

INTERNATIONAL TELECOMMUNICATION UNION����TELECOMMUNICATION�STANDARDIZATION SECTOR

STUDY PERIOD 1997 - 2000�TD- -E(PLEN)

March 1997

Original: English���

Question 11, 12, 13, 14/16

STUDY GROUP 16 - CONTRIBUTION

SOURCE* :		RAPPORTEUR for Question 14 (G.Thom)

TITLE:			RECOMMENDATION H.245 - VERSION 2

This contribution provides text for version 2 of Recommendation H.245 "Control protocol for multimedia communication" which was Decided during the March 1997 Study Group 16 meeting.

Summary

This Recommendation specifies syntax and semantics of terminal information messages as well as procedures to use them for in-band negotiation at the start of or during communication. The messages cover receiving and transmitting capabilities as well as mode preference from the receiving end, logical channel signalling, and Control & Indication. Acknowledged signalling procedures are specified to ensure reliable audiovisual and data communication.

����

INTERNATIONAL TELECOMMUNICATION UNION��

ITU-T	H.245

TELECOMMUNICATION	(March 24, 1997)�STANDARDIZATION SECTOR�OF ITU

LINE TRANSMISSION OF NON-TELEPHONE�SIGNALS

�

�title �CONTROL PROTOCOL FOR MULTIMEDIA COMMUNICATION�����

ITU-T Recommendation H.245

		

�

FOREWORD

The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the International Tele�com�munication Union. The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, established the topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

ITU-T Recommendation H.245 was prepared by the ITU-T Study group 16 (199x-199x) and was approved by the WTSC (Place, Month xx-xx, 199x).

NOTES

1	"Shall" is used in this Recommendation to specify a mandatory requirement. "Should" is used in this Recommendation to specify a suggested, but not required, course of action. "May" is used to specify an optional course of action, without expressing a preference.

��������

ã ITU 199x

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

��CONTENTS

Page

�toc \o "1-3" �1	Scope	1

2	References	1

3	Definitions	4

4	Abbreviations	6

5	General	8

5.1	Master-slave determination	8

5.2	Capability exchange	8

5.3	Logical channel signalling procedures	9

5.4	Receive terminal close logical channel request	9

5.5	H.223 multiplex table entry modification	9

5.6	Audiovisual and data mode request	9

5.7	Round trip delay determination	9

5.8	Maintenance loops	9

5.9	Commands and indications	9

6	Messages: syntax	11

7	Messages: semantic definitions	52

7.1	Master Slave Determination messages	52

7.1.1	Master Slave Determination	52

7.1.2	Master Slave Determination Acknowledge	52

7.1.3	Master Slave Determination Reject	52

7.1.4	Master Slave Determination Release	52

7.2	Terminal capability messages	53

7.2.1	Overview	53

7.2.2	Terminal Capability Set	53

7.2.3	Terminal Capability Set Acknowledge	63

7.2.4	Terminal Capability Set Reject	63

7.2.5	Terminal Capability Set Release	63

7.3	Logical channel signalling messages	64

7.3.1	Open Logical Channel	64

7.3.2	Open Logical Channel Acknowledge	66

7.3.3	Open Logical Channel Reject	67

7.3.4	Open Logical Channel Confirm	68

7.3.5	Close Logical Channel	68

7.3.6	Close Logical Channel Acknowledge	69

7.3.7	Request Channel Close	69

7.3.8	Request Channel Close Acknowledge	69

7.3.9	Request Channel Close Reject	69

7.3.10	Request Channel Close Release	69

7.4	Multiplex Table signalling messages	70

7.4.1	Multiplex Entry Send	70

7.4.2	Multiplex Entry Send Acknowledge	70

7.4.3	Multiplex Entry Send Reject	70

7.4.4	Multiplex Entry Send Release	70

7.5	Request Multiplex Table signalling messages	71

7.5.1	Request Multiplex Entry	71

7.5.2	Request Multiplex Entry Acknowledge	71

7.5.3	Request Multiplex Entry Reject	71

7.5.4	Request Multiplex Entry Release	71

7.6	Request Mode messages	72

7.6.1	Request Mode	72

7.6.2	Request Mode Acknowledge	75

7.6.3	Request Mode Reject	75

7.6.4	Request Mode Release	75

7.7	Round Trip Delay messages	76

7.7.1	Round Trip Delay Request	76

7.7.2	Round Trip Delay Response	76

7.8	Maintenance Loop messages	76

7.8.1	Maintenance Loop Request	76

7.8.2	Maintenance Loop Acknowledge	76

7.8.3	Maintenance Loop Reject	76

7.8.4	Maintenance Loop Command Off	76

7.9	Communication Mode Messages	76

7.9.1	Communication Mode Command	76

7.9.2	Communication Mode Request	76

7.9.3	Communication Mode Response	76

7.11	Request Multiplex Configuration messages	77

7.11.1	Request Multiplex Configuration	77

7.11.2	Request Multiplex Configuration Acknowledge	77

7.11.3	Request Multiplex Configuration Reject	77

7.11.4	Request Multiplex Configuration Release	77

7.12	Conference Request and Response Messages	77

7.12.1	Terminal List Request	77

7.12.2	Terminal List Response	77

7.12.3	Make Me Chair	77

7.12.4	Cancel Make Me Chair	78

7.12.5	Make Me Chair Response	78

7.12.6	Drop Terminal	78

7.12.7	Terminal Drop Reject	78

7.12.8	RequestTerminal ID	78

7.12.9	MC Terminal ID Response	78

7.12.10	Enter H.243 Password Request	78

7.12.11	Password Response	78

7.12.12	Enter H.243 Terminal ID Request	78

7.12.13	Terminal ID Response	78

7.12.14	Enter H.243 Conference ID Request	78

7.12.15	Conference ID Response	78

7.12.16	Video Command Reject	78

7.12.17	Enter Extension Address Request	78

7.12.18	Extension Address Response	78

7.13	Commands	79

7.13.1	Send Terminal Capability Set	79

7.13.2	Encryption	79

7.13.3	Flow Control	79

7.13.4	End session	79

7.13.5	Miscellaneous Command	80

7.13.6	Conference Command	81

7.14	Indications	82

7.14.1	Function Not Understood	82

7.14.2	Miscellaneous Indication	82

7.14.3	Jitter Indication	82

7.14.4	H.223 Skew Indication	83

7.14.5	New ATM Virtual Channel Indication	83

7.14.6	User Input	84

7.14.7	Conference Indications	84

7.14.8	H2250 Maximum Logical Channel Skew	84

7.14.9	MC Location Indication	85

7.14.10	Vendor Identification Indication	85

7.14.11	Function Not Supported	85

8	Procedures	86

8.1	Introduction	86

8.1.1	Method of specification	86

8.1.2	Communication between protocol entity and protocol user	86

8.1.3	Peer-to-peer communication	86

8.1.4	SDL Diagrams	87

8.1.5	SDL Key	87

8.2	Master slave determination procedures	88

8.2.1	Introduction	88

8.2.2	Communication between the MSDSE and the MSDSE user	89

8.2.3	Peer to peer MSDSE communication	91

8.2.4	MSDSE procedures	92

8.3	Capability exchange procedures	99

8.3.1	Introduction	99

8.3.2	Communication between CESE and CESE user	99

8.3.3	Peer to peer CESE communication	101

8.3.4	CESE procedures	102

8.4	Uni-directional Logical Channel signalling procedures	109

8.4.1	Introduction	109

8.4.2	Communication between the LCSE and the LCSE user	110

8.4.3	Peer to peer LCSE communication	112

8.4.4	LCSE procedures	113

8.5	Bi-directional Logical Channel signalling procedures	121

8.5.1	Introduction	121

8.5.2	Communication between the B-LCSE and the B-LCSE user	122

8.5.3	Peer to peer B-LCSE communication	125

8.5.4	B-LCSE procedures	126

8.6	Close Logical Channel procedures	135

8.6.1	Introduction	135

8.6.2	Communication between CLCSE and CLCSE user	135

8.6.3	Peer to peer CLCSE communication	137

8.6.4	CLCSE procedures	138

8.7	H.223 Multiplex Table Procedures	143

8.7.1	Introduction	143

8.7.2	Communication between the MTSE and MTSE user	144

8.7.3	Peer to peer MTSE communication	146

8.7.4	MTSE procedures	147

8.8	Request Multiplex Entry procedures	154

8.8.1	Introduction	154

8.8.2	Communication between RMESE and RMESE user	154

8.8.3	Peer to peer RMESE communication	156

8.8.4	RMESE procedures	157

8.9	Mode Request procedures	161

8.9.1	Introduction	161

8.9.2	Communication between MRSE and MRSE user	162

8.9.3	Peer to peer MRSE communication	164

8.9.4	MRSE procedures	164

8.10	Round trip delay procedures	171

8.10.1	Introduction	171

8.10.2	Communication between the RTDSE and the RTDSE user	171

8.10.3	Peer to peer RTDSE communication	172

8.10.4	RTDSE procedures	173

8.11	Maintenance Loop procedures	177

8.11.1	Introduction	177

8.11.2	Communication between the MLSE and the MLSE user	177

8.11.3	Peer to peer MLSE communication	180

8.11.4	MLSE procedures	181

8.12	Multiplex Configuration procedures	187

8.12.1	Introduction	187

8.12.2	Communication between MCSE and MCSE user	188

8.12.3	Peer to peer MCSE communication	189

8.12.4	MCSE procedures	190

Annex A	Annex A - Object identifier assignments	196

Appendix I	Appendix I - Overview of ASN.1 syntax	197

I.1	Introduction to ASN.1	197

I.2	Basic ASN.1 data types	197

I.3	Aggregate data types	199

I.4	Object Identifier type	200

Appendix II	Appendix II - Examples of H.245 procedures	201

II.1	Introduction	201

II.2	Master Slave Determination Signalling Entity	201

II.3	Capability Exchange Signalling Entity	205

II.4	Logical Channel Signalling Entity	206

II.5	Close Logical Channel Signalling Entity	208

II.6	Multiplex Table Signalling Entity	210

II.7	Mode Request Signalling Entity	212

II.8	Round Trip Delay Signalling Entity	213

II.9.	Bi-directional Logical Channel Signalling Entity	214

Appendix III	Appendix III - Summary of procedure timers and counters	218

III.1	Timers	218

III.2	Counters	219

Appendix IV	Appendix IV - H.245 Extension Procedure	220

�

�

SUMMARY

This Recommendation specifies syntax and semantics of terminal information messages as well as procedures to use them for in-band negotiation at the start of or during communication. The messages cover receiving and transmitting capabilities as well as mode preference from the receiving end, logical channel signaling, and Control & Indication. Acknowledged signaling procedures are specified to ensure reliable audiovisual and data communication.

��Recommendation H.245

Recommendation H.245 (�ref doc_date�Error! Reference source not found.�)

�title �CONTROL PROTOCOL FOR MULTIMEDIA COMMUNICATION�

(Place, 199x)

�seq section�1��seq sub_section \r 0 \h��	Scope

This Recommendation specifies syntax and semantics of terminal information messages as well as procedures to use them for in-band negotiation at the start of or during communication. The messages cover receiving and transmitting capabilities as well as mode preference from the receiving end, logical channel signaling, and Control & Indication. Acknowledged signaling procedures are specified to ensure reliable audiovisual and data communication.

This Recommendation covers a wide range of applications, including storage/retrieval, messaging and distribution services as well as conversational. It applies to, but is not limited to, multimedia systems that use the multiplexes defined in H.222.0, H.223, and H.225.0. These different systems share the same syntax and semantics, and are therefore bit-wise compatible. Some of the procedures are applicable to all systems, while the others are more specific to particular systems.

The different systems that make use of this Recommendation may specify the use of different transport protocols. However, it is intended to be used with a reliable transport layer, that is, one that provides guaranteed delivery of correct data.

Note: there should be no confusion with the T.120 management system, which is carried within the data stream, and covers different functionalities from those described here - the H.245 stream and the T.120-data stream are complementary.

�seq section�2��seq sub_section \r 0 \h��	References

The following ITU-T Recommendations, and other references, contain provisions which, through reference in this text, constitute the provisions of the Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; all users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.

[�seq reference�1�]	ITU-T Recommendation G.711 (1988) - Pulse code modulation (PCM) of voice frequencies

[�seq reference�2�]	ITU-T Recommendation G.722 (1988) - 7 kHz audio-coding within 64 kbit/s

[�seq reference�3�]	ITU-T Recommendation G.723.1 (1996) - Dual rate speech coder for multimedia communication transmitting at 5.3 & 6.3 kbit/s

[�seq reference�4�]	ITU-T Recommendation G.728 (1992) - Coding of speech at 16 kbit/s using low-delay code excited linear prediction

[�seq reference�5�]	ITU-T Recommendation H.221 (1993) - Frame structure for a 64 to 1920 kbit/s channel in audiovisual teleservices

[�seq reference�6�]	ITU-T Recommendation H.222.0 (1996) - Coding of Moving Pictures and Associated Audio: Systems - ISO/IEC 13818-1

[�seq reference�7�]	ITU-T Recommendation H.222.1 (1996) - Multimedia multiplex and synchronisation for audiovisual communication in ATM environments

[�seq reference�8�]	ITU-T Recommendation H.223 (1996) - Multiplexing protocol for low bitrate multimedia communication

[�seq reference�9�]	ITU-T Recommendation H.224 (1996) - A real time control protocol for simplex applications using the H.221 LSD/HSD/MLP channels

[�seq reference�10�]	ITU-T Recommendation H.230 (1993) - Frame-synchronous control and indication signals for audiovisual systems

[�seq reference�11�]	ITU-T Recommendation H.233 (1993) - Confidentiality system for audiovisual services

[�seq reference�12�]	ITU-T Recommendation H.234 (1993) - Authentication and key management

[�seq reference�13�]	ITU-T Recommendation H.261 (1993) - Video Codec for audiovisual services at px64 kbit/s

[�seq reference�14�]	ITU-T Recommendation H.262 (1996) - Generic Coding of Moving Pictures and Associated Audio: Video - ISO/IEC 13818-2

[�seq reference�15�]	ITU-T Recommendation H.263 (1996) - Video coding for low bitrate communication

[�seq reference�16�]	ITU-T Recommendation H.281 (1996) - A far end camera control protocol for videoconferences using H.224

[�seq reference�17�]	ITU-T Recommendation H.320 (1993) - Narrow-band ISDN visual telephone systems and terminal equipment

[�seq reference�18�]	ITU-T Recommendation H.324 (1996) - Terminal for low bitrate multimedia communication

[�seq reference�19�]	ITU-T Recommendation I.363 (1993) - B-ISDN ATM adaptation layer (AAL) specification

[�seq reference�20�]	ITU-T Recommendation Q.2931 (1996) - Broadband integrated services digital network (B-ISDN) - Digital subscriber signalling No. 2 (DSS 2) - User network interface layer 3 specification for basic call/connection control

[�seq reference�21�]	ITU-T Recommendation T.30 (1994) - Procedures for document facsimile transmission in the general switched telephone network

