depth are computed in order as:

Di1 = Round(1.1644 * (Yi – 16));
(D-X5)

Di2 = Round(f(Cbi) + Di1);
(D-X6)

Di3 = Round(f(Cbi) + Di2),
(D-X7)
where Di1 is linear mapping of Yi while Di2 and Di3 are computed from the nonlinear mapping of Cbi and Cri plus the depacked Di1 and Di2, which are the residuals of DPCM predictions of Cbi and Cri, respectively. The nonlinear mapping function, f(Cx), which maps Cx from the range of {16. 240} to the residual range of {255, 255}, is a piece-wise linear mapping defined as:

[image: image6.wmf]240

Cx

133

133

Cx

123

123

Cx

16

).

8

.

130

Cx

(

3364

.

2

128

Cx

),

1

.

125

Cx

(

*

3364

.

2

)

Cx

(

f

£

<

£

£

<

£

ï

î

ï

í

ì

-

-

-

=

 (D-X8)
According to the packing type, each group of the corresponding 12 depth values with same spatial positions as the spatial-positioned YCbCr representation defined in Figure D-X5 are obtained as shown in Figure D-X6.

[image: image7.emf](a) vertical color depacking (packing type = 0 or 2)

(b) horizontal color depacking (packing type = 1 or 3)

D

11

D

12

D

13

D

31

D

32

D

33

D

21

D

22

D

23

D

41

D

42

D

43

Y

1

Cb

1

Cr

1

Y

3

Cb

3

Cr

3

Y

2

Cb

2

Cr

2

Y

4

Cb

4

Cr

4

Y

1

Cb

1

Cr

1

Y

3

Cb

3

Cr

3

Y

2

Cb

2

Cr

2

Y

4

Cb

4

Cr

4

D

11

D

12

D

13

D

31

D

32

D

33

D

21

D

22

D

23

D

41

D

42

D

43

Emulated

YCbCr 444:

12 color subpixels

to 12 depth pixels

conversion

Emulated YCbCr 444:

12 color subpixels to 12

depth pixels conversion

Figure D-X6 Four pixels of YCbCr 444 components of subsample depth depacked to 12 depth values in: (a) vertical positioning for packing type 0 or 1; (b) horizontal positioning for packing type = 1 or 3.

If the video coding system adopts YCbCr 422 format, each group of four YCbCr 422 components contains 4 luma components, {Yi, for i = 1 ,2, 3, 4} and 4 chroma components, {Cbi, Cri, for i = 1, 2}. Four luma components, Y1, Y2, Y3, Y4 are first converted to 4 selected depth pixels, D11, D22, D32, and D43 as
D11 = Round(1.1644 * (Y1 – 16));
(D-X9)
D22 = Round(1.1644 * (Y2 – 16));
(D-X10)
D32 = Round(1.1644 * (Y3 – 16));
(D-X11)
D43 = Round(1.1644 * (Y4 – 16)).
(D-X12)

· For packing type equal to 0 or 2, D13, D31, D41 and D23 are computed in order as:

D13 = Round(f(Cb1) + 0.5 * (D11 +D32));
(D-X13)
D31 = Round(f(Cr1) + 0.5 * (D13 +D32));
(D-X14)

D41 = Round(f(Cr2) + 0.5 * (D22 +D43));
(D-X15)

D23 = Round(f(Cb2) + 0.5 * (D22 +D41)).
(D-X16)
· For packing type equal to 1 or 3, D13, D21, D41 and D33 are computed in order as:

D13 = Round(f(Cb1) + 0.5 * (D11 +D22));
(D-X17)

D21 = Round(f (Cb2) + 0.5 * (D13 +D22));
(D-X18)

D41 = Round(f(Cr2) + 0.5 * (D32 +D43));
(D-X19)

D33 = Round(f(Cr1) + 0.5 * (D32 +D41)).
(D-X20)
The above YCbCr 422 representation to depth conversion only recovers 8 depth pixels arranged in partial quincunx fashions as shown in Figure D-X6. There are 4 missing depth pixels (in black color) should be upsampled by a proper interpolation method from the neighboring known depacked depth pixels. The neighboring known depth pixels might be extended to nearby groups of known depth pixels for better interpolations.

