	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

9th Meeting: San Diego, CA, USA 02-05 Sept, 2003
	Document: JVT-I047

Filename: JVT-I047.doc

	Title:
	Draft Prof. Ext Amendment

	Status:
	Approved Output Document from JVT

	Purpose:
	Draft Text

	Author(s) or
Contact(s):
	Tom McMahon
Dolby Laboratories, Inc.
3601 W. Alameda Ave.
Burbank, CA 91505-5300

Thomas Wiegand
Heinrich Hertz Institute (FhG),
Einsteinufer 37, D-10587 Berlin,
Germany

Gary Sullivan
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA
	
Tel:
Email:

Tel:
Fax:
Email:

Tel:
Fax:
Email:
	
+1 (818) 823-2855
tom@dolby.com

+49 - 30 - 31002 617
+49 - 30 - 392 72 00
wiegand@hhi.de

+1 (425) 703-5308
+1 (425) 706-7329
garysull@microsoft.com

	Source:
	JVT

1 Introduction

This document is intended to serve as the basis for a new Professional Extensions Amendment to ITU-T Rec. H.264 & ISO/IEC 14496-10.

The Recommendation | International Standard has been examined for areas where extended sample bit depth or chroma format support may require new or substitute text (documented in the form of an Annex) in order to implement an extended decoder. The goal has been to keep changes to the present standard to a minimum.

Additionally, a new SEI message has been added to provide a characterization of film grain for use in high-quality encoding of film and video.

Clause 2 of this amendment specifies changes necessary to clause 5 of ITU-T Rec. H.264 & ISO/IEC 14496-10.

Clause 3 of this amendment specifies changes necessary to clause 6 of ITU-T Rec. H.264 & ISO/IEC 14496-10.

Clause 4 of this amendment specifies changes necessary to clause 7 of ITU-T Rec. H.264 & ISO/IEC 14496-10.

Clause 5 of this amendment specifies changes necessary to clause 8 of ITU-T Rec. H.264 & ISO/IEC 14496-10.

Clause 6 of this amendment specifies changes necessary to clause 9 of ITU-T Rec. H.264 & ISO/IEC 14496-10.

Clause 7 of this amendment identifies changes necessary to Annex A of ITU-T Rec. H.264 & ISO/IEC 14496-10.

Clause 8 of this amendment identifies changes necessary to Annex D of ITU-T Rec. H.264 & ISO/IEC 14496-10.

Clause 9 of this amendment specifies changes necessary to Annex E of ITU-T Rec. H.264 & ISO/IEC 14496-10.

2 Changes to clause 5 "Conventions"
Subclause 5.7 "Mathematical Functions"

Replace Equation 5-3 with

"Clip1Y(x) = Clip3(0, (1 << BitDepthY) – 1 , x)

(5-3Y)

Clip1C(x) = Clip3(0, (1 << BitDepthC) – 1 , x)

(5-3C)"

3 Changes to clause 6 "Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships"
Subclause 6.2 "Source, decoded, and output picture formats"

Substitute the following for the entire content of subclause 6.2:

"

This subclause specifies the relationship between source and decoded frames and fields that is given via the bitstream.

The video source that is represented by the bitstream is a sequence of either or both frames or fields (called collectively pictures) in decoding order.

The source and decoded pictures (frames or fields) are each comprised of one or more sample arrays:

· Luma only (monochrome)

· Luma and two Chroma (YCbCr)

· RGB, XYZ, etc.

[Ed. Specifics of RGB and XYZ handling are TBD – see JVT-I048.]

The variable ChromaFormatFactor is specified in Table 6-1, depending on the chroma format sampling structure. If not otherwise specified the value of ChromaFormatFactor shall be inferred equal to 1.5, indicating 4:2:0 sampling.

Table 6‑1 – ChromaFormatFactor values

	chroma_format_idc
	Chroma
Format
	ChromaFormatFactor
	Chroma Format Component Order List

	0
	monochrome
	1
	Luma only

	1
	4:2:0
	1.5
	Luma, Cb, Cr

	2
	4:2:2
	2
	Luma, Cb, Cr

	3
	4:4:4
	3
	Luma-Equiv (Y or G), Cb Equiv (Z or B),
Cr Equiv (X or R)

	4-7
	Reserved
	Reserved
	

In monochrome sampling there is only one sample array, which may nominally be considered a luma array.

In 4:2:0 sampling, each of the two chroma arrays has half the height and half the width of the luma array.

In 4:2:2 sampling, each of the two chroma arrays has the same height and half the width of the luma array.

In 4:4:4 sampling, each of the two chroma arrays has the same height and width as the luma array.

In 4:4:4 RGB or XYZ sampling, the G or Y array shall be considered the luma array and the R, B, X or Z arrays shall be considered the chroma arrays..

The width and height of the luma sample arrays are each a multiple of 16. In bitstreams using 4:2:0 chroma sampling, the width and height of chroma sample arrays are each an integer multiple of 8. In bitstreams using 4:2:2 sampling, the width of the chroma sample arrays is an integer multiple of 8 and the height is an integer multiple of 16. The height of a luma array that is coded as two separate fields or in macroblock-adaptive frame-field coding (see below) is an integer multiple of 32 samples. In bitstreams using 4:2:0 chroma sampling, the height of each chroma array that is coded as two separate fields or in macroblock-adaptive frame-field coding (see below) is an integer multiple of 16 samples. The width or height of pictures output from the decoding process need not be an integer multiple of 16 and can be specified using a cropping rectangle.

The width of fields coded referring to a specific sequence parameter set is the same as that of frames coded referring to the same sequence parameter set (see below). The height of fields coded referring to a specific sequence parameter set is half that of frames coded referring to the same sequence parameter set (see below).

In bitstreams of chroma_format_idc value equal to one, the nominal vertical and horizontal relative locations of luma and chroma samples in frames are shown in Figure 6‑1. Alternative chroma sample relative locations may be indicated in video usability information (see Annex E).

The number of bits necessary for the representation of each of the samples in the luma and chroma arrays in a video sequence is in the range of 8 to 12, and the number of bits used in the luma array may differ from the number of bits used in the chroma arrays.

[image: image1.wmf]
Figure 6‑1 – Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame

A frame consists of two fields as described below. A coded picture may represent a coded frame or an individual coded field. A coded video sequence conforming to this Recommendation | International Standard may contain arbitrary combinations of coded frames and coded fields. The decoding process is also specified in a manner that allows smaller regions of a coded frame to be coded either as a frame or field region, by use of macroblock-adaptive frame-field coding.

Source and decoded fields are one of two types: top field or bottom field. When two fields are output at the same time, or are combined to be used as a reference frame (see below), the two fields (which shall be of opposite parity) are interleaved. The first (i.e., top), third, fifth, etc. rows of a decoded frame are the top field rows. The second, fourth, sixth, etc. rows of a decoded frame are the bottom field rows. A top field consists of only the top field rows of a decoded frame. When the top field or bottom field of a decoded frame is used as a reference field (see below) only the even rows (for a top field) or the odd rows (for a bottom field) of the decoded frame are used.

In bitstreams of chroma_format_idc value equal to one, the nominal vertical and horizontal relative locations of luma and chroma samples in top and bottom fields are shown in Figure 6‑2. The nominal vertical sampling relative locations of the chroma samples in a top field are specified as shifted up by one-quarter luma sample height relative to the field-sampling grid. The vertical sampling locations of the chroma samples in a bottom field are specified as shifted down by one-quarter luma sample height relative to the field-sampling grid. Alternative chroma sample relative locations may be indicated in the video usability information (see Annex E).