[�seq reference�22�]	ITU-T Recommendation T.35 (1991) - Procedure for the allocation of CCITT defined codes for non-standard facilities

[�seq reference�23�]	ITU-T Recommendation T.51 (1993) - Latin based coded character sets for telematic services

[�seq reference�24�]	Draft ITU-T T.84 | ISO/IEC 10918-3 (199x): "Digital Compression and Coding of Continuous Tone Still Images - Extensions"

[�seq reference�25�]	ITU-T Recommendation T.120 (199x) - Data protocols for multimedia conferencing - under development

[�seq reference�26�]	ITU-T Recommendation T.434 (1992) - Binary File Transfer Format for the Telematic Services

[�seq reference�27�]	ITU-T Recommendation V.14 (1993) - Transmission of start-stop characters over synchronous bearer channels

[�seq reference�28�]	ITU-T Recommendation V.34 (1994) - A modem operating at data signalling rates of up to 28 800 bit/s for use on the general switched telephone network and on leased point-to-point 2-wire telephone-type circuits

[�seq reference�29�]	ITU-T Recommendation V.42 (1993) - Error-correcting procedures for DCEs using asynchronous-to-synchronous conversion

[�seq reference�30�]	ITU-T Recommendation X.680 (1994): Information Technology - Abstract Syntax Notation One (ASN.1) - Specification of basic notation

[�seq reference�31�]	ITU-T Recommendation X.691 (1996): Information Technology - ASN.1 Encoding Rules - Specification of Packed Encoding Rules (PER)

[�seq reference�32�]	ISO/IEC 3309 (1991): Information Technology - Telecommunications and information exchange between systems - High-level data link control (HDLC) procedures - Frame Structure

[�seq reference�33�]	ISO/IEC 11172-2 (1993): Information Technology - Coding of Moving Pictures and Associated Audio for digital storage media at up to about 1,5 Mbit/s - Part 2: Video

[�seq reference�34�]	ISO/IEC 11172-3 (1993): Information Technology - Coding of Moving Pictures and Associated Audio for digital storage media at up to about 1,5 Mbit/s - Part 3: Audio

[�seq reference�35�]	ISO/IEC 13818-3 (1996): Information Technology - Generic Coding of Moving Pictures and Associated Audio - Part 3: Audio

[�seq reference�36�]	ISO/IEC 13818-6 (1996): Information Technology - Generic Coding of Moving Pictures and Associated Audio - Part 6: Digital Storage Media Command and Control

[�seq reference�37�]	ISO/IEC TR9577 (1990): Information Technology - Telecommunications information exchange between systems - protocol identification in the network layer

[38]	ITU-T Recommendation H.225.0 (1996) - Media Stream Packetization and Synchronization for Visual Telephone Systems on Non-Guaranteed Quality of Service LANs.

[39]	ITU-T Recommendation H.323 (1996) - Visual telephone systems and equipment for local area networks which provide a non-guaranteed quality of service.

[40] ITU-T Recommendation H.243 (1993) - .Procedures for Establishing Communication Between Three or More Audio Visual Terminals using Digital Channels up to 2 Mbitss.

[41] ITU-T Recommendation H.230 (1995) - Frame Synchronous Control and Indication Signals for Audiovisual Systems

[42] ITU-T Recommendation T.123 (1996) - Protocol Stacks for Audiographic and Audiovisual Teleconference Applications

[43] ITU-T Recommendation E.164 (1991) - Numbering Plan for the ISDN ERA

��seq section�3��seq sub_section \r 0 \h��	Definitions

For the purpose of this Recommendation, the following definitions apply:

Bi-directional Logical Channel: A bi-directional logical channel consists of a pair of associated transmission paths between two terminals, one in each direction of transmission.

Capability: A terminal has a particular capability if it is able to encode and transmit or receive and decode that particular signal.

Channel: A channel is a uni-directional link between two end points.

Command: A command is a message that requires action but no explicit response.

Elementary Stream: Elementary Stream is a generic term for a coded video, coded audio or other coded bitstream.

Entry: The word entry is used to refer to elements in sets or tables, such as capability sets and multiplex tables.

Forward: Forward is used to refer to transmission directed from the terminal making the request for a bi-directional logical channel to the other terminal.

In-band: In-band messages are those that are transported within the channel or logical channel to which they refer.

In-coming: An In-coming Signalling Entity cannot initiate a procedure, but responds to messages from the remote Signalling Entity and its own user’s primitives.

Indication: An indication is a message that contains information but does not require action or response.

Logical Channel: A logical channel is a uni-directional path or bi-directional path for the transmission of information.

Logical Channel Number: A logical channel number is a number that identifies a single logical channel.

Logical Channel Signalling: Logical channel signalling is a set of procedures that are used to open and close logical channels.

Master Terminal: A master terminal is the terminal that is determined as being the master terminal by the master-slave determination procedure defined in this Recommendation, or by some other procedure.

Medium Type: A medium type is a single form of information that is presented to a user or the data representing that information: video, audio and text are example Medium Types.

Mode: A mode is a set of elementary streams that a terminal is transmitting, intends to transmit, or would like to receive.

Multimedia communication: Multimedia communication refers to the transmission and/or reception of signals of two or more Medium Types simultaneously.

Non-standard: Not conforming to a national or international standard referenced in this Recommendation.

Out-going: An Out-going Signalling Entity is one which initiates a procedure.

Multipoint: Multipoint refers to the simultaneous interconnection of three or more terminals to allow communication among several sites through the use of multipoint control units (bridges) that centrally direct the flow of information.

Request: A request is a message that results in action by the remote terminal and requires an immediate response from it.

Response: A response is a message that is the response to a request.

Reverse: Reverse is used to refer to transmission directed from the terminal receiving a request for a bi-directional logical channel to the terminal making the request.

Session: A session is a period of communication between two terminals which may be conversational or non-conversational (for example retrieval from a database).

Slave Terminal: A slave terminal is the terminal that is determined as being the slave terminal by the master-slave determination procedure defined in this Recommendation, or by some other procedure.

Support: The ability to operate in a given mode, however a requirement to support a mode does not mean that the mode must actually be used at all times: unless prohibited, other modes may be used by mutual negotiation.

Terminal: A terminal is any endpoint and may be a user's terminal or some other communication system such as an MCU or an information server.

TSAP Identifier: The piece of information used to multiplex several transport connections of the same type on a single H.323 entity with all transport connections sharing the same LAN address, (e. g. the port number in a TCP/UDP/IP environment). TSAP identifiers may be (pre)assigned by some international authority or may be allocated dynamically during setup of a call. Dynamically assigned TSAP identifiers are of transient nature, i. e. their values are only valid for the duration of a single call.

Uni-directional Logical Channel: A uni-directional logical channel is a path for the transmission of a single elementary stream from one terminal to another.

��seq section�4��seq sub_section \r 0 \h��	Abbreviations

For the purpose of this Recommendation, the following abbreviations are used:

AAL	ATM Adaptation layer

AL1,2,3	H.223 Adaptation layers 1, 2 and 3

ASN.1	Abstract syntax notation 1

ATM	Asynchronous transfer mode

B-LCSE	Bi-directional Logical Channel Signalling Entity

CESE	Capability Exchange Signalling Entity

CLCSE	Close Logical Channel Signalling Entity

CIF	Common Intermediate Format (of a video picture: refer to H.261 and H.263)

CPCS	Common Part Convergence Sublayer (of ATM Adaptation Layer 5)

DTMF	Dual tone multi-frequency

DSM-CC	Digital storage media - command and control

GOB	Group of blocks (of a video picture: refer to H.261 and H.263)

GSTN	General switched telephone network

HDLC	High-level data link control

HRD	Hypothetical Reference Decoder (refer to H.261 and H.263)

IV	Initialisation Vector (used for encryption: refer to H.233 and H.234)

LAPM	Link access protocol for modems

LCSE	Logical Channel Signalling Entity

MC	 H.323 Multipoint Control Entity

MCU	Multipoint control unit

MLSE	Maintenance Loop Signalling Entity

MPI	Minimum picture interval

MSDSE	Master Slave Determination Signalling Entity

MTSE	Multiplex Table Signalling Entity

MRSE	Mode Request Signalling Entity

PCR	Program Clock Reference (refer to ISO/IEC 13818-1 | H.222.0)

PID	Packet Identifier (refer to ISO/IEC 13818-1 | H.222.0)

QCIF	Quarter CIF

RMESE	Request Multiplex Entry Signalling Entity

RTDSE	Round Trip Delay Signalling Entity

RTP	Real-time Transport Protocol

RTCP	Real-time Transport Control Protocol

SDL	Specification and description Language

SDU	Service data unit

SE	Session Exchange message (used for encryption: refer to H.233 and H.234)

SQCIF	Sub QCIF

STD	System Target Decoder (refer to ISO/IEC 13818-1 | H.222.0)

VC	ATM Virtual channel

��seq section�5��seq sub_section \r 0 \h��	General

This Recommendation provides a number of different services, some of which are expected to be applicable to all terminals that use it and some that are more specific to particular ones. Procedures are defined to allow the exchange of audiovisual and data capabilities; to request the transmission of a particular audiovisual and data mode; to manage the logical channels used to transport the audiovisual and data information; to establish which terminal is the master terminal and which is the slave terminal for the purposes of managing logical channels; to carry various control and indication signals; to control the bit rate of individual logical channels and the whole multiplex; and to measure the round trip delay, from one terminal to the other and back. These procedures are explained in more detail below.

Following this general introduction, there are sections detailing the message syntax and semantics and the procedures. The syntax has been defined using ASN.1 notation [�seq reference asn1_ref�30�] and the semantics define the meaning of syntax elements as well as providing syntactic constraints that are not specified in the ASN.1 syntax. The procedures section defines the protocols that use the messages defined in the other sections.

Although not all of the messages and procedures defined in this Recommendation will be applicable to all terminals, no indication of such restrictions is given here. These restrictions are the responsibility of the recommendations that use this Recommendation.

This Recommendation has been defined to be independent of the underlying transport mechanism, but is intended to be used with a reliable transport layer, that is, one that provides guaranteed delivery of correct data.

�seq section \c�5�.�seq sub_section�1��seq sub_sub_section \r 0 \h��	Master-slave determination

Conflicts may arise when two terminals involved in a call initiate similar events simultaneously and only one such event is possible or desired, for example, when resources are available for only one occurrence of the event. To resolve such conflicts, one terminal shall act as a master and the other terminal shall act as a slave terminal. Rules specify how the master and slave terminal shall respond at times of conflict.

The master-slave determination procedure allow terminals in a call to determine which terminal is the master and which terminal is the slave. The terminal status, once determined, remains constant for the call duration.

�seq section \c�5�.�seq sub_section�2��seq sub_sub_section \r 0 \h��	Capability exchange

The capability exchange procedures are intended to ensure that the only multimedia signals to be transmitted are those that can be received and treated appropriately by the receive terminal. This requires that the capabilities of each terminal to receive and decode be known to the other terminal. It is not necessary that a terminal understand or store all in-coming capabilities; those that are not understood, or can not be used shall be ignored, and no fault shall be considered to have occurred.

The total capability of a terminal to receive and decode various signals is made known to the other terminal by transmission of its capability set.

Receive capabilities describe the terminal's ability to receive and process in-coming information streams. Transmitters shall limit the content of their transmitted information to that which the receiver has indicated it is capable of receiving. The absence of a receive capability indicates that the terminal cannot receive (is a transmitter only).

Transmit capabilities describe the terminal's ability to transmit information streams. Transmit capabilities serve to offer receivers a choice of possible modes of operation, so that the receiver may request the mode which it prefers to receive. The absence of a transmit capability indicates that the terminal is not offering a choice of preferred modes to the receiver (but it may still transmit anything within the capability of the receiver).

These capability sets provide for more than one stream of a given medium type to be sent simultaneously. For example, a terminal may declare its ability to receive (or send) two independent H.262 video streams and two independent G.722 audio streams at the same time. Capability messages have been defined to allow a terminal to indicate that it does not have fixed capabilities, but that they depend on which other modes are being used simultaneously. For example, it is possible to indicate that higher resolution video can be decoded when a simpler audio algorithm is used; or that either two low resolution video sequences can be decoded or a single high resolution one. It is also possible to indicate trade-offs between the capability to transmit and the capability to receive.

Non-standard capabilities and control messages may be issued using the NonStandardParameter structure. Note that while the meaning of non-standard messages is defined by individual organizations, equipment built by any manufacturer may signal any non-standard message, if the meaning is known.

Terminals may reissue capability sets at any time.

�seq section \c�5�.�seq sub_section�3��seq sub_sub_section \r 0 \h��	Logical channel signalling procedures

An acknowledged protocol is defined for the opening and closing of logical channels which carry the audiovisual and data information. The aim of these procedures is to ensure that a terminal is capable of receiving and decoding the data that will be transmitted on a logical channel at the time the logical channel is opened rather than at the time the first data is transmitted on it; and to ensure that the receive terminal is ready to receive and decode the data that will be transmitted on the logical channel before that transmission starts. The OpenLogicalChannel message includes a description of the data to be transported, for example, H.262 MP@ML at 6Mbit/s. Logical channels should only be opened when there is sufficient capability to receive data on all open logical channels simultaneously.

A part of this protocol is concerned with the opening of bi-directional channels. To avoid conflicts which may arise when two terminals initiate similar events simultaneously, one terminal is defined as the master terminal, and the other as the slave terminal. A protocol is defined to establish which terminal is the master and which is the slave. However, systems that use this Recommendation may specify the procedure specified in this Recommendation or another means of determining which terminal is the master and which is the slave.

�seq section \c�5�.�seq sub_section�4��seq sub_sub_section \r 0 \h��	Receive terminal close logical channel request

A logical channel is opened and closed from the transmitter side. A mechanism is defined which allows a receive terminal to request the closure of an incoming logical channel. The transmit terminal may accept or reject the logical channel closure request. A terminal may, for example, use these procedures to request the closure of an incoming logical channel which, for whatever reason, cannot be decoded. These procedures may also be used to request the closure of a bi-directional logical channel by the terminal that did not open the channel.

�seq section \c�5�.�seq sub_section�5��seq sub_sub_section \r 0 \h��	H.223 multiplex table entry modification

The H.223 multiplex table associates each octet within an H.223 MUX message with a particular logical channel number. The H.223 multiplex table may have up to 15 entries. A mechanism is provided that allows the transmit terminal to specify and inform the receiver of new H.223 multiplex table entries. A receive terminal may also request the retransmission of a multiplex table entry.

�seq section \c�5�.�seq sub_section�6��seq sub_sub_section \r 0 \h��	Audiovisual and data mode request

When the capability exchange protocol has been completed, both terminals will be aware of each other's capability to transmit and receive as specified in the capability descriptors that have been exchanged. It is not mandatory for a terminal to declare all its capabilities; it need only declare those that it wishes to be used.

