	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

3rd Meeting: Fairfax, Virginia, USA, 6-10 March, 2002
	Document: JVT-C143
Filename: JVT-C143.doc

	Title:
	File Format for JVT Video based on MP4

	Status:
	Input Document to JVT

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Toby Walker, Ali Tabatabai, Mohammed Zubair Visharam
3300 Zanker Road

San Jose, CA, U.S.A.

David Singer

Two Infinite Loop

Cupertino, CA, U.S.A.
	Tel:
Email:
	1-408-955-4081

toby.walker@am.sony.com

	Source:
	Sony Electronics, Apple Computer

21
Introduction

21.1
Terminology

32
JVT File Format Requirements

32.1.1
Addressing Access Unit Fragments

32.1.2
Stream Switching

42.1.3
Enhanced Group of Pictures (GOP)

53
Proposal Overview

53.1
Design Goals

53.2
Proposed Extensions

64
JVT Elementary Stream Design

64.1
High-Level Syntax

74.2
Access Unit Definition

85
Addressing Access Unit Fragments

95.1
Concepts

95.2
Sample Fragment Metadata for MP4

105.2.1
Sample Fragment Size Box

105.2.2
Sample Fragment To Sample Box

115.2.3
Sample Fragment Description Box

115.3
Sample Fragment Description Association Box

116
Sequences: Grouping of Samples

126.1
Sequence Metadata

126.1.1
Sample Sequence Box

126.1.2
Sequence Description Box:

136.2
Parameter Sets :

136.2.1
Parameter Set Description Box:

136.2.2
Sample to Parameter Set Box:

146.2.3
Sample Fragment to Parameter Set Box:

147
Stream Switching

167.1
Switch Sample Sets

177.2
Stream Switching Using Switch Sample Sets

178
Optimizing MP4 Metadata Storage for JVT Video

199
Related Work

199.1
Interim File Format

209.1.1
JVT Interim File Format Design

209.1.2
Access Unit Fragment Access

219.1.3
Sequences

219.1.4
Stream Switching

219.2
Common MPEG-4 AVC Packet Structure (M8325)

2210
Conclusions

2211
References

2312
Alternatives: Some Additional Proposals

2312.1
SEI Data Storage

2412.2
Parameter Set Tracks

1 Introduction

In this contribution we propose a file format for JVT video based on the ISO/MPEG-4 MP4 multimedia file format. MP4 is a generic file format for storing streams of timed media data and is independent of any particular compression scheme. As such, it provides most of facilities needed for the storage of the JVT file format, e.g. data storage, random access, metadata storage, etc. However, the JVT Codec has several unique features [7]

 REF _Ref8035549 \r \h
[8] that are also required to be supported, such as:

· Addressing Access Unit Fragments: To allow addressing data units below the level of a picture such as slices.

· Bit Stream Switching: To enable switching between different coded streams.

· Enhanced Group of Pictures: A generalization of the MPEG Group of Pictures that provides a structuring of the dependencies of a group of pictures to provide both random access and flexible stream structure (e.g. temporal scalability).

At the MPEG meeting in Jeju, we proposed several extensions to the MP4 file format to support the above features [1], [2], [3], [4]. This proposal is a revised version of those contributions. In the rest of this contribution we use the term ISO Media File Format, or ISO file format for short, to refer to the file format set out in the amendment specified in[5]. Similarly, we use MP4 file format, or simply MP4 for short, to refer ISO Media File Format and its extensions for MPEG-4 specific in the MPEG-4 Systems document in [6]. Note that this means a splitting of what was originally called the MP4 into a generic part, the ISO file format, and the MPEG-4 specific extensions to that part, which will be called MP4, which was specified in MPEG-4:2001 [13].

The rest of this contribution is structured as follows. Section 2 discusses the requirements for the JVT file format, focusing on the JVT features mentioned above that require additional support from the file format. Section 3 contains an overview of our proposal for a MP4-based file format with the proposed extensions to support JVT functionality. In Section 4 we address the definition of an elementary stream format to store JVT video in the MP4 file format. Section 5 gives a detail overview of the extension to support addressing access unit fragments followed by Section 6, with details about addressing non-contigous sequences of samples. In Section 7, we propose an extension to support the stream switching feature in JVT. Section 8 discusses our proposed method for optimizing the storage of MP4 metadata in the case of JVT video. Section 9, discusses the JVT interim file format, which is a dedicated file format for storing JVT video, followed by conclusions in Section 10.. .

1.1 Terminology

In the rest of this contribution, we will be dealing with three different sets of terminology: the JVT (H.26L) world of slices and pictures, the MPEG-4 Systems world of Access Units and Elementary Streams, and the MP4 world of movies, tracks, and samples. In the table below we have briefly summarizes the correspondences between these key terms. In the rest of this contribution we will often use these terms interchangeably depending on the context.

	JVT
	MPEG-4 Systems
	MP4 (QuickTime)

	-
	Presentation
	Movie

	Stream
	Elementary Stream
	Track

	Picture
	Access Unit
	Sample

	Slice
	Access Unit Fragment
	

2 JVT File Format Requirements
In this section we provide a overview of the requirements for the JVT file format that are already supported by the ISO file format and MP4 and then focus in more detail on the specific requirements for the JVT file format that are not completely supported by ISO file format and its MP4 extension; namely, addressing access unit fragments, stream switching, and the enhanced Group of Pictures (temporal scalability).

In the following sections we discuss the specific requirements for the JVT file. For each requirement we give a brief summary of the nature of the problem. We then look at how well the requirement can be meet using the tools already available in the MP4 file format and what might be missing.

2.1.1 Addressing Access Unit Fragments

What is an Access Unit in JVT? And what are Access Unit Fragments?

MPEG-4 Systems is built on the concept of an access unit, which is an individually accessible portion of data within a stream and the smallest data entity to which timing information can be attributed.Furthermore, Access Units (AU) can split into smaller units called access unit fragments.

The natural mapping for JVT is to make each picture an access unit and each slice (possibly with a data partition slice being represented as multiple fragments with data partitions) as access unit fragments.

Why Address Access Unit Fragments?

The JVT file format needs to address access units fragment in order to support flexible packetization of JVT video for streaming (e.g., error resilience, scalability).
Addressing Access Unit Fragments in MP4

MP4 already supports addressing each sample within media stream with a set of sample tables stored in the stream (track) information. However, the sample is the finest granularity at which MP4 addresses data and there is no support accessing sub-parts of a sample (ie. sample fragments).

Therefore, we conclude that MP4 does not support addressing access unit fragments unless an access unit is defined at the slice/sub-slice level rather than at the picture level.

2.1.2 Stream Switching

What is stream switching?