[image: image8.emf](a) vertical color depacking (packing type=0 or 2)

(b) horizontal color depacking (packing type=1 or 3)

D

11

D

12

D

13

D

31

D

32

D

33

D

21

D

22

D

23

D

41

D

42

D

43

Y

1

Cb

1

Cr

1

Y

3

Cb

3

Cr

3

Y

2

Cb

2

Cr

2

Y

4

Cb

4

Cr

4

Y

1

Cb

1

Cr

1

Y

3

Cb

3

Cr

3

Y

2

Cb

2

Cr

2

Y

4

Cb

4

Cr

4

D

11

D

12

D

13

D

31

D

32

D

33

D

21

D

22

D

23

D

41

D

42

D

43

Emulated YCbCr

422: 8 color

subpixels to 8

depth pixels

conversion

Emulated YCbCr 422:

8 color subpixels to 8

depth pixels

conversion

Figure D-X6 Emulated four YCbCr 422 color components depacking to 8 depth pixels: (a) vertical color depacking (packing type 0 or 1); (b) horizontal color depacking (packing type = 1 or 3)
If the video coding system adopts YCbCr 420 format, each group of four YCbCr 420 components only contains 4 luma components, {Yi, for i = 1 ,2, 3, 4} and two chroma components Cb1 and Cr1. Four luma components, Y1, Y2, Y3, Y4 are first converted to 4 selected depth pixels, D11, D22, D32, and D43 by (D-X9), (D-X10), (D-X11), and (D-X12), respectively. The chroma components, Cb1 and Cr1 are successively transformed to 2 selected depth pixels, D13 and D41 by the range mappers of residuals plus the compensation of DPCM predictions. The detailed formulations are addressed
· For packing type equal to 0 or 2, D13 and D41 are computed by (D-X13) and (D-X15), respectively.
· For packing type equal to 1 or 3, D13 and D41 are computed by (D-X17) and (D-X19), respectively.
The above YCbCr 420 representation to depth conversion only recovers 6 depth pixels arranged in quincunx fashions as shown in Figure D-X5. There are 6 missing depth pixels (in black color) should be upsampled by a proper interpolation method from the neighboring known depacked depth pixels. The neighboring known depth pixels might be extended to nearby sets of known depth pixels for better interpolation.

[image: image9.emf](a) packing type=0 or 2

(b) packing type=1 or 3

D

11

D

12

D

13

D

31

D

32

D

33

D

21

D

22

D

23

D

41

D

42

D

43

Y

1

Cb

1

Cr

1

Y

3

Cb

3

Cr

3

Y

2

Cb

2

Cr

2

Y

4

Cb

4

Cr

4

Y

1

Cb

1

Cr

1

Y

3

Cb

3

Cr

3

Y

2

Cb

2

Cr

2

Y

4

Cb

4

Cr

4

D

11

D

12

D

13

D

31

D

32

D

33

D

21

D

22

D

23

D

41

D

42

D

43

Emulated

YCbCr 420:

6 color subpixels

to 6 depth pixels

conversion

Emulated YCbCr 420:

6 color subpixels to 6

depth pixels conversion

Figure D-X7 Grouped YCbCr 420 pixels to 6 depth pixels conversion: (a) vertical depacking for packing type 0 or 1; (b) horizontal depacking for packing type = 1 or 3
After the above conversion of YCbCr 420, YCbCr 422, or YCbCr 444 components to single-pixel values for subsample depth regions, the height, 2HHD of subsample depth SD, SDL, and SDR regions for packing type = 0 or 2 is vertically magnified to 3 times to become 6HHD or the width, 2WHD of subsample depth SD, SDT, and SDB regions for packing type = 1 or 3 is horizontally magnified to 3 times to become 6WHD. To completely depack the CTDP frame, the final upsampling processes of the subsample depth and subsample texture regions are upsampled as the follows.