A terminal may indicate its capabilities to transmit. A terminal that receives transmission capabilities from the remote terminal may request a particular mode to be transmitted to it. A terminal indicates that it does not want its transmission mode to be controlled by the remote terminal by sending no transmission capabilities.

�seq section \c�5�.�seq sub_section�7��seq sub_sub_section \r 0 \h��	Round trip delay determination

It may be useful in some applications to have knowledge of the round trip delay between a transmit terminal and a receive terminal. A mechanism is provided to measure this round trip delay. This mechanism may also be useful as a means to detect whether the remote terminal is still functioning.

�seq section \c�5�.�seq sub_section�8��seq sub_sub_section \r 0 \h��	Maintenance loops

Procedures are specified to establish maintenance loops. It is possible to specify the loop of a single logical channel either as a digital loop or decoded loop, and the loop of the whole multiplex.

�seq section \c�5�.�seq sub_section�9��seq sub_sub_section \r 0 \h��	Commands and indications

Commands and indications are provided for various purposes: video/audio active/inactive signals to inform the user; fast update request for source switching in multipoint applications are some examples. Neither commands nor indications elicit response messages from the remote terminal. Commands force an action at the remote terminal whilst indications merely provide information and do not force any action.

A command is defined to allow the bit rate of logical channels and the whole multiplex to be controlled from the remote terminal. This has a number of purposes: interworking with terminals using multiplexes in which only a finite number of bit rates are available; multi-point applications where the rates from different sources should be matched; and flow control in congested networks.

��seq section�6��seq sub_section \r 0 \h��	Messages: syntax

This section specifies the syntax of messages using the notation defined in ASN.1 [�seq reference asn1_ref�30�]. Messages shall be encoded for transmission by applying the packed encoding rules specified in [�seq reference asn1_packed_rules�31�] using the basic aligned variant. The first bit in each octet which is transmitted is the most significant bit of the octet as is specified in X.691.

MULTIMEDIA-SYSTEM-CONTROL DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

-- Export all symbols

-- ===

-- Top level Messages

-- ===

MultimediaSystemControlMessage	::=CHOICE

{

	request	RequestMessage,

	response	ResponseMessage,

	command	CommandMessage,

	indication	IndicationMessage,

	...

}

-- A RequestMessage results in action and requires an immediate response

RequestMessage	::=CHOICE

{

	nonStandard	NonStandardMessage,

	masterSlaveDetermination	MasterSlaveDetermination,

	terminalCapabilitySet	TerminalCapabilitySet,

	openLogicalChannel	OpenLogicalChannel,

	closeLogicalChannel	CloseLogicalChannel,

	requestChannelClose	RequestChannelClose,

	multiplexEntrySend	MultiplexEntrySend,

	requestMultiplexEntry	RequestMultiplexEntry,

	requestMode	RequestMode,

	roundTripDelayRequest	RoundTripDelayRequest,

	maintenanceLoopRequest	MaintenanceLoopRequest,

	...,

	communicationModeRequest	CommunicationModeRequest,

	conferenceRequest	ConferenceRequest

}

-- A ResponseMessage is the response to a request Message

ResponseMessage	::=CHOICE

{

	nonStandard	NonStandardMessage,

	masterSlaveDeterminationAck	MasterSlaveDeterminationAck,

	masterSlaveDeterminationReject	MasterSlaveDeterminationReject,

	terminalCapabilitySetAck	TerminalCapabilitySetAck,

	terminalCapabilitySetReject	TerminalCapabilitySetReject,

	openLogicalChannelAck	OpenLogicalChannelAck,

	openLogicalChannelReject	OpenLogicalChannelReject,

	closeLogicalChannelAck	CloseLogicalChannelAck,

	requestChannelCloseAck	RequestChannelCloseAck,

	requestChannelCloseReject	RequestChannelCloseReject,

	multiplexEntrySendAck	MultiplexEntrySendAck,

	multiplexEntrySendReject	MultiplexEntrySendReject,

	requestMultiplexEntryAck	RequestMultiplexEntryAck,

	requestMultiplexEntryReject	RequestMultiplexEntryReject,

	requestModeAck	RequestModeAck,

	requestModeReject	RequestModeReject,

	roundTripDelayResponse	RoundTripDelayResponse,

	maintenanceLoopAck	MaintenanceLoopAck,

	maintenanceLoopReject	MaintenanceLoopReject,

	...,

	communicationModeResponse	CommunicationModeResponse,

	conferenceResponse	ConferenceResponse

	

}

-- A CommandMessage requires action, but no explicit response

CommandMessage	::=CHOICE

{

	nonStandard	NonStandardMessage,

	maintenanceLoopOffCommand	MaintenanceLoopOffCommand,

	sendTerminalCapabilitySet	SendTerminalCapabilitySet,

	encryptionCommand	EncryptionCommand,

	flowControlCommand	FlowControlCommand,

	endSessionCommand	EndSessionCommand,

	miscellaneousCommand	MiscellaneousCommand,

	...,

	communicationModeCommand	CommunicationModeCommand,

	conferenceCommand	ConferenceCommand

}

-- An IndicationMessage is information that does not require action or response

IndicationMessage	::=CHOICE

{

	nonStandard	NonStandardMessage,

	functionNotUnderstood	FunctionNotUnderstood,

	

	masterSlaveDeterminationRelease	MasterSlaveDeterminationRelease,

	terminalCapabilitySetRelease	TerminalCapabilitySetRelease,

	openLogicalChannelConfirm	OpenLogicalChannelConfirm,

	requestChannelCloseRelease	RequestChannelCloseRelease,

	multiplexEntrySendRelease	MultiplexEntrySendRelease,

	requestMultiplexEntryRelease	RequestMultiplexEntryRelease,

	requestModeRelease	RequestModeRelease,

	miscellaneousIndication	MiscellaneousIndication,

	jitterIndication	JitterIndication,

	h223SkewIndication	H223SkewIndication,

	newATMVCIndication	NewATMVCIndication,

	userInput	UserInputIndication,

	...,

	h2250MaximumSkewIndication	H2250MaximumSkewIndication,

	mcLocationIndication	MCLocationIndication,

	conferenceIndication	ConferenceIndication,

	vendorIdentification	VendorIdentification,

	

	functionNotSupported	FunctionNotSupported

}

-- SequenceNumber is defined here as it is used in a number of Messages

SequenceNumber	::=INTEGER (0..255)

-- ===

-- Non standard Message definitions

-- ===

NonStandardMessage	::=SEQUENCE

{

	nonStandardData	NonStandardParameter,

	...

}

NonStandardParameter	::=SEQUENCE

{

	nonStandardIdentifier	NonStandardIdentifier,

	data		OCTET STRING

}

NonStandardIdentifier	::=CHOICE

{

	object		OBJECT IDENTIFIER,

	h221NonStandard	SEQUENCE

	{

		t35CountryCode	INTEGER (0..255),	-- country, per T.35

		t35Extension	INTEGER (0..255),	-- assigned nationally

		manufacturerCode	INTEGER (0..65535)	-- assigned nationally

	}

}

-- ===

-- Master-slave determination definitions

-- ===

MasterSlaveDetermination	::=SEQUENCE

{

	terminalType	INTEGER (0..255),

	statusDeterminationNumber	INTEGER (0..16777215),

	...

}

MasterSlaveDeterminationAck	::=SEQUENCE

{

	decision	CHOICE

	{

		master	NULL,

		slave	NULL

	},

	...

}

MasterSlaveDeterminationReject	::=SEQUENCE

{

	cause		CHOICE

	{

		identicalNumbers	NULL,

		...

	},

	...

}

MasterSlaveDeterminationRelease	::=SEQUENCE

{

	...

}

�-- ===

-- Capability exchange definitions

-- ===

TerminalCapabilitySet	::=SEQUENCE

{

	sequenceNumber	SequenceNumber,

	protocolIdentifier	OBJECT IDENTIFIER,

				-- shall be set to the value

				-- {itu-t (0) recommendation (0) h (8) 245 version (0) 2}

				

	multiplexCapability	MultiplexCapability OPTIONAL,

	capabilityTable	SET SIZE (1..256) OF CapabilityTableEntry OPTIONAL,

	capabilityDescriptors	SET SIZE (1..256) OF CapabilityDescriptor OPTIONAL,

	...

}

V75Capability	::=SEQUENCE

{

	audioHeader	BOOLEAN,

	...

}

CapabilityTableEntry	::=SEQUENCE

{

	capabilityTableEntryNumber	CapabilityTableEntryNumber,

	capability	Capability OPTIONAL

}

CapabilityDescriptor	::=SEQUENCE

{

	capabilityDescriptorNumber	CapabilityDescriptorNumber,

	simultaneousCapabilities	SET SIZE (1..256) OF AlternativeCapabilitySet OPTIONAL

}

AlternativeCapabilitySet	::=SEQUENCE SIZE (1..256) OF CapabilityTableEntryNumber

CapabilityTableEntryNumber	::=INTEGER (1..65535)

CapabilityDescriptorNumber	::=INTEGER (0..255)

TerminalCapabilitySetAck	::=SEQUENCE

{

	sequenceNumber	SequenceNumber,

	...

}

TerminalCapabilitySetReject	::=SEQUENCE

{

	sequenceNumber	SequenceNumber,

	cause		CHOICE

	{

		unspecified	NULL,

		undefinedTableEntryUsed	NULL,

		descriptorCapacityExceeded	NULL,

		tableEntryCapacityExceeded	CHOICE

		{

			highestEntryNumberProcessed	CapabilityTableEntryNumber,

			noneProcessed	NULL

		},

		...

	},

	...

}

TerminalCapabilitySetRelease	::=SEQUENCE

{

	...

}

-- ===

-- Capability exchange definitions: top level capability description

-- ===

Capability		::=CHOICE

{

	nonStandard	NonStandardParameter,

	receiveVideoCapability	VideoCapability,

	transmitVideoCapability	VideoCapability,

	receiveAndTransmitVideoCapability	VideoCapability,

	receiveAudioCapability	AudioCapability,

	transmitAudioCapability	AudioCapability,

	receiveAndTransmitAudioCapability	AudioCapability,

	receiveDataApplicationCapability	DataApplicationCapability,

	transmitDataApplicationCapability	DataApplicationCapability,

	receiveAndTransmitDataApplicationCapability	DataApplicationCapability,

	h233EncryptionTransmitCapability	BOOLEAN,

	h233EncryptionReceiveCapability	SEQUENCE

	{

		h233IVResponseTime	INTEGER (0..255),	-- units milliseconds	

		...

	},

	...,

	conferenceCapability	ConferenceCapability

}

-- ===

-- Capability exchange definitions: Multiplex capabilities

-- ===

MultiplexCapability	::=CHOICE

{

	nonStandard	NonStandardParameter,

	h222Capability	H222Capability,

	h223Capability	H223Capability,

	v76Capability	V76Capability,

	...,

	h2250Capability	H2250Capability

	

}

H222Capability	::= SEQUENCE

{

	numberOfVCs	INTEGER (1..256),

	vcCapability	SET OF VCCapability,

	...

}

VCCapability	::=SEQUENCE

{

	aal1		SEQUENCE

	{

		nullClockRecovery	BOOLEAN,

		srtsClockRecovery	BOOLEAN,

		adaptiveClockRecovery	BOOLEAN,

		nullErrorCorrection	BOOLEAN,

		longInterleaver	BOOLEAN,

		shortInterleaver	BOOLEAN,

		errorCorrectionOnly	BOOLEAN,

		structuredDataTransfer	BOOLEAN,

		partiallyFilledCells	BOOLEAN,

		...

	} OPTIONAL,

	aal5		SEQUENCE

	{

		forwardMaximumSDUSize	INTEGER (0..65535),	-- units octets

		backwardMaximumSDUSize	INTEGER (0..65535),	-- units octets

		...

	} OPTIONAL,

	transportStream	BOOLEAN,

	programStream	BOOLEAN,

	availableBitRates	SEQUENCE

	{

		type	CHOICE

		{

			singleBitRate	INTEGER (1..65535),	-- units 64 kbit/s

			rangeOfBitRates	SEQUENCE

			{

				lowerBitRate	INTEGER (1..65535),	-- units 64 kbit/s

				higherBitRate	INTEGER (1..65535)	-- units 64 kbit/s

			}

		},

		...

	},

	...

}

H223Capability	::=SEQUENCE

{

	transportWithI-frames	BOOLEAN,	-- I-frame transport of H.245

	videoWithAL1	BOOLEAN,

	videoWithAL2	BOOLEAN,

	videoWithAL3	BOOLEAN,

	audioWithAL1	BOOLEAN,

	audioWithAL2	BOOLEAN,

	audioWithAL3	BOOLEAN,

	dataWithAL1	BOOLEAN,

	dataWithAL2	BOOLEAN,

	dataWithAL3	BOOLEAN,

	maximumAl2SDUSize	INTEGER (0..65535),	-- units octets

	maximumAl3SDUSize	INTEGER (0..65535),	-- units octets

	maximumDelayJitter	INTEGER (0..1023),	-- units milliseconds

	h223MultiplexTableCapability	CHOICE

	{

		basic	NULL,

		enhanced	SEQUENCE

		{

			maximumNestingDepth	INTEGER (1..15),

			maximumElementListSize	INTEGER (2..255),

			maximumSubElementListSize	INTEGER (2..255),

			...

		}

	},

	...,

	maxMUXPDUSizeCapability	BOOLEAN

}

V76Capability	::=SEQUENCE

{

	suspendResumeCapabilitywAddress	BOOLEAN,

	suspendResumeCapabilitywoAddress	BOOLEAN,

	rejCapability	BOOLEAN,

	sREJCapability	BOOLEAN,

	mREJCapability	BOOLEAN,

	crc8bitCapability	BOOLEAN,

	crc16bitCapability	BOOLEAN,

	crc32bitCapability	BOOLEAN,

	uihCapability	BOOLEAN,

	numOfDLCS	INTEGER (2..8191),

	twoOctetAddressFieldCapability	BOOLEAN,

	loopBackTestCapability	BOOLEAN,

	n401Capability	INTEGER (1..4095),

	maxWindowSizeCapability	INTEGER (1..127),

	v75Capability	V75Capability,

	...

}

H2250Capability	::=SEQUENCE

{

	maximumAudioDelayJitter	INTEGER(0..1023),	-- units in milliseconds

	receiveMultipointCapability	MultipointCapability,

	transmitMultipointCapability	MultipointCapability,

	receiveAndTransmitMultipointCapability	MultipointCapability,

	mcCapability	SEQUENCE

	{

		centralizedConferenceMC	BOOLEAN,

		decentralizedConferenceMC	BOOLEAN,

		...

	},

	rtcpVideoControlCapability	BOOLEAN,	-- FIR and NACK

	mediaPacketizationCapability	MediaPacketizationCapability,

	...

}

MediaPacketizationCapability	::=SEQUENCE

{

	h261aVideoPacketization	BOOLEAN,

	...

}

MultipointCapability	::=SEQUENCE

{

	multicastCapability	BOOLEAN,	

	multiUniCastConference	BOOLEAN,	

	mediaDistributionCapability	SEQUENCE OF MediaDistributionCapability,

	...