NOTE – The shifting of the chroma samples is in order for these samples to align vertically to the usual location relative to the full-frame sampling grid as shown in Figure 6‑1.

[image: image2.wmf]
Figure 6‑2 – Nominal vertical and horizontal sampling locations of 4:2:0 samples in top and bottom fields.

In bitstreams of chroma_format_idc value equal to 2, the luma and chroma samples are co-sited and the nominal locations in a frame and in fields are as shown in Figures 6-2a and 6-2b respectively.

[image: image3.wmf]
Figure 6‑2a – Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a frame

[image: image4.wmf]
Figure 6‑2b – Nominal vertical and horizontal sampling locations of 4:2:2 samples top and bottom fields.

[Ed. Note: Avoid renumbering existing figures]

In bitstreams of chroma_format_idc value equal to 3, all array samples are co-sited for all cases of frames and fields. [Ed. Note: Add a figure.]

[image: image5.wmf]
Figure 6‑2c – Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a frame

[image: image6.wmf]
Figure 6‑2d – Nominal vertical and horizontal sampling locations of 4:4:4 samples top and bottom fields
[Ed. Necessary? Will MBAFF or coded fields be supported for 4:4:4?]

"

4 Changes to clause 7 "Syntax and semantics"

Changes to subclause 7.3.2.1 "Sequence parameter set RBSP syntax"

Conditionally based on profile_idc equal to Professional profile [Ed: TBD], add fixed length syntax elements in the sequence parameter set for bit_depth_luma_idc, bit_depth_chroma_idc and chroma_format_idc, following level_idc.

[Ed. Fixed length syntax elements early in the sequence parameter set, prior to any variable length coded syntax elements, allows easy detection of supported formats. bit_depth_idc and chroma_format_idc each require 3 bits minimum. However, allocating 4 bits each, thereby adding one total byte, may provide benefits.]

Add "constraint_set3_flag" to Sequence Parameter Set, using a bit from reserved_zero_5bits.

constraint_set3_flag equal to 1 indicates that the bitstream obeys all constraints specified in subclause <insert new Profile [Ed: TBD] definition subclause reference>. constraint_set3_flag equal to 0 indicates that the bitstream may or may not obey all constraints specified in subclause <insert new Profile [Ed: TBD] definition subclause reference>.

[Ed: Need to examine the need and use of these constraint bits for PExt backward compatibility.]

	seq_parameter_set_rbsp() {
	C
	Descriptor

	
profile_idc
	0
	u(8)

	
constraint_set0_flag
	0
	u(1)

	
constraint_set1_flag
	0
	u(1)

	
constraint_set2_flag
	0
	u(1)

	
if (profile_idc != ***) {
	
	

	

reserved_zero_5bits /* equal to 0 */
	0
	u(5)

	
} else {
	
	

	

constraint_set3_flag
	0
	u(1)

	

reserved_zero_4bits /* equal to 0 */
	0
	u(4)

	
}
	
	

	
level_idc
	0
	u(8)

	
seq_parameter_set_id
	0
	ue(v)

	
if(profile_idc == ***) {
	
	

	

chroma_format_idc
	0
	u(3)

	

bit_depth_luma_idc
	0
	u(3)

	

bit_depth_chroma_idc
	0
	u(2)

	
}
	
	

	
log2_max_frame_num_minus4
	0
	ue(v)

	
pic_order_cnt_type
	0
	ue(v)

	
if(pic_order_cnt_type = = 0)
	
	

	

log2_max_pic_order_cnt_lsb_minus4
	0
	ue(v)

	
else if(pic_order_cnt_type = = 1) {
	
	

	

delta_pic_order_always_zero_flag
	0
	u(1)

	

offset_for_non_ref_pic
	0
	se(v)

	

offset_for_top_to_bottom_field
	0
	se(v)

	

num_ref_frames_in_pic_order_cnt_cycle
	0
	ue(v)

	

for(i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++)
	
	

	

offset_for_ref_frame[i]
	0
	se(v)

	
}
	
	

	
num_ref_frames
	0
	ue(v)

	
gaps_in_frame_num_value_allowed_flag
	0
	u(1)

	
pic_width_in_mbs_minus1
	0
	ue(v)

	
pic_height_in_map_units_minus1
	0
	ue(v)

	
frame_mbs_only_flag
	0
	u(1)

	
if(!frame_mbs_only_flag)
	
	

	

mb_adaptive_frame_field_flag
	0
	u(1)

	
direct_8x8_inference_flag
	0
	u(1)

	
frame_cropping_flag
	0
	u(1)

	
if(frame_cropping_flag) {
	
	

	

frame_crop_left_offset
	0
	ue(v)

	

frame_crop_right_offset
	0
	ue(v)

	

frame_crop_top_offset
	0
	ue(v)

	

frame_crop_bottom_offset
	0
	ue(v)

	
}
	
	

	
vui_parameters_present_flag
	0
	u(1)

	
if(vui_parameters_present_flag)
	
	

	

vui_parameters()
	0
	

	
rbsp_trailing_bits()
	0
	

	}
	
	

Changes to subclause 7.3.2.2 "Picture parameter set RBSP syntax"

Define two new parameters to replace chroma_qp_index_offset when the new profile is indicated, enabling separate control of QP for each of the two chroma components, as follows.

Replace the line of the Picture Parameter Set syntax containing chroma_qp_index_offset with the following:

	if (profile_idc != ???)
	
	

	
chroma_qp_index_offset
	1
	se(v)

	else {
	
	

	
cb_qp_index_offset
	1
	se(v)

	
cr_qp_index_offset
	1
	se(v)

	}
	
	

When chroma_qp_index_offset is not present, chroma_qp_index_offset is equal to cb_qp_index_offset for the Cb array and is equal to chroma_qp_index_offset cr_qp_index_offset for the Cr array. [Ed. Note: Move that statement to the semantics subclause.]

Changes to subclause 7.3.5.3.1 "Residual block CAVLC syntax"

Substitute the following for the entire content of subclause 7.3.5.3.1 "Residual Block CAVLC Syntax":

	residual_block_cavlc(coeffLevel, maxNumCoeff) {
	C
	Descriptor

	
for(i = 0; i < maxNumCoeff; i++)
	
	

	

coeffLevel[i] = 0
	
	

	
coeff_token
	3 | 4
	ce(v)

	
if(TotalCoeff(coeff_token) > 0) {
	
	

	

if(TotalCoeff(coeff_token) > 10 && TrailingOnes(coeff_token) < 3)
	
	

	

suffixLength = 1
	
	

	

else
	
	

	

suffixLength = 0
	
	

	

for(i = 0; i < TotalCoeff(coeff_token); i++)
	
	

	

if(i < TrailingOnes(coeff_token)) {
	
	

	

trailing_ones_sign_flag
	3 | 4
	u(1)

	

level[i] = 1 – 2 * trailing_ones_sign_flag
	
	

	

} else {
	
	

	

level_prefix
	3 | 4
	ce(v)

	

levelCode = (level_prefix << suffixLength)
	
	

	

if(suffixLength > 0 | | level_prefix >= 14) {
	
	

	

level_suffix
	3 | 4
	u(v)

	

levelCode += level_suffix
	
	

	

}
	
	

	

if(level_prefix > = 15 && suffixLength = = 0)
	
	

	

levelCode += 15
	
	

	

if(level_prefix > = 16)
	
	

	

levelCode += (1<<(level_prefix – 3)) – 4096
	
	

	

if(i = = TrailingOnes(coeff_token) &&

 TrailingOnes(coeff_token) < 3)
	
	