· For packing type =0, the subsample depth, SD with the size of WxHHD is vertically upsampled by a factor of H:6HHD to obtain depth (D) region and the subsample texture, ST with the size of WxHST is vertically upsampled by a factor of H:HST to obtain texture (T) region both with the size of WxH in units of frame luma samples.
· For packing type =1, the subsample depth, SD with the size of WHDxH is horizontally upsampled by a factor of W:6WHD to obtain depth (D) region and the subsample texture, ST with the size of WSTxH is horizontally upsampled by a factor of W:WST to obtain texture (T) region both with the size of WxH in units of frame luma samples.
· For packing type =2, the subsample depth leftview and subsample depth rightview, SDL and SDR with the size of W/2xHHD are performed horizontal 2:1 upsampling and vertical H:6HHD upsampling to obtain depth leftview and depth rightview, DL and DR, respectively. The subsample texture leftview and subsample texture rightview, STL and STR with the size of W/2xHST are first performed horizontal 2:1 upsampling and then vertical H:HST upsampling to obtain texture leftview and texture rightview, TL and TR, respectively all with the size of WxH in units of frame luma samples. The horizontal 2:1 upsampling method will be further specified by two_views_texture_packing_type.
· For packing type =3, the subsample depth topview and subsample depth bottomview, SDT and SDB with the size of WHDxH/2 are performed vertical 2:1 upsampling and horizontal W:6WHD upsampling to obtain depth topview and depth bottomview, DT and DB, respectively. The subsample texture topview and subsample texture bottomview, STT and STB with the size of WSTxH/2 are first performed vertical 2:1 upsampling and then horizontal W:WST upsampling to obtain texture topview and texture bottomview, TT and TB, respectively all with the size of WxH in units of frame luma samples. The vertical 2:1 upsampling method will be further specified by two_views_texture_packing_type.
two_views_texture_packing_type indicates that the method packs two subsample texture views. For two_views_texture_packing_type equals to 0, the two texture views perform regular 2:1 downsampling and for two_views_texture_packing_type equals to 1, the two texture views perform line-offset 2:1 downsampling before packing.

Table D‑X5– Definition of two_views_texture_packing_type
	Value
	Interpretation

	0
	CTDP depacker is informed that the regular 2:1 downsampling of two views is used for packing two subsample texture views together.

	1
	CTDP depacker is informed that the line-offset 2:1 downsampled of two views is used for packing two subsample texture views together.

Values of two_views_texture_packing_type that do not appear in Table D‑X5 are reserved for future specification by ITU-T |ISO/IEC and shall not be present in bitstreams conforming to this version of this Specification. Decoders shall ignore centralized texture depth packing SEI messages that contain reserved values of texture two_view_packing_type.
If centralized_texture_depth_packing_type is equal to 0 or 1, two_views_texture_packing_type will be ignored. If centralized_texture_depth_packing_type is equal to 2 or 3, two subsample texture views for performing 2:1 upsampling are described as follows:

· If centralized_texture_depth_packing_type is equal to 2, the subsample_texture_leftview (STL), subsample_texture_rightview (STR) are 2:1 horizontally upsampled as shown in Figure D-X8. If two_views_texture_packing_type is equal to 0, the regular 2:1 horizontal upsampling procedure is performed. If two_views_texture_packing_type is equal to 1, the line-offset 2:1 horizontal upsampling procedure is performed. After a proper interpolation filter interpolates the missing pixels (in gray color), the texture leftview and texture rightview are vertically H:HST upsampled to the size of WxH in units of frame luma samples.