}

MediaDistributionCapability	::=SEQUENCE

{

	centralizedControl	BOOLEAN,

	distributedControl	BOOLEAN,	-- for further study in H.323

	centralizedAudio	BOOLEAN,

	distributedAudio	BOOLEAN,

	centralizedVideo	BOOLEAN,

	distributedVideo	BOOLEAN,

	centralizedData	SEQUENCE OF DataApplicationCapability OPTIONAL,

	distributedData	SEQUENCE OF DataApplicationCapability OPTIONAL,	

						-- for further study in H.323

	...

}

H223AnnexACapability	::=SEQUENCE

{

	transferWithI-frames	BOOLEAN,		-- I-frame transport of H.245

	videoWithAL1M	BOOLEAN,

	videoWithAL2M	BOOLEAN,

	videoWithAL3M	BOOLEAN,

	audioWithAL1M	BOOLEAN,

	audioWithAL2M	BOOLEAN,

	audioWithAL3M	BOOLEAN,

	dataWithAL1M	BOOLEAN,

	dataWithAL2M	BOOLEAN,

	dataWithAL3M	BOOLEAN,

	maximumAL2MSDUSize	INTEGER (0..65535),	-- units octets

	maximumAL3MSDUSize	INTEGER (0..65535),	-- units octets

	maximumDelayJitter 	INTEGER (0..1023),	-- units milliseconds

	reconfigurationCapability	BOOLEAN,

	h223AnnexAMultiplexTableCapability	CHOICE		-- identical to H.223

	{

		basic	NULL,

		enhanced	SEQUENCE

		{

			maximumNestingDepth	INTEGER (1..15),

			maximumElementListSize	INTEGER (2..255),

			maximumSubElementListSize	INTEGER (2..255),

			...

		},

		...

	},

	...

}

-- ===

-- Capability exchange definitions: Video capabilities

-- ===

VideoCapability	::=CHOICE

{

	nonStandard	NonStandardParameter ,

	h261VideoCapability	H261VideoCapability,

	h262VideoCapability	H262VideoCapability,

	h263VideoCapability	H263VideoCapability,

	is11172VideoCapability	IS11172VideoCapability,

	...

}

H261VideoCapability	::=SEQUENCE

{

	qcifMPI	INTEGER (1..4) OPTIONAL,	-- units 1/29.97 Hz

	cifMPI		INTEGER (1..4) OPTIONAL,	-- units 1/29.97 Hz

	temporalSpatialTradeOffCapability	BOOLEAN,

	maxBitRate	INTEGER (1..19200),	-- units of 100 bit/s

	stillImageTransmission	BOOLEAN,	-- annex D of H.261

	...

}

H262VideoCapability	::=SEQUENCE

{

	profileAndLevel-SPatML	BOOLEAN,

	profileAndLevel-MPatLL	BOOLEAN,

	profileAndLevel-MPatML	BOOLEAN,

	profileAndLevel-MPatH-14	BOOLEAN,

	profileAndLevel-MPatHL	BOOLEAN,

	profileAndLevel-SNRatLL	BOOLEAN,

	profileAndLevel-SNRatML	BOOLEAN,

	profileAndLevel-SpatialatH-14	BOOLEAN,

	profileAndLevel-HPatML	BOOLEAN,

	profileAndLevel-HPatH-14	BOOLEAN,

	profileAndLevel-HPatHL	BOOLEAN,

	videoBitRate	INTEGER (0.. 1073741823) OPTIONAL,	-- units 400 bit/s

	vbvBufferSize	INTEGER (0.. 262143) OPTIONAL,	-- units 16384 bits

	samplesPerLine	INTEGER (0..16383) OPTIONAL,	-- units samples/line

	linesPerFrame	INTEGER (0..16383) OPTIONAL,	-- units lines/frame

	framesPerSecond	INTEGER (0..15) OPTIONAL,	-- frame_rate_code

	luminanceSampleRate	INTEGER (0..4294967295) OPTIONAL,	-- units samples/sec

	...

}

H263VideoCapability	::=SEQUENCE

{

	sqcifMPI	INTEGER (1..32) OPTIONAL,	-- units 1/29.97 Hz

	qcifMPI	INTEGER (1..32) OPTIONAL,	-- units 1/29.97 Hz

	cifMPI		INTEGER (1..32) OPTIONAL,	-- units 1/29.97 Hz

	cif4MPI	INTEGER (1..32) OPTIONAL,	-- units 1/29.97 Hz

	cif16MPI	INTEGER (1..32) OPTIONAL,	-- units 1/29.97 Hz

	maxBitRate	INTEGER (1..192400),	-- units 100 bit/s

	unrestrictedVector	BOOLEAN,

	arithmeticCoding	BOOLEAN,

	advancedPrediction	BOOLEAN,

	pbFrames	BOOLEAN,

	temporalSpatialTradeOffCapability	BOOLEAN,

	hrd-B		INTEGER (0..524287) OPTIONAL,	-- units 128 bits

	bppMaxKb	INTEGER (0..65535) OPTIONAL,	-- units 1024 bits

	...,

	slowSqcifMPI	INTEGER (1..3600) OPTIONAL,	-- units seconds/frame

	slowQcifMPI	INTEGER (1..3600) OPTIONAL, --units seconds/frame

	slowCifMPI	INTEGER (1..3600) OPTIONAL, --units seconds/frame

	slowCif4MPI	INTEGER (1..3600) OPTIONAL, --units seconds/frame

	slowCif16MPI	INTEGER (1..3600) OPTIONAL, --units seconds/frame

	errorCompensation	BOOLEAN

}

IS11172VideoCapability	::=SEQUENCE

{

	constrainedBitstream	BOOLEAN,

	videoBitRate	INTEGER (0.. 1073741823) OPTIONAL,	-- units 400 bit/s

	vbvBufferSize	INTEGER (0.. 262143) OPTIONAL,	-- units 16384 bits

	samplesPerLine	INTEGER (0..16383) OPTIONAL,	-- units samples/line

	linesPerFrame	INTEGER (0..16383) OPTIONAL,	-- units lines/frame

	pictureRate	INTEGER (0..15) OPTIONAL,	

	luminanceSampleRate	INTEGER (0..4294967295) OPTIONAL,	-- units samples/sec

	...

}

-- ===

-- Capability exchange definitions: Audio capabilities

-- ===

-- For an H.222 multiplex, the integers indicate the size of the STD buffer in units of 256 octets

-- For an H.223 multiplex, the integers indicate the maximum number of audio frames per AL-SDU

-- For an H.225.0 multiplex, the integers indicate the maximum number of audio frames per packet

AudioCapability	::=CHOICE

{

	nonStandard	NonStandardParameter,

	g711Alaw64k	INTEGER (1..256),

	g711Alaw56k	INTEGER (1..256),

	g711Ulaw64k	INTEGER (1..256),

	g711Ulaw56k	INTEGER (1..256),

	g722-64k	INTEGER (1..256),

	g722-56k	INTEGER (1..256),

	g722-48k	INTEGER (1..256),

	g7231		SEQUENCE

	{

		maxAl-sduAudioFrames	INTEGER (1..256),

		silenceSuppression	BOOLEAN

	},

				

	g728		INTEGER (1..256),

	g729		INTEGER (1..256),

	g729AnnexA	INTEGER (1..256),

	is11172AudioCapability	IS11172AudioCapability,

	is13818AudioCapability	IS13818AudioCapability,

	 ...,

	g729wAnnexB	INTEGER(1..256),

	g729AnnexAwAnnexB	INTEGER(1..256),

	g7231AnnexCCapability	G7231AnnexCCapability

}

G7231AnnexCCapability	::= SEQUENCE

{

	maxAl-sduAudioFrames	INTEGER (1..256),

	silenceSuppression	BOOLEAN,

	g723AnnexCAudioMode	SEQUENCE

	{

		highRateMode0	INTEGER (27..78),	-- units octets

		highRateMode1	INTEGER (27..78),	-- units octets

		lowRateMode0	INTEGER (23..66),	-- units octets

		lowRateMode1	INTEGER (23..66),	-- units octets

		sidMode0	INTEGER (6..17),	-- units octets

		sidMode1	INTEGER (6..17),	-- units octets

		...

	} OPTIONAL,

	...

}

IS11172AudioCapability	::=SEQUENCE

{

	audioLayer1	BOOLEAN,

	audioLayer2	BOOLEAN,

	audioLayer3	BOOLEAN,

	audioSampling32k	BOOLEAN,

	audioSampling44k1	BOOLEAN,

	audioSampling48k	BOOLEAN,

	singleChannel	BOOLEAN,

	twoChannels	BOOLEAN,

	bitRate	INTEGER (1..448),	-- units kbit/s

	...

}

IS13818AudioCapability	::=SEQUENCE

{

	audioLayer1	BOOLEAN,

	audioLayer2	BOOLEAN,

	audioLayer3	BOOLEAN,

	audioSampling16k	BOOLEAN,

	audioSampling22k05	BOOLEAN,

	audioSampling24k	BOOLEAN,

	audioSampling32k	BOOLEAN,

	audioSampling44k1	BOOLEAN,

	audioSampling48k	BOOLEAN,

	singleChannel	BOOLEAN,

	twoChannels	BOOLEAN,

	threeChannels2-1	BOOLEAN,

	threeChannels3-0	BOOLEAN,

	fourChannels2-0-2-0	BOOLEAN,

	fourChannels2-2	BOOLEAN,

	fourChannels3-1	BOOLEAN,

	fiveChannels3-0-2-0	BOOLEAN,

	fiveChannels3-2	BOOLEAN,

	lowFrequencyEnhancement	BOOLEAN,

	multilingual	BOOLEAN,

	bitRate	INTEGER (1..1130),	-- units kbit/s

	...

}

-- ===

-- Capability exchange definitions: Data capabilities

-- ===

DataApplicationCapability	::=SEQUENCE

{

	application	CHOICE

	{

		nonStandard	NonStandardParameter,

		t120	DataProtocolCapability,

		dsm-cc	DataProtocolCapability,

		userData	DataProtocolCapability,

		t84	SEQUENCE

		{

			t84Protocol	DataProtocolCapability,

			t84Profile	T84Profile

		},

		t434	DataProtocolCapability,

		h224	DataProtocolCapability,

		nlpid	SEQUENCE

		{

			nlpidProtocol	DataProtocolCapability,

			nlpidData	OCTET STRING

		},

		dsvdControl	NULL,

		h222DataPartitioning	DataProtocolCapability,

		...,

		t30fax	DataProtocolCapability

	},

	maxBitRate	INTEGER (0..4294967295),	-- units 100 bit/s

	...

}

DataProtocolCapability	::=CHOICE

{

	nonStandard	NonStandardParameter,

	v14buffered	NULL,

	v42lapm	NULL,	-- may negotiate to V.42bis

	hdlcFrameTunnelling	NULL,

	h310SeparateVCStack	NULL,

	h310SingleVCStack	NULL,

	transparent	NULL,

	...,

	segmentationAndReassembly	NULL,

	hdlcFrameTunnelingwSAR	NULL,

	v120		NULL,	-- as in H.230

	separateLANStack	NULL,

 v76wCompression 	CHOICE

	{

		transmitCompression 	CompressionType,

		receiveCompression 	CompressionType,

		transmitAndReceiveCompression 	CompressionType,

		...

	}

}

CompressionType 	::=CHOICE 	

{

	v42bis		V42bis, 	

	... 			

}

V42bis			::=SEQUENCE

{

	numberOfCodewords	INTEGER (1..65536),

	maximumStringLength	INTEGER (1..256),

	...

}

T84Profile		::=CHOICE

{

	t84Unrestricted	NULL,

	t84Restricted	SEQUENCE

	{�		qcif	BOOLEAN,

		cif		BOOLEAN,

		ccir601Seq	BOOLEAN,

		ccir601Prog	BOOLEAN,

		hdtvSeq	BOOLEAN,

		hdtvProg	BOOLEAN,

		g3FacsMH200x100	BOOLEAN,

		g3FacsMH200x200	BOOLEAN,

		g4FacsMMR200x100	BOOLEAN,

		g4FacsMMR200x200	BOOLEAN,

		jbig200x200Seq	BOOLEAN,

		jbig200x200Prog	BOOLEAN,

		jbig300x300Seq	BOOLEAN,

		jbig300x300Prog	BOOLEAN,

		digPhotoLow	BOOLEAN,

		digPhotoMedSeq	BOOLEAN,

		digPhotoMedProg	BOOLEAN,

		digPhotoHighSeq	BOOLEAN,

		digPhotoHighProg	BOOLEAN,

		...

	}

}

-- ===

-- Capability Exchange Definitions: Conference

-- ===

ConferenceCapability	::=SEQUENCE

{

	nonStandardData	SEQUENCE OF NonStandardParameter OPTIONAL,

	chairControlCapability	BOOLEAN,

	...

}

�-- ===

-- Logical channel signalling definitions

-- ===

-- 'Forward' is used to refer to transmission in the direction from the terminal making the

-- original request for a logical channel to the other terminal, and 'reverse' is used to refer

-- to the opposite direction of transmission, in the case of a bi-directional channel request.

OpenLogicalChannel	::=SEQUENCE

{

	forwardLogicalChannelNumber	LogicalChannelNumber,

	forwardLogicalChannelParameters	SEQUENCE

	{

		portNumber	INTEGER (0..65535) OPTIONAL,

		dataType	DataType,

		multiplexParameters	CHOICE

		{

			h222LogicalChannelParameters	H222LogicalChannelParameters,

			h223LogicalChannelParameters	H223LogicalChannelParameters,

			v76LogicalChannelParameters V76LogicalChannelParameters,

			...,

			h2250LogicalChannelParameters H2250LogicalChannelParameters

		},

		...

	},

	-- Used to specify the reverse channel for bi-directional open request

	reverseLogicalChannelParameters	SEQUENCE

	{

		dataType	DataType,

		multiplexParameters	CHOICE

		{

			-- H.222 parameters are never present in reverse direction

			h223LogicalChannelParameters	H223LogicalChannelParameters,

			v76LogicalChannelParameters	V76LogicalChannelParameters,

			...,

			h2250LogicalChannelParameters H2250LogicalChannelParameters

		} OPTIONAL,	-- Not present for H.222

		...

	} OPTIONAL,	-- Not present for uni-directional channel request

	...,

	separateStack	NetworkAccessParameters OPTIONAL

				-- for Open responder to establish the stack

}

LogicalChannelNumber	::=INTEGER (1..65535)

NetworkAccessParameters	::=SEQUENCE

{

	distribution	CHOICE

	{

		unicast	NULL,

		multicast	NULL,	-- For Further Study in T.120

		...

	} OPTIONAL,

	networkAddress	CHOICE

	{

		q2931Address	Q2931Address,

		e164Address	IA5String(SIZE(1..128)) (FROM ("0123456789#*,")),

		localAreaAddress	TransportAddress,

		...

