ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)

14th Meeting: Santa Barbara, CA, USA, 24-27 Sep., 2001
Document VCEG-N34

Filename: VCEG-N34.doc

Generated: 10 September ’01

Question:
Q.6/SG16 (VCEG)

Source:
Norbert Oertel

Gero Bäse

Jürgen Pandel

Siemens AG

CT IC 2

Otto Hahn Ring 6

81371 München

Germany

Tel: +49 89 636 42703

Norbert.Oertel@mchp.siemens.de
Tel: +49 89 636 53193

Gero.Baese@mchp.siemens.de
Tel: +49 89 636 42071

Juergen.Pandel@mchp.siemens.de

Title:
Ordered coefficient coding

Purpose:
Proposal

1. Introduction

In this contribution we propose a simple technique for achieving coding gain up to 3% bitrate savings for INTRA coding. This gain is spread over all bitrates. Only negligible additional complexity is needed.

Transformation coefficients are ordered by size. Thereby the range of needed code words is decreased. Additionally, effective context models within the CABAC frame work reduce the bitrate even more. Ordering data will substitute RUN information.

First we will present the technical details of the proposed algorithm. Next it is incorporated into the existing software and used within the CABAC frame work. The last section will contain test results and conclusions.

For any intellectual properties of Siemens related to this contribution we will follow the ITU-T patent policy sub clause 2.2.

2. Coefficient ordering

Transformed coefficients are in order according to their magnitude for the majority of coded blocks. Unfortunately there are some outlier which prohibit direct exploitation of this knowledge. At the moment coefficients are coded independently of each other.

To further improve coding of coefficients we propose to sort the transformed, quantized and scanned coefficients according to their magnitude. Then the coding alphabet for LEVEL can be restricted based on the previously coded LEVEL.

Computer science provides very efficient sorting algorithms with low complexity demands. For almost ordered values the Insertion-Sort-method has proven to be optimal (linear runtime complexity). Furthermore it is a stable sorting algorithm thus keeping the relative order of levels with equal magnitude intact.
Any arbitrary sort algorithm can be used provided that it is a stable one.

Every block of coefficients coeff[k], 0<=k<16, is indirectly sorted with insertion sort using an index field index[k], 0<=k<16 which has to be initialized with index[k]=k for every 0<=k<16. After sorting the index field holds the positions of all coefficients in decreasing order of magnitude and thus abs(coeff[index[k]])>=abs(coeff[index[k+1]]) is true for every 0<=k<15.

for (i=0; i<16; i++) index[i] = i;

for (i=1; i<16; i++) {

v=index[i]; j=i;

while (j>0 && abs(coeff[index[j-1]]) < abs(coeff[v])) {

index[j] = index[j-1]; j=j-1;

}

index[j] = v;

}

In general, only “compare” operations were performed and index[k] now contains the ordering information. Sorting the coefficients itself is not necessary.

3. Ordering information

To further improve the coding efficiency ordering information and RUN information are combined.

Let n be the number of nonzero coefficients. The first n entries of the index field which hold the positions of the nonzero coefficients are processed using the following algorithm producing a final vector result[k], 0<=k<n, with positional information.

for (i=0; i<n; i++) marker[i] = 0;

for (i=0; i<n; i++) {

v=index[i];

cnt=0;

for (j=0; j<v; j++)

if (!marker[j]) cnt+=1;

marker[v]=1;

result[i]=cnt;

}

4. Using CABAC

Coefficients in order are an ideal case for context based coding. Different contexts are being used for the ordering information and LEVEL and for the sign of the coefficients.

4.1. Data preparation

The CABAC algorithm is processing data bit by bit. To get the best possible representation of the coefficients and ordering information for CABAC a predictor is used and finally an unary representation.

Coefficients are considered to be sorted. Every coefficient is coded depending on the previous one. More precisely, the actual LEVEL is considered in dependence to the LEVEL of the previous coefficient. This is done by setting the predictor to the LEVEL of the preceding coefficient.
An exception is the very first coefficient of a block. Here always zero is used as prediction value. I.e. the very first coefficient is coded as it is. All following coefficients are coded as difference.

Only LEVEL unequal zero are considered. To symbolize EOB a single zero LEVEL is added at the end. This is not necessary if the LEVEL for all coefficients of a block contains a value unequal zero.

For ordering information the initial predictor is zero. Every time the value of LEVEL changes the predictor for the ordering information is set to zero again. Otherwise the preceding value of ordering information is used.

Trailing zeros for ordering information are discarded. Due to the fact that RUN’s are included in the ordering information only the positions for coefficients with LEVEL unequal zero are needed for decoding.

prev_level = 2*abs(coeff[index[0]]);

for (i=0; i<n; i++) {

level = abs(coeff[index[i]]);

if (level<prev_level)

prev_pos=0;

level_out[i] = prev_level - level;

sign_out[i] = coeff[index[i]]<0 ? 1 : 0;

pos_out[i] = result[i]-prev_pos;

prev_level = level;

prev_pos = result[i];

}

The final unary representation allows for a further bit saving. The value of the symbol itself (for the first on) or the difference of the values (for all other symbols) contains the information how many bits are needed maximally for the following symbol. Therefore the coding alphabet is restricted.

4. 2. Contexts

Different contexts are being used for LEVEL, sign and ordering information.