· If centralized_texture_depth_packing_type is equal to 3, the subsample_texture_topview (STT), subsample_texture_bottomview (STB) are vertically 2:1 upsampled as shown in Figure D-X9. If two_views_texture_packing_type is equal to 0, the regular 2:1 vertical upsampling procedure is performed. If two_views_texture_packing_type is equal to 1, the line-offset 2:1 vertical upsampling procedure is performed. After a proper interpolation filter interpolates the missing pixels (in black color) and the texture topview and texture bottomview are vertically W:WST upsampled to the size of WxH in units of frame luma samples

[image: image10.emf]….

….

….

X

00

X

10

X

20

X

01

X

11

X

21

X

02

X

03

X

12

X

13

X

22

X

23

….

….

….

X

02

X

03

X

12

X

13

X

22

X

23

X

00

X

10

X

20

X

01

X

11

X

21

….

….

….

X

00

X

10

X

20

X

01

X

11

X

21

X

02

X

03

X

12

X

13

X

22

X

23

….

….

….

X

02

X

03

X

12

X

13

X

22

X

23

X

00

X

10

X

20

X

01

X

11

X

21

Regular 2:1

Horizontal

Upsampling

Line-offset 2:1

Horizontal

Upsampling

two_views_texture_packing_type = 1

two_views_texture_packing_type = 0

Figure D-X8 Regular and line-offset 2:1 horizontal upsampling procedures (black=missing pixel)

[image: image11.emf]….

….

….

X

00

X

10

X

20

X

01

X

11

X

21

X

02

X

03

X

12

X

13

X

22

X

23

….

….

….

X

00

X

10

X

20

X

01

X

11

X

21

X

02

X

03

X

12

X

13

X

22

X

23

Regular 2:1

Vertical

Upsampling

Line-offset 2:1

Vertical

Upsampling

….

….

….

X

00

X

10

X

20

X

01

X

11

X

21

X

02

X

03

X

12

X

13

X

22

X

23

….

….

….

….

….

….

X

00

X

10

X

20

X

01

X

11

X

21

X

02

X

03

X

12

X

13

X

22

X

23

….

….

….

two_views_texture_packing_type = 0

two_views_texture_packing_type = 1

Figure D-X9 Regular and line-offset 2:1 vertical upsampling procedures (black =missing pixel)

baseline_dist_flag equal to 0 specifies that the syntax elements specifying the baseline distance are not present in the syntax structure. baseline_dist_flag equal to 1 specifies that the syntax elements specifying the baseline distance value are present in the syntax structure.
focal_length_flag equal to 0 specifies that the syntax elements specifying the focal length are not present in the syntax structure. focal_length_pixel_flag equal to 1 specifies that the syntax elements specifying the focal length value are present in the syntax structure.
z_near_flag equal to 0 specifies that the syntax elements specifying the nearest depth value are not present in the syntax structure. z_near_flag equal to 1 specifies that the syntax elements specifying the nearest depth value are present in the syntax structure.
z_far_flag equal to 0 specifies that the syntax elements specifying the farthest depth value are not present in the syntax structure. z_far_flag equal to 1 specifies that the syntax elements specifying the farthest depth value are present in the syntax structure.
d_min_flag equal to 0 specifies that the syntax elements specifying the minimum disparity value are not present in the syntax structure. d_min_flag equal to 1 specifies that the syntax elements specifying the minimum disparity value are present in the syntax structure.
d_max_flag equal to 0 specifies that the syntax elements specifying the maximum disparity value are not present in the syntax structure. d_max_flag equal to 1 specifies that the syntax elements specifying the maximum disparity value are present in the syntax structure.
depth_representation_type specifies the representation definition of decoded luma samples of auxiliary pictures as specified in Table D-X5. In Table D-X6, disparity specifies the horizontal displacement between two texture views and Z value specifies the distance from a camera.
The variable maxVal is set equal to (1 << (8 + bit_depth_luma_minus8)) − 1, where bit_depth_luma_minus8 is the value included in or inferred for the active SPS of the layer with nuh_layer_id equal to targetLayerId.

Table D‑X6– Definition of depth_representation_type
	depth_representation_type
	Interpretation

	0
	Each decoded luma sample value of an auxiliary picture represents an inverse of Z value that is uniformly quantized into the range of 0 to maxVal, inclusive.