	},

	associateConference	BOOLEAN,

	externalReference	OCTET STRING(SIZE(1..255)) OPTIONAL,

	...

}

Q2931Address	::=SEQUENCE

{

	address	CHOICE

	{

		internationalNumber	NumericString(SIZE(1..16)),

		nsapAddress	OCTET STRING (SIZE(1..20)),

		...

	},

	subaddress	OCTET STRING (SIZE(1..20)) OPTIONAL,

	...

}

V75Parameters	::= SEQUENCE

{

	audioHeaderPresent	BOOLEAN,

	 ...

}	

DataType		::=CHOICE

{

	nonStandard	NonStandardParameter,

	nullData	NULL,

	videoData	VideoCapability,	

	audioData	AudioCapability,

	data		DataApplicationCapability,

	encryptionData	EncryptionMode,

	...

}

H222LogicalChannelParameters	::=SEQUENCE

{

	resourceID	INTEGER (0..65535),

	subChannelID	INTEGER (0..8191),

	pcr-pid	INTEGER (0..8191) OPTIONAL,

	programDescriptors	OCTET STRING OPTIONAL,

	streamDescriptors	OCTET STRING OPTIONAL,

	...

}

H223LogicalChannelParameters	::=SEQUENCE

{

	adaptationLayerType	CHOICE

	{

		nonStandard	NonStandardParameter,

		al1Framed	NULL,

		al1NotFramed	NULL,

		al2WithoutSequenceNumbers	NULL,

		al2WithSequenceNumbers	NULL,

		al3		SEQUENCE

		{

			controlFieldOctets	INTEGER (0..2),

			sendBufferSize	INTEGER (0..16777215)	-- units octets

		},

		...

	},

	segmentableFlag	BOOLEAN,

	...

}	

V76LogicalChannelParameters	::=SEQUENCE

{

	hdlcParameters	V76HDLCParameters,

	suspendResume	CHOICE

	{

		noSuspendResume	NULL,

		suspendResumewAddress	NULL,

 	suspendResumewoAddress 	NULL,

		...

	},

	uIH			BOOLEAN,

	mode		CHOICE

	{

		eRM	SEQUENCE

		{

			windowSize	INTEGER (1..127) ,

			recovery	CHOICE

			{

				rej	NULL,

				sREJ	NULL,

				mSREJ	NULL,

				...

			},

			...

		},

	 	uNERM	NULL,

		...

	},

	v75Parameters	V75Parameters,

	...

}

V76HDLCParameters	::=SEQUENCE

{

	crcLength	CRCLength,

	n401		INTEGER (1..4095),

	loopbackTestProcedure	BOOLEAN,

		...

}

CRCLength	::=CHOICE

{

	crc8bit		NULL,

	crc16bit	NULL,

	crc32bit	NULL,

	...

}

H2250LogicalChannelParameters	::=SEQUENCE

{

	nonStandard	SEQUENCE OF NonStandardParameter OPTIONAL,

	sessionID	INTEGER(0..255),

	associatedSessionID	INTEGER(1..255) OPTIONAL,

	mediaChannel	TransportAddress OPTIONAL,

	mediaGuaranteedDelivery	BOOLEAN OPTIONAL,

	mediaControlChannel	TransportAddress OPTIONAL, -- reverse RTCP channel

	mediaControlGuaranteedDelivery	BOOLEAN OPTIONAL,

	silenceSuppression	BOOLEAN OPTIONAL,

	destination	TerminalLabel OPTIONAL,

	

	dynamicRTPPayloadType	INTEGER(96..127) OPTIONAL,

	mediaPacketization	CHOICE

	{

		h261aVideoPacketization	NULL,

		...

	} OPTIONAL,

	...

}

TransportAddress	::=CHOICE

{

	unicastAddress	UnicastAddress,

	multicastAddress	MulticastAddress,

	...

}

UnicastAddress	::=CHOICE

{

	iPAddress	SEQUENCE

	{

		network	OCTET STRING (SIZE(4)),

		tsapIdentifier	INTEGER(0..65535),

		...

	},

	iPXAddress	SEQUENCE

	{

		node	OCTET STRING (SIZE(6)),

		netnum	OCTET STRING (SIZE(4)),

		tsapIdentifier	OCTET STRING (SIZE(2)),

		...

	},

	iP6Address	SEQUENCE

	{

		network	OCTET STRING (SIZE(16)),

		tsapIdentifier	INTEGER(0..65535),

		...

	},

	netBios	OCTET STRING (SIZE(16)),

	iPSourceRouteAddress	SEQUENCE

	{

		routing	CHOICE

		{

			strict	NULL,

			loose	NULL

		},

		network	OCTET STRING (SIZE(4)),

		tsapIdentifier	INTEGER(0..65535),

		route	SEQUENCE OF OCTET STRING (SIZE(4)),

		...

	},

	...,

	nsap		OCTET STRING (SIZE(1..20)),

	nonStandardAddress	NonStandardParameter

}

MulticastAddress	::=CHOICE

{

	iPAddress	SEQUENCE

	{

		network	OCTET STRING (SIZE(4)),

		tsapIdentifier	INTEGER(0..65535),

		...

	},

	iP6Address	SEQUENCE

	{

		network	OCTET STRING (SIZE(16)),

		tsapIdentifier	INTEGER(0..65535),

		...

	},

	...,

	nsap		OCTET STRING (SIZE(1..20)),

	nonStandardAddress	NonStandardParameter

}

OpenLogicalChannelAck	::=SEQUENCE

{

	forwardLogicalChannelNumber	LogicalChannelNumber,

	reverseLogicalChannelParameters	SEQUENCE

	{

		reverseLogicalChannelNumber	LogicalChannelNumber,

		portNumber	INTEGER (0..65535) OPTIONAL,

		multiplexParameters	CHOICE

		{

			h222LogicalChannelParameters	H222LogicalChannelParameters,

			-- H.223 parameters are never present in reverse direction

			...,

			h2250LogicalChannelParameters H2250LogicalChannelParameters

		} OPTIONAL,	-- Not present for H.223

		...

	} OPTIONAL,	-- Not present for uni-directional channel request

	...,

	separateStack	NetworkAccessParameters OPTIONAL,

				-- for Open requester to establish the stack

	forwardMultiplexAckParameters	CHOICE

	{

		-- H.222 parameters are never present in the Ack

		-- H.223 parameters are never present in the Ack

		--V.76 parameters are never present in the Ack

		h2250LogicalChannelAckParameters H2250LogicalChannelAckParameters,

		...

	} OPTIONAL

}

OpenLogicalChannelReject	::=SEQUENCE

{

	forwardLogicalChannelNumber	LogicalChannelNumber,

	cause		CHOICE

	{

		unspecified	NULL,

		unsuitableReverseParameters	NULL,

		dataTypeNotSupported	NULL,

		dataTypeNotAvailable	NULL,

		unknownDataType	NULL,

		dataTypeALCombinationNotSupported	NULL,

		...,

		multicastChannelNotAllowed	NULL,

		insufficientBandwidth	NULL,

		separateStackEstablishmentFailed	NULL,

		invalidSessionID	NULL,

		masterSlaveConflict	NULL

	},

	...

}

OpenLogicalChannelConfirm	::=SEQUENCE

{

	forwardLogicalChannelNumber	LogicalChannelNumber,

	...

}

H2250LogicalChannelAckParameters	::=SEQUENCE

{

	nonStandard	SEQUENCE OF NonStandardParameter OPTIONAL,

	sessionID	INTEGER(1..255) OPTIONAL,

	mediaChannel	TransportAddress OPTIONAL,

	mediaControlChannel	TransportAddress OPTIONAL, -- forward RTCP channel

	dynamicRTPPayloadType	INTEGER(96..127) OPTIONAL, -- used only by the master

						-- or MC

	...

}

CloseLogicalChannel	::=SEQUENCE

{

	forwardLogicalChannelNumber	LogicalChannelNumber,

	source		CHOICE

	{

		user	NULL,

		lcse	NULL

	},

	...

}

CloseLogicalChannelAck	::=SEQUENCE

{

	forwardLogicalChannelNumber	LogicalChannelNumber,

	...

}

RequestChannelClose	::=SEQUENCE

{

	forwardLogicalChannelNumber	LogicalChannelNumber,

	...

}

RequestChannelCloseAck	::=SEQUENCE

{

	forwardLogicalChannelNumber	LogicalChannelNumber,

	...

}

RequestChannelCloseReject	::=SEQUENCE

{

	forwardLogicalChannelNumber	LogicalChannelNumber,

	cause		CHOICE

	{

		unspecified	NULL,

		...

	},

	...

}

RequestChannelCloseRelease	::=SEQUENCE

{

	forwardLogicalChannelNumber	LogicalChannelNumber,

	...

}

�-- ===

-- H.223 multiplex table definitions

-- ===

MultiplexEntrySend	::=SEQUENCE

{

	sequenceNumber	SequenceNumber,

	multiplexEntryDescriptors	SET SIZE (1..15) OF MultiplexEntryDescriptor,

	...

}

MultiplexEntryDescriptor	::=SEQUENCE

{

	multiplexTableEntryNumber	MultiplexTableEntryNumber,

	elementList	SEQUENCE SIZE (1..256) OF MultiplexElement OPTIONAL

}

MultiplexElement	::=SEQUENCE

{

	type		CHOICE

	{

		logicalChannelNumber	INTEGER(0..65535),

		subElementList	SEQUENCE SIZE (2..255) OF MultiplexElement

	},

	repeatCount	CHOICE

	{

		finite	INTEGER (1..65535),	-- repeats of type

		untilClosingFlag	NULL	-- used for last element

	}

}

MultiplexTableEntryNumber	::=INTEGER (1..15)

MultiplexEntrySendAck	::=SEQUENCE

{

	sequenceNumber	SequenceNumber,

	multiplexTableEntryNumber	SET SIZE (1..15) OF MultiplexTableEntryNumber,

	...

}

MultiplexEntrySendReject	::=SEQUENCE

{

	sequenceNumber	SequenceNumber,

	rejectionDescriptions	SET SIZE (1..15) OF MultiplexEntryRejectionDescriptions,

	...

}

MultiplexEntryRejectionDescriptions	::=SEQUENCE

{

	multiplexTableEntryNumber	MultiplexTableEntryNumber,

	cause		CHOICE

	{

		unspecifiedCause	NULL,

		descriptorTooComplex	NULL,

		...

	},

	...

}

MultiplexEntrySendRelease	::=SEQUENCE

{

	multiplexTableEntryNumber	SET SIZE (1..15) OF MultiplexTableEntryNumber,

	...

}

RequestMultiplexEntry	::=SEQUENCE

{

	entryNumbers	SET SIZE (1..15) OF MultiplexTableEntryNumber,

	...

}

RequestMultiplexEntryAck	::=SEQUENCE

{

	entryNumbers	SET SIZE (1..15) OF MultiplexTableEntryNumber,

	...

}

RequestMultiplexEntryReject	::=SEQUENCE

{

	entryNumbers	SET SIZE (1..15) OF MultiplexTableEntryNumber,

	rejectionDescriptions	SET SIZE (1..15) OF RequestMultiplexEntryRejectionDescriptions,

	...

}

RequestMultiplexEntryRejectionDescriptions	::=SEQUENCE

{

	multiplexTableEntryNumber	MultiplexTableEntryNumber,

	cause		CHOICE

	{

		unspecifiedCause	NULL,

		...

	},

	...

}

RequestMultiplexEntryRelease	::=SEQUENCE

{

	entryNumbers	SET SIZE (1..15) OF MultiplexTableEntryNumber,

	...

}

�-- ===

-- Request mode definitions

-- ===

-- RequestMode is a list, in order or preference, of modes that a terminal would like

-- to have transmitted to it.

RequestMode	::=SEQUENCE

{

	sequenceNumber	SequenceNumber,

	requestedModes	SEQUENCE SIZE (1..256) OF ModeDescription,

	...

}

RequestModeAck	::=SEQUENCE

{

	sequenceNumber	SequenceNumber,

	response	CHOICE

	{

		willTransmitMostPreferredMode	NULL,

		willTransmitLessPreferredMode	NULL,

		...

	},

	...

}

RequestModeReject	::=SEQUENCE

{

	sequenceNumber	SequenceNumber,

	cause		CHOICE

	{

		modeUnavailable	NULL,

		multipointConstraint	NULL,

		requestDenied	NULL,

		...

	},

	...

}

RequestModeRelease	::=SEQUENCE

{

	...

}

-- ===

-- Request mode definitions: Mode description

-- ===

ModeDescription	::=SET SIZE (1..256) OF ModeElement

ModeElement	::= SEQUENCE

{

	type		CHOICE

	{

		nonStandard	NonStandardParameter,

		videoMode	VideoMode,

		audioMode	AudioMode,

		dataMode	DataMode,

		encryptionMode	EncryptionMode,

		...

	},

	h223ModeParameters	H223ModeParameters OPTIONAL,

	...,

	v76ModeParameters	V76ModeParameters OPTIONAL

							

}

H223ModeParameters	::=SEQUENCE

{

	adaptationLayerType	CHOICE

	{

		nonStandard	NonStandardParameter,

		al1Framed	NULL,

		al1NotFramed	NULL,

		al2WithoutSequenceNumbers	NULL,

		al2WithSequenceNumbers	NULL,

		al3		SEQUENCE

		{

			controlFieldOctets	INTEGER(0..2),

			sendBufferSize	INTEGER(0..16777215)	-- units octets

		},

		...

	},

	segmentableFlag	BOOLEAN,

	...

}

V76ModeParameters	::=CHOICE

{

	suspendResumewAddress	NULL,

	suspendResumewoAddress	NULL,

	...

}

-- ===

-- Request mode definitions: Video modes

-- ===

VideoMode		::=CHOICE

{

	nonStandard	NonStandardParameter,

	h261VideoMode	H261VideoMode,

	h262VideoMode	H262VideoMode,

	h263VideoMode	H263VideoMode,

	is11172VideoMode	IS11172VideoMode,

	...

}

H261VideoMode	::=SEQUENCE

{

	resolution	CHOICE

	{

		qcif	NULL,

		cif		NULL

	},

	bitRate		INTEGER (1..19200),	-- units 100 bit/s

	stillImageTransmission	BOOLEAN,

	...

}

H262VideoMode	::=SEQUENCE

{

	profileAndLevel	CHOICE

	{

		profileAndLevel-SPatML	NULL,

		profileAndLevel-MPatLL	NULL,

		profileAndLevel-MPatML	NULL,

		profileAndLevel-MPatH-14	NULL,

		profileAndLevel-MPatHL	NULL,

		profileAndLevel-SNRatLL	NULL,

		profileAndLevel-SNRatML	NULL,

		profileAndLevel-SpatialatH-14	NULL,

		profileAndLevel-HPatML	NULL,

		profileAndLevel-HPatH-14	NULL,

		profileAndLevel-HPatHL	NULL,

		...