	

levelCode += 2
	
	

	

if(levelCode % 2 = = 0)
	
	

	

level[i] = (levelCode + 2) >> 1
	
	

	

else
	
	

	

level[i] = (–levelCode – 1) >> 1
	
	

	

if(suffixLength = = 0)
	
	

	

suffixLength = 1
	
	

	

if(Abs(level[i]) > (3 << (suffixLength – 1)) &&

 suffixLength < 6)
	
	

	

suffixLength++
	
	

	

}
	
	

	

if(TotalCoeff(coeff_token) < maxNumCoeff) {
	
	

	

total_zeros
	3 | 4
	ce(v)

	

zerosLeft = total_zeros
	
	

	

} else
	
	

	

zerosLeft = 0
	
	

	

for(i = 0; i < TotalCoeff(coeff_token) – 1; i++) {
	
	

	

if(zerosLeft > 0) {
	
	

	

run_before
	3 | 4
	ce(v)

	

run[i] = run_before
	
	

	

} else
	
	

	

run[i] = 0
	
	

	

zerosLeft = zerosLeft – run[i]
	
	

	

}
	
	

	

run[TotalCoeff(coeff_token) – 1] = zerosLeft
	
	

	

coeffNum = -1
	
	

	

for(i = TotalCoeff(coeff_token) – 1; i >= 0; i--) {
	
	

	

coeffNum += run[i] + 1
	
	

	

coeffLevel[coeffNum] = level[i]
	
	

	

}
	
	

	
}
	
	

	}
	
	

Changes to subclause 7.4.2.1 "Sequence parameter set RBSP semantics"

[Ed. Note: Add the following where appropriate.]

constraint_set3_flag …

reserved_zero_4bits …

chroma_format_idc …

bit_depth_luma_idc specifies the bit depth of the samples of the luma array and the value of the luma quantization parameter range offset QpBdOffsetY, as specified by

BitDepthY = 8 + bit_depth_luma_idc

(7-x)

QpBdOffsetY = 6 * bit_depth_luma_idc

(7-x)

When bit_depth_luma_idc is not present, the value of bit_depth_luma_idc shall be inferred to be equal to 0. bit_depth_luma_idc shall be in the range of 0 to 4, inclusive.

bit_depth_chroma_idc specifies the bit depth of the samples of the chroma arrays and the value of the chroma quantization parameter range offset QpBdOffsetC, as specified by

BitDepthC = 8 + bit_depth_chroma_idc

(7-x)

QpBdOffsetC = 6 * bit_depth_luma_idc

(7-x)

When bit_depth_chroma_idc is not present, the value of bit_depth_chroma_idc shall be inferred to be equal to 0. bit_depth_chroma_idc shall be in the range of 0 to 4, inclusive.

Changes to subclause 7.4.2.2 "Picture parameter set RBSP semantics"

In subclause 7.4.2.2:

In the description of pic_init_qp_minus26 replace the sentence "The value of pic_init_qp_minus26 shall be in the range of -26 to +25, inclusive" with "The value of pic_init_qp_minus26 shall be in the range of (-26 – QpBdOffsetY) to +25, inclusive".

Changes to subclause 7.4.3 "Slice header semantics"

In subclause 7.4.3:

After Equation 7-16 replace the phrase "QPY is in the range of 0 to 51, inclusive" with "SliceQPY is in the range of - QpBdOffsetY to 51, inclusive".

Changes to subclause 7.4.5 "Macroblock layer semantics"

Replace Equation 7-23 with

"QPY = ((QPY,PREV + mb_qp_delta + 52 + QpBdOffsetY) % (52 + QpBdOffsetY)) - QpBdOffsetY
(7-23)"

At the end of the subclause, insert the following text and equation

"The value of QP'Y is derived as

QP'Y = QPY + QpBdOffsetY
(7-23')"

5 Changes to clause 8 "Decoding process"

Changes to subclause: 8.3.1.2.3 "Specification of Intra_4x4_DC prediction mode" Equation 8-50

In Equation 8-50, replace "128" with "(1 << (BitDepthY – 1))".
Changes to subclause 8.3.2.3 "Specification of Intra_16x16_DC prediction mode" Equation 8-75
In Equation 8-75, replace "128" with "(1 << (BitDepthY – 1))".
Changes to subclause 8.3.2.4 "Specification of Intra_16x16_Plane prediction mode" Equation 8-76
In Equation 8-76, replace "Clip1" with "Clip1Y".
Changes to subclause 8.3.3.1 "Specification of Intra_Chroma_DC prediction mode"
Rename subclause 8.3.3.1 to "Specification of Intra_Chroma_DC prediction mode for 4:2:0 chroma format".
In Equations 8-85, 8-88, 8-91, and 8-95, replace "128" with (1 << (BitDepthC – 1)).

Changes to subclause 8.3.3.2 "Specification of Intra_Chroma_Horizontal prediction mode"
Rename subclause 8.3.3.2 to "Specification of Intra_Chroma_Horizontal prediction mode for 4:2:0 chroma format".
Changes to subclause 8.3.3.3 "Specification of Intra_Chroma_Vertical prediction mode"
Rename subclause 8.3.3.3 to "Specification of Intra_Chroma_Vertical prediction mode for 4:2:0 chroma format".
Changes to subclause 8.3.3.4 “Specification of Intra_Chroma_Plane prediction mode”

Rename subclause 8.3.3.4 to "Specification of Intra_Chroma_Plane prediction mode for 4:2:0 chroma format".

In Equation 8-98, replace "Clip1" with "Clip1C".

New subclause 8.3.3.5 "Specification of Intra_Chroma_DC prediction mode for 4:2:2 chroma format"
[Ed. Note: Possibly merge this content into subclause 8.3.3.1.]

The values of the prediction samples predC[x, y] with x = 0..7 and y = 0..15 are derived as follows.

-
If the samples p[x, –1] with x = 0..7 and the samples p[–1, y] and y = 0..15 are marked as "available for Intra chroma prediction",

predC[x, y] =
[image: image7.wmf][

]

[

]

ç

ç

è

æ

>>

÷

÷

ø

ö

+

¢

-

+

-

¢

å

å

=

¢

=

¢

7

0

15

0

5

16

,

1

p

1

,

p

2

x

y

y

x

 ,with x = 0..7 and y = 0..15

· Otherwise, if the samples p[x, –1] with x = 0..7 are marked as "available for Intra chroma prediction" and the samples p[–1, y] with y = 0..15 are marked as "not available for Intra chroma prediction",

predC[x, y] =
[image: image8.wmf][

]

)

ç

è

æ

>>

+

-

¢

å

=

¢

7

0

3

4

1

,

p

x

x

, with x = 0..7 and y = 0..15

· Otherwise, if the samples p[x, –1] with x = 0..7 are marked as "not available for Intra chroma prediction" and the samples p[‑1, y] with y = 0..15 are marked as "available for Intra chroma prediction",

predC[x, y] =
[image: image9.wmf][

]

)

ç

ç

è

æ

>>

+

-

å

=

15

0

'

4

8

'

,

1

p

y

y

, with x = 0..7 and y = 0..15

· Otherwise (the samples p[x, –1] with x = 0..7 and the samples p[-1, y] with y = 0..15 are marked as "not available for Intra chroma prediction"),

predC[x, y] = (1 << (BitDepth – 1)), with x = 0..7 and y = 0..15

New subclause 8.3.3.6 "Specification of Intra_Chroma_Horizontal prediction mode for 4:2:2 chroma format"
[Ed. Note: Possibly merge this content into subclause 8.3.3.2.]