In typical streaming scenarios, one of the key requirements is to scale the bit rate of the compressed data in response to changing network conditions. The simplest way to achieve this is to encode multiple streams with different bandwidths and quality settings for representative network conditions. The server can then switch amongst these pre-coded streams in response to network conditions. In current standards, switching between streams is only possible at I-frames, because the frames can only be switched when there are no dependencies on prior pictures for reconstruction.

JVT has adopted SP-pictures ("switching pictures") (first proposed in [17], with examples of applications described in [18]) that allow switching from one bitstream to another while still supporting inter-frame coding of switch pictures. Figure 1 shows how SP frames are used to switch between two different bit streams.

[image: image4.wmf]Sample Table Box

–

‘

stbl’

Type = ‘

stsd’

Sample Description Box

Type = ‘

stsd’

Sample Description Box

Type = ‘

stts’

-

decoding

Time

-

to

-

sample Box

Type = ‘

stts’

-

decoding

Time

-

to

-

sample Box

Type = ‘

stsc’

Sample

-

to

-

chunk Box

Type = ‘

stsc’

Sample

-

to

-

chunk Box

Chunk offset Box

Chunk offset Box

Type = ‘

stsz’

Sample size Box

Type = ‘

stsz’

Sample size Box

Type = ‘

ctts’

-

composition

Time

-

to

-

sample Box

Type = ‘

ctts’

-

composition

Time

-

to

-

sample Box

Type = “

stss

”

Sync sample Box

Type = “

stss

”

Sync sample Box

Type = ‘

stsh’

Shadow Sync Box

Type = ‘

stsh’

Shadow Sync Box

Type = ‘stz2’, ‘co64’ , ‘

padb’

, ‘

stdp’

Misc

… Boxes

Type = ‘stz2’, ‘co64’ , ‘

padb’

, ‘

stdp’

Misc

… Boxes

Type = ‘

sbsz’

Sub

-

Sample Size Box

Type = ‘

sbsz’

Sub

-

Sample Size Box

Type = ‘

sbss’

Sub

-

Sample to Sample Box

Type = ‘

sbss’

Sub

-

Sample to Sample Box

Type = ‘

sbda’

Sub

-

Sample Description Association Box

Type = ‘

sbda’

Sub

-

Sample Description Association Box

Type = ‘

sbsd’

Sub

-

Sample Description Box

Type = ‘

sbsd’

Sub

-

Sample Description Box

Sub

-

Sample Access Boxes

Figure 1: Stream Switching
2.1.3 Enhanced Group of Pictures (GOP)

What is an Enhanced Group of Pictures?

At the JVT Geneva Meeting a proposal to add an Enhanced Group of Pictures [21], [22] and has been accepted for JVT Working Draft Version Two (not yet released but see meeting report in [16]). The enhanced GOP concept has three key components:

(1) Random Access: The enhanced Gop’s contain a group of pictures whose inter-frame dependencies allow them to be decoded independently. This includes not only the normal short-term of B- and P-frames but also the multi-frame prediction dependencies, which arise from JVT's long-term prediction model.

(2) Disposable Pictures: The pictures in an enhanced GOP are structured so that disposable chains of pictures can be easily identified. This is done by dividing the pictures within a GOP into sub-sequences that may be disposed independently. In order to allow this, certain constraints on the inter-frame dependencies across and within sub-sequences are imposed.

(3) Layering Pictures: The pictures in an enhanced GOP can be divided in layers and constrained so that the higher layers are predicted only from pictures in lower layers and that pictures in higher layers may be disposed of without affecting the ability to decode other pictures.

Figure 2, reproduced from [22], shows an example of the structure of an enhanced GOP. In the example there are two layers and two sub-sequences. The enhancement layer sub-sequence can be dropped independently of each other.

[image: image5.wmf]Track Box

–

‘

trak’

Type = ‘

tkhd’

Track Header Box

Type = ‘

tref’

Track Reference Box

Edit List

–

‘

edls’

Edit List Box

–

‘

edts’

Media Box

–

‘

mdia’

Type = ‘

pard’

Parameter Set Description Box

Mandatory Box for JVT

Sample Table Box

–

‘

stbl’

Type = ‘

stsd’

Sample Description Box

Type = ‘

stts’

-

decoding

Time

-

to

-

sample Box

Type = ‘

stsc’

Sample

-

to

-

chunk Box

Chunk offset Box

Type = ‘

stsz’

Sample size Box

Type = ‘

ctts’

-

composition

Time

-

to

-

sample Box

Type = “

stss

”

Sync sample Box

Type = ‘

stsh’

Shadow Sync Box

Type = ‘stz2’, ‘co64’ , ‘

padb’

, ‘

stdp’

Misc

… Boxes

Type = ‘

spst’

Sample to Parameter Set Box

Sample to Parameter Set Box:

Mandatory

Track Box

–

‘

trak’

Type = ‘

tkhd’

Track Header Box

Type = ‘

tkhd’

Track Header Box

Type = ‘

tref’

Track Reference Box

Type = ‘

tref’

Track Reference Box

Edit List

–

‘

edls’

Edit List Box

–

‘

edts’

Edit List

–

‘

edls’

Edit List Box

–

‘

edts’

Media Box

–

‘

mdia’

Type = ‘

pard’

Parameter Set Description Box

Type = ‘

pard’

Parameter Set Description Box

Mandatory Box for JVT

Sample Table Box

–

‘

stbl’

Type = ‘

stsd’

Sample Description Box

Type = ‘

stsd’

Sample Description Box

Type = ‘

stts’

-

decoding

Time

-

to

-

sample Box

Type = ‘

stts’

-

decoding

Time

-

to

-

sample Box

Type = ‘

stsc’

Sample

-

to

-

chunk Box

Type = ‘

stsc’

Sample

-

to

-

chunk Box

Chunk offset Box

Chunk offset Box

Type = ‘

stsz’

Sample size Box

Type = ‘

stsz’

Sample size Box

Type = ‘

ctts’

-

composition

Time

-

to

-

sample Box

Type = ‘

ctts’

-

composition

Time

-

to

-

sample Box

Type = “

stss

”

Sync sample Box

Type = “

stss

”

Sync sample Box

Type = ‘

stsh’

Shadow Sync Box

Type = ‘

stsh’

Shadow Sync Box

Type = ‘stz2’, ‘co64’ , ‘

padb’

, ‘

stdp’

Misc

… Boxes

Type = ‘stz2’, ‘co64’ , ‘

padb’

, ‘

stdp’

Misc

… Boxes

Type = ‘

spst’

Sample to Parameter Set Box

Sample to Parameter Set Box:

Mandatory

Figure 2: Temporal scalability in an enhanced GOP.

3 Proposal Overview

This section contains an overview of our proposal for a MP4-based JVT file format.

3.1 Design Goals

In designing an extension to the MP4 for JVT extended capabilities we had the following major design goals.

