	ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)

Fourteenth Meeting: Santa Barbara, CA, USA, 21-24 September, 2001
	Document VCEG-N52
Filename: VCEG-N52.doc

Generated: 18 September ’01

	Question:
	Q.6/SG16 (VCEG)

	Source:
	Stephan Wenger
TU Berlin / Teles AG
Franklinstr. 28-29
D-10587 Berlin

Thomas Stockhammer
Institute for Communications Eng.
Munich University of Technology
D-80290 Munich

Germany
	
Tel:
Fax:
Email:

Tel:
Fax:
Email:
	
+49-172-3000813
+49-30-36282387
stewe@cs.tu-berlin.de

+49-89-28923474
+49-89-28923490
stockhammer@ei.tum.de

	Title:
	H.26L over IP and H.324 Framework

	Purpose:
	Proposal

Summary

This document discusses one possible concept for the transport of H.26L over IP and H.324 networks. We will present the approach based on an IP network and discuss the simple extension to H.324 in the end of this proposal. With this proposal a simple interworking of H.324 terminals with IP based terminals can be achieved.

An IP/UDP/RTP best effort network is assumed. The main design consideration is to distinguish clearly between such media information that has to be transported in real-time and non-real-time information, which is transported by means other than the media RTP stream. This concept leads to non self-contained RTP packet streams. It is applicable for all current IP transports, including IP over wireless links.

Parts of this framework have to be standardized within VCEG. Others, however, are under the responsibility of the IETF and IANA (for the MIME registrations), and, in case of wireless, ETSI, and industry consortia. The framework is for now only proposed in VCEG, but the authors are in close contact with key people in the IETF AVT and MMUSIC working groups to sanity check the content from their point-of-view.

The RTP stream consists of RTP packets that carry partitions of slices. It was found, that, in the current TML8 design, a maximum of three partitions per slice is appropriate. Pictures are divided into slices mainly to prevent partition sizes exceeding the path MTU size. A slice is a self-contained entity of a picture that does not rely on any information conveyed by previous RTP packets. Hence, mechanisms such as HEC or RFC2429 picture header repetition are unnecessary.

Any information that is concerned with more than a single slice is conveyed out of band. In particular, all information traditionally conveyed in the picture header and higher header layers, such as the picture size, entropy coding method, optional modes (if we are unlucky enough to use this concept again), and similar are never sent in the RTP stream.

The decoder maintains parameters sets in numbered storage locations. The simplest systems will need at least two storage locations, one for Intra slices and one for Inter slices. More complex systems maintain a multitude of parameter storage spaces for different picture resolutions, coding modes, and similar. Each slice contains in its header partition the information which storage space to use. Synchronization between updates of the parameter storage (when desired) and the media streams is handled externally.

For the parameter information a syntax is proposed that can one-to-one be converted into SDP, the description language used by SIP systems (such as 3GPP phones).

Intellectual Property Notice: The authors believe that there is no intellectual property associated with this proposal

Overview

Figure 1 depicts the architecture of a terminal using the H.26L over IP framework. A simple coder is assumed which is not capable to suggest coding modes by itself.

[image: image1.wmf]Coder

Decoder

RTP Packets containing Partitions/Slices

1

2

3

1

2

3

Parameter sets selected within the bit stream

Sync. Parameter Set #3

XSizeMB:

 11

YSizeMB:

 9

MVResolution:

1/8

Entropy:

 CABAC

 ...

Figure 1: System Architecture

During the setup of the logical channel the capability exchange takes place. This procedure was already subject to many discussions within VCEG, and it was agreed that a simple version/profile/level concept should be used in order to avoid too much baseline operation due to an excessive number of options – as we have seen it with H.263. A profile/level/version combination defines the maximum capabilities of the codec, but all smaller/simpler modes must also be supported. In addition we propose that a profile also defines a main operation point, which, in many cases, will be the maximum capabilities at the maximum picture size allowed by the version/profile/level. The coding parameters of this main operation point are the initial parameter set. Parameter sets can be changed at any time, but only within the limits of the given version/profile/level combination. They perform many of the functions and contain most of the information of the traditional picture header.