This mode shall be used only when the samples p[-1, y] with y = 0..15 are marked as "available for Intra chroma prediction".

The values of the prediction samples predC[x, y] are derived as follows.

predC[x, y] = p[-1, y], with x = 0..7 and y = 0..15

New subclause 8.3.3.7 "Specification of Intra_Chroma_Vertical prediction mode for 4:2:2 chroma format"
[Ed. Note: Possibly merge this content into subclause 8.3.3.3.]

This mode shall be used only when the samples p[x, -1] with x = 0..7 are marked as "available for Intra chroma prediction".

The values of the prediction samples predC[x, y] are derived as follows.

predC[x, y] = p[x, -1], with x = 0..7 and y = 0..15

New subclause 8.3.3.8 "Specification of Intra_Chroma_Plane prediction mode for 4:2:2 chroma format"
[Ed. Note: Possibly merge this content into subclause 8.3.3.4.]

This mode shall be used only when the samples p[x, -1], with x = 0..7 and p[-1, y], with y = -1..15 are marked as "available for Intra chroma prediction".

The values of the prediction samples predC[x, y] are derived as follows.

predC[x, y] = Clip1((a + b * (x – 3) + c * (y – 7) + 16) >> 5), with x = 0..7 and y = 0..15

where:

a = 16 * (p[-1, 15] + p[7, -1])

b = (17 * H + 16) >> 5

c = (5 * V + 32) >> 6

and H and V are specified as follows.

[image: image10.wmf][

]

[

]

(

)

å

=

-

-

-

-

+

+

=

3

0

x'

1

,

x'

2

p

1

,

'

x

4

p

*

1)

(x'

H

[image: image11.wmf][

]

[

]

(

)

å

=

-

-

-

+

-

+

=

7

0

'

y'

1,2

y'

1,

*

1)

y'

y

p

p

V

 [Ed. Note: Font size problem]

New subclause 8.3.3.9 "Specification of intra chroma prediction for 4:4:4 chroma format"
[Ed. Note: Find correct subclause structure for this once Proposal A or B below has been selected.]

Two alternative methods are under consideration for 4:4:4 intra chroma prediction. These are referred to herein as proposal "A" and proposal "B".

Proposal "A" is specified as follows.

Both Intra_4x4 prediction and Intra_16x16 prediction are applied equally on all color components. Both shall not be used at the same time for each component, and each component shall not use different intra prediction mode. For example, when Intra_4x4 prediction is used, all color components shall use only one mode of Intra_4x4 prediction. (So no separate syntax elements are sent to control chroma intra prediction.)

Proposal "B" is specified as follows.

As is the case currently for 4:2:0 operation, four intra chroma prediction modes are defined and the selection between these is controlled by a syntax element. The four prediction modes are DC, vertical, horizontal, and plane. Due to the increased in the size of the chroma blocks controlled by this prediction operation to a 16x16 block size, the operation of these four modes for chroma prediction is defined in the same manner currently used for 16x16 luma intra prediction.
Changes to subclause 8.4.2.2.1 “Luma sample interpolation process” Equations 8-187, 8-188, 8-191, 8-192, 8-193

In Equations 8-187, 8-188, 8-191, 8-192, and 8-193, replace "Clip1" with "Clip1Y".

Changes to subclause 8.4.2.3.2 “Weighted sample prediction process” Equations 8-218, 8-219, 8-220, 8-235, 8-236, 8-240, and 8-241

In Equations 8-218, 8-219, and 8-220, replace "Clip1" with "Clip1C".

Multiply the values of o0 and o1 in Equations 8-235 and 8-236 by (1 << (BitDepthY -8)) and in Equations 8-240 and 8-241 by (1 << (BitDepthC -8)).

Changes to subclause 8.5.1 “Specification of transform decoding process for residual blocks” Equation 8-243

In Equation 8-243, replace "Clip1" with "Clip1Y".

Changes to subclause 8.5.2 “Specification of transform decoding process for luma samples of Intra_16x16 macroblock prediction mode” Equation 8-245

In Equation 8-245, replace "Clip1" with "Clip1Y".

Changes to subclause 8.5.3 “Specification of transform decoding process for chroma samples” Equation 8-250

In Equation 8-250, replace "Clip1" with "Clip1C".

Changes to subclause 8.5.5 "Derivation process for the quantisation parameters and scaling function"

Replace the sentence "QP quantisation parameter values QPY, QPC, QSY, and QSC shall be in the range of 0 to 51, inclusive" with "QP quantisation parameter values QPY and QSY shall be in the range of –QpBdOffsetY to 51, inclusive. QP quantisation parameter values QPC and QSC shall be in the range of –QpBdOffsetC to 51, inclusive."

Replace Equation 8-251 with

"qPI = Clip3(–QpBdOffsetC, 51, QPY + chroma_qp_index_offset)
(8-251)"

After Table 8-13, insert the following text and equation:

" The value of QP'C shall be derived as follows.

"QP'C = QPC + QpBdOffsetC

(8-251')"

Changes to subclause: 8.5.6 "Scaling and transformation process for luma DC transform coefficients for Intra_16x16 macroblock type"
Replace all occurrences of "QPY" in this subclause with "QP'Y".

[Ed. Note: Fix the range of values allowed also.]

Changes to subclause: 8.5.7 "Scaling and transformation process for chroma DC transform coefficients"
At the beginning of subclause 8.5.7 add the following

"The scaling and transformation process for chroma DC transform coefficients is specified as follows.

–
If the chroma format is 4:2:0, the scaling and transformation process for chroma DC transform coefficients is specified in subclause 8.5.7.1.

–
Otherwise, if the chroma format is 4:2:2, the scaling and transformation process for chroma DC transform coefficients is specified in subclause 8.5.7.2.

–
Otherwise (the chroma format is 4:4:4), the scaling and transformation process for chroma DC transform coefficients is specified in subclause 8.5.7.3."

5.1.1 New subclause 8.5.7.1 "Scaling and transformation process for chroma DC transform coefficients for 4:2:0 chroma format"
Place the entire current content of subclause 8.5.7 in a new subclause 8.5.7.1 "Scaling and transformation process for chroma DC transform coefficients for 4:2:0 chroma format".

Replace all occurrences of "QPC" in this subclause with "QP'C".

[Ed. Note: Fix the range of values allowed also: Each range stated as "–215 to 215–1" will need to be expanded to at least something like -2^(7+BitDepth) to 2^(7+BitDepth)-1, and consideration should be given to actual necessary range and range supported by CABAC and CAVLC.]

5.1.2 New subclause 8.5.7.2 "Scaling and transformation process for chroma DC transform coefficients for 4:2:2 chroma format"

Inputs to this process are transform coefficient level values for chroma DC transform coefficients of one chroma component of the macroblock as a 2x4 array c with elements cij, where i and j form a two-dimensional frequency index.

Outputs of this process are 8 scaled DC values as a 2x4 array dcC with elements dcCij.

The inverse transform for the 2x4 chroma DC transform coefficients is specified by:

[image: image12.wmf]ú

û

ù

ê

ë

é

-

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

=

1

1

1

1

c

c

c

c

c

c

c

c

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

f

30

30

20

20

11

10

01

00

[Ed. Note: Number the new equations.]

A bitstream conforming to this Recommendation | International Standard shall not contain data that results in any element fij of f that exceeds the range of integer values from –215 to 215–1, inclusive. [Ed. Note: That range and similar ranges will need to be expanded to at least something like -2^(7+BitDepth) to 2^(7+BitDepth)-1, and consideration should be given to actual necessary range and range supported by CABAC and CAVLC.]