NAL Independence: As stated in the general requirements for the MPEG-4 file format, the file format must be transport independent. This implies that the file format must be, whenever possible, independent of any particular NAL. Currently, the JVT specification includes a generic packet-oriented format and a generic bit-stream format. While we could store either format (or both) formats in the file we propose to use the packet-oriented payload format as the basis for storage in the file format as this format is the most generic.

NAL Conversion Flexibility: The file format must support conversion of the JVT video stream data stored in the file format into deliverable data.. As, different NALs can make different decision choices, about the manner of packetizing the video data for delivery, , we have decided to store only the video coding data in the elementary stream.

Architectural Compatibility: Any extensions should be in keeping with the MP4 design philosophy. Wherever possible we have tried to design the extensions using approaches similar to those used in the existing MP4 data structures. For example, the metadata we propose for accessing access unit fragments follows a design similar to that already used for accessing access units.

Minimal Extensions: Extension should be kept to a minimum. Where we are aware of an alternative design that does not extend MP4, we have included this and indicated why we feel the proposed extension is a better solution.

Simplicity: The extension should be as simple as possible, both in terms of understanding and implementation complexity.

Generic: We have strived to create solutions that are not JVT specific but can be used for other media formats. For example, we have added the notion of a sample fragment, as this is a generic concept for addressing fragments within a single sample.

3.2 Proposed Extensions

In this contribution we propose extending the MP4 file format in three major areas:

1. Sample Fragment Access & Description: Supports addressing of parts (i.e. fragments) within a single sample and representing the associated metadata for sample fragments. This supports Access Unit Fragment (slice-level) access for JVT video.

2. Sequence Access & Description: Supports addressing non-contiguous sequences of samples and representing their associated metadata. We use sequences to implement the enhanced GOP’s, layering, sub-sequences, as well as parameter sets.

3. Switch Sample Sets: Supports defining sets of samples (i.e. pictures) whose reconstruction is identical but whose reference samples (i.e. pictures) may be different. This can be used to implement stream switching as well as other SP-picture functions, including both random access and error recovery.

4 JVT Elementary Stream Design

In this section we address the definition of an elementary stream format to store JVT video content in the MP4 file format. While JVT video defines both a generic packet-oriented carriage format for video data, parameter sets, and SEI messages and a similar format with start codes attached for bit-stream carriage, it does not define the high-level syntax that specifies how these are organized into a single stream;

4.1 High-Level Syntax

Unlike other adaptation layers, which can optimize the format for carriage of JVT content on a particular systems layer, the MP4 stream format must be as generic as possible so that a NAL can package the data stored in the file for delivery over any systems layer. In MP4, a Network Adaptation layer can be implemented through the MP4 hint tracks, which specifies how to form packets or streams from the JVT stream data and any other necessary control and encapsulation data.

We propose using the packet-oriented payload format for JVT video storage rather than the bit stream format as most uses of the file format can be expected to be for direct playback, in which case start codes are unnecessary, and for streaming over packet-oriented networks, which also do not require start codes. A bit stream network adaptation can add the necessary start codes when streaming from the file format by prefixing them as necessary. If desired, the format proposed below can be easily modified to allow the optional inclusion of start codes before each payload.

Currently, the generic payload types fall into three classes:

1. Video Data Payload. The generic payload formats containing slice data (unpartitioned/data partitioned (partition A, B, or C)) and initial decoder reset payloads.

2. SEI Message Payloads. The generic payloads contain supplemental enhancement messages.

3. Parameter Set Payloads. The generic payloads contain parameter value information for controlling video decoding.

4. Compound Payload. The generic payload aggregates a series of non-compound payloads into a single payload.

[image: image6.wmf]Switch Sample

Set n

…

Switch Sample

Set 2

Switch Sample

Set 1

Switch Sample

Set n

…

Switch Sample

Set 2

Switch Sample

Set 1

Switch Sample

Information n

…

Switch Sample

Information 2

Switch Sample

Information 1

Switch Sample

Information n

…

Switch Sample

Information 2

Switch Sample

Information 1

Reference Sample #k

…

Reference Sample #1

Reference Sample

Count

Reference Track ID

Switch Sample

Sample Number

Switch Sample

Track ID

Reference Sample #k

…

Reference Sample #1

Reference Sample

Count

Reference Track ID

Switch Sample

Sample Number

Switch Sample

Track ID

(a) Shows all different payload types in a single stream.

[image: image7.wmf]P

12

1

xxx

S

12

P

22

2

2

S

2

Reference

Samples

Reference

Track

Switch Sample

Track

Switch

Sample

P

12

1

xxx

S

12

P

22

2

2

S

2

Reference

Samples

Reference

Track

Switch Sample

Track

Switch

Sample

(b) Shows video data payloads, parameter sets, and SEI messages stored separately.

Figure 3 Alternative High-Level Syntax Structures for MP4 Storage Adaptation Layer
Figure 3 shows three different possible structures for a JVT elementary stream structure. In the interleaved design (a), all payload formats are stored, interleaved with each other, directly in the elementary stream. This is essentially a single channel model with all information delivered in-band. However, this design has several limitations:

· The delivery of SEI message payloads and parameter set payloads is likely to be highly NAL dependent and may be out-of-band from the video data channel.

· The values of parameters are not easily accessible to the NAL in the file format. For example, a NAL may decide to send all parameter sets as part of the session configuration before sending video data.

· The current hypothetical reference model is specified only with respect to video coding layer data and does not handle other payload types.

· Compound payloads are not needed in the file format. Any aggregation of data into higher-level structures is indicated by metadata external to the stream.

In design (b) video data is stored in the elementary stream but parameter sets and SEI messages are stored separately from the video data. The extensions to MP4 we propose later in this contribution support either design (a) or design (b), but our own inclination is towards design (b) as it more clearly expresses the separation of concerns. However, we are aware that has not been the existing practice and welcome feedback on these two approaches.

4.2 Access Unit Definition

In this section we discuss alternative definitions for access units (i.e. a sample in MP4 term) for JVT content storage. . Each access units can be further split into smaller units called access unit fragments. In the rest of this section sample and access unit will be used interchangeably.

[image: image8.wmf]P

21

P

22

S

2

P

24

P

25

P

11

P

12

S

1

P

14

P

15

S

12

Stream 2

(Track 2)

Stream 1

(Track 1)

Three different alternatives naturally come to mind to define a JVT access unit and are shown in Figure :
 Figure 4a:

1. [image: image9.wmf]Base layer

Enh

.

layer

1

P 0.1

P 0.3

P 0.6

P 0.2

P 0.5

P 0.4

I 0.0

P 1.8

P 1.7

P 1.9

P1.10

P1.11

…

P0.12

Access Unit = Single Payload (e.g. slice, SEI message, etc.). Each JVT payload is mapped to a single access unit. This means that each payload can have its own timing information, allowing total flexibility in accessing and sending information. Also, this solution does not require any extensions to support access unit fragments as an access unit is a fragment. However, this definition of an access unit violates the "smallest time attribution" definition of an access unit unless each payload is assigned a unique time. Moreover, flexibility comes at a high cost as overhead of data and in decoder complexity. For example, the size of MP4 sample-related metadata would increase many times (depending on how many slices are in a single picture). Nor is it clear that this level of flexibility is even needed. Therefore, we do not recommend this solution.