The video coder converts pixel information into up to three bit fields per slice, containing the coded bits of each of the three partitions. Each partition may correspond to the payload of a single RTP packet, or all three partitions are combined into a single RTP packet in such cases in which data partitioning is not used (for example extremely low bit rates or gateway scenarios between ISDN and IP). The coder also generates side information such as the start MB address and the number of MBs of the slice and the parameter set to be used. Optionally, the coder may generate new parameter sets and convey them to the system. Parameter sets are transmitted out of band, typically through a reliable control channel. The coder can use parameter sets as soon as the system informs the coder that they are available at the decoder. This information is normally a side effect of the control protocol operation, as all control protocols currently under consideration for systems use some form of an acknowledgement mechanism. Hence, as an input, the coder has information about the available parameter sets at the decoder, as well as environment information such as the current network conditions and the desired sending bit rate.

The RTP/UDP/IP protocol stack conveys the media information to the receiver. Currently we do not foresee the need for an RTP payload header. This is very fortunate, because it eliminates the need for an additional packetization layer for H.324 systems, where no transport service comparable to the RTP payload header is available – hence fewer problems for gateway designers. There is also the advantage of lower overhead, especially since the new RTP draft (forthcoming successor of RFC1889) strongly suggests the use of 32 bit alignment, instead of 8 bit alignment, to allow for easier processing in high speed networking equipment. The bits of a partition are conveyed directly as the RTP payload, similar to simple audio codecs such as G.711.

At the receiver, the IP/UDP/RTP protocol stack generates the re-ordered packet stream and feeds it into the decoder. Any lost packets are signaled in an implementation specific way in order to trigger the use of error concealment. Currently, we assume the integrity of RTP packets as established by the use of the UDP checksum
.

The video decoder receives all correctly transmitted partitions in the correct order. It maintains a number of parameter set storages. The header partition of each slice contains information which parameter set to use.

In this framework, the signaling path is typically implemented by the use of the SIP/SDP or H.245 control protocols. In many applications it will be sufficient to generate only a single parameter sets, which will be implicitly transmitted during capability exchange through the default operation point mechanism. (To recap, each version/profile/level combination implies the set up of one or more parameter sets. The first of these is the default operation point). More complex systems may generate and transmit additional parameter sets immediately following the capability exchange (possibly in the same setup message, at least for SIP based systems, see examples below), e.g. to allow for different picture formats for dynamic picture resizing. The most sophisticated systems may enable the change parameters during the existence of a logical channel. The resulting synchronization problems can be handled by RTCP return path signaling – current work in the IETF is underway to enable such features.

Note that there will be a need to carefully design the main operation point the version/profile/level definitions with the information typically used in real world systems in order to prevent excessive sending of update information. Work on this can commence as soon as the first profiles are defined. It is also a possibility to leave the version/profile/level definition and the associated main operation point definition to industry consortia.

Slices and Partitions

The fundamental data structure of the video coder is a slice. A slice compromises an integer number of macroblocks in scan order corresponding to the same picture – similar to scan-order slices of H.263 Annex K. Slices are not syntactical elements of H.26L, but a logical concept. Slices are independently decodable, but may import texture data from outside the slice boundaries during motion compensation.

The pixel data of slice may be composed of a maximum of three partitions. Partition A contains all header information including what is called in H.263 the slice header, motion vectors, MBTYPEs and similar. Partition B contains all Intra information, namely the Intra CBPs and all Intra coefficients. Partition C, finally, contains all Inter information, namely Inter-CPB and Inter coefficients. It is also possible to put all slice information into a single “partition” and, hence not use data partitioning. The signaling whether data partitioning is used or not is provided by external means through a version/profile/level combination.

Each partition starts with an UVLC codeword called PartitionId that indicates the type of the partition. Using this field, the RTP sequence number (or the AL3 sequence number in case of H.223), and in rare cases syntax violations due to the use of partitions not belonging to the same slice it is possible to detect the loss of partitions and/or whole frames, to trigger error concealment algorithms. See the section on De-Packetization below for an example.

Partition A: Header Data Partition

This partition contains everything traditionally associated with the Slice header, and the header info such as MBTYPEs, REFFRAME, INTRAPREDMODE, and MVD.

The Header Partition starts with a number of UVLC codewords that contain information about the slice:

PartitionId=1
UVLC codeword, indicating Partition type A.

ParameterSet
UVLC codeword, symbol number represents the parameter set number used for the slice. Here, information such as the Entropy Coding Method, the PartitionMode, or the picture size is stored.

