	ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)

14th Meeting: Santa Barbara, CA, USA, 24-27 Sep., 2001
	Document VCEG-N46

Filename: VCEG-N46.doc

Generated: 18 September ’01

	Question:
	Q.6/SG16 (VCEG)

	Source:
	Karsten Sühring, Detlev Marpe, and Thomas Wiegand
Heinrich Hertz Institute
Einsteinufer 37, D-10587 Berlin
Germany
	
Tel:
Fax:
Email:
	
+49 30 31 002 617
+49 30 392 72 00
suehring@hhi.de
marpe@hhi.de
wiegand@hhi.de

	Title:
	Unified Coding Style for H.26L Reference Software

	Purpose:
	Proposal

Introduction

The TML reference software is being written by a large team of researchers and developers working in different companies and institutes around the word. These individuals are using their own coding style or the coding style of their companies, which include e.g. different choices of indentation, placing of braces, the size of TAB characters or the style of comments. Putting all these different styles together into one project will lead to hardly readable and confusing software that is hard to maintain. The TML 8.4 software already contains a lot of different styles. For example when reading some sections of the code one has to play around with tabulator sizes to find the correct settings for the intended indentation.

To keep the software more clear and understandable, there is a need for a common coding style. This style should be a small set of rules that has to be followed by all proponents. In this document, we propose a minimum set of such rules. If the group agrees on our proposal, we will provide a TML software release based on TML 8.4, which includes all necessary changes reflecting these rules. We recommend to adopt the strict policy that all future implementations and changes of the software will only be accepted if they comply with the common rules. In addition, our document provides some recommendations and technical hints for generating and maintaining better written code.

 Proposed Rules and Recommendations for a Unified Coding Style

In this section a set of rules and recommendations will be proposed. Our proposal is based on a synthesis of the different styles found in the actual software.

Common Rules

Rule 1: Indentation

All code blocks that are included into braces have to by indented by two (2) space characters.

Example:

	void function ()
{
 <code here>
}

Rule 2: Braces

The opening brace is placed on a new line on the same indentation level as the defining keyword (e.g. void, if, for, while, etc.). The included code block starts at the following line and is intended (see Rule 1). The closing brace is placed on the same indentation level as the opening brace.

Example:

	void function ()
{
 if (<expression>)
 {
 <code here>
 }
}

Rule 3: TAB characters

Due to the different possible size settings of the tabulator (typically between 2 and 6) in source code editors no tabulator characters are used. All indentation is achieved using space characters.

Rule 4: Comments I (Documentation System)

A common style of comments can be achieved using a documentation system. These systems provide a special set of documentation commands that are used to extract the information for the external documentation. Therefore a unified documentation structure is enforced by these comments. As an additional feature we will get a complete project documentation in a clearly arranged format.

 We propose the use of Doxygen (see http://www.doxgen.org). A further description of the advantages of a documentation system will be given in a separate document (see VCEG-N47).

Examples:

	/*!

 * \file cabac.c
 *
 * \brief
 * CABAC entropy coding routines
 *
 * \author
 * Main contributors (see contributors.h for copyright, address and
 * affiliation details)
 * - Detlev Marpe marpe@hhi.de

 */

/*!

 **

 * \brief

 * Allocation of contexts models for the motion info

 * used for arithmetic encoding

 **

 */

MotionInfoContexts* create_contexts_MotionInfo(void)

{

 […]

For an example of the generated documentation (whole TML software) see: http://bs.hhi.de/~suehring/tml/doc
Rule 5: Comments II (File and Function Heads)

A comment header will be placed at the beginning of each file and in front of each function definition. For a template of these headers see VCEG-N47(and the example in Rule 4).

Rule 6: Comments III (C-style)

For compatibility with older (especially UNIX) C compilers only old C style comments will be used:

	/* correct old C-style */

// not allowed C++ comment

Rule 7: Header multiple include safety

All header files will include a mechanism to prevent multiple inclusion by using a define. The name of the defines is created using the name of the header file in capital letters with a preceding and a trailing underscore. All non-letter characters in the file name are replaced by underscores.

For a header file named myheader.h the structure would be the following:

	/*! <file header according to rule 5> */

#ifndef _MYHEADER_H_
#define _MYHEADER_H_

<content of header file>

#endif

Rule 8: Unused code

Unused code will be completely removed from the source code. Commenting out is not allowed.

Some Recommendations for a Better Coding Style

Recommendation 1: Line length

Lines should not exceed 80 characters (including spaces).

Recommendation 2: Variable declaration

Variables that are not declared inside of functions (global or file local) should be declared at the beginning of the corresponding file preceding all function definitions.

Recommendation 3: Switch

The code following a case label should always be terminated with a break statement. Also every switch statement should contain a default branch that handles unexpected cases.

Technical hints

MS Visual Studio

The following settings for MS Visual Studio will assist you using the formatting rules. This menu can be found in
Tools->Options.

[image: image1.png]oorons 21X

B Tabs | Debug | Compaibity | Buid | Diectores | | (1[5

Eile ype:

Tab size: Inset spaces

Indent size: © Kesptabs
-Auto indent Smart indent options

© None I Indent gpen brace:

© Default I~ Indent closing brace

& Smat Previous nes used for context

Cance

After applying these setting you can use
Edit->Advanced->Untabify Selection
to remove TAB characters and
Edit->Advanced->Format Selection
to format the selected section.

Note: There is a severe bug in MS Visual Studio that leads to a wrong indentation if nested ‘for’-loops are used without braces.

Diff / Windiff

If you want to compare modified files against the reformatted files you can set options for diff and windiff to ignore space/TAB changes. In windiff (Visual Studio Tools) this option is called
Options->Ignore Blanks.
For the command line (Unix) diff the appropriate option is ‘-w’.

File:VCEG-N46.doc
Page: 3
Date Printed: 18.09.2001