 Figure 5b:
2. [image: image10.wmf]AU

Header

Picture

Slice

Access Unit = Picture. Each access unit contains all payloads associated with that picture, including slice, data partitions, and so on. Each payload inside of the slice is an access unit fragment. This model is what is currently used by both MPEG-2 and MPEG-4 video and is probably the most natural definition of an access unit.

Figure 6c:
Figure 4: Alternative definition of Access Units for JVT Video
3. Access Unit = Compound Packet. Each access unit contains of one or more payloads to which the same timing information is attached. This include cases where the payloads for a single picture may be split into multiple access units, combined into a single access unit, or even allowing a single payload to be an access unit. While this is the most general definition of an access unit for JVT video, it is also requires more study on the decoding model for JVT, which is still not clearly specified.

Given that defining an access unit as a group of payload related to a single picture is the most straightforward definition, we adopt that definition of an access unit or sample in the rest of this contribution. However we note that all of the machinery we have proposed here would also work for the case where an Access Unit is a compound packet.

5 Addressing Access Unit Fragments

One of the new requirements for the JVT file format is that information stored in the file be addressable at the slice or access unit fragment level to support flexible packetization. While the existing MP4 design can address a single access unit, it does not support access unit fragment access. This section introduces an extension of the current MP4 File Format to support addressing access unit fragments. The gist of our proposal is to add a new level, called a sample fragment, below the existing sample level to MP4 and to store metadata about sample fragments inside of the file. A sample fragment represents a structural unit within a single sample. For example, in JVT a sample fragment can be a single slice or even a data-partition part of a single slice.
5.1 Concepts

We suggest adding the notion of a sample fragment and a sample fragment description to the MP4 architecture. Each sample is divided into a contiguous sequence of sample fragments. Figure 7 shows the extended MP4 media stream model with sample fragments.

[image: image1.wmf]Track

Track

Sample

Sample

Sample

Sample

Sample

Sample

Sub

-

Sample

Sub

-

Sample

Sub

-

Sample

Sub

-

Sample

Sub

-

Sample

Movie

Figure 7: Extending sample to address at the sample fragment level
We propose to extend the MP4 file format to include optional metadata to allow addressing sample fragments and to represent the meta-data associated with each sample fragment. This enables support of access unit fragment (slice-level) access for JVT video.

5.2 Sample Fragment Metadata for MP4

We propose adding the boxes shown in
Figure 8
 to represent sample fragment metadata. The approach taken is conceptually similar to the existing MP4 sample metadata structure. The use of these sample fragment information boxes is optional. Even for the specific case of JVT video, the use of sample fragment information is optional for applications that do not need to address information below the level of a sample.

A key point with our design is that new sample fragments metadata structures are generic; that is, they support access unit fragments for any stream, and are not limited to just JVT slice access.
[image: image11.wmf]AU

Header

Picture

Slice

Picture

Slice

Params

Picture

Slice

…

SEI

Picture

Slice

AU Fragments (AUF)

Figure 8: Extended Tables for Sample Fragment Access

These metadata structures are outlined in the following subsections.
5.2.1 Sample Fragment Size Box

This box contains a table giving the size in bytes of each sample fragment as shown in
Figure 9
 The sample fragments within a sample can have different sizes. The media data for each sample fragment is assumed to be contiguous within a sample's media data.

	Sample Fragment Size 1

	Sample Fragment Size 2

	Sample Fragment Size 3

	

	

	Sample Fragment Size n

Figure 9: Example of a Sample Fragment Size Table

5.2.2 Sample Fragment To Sample Box

The Sample Fragment to Sample box indicates the number of sample fragments in each sample. Each entry in this table gives the index of the first sample of a run of samples with the same number of sample fragments as shown in Figure 10.

	First Sample
	Sample Fragments per Sample

	1
	18

	5
	20

	
	

	…
	…

Figure 10: Example of a Sample Fragment to Sample Table

5.2.3 Sample Fragment Description Box

The Sample Fragment Description box contains a set of entries, each of which is a description of a set of sample fragments as shown in
Figure 11
. These entries are referred from the Sample Fragment Description Association Box. The Sample Fragment Description is an abstract class similar to the Sample Description table in MP4. To represent a concrete sample fragment description. For example, a sample fragment description could contain information on JVT data partitions or the parameter set associated with a sample. Other applications might be to define regions-of-interest.
	Sample Fragment Desc 1

	Sample Fragment Desc 2

	Sample Fragment Desc 3

	

	

	Sample Fragment Desc n

Figure 11: Example of a Sample Fragment Description Table
5.3 Sample Fragment Description Association Box

The Sample Fragment Description Association Box associates a sample fragment description with each sample fragment. This table indicates the sample fragment description ID associated with each sample fragment as shown in Figure 12. Multiple instances of this table are allowed so that different kinds of descriptions can be associated with sample fragments.
	First Sample Fragment
	Sample Fragment Desc ID

	1
	1

	19
	2

	37
	3

	40
	5

	
	

	…
	…

Figure 12: Example of a Sample Fragment Description Association Table
6 Sequences: Grouping of Samples

In this section we propose to extend the MP4 to support addressing non-contiguous sequences of samples and representing their associated metadata by adding support for sequences to MP4.
A sequence is a set of samples, possibly non-consecutive, within a single stream. Examples of sequences could be the set of sample associated with an enhanced GOP, a layer, a particular parameter sets, and so on.
We propose adding a series of new object to the MP4 to represent the sequence level metadata. We use a similar approach to the way the existing MP4 file format does to represent information about its samples. The use of these sequence level information boxes is optional, except for the particular case of parameter sets, which are mandatory as they contain information about the encoding parameters that specify how to decode each sample/sample fragment within the JVT video.
6.1 Sequence Metadata
6.1.1 Sample Sequence Box

Samples within a track can be grouped into sequences, which reflect the high-level syntax of the underlying coding scheme. The Sample Sequence Box can be used to find the set of samples that make up a particular type of sequence and the description associated with that sequence as shown in Figure 13. As there can be multiple types of sequences within the same track, multiple instances of these Sample Sequence boxes are allowed. The instance types could be for example - ‘gops’ for GOP sequences, ‘layr’ for layers, ‘pars’ for parameter sets, etc.