SliceType
UVLC codeword, indicates the slice type. Here we can allow/permit different slice types in a single picture. We do not see a reason to permit such mixing, but we did not
yet do a thorough analysis, especially not regarding SP frames.
The following UVLC codes are used:

0: Inter (P-) Slice
1: B-Slice
2: SP-Slice (this needs to be thought through)
3: Intra (I-) Slice

FirstMBInSlice
UVLC codeword, symbol number represents the MB number of the first MB in the Slice, starting from the upper left MB in the picture in scan order (same as H.263 Annex K). Note that the size of the codeword scales with the maximum picture size. For very big spatial picture sizes this mechanism is not very efficient. It was chosen, because it fits into the UVLC-only slice header architecture and scales with the picture size, i.e. more bits are used for bigger picture sizes than for small ones. Better ideas are very welcome.

InitialQP
UVLC codeword, symbol number represents 31 – QP of the first macroblock in the slice. The QP was not coded directly, because numerically higher QPs lead to fewer coefficient bits and higher compression, hence shorter symbols for higher QPs are desirable.

PictureID
UVLC codeword, symbol number represents the PictureID of the picture the slice belongs to. Note that, currently, the Picture ID would probably be a circular counter similar to the classic TR. However, this is the place to build in the “generalized Annex U functionality” which allows encoder dictated buffer management in the decoder. Exact timing information is not conveyed in the bit stream but by the means of the RTP timestamp (see the H.324 section below for info on how timing information is conveyed in non-RTP systems). Note also, that the numbering space for the Picture ID is a function of the number of available reference memories at the decoder, as specified in the sequence header and established during the capability exchange.

NumberMBsInSlice
UVLC codeword, symbol number represents the number of MBs represented by the slice.

At the next byte-aligned location, the bit buffer of the partition starts. This bit buffer may either contain UVLC or CABAC coded information. The following syntax elements are coded in this partition:

0
SE_MBTYPE

Macroblock Type

2
SE_INTRAPREDMODE

Intra Prediction Mode
1
SE_REFFRAME

Reference Frame

3
SE_MVD

Motion Vector Data

0
SE_BFRAME

All Macroblock Data assigned to B-frames

0
SE_SPFRAME

All Macroblock Data assigned to SP-frames

Note that there is no need to transmit the number of bits/bytes used by the partition data because the IP header contains the packet size, and all other information can easily be deducted from this size information.

The coding of the numerical parameters of the “slice header” in the form of UVLC symbols seems at the first glance to be inefficient. However, we believe that a) it is not as inefficient as it seems, b) that the architectural advantages of using UVLC coding throughout are worth the few additional bits, and c) that the added flexibility of UVLCs regarding the numbering space clearly make this design favorable.

Partition B: Intra Partition

This partition contains Intra-CBP and all Intra coefficients.

The Intra partition starts with a one UVLC codeword header that is followed by the bit stream
:

PartitionId=2
UVLC codeword, fixed value of 1 indicating a type B partition.

At the next byte-aligned location, the bit buffer of the partition starts. This bit buffer may either contain UVLC or CABAC coded information. The following syntax elements are coded in this partition:

4
SE_CBP_INTRA

Coded Block Pattern for Intra Coded MBs

5
SE_LUM_DC_INTRA

Luma DC Coefficients for Intra Coded MBs

6
SE_CHR_DC_INTRA

Chroma DC Coefficients for Intra Coded MBs

7
SE_LUM_AC_INTRA

Luma AC Coefficients for Intra Coded MBs

8
SE_CHR_AC_INTRA

Chroma AC Coefficients for Intra Coded MBs

There is no need to transmit the number of bits/bytes used by the partition data because the IP header contains the packet size, and all other information can easily be deducted from this size information.

Partition C: Inter Partition

This partition contains Inter-CBP and all Inter coefficients.

PartitionId=3
UVLC codeword.

At the next byte-aligned location, the bit buffer of the partition starts. This bit buffer may either contain UVLC or CABAC coded information. The following syntax elements are coded in this partition:

9
SE_CBP_INTER

Coded Block Pattern for Inter Coded MBs

10
SE_LUM_DC_INTER

Luma DC Coefficients for Inter Coded MBs

11
SE_CHR_DC_INTER

Chroma DC Coefficients for Inter Coded MBs

12
SE_LUM_AC_INTER

Luma AC Coefficients for Inter Coded MBs

13
SE_CHR_AC_INTER

Chroma AC Coefficients for Inter Coded MBs

There is no need to transmit the number of bits/bytes used by the partition data because the IP header contains the packet size, and all other information can easily be deducted from this size information.