When z_far_flag is equal to 1, the luma sample value equal to 0 represents the inverse of ZFar (specified below). When z_near_flag is equal to 1, the luma sample value equal to maxVal represents the inverse of ZNear (specified below).

	1
	Each decoded luma sample value of an auxiliary picture represents disparity that is uniformly quantized into the range of 0 to maxVal, inclusive.

When d_min_flag is equal to 1, the luma sample value equal to 0 represents DMin (specified below). When d_max_flag is equal to 1, the luma sample value equal to maxVal represents DMax (specified below).

	2
	Each decoded luma sample value of an auxiliary picture represents a Z value uniformly quantized into the range of 0 to maxVal, inclusive.

When z_far_flag is equal to 1, the luma sample value equal to 0 corresponds to ZFar (specified below). When z_near_flag is equal to 1, the luma sample value equal to maxVal represents ZNear (specified below).

	3
	Each decoded luma sample value of an auxiliary picture represents a nonlinearly mapped disparity, normalized in range from 0 to maxVal, as specified by depth_nonlinear_representation_num_minus1 and depth_nonlinear_representation_model[i].

When d_min_flag is equal to 1, the luma sample value equal to 0 represents DMin (specified below). When d_max_flag is equal to 1, the luma sample value equal to maxVal represents DMax (specified below).

	Other values
	Reserved for future use

The variables in the x column of Table D-X7 are derived from the respective variables in the s, e, n and v columns of Table D-X7 as follows:

– If the value of e is in the range of 0 to 127, exclusive, x is set equal to (−1)s* 2e - 31 * (1 + n ÷ 2v).

– Otherwise (e is equal to 0), x is set equal to (−1)s * 2−(30 + v) * n.

NOTE 1 – The above specification is similar to that found in IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems.
Table D‑X7– Association between depth parameter variables and syntax elements
	x
	s
	e
	n
	v

	Bdistance
	BdistanceSign
	BdistanceExp
	BdistanceMantissa
	BdistanceManLen

	Flength
	FlengthSign
	FlengthExp
	FlengthMantissa
	FlengthManLen

	ZNear
	ZNearSign
	ZNearExp
	ZNearMantissa
	ZNearManLen

	ZFar
	ZFarSign
	ZFarExp
	ZFarMantissa
	ZFarManLen

	DMax
	DMaxSign
	DMaxExp
	DMaxMantissa
	DMaxManLen

	DMin
	DMinSign
	DMinExp
	DMinMantissa
	DMinManLen

The DMin and DMax values, when present, are specified in units of a luma sample width of the coded picture.
The units for the ZNear and ZFar, when present, are identical but unspecified.
When depth_representation_type is equal to 0 or 2, the disparity D can further be obtained from the value of Z, Bdistance, and Flength.

D = Bdistance × Flength ÷ Z
depth_nonlinear_representation_num_minus1 plus 2 specifies the number of piecewise linear segments for mapping of depth values to a scale that is uniformly quantized in terms of disparity.
depth_nonlinear_representation_model[i] for i ranging from 0 to depth_nonlinear_representation_num_minus1 + 2, inclusive, specify the piecewise linear segments for mapping of decoded luma sample values of an auxiliary picture to a scale that is uniformly quantized in terms of disparity. The values of depth_nonlinear_representation_model[0] and depth_nonlinear_representation_model[depth_nonlinear_representation_num_minus1 + 2] are both inferred to be equal to 0.
NOTE 2 – When depth_representation_type is equal to 3, an auxiliary picture contains nonlinearly transformed depth samples. The variable DepthLUT[i], as specified below, is used to transform decoded depth sample values from the nonlinear representation to the linear representation, i.e., uniformly quantized disparity values. The shape of this transform is defined by means of line-segment approximation in two-dimensional linear-disparity-to-nonlinear-disparity space. The first(0, 0) and the last (maxVal, maxVal) nodes of the curve are predefined. Positions of additional nodes are transmitted in form of deviations (depth_nonlinear_representation_model[i]) from the straight-line curve. These deviations are uniformly distributed along the whole range of 0 to maxVal, inclusive, with spacing depending on the value of nonlinear_depth_representation_num_minus1.