	First Sample
	Sequence Desc ID

	3
	2

	4
	1

	3
	2

	
	

	…
	…

Figure 13: Example of a Sample Sequence Box
6.1.2 Sequence Description Box:

This description table contains a set of entries, each of which is a description of a particular sequence as shown in Figure 14. These entries are referred to from the Sample Sequence Box. Each entry in the table contains a Sequence descriptor. The descriptive information could be related to particular sequences and any other information needed to define/characterize these sequences.

	Sequence Desc 1

	Sequence Desc 2

	Sequence Desc 3

	

	

	Sequence Desc n

Figure 14: Example of a Sequence Description Box
The boxes proposed above can be contained in the Sample Table Box in the existing MP4 structure as shown in Figure 15
[image: image2.wmf]Sample Table Box

–

‘

stbl’

Type = ‘

stsd’

Sample Description Box

Type = ‘

stsd’

Sample Description Box

Type = ‘

stts’

-

decoding

Time

-

to

-

sample Box

Type = ‘

stts’

-

decoding

Time

-

to

-

sample Box

Type = ‘

stsc’

Sample

-

to

-

chunk Box

Type = ‘

stsc’

Sample

-

to

-

chunk Box

Chunk offset Box

Chunk offset Box

Type = ‘

stsz’

Sample size Box

Type = ‘

stsz’

Sample size Box

Type = ‘

ctts’

-

composition

Time

-

to

-

sample Box

Type = ‘

ctts’

-

composition

Time

-

to

-

sample Box

Type = “

stss

”

Sync sample Box

Type = “

stss

”

Sync sample Box

Type = ‘

stsh’

Shadow Sync Box

Type = ‘

stsh’

Shadow Sync Box

Type = ‘stz2’, ‘co64’ , ‘

padb’

, ‘

stdp’

Misc

… Boxes

Type = ‘stz2’, ‘co64’ , ‘

padb’

, ‘

stdp’

Misc

… Boxes

Type = ‘

sqpt’

Sample Sequence

Box

Type = ‘

sqpt’

Sample Sequence

Box

Type = ‘

seqd’

Sequence Description

Box

Type = ‘

seqd’

Sequence Description

Box

Sequences Access Boxes

Figure 15: Extended Boxes for Sequence Access
6.2 Parameter Sets:

In JVT all information that was traditionally conveyed in sequences, group-of-picture, or picture headers is now conveyed out of band through 'parameter sets'. Encoder and decoders maintain a synchronized set of 'parameter sets', which contain all information associated with a picture and/or higher syntax layers. Hence storage of these parameter sets within a file is crucial when defining a file format for JVT video. We use the following boxes to enable storage and reference of parameter sets.

6.2.1 Parameter Set Description Box:

The Parameter Set Description box contains a table whose entries describe the different parameter sets are to be used to decode
 the JVT Video as shown in
Figure 16
. Each parameter set contains information from the sequence, GOP, picture and slice layers. These entries are referred to from the Sample to Parameter Set Box or the Sample Fragment to Parameter Set Box.

As the parameter set contains both sequence/pictute and slice level information, it could be referenced from either the sample/sample fragment level. To provide support for this we have the Sample to Parameter Set Box and the Sample Fragment to Parameter Set Box.

	Parameter Set 1

	Parameter Set 2

	Parameter Set 3

	

	

	Parameter Set n

Figure 16: Example of a Parameter Set Description Box

6.2.2 Sample to Parameter Set Box:

This box is used to define the relationship between each sample and the available parameter sets in the Parameter Set Description Box. Each entry in this table indicates the first sample in the run of samples utilizing the same parameter set index (into the Parameter Set Description Box) as shown in Figure 17. This is a required table in the JVT file format.

	First Sample
	Parameter Set Index

	1
	1

	50
	2

	75
	1

	
	

	…
	…

Figure 17: Example of a Sample to Parameter Set Box
6.2.3 Sample Fragment to Parameter Set Box:

This box is used to define the relationship between each sample fragment and the available parameter sets in the Parameter Set Description Box as shown in Figure 18.
An instance of the Sample Fragment Description Association Box [3] is used, with the description table identifier type set as ‘pars’ for this case. This box is optional in the JVT file format but when present it overrides the Sample to Parameter Set Box.

	First Sample Fragment
	Sample Fragment Desc ID

	1
	1

	40
	2

	
	

	…
	…

Figure 18: Example of a Sample Fragment to Parameter Set Box
The boxes proposed above can be contained in the Track Box and the Sample Table Box in the existing MP4 structure as shown in Figure 19.

	[image: image12.wmf]AU

Header

Slice

Slice

Params

Slice

…

SEI

Slice

AUF

Count

AUF

Header

Slice

Data

AU Fragments (AUF)

Figure 19: Extended Boxes for Parameter Set Access
7 Stream Switching

In this section we propose an extension of the MP4 file format to support special feature of the JVT code, streaming switching. Stream switching is a feature that allows switching between bit streams that are encoded with different parameters. In this contribution we introduce the concept of a switch sample set to represent the metadata needed for stream switching.

Figure 1 shows how SP frames are used to switch between two different bit streams. In this example, we switch between stream one at frame S1 through the SP-picture S12. So the playback moves from P12 in stream 1, followed by the transition at S12, then continuing on with P24 in stream 2.

Storing Alternative Streams in MP4

The ISO media file format (but not the original specification of the MPEG-4 file format) support the use of what is called alternate tracks. Each track can optionally specify an alternate group (in the track header box) that groups together alternate encodings of the same content. Thus, the each alternate bit stream can be stored as a separate track in the MP4 and related together as alternate tracks.

Thus, the MP4 file format already supports storing alternative streams for stream switching

Storing Switch Pictures in MP4

Switch pictures are logically separate from the bit streams that we are switching from. So the question arises: Where should we store switch pictures in a MP4 file? We see at least two different alternatives, both already supported by MP4:

(1) Store the pictures inside a separate inactive stream (track) inside the MP4 file.

(2) Include the pictures inside the bit streams themselves but use edit lists so that these pictures are not access during normal (non-switching playback).

Shadow Sync Samples

MP4 defines an optional table for special samples, called "shadow sync" samples that are used to support random access. Shadow sync samples are substituted for a single sample when accessing the stream at random. Typically, they would be implemented as single independently decodable samples whose reconstruction is identical to another sample, like a P-frame, occurring in the normal playback stream.

An obvious question arises if this mechanism is sufficient to implement bit stream switching and the SP-pictures. We argue that the answer is no for the following reasons:

(1) Shadow sync samples must be independently decodable as a single sample. There is no such restriction for SP-pictures.

(2) Shadow sync samples are used for "shadowing" a sample within a single track; there is not concept of a cross-track sample. Shadow sync samples cannot, therefore, be used for stream switching.