Packetization for No Data Partitioning

The packetization for complete slices is similar to the packetization of the header partition, except that a “partition Type” 0 is introduced to distinguish between a header partition and a full slice partition. This allows gateway designs to identify the different partition types without parsing the bit stream. Hence, the header looks as follows:

PartitionId=0
UVLC codeword, indicating a full slice with no data partitioning.

ParameterSet
UVLC codeword, symbol number represents the parameter storage location used for the slice.

SliceType
UVLC codeword, indicates the slice type, same semantics as for Partition type A.

FirstMBInSlice
UVLC codeword, symbol number represents the MB number of the first MB in the Slice.

InitialQP
UVLC codeword, symbol number represents 31 – QP of the first macroblock in the slice.

PictureID
UVLC codeword, symbol number represents the PictureID of the picture the slice belongs to.

NumberMBsInSlice
UVLC codeword, symbol number represents the number of MBs represented by the slice.

At the next byte-aligned location, the bit buffer of the partition starts. This bit buffer contains one complete slice either in UVLC or CABAC entropy coding.

RTP Packetization Process

The packetization process for RTP is straightforward and follows the general principles outlined in RFC1889. In principle, the bit buffer containing the coded bits (and the UVLC codewords of the slice header in case of the header Partition or the full slice) are the RTP payload. There is no specific RTP payload header. The RTP header information is set as follows:

Timestamp
The presentation timestamp of the picture the slice belongs to, 27 MHz base clock is assumed. Slices are associated to pictures by using this time stamp.

Marker bit
Set for the very last packet of a picture, in line with the normal use of the M bit and to allow an efficient playout buffer handling.

Sequence No
Increased by one for each sent packet. Set to a random value during startup as per RFC1889

Version
(V)
set to 2

Padding
(P)
set to 0

Extension (X)
set to 0

Payload Type (PT)
established dynamically during connection establishment

All other RTP header fields are set as per RFC1889 or, in the near future, its successor.

The slices MUST be sent in scan order, and the partitions MUST be sent in their natural order, Partition A before Partition B before Partition C. In other words, if the sequence number of Partition A of a given slice is n, then the sequence number of Partition B is n+1 and Partition C is n+2. Empty partitions MUST NOT be send. Unless no data partitioning is used, all partitions MUST be send in their own RTP packet. If no data partitioning is used then the slice MUST be sent in a single RTP packet. The slice size SHOULD be selected such as the MTU size is never exceeded by the partition.

Note that the data partitioning was designed to support unequal error protection schemes or priority supporting mechanisms. One naïve way to implement such a scheme is to simply send the header partition twice, with the same RTP sequence number. Such a scheme was shown to be quite efficient even considering the “wasted” bit rate [Q15J53]. Other schemes will typically employ more than one transport stream with different QoS properties. For those, a packetization scheme has to be defined as soon as Industry interest picks up and a suitable infrastructure becomes available (Currently, neither the public Internet, nor private IP networks support application based QoS management on a large scale, and will likely not do so in the foreseeable future).

RTP De-Packetization Process

The RTP de-packetization process is not to be standardized but implementation dependent. The following description will likely end up in the RTP payload specification and maybe also in the test model, but only as one possible example for a de-packetization method that works reasonably well.

An incoming stream of uncorrupted RTP packets, as asserted by the correct UDP checksum, is assumed. The playout buffer is filled with those packets after re-ordering according to the RTP sequence number. Whenever error free conditions exist, i.e. no packet loss occurred, the de-packetization process collects all non-empty partitions of a slice and passes them to the decoder. Doing so requires only to check the RTP header for sequence numbers, and the very first bits of the payload for the PartitionId – a task that can be done without implementing a full UVLC parser.