	},

	videoBitRate	INTEGER(0..1073741823) OPTIONAL,	-- units 400bit/s

	vbvBufferSize	INTEGER(0..262143) OPTIONAL,	-- units 16384bits

	samplesPerLine	INTEGER(0..16383) OPTIONAL,	-- units samples/line

	linesPerFrame	INTEGER(0..16383) OPTIONAL,	-- units lines/frame

	framesPerSecond	INTEGER(0..15) OPTIONAL,	-- frame_rate_code

	luminanceSampleRate	INTEGER(0..4294967295) OPTIONAL,	-- units samples/sec

	...

}

H263VideoMode	::=SEQUENCE

{

	resolution	CHOICE

	{

		sqcif	NULL,	

		qcif	NULL,

		cif		NULL,

		cif4	NULL,

		cif16	NULL,

		...

	},

	bitRate	INTEGER (1..19200),	-- units 100 bit/s

	unrestrictedVector	BOOLEAN,

	arithmeticCoding	BOOLEAN,

	advancedPrediction	BOOLEAN,

	pbFrames	BOOLEAN,

	...,

								

	errorCompensation	BOOLEAN

}

IS11172VideoMode	::=SEQUENCE

{

	constrainedBitstream	BOOLEAN,

	videoBitRate	INTEGER(0..1073741823) OPTIONAL,	-- units 400bit/s

	vbvBufferSize	INTEGER(0..262143) OPTIONAL,	-- units 16384bits

	samplesPerLine	INTEGER(0..16383) OPTIONAL,	-- units samples/line

	linesPerFrame	INTEGER(0..16383) OPTIONAL,	-- units lines/frame

	pictureRate	INTEGER(0..15) OPTIONAL,

	luminanceSampleRate	INTEGER(0..4294967295) OPTIONAL,	-- units samples/sec

	...

}

-- ===

-- Request mode definitions: Audio modes

-- ===

AudioMode	::=CHOICE

{

	nonStandard	NonStandardParameter,

	g711Alaw64k	NULL,

	g711Alaw56k	NULL,

	g711Ulaw64k	NULL,

	g711Ulaw56k	NULL,

	g722-64k	NULL,

	g722-56k	NULL,

	g722-48k	NULL,

	g728		NULL,

	g729		NULL,

	g729AnnexA	NULL,

	g7231		CHOICE

	{

		noSilenceSuppressionLowRate	NULL,

		noSilenceSuppressionHighRate	NULL,

		silenceSuppressionLowRate	NULL,

		silenceSuppressionHighRate	NULL

	},

	is11172AudioMode	IS11172AudioMode,

	is13818AudioMode	IS13818AudioMode,

	...,

	g729wAnnexB	INTEGER(1..256),

	g729AnnexAwAnnexB	INTEGER(1..256),

	g7231AnnexCMode	G7231AnnexCMode}

IS11172AudioMode	::=SEQUENCE

{

	audioLayer	CHOICE

	{

		audioLayer1	NULL,

		audioLayer2	NULL,

		audioLayer3	NULL

	},

	audioSampling	CHOICE

	{

		audioSampling32k	NULL,

		audioSampling44k1	NULL,

		audioSampling48k	NULL

	},

	multichannelType	CHOICE

	{

		singleChannel	NULL,

		twoChannelStereo	NULL,

		twoChannelDual	NULL

	},

	bitRate	INTEGER (1..448),	--units kbit/s

	...

}

IS13818AudioMode	::=SEQUENCE

{

	audioLayer	CHOICE

	{

		audioLayer1	NULL,

		audioLayer2	NULL,

		audioLayer3	NULL

	},

	audioSampling	CHOICE

	{

		audioSampling16k	NULL,

		audioSampling22k05	NULL,

		audioSampling24k	NULL,

		audioSampling32k	NULL,

		audioSampling44k1	NULL,

		audioSampling48k	NULL

	},

	multichannelType	CHOICE

	{

		singleChannel	NULL,

		twoChannelStereo	NULL,

		twoChannelDual	NULL,

		threeChannels2-1	NULL,

		threeChannels3-0	NULL,

		fourChannels2-0-2-0	NULL,

		fourChannels2-2	NULL,

		fourChannels3-1	NULL,

		fiveChannels3-0-2-0	NULL,

		fiveChannels3-2	NULL

	},

	lowFrequencyEnhancement	BOOLEAN,

	multilingual	BOOLEAN,

	bitRate	INTEGER (1..1130),	--units kbit/s

	...

}

G7231AnnexCMode	::= SEQUENCE

{

	maxAl-sduAudioFrames	INTEGER (1..256),

	silenceSuppression	BOOLEAN,

	g723AnnexCAudioMode	SEQUENCE

	{

		highRateMode0	INTEGER (27..78),	-- units octets

		highRateMode1	INTEGER (27..78),	-- units octets

		lowRateMode0	INTEGER (23..66),	-- units octets

		lowRateMode1	INTEGER (23..66),	-- units octets

		sidMode0	INTEGER (6..17),	-- units octets

		sidMode1	INTEGER (6..17),	-- units octets

		...

	},

	...

}

-- ===

-- Request mode definitions: Data modes

-- ===

DataMode		::=SEQUENCE

{

	application	CHOICE

	{

		nonStandard	NonStandardParameter,

		t120	DataProtocolCapability,

		dsm-cc	DataProtocolCapability,

		userData	DataProtocolCapability,

		t84	DataProtocolCapability,

		t434	DataProtocolCapability,

		h224	DataProtocolCapability,

		nlpid	SEQUENCE

		{

			nlpidProtocol	DataProtocolCapability,

			nlpidData	OCTET STRING

		},

		dsvdControl	NULL,

		h222DataPartitioning	DataProtocolCapability,

		...

	},

	bitRate		INTEGER (0..4294967295),	-- units 100 bit/s

	...

}

-- ===

-- Request mode definitions: Encryption modes

-- ===

EncryptionMode	::=CHOICE

{

	nonStandard	NonStandardParameter,

	h233Encryption	NULL,

	...

}

�-- ===

-- Round Trip Delay definitions

-- ===

RoundTripDelayRequest	::=SEQUENCE

{

	sequenceNumber	SequenceNumber,

	...

}

RoundTripDelayResponse	::=SEQUENCE

{

	sequenceNumber	SequenceNumber,

	...

}

-- ===

-- Maintenance Loop definitions

-- ===

MaintenanceLoopRequest	::=SEQUENCE

{

	type		CHOICE

	{

		systemLoop	NULL,

		mediaLoop	LogicalChannelNumber,

		logicalChannelLoop	LogicalChannelNumber,

		...

	},

	...

}

MaintenanceLoopAck	::=SEQUENCE

{

	type		CHOICE

	{

		systemLoop	NULL,

		mediaLoop	LogicalChannelNumber,

		logicalChannelLoop	LogicalChannelNumber,

		...

	},

	...

}

MaintenanceLoopReject	::=SEQUENCE

{

	type		CHOICE

	{

		systemLoop	NULL,

		mediaLoop	LogicalChannelNumber,

		logicalChannelLoop	LogicalChannelNumber,

		...

	},

	cause		CHOICE

	{

		canNotPerformLoop	NULL,

		...

	},

	...

}

MaintenanceLoopOffCommand	::=SEQUENCE

{

	...

}

-- ===

-- Communication Mode definitions

-- ===

CommunicationModeCommand	::=SEQUENCE

{

	communicationModeTable	SET SIZE(1..256) OF CommunicationModeTableEntry,

	...

}

CommunicationModeRequest	::=SEQUENCE

{

	...

}

CommunicationModeResponse	::=CHOICE

{

	communicationModeTable	SET SIZE(1..256) OF CommunicationModeTableEntry,

	...

}

CommunicationModeTableEntry	::=SEQUENCE

{

	nonStandard	SEQUENCE OF NonStandardParameter OPTIONAL,

	sessionID	INTEGER(1..255),

	associatedSessionID	INTEGER(1..255) OPTIONAL,

	terminalLabel	TerminalLabel OPTIONAL, -- if not present,

					-- it refers to all participants

					-- in the conference

	sessionDescription	BMPString (SIZE(1..128)) , -- Basic ISO/IEC 10646-1 (Unicode)

	dataType	CHOICE

	{

		videoData	VideoCapability,

		audioData	AudioCapability,

		data	DataApplicationCapability,

		...

	},

	mediaChannel	TransportAddress OPTIONAL,

	mediaGuaranteedDelivery	BOOLEAN OPTIONAL,

	mediaControlChannel	TransportAddress OPTIONAL, -- reverse RTCP channel

	mediaControlGuaranteedDelivery	BOOLEAN OPTIONAL,

	...

}

-- ===

-- Conference Request definitions

-- ===

ConferenceRequest	::=CHOICE

{

	

	terminalListRequest	NULL, -- same as H.230 TCU (term->MC)

	makeMeChair	NULL, -- same as H.230 CCA (term->MC)

	cancelMakeMeChair	NULL, -- same as H.230 CIS (term->MC)

	dropTerminal	TerminalLabel, -- same as H.230 CCD(term->MC)

	requestTerminalID	TerminalLabel, -- sames as TCP (term->MC)

	enterH243Password	NULL, -- same as H.230 TCS1(MC->term)

	enterH243TerminalID	NULL, -- same as H.230 TCS2/TCI

						-- (MC->term)

	enterH243ConferenceID	NULL, -- same as H.230 TCS3 (MC->term)

	...,

	enterExtensionAddress	NULL -- same as H.230 TCS4 (GW->term)

}

TerminalLabel	::=SEQUENCE

{

		mcuNumber	McuNumber,

		terminalNumber	TerminalNumber,

		...

}

McuNumber	::=INTEGER(0..192)

TerminalNumber	::=INTEGER(0..192)

-- ===

-- Conference Response definitions

-- ===

ConferenceResponse	::=CHOICE

{

	mCTerminalIDResponse	SEQUENCE -- response to TCP(same as TIP)

	{				-- sent by MC only

		terminalLabel	TerminalLabel,

		terminalID	TerminalID,

		...

	},

	terminalIDResponse	SEQUENCE	-- response to TCS2 or TCI

	{				-- same as IIS

		terminalLabel	TerminalLabel,	-- (term->MC)

		terminalID	TerminalID,

		...

	},

	conferenceIDResponse	SEQUENCE	-- response to TCS3

	{				-- same as IIS

		terminalLabel	TerminalLabel,	-- (term->MC)

		conferenceID	ConferenceID,

		...

	},

	passwordResponse	SEQUENCE	-- response to TCS1

	{				-- same as IIS

		terminalLabel	TerminalLabel,	-- (term->MC)

		password	Password,

		...

	},

	terminalListResponse	SET SIZE (1..256) OF TerminalLabel,

	videoCommandReject	NULL,	-- same as H.230 VCR

	terminalDropReject	NULL,	-- same as H.230 CIR

	makeMeChairResponse	CHOICE	-- same as H.230 CCR

	{

		grantedChairToken	NULL,	-- same as H.230 CIT

		deniedChairToken	NULL,	-- same as H.230 CCR

		...

	},

	...,

	extensionAddressResponse	SEQUENCE	-- response to TCS4

	{

		extensionAddress	TerminalID,	-- same as IIS (term->GW)

		...

	}

}

TerminalID 	::=OCTET STRING (SIZE(1..128))	-- as per H.230

ConferenceID	::=OCTET STRING (SIZE(1..32))

Password		::=OCTET STRING (SIZE(1..32))

-- ===

-- Command Message definitions

-- ===

-- ===

-- Command Message : Send Terminal Capability Set

-- ===

SendTerminalCapabilitySet	::=CHOICE

{

	specificRequest	SEQUENCE

	{

		multiplexCapability	BOOLEAN,

		capabilityTableEntryNumbers	SET SIZE (1..65535) OF CapabilityTableEntryNumber OPTIONAL,

		capabilityDescriptorNumbers	SET SIZE (1..256) OF CapabilityDescriptorNumber OPTIONAL,

		...

	},

	genericRequest	NULL,

	...

}

-- ===

-- Command Message : Encryption

-- ===

EncryptionCommand	::=CHOICE

{

	encryptionSE	OCTET STRING,	-- per H.233, but no error protection

	encryptionIVRequest	NULL,	-- requests new IV

	encryptionAlgorithmID	SEQUENCE

	{

		h233AlgorithmIdentifier	SequenceNumber,

		associatedAlgorithm	NonStandardParameter

	},

	...

}

-- ===

-- Command Message : Flow Control

-- ===

FlowControlCommand	::=SEQUENCE

{

	scope		CHOICE

	{

		logicalChannelNumber	LogicalChannelNumber,

		resourceID	INTEGER (0..65535),

		wholeMultiplex	NULL

	},

	restriction	CHOICE

	{

		maximumBitRate	INTEGER (0..16777215),	-- units 100 bit/s

		noRestriction	NULL

	},

	...

}

-- ===

-- Command Message : Change or End Session

-- ===

EndSessionCommand	::=CHOICE

{

	nonStandard	NonStandardParameter,

	disconnect	NULL,

	gstnOptions	CHOICE

	{

		telephonyMode	NULL,

		v8bis	NULL,

		v34DSVD	NULL,

		v34DuplexFAX	NULL,

		v34H324	NULL,

		...

	},

	...

}

-- ===

-- Command Message : Conference Commands

-- ===

ConferenceCommand	::=CHOICE

{

	broadcastMyLogicalChannel	LogicalChannelNumber,	-- similar to H.230 MCV

	cancelBroadcastMyLogicalChannel	LogicalChannelNumber, -- similar to H.230 Cancel-MCV

	makeTerminalBroadcaster	TerminalLabel,	-- same as H.230 VCB

	cancelMakeTerminalBroadcaster	NULL,	-- same as H.230 Cancel-VCB

		

	sendThisSource	TerminalLabel,	-- same as H.230 VCS

	cancelSendThisSource	NULL,	-- same as H.230 cancel VCS

	dropConference	NULL,	-- same as H.230 CCK

	...

}

-- ===

-- Command Message : Miscellaneous H.230-like commands

-- ===

MiscellaneousCommand	::=SEQUENCE

{

	logicalChannelNumber	LogicalChannelNumber,

	type		CHOICE

	{

		equaliseDelay	NULL,	-- same as H.230 ACE

		zeroDelay	NULL,	-- same as H.230 ACZ

		multipointModeCommand	NULL,

		cancelMultipointModeCommand	NULL,

		videoFreezePicture	NULL,

		videoFastUpdatePicture	NULL,

		videoFastUpdateGOB	SEQUENCE

		{

			firstGOB	INTEGER (0..17),

			numberOfGOBs	INTEGER (1..18)

		},

		videoTemporalSpatialTradeOff	INTEGER (0..31),	-- commands a trade-off value

		videoSendSyncEveryGOB	NULL,

		videoSendSyncEveryGOBCancel	NULL,

		...,

		videoFastUpdateMB	SEQUENCE

		{

			firstGOB	INTEGER (0..255) OPTIONAL,	

			firstMB	INTEGER (1..8192) OPTIONAL,

			numberOfMBs	INTEGER (1..8192),

			...