7.1 Switch Sample Sets

We propose the notion of a switch sample sets as a generic way to implement the JVT functions based on SP-pictures: stream switching, error recovery, and random access/splicing (see [18]). A switch sample set is a set of samples whose decoded values are identical but which may use different reference samples. Each member of a switch sample set is called a switch sample. A JVT SP-picture is one implementation of a switch sample. A reference sample is a sample used to predict the value of a switch sample. For example, when switching from stream 1 to stream 2 at a sample S1 in stream 1 and S2 in stream2 through an SP-picture SP12 (see Figure 1), the switch set would contain S2 and SP12, and SP12 would have it reference frames being samples being prior samples in SP. in with SP12 having its stream switch their will be a switch sample set entry containing the sample in s

The representation of a switch sample set is summarized in Figure 20. The key idea is that each switch indicates explicitly its dependencies on other reference samples, which need not be in the same track (stream) as the switch sample.
[image: image13.wmf]Slice

Slice

Params

Slice

…

SEI

Slice

SEI

JVT Elementary Stream Data

Figure 20 Switch Sample Set Representation

Each sample entry in the table describes a group of switch samples whose reconstruction is (approximately) identical but which may be predicted from different reference samples. For each switch sample in a switch sample set we represent the location of the switch sample data (both its track and sample number), the track containing the reference samples followed a list of zero or reference sample numbers. The reference samples indicate the sample used a reference for predicting this sample (the dependencies are direct and do not include indirect dependencies).

7.2 Stream Switching Using Switch Sample Sets

In this section we discuss how switch sample are used for stream switching. Consider the example we illustrated in Figure 1. Suppose we want to switch from stream 1 to stream 2. In this case the switch sample set comprises two samples:

[image: image14.wmf]Slice

Slice

Slice

…

SEI

Slice

SEI

Video

Track

SEI

…

SEI

SEI

SEI

Slice

Slice

SEI

Track

T1

T2

T3

Tm

Tn

SEI Sample

SEI Sample

Time

…

…

Figure 21: Switch Picture Set for Switching for Stream 1 to 2

The entry for S2 indicates that that it is stored in stream 2 and that its reference frame is sample P22 in stream 2. Similarly, the entry for the SP-picture indicates the sample S12 in track xxx (we have not specified where it is stored) is predicted from sample P12 in stream 1. Note that xxx can be different from stream 1 or even stream 2.

Note that the switch sample set does not include sample S1 from stream 1 as S1 is not identically reconstructed when compared to S12 and S2. The link between stream 1 and stream 2 is indirect—through the reference picture for switch sample (picture) S12.

In general, to switch from a stream j to stream k, we need to

1. Find the candidate switch points, which is the intersection of
· All switch sample sets that contain reference track = j
· All switch sample sets that contain switch sample track = k.

2. Find a sample set in this collection where all reference samples are available. Typically if the reference sample is a P frame, then sample one before switching.

3. Select a switch sample and decode the switch sample.

4. Continue playback using the new stream k.

8 Optimizing MP4 Metadata Storage for JVT Video

Many of the tables we have proposed have a similar structure in that they represent an association between a sample (fragment) and a property of that value. For example, the Sample Fragment Description Association table is an association between a sample fragment and a Sample Fragment description ID.

Schematically, we can represent the structure of these tables as:

	Item #

(E.g. Sample or Sample Fragment #)
	Item Property

	1
	1

	2
	1

	3
	4

	4
	5

	…
	…

Figure 22: Example of a Sample Fragment to Parameter Set Box
In our proposal, as with many such similar structures in MP4 the table are run-length compressed so that repeated entries are encoded as a single entry in the table:

	Item #
	Item Property

	1
	1

	3
	4

	4
	5

	…
	…

However, these structures cannot handle more common patterns such as repeated occurrences of the same sequence:

[image: image15.wmf]Slice

Slice

Slice

…

Param

Slice

Param

Video

Track

Param

…

Param

Param

Param

Slice

Slice

Parameter

Track

T1

T2

T3

Tm

Tn

ParameterSet

Sample

Time

…

…

Such sequences are common when describing, for example, representing the types of fragments in a JVT access unit. We propose representing a repeated sequence occurrence with a reference to a prior sequence occurrence and the number of times the sequence repeats.

We can encode a repeated sequence occurrence in the property value field, which we assume is thirty-two bits for the purpose of explanation. To encode we use the MSB of the property value field to signal the presence of an occurrence of a sequence as shown in Figure 23.

[image: image16.wmf]First Sub

-

Sample

Sub

-

Sample Desc ID

1

………

.. 0000 0000

19

………

.. 0000 1110

37

………

.. 0001 0010

38

………

.. 1000 0000

39

………

.. 0000 0010

40

………

.. 0000 0100

41

………

.. 0000 1000

42

………

.. 0000 0010

43

………

.. 0000 0100

44

………

.. 0000 1000

…

…

First Sub

-

Sample

Sub

-

Sample Desc ID

1

………

.. 0000 0000

19

………

.. 0000 1110

37

………

.. 0001 0010

38

………

.. 1000 0000

39

………

.. 0000 0010

40

………

.. 0000 0100

41

………

.. 0000 1000

42

………

.. 0000 0010

43

………

.. 0000 0100

44

………

.. 0000 1000

…

…

First Sub

-

Sample

First Sub

-

Sample

First Sub

-

Sample

Sub

-

Sample Desc ID

Sub

-

Sample Desc ID

Sub

-

Sample Desc ID

1

1

………

.. 0000 0000

………

.. 0000 0000

19

19

………

.. 0000 1110

………

.. 0000 1110

37

37

………

.. 0001 0010

………

.. 0001 0010

38

38

………

.. 1000 0000

………

.. 1000 0000

39

39

………

.. 0000 0010

………

.. 0000 0010

40

40

………

.. 0000 0100

………

.. 0000 0100

41

41

………

.. 0000 1000

………

.. 0000 1000

42

42

………

.. 0000 0010

………

.. 0000 0010

43

43

………

.. 0000 0100

………

.. 0000 0100

44

44

………

.. 0000 1000

………

.. 0000 1000

…

…

…

…

First Sub

-

Sample

Sub

-

Sample Desc ID

1

………

.. 0000 0000

19

………

.. 0000 1110

37

………

.. 0001 0010

38

………

.. 1000 0000

39

………

.. 0000 0010

41

………

.. 0000 0100

41

………

.. 0000 1000

42

…

…

First Sub

-

Sample

Sub

-

Sample Desc ID

1

………

.. 0000 0000

19

………

.. 0000 1110

37

………

.. 0001 0010

38

………

.. 1000 0000

39

………

.. 0000 0010

41

………

.. 0000 0100

41

………

.. 0000 1000

42

…

…

First Sub

-

Sample

First Sub

-

Sample

First Sub

-

Sample

Sub

-

Sample Desc ID

Sub

-

Sample Desc ID

Sub

-

Sample Desc ID

1

1

………

.. 0000 0000

………

.. 0000 0000

19

19

………

.. 0000 1110

………

.. 0000 1110

37

37

………

.. 0001 0010

………

.. 0001 0010

38

38

………

.. 1000 0000

………

.. 1000 0000

39

39

………

.. 0000 0010

………

.. 0000 0010

41

41

………

.. 0000 0100

………

.. 0000 0100

41

41

………

.. 0000 1000

………

.. 0000 1000

42

42

…

…

…

…

Refers to

Uncompressed Table

Compressed with sequence

repetition.