The first bits of the unary representation are considered separately. All other bits are considered combined. The sign is considered separately as well. This corresponds to the typical way of working of the CABAC algorithm.

The supplementary, new contexts are being build upon conditional probabilities. Very efficient contexts are possible because of the sorted nature of the data. For the n’th LEVEL only values are possible with a less or equal value compared to the (n-1)’th LEVEL.

[image: image2.wmf]k=1

k=2

k=3

k=4

LevelContextSet(k=1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

1. Bit

2. Bit

3. - n. Bit

Sign

Example: Contexts for coding of LEVEL and SIGN

The context to be used is determined by the value of the former LEVEL. For the LEVEL of the very first coefficient a general context is used.

Here the preceding LEVEL is symbolized by k. The context itself is determined by the counter p. The first two bits of the unary representation of the LEVEL value are treated with a special context. For the following bits a shared context is used.

Depending on k only subsets of contexts are applied. The simulation results are archived with special contexts up to k=5.

[image: image3.wmf]PosContextSet(k=0)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

k=0

k=1

k=2

1. Bit

2. Bit

3. Bit

4. - n. Bit

Example: Contexts for coding of Positional Information

k=15

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

...

For ordering information the first 3 bits are treated with a special context. For the following bits a shared context is used. Here k symbolizes the preceding ordering information and p is the counter for the occurrence of a zero or one bit.

The simulation results are archived with special contexts up to k=6.

5. Test Results

All the tests are being performed according to the latest version of the H.26L common test conditions (VCEG-M33, VCEG-M75). Software version 8.0 was used as basis for our implementation. In VCEG-M34.xls all results are summarized.

[image: image1.wmf]Container

1,49%

Foreman

2,42%

News

1,01%

Paris

1,43%

Silent

1,83%

Tempete

1,55%

The table shows the average gain for the first INTRA picture of every sequence. Chrominance data are not considered, only MB_type_INTRA_old are taken into account.

Considering reasonable PSNR values the average gain is certainly higher.

6. Conclusion

We propose a method to gain up to 3 % bitrate savings with very minor impact on overall complexity. It is useful for low and high bitrate applications.

Coefficients are ordered and ordering information is transmitted as side information. The proposed method increases the coding efficiency remarkable because of a restricted code word alphabet. Only MB_type_INTRA_old was taken into account. Therefore a further improvement is certain by applying the proposed algorithm to chrominance data and the other possible macroblock types.

Until now only INTRA coding is considered. We are working on utilizing the proposed algorithm for INTER coding as well. First results are promising.

7. References

[1] G. Bjontegaard, Th. Wiegand; “H.26L Test Model Long Term Number 8 (TML-8) draft0”, ITU-T Doc., Jun. 2001.
� EINBETTEN Visio.Drawing.6 ���

� EINBETTEN Visio.Drawing.6 ���

File:VCEG-N34
Page: 5
Date Printed: 20.09.01

[image: image4.wmf]k=1

k=2

k=3

k=4

LevelContextSet(k=1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

1. Bit

2. Bit

3. - n. Bit

Sign

Example: Contexts for coding of LEVEL and SIGN

[image: image5.wmf]PosContextSet(k=0)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

k=0

k=1

k=2

1. Bit

2. Bit

3. Bit

4. - n. Bit

Example: Contexts for coding of Positional Information

k=15

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

p(0);p(1)

...

_1062508815.vsd

_1062512236.xls
Tabelle1

		

		Container

		QP		Bits for OCC-CABAC		Bits for CABAC		PSNR		Gain in %

		16		26048		26416		37.15		1.39

		20		18016		18160		34.39		0.79

		24		11960		12184		31.51		1.84

		28		7704		7856		28.73		1.93		1.49%

		Foreman

		QP		Bits for OCC-CABAC		Bits for CABAC		PSNR		Gain in %

		16		22072		22816		37.24		3.26

		20		14808		15240		34.58		2.83

		24		9400		9632		31.81		2.41

		28		6024		6096		29.13		1.18		2.42%

		News

		QP		Bits for OCC-CABAC		Bits for CABAC		PSNR		Gain in %

		16		29464		30024		37.6		1.87

		20		21128		21336		34.5		0.97

		24		14552		14680		31.5		0.87

		28		9480		9512		28.4		0.34		1.01%

		Paris

		QP		Bits for OCC-CABAC		Bits for CABAC		PSNR		Gain in %

		16		144512		147432		36.64		1.98

		20		101880		103544		33.6		1.61

		24		69480		70392		30.64		1.30

		28		45608		45984		27.54		0.82		1.43%

		Silent

		QP		Bits for OCC-CABAC		Bits for CABAC		PSNR		Gain in %

		16		27184		27896		36.22		2.55

		20		17400		17744		33.63		1.94

		24		10648		10888		31.3		2.20

		28		6224		6264		28.53		0.64		1.83%

		Tempete

		QP		Bits for OCC-CABAC		Bits for CABAC		PSNR		Gain in %

		16		162984		166776		35.77		2.27

		20		113120		115248		32.62		1.85

		24		72720		73680		29.53		1.30

		28		43896		44248		26.7		0.80		1.55%

Tabelle2

		

		Container		1.49%

		Foreman		2.42%

		News		1.01%

		Paris		1.43%

		Silent		1.83%

		Tempete		1.55%

Tabelle3

		

_1062508677.vsd