		},

		maxH223MUXPDUsize	INTEGER(1..65535)	-- units octets

	},

	...

}

�-- ===

-- Indication Message definitions

-- ===

-- ===

-- Indication Message : Function not understood

-- ===

-- This is used to return a request, response or command that is not understood

FunctionNotUnderstood	::=CHOICE

{

	request	RequestMessage,

	response	ResponseMessage,

	command	CommandMessage

}

-- ===

-- Indication Message : Function not Supported

-- ===

-- This is used to return a complete request, response or command that is not recognised

FunctionNotSupported	::=SEQUENCE

{

	cause		CHOICE

	{

		syntaxError	NULL,

		semanticError	NULL,

		unknownFunction	NULL,

		...

	},

	returnedFunction	OCTET STRING OPTIONAL,

	...

}

-- ===

-- Indication Message : Conference

-- ===

ConferenceIndication	::=CHOICE

{

	sbeNumber		INTEGER (0..9),	-- same as H.230 SBE Number

		

	terminalNumberAssign		TerminalLabel,	-- same as H.230 TIA

	terminalJoinedConference		TerminalLabel,	-- same as H.230 TIN

	terminalLeftConference		TerminalLabel,	-- same as H.230 TID

	seenByAtLeastOneOther		NULL,	-- same as H.230 MIV

	cancelSeenByAtLeastOneOther		NULL,	-- same as H.230 cancel MIV

	seenByAll		NULL,	-- like H.230 MIV

	cancelSeenByAll		NULL,	-- like H.230 MIV

	terminalYouAreSeeing		TerminalLabel,	-- same as H.230 TIN

	requestForFloor	NULL,	-- same as H.230 TIF

	...

}

-- ===

-- Indication Message : Miscellaneous H.230-like indication

-- ===

MiscellaneousIndication	::=SEQUENCE

{

	logicalChannelNumber	LogicalChannelNumber,

	type		CHOICE

	{

		logicalChannelActive	NULL,	-- same as H.230 AIA and VIA

		logicalChannelInactive	NULL,	-- same as H.230 AIM and VIS

		multipointConference	NULL,	

		cancelMultipointConference	NULL,	

		multipointZeroComm	NULL,	-- same as H.230 MIZ

		cancelMultipointZeroComm	NULL,	-- same as H.230 cancel MIZ

		multipointSecondaryStatus	NULL,	-- same as H.230 MIS

		cancelMultipointSecondaryStatus	NULL,	-- same as H.230 cancel MIS

		videoIndicateReadyToActivate	NULL,	-- same as H.230 VIR

		videoTemporalSpatialTradeOff	INTEGER (0..31),	-- indicates current trade-off

		...,

		videoNotDecodedMBs	SEQUENCE

		{

			firstMB	INTEGER (1..8192),

			numberOfMBs	INTEGER (1..8192),

			temporalReference	INTEGER (0..255),

			...

		}

	},

	...

}

-- ===

-- Indication Message : Jitter Indication

-- ===

JitterIndication	::=SEQUENCE

{

	scope		CHOICE

	{

		logicalChannelNumber	LogicalChannelNumber,

		resourceID	INTEGER (0..65535),

		wholeMultiplex	NULL

	},

	estimatedReceivedJitterMantissa	INTEGER (0..3),

	estimatedReceivedJitterExponent	INTEGER (0..7),

	skippedFrameCount	INTEGER (0..15) OPTIONAL,

	additionalDecoderBuffer	INTEGER (0..262143) OPTIONAL,	-- 262143 is 2^18 - 1

	...

}

-- ===

-- Indication Message : H.223 logical channel skew

-- ===

H223SkewIndication	::=SEQUENCE

{

	logicalChannelNumber1	LogicalChannelNumber,

	logicalChannelNumber2	LogicalChannelNumber,

	skew		INTEGER (0..4095),	-- units milliseconds

	...

}

-- ===

-- Indication Message : H.225.0 maximum logical channel skew

-- ===

H2250MaximumSkewIndication	::=SEQUENCE

{

	logicalChannelNumber1	LogicalChannelNumber,

	logicalChannelNumber2	LogicalChannelNumber,

	maximumSkew	INTEGER (0..4095),	-- units milliseconds

	...

}

-- ===

-- Indication Message : MC Location Indication

-- ===

MCLocationIndication	::=SEQUENCE

{

	signalAddress	TransportAddress, -- this is the H.323 Call Signalling

					-- address of the entity which

					-- contains the MC

	...

}

-- ===

-- Indication Message : Vendor Identification

-- ===

	VendorIdentification		::=SEQUENCE

	{

		vendor				NonStandardIdentifier,

		productNumber		OCTET STRING (SIZE(1..256)) OPTIONAL, -- per vendor

		versionNumber		OCTET STRING (SIZE(1..256)) OPTIONAL, -- per productNumber

		...

	}

-- ===

-- Indication Message : New ATM virtual channel indication

-- ===

NewATMVCIndication	::=SEQUENCE

{

	resourceID	INTEGER(0..65535),

	bitRate	INTEGER(1..65535),	-- units 64 kbit/s

	bitRateLockedToPCRClock	BOOLEAN,

	bitRateLockedToNetworkClock	BOOLEAN,

	aal			CHOICE

	{

		aal1	SEQUENCE

		{

			clockRecovery	CHOICE

			{

				nullClockRecovery	NULL,

				srtsClockRecovery	NULL,

				adaptiveClockRecovery	NULL,

				...

			},

			errorCorrection	CHOICE

			{

				nullErrorCorrection	NULL,

				longInterleaver	NULL,

				shortInterleaver	NULL,

				errorCorrectionOnly	NULL,

				...

			},

			structuredDataTransfer	BOOLEAN,

			partiallyFilledCells	BOOLEAN,

			...

		},

		aal5	SEQUENCE

		{

			forwardMaximumSDUSize	INTEGER (0..65535),	-- units octets

			backwardMaximumSDUSize	INTEGER (0..65535),	-- units octets

			...

		},

		...

	},

	multiplex	CHOICE

	{

		noMultiplex	NULL,

		transportStream	NULL,

		programStream	NULL,

		...

	},

	...

}

-- ===

-- Indication Message : user input

-- ===

UserInputIndication	::=CHOICE

{

	nonStandard	NonStandardParameter,

	alphanumeric	GeneralString,

	...,

	userInputSupportIndication	CHOICE

	{

		nonStandard 	NonStandardParameter,

		basicString	NULL,

		iA5String	NULL,

		generalString	NULL,

		...

	}

}

END

��seq section�7��seq sub_section \r 0 \h��	Messages: semantic definitions

This section provides semantic definitions and constraints on the syntax elements defined in the previous section.

MultimediaSystemControlMessage: is a choice of message types. Messages defined in this Recommendation are classified as request, response, command and indication messages.

RequestMessage: a request message results in an action by the remote terminal and requires an immediate response from it. The nonStandard message may be used to send non-standard requests.

ResponseMessage: a response message is the response to a request message. The nonStandard message may be used to send non-standard responses.

CommandMessage: a command message requires action but no explicit response. The nonStandard message may be used to send non-standard commands.

IndicationMessage: an indication contains information that does not require action or response. The nonStandard message may be used to send non-standard indications.

NonStandardParameter: this may be used to indicate a non standard parameter. It consists of an identity and the actual parameters, which are coded as an octet string.

NonStandardIdentifier: is used to identify the type of non-standard parameter. It is either an object identifier, or an H.221 type of identifier that is an octet string consisting of exactly four octets which are country code (octet 1 as in T.35 [�seq reference t35_ref�22�]; octet 2*), manufacturer code (next two octets*), *=assigned nationally. The manufacturer codes are the same as those assigned for use in H.320 [�seq reference h320_ref�17�]. H.245 non-standard identifiers may be either “object” type or “h221NonStandard” type at the discretion of the manufacturer defining the non-standard message, as OBJECT IDENTIFIERs and h221NonStandard messages come from non-overlapping spaces and cannot be confused. However, since h221NonStandard messages are also used by H.320, such messages come from the same space as H.320 messages, and shall have the same meaning.

�seq section \c�7�.�seq sub_section�1��seq sub_sub_section \r 0 \h��	Master Slave Determination messages

This set of messages is used by a protocol to determine which terminal is the master terminal and which is the slave terminal.

�seq section \c�7�.�seq sub_section\c�1�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Master Slave Determination

This is sent from a MSDSE to a peer MSDSE.

terminalType is a number that identifies different types of terminal, such as, terminals, MCUs and gateways. The allocation of values to terminal types is outside the scope of this Recommendation.

statusDeterminationNumber is a random number in the range 0..224-1.

�seq section \c�7�.�seq sub_section\c�1�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Master Slave Determination Acknowledge

This is used to confirm whether the terminal is the master terminal or the slave terminal, as indicated by decision. When decision is of type master, the terminal receiving this message is the master terminal and when decision is of type slave, it is the slave terminal.

�seq section \c�7�.�seq sub_section\c�1�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Master Slave Determination Reject

This is used to reject the MasterSlaveDetermination message. When the cause is of type identicalNumbers, the rejection was due to the random numbers being equivalent and the terminal types being the same.

�seq section \c�7�.�seq sub_section\c�1�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	Master Slave Determination Release

This is sent in the case of a time out.

��seq section \c�7�.�seq sub_section�2��seq sub_sub_section \r 0 \h��	Terminal capability messages

This set of messages is for the secure exchange of capabilities between the two terminals.

�seq section \c�7�.�seq sub_section\c�2�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Overview

The transmitting terminal assigns each individual mode the terminal is capable of operating in a number in a capabilityTable. For example, G.723.1 audio, G.728 audio, and CIF H.263 video would each be assigned separate numbers.

These capability numbers are grouped into AlternativeCapabilitySet structures. Each AlternativeCapabilitySet indicates that the terminal is capable of operating in exactly one mode listed in the set. For example, an AlternativeCapabilitySet listing {G.711, G.723.1, G.728} means that the terminal can operate in any one of those audio modes, but not more than one.

These AlternativeCapabilitySet structures are grouped into simultaneousCapabilities structures. Each simultaneousCapabilities structure indicates a set of modes the terminal is capable of using simultaneously. For example, a simultaneousCapabilities structure containing the two AlternativeCapabilitySet structures {H.261, H.263} and {G.711, G.723.1, G.728} means that the terminal can operate either of the video codecs simultaneously with any one of the audio codecs. The simultaneousCapabilities set {{H.261}, {H.261, H.263}, {G.711, G.723.1, G.728} } means the terminal can operate two video channels and one audio channel simultaneously: one video channel per H.261, another video channel per either H.261 or H.263, and one audio channel per either G.711, G.723.1, or G.728.

Note: the actual capabilities stored in the capabilityTable are often more complex than presented here. For example, each H.263 capability indicates details including ability to support various picture formats at given minimum picture intervals, and ability to use optional coding modes.

The terminal's total capabilities are described by a set of CapabilityDescriptor structures, each of which is a single simultaneousCapabilities structure and a capabilityDescriptorNumber. By sending more than one CapabilityDescriptor, the terminal may signal dependencies between operating modes by describing different sets of modes which it can simultaneously use. For example, a terminal issuing two CapabilityDescriptor structures, one {{H.261, H.263}, {G.711, G.723.1, G.728} } as in the previous example, and the other { {H.262}, {G.711} }, means the terminal can also operate the H.262 video codec, but only with the low-complexity G.711 audio codec.

Terminals may dynamically add capabilities during a communication session by issuing additional CapabilityDescriptor structures, or remove capabilities by sending revised CapabilityDescriptor structures. All terminals shall transmit at least one CapabilityDescriptor structure.

�seq section \c�7�.�seq sub_section\c�2�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Terminal Capability Set

This message contains information about the terminal's capability to transmit and receive. It also indicates the version of this Recommendation that is in use. It is sent from an out-going CESE to a peer in-coming CESE.

sequenceNumber is used to label instances of TerminalCapabilitySet so that the corresponding response can be identified.

protocolIdentifier is used to indicate the version of this Recommendation that is in use. Annex A lists the object identifiers defined for use by this Recommendation.

multiplexCapability indicates capabilities relating to multiplexing and network adaptation. A terminal shall include multiplexCapability in the first TerminalCapabilitySet sent.

V75Capability indicates the capabilities of the V.75 control entity. The audioHeader indicates the capability of the V.75 audio header.

�seq section \c�7�.�seq sub_section \c�2�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�1�	Capability Table

A capability table is a numbered list of capabilities. A terminal shall be capable of everything that it lists in its capability table, but shall not necessarily be capable of simultaneously performing more than one of them.

A TerminalCapabilitySet may contain zero or more CapabilityTableEntrys. At the start, no table entries are defined. When a CapabilityTableEntry is received, it replaces the previously received CapabilityTableEntry with the same CapabilityTableEntryNumber. A CapabilityTableEntry without a Capability may be used to remove the previously received CapabilityTableEntry with the same CapabilityTableEntryNumber.

�seq section \c�7�.�seq sub_section \c�2�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�2�	Capability Descriptors

CapabilityDescriptors are used to indicate a terminal's capability to transmit and receive. Each CapabilityDescriptor provides an independent statement about the terminal's capabilities.

capabilityDescriptorNumber is used to number CapabilityDescriptors. If a terminal has a preference for the mode it would like to transmit or receive, and wishes to express this when transmitting its capabilities, it may do so by giving CapabilityDescriptors that relate to its preferred mode or modes small values of capabilityDescriptorNumber.

simultaneousCapabilities is a set of AlternativeCapabilitySet. It is used to list the simultaneous capabilities of the terminal.

An AlternativeCapabilitySet is a sequence of CapabilityTableEntryNumbers. Only those CapabilityTableEntrys that have been defined shall be present in an AlternativeCapabilitySet, although it is possible to define CapabilityTableEntrys and refer to them in the same TerminalCapabilitySet. If a terminal has a preference for the mode it would like to transmit or receive, and wishes to express this when transmitting its capabilities, it may do so by listing elements in AlternativeCapabilitySets in order of decreasing preference.

A terminal shall be capable of simultaneously performing any one capability from each AlternativeCapabilitySet listed in simultaneousCapabilities.

At least one capability descriptor shall have the following structure: there shall be at least one AlternativeCapabilitySet containing only capabilities of a single medium type for each medium type that the terminal can support. This is to ensure that the remote terminal can select a mode of transmission that includes at least one instance of each medium type that the receiver can support.

Note: a repetition of a capability in an AlternativeCapabilitySet is redundant and conveys no further information, while the repetition of a capability in different AlternativeCapabilitySets in the same CapabilityDescriptor indicates the possibility of an additional, simultaneous, instance of the particular capability.

Note: terminals that can not vary the allocation of resources can indicate their capability completely by use of a single CapabilityDescriptor.

�seq section \c�7�.�seq sub_section \c�2�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�3�	Capability

The choices receiveVideoCapability, receiveAudioCapability and receiveDataApplicationCapability indicate the capability to receive according to the respective VideoCapability, AudioCapability and DataApplicationCapability.

