	ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)

Hong Kong, 16-18 January, 2005
	Document VCEG-Y10

Filename: VCEG-Y10.doc

Generated: 10 Jan ’05

	Question:
	Q.6/SG16 (VCEG)

	Source:
	Gisle Bjontegaard,
Arild Fuldseth,
Tandberg,
Philip Pedersens vei 22
1366 Lysaker, Norway
	Tel:
Fax:
Email:
	+47 67125125
+47 67125234
gbj@tandberg.no
afu@tandberg.no

	Title:
	Larger transform for residual signal coding

	Purpose:
	Proposal.

1 Background

H.264 uses mostly 4x4 block transform for the description of the residual signal. This is in contrast to earlier video coding standards which mainly used 8x8 transforms (DCT). The smaller transform has definite advantages, especially linked with more accurate prediction procedures in H.264 compared to previous standards. Still one can foresee that a larger transform could be preferable in certain situations. This document presents an inexpensive solution to include 16x16 transform of the residual signal.

2 The basic idea

We have observed that the 4x4 transform may suffer when coding flat regions. If most of the energy is contained in the low frequency components a larger transform reproduces pixels more accurately in such cases. This was some of the reason for introducing the top level transform in the intra 16x16 mode of H.264. This document introduces a 16x16 transform for inter blocks.

2.1 The idea is therefore:

· To use 4x4 transform when there is high frequency information to be coded. This is efficient to avoid ringing effects.

· To use a few of the 16x16 transform coefficients when there is only low frequency content to be coded. Thereby low frequency content will be more precisely reconstructed.

3 The encoder

Here we will describe a possible procedure on the encoder side. It is not the most efficient way regarding computational complexity.

Assume a MB has been coded. The prediction for the MB is available. Assume further that the following conditions are fulfilled:

· The MB was inter predicted

· Quantization resulted in only 0 chroma coefficients

· Quantization resulted in only 0 luma AC coefficients

In that case go through the following steps.

3.1 Transformation

We used the 4 1-dimensional 16-point basis vectors:

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 2 2 2 1 1 0 0 –1 –1 –2 –2 –2 –3 –3

3 2 1 1 0 –2 –2 –3 –3 –2 –2 0 1 1 2 3

2 2 0 –1 –2 –3 –3 –1 1 3 3 2 1 0 –2 -2

They are orthogonal and have the same norm (64). The transform is made horizontally and vertically resulting in 4x4 = 16 transform coefficients. This is only 1/16 of all transform coefficients in a 16x16 block.

3.2 Quantization

Perform quantization of the transform coefficients. Use quantization parameters corresponding to (Qp + 1) where Qp is the current value for the MB. Proper scaling has to be done to compensate for the difference between the 4x4 and 16x16 basis vectors. (It turns out that an additional right shift of 4 is necessary in the quantization process).

Zig-zag scan is used in the same way as coding 4x4 blocks. Use forward scan and do normal quantization to obtain (Level(.

· If (Level(= 1 use this and only this coefficient for reconstruction. Stop testing coefficients

· If (Level(> 1, abort the procedure

· If all coefficient are below the first decision level, abort the procedure

3.3 Reconstruction

Remember that we can have only 1 nonzero coefficient and that its (Level(= 1

· Inverse transform – use the basis vector found above

· Inverse quantization

· Add the outcome to the prediction array to reconstruct the block

· Mark the outer edges of the MB for deblocking filter strength as if there where vector differences across the block edges

3.4 Entropy coding

3.4.1 Redefinition of MODE

The mode table for inter slices is redefined to allocate codewords for block partitions 16x16 to 8x8 both with 4x4 and 16x16 transform. Codewords for intra coding is shifted downwads in the table.

3.4.2 Position of the nonzero coefficient

We use only one nonzero coefficient. We therefore only need to signal the position and sign of this coefficient.

For position we use the VLC (see also VCEG-08 section 5)

10

11x

01xx

001xx

0001xx

….

1 bit is used to indicate the sign of each nonzero coefficient

3.5 Example

The most common event is the following:

· 2 bits to signal that the coefficient is in position 0

· 1 sign bit for that coefficient

Altogether 3 bits to code the residual signal of the MB

4 Simulation results

4.1 Objective

Test conditions similar to the ones in H.264 are used. However, the QCIF sequences are replaced by the corresponding CIF sequences. Frame rates and Qp values are kept the same. So far the method has been implemented on the Tandberg encoder platform, but we are in the process of implementing it in the reference encoder.

Avsnr prerformance relative to H.264 for the different sequences are listed in the table.

	Sequence
	Bitrate with using the 16x16 transform compared with H.264(%)

	Container
	-14.0

	News
	-1.2

	Foreman
	-1.7

	Silent
	-3.2

	Paris
	-1.8

	Mobile
	-2.4

	Tempete
	-2.1

	Average
	-3.76

Notice especially the large gain for Container. A closer look shows that the new transform is better suited to reconstruct the structure in the sea.

4.2 Subjective

Two side-by-side demos with and without the 16x16 transform will be shown.

5 Complexity considerations

Preliminary tests indicate that the number of computer cycles using the larger transform is similar to H.264.

· There are some more non-skipped blocks increasing complexity slightly

· On the other hand the 16x16 blocks are cheaper to decode than an ordinarily coded block

We will continue to work on this.

6 Conclusions

This method seems promising since:

· It shows some objective gain

· Good potential for subjective gain

· Decoder complexity is unchanged

It is proposed to include the method into future work towards less complex encoding/decoding.

7 Summary of all the Tandberg simplifications so far

Tandberg has so far presented 6 documents with the aim of reducing complexity for the encoder and decoder and maintaining roughly the same coding efficiency as H.264. The documents are:

· VCEG-W09
Simplified fractional pixel interpolation

· VCEG-W10
Simplified chroma deblocking filter

· VCEG-X04
Simplified luma deblocking filter

· VCEG-Y08
Simplified VLC coding of transform coefficients

· VCEG-Y09
Simplified chroma interpolation

· VCEG-Y10
Larger transform for residual signal coding

· In addition we have reduced the number of blockpartitions for prediction to 16x16, 16x8, 8x16 and 8x8

Some of the methods are implemented in the reference software whereas others are still only implemented in the Tandberg real time software. We are in the process of implementing all methods in the reference software.

For computational efficiency assessment we have used “cycle count” in the Tandberg real time decoder. The table below summarizes coding efficiency and decoding cycles for all the methods. In the table is also included overall effect on objective coding performance as well as overall reduction in computer cycles. Even if different encoders are used for some of the methods we believe that the summary is reasonably correct.

	
	Avsnr (%)
	Decoder computer cycles (%)

	Reference encoder

	VCEG-W09 Interpolation
	-0.04
	-3.32

	VCEG-W10 Chroma filter
	-0.11
	-5.17

	Minimum 8x8 blocks
	2.58
	-6.97

	VCEG-X04 Luma filter
	1.69
	-8.36

	All together
	4.04
	-23.71

	Tandberg encoder

	VCEG-Y08
	0.16
	-4.4

	VCEG-Y09
	1.44
	-1.9

	VCEG-Y10
	-3.76
	na

	Estimated total
	+1.88%
	-30.0%

It should be noted that complexity assessment is performed on one specific platform. Other platforms may give different results. We have also counted average cycles (over sequences and bitrates). It is expected that worst case differences will be larger.

File:VCEG-Y10.doc
Page: 1
Date Printed: 12.01.2005