The variable DepthLUT[i] for i in the range of 0 to maxVal, inclusive, is specified as follows:
for(k = 0; k <= depth_nonlinear_representation_num_minus1 + 1; k++) {
 pos1 = (maxVal * k) / (depth_nonlinear_representation_num_minus1 + 2)
 dev1 = depth_nonlinear_representation_model[k]
 pos2 = (maxVal * (k + 1)) / (depth_nonlinear_representation_num_minus1 + 2)
dev2 = depth_nonlinear_representation_model[k + 1] (G-10)
x1 = pos1 − dev1
y1 = pos1 + dev1
x2 = pos2 − dev2
y2 = pos2 + dev2
for(x = Max(x1, 0); x <= Min(x2, maxVal); x++)
DepthLUT[x] = Clip3(0, maxVal, Round(((x − x1) * (y2 − y1)) ÷ (x2 − x1) + y1))
}

When depth_representation_type is equal to 3, DepthLUT[dS] for all decoded luma sample values dS of an auxiliary picture in the range of 0 to maxVal, inclusive, represents disparity that is uniformly quantized into the range of 0 to maxVal, inclusive.
centralized_texture_depth_packing_persistence_flag specifies the persistence of the centralized texture depth packing arrangement SEI message.

centralized_texture_depth_packing_persistence_flag equal to 0 specifies that the centralized texture depth packing arrangement SEI message applies to the current decoded frame only.

centralized_texture_depth_packing_persistence_flag equal to 1 specifies that the centralized texture depth packing arrangement SEI message persists in output order until any of the following conditions are true:

–
A new CVS begins.

–
The bitstream ends.

–
A frame in an access unit containing a centralized texture depth packing SEI message with the same
D.4.X
View synthesis representation information element syntax
	view_syn_rep_info_element(OutSign, OutExp, OutMantissa, OutManLen) {
	Descriptor

	da_sign_flag
	u(1)

	da_exponent
	u(7)

	da_mantissa_len_minus1
	u(5)

	da_mantissa
	u(v)

	}
	

The syntax structure specifies the value of an element in the view synthesis representation information SEI message.
The syntax structure sets the values of the OutSign, OutExp, OutMantissa and OutManLen variables that represent a floating-point value. When the syntax structure is included in another syntax structure, the variable names OutSign, OutExp, OutMantissa and OutManLen are to be interpreted as being replaced by the variable names used when the syntax structure is included.
da_sign_flag equal to 0 indicates that the sign of the floating-point value is positive. da_sign_flag equal to 1 indicates that the sign is negative. The variable OutSign is set equal to da_sign_flag.
da_exponent specifies the exponent of the floating-point value. The value of da_exponent shall be in the range of 0 to 27 − 2, inclusive. The value 27 − 1 is reserved for future use by ITU-T | ISO/IEC. Decoders shall treat the value 27 − 1 as indicating an unspecified value. The variable OutExp is set equal to da_exponent.
da_mantissa_len_minus1 plus 1 specifies the number of bits in the da_mantissa syntax element. The value of da_mantissa_len_minus1 shall be in the range of 0 to 31, inclusive. The variable OutManLen is set equal to da_mantissa_len_minus1 + 1.
da_mantissa specifies the mantissa of the floating-point value. The variable OutMantissa is set equal to da_mantissa.
2 Performance Evaluations for Nonlinear Mapping of Cb and Cr
In the output document [1], the depth values of CTDP formats can be linearly transformed from Y, Cb, Cr components. Since Cb and Cr components in the range of [16, 240], which represent the residuals of DPCM predictions of the corresponding depth valuse. are mostly with very small values but could be exponentially distributed in the range of [255, 255]. To further improve the packing performance, the linear mapping function [1] stated by

flinear(Cx)=2.2768*(Cx-128)

(2.1)

is replaced by the piece-wise linear mapping function as

[image: image12.wmf]240

Cx

133

133

Cx

123

123

Cx

16

).