If, after waiting the playout buffer filling, a packet loss is detected, the de-packetization process can only pass those partitions to the decoder that were received. It may also drop individual partitions if necessary information from other partitions was not received. For the test model, it is proposed that, if the A partition was lost, the B and C partitions are dropped, and some form of concealment (proposed: TCON) is employed to “guess” the lost motion vectors. If Partition A is available, but Partition B is lost, then Partition C may be used in conjunction with Partition A to decode the Inter part of the slice. Error concealment of some form MAY be used to conceal the missing Intra information. If partition C is lost, then the Intra information of partition B is used for reconstruction and the motion vectors of partition A are used for the concealment of the Inter MBs. Table 1 lists the possibilities again. “Optional” here means, that decoders are free to implement the optional concealment mechanisms, whereas the other concealment mechanisms are mandatory at least for the test model (but possibly also for the standard itself):

Table 1: Actions upon detection of a partition loss

	Available Partition
	Intentional Drop
	Concealment Method

	-xx
	B, C
	TCON (using motion vectors of the spatially above MB row for each lost MB)

	AB-
	none
	Conceal using MVs from Partition A, and texture from Partition C. Intra concealment optional

	A-C
	none
	Conceal using MVs and Intra info from Partition B. Inter texture concealment optional

	A--
	none
	Conceal using MVs from Partition A

	Whole Slice
	none
	TCON

Note that a very similar de-packetization/reconstruction process was already shown to produce good results in an H.26L TML1 environment [Q15J53]
.

Parameter Sets

In this framework, all information that was traditionally conveyed in sequences, group-of-picture, or picture headers is conveyed out of band. Encoder and decoder maintain a synchronized set of parameter sets, which contain all information associated with a picture and/or higher syntax layers. Synchronization of the encoder’s and decoder’s parameter sets is normally established by the means of control protocols as a side effect of the opening of a logical channel. In more sophisticated systems, dynamic management of the parameter sets is also feasible. While the use of parameter sets in the described fashion renders the packet stream not self contained, it yields several advantages:

· The results of the capability exchange can be used directly for establishing knowledge of the parameters thus making more transmissions (e.g. of picture headers) unnecessary

· There is some improvement in security – the coded bits are pretty much useless if you don’t have the parameters available, which allows for weaker protection of the media stream in a secure system

· Good compression is possible in case of frequently changing picture parameters (such as picture size) once the parameters are available at the decoder.

Note: in the following it is distinguished between parameters of four different syntax levels (not to be confused with the levels of the Version/Profile/Level system!). Making this distinction is helpful from a logic point-of-view and possibly also when defining a file format. Within this framework, however, each parameter set, as referenced by the slice header, uses one location which contains information of all four syntax levels. In other words, all storage spaces for parameter sets contain information of all the sequence, GOP, picture and slice layers.

Sequence Parameters

int MaxPicId
Maximum number for the PicId Calculation. Is typically smaller than or equal to the number of reference pictures.

float PixAspectRatio

Pixel geometry, calculated by SizeX / SizeY, 0.0 indicates “unspecified”

Group Of Picture Parameters

A Group Of Picture compromises a random access unit, normally starting with an Intra picture (what about SP pictures? Need to discuss!).

int DisplayWindowOffsetTop
The visible display window (may be smaller than the size in MBs of the coded picture

int DisplayWindowOffsetBottom

int DisplayWindowOffsetRight

int DisplayWindowOffsetLeft

int XsizeMB

Picture size, x dimension, in macroblocks

int YSizeMB

Picture Parameters

enum EntropyCoding

{UVLC, CABAC}

enum MotionResolution

{full, half, quarter, eigth}

Slice Parameters

enum PartitioningType

{Simple, DataPartitioning}

Transmission of Parameters sets

In the following a syntax and semantic information for setting parameter set information is defined. The syntax is closely related to SDP attributes, although this limits the flexibility when compared to ASN.1. The other standardized alternative, ASN.1, was not selected, because it is trivial to map SDP to ASN.1 syntax, but not vice versa. Binary or VLC coding of the parameters similar to traditional video codecs was not chosen because it doesn’t fit into the architecture of a real-world system – a SIP system stack is not designed to handle binary codes or VLCs.

Default Operation Points

A section like the following will have to be added to any version/profile/level combination. Each decoder knows (hard coded) the Default Operation Points of all these combinations it supports. This mechanism renders in many cases the transmission of full parameter sets unnecessary, and make their transmission in many other case very simple, short, and efficient.

The following example is meant for a very simple (likely mobile) device with a target bit rate of 64 Kbit/s or less.

MaxPicID

1
// PicId can toggle between 0 and 1, hence only one reference frame

PixAspectRatio

0.0
// unspecified

DisplayWindowOffsetTop

0
// use full window top

DisplayWindowOffsetBottom
0
// use full window

DisplayWindowOffsetRight
0

DisplayWindowOffsetLeft

0

XSizeMB

11
// 11 MBs, 176 pels, QCIF

YSizeMB

9
// 9 MBs, QCIF

EntropyCoding

UVLC

MotionResolution

quater

PartitioningType

DataPartitioning

SDP: What you must know

Note: This section can be safely skipped by those who have a basic understanding of SDP.