Figure 23: Encoding of Run of Sequences inside Association Value
The number of time the sequence repeated is calculated from the difference between this "First Sample" value and the next entry in the table divided by the "occurrence length". The other information for encoding a repeated sequence occurrence is:

Run of Sequence Flag: If set to 1 indicates that this is an occurrence of a repeated sequences. Otherwise, if zero then this is an association value (1 bit).
Occurrence Index: Index in box of the prior sequence occurrence (m bits, where m is the number of bits required to represent the number of entries)
Occurrence Length: Indicate the length of the repeated sequence occurrence (8 bits).

This can implemented, for example, using the following syntax for Sample Fragment to Sample box:

aligned(8) class SampleFragmentToSampleBox

extends FullBox(‘sbss’, version = 0, 0) {

unsigned int(32)
entry_count;

unsigned int(8)
entry_size;

for (i=1; i <= entry_count; i++) {

unsigned int(32)
first_sample;

bit(1)

run_of_sequence;

if(run_of_sequence)

{

// An occurrence of a previously repeated sequence

unsigned int(log2(entry_count))
occurrence_index;

unsigned int(n)

occurrence_length;

}

else

{

unsigned int(8*entry_size)
fragments_per_sample;

}

}
}

9 Related Work

In this section we compare our proposal to two related alternatives. One is the interim file format currently defined in the JVT specification [10]and the other is a proposal from Matsushita on a common AVC packet format for MPEG systems.

9.1 Interim File Format

In this section we compare our proposed solution to the JVT interim file format (JVTIFF), a dedicated JVT file format optimized for JVT video storage. After analyzing the strengths and weaknesses of designing a solution based on MP4, this was the direction taken in the proposal for the H.26L file format [10] and which is currently included in [16] as the "JVT interim file format".

First, we briefly summarize the architecture of the JVT Interim File Format as specified in [16]. Next we compare this design with our proposed MP4 extensions.

9.1.1 JVT Interim File Format Design

Figure 24 shows a summary of the structure of the JVTIFF. The JVTIFF design is based on "clumps", which are equivalent to the MP4 boxes. A JVTIFF file is self-contained, with both media data (i.e. JVT coded data) and associated metadata.

[image: image3.emf]File

Type

File

Header

Content

Info

Alternative

Track Info

Parameter

Set

Identifies

JVT file

JVT Header

Information

Simple

metadata

Information on set of

alternative tracks

Indicates

global

coding

parameters Segment Alternate Track

Header

Switch Picture

Alternate Track

Media Data

Picture

Data

Info

Payload

Info

Payload Payload

Slice or partition

A or partition B

Picture

Data

Info

Picture

Data

Info

Segment

Figure 24 Structure of the JVT Interim File (need to double check above diagram)
The file starts with a file header type (based on the ISO file format File Type box), which indicates that this is a JVT file. The file divides the video stream into independently decodable segments. Segment contains both the media data and metadata for their contained pictures. The metadata for each picture in turn contains the metadata for each slice or data partition that make up the picture. The slice or data partition is the smallest unit that can be addressed in the JVTIFF file format.

9.1.2 Access Unit Fragment Access

1. Access Unit Fragment Addressing. The metadata in the JVTIFF goes down to the level of a slice, allowing a NAL to access information at the slice; that is, the access unit fragment level for packetization.

2. Stream Switching: The JVTIFF encodes information about different encoding of each segment in the file, along with general information about each alternate version within a segment. The switch points are indicated by metadata giving information about switch pictures.

3. Enhanced GOP: A proposed revision to the JVTIFF adds new element to the file structure for metadata on layers and sub-sequence element to the file format. These are added to the alternate track "clump".

In its current design, the JVTIFF metadata is slice-based and already supports access to video data at the slice (i.e. sample fragment) level. In terms of access unit fragment access, both approaches provide the same capabilities. In terms of storage overhead, more detailed study is needed to compare our approach to the JVT but we do not anticipate significant differences in size.

9.1.3 Sequences

The current interim JVT file format [3], defines a Segment Clump, which acts as a container to an Alternate Track Header Clump. This clump contains a picture information clump and an optional layer clump. The picture information clump contains an indication of the number of the pictures in the alternate track in this segment. In addition, the clump contains picture information for each of these pictures. The optional layer clump defines the layer information of the pictures in the segment. Layers can be ordered hierarchically based on their dependency on each other. A Layer Clump contains at least one Sub-Sequence Clump. Support for the storage of Parameter sets is provided in the form of a Parameter Set Clump, which can occur repeatedly within the file and are uniquely identified by a parameterSetID.
9.1.4 Stream Switching

The interim file defines a "Switch Picture Clump" to represent information about "interchangeable representations", what we call switch samples. At a high level the representation is similar to our "Switch Picture" set but it differs in the details. In terms of what we call a switch sample, the Switch Picture Clump only contains the switch sample track and switch sample number, but no information about its reference samples. In our example, we were not sure whether a Switch Picture Clump would {S1, S2, S12} or, as in our case, only {S1, S12}. The former seems to violate the requirement that the pictures be "interchangeable representations" and the latter does give information to know where to switch streams – we have no link to S2 (unless we assume 1-1 time mappings).

9.2 Common MPEG-4 AVC Packet Structure (M8325)

This contribution from Matsushita proposes a single common definition of an "AVC packet" for use in all MPEG Systems including MPEG-2 Systems, MPEG-4 Systems, and the MP4 file format. Essentially, this proposal is the definition of a generic access unit payload format for MPEG systems, where the payload contains a header with payload types and lengths, followed by the actual data.

Essentially the difference between our proposal and this proposal is whether the data about sample should be included inside the stream in the access unit header or stored outside the stream as metadata. If access to access unit fragments (i.e. JVT payloads) is required, then M8325 would require that each us to read the header for each access unit from the media data, whereas our proposal stores this information and does not require access to the media data.
M8325 states that "increases the size of the 'moov' drastically". While it true that storing sample fragment metadata will increase the size of the movie metadata, the total size of the MP4, including metadata and media data, using our solution or M835 will be roughly the same. This is because the difference between the proposal is largely a matter of where fragment access data (type codes and lengths) is stored: in movie metadata (our proposal) or in the media data (M8325) itself.