8

.

130

Cx

(

3364

.

2

128

Cx

),

1

.

125

Cx

(

*

3364

.

2

)

Cx

(

f

£

<

£

£

<

£

ï

î

ï

í

ì

-

-

-

=

. (2.2)

The piece-wise linear mapping function perfectly maps the residuals of the DPCM of depth values in [-5, 5] to Cr and Cb components in [123, 133]. To verify the packing PSNR and SSIM performances, we conduct the following simulations in the conditions of CTDP formats without HEVC coding and the CTDP formats with HEVC coding comparing to 3D-HEVC.

2.1 Performance Evaluations of CTDP Formats in YCbCr420 Chroma Representation

Without any video coding systems, the performances of the CTDP one-view and one-depth map formats are totally affected by: 1) subsample texture; 2) subsample depth; and 3) Cb and Cr components representation. In simulations, we adopt Shark and UndoDancer sequences for performance evaluations of uncoded CTDP videos with the linear mapping and the nonlinear mapping functions. In various CTDP formats, Tables 2.1 and 2.2 show the PSNR and SSIM performances of depacked texture, depth, and their synthesized virtual views generated by VSRS rendering system. The simulation results show that Cb and Cr components with the nonlinear mapping function show much better PSNR and better SSIM performances than those with the linear mapping function. Besides, the synthesized virtual view with the nonlinear CbCr mapping also exhibits better PSNR and SSIM performances than that with the linear mapping.

Table 2.1. Objective performances for uncoded CTDP-1TB texture-5/6 packing videos

	　Performances
	Depacked Texture and Depth
	Synthesized Virtual View

	
	Texture
	Depth
	Virtual View Generated by VSRS

	
	5/6_1TB
	Linear Mapping CbCr
	Nonlinear

Mapping CbCr
	Linear
Mapping CbCr
	Nonlinear

Mapping CbCr

	PSNR
	45.2634
	45.1297
	45.4699
	38.6801
	38.7427

	SSIM
	0.9922
	0.9832
	0.9939
	0.9843
	0.9846

Table 2.2. Objective performances for uncoded CTDP-1TB texture-8/9 packing videos

	　Performances
	Depacked Texture and Depth
	Synthesized Virtual View

	
	Texture
	Depth
	Virtual View Generated by VSRS

	
	8/9_1TB
	Linear Mapping CbCr
	Nonlinear

Mapping CbCr
	Linear
Mapping CbCr
	Nonlinear

Mapping CbCr

	PSNR
	 46.1485
	 43.9897
	44.1021
	 38.7200
	38.8875

	SSIM
	0.9938
	 0.9881
	0.9918
	 0.9853
	0.9867

2.2 Performance Evaluations of CTDP-HEVCwith respect to 3D-HEVC
To compare coding performances of CTDP-HEVC and the 3D-HEVC coding system, the CTDP-1TB, CTDP-1LR formats with the subsample texture ratios of 5/6 and 8/9 are encoded by HEVC HM13.0 and compared to 3D-HEVC HTM8.0. The QP setting for both HM13.0 and HTM8.0 are 27, 32, 37, and 42. Two CG 3D video test sequences, Shark and UndoDancer (1920x1088) sequences were removed top and bottom 4 horizontal lines to become the size of 1920x1080. In simulations, the coding performances of depacked texture, the depacked depth, and the synthesized virtual view by VSRS with the linear and nonlinear mapping Cb and Cr components in depth color of CTDP formats are exhibited. With respect to 3D-HEVC, Tables 2.3 – 2.6 shows that the BDBR and BDPSNR performances of synthesized virtual views for Texture-5/6 CTDP-1TB and Texture-8/9 CTDP-1TB formats.