Changes of parameters relative to the default or to previous settings are performed out of band, typically through a control protocol. In this description the Session Description Protocol SDP is used. SDP is widely used in applications such as 3GPP phones (where SIP is based on SDP) or for many streaming applications based on RTSP. An H.245 representation of a similar mechanism could be specified in an almost mechanical fashion, without much thinking.

A SDP session description normally consists of many lines that define a session and the media used in the session. All these lines start with a letter, indicating the type of the SDP parameter to be set, an equal sign, and the parameter’s value. A simple example for a complete session description is depicted below and was taken from draft-ietf-mmusic-sdp-new-03.txt
.

 v=0

 o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4

 s=SDP Seminar

 i=A Seminar on the session description protocol

 u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps

 e=mjh@isi.edu (Mark Handley)

 c=IN IP4 224.2.17.12/127

 t=2873397496 2873404696

 a=recvonly

 m=audio 49170 RTP/AVP 0

 m=video 51372 RTP/AVP 31

 m=application 32416 udp wb

 a=orient:portrait

Most lines in a typical SDP session description are irrelevant to video coding. Hence, no syntactically complete session description is given later. In particular, only the a= attributes of the Media description are relevant in the given context, because all other parameters deal with specifics of the transport of the media stream, such as the name of the stream, the transport address, bandwidth information or an encryption key.

Attributes generally have one of the two following forms:

a=<AttributeName>

a=<AttributeName>:<AttributeValue>

AttributeName is an US-ASCII string, AttributeValue is an UTF-8 string. AttributeValue can, of course, consist of strings that contain a more complex semantic than just setting a string value to AttributeName.

Several attributes names are predefined, but implementers are free to reserve additional attribute names as MIME types with IANA. This is what we propose to do for H.26L.

Parameter updates using SDP

It is suggested that we use the following syntax for parameter updates (of course we would register with IANA H.264, or whatever the ITU recommendation number is, and not H.26L:

a=H26L:<AttributeValue>, whereby

<AttributeValue> ::= (<ParameterSetNumber>*) <ParameterName> <ParameterValue>

<ParameterSetNumber> ::= int

<ParameterName> ::= (MaxPicID | PixAspectRatio | DisplayWindowOffsetTop | DisplayWindowOffsetBottom | DisplayWindowOffsetRight | DisplayWindowOffsetLeft | XsizeMB | YSizeMB | EntropyCoding | MotionResolution | SliceType)

<ParameterValue> ::= string

Examples:

A QCIF sequence using UVLC, I and P pictures, 1/8th pel MV resolution and up to 5 reference frames

(Note: it is assumed that during capability exchange a version/profile/level was selected that has QCIF as its maximum picture size).

m=video 49170 RTP/AVP 105

a=H26L:(0) MaxPicID 5

a=H26L:(0) MotionResolution eigth

The first line announces a video data stream, to be send to port #49170 on the target system, using RTP with the audio-visual minimal control profile and the dynamic RTP payload type 105.

A CIF sequence using CABAC, I, P, B pictures, ¼ pel MV resolution, and 5 reference frames.

(Note: it is assumed that during capability exchange a version/profile/level was selected that has CIF as its maximum picture size).

m=video 49170 RTP/AVP 105

a=H26L: (0) MaxPicID 5

a=H26L: (0) EntropyCoding CABAC

Complex scenario: A Videoconferencing terminal that wants to change dynamically between QCIF, CIF, and 4CIF (for document camera), I, P pictures, ¼ pel MV resolution, CABAC, 1/8th pel MV resolution for QCIF only, 10 reference frames for QCIF, 5 reference frames for CIF, and 1 reference frame for 4CIF

Note: it is assumed that a version/profile/level combination was selected that has CIF as its default maximum picture size (in the Default Operation Point definition), but allows 4CIF with limited frame rate.