The variable QP'C,DC is derived as

QP'C,DC = QP'C + 3

After the inverse transform, scaling is performed as follows.

–
If QP'C,DC is greater than or equal to 12, the scaled result shall be derived as

dcCij = (f * LevelScale(QP'C,DC % 6, 0, 0, 0)) << (QP'C,DC / 6 – 2), with i = 0..3, j = 0, 1
–
Otherwise (QP'C,DC is less than 12), the scaled result shall be derived as

dcCij = (f * LevelScale(QP'C,DC % 6, 0, 0, 0)) >> (2 – QP'C,DC / 6), with i = 0..3, j = 0, 1
A bitstream conforming to this Recommendation | International Standard shall not contain data that results in any element dcCij of dcC that exceeds the range of integer values from –215 to 215–1, inclusive. [Ed. Note: That range and similar ranges will need to be expanded to at least something like -2^(7+BitDepth) to 2^(7+BitDepth)-1, and consideration should be given to actual necessary range and range supported by CABAC and CAVLC.]

5.1.3 New subclause 8.5.7.3 "Scaling and transformation process for chroma DC transform coefficients for 4:4:4 chroma format"

Inputs to this process are transform coefficient level values for chroma DC transform coefficients of one chroma component of the macroblock as a 4x4 array c with elements cij, where i and j form a two-dimensional frequency index.

Outputs of this process are 16 scaled DC values as a 4x4 array dcC with elements dcCij.

The inverse transform for the 4x4 chroma DC transform coefficients is specified by:

[image: image13.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

=

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

f

33

32

31

30

23

22

21

20

13

12

11

10

03

02

01

00

A bitstream conforming to this Recommendation | International Standard shall not contain data that results in any element fij of f that exceeds the range of integer values from –215 to 215–1, inclusive. [Ed. Note: That range and similar ranges will need to be expanded to at least something like -2^(7+BitDepth) to 2^(7+BitDepth)-1, and consideration should be given to actual necessary range and range supported by CABAC and CAVLC.]

After the inverse transform, scaling is performed as follows.

· If QP'C is greater than or equal to 12, the scaled result shall be derived as

dcCij = (f * LevelScale(QP'C % 6, 0, 0, 0)) << (QP'C / 6 – 2), with i = 0..3, j = 0, 1
· Otherwise (QP'C is less than 12), the scaled result shall be derived as

dcCij = (f * LevelScale(QP'C % 6, 0, 0, 0)) >> (2 – QP'C / 6), with i = 0..3, j = 0, 1
A bitstream conforming to this Recommendation | International Standard shall not contain data that results in any element dcCij of dcC that exceeds the range of integer values from –215 to 215–1, inclusive. [Ed. Note: That range and similar ranges will need to be expanded to at least something like -2^(7+BitDepth) to 2^(7+BitDepth)-1, and consideration should be given to actual necessary range and range supported by CABAC and CAVLC.]

Changes to subclause: 8.5.8 "Scaling and transformation process for residual 4x4 blocks"
Replace "QPY" in this subclause with "QP'Y".

Replace "QSY" in this subclause with "QS'Y".

Replace "QPC" in this subclause with "QP'C".

Replace "QSC" in this subclause with "QS'C".

[Ed. Note: Define QS'Y and QS'C. in the same manner as QP'Y and QP'C.]

[Ed. Note: Fix the range of values allowed also.]

Changes to subclause 8.6.1.1 “Luma transform coefficient decoding process: Equation 8-296

In Equation 8-296, replace "Clip1" with "Clip1Y".

Changes to subclause 8.6.1.2 “Chroma transform coefficient decoding process” Equation 8‑303

In Equation 8-303, replace "Clip1" with "Clip1C".

Changes to subclause 8.6.2.1 “Luma transform coefficient decoding process” Equation 8‑312

In Equation 8-312, replace "Clip1" with "Clip1Y".

Changes to subclause 8.6.2.2 “Chroma transform coefficient decoding process” Equation 8‑316

In Equation 8-316, replace "Clip1" with "Clip1C".

Prediction and Transform modifications for 4:2:2 and 4:4:4 formats [Ed. Note: Needs format work]

5.1.4 Inter Prediction

4:4:4
Same motion vectors are used directly for all components. Use 6 tap filters for all components.

4:2:2
Vertical motion vectors are used directly. Horizontal vectors are scaled by 2 as for 4:2:0. Use bilinear interpolation based on 1/8 sample horizontal and 1/4 sample vertical motion resolution.

Deblocking modifications

[Ed: Refine below.]

Deblocking filter process

The deblocking filter process is invoked for the luma and chroma components separately. For each macroblock, vertical edges are filtered first, from left to right, and then horizontal edges are filtered from top to bottom. The luma deblocking filter process is performed on four 16-sample edges, and the deblocking filter process for each chroma components is performed on two 8-sample edges when chroma_format is 1 (4:2:0 format), and on four 16-sample edges when chroma_format is 3 (4:4:4 format), for the horizontal direction as shown on the left side of Figure 8‑9 and for the vertical direction as shown on the right side of Figure 8‑9 [Ed. Note: The Figure 8‑9 should be modified accordingly].

Subclause: 8.7.1 Filtering process for block edges

…

The variable nE is derived as follows.

If chromaEdgeFlag is equal to 0, nE is 16;

If chromaEdgeFlag is equal to 1 and chroma_format is 3, nE is 16;

Otherwise (chromaEdgeFlag is equal to 1 and chroma_format is 1), nE is 8.

Subclauses: 8.7.2.2 and 8.7.2.3, Loop filter parameters must be scaled to BitDepth
Multiply the values of α and β in Table 8-14 and the value of tC0 from Table 8-15 by (1 << (BitDepth – 8)). [Ed. Better to define a separate variable such as defining Table 8-14 to contain α' and β', and define α = α' * (1 << (BitDepth – 8)) and β' = β' * (1 << (BitDepth – 8)).]

6 Changes to clause 9 "Parsing process"

Table 9-6 - Codeword table for level_prefix

Substitute the following for Table 9-6 - Codeword table for level_prefix:

	level_prefix
	bit string

	0
	1

	1
	01

	2
	001

	3
	0001

	4
	0000 1

	5
	0000 01

	6
	0000 001

	7
	0000 0001

	8
	0000 0000 1

	9
	0000 0000 01

	10
	0000 0000 001

	11
	0000 0000 0001

	12
	0000 0000 0000 1

	13
	0000 0000 0000 01

	14
	0000 0000 0000 001

	15
	0000 0000 0000 0001

	16
	0000 0000 0000 0000 1

	17
	0000 0000 0000 0000 01

	18
	0000 0000 0000 0000 001

	19
	0000 0000 0000 0000 0001

	20
	0000 0000 0000 0000 0000 1

	…
	…

Subclause 9.2.2 "Parsing process for level information"

Substitute the following for 9.2.2:

Inputs to this process are bits from slice data, the number of non-zero transform coefficient levels TotalCoeff(coeff_token), and the number of trailing one transform coefficient levels TrailingOnes(coeff_token).

Output of this process is a list with name level containing transform coefficient levels.

Initially an index i is set equal to 0. Then the following procedure is iteratively applied TrailingOnes(coeff_token) times to decode the trailing one transform coefficient levels (if any):

· A 1-bit syntax element trailing_ones_sign_flag is decoded and evaluated as follows.

· If trailing_ones_sign_flag is equal to 0, the value +1 is assigned to level[i].

· Otherwise (trailing_ones_sign_flag is equal to 1), the value -1 is assigned to level[i].

· The index i is incremented by 1.