Table 2.3. Average BDBR (%) results for Texture-5/6 CTDP-1TB format with HEVC with respect to 3D-HEVC

	Coding Modes
	Depacked Texture
	Depacked Depth
	Virtual View by VSRS

	
	Linear
Mapping CbCr
	Nonlinear Mapping CbCr
	Linear
Mapping CbCr
	Nonlinear Mapping CbCr
	Linear

Mapping CbCr
	Nonlinear Mapping CbCr

	ra
	21.0704
	18.6241
	-43.7626
	-47.7598
	25.5579
	21.1467

	ldp
	16.5524
	13.8604
	-56.0816
	-62.3414
	15.7390
	11.8604

	ai
	12.1774
	9.7019
	-32.1844
	-39.1668
	27.9285
	23.9325

	ave
	16.6000
	14.0621
	-44.0095
	-49.7560
	23.0751
	18.9799

Table 2.4. Average BDPSNR (dB) results for Texture 5/6 CTDP-1TB format with HEVC with respect to 3D-HEVC

	Coding Modes
	Depacked Texture
	Depacked Depth
	Virtual View by VSRS

	
	Linear
Mapping CbCr
	Nonlinear Mapping CbCr
	Linear
Mapping CbCr
	Nonlinear Mapping CbCr
	Linear

Mapping CbCr
	Nonlinear Mapping CbCr

	ra
	-0.6299
	-0.5694
	2.2445
	2.6245
	-0.6718
	-0.5769

	ldp
	-0.5127
	-0.4383
	3.9586
	4.7799
	-0.4522
	-0.3570

	ai
	-0.4329
	-0.3558
	1.6828
	2.2510
	-0.8275
	-0.7368

	ave
	-0.5251
	-0.4545
	2.6286
	3.2184
	-0.6505
	-0.5569

Table 2.5. Average BDBR (%) results for Texture 8/9 CTDP-1TB format with HEVC with respect to 3D-HEVC
	Coding Modes
	Depacked Texture
	Depacked Depth
	Virtual View by VSRS

	
	Linear
Mapping CbCr
	Nonlinear Mapping CbCr
	Linear
Mapping CbCr
	Nonlinear Mapping CbCr
	Linear

Mapping CbCr
	Nonlinear Mapping CbCr

	ra
	15.7538
	13.6254
	-23.2366
	-30.6426
	30.0211
	25.7829

	ldp
	10.6721
	8.2266
	-47.0105
	-53.8872
	18.0217
	13.9024

	ai
	9.0084
	6.8931
	-7.0863
	-19.7578
	33.8656
	29.2954

	ave
	11.8114
	9.5817
	-25.7778
	-34.7625
	27.3028
	22.9936

Table 2.6. Average BDPSNR (dB) results for Texture 8/9 CTDP-1TB format with HEVC with respect to 3D-HEVC
	Coding Modes
	Depacked Texture
	Depacked Depth
	Virtual View by VSRS

	
	Linear
Mapping CbCr
	Nonlinear Mapping CbCr
	Linear
Mapping CbCr
	Nonlinear Mapping CbCr
	Linear

Mapping CbCr
	Nonlinear Mapping CbCr

	ra
	-0.4791
	-0.4247
	0.9576
	1.3941
	-0.7665
	-0.6789

	ldp
	-0.3410
	-0.2707
	2.9329
	3.6932
	-0.5036
	-0.4051

	ai
	-0.3244
	-0.2557
	0.1938
	0.8799
	-0.9675
	-0.8694

	ave
	-0.3815
	-0.3170
	1.3614
	1.9902
	-0.7458
	-0.6511

3 Patent rights declaration(s)
NCKU may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
4 References

[1] J.-F. Yang and J.-R. Ohm, “Conceptual study of potential centralized texture depth packing SEI message”, Document, no. JCT3V-O1004, May 2016.

Page: 1
Date Saved: 2016-11-09

_1535976275.unknown