m=video 49170 RTP/AVP 105

a=H26L:(0 1 2) EntropyCoding CABAC

a=H26L:(1 2) MotionResolution eigth

a=H26L:(0) XsizeMB 11

a=H26L:(0) YSizeMB 9

a=H26L:(0) MaxPicID 10

a=H26L:(0) MotionResolution quater

a=H26L:(1) MaxPicID 5

a=H26L:(2) XsizeMB 44

a=H26L:(2) YSizeMB 36

a=H26L:(2) MaxPicID 1

Reference Picture Selection Feedback (Back channel msg., Annex N/H.263)

In IP/UDP/RTP environments the implementation of Annex N type feedback messages (or MB-based ARQ messages) is performed through RTCP receiver reports, and there is no need to worry about this functionality in the current stage of standardization.
Transmission within H.324

It is assumed that the discussed IP/UDP/RTP mechanisms above work equally well for H.223 transports used in H.324 systems, with only small changes to add protocol elements that are supported in RTP but not in H.223. The following sections describe briefly such a design.

The main differences between RTP and H.223 are as follows:

1. H.223 is frequently used in highly bit error prone environments, and is designed to allow bit errors in its payload as a normal condition of operation (Note that UDP/RTP also allows such conditions, but that they are extremely unlikely in real world systems and most systems simply do not tolerate bit errors but rely on the optional UDP checksum).

2. H.223 AL3 has a limited re-transmission mechanism for lost/damaged SDUs.

3. H.223 typically runs over channels with much smaller MTU size: 100 bytes or so compared to 1.5 Kbytes. H.223 has considerable lower overhead. Real world systems will likely use a maximum of 256 kbit/s or so for video. On RTP, the maximum bandwidth is much higher.

4. H.223 works normally in a constant (or at least not highly fluctuating) bandwidth environment – it has not to be congestion control friendly like RTP applications have to be.

5. H.223 does not carry many of the RTP header fields. In particular, there is no such thing as a RTP timestamp or a marker bit.

The issues are addressed by the following design choices:

1. This test model does not address bit errors in the H.223 SDUs, and follows in that the tradition of TMN. Instead, it relies on dropping erroneous SDUs, as identified by the AL3 checksum, and concealing them. Note that a real-world system may perform different actions such as to repair the bit stream or to attempt decoding the SDU until the decoder senses a syntax/semantic violation.

2. The re-transmission capability of AL3 is transparent for the video codec and only observed through a slightly longer latency and an improved service quality in terms of bit errors and SDU losses.

3. Luckily, the combination of slices and data partitioning allows to split coded video pictures into very small units so that the small MTU sizes of H.223 do not pose a problem.

4. The constant bit rate environment has implications to the rate control but not to the packetization scheme.

5. The absence of a few fields of the RTP header in H.223 presents a real problem. In particular, the RTP solution was able to avoid a Temporal Reference field and use the RTP timestamp instead (which is there in any case) – this is not possible on H.223 as there is no such protocol field in H.223 and there is no picture header in H.26L.

Setup and Transmission of Parameter Sets for H.324

H.324 terminals offering video communication by supporting H.26L have two setup procedures. The capability exchange based on H.245 messages allows all video decoders to signal the maximum bit rate, which can be decoded in the H.245 maxBitRate parameter. Which picture formats, minimum number of skipped pictures and algorithm options can be accepted by the receiver is also determined during the capability exchange using H.245. All this information is established by the version/profile/level mechanism. As soon as a common knowledge of a version/profile/level is established, the Default Operation Point is also defined and video transmission can start using those parameters if desired (a fast start procedure).

In addition a procedure has to be introduced to update parameter sets established through the Default Operation point mechanism. We identified two different ways, both of which seem to be suitable for certain applications. Maybe the best way is to follow both paths, which would give us essentially the same flexibility as we have it with SDP messages in SIP systems.

· One way would be through a set of additional command messages, see H.245 Annex B.13.5 for examples. In the current version of H.245, commands are, for example, used to signal requests such as freeze picture request, or Annex N back channel messages. A number of ASN.1 codepoints, similar to those in the SDP definition section above, could be used to signal any form of parameter update.

· A second way would be to simply add the necessary codepoints to the setup message for opening a logical H.26L channel. This would imply that one has to close a logical channel and re-open it when changing parameters such as the picture size.

Packetization for H.324

All H.324 terminals offering video communication shall support the required video codecs in segmentable logical channels using H.223 adaptation layer AL3, and using a control field of at least one octet. Support of retransmission is required in encoders, with a minimum AL3 SendBufferSize of 1024 octets.