Following the decoding of the trailing one transform coefficient levels, a variable suffixLength is initialised as follows.

· If TotalCoeff(coeff_token) is greater than 10 and TrailingOnes(coeff_token) is less than 3, suffixLength is set equal to 1.

· Otherwise (TotalCoeff(coeff_token) is less than or equal to 10 or TrailingOnes(coeff_token) is equal to 3), suffixLength is set equal to 0.

The following procedure is then applied iteratively (TotalCoeff(coeff_token) – TrailingOnes(coeff_token)) times to decode the remaining levels (if any):

· The syntax element level_prefix is decoded using the VLC specified in Table 9‑6.

· The variable levelSuffixSize is set equal to the variable suffixLength with the exception of the following two cases.

· When level_prefix is equal to 14 and suffixLength is equal to 0, levelSuffixSize is set equal to 4.

· When level_prefix is greater than or equal to 15, levelSuffixSize is set equal to level_prefix - 3.

· The syntax element level_suffix is decoded as follows.

· If levelSuffixSize is greater than 0, the syntax element level_suffix is decoded as unsigned integer representation u(v) with levelSuffixSize bits.

· Otherwise (levelSuffixSize is equal to 0), the syntax element level_suffix shall be inferred to be equal to 0.

· A variable levelCode is set equal to (level_prefix << suffixLength) + level_suffix.

· When level_prefix is greater than or equal to 15 and suffixLength is equal to 0, levelCode is incremented by 15.

· When level prefix is greater than or equal to 16, level code is incremented by (1<<(level_prefix – 3)) – 4096.

· When the index i is equal to TrailingOnes(coeff_token) and TrailingOnes(coeff_token) is smaller than 3, levelCode is incremented by 2.

· The variable level[i] is derived as follows.

· If levelCode is an even number, the value (levelCode + 2) >> 1 is assigned to level[i].

· Otherwise, the value (‑levelCode – 1) >> 1 is assigned to level[i].

· When suffixLength is equal to 0, suffixLength is set equal to 1.

· When the absolute value of level[i] is greater than (3 << (suffixLength – 1)) and suffixLength is less than 6, suffixLength is incremented by 1.

· The index i is incremented by 1.

Entropy coding modifications for chroma extensions.

The only changes needed are for coding of chroma DC coefficients. In addition the number of AC blocks will be different, but coding of each AC 4x4 block is unchanged.

6.1.1 VLC Modification for 4:2:2

The table total_ceff()/trailing_ones():Num-VLC_Chroma_DC must be changed reflecting that there may be 0 to 8 coefficients. New code table:

Trailing_ones
0
1
2
3

Total_coeff

0
1
-
-
-

1
0001111
01
-
-

2
0001110
0001101
001
-

3
000000111
0001100
0001011
00001

4
000000110
000000101
0001010
000001

5
0000000111
0000000110
000000100
0001001

6
00000000111
00000000110
0000000101
0001000

7
000000000111
000000000110
00000000101
0000000100

8
0000000000111
000000000101
000000000100
00000000100

A scanning order for the 2x4 transform must be defined and the following is used:

0
2

1
5

3
6

4
7

The table for total_zeroes_chroma_DC must be changed reflecting that there may be 0 to 7 zeroes. New code table:

NumCoeff
1
2
3
4
5
6
7

Total zeroes

0

1
000
000
110
00
00
0

1

010
01
001
00
01
01
1

2

011
001
01
01
10
1

3

0010
100
10
10
11

4

0011
101
110
111

5

0001
110
111

6

00001
111

7

00000

6.1.2 VLC Modification for 4:4:4

Similar action is taken here. However, suitable tables already exist for 4x4 blocks.

Use total_ceff()/trailing_ones():Num-VLC0

Use normal Zig-zag scanning

Use the same table for total_zeroes as for luma

6.1.3 CABAC Support for 4:2:2 or 4:4:4

Two CABAC related aspects need to be considered when designing an extension of 4:2:0 within H.264/AVC:

1.1.1.1. If additional bits would be added to the CBP (as suggested in H019), the corresponding binarization and modeling part in CABAC would require a revision. Probably we would not need to specify additional models, but at least a revised context assignment scheme may be required in that case. The latter may even be true, if the CBP would be just re-interpreted. However, in case the interpretation of CodedBlockPatternChroma would be kept the same but with a different (larger) scope, the CABAC coding of CBP could remain unchanged. Of course, in terms of simplicity the last option is the most appealing one.

1.1.1.2. Since the chroma DC blocks will change in dimension from 2x2 to 2x4 or 4x4, coding of the chroma DC transform coefficients has to be adapted. The flags significant_coeff_flag and last_siginificant_coeff_flag are encoded using a model related to their position in the scanning path. If we want to keep that modeling scheme, 2x4 or 2x8 additional models would be required for each flag. Furthermore, for the coding of the absolute values of chroma DC levels one additional model would be necessary, since the number of decoded levels with abs. value greater than 1 can be larger than 3 in chroma DC blocks with dimension 2x4 or 4x4.

7 Changes to Annex A "Profiles and levels"

Changes to Annex A are TBD. One or more additional profiles is to be defined.

8 Changes to Annex D "Supplemental enhancement information"

Addition of the film grain SEI message requires the inclusion of a new payloadType in Subclause D.1 "SEI payload syntax" and the inclusion of Subclause D.1.21 "Film grain SEI message syntax" and Subclause D.2.21 "Film grain SEI message semantics".

Changes to subclause: D.1 "SEI payload syntax"

	sei_payload(PayloadType, PayloadSize) {
	C
	Descriptor

	if(PayloadType = = 0)
	
	

	buffering_period(PayloadSize)
	5
	

	else if(PayloadType = = 1)
	
	

	pic_timing(PayloadSize)
	5
	

	else if(PayloadType = = 2)
	
	

	pan_scan_rect(PayloadSize)
	5
	

	else if(PayloadType = = 3)
	
	

	
filler_payload(PayloadSize)
	5
	

	else if(PayloadType = = 4)
	
	

	
user_data_registered_itu_t_t35(PayloadSize)
	5
	

	else if(PayloadType = = 5)
	
	

	
user_data_unregistered(PayloadSize)
	5
	

	else if(PayloadType = = 6)
	
	

	
random_access_point(PayloadSize)
	5
	

	else if(PayloadType = = 7)
	
	

	
dec_ref_pic_marking_repetition(PayloadSize)
	5
	

	else if(PayloadType = = 8)
	
	

	
spare_pic(PayloadSize)
	5
	

	else if(PayloadType = = 9)
	
	

	
scene_info(PayloadSize)
	5
	

	else if(PayloadType = = 10)
	
	

	
sub_seq_info(PayloadSize)
	5
	

	else if(PayloadType = = 11)
	
	

	
sub_seq_layer_characteristics(PayloadSize)
	5
	

	else if(PayloadType = = 12)
	
	

	
sub_seq_characteristics(PayloadSize)
	5
	

	else if(PayloadType = = 13)
	
	

	
full_frame_freeze(PayloadSize)
	5
	

	else if(PayloadType = = 14)
	
	

	
full_frame_freeze_release(PayloadSize)
	5
	

	else if(PayloadType = = 15)
	
	

	
full_frame_snapshot(PayloadSize)
	5
	

	else if(PayloadType = = 16)
	
	

	
progressive_refinement_segment_start(PayloadSize)
	5
	

	else if(PayloadType = = 17)
	
	

	
progressive_refinement_segment_end(PayloadSize)
	5
	

	else if(PayloadType = = 18)
	
	

	
motion_constrained_slice_group_set(PayloadSize)
	5
	

	else if(PayloadType = = 19)
	