10 Conclusions

In this proposal we have suggested to extend the current MP4 file format to include access unit fragment access, sequences to support enhanced GOP functions (layering and sub-sequences) and sample switch sets to support stream switching.

11 References

[1] T. Walker, A. Tabatabai, M. Zubair Visharam, D. Singer, Supporting MPEG-4 Part 10 with the MP4 File Format: Some Initial Thoughts, ISO/IEC JTC1/SC29/WG11 M8055, March 2002.

[2] T. Walker, A. Tabatabai, M. Zubair Visharam, D. Singer, Supporting MPEG-4 Part 10 with the MP4 File Format: Some Initial Thoughts, ISO/IEC JTC1/SC29/WG11 M8056, March 2002.

[3] A. Tabatabai, T. Walker, M. Zubair Visharam, D. Singer. Support for MPEG-4 Part 10 Slice-level access in MP4: Some Initial Considerations, ISO/IEC JTC1/SC29/WG11 M8057, March 2002.
[4] A. Tabatabai, T. Walker, M. Zubair Visharam, D. Singer. Support for MPEG-4 Part 10 Stream Switching in MP4: Some Initial Considerations, ISO/IEC JTC1/SC29/WG11 M8058, March 2002.
[5] Proposed Revised Common Text Multimedia File Format Specification, ISO/IEC JTC1/SC29/WG11 N4418, December 2001.
[6] Amendment 6: MP4 Version 2, the MPEG-4 File Format, ISO/IEC JTC1/SC29/WG11/N4420, December 2001.
[7] Requirements for AVC Codec, ISO/IEC JTC1/SC29/WG11 N4672, March 2002 4672

[8] Proposed guidelines for the carriage of AVC content within MPEG Framework, ISO/IEC JTC1/SC29/WG11/N4714, March 2002

[9] M. Hannuksela, H.26L File Format, ITU/VCEG VCEG-O44, November 2001
[10] Joint Working Group, JVT Working Draft Version 2,JVTB-118r7, April 2002.
[11] Miska M. Hannuksela, Enhanced Concept of GOP document JVT-B42, Joint Video Working Group Meeting, Austin, USA, Geneva, February 2002.
[12] G. Sullivan, T. Wiegand, A. Luthra, JVT 2nd Meeting Report, Jan 29 – Feb 1 2002, document JVT-B001d4, (VCEG) Meeting, Geneva, February 2002.
[13] Coding of Audio-Visual Objects – Part 1: Systems, ISO/IEC 14496-1:2001 International Standard
[14] Requirements for JVT Codec, ISO/IEC JTC1/SC29/WG11/N4508, Pattaya, Thailand, December 2001.
[15] Apple Computer, The QuickTime File Format Specification, http://www.apple.com/quicktime/resources/qtfileformat.pdf.

[16] Joint Working Group, JVT Working Draft Version 1, (available from ftp://standard.pictel.com/video-site/H26L/jvt11.doc)
[17] R. Kurceren and M. Karczewicz, A Proposal for SP-frames, document VCEG-L27, ITU-T Video Coding Experts Group (VCEG) Meeting, Austin, USA, 2-4 April 2001.
[18] R. Kurceren and M. Karczewicz, SP-frame Demonstrations, document VCEG-N42, ITU-T Video Coding Experts Group (VCEG) Meeting, Austin, USA, April 2001.
[19] S. Wenger, M. Hannuksela, T. Stockhammer, RTP payload Format for JVT Video, IETF Internet Draft (available from ftp://ftp.ietf.org/internet-drafts/draft-wenger-avt-rtp-jvt-00.txt).

[20] Requirements Group, MPEG-4 Requirements v.17, ISO/IEC, JTC1/SC29/WG11/ N4319, Sydney, Australia, July 2001.
[21] M. Hannuksela, Simple Definition of GOP for Random Access, document JVT-B41, Joint Video Working Group Meeting, Geneva, February 2001.
[22] M. Hannuksela, Enhanced Concept of GOP, document JVT-B42, Joint Video Working Group Meeting, Austin, USA, Geneva, February 2002.
[23] M. Hannuksela, H.26L File Format, document VCEG-O41r1, Joint Video Working Group Meeting, Pattaya, Thailand, December 2001.
[24] M. Hannuksela, Requirements for H.26L File Format, document VCEG-N65, Joint Video Working Group Meeting, Pattaya, Thailand, December 2001.
[25] Coding of Audio-Visual Objects – Part 1: Systems, ISO/IEC 14496-1:2001 International Standard
[26] Joint Working Group, JVT Working Draft Version 1, (available from ftp://standard.pictel.com/video-site/H26L/jvt11.doc)
[27] Y. Matsui, Common packet structures for MPEG4 AVC, ISO/IEC JTC1/SC29/WG11 M8325, May 2002.
12 Alternatives: Some Additional Proposals

In this extra section we include some additional proposal that are more exploratory. We do claim to have a fully worked out solutions for these areas.

12.1 SEI Data Storage

Normally, SEI data would be stored in the same elementary stream as the video coding layer data as shown in Figure 25. However, another view is that SEI messages are really separate from the video data they pertain. So we propose an alternative solution in a JVT file is stored as two elementary stream, i.e. MPs, with one track containing the video coding data only and a separate track containing the SEI messages. As shown in Figure 26, The two tracks are linked with a track relationship indicating they are synchronized with each other and that the SEI Message track is dependent on the video data track, but not vice versa. The video track contains only video samples, which are made of video data payloads. On the other hand, the SEI track is made up of SEI samples, which contain one or more SEI messages. The synchronization between SEI messages and the video coding is through the common timeline that they share. For example, in Figure 26 the second video sample is linked with the first SEI sample in the SEI track because they both have the common time T2.

Figure 25[image: image17.wmf]MSB

m+n+1 bits

LSB

Run of Sequence Flag

(1 bit)

Occurrence Index (m bits)

Length (n bits)

: SEI message “embedded” in the same elementary stream as video data.

[image: image18.emf]

AU

Header

Slice Slice Params Slice

…

SEI Slice

Figure 26: SEI messages are stored in a separate track from the video data.

12.2 Parameter Set Tracks

In the main part of this contribution we proposed supporting JVT parameter using sample fragment and sequence descriptions. However, there is an alternative solution similar to that discussed for SEI messages: we can create a separate “parameter track” whose samples are parameter sets. The link between the video track and the parameter tack is again through the timeline.

[image: image19.emf]

Param eter Set

SEI Messages

AU

Header

Slice Slice Slice

…

Slice

File:JVT-C143 (FF) v3.doc
Page: 2
Date Saved: 2002-05-01