The H.223 AL3 should be used to transport each partition separately. AL3 sequence numbering and error detection shall be used for the transmission of partitions. The AL3 header information is set as follows:

Sequence No
Increased by one for each sent packet.

The only significant difference between H.223 and RTP in terms of the packetization is the lack of an RTP timestamp in H.223, which is used to associate slices with pictures, and carries the only timing information in the system. The RTP timestamp is 32 bits long and, in RTP systems, comes “free” (no bit rate overhead), because it is a mandatory part of the RTP header and heavily used in RTP’s internal protocol mechanisms. Simply introducing a 4 byte timestamp for each H.223 SDU is difficult since it introduces significant overhead that cannot easily be justified.

As an alternative we propose the use of a circular 8 bit counter (the good old TR), which is to be placed in the first byte of each H.223 SDU. This TR is used for two purposes:

a) establishing a association with the current SDU (containing a partition or a whole slice) with a picture and

b) carrying timing information for the picture.

The TR mechanism lacks the beauty of the RTP timestamp for such applications which do not transmit video in a fixed frame rate (e.g. video games, or other computer generated video). It can also not be abused as a field indication in interlaced video. However, both advantages of a full timestamp cannot justify the 24 additional bits per H.223 SDU (or 3% overhead assuming 100 bytes MTU size).

The 8 bit TR immediately solves the problem of associating slices to pictures, but presents a new set of problems when discussing timing issues:

a) There is a need for a TR interval definition (picture clock frequency in H.263). This has to be signaled through H.245, probably as an extension of the setup message and the command message as discussed above, with NTSC (or PAL?) default, or the default is version/profile/level dependent.

b) The mapping of TRs to RTP timestamps is simple, but the other way round is difficult (likely a best match algorithm has to be used – but what happens if a video game on a very fast machine suddenly renders 100 fps due to little activity, this is sent out by RTP, but the mobile terminal is set up to accept a clock rate of 25 Hz?). This needs to be thought through.

The size of each AL-SDU, and their alignment with the video packet, is determined by video encoders, within the limit of the maximum AL3 SDU size the receiver indicates it is capable of. Video packets may span more than one AL-SDU but this should be avoided. H.26L encoders shall align slice/partition starts with the start of an AL-SDU.

If video communication is supported only in one direction (transmit or receive), the H.223 adaptation layer AL3 protocol for the reverse direction shall also be supported, even if no video information will be sent on the reverse channel. Since the AL3 protocol requires a reverse channel for operation, logical channels using AL3 shall be opened using the H.245 procedures for opening associated logical channels in each direction of transmission (bi-directional channels). The use of multiple logical channels for a single video stream (possibly with different QoS parameters) is for further study.

While H.223 AL3 allows for the retransmission of video information with detected errors, the receiving terminal may decide not to request a retransmission, based on factors including but not limited to: the measured network delay, the error rate, whether the terminal is part of a multipoint conference, whether there is interworking with a H.320 terminal, and the effectiveness of its error concealment techniques.

When a H.26L codec receives an AL-DRTX indication from H.223 AL3, indicating that the local AL3 layer was unable to satisfy a retransmission request, appropriate actions like intra refreshes should be carried out.

H.26L reference picture selection mode support (back channel messages)

Need further study.

De-Packetization Process for H.324

The de-packetization operation is similar to the one discussed above for RTP. The only difference is that it is possible that a partition is split over more than one H.223 AL3 SDUs, in which case they have to be concatenated first – after deleting the first byte of the payload which contains the TR.

Note: this has to be though through again in detail. For example: how does a de-packetizer/decoder know, whether a partition was split or not? Difficult.

� However, systems may elect to allow the decoding of packets that failed the UDP checksum tests and in such cases the decoder will also receive a packet integrity signal by the protocol stack that indicates the passed/failed UDP checksum test. (Note that this case needs significant further study, because a failed UDP test may imply a corrupted RTP header with all the critical information in it)

� SDP currently undergoes a revision. The discussed mechanisms are working in both the old and the new SDP version. The reason for citing the new draft instead of the old RFC is simply that the new draft is much more readable for people not familiar with SDP.

�PAGE \# "'Seite: '#'�'" �� Is it really necessary? Or does the sequence numbering given by the lower layer provide us sufficient information? No, does not work probably!

�PAGE \# "'Seite: '#'�'" �� Refer to document!

File:vceg-n52.doc
Page: 14
Date Printed: 9/20/2001

_1062372479.vsd