	

	
film_grain(PayloadSize)
	5
	

	else
	
	

	
reserved_sei_message(PayloadSize)
	5
	

	if(!byte_aligned()) {
	
	

	bit_equal_to_one /* equal to 1 */
	5
	f(1)

	while(!byte_aligned())
	
	

	bit_equal_to_zero /* equal to 0 */
	5
	f(1)

	}
	
	

	}
	
	

New subclause: D.1.21 "Film grain SEI message syntax"

	film_grain(payloadSize) {
	C
	Descriptor

	
film_grain_cancel_flag
	5
	u(1)

	 if(!film_grain_cancel_flag) {
	
	

	
 model_id
	5
	u(2)

	
 colour_space_id
	5
	u(3)

	
 blending_mode_id
	5
	u(2)

	
 log2_scale_factor
	5
	u(4)

	
 comp0_param_present_flag
	5
	u(1)

	
 comp1_param_present_flag
	5
	u(1)

	
 comp2_param_present_flag
	5
	u(1)

	
 if(comp0_param_presence_flag)
	
	

	
 read_comp_parameters(0)
	
	

	
 if(comp1_param_presence_flag)
	
	

	
 read_comp_ parameters(1)
	
	

	
 if(comp2_param_presence_flag)
	
	

	
 read_comp_ parameters(2)
	
	

	
film_grain_repetition_period
	5
	ue(v)

	 }
	
	

	}
	
	

	read_comp_parameters(c) {
	C
	Descriptor

	
no_intensity_intervals_minus1[c]
	5
	u(8)

	
no_params_minus1[c]
	5
	u(3)

	
for(i = 0; i <= no_intensity_intervals_minus1[c]; i++) {
	
	

	

intensity_interval_lower_bound[c][i]
	5
	u(8)

	

intensity_interval_upper_bound[c][i]
	5
	u(8)

	

for(j = 0; j <= no_params_minus1[c]; j++) {
	
	

	

param[c][i][j]
	5
	se(v)

	

}
	
	

	
}
	
	

	}
	
	

[Ed. Note: Don't we ordinarily only have one syntax structure per syntax subclause?]

New subclause: D.2.21 "Film grain SEI message semantics"

This SEI message provides the decoder with a parameterised model for the film grain present in the original source material. Simulation of film grain on the decoded images is optional and does not interfere in any way with the decoding process.

film_grain_cancel_flag equal to 1 indicates that the SEI message cancels the persistence of a previous film grain SEI message. film_grain_cancel_flag equal to 0 indicates that the SEI message does not cancel the persistence of a previous film grain SEI message and that film grain information follows.

model_id identifies the film grain simulation model as specified in Table D-5.

Table D-5 – model_id values

	Value
	Description

	0
	frequency filtering

	1
	auto-regression

	2
	reserved

	3
	reserved

colour_space_id identifies the colour space in which the parameters of the SEI message have been estimated.

NOTE - The colour space used to model the film grain of the original sequence may differ from the actual colour space used for encoding. Parameters represent a 4:4:4 chroma format factor in all colour spaces. Because the generation function is non-normative, it is a decoder option whether to down-convert the parameters for chroma in order to simulate film grain at other format factors (4:2:0 or 4:2:2).

[Ed. Note - colour_space_id shall be able to identify all colour spaces supported by the standard, as specified in Annex E, in addition to RGBlog. Table D-6 is only a draft of the final table. In fact, colour_space_id probably needs to be broken up into its constituent components of at least matrix_coefficients, colour_primaries, transfer_characteristics, video_full_range_flag, bits_per_component. as done in Annex E.]

Table D-6 – colour_space_id values

	Value
	Colour space
	comp0
	comp1
	comp2

	0
	YCbCr
	Y
	Cb
	Cr

	1
	RGB
	G
	B
	R

	2
	RGBlog
	Glog
	Blog
	Rlog

	3
	XYZ
	Y
	X
	Z

	4
	reserved
	-
	-
	-

	5
	reserved
	-
	-
	-

	6
	reserved
	-
	-
	-

	7
	reserved
	-
	-
	-

blending_mode_id identifies the blending mode used to blend the simulated film grain with the decoded images as specified in Table D-7.

Table D-7 – blending_mode_id values

	Value
	Description

	0
	additive

	1
	multiplicative

	2
	reserved

	3
	reserved

When blending_mode_id is equal to 0 the blending mode is additive as specified by the following equation:

Igrain[x, y, c] = Clip3(0, (1 << bitDepth[c]) – 1, Idecoded[x, y, c] + G[x, y, c])
(D-14)

where Idecoded[x, y, c] represents the sample value at coordinates [x,y] of the colour component c of the decoded image Idecoded, G[x, y, c] is the simulated film grain value at the same position and colour component, and bitDepth[c] is the number of bits used for each sample in a fixed-length unsigned binary representation of the array Igrain[x, y, c].

Following the same notation, when blending_mode_id equals 1 the blending mode is multiplicative as specified by the following equation:

Igrain[x, y, c] = Clip3(0, (1 << bitDepth[c]) – 1, Idecoded[x, y, c] * (1 + G[x, y, c]))
(D-15)
log2_scale_factor specifies the scale factor that shall be used to operate with integer arithmetic.

comp0_param_present_flag equal to 0 indicates that film grain is not modelled on the colour component 0. comp0_param_presence_flag equal to 1 indicates specific parameters modelling the film grain on the colour component 0 are present in the SEI message.

comp1_param_present_flag equal to 0 indicates that film grain is not modelled on the colour component 1. comp1_param_presence_flag equal to 1 indicates specific parameters modelling the film grain on the colour component 1 are present in the SEI message.

comp2_param_present_flag equal to 0 indicates that film grain is not modelled on the colour component 2. comp2_param_presence_flag equal to 1 indicates specific parameters modelling the film grain on the colour component 2 are present in the SEI message.

no_intensity_intervals_minus1[c] gives the number of intensity intervals for which a specific set of parameters has been estimated.

NOTE - The intensity intervals may overlap in order to simulate multi-generational film grain.

no_params_minus1[c] indicates the number of parameters present for each intensity interval in which the film grain has been modelled. The value of no_params_minus1[c] shall be in the range [0,5].

intensity_interval_lower_bound[c][i] provides the lower bound of the interval i of intensity levels for which the set of parameters that follows applies.

intensity_interval_upper_bound[c][i] provides the upper bound of the interval i of intensity levels for which the set of parameters that follows applies.

When mode_id is equal to 0, the average value of each block b of 16x16 samples in Idecoded, referred as bavg, is used to select the sets of parameters with index s[j] that apply to all the samples in the block:

for(i=0, j=0; i <= no_intensity_intervals_minus1; i++) {
 if(bavg >= intensity_interval_lower_bound[c][i] &&
 bavg <= intensity_interval_upper_bound[c][i]){
(D-16)
 s[j] = i
 j++
}
When mode_id is equal to 1, the sets of parameters used to generate the film grain are selected for each sample value in Idecoded as follows:

for(i=0, j=0; i <= no_intensity_intervals_minus1; i++) {
 if(Idecoded[x,y,c] >= intensity_interval_lower_bound[c][i] &&
 Idecoded[x,y,c] <= intensity_interval_upper_bound[c][i]){
(D-17)
 s[j] = i
 j++
}
Samples that do not fall into any of the defined intervals are not modified by the grain generation function. Samples that fall into more than one interval will originate multi-generation grain. Multi-generation grain results from adding the grain computed independently for each intensity interval.

param[c][i][j] represents each one of the parameters present for the colour component c and the intensity interval i. The set of parameters has different meaning depending on the mode_id value.

When mode_id equals 0, a frequency filtering model enables simulating the original film grain as follows:

G[x, y, 0] = (param[0][s][0] * Q[x, y, 0]) >> log2_scale_factor
(D-18)

G[x, y, c] = (param[c][s][0] * Q[x, y, c] + param[c][s][5] * G[x, y, c-1]) >> log2_scale_factor, for 0<c<3

(D-19)

where Q[c] is a two-dimensional random process generated by filtering blocks bN of 16x16 random values, generated with a normalized Gaussian distribution N(0,1). The band-pass filtering of blocks bN can be performed in the DCT domain as follows:

BN = DCT16x16(bN)
for(y=0; y<16; y++)
 for(x=0; x<16; x++)
 if((x < param[c][s][4] && y < param[c][s][3]) ||
(D-20)
 x > param[c][s][1] || y > param[c][s][2])
 BN[x, y] = 0
b'N = IDCT16x16(BN)

Q[c] is formed by the filtered blocks b'N.

NOTE - Coded parameters are based on blocks of 16x16, but decoder implementation may use other block sizes. As an example, decoders implementing the DCT on blocks of 8x8, should down-convert by a factor of two the set of coded parameters param[c][s][i] for 1(i(4.

NOTE - To reduce the blockiness that can result from mosaicing, the frequency filtered blocks b'N, decoders may apply a low-pass filter to the block transitions.

When mode_id equals 1, an auto-regression model enables simulating the original film grain as follows:

G[x, y, c] = (param[c][s][0] * n +

 param[c][s][1] * (G[x-1, y, c] + param[c][s][4] * G[x, y-1, c] >> log2_scale_factor) +

 param[c][s][3] * (param[c][s][4] * G[x-1, y-1, c] >> log2_scale_factor + G[x+1, y-1, c]) +

 param[c][s][5] * (G[x-2, y, c] + param[c][s][4] ^ 2 * G[x, y-2, c] >> 2 * log2_scale_factor) +

 param[c][s][2] * G[x, y, c-1]) >> log2_scale_factor
(D-21)
where n is a random value with normalized Gaussian distribution N(0,1).

param[c][i][0] provides the first parameter of the model as specified by model_id. param[c][i][0] corresponds to the standard deviation of the Gaussian noise term in the generation functions (3) and (4).

param[c][i][1] provides the second parameter of the model as specified by model_id.

When model_id is equal to 0, param[c][i][1] indicates the horizontal high cut frequency to be used to filter the DCT of a block of 16x16 random values. param[c][i][1] shall be positive and smaller than 16. When model_id is equal to 1, param[c][i][1] indicates the first order spatial correlation for neighbouring samples (x-1,y) and (x,y-1).

When not present, param[c][i][1] shall be inferred to be equal to 8 if model_id is equal to 0, and shall be inferred to be equal to 0 if model_id is equal to 1.

param[c][i][2] provides the third parameter of the model as specified by model_id.

When model_id is equal to 0, parameter[c][i][2] indicates the vertical high cut frequency to be used to filter the DCT of a block of 16x16 random values. param[c][i][2] shall be positive and smaller than 16. When model_id is equal to 1, param[c][i][1] indicates the colour correlation between consecutive colour components.

When not present, param[c][i][2] shall be inferred to be equal to param[c][i][1] if model_id is equal to 0, and shall be inferred to be equal to 0 if model_id is equal to 1.

param[c][i][3] provides the fourth parameter of the model as specified by model_id.

When model_id is equal to 0, parameter[c][i][3] indicates the horizontal low cut frequency to be to filter the DCT of a block of 16x16 random values. param[c][i][3] shall be positive and smaller or equal than param[c][i][1] . When model_id is equal to 1, parameter[c][i][3] indicates the first order spatial correlation for neighbouring samples (x-1,y-1) and (x+1,y-1).

When not present, param[c][i][3] shall be inferred to be equal to 0.

param[c][i][4] provides the fifth parameter of the model as specified by model_id.

When model_id is equal to 0, param[c][i][4] indicates the vertical low cut frequency to be used to to filter the DCT of a block of 16x16 random values. param[c][i][4] shall be positive and smaller or equal than param[c][i][2]. When model_id is equal to 1, param[c][i][4] indicates the aspect ratio of the modelled grain.

When not present, param[c][i][4] shall be inferred to be equal to 0 if model_id is equal to 0, and shall be inferred to be equal to 1 if model_id is equal to 1.

param[c][i][5] provides the sixth parameter of the model as specified by model_id.

When model_id is equal to 0, param[c][i][5] indicates the colour correlation between consecutive colour components. When model_id is equal to 1, param[c][i][5] indicates the second order spatial correlation for neighbouring samples (x,y-2) and (x-2,y).

When not present, param[c][i][5] shall be inferred to be equal to 0.

film_grain_repetition_period indicates whether another film grain SEI message shall be present in the bitstream and specifies the picture order count interval within which another film grain SEI message will be present. The value of film_grain_repetition_period shall be in the range 0 to 16 384, inclusive.

film_grain_repetition_period equal to 0 specifies that the film grain SEI message applies to the current decoded picture only.

film_grain_repetition_period equal to 1 specifies that the film grain SEI message persists in output order until any of the following conditions are true.

-
A new coded video sequence begins

-
A picture in an access unit containing a film grain SEI message that is output having PicOrderCnt() greater than PicOrderCnt(CurrPic).

film_grain_repetition_period greater than 1 specifies that the film grain SEI message persists until any one of the following conditions are true.

-
A new coded video sequence begins

-
A picture in an access unit containing a film grain SEI message is output having PicOrderCnt() greater than PicOrderCnt(CurrPic) + film_grain_repetition_period.

film_grain_repetition_period greater than 1 indicates that another film grain SEI message shall be present for a picture in an access unit that is output having PicOrderCnt() less than or equal to PicOrderCnt(CurrPic) + film_grain_repetition_period; unless a new coded video sequence begins without output of such a picture.

9 Changes to Annex E "Video usability information"

Changes to subclause E.2.1 "VUI parameters semantics"

Change text and Equations E-1 to E-6 to read as follows:

video_full_range_flag indicates the black level and range of the luma and chroma signals as derived from E’Y, E’PB, and E’PR or E’R, E’G, and E’B analogue component signals and X = (1 << (BitDepth - 8)):

· If video_full_range_flag is equal to 0,

Y, R, G, or B = Round(X * (219 * E’Y,R,G, or B + 16))
(E-1)

Cb = Round(X * (224 * E’PB + 128))

(E-2)

Cr = Round(X * (224 * E’PR + 128))

(E-3)

· Otherwise (video_full_range_flag is equal to 1),

Y, R, G, or B = Round(((1 << BitDepth) – 1) * E’Y,R,G, or B)
(E-4)

Cb = Round(((1 << BitDepth) – 1) * E’PB + (1 << (BitDepth – 1))
(E-5)

Cr = Round(((1 << BitDepth) – 1) * E’PR + (1 << (BitDepth – 1))
(E-6)

When the video_full_range_flag syntax element is not present, video_full_range_flag value shall be inferred to be equal to 0.

For BitDepth greater than 10, component values are always full range. [Ed. Seems to be highly questionable loss of syntax expression ability and seems to contradict the previous sentence.] (Note potential PCM issue [Ed: What does that mean?].)

File: JVT-I047
Page: 26
Date Saved: 2003-11-25

_1120907609.unknown

_1120907647.unknown

_1131287572.unknown

_1120907565.unknown

_1106568635.unknown