The choices transmitVideoCapability, transmitAudioCapability and transmitDataApplicationCapability indicate the capability to transmit according to the respective VideoCapability, AudioCapability and DataApplicationCapability.

The choices receiveAndTransmitVideoCapability, receiveAndTransmitAudioCapability and receiveAndTransmitDataApplicationCapability indicate the capability to receive and transmit according to the respective VideoCapability, AudioCapability and DataApplicationCapability. These code points may be useful for indicating that the receive and transmit capabilities are not independent.

The boolean h233EncryptionTransmitCapability, when true, indicates that the terminal supports encryption according to H.233 and H.234 [�seq reference h233_ref�11�][�seq reference h234_ref�12�].

h233IVResponseTime is measured in units of milliseconds, and indicates the minimum time the receiver requires the transmitter to wait after the completion of transmission of an IV message before starting to use the new IV. The means of transmitting the IV is not defined in this Recommendation.

ConferenceCapability indicates conference capabilities such as the ability to support Chair Control as described in H.243

�seq section \c�7�.�seq sub_section \c�2�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�4�	Multiplex Capabilities

MultiplexCapability indicates capabilities relating to multiplexing and network adaptation. A terminal shall send MultiplexCapability in the first TerminalCapabilitySet sent. Unless stated otherwise, these are capabilities to receive.

H222Capability: indicates multiplexing and network adaptation capabilities that are specific to the multiplex defined in H.222.1 [�seq reference h2221_ref�7�].

numberOfVCs indicates how many simultaneous ATM Virtual Channels (VCs) can be supported by the terminal. This includes any VCs that transport H.245, T.120, DSM-CC or any other data, and all VCs that carry audiovisual information. It does not include the VC used for Q.2931 signalling [�seq reference q2931_ref�20�].

vcCapability is a set, of size equal to the value of numberOfVCs, that indicates the capabilities present for each available VC.

The sequence aal1, when present, indicates the capability for ATM adaptation layer 1, and which of its options, as specified in I.363 [�seq reference i363_ref�19�], are supported. The codepoints are defined in Table �seq table aal1_cap_tab�1�.

TABLE �seq table�1�/H.245

ATM Adaptation Layer 1 codepoints

ASN.1 Codepoint�Semantic meaning of codepoint��nullClockRecovery�Null source clock frequency recovery method: synchronous circuit transport.��srtsClockRecovery�Synchronous residual timestamp source clock frequency recovery method.��adaptiveClockRecovery�Adaptive clock source clock frequency recovery method.��nullErrorCorrection�No error correction is supported.��longInterleaver�The forward error correction method for loss sensitive signal transport is supported.��shortInterleaver�The forward error correction method for delay sensitive signal transport is supported.��errorCorrectionOnly�The forward error correction method without cell interleaving is supported.��structuredDataTransfer�Structured data transfer is supported.��partiallyFilledCells�Partially filled cells is supported.��

The sequence aal5, when present, indicates the capability for ATM adaptation layer 5, and which of its options, as specified in I.363 [�seq reference i363_ref�19�], are supported. forwardMaximumSDUSize and backwardMaximumSDUSize indicate the maximum CPCS-SDU size in the forward and reverse directions, measured in octets. Either aal1 or aal5 or both shall be present.

The booleans transportStream and programStream, when equal to true, indicate the capability to support the Transport Stream and Program Stream multiplexes respectively [�seq reference h2220_ref�6�].

availableBitRates indicates the bit rate capabilities for the VC. It is a sequence of different bit rates that can be supported, measured in units of 64 kbit/s. Bit rates are listed in decreasing order, that is, the highest bit rate supported is listed first. Supported bit rates can be listed as individual values using the field singleBitRate, or as a rangeOfBitRates between lowerBitRate and higherBitRate, indicating that all values between this lower limit and higher limit, including these limits, are supported. The bit rates indicated are measured at the AAL-SAP.

H223Capability: indicates capabilities specific to the H.223 multiplex [�seq reference h223_ref�8�].

The boolean transportWithI-frames, when true, indicates that the terminal is capable of sending and receiving control channel messages using LAPM I-frames as defined in V.42 [�seq reference v42_ref�29�].

The booleans videoWithAL1, videoWithAL2, videoWithAL3, audioWithAL1, audioWithAL2, audioWithAL3, dataWithAL1, dataWithAL2 and dataWithAL3, when true, indicate the capability to receive the stated medium type (video, audio, or data) using the stated adaptation layer (AL1, AL2, or AL3).

The integers maximumAl2SDUSize and maximumAl3SDUSize indicate the maximum number of octets in each SDU that the terminal can receive when using adaptation layer types 2 and 3 respectively.

maximumDelayJitter indicates the maximum peak-to-peak multiplexing jitter that the transmitter shall cause. It is measured in milliseconds. Multiplexing jitter is defined as the difference in time of delivery of the first octet of an audio frame when delivered in the multiplexed stream and when it would be delivered at constant bit rate without a multiplex.

h223MultiplexTableCapability: indicates the terminals ability to receive and process multiplex table entries.

basic indicates that the multiplex can only receive basic MultiplexEntryDescriptors as defined in H.223 [8].

enhanced indicates that the multiplex can receive enhanced MultiplexEntryDescriptors with the additional parameters defined below.

maximumNestingDepth depth indicates the maximum nesting depth of recursively invoked subElementList fields. MultiplexEntryDescriptors which do not use the subElementList field shall be considered to have a nesting depth of zero.

maximumElementListSize indicates the maximum number of fields in the ASN.1 SEQUENCE.

maximumSubElementListSize indicates the maximum number of subelements in the subElementList.

The boolean maxMUXPDUSizeCapability, when true, indicates that the transmitter is able to restrict the size of the H.223 MUX-PDUs that it transmits. It has no meaning when part of a receive capability.

V76Capability: indicates capabilities specific to the V.76 multiplex.

The suspendResumeCapabilitywAddress indicates the capability of supporting V.76 suspend/resume with an address field. The suspendResumeCapabilitywoAddress indicates the capability of supporting V.76 suspend/resume without an address field.

rejCapability indicates the capability of the V.76 multiplex error control function to perfrom reject.

sREJCapability indicates the capability of the multiplex error control function to perform selective reject.

mREJCapability indicates the capability of the multiplex error control function to perform multiple selective reject.

crc8bitCapability is the capability of the multiplex to use 8 bit CRC.

crc16bitCapability is the capability of multiplex to use 16-bit CRC.

crc32bitCapability is the capability of the multiplex to use 32 bit CRC.

uihCapablity indicates support of V.76 UIH frames.

numOfDLCS indicates the number of DLCs which the V.76 multiplex can support.

twoOctetAddressFieldCapability indicates the ability of the V.76 multiplex to support an address field of two ctets.

loopBackTestCapability indicates the support of loop back per recommendation V.76. n401Capability indicates the maximum value of N401 described in recommendation V.76. maxWindowSizeCapability indicates the maximum window size the V.76 multiplex can support.

H2250Capability: indicates capabilities specific to the H.225.0 media packetization layer.

maximumAudioDelayJitter indicates the maximum peak-to-peak delivery of audio packets to the transport layer that the transmitter shall cause. It is measured in milliseconds.

receiveMultipointCapability indicates the receive capabilities of a terminal in a multipoint conference.

transmitMultipointCapability indicates the transmit capabilities of a terminal in a multipoint conference.

receiveAndTransmitMultipointCapability indicates the receive and transmit capabilities of a terminal in a multipoint conference.

mcCapability indicates the ability of a terminal to act as an MC in a centralized or distributed conference.

rtcpVideoControlCapability indicates a terminal’s ability to process both RTCP Full Intra Request (FIR) and Negative Acknowledgement (NACK) messages.

MediaPacketizationCapability indicates which optional media packetization scheme is in use, if any.

h261aVideoPacketization indicates that the H261 alternative RTP payload format described in H.225.0 is in use.

MultipointCapability : indicates a terminal’s capabilities specific to multipoint

multicastCapability indicates the ability of a terminal to multicast audio or video traffic.

multiUniCastConference indicates the ability of a terminal to participate in a multiUniCast conference.

MediaDistributionCapability : indicates an terminal’s capabilities for transmission and reception of media in a multipoint conference. Centralized Control and Audio shall be TRUE for H.323 terminals. If Video is supported, the Centralized Video shall be set TRUE. If T.120 is supported, the Centralized Data T.120 Data Application Capability shall be present.

Centralized and distributed control, audio, and video, indicate the ability of a terminal to participate in a conference with those media distribution types. Centralized and distributed data indicate the ability of a terminal to participate in conference with those media distribution types for the specific Data Application Protocol. MediaDistributionCapability is a sequence to allow for the definition of simultaneous capabilities (e.g. centralized audio with distributed video or centralized video with distributed audio, or specific data capabilities per a Data Application Protocol).

�seq section \c�7�.�seq sub_section \c�2�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�5�	Video Capabilities

This indicates video capabilities. The indication of more than a single capability within a single VideoCapability does not indicate simultaneous processing capability. Simultaneous processing capability can be indicated by instances of VideoCapability in different AlternativeCapabilitySets in a single CapabilityDescriptor.

H261VideoCapability: indicates H.261 [�seq reference h261_ref�13�] capabilities.

If present, qcifMPI indicates the minimum picture interval in units of 1/29.97 for the encoding and/or decoding of QCIF pictures, and if not present, no capability for QCIF pictures is indicated.

If present, cifMPI indicates the minimum picture interval in units of 1/29.97 for the encoding and/or decoding of CIF pictures, and if not present, no capability for CIF pictures is indicated.

The boolean temporalSpatialTradeOffCapability, when true, indicates that the encoder is able to vary its trade-off between temporal and spatial resolution as commanded by the remote terminal. It has no meaning when part of a receive capability.

maxBitRate indicates the maximum bit rate in units of 100 bit/s at which a transmitter can transmit video or a receiver can receive video.

stillImageTransmission indicates the capability for still images as specified in Annex D of H.261.

H262VideoCapability: indicates H.262 [�seq reference h262_ref�14�] capabilities.

The list of booleans indicate the capability of processing the particular profiles and levels: a value of true indicates that such operation is possible, while a value of false indicates that such operation is not possible. An encoder shall produce bitstreams compliant to the specifications of a profile and level for which it has indicated capability, but also within the limitations imposed by the optional fields (see below). A decoder shall be able to accept all bit streams conforming to a profile and level for which it has indicated capability, provided it is within the limitations indicated by the optional fields. The optional fields are integers with units defined in Table �seq table h262cap_tab�2�.

TABLE �seq table�2�/H.245

Units for H.262 codepoints

ASN.1 Codepoint�Units for referenced parameter��videoBitRate�400 bit/s��vbvBufferSize�16384 bits��samplesPerLine�samples per line��linesPerFrame�lines per frame��framesPerSecond�The index, frame_rate_code, into table 6-4/H.262��luminanceSampleRate�samples per second��

H263VideoCapability: indicates H.263 [�seq reference h263_ref�15�] capabilities.

If present, sqcifMPI indicates the minimum picture interval in units of 1/29.97 for the encoding and/or decoding of SQCIF pictures, and if not present, no capability for SQCIF pictures is indicated.

If present, qcifMPI indicates the minimum picture interval in units of 1/29.97 for the encoding and/or decoding of QCIF pictures, and if not present, no capability for QCIF pictures is indicated.

If present, cifMPI indicates the minimum picture interval in units of 1/29.97 for the encoding and/or decoding of CIF pictures, and if not present, no capability for CIF pictures is indicated.

If present, cif4MPI indicates the minimum picture interval in units of 1/29.97 for the encoding and/or decoding of 4CIF pictures, and if not present, no capability for 4CIF pictures is indicated.

If present, cif16MPI indicates the minimum picture interval in units of 1/29.97 for the encoding and/or decoding of 16CIF pictures, and if not present, no capability for 16CIF pictures is indicated.

maxBitRate indicates the maximum bit rate in units of 100 bit/s at which a transmitter can transmit video or a receiver can receive video.

The booleans unrestrictedVector, arithmeticCoding, advancedPrediction, and pbFrames, when true, indicate the capability to transmit and/or receive these optional modes defined in the annexes of H.263.

The boolean temporalSpatialTradeOffCapability, when true, indicates that the encoder is able to vary its trade-off between temporal and spatial resolution as commanded by the remote terminal. It has no meaning when part of a receive capability.

The integer hrd-B, when present, indicates the HRD parameter B, and is measured in units of 128 bits. When not present, the default value defined in H.263 applies. It is a receiver capability and has no meaning in transmission capability sets.

The integer bppMaxKb, when present, indicates the maximum number of bits for one coded picture that the receiver can receive and decode correctly, and is measured in units of 1024 bits. When not present, the default value defined in H.263 applies. It is a receiver capability and has no meaning in transmission capability sets.

The following capabilities are intended for use in certain very low frame rate applications such as surveillance applications:

If present, slowSqcifMPI indicates the minimum picture interval in units of seconds per frame for the encoding and/or decoding of SQCIF pictures. If not present and sqcifMPI is not present, no capability for SQCIF pictures is indicated. If sqcifMPI is present, slowSqcifMPI shall not be present.

If present, slowQcifMPI indicates the minimum picture interval in units of seconds per frame for the encoding and/or decoding of QCIF pictures. If not present and qcifMPI is not present, no capability for QCIF pictures is indicated. If qcifMPI is present, slowQcifMPI shall not be present.

If present, slowCifMPI indicates the minimum picture interval in units of seconds per frame for the encoding and/or decoding of CIF pictures. If not present and cifMPI is not present, no capability for CIF pictures is indicated. If cifMPI is present, slowCifMPI shall not be present.

If present, slowCif4MPI indicates the minimum picture interval in units of seconds per frame for the encoding and/or decoding of 4CIF pictures. If not present and cif4MPI is not present, no capability for 4CIF pictures is indicated. If cif4MPI is present, slowCif4MPI shall not be present.

If present, slowCif16MPI indicates the minimum picture interval in units of seconds per frame for the encoding and/or decoding of 16CIF pictures. If not present and cif16MPI is not present, no capability for 16CIF pictures is indicated. If cif16MPI is present, slowCif16MPI shall not be present.

The boolean errorCompensation, when true, indicates the capability to transmit and/or receive feedback information for error compensation as illustrated in appendix II of H.263. When part of a transmit capability, it indicates the ability of the encoder to process videoNotDecodedMBs indications and compensate errors. When part of a receive capability, it indicates the ability of the decoder to identify erroneous MBs, treat them as not coded, and send appropriate videoNotDecodedMBs indications.

The values of MPI are applicable when all of the optional modes, for which capability is indicated, are being used, as well as when any combination of them is used. A terminal may signal the capability for a smaller MPI when some options are not used by transmitting another VideoCapability including this smaller MPI and indicating the reduced set of options.

IS11172 VideoCapability: indicates IS11172 [�seq reference is11172_ref�33�] capabilities.

constrainedBitstream indicates the capability for bitstreams in which constrained_parameters flag is set to "1": a value of true indicates that such operation is possible, while a value of false indicates that such operation is not possible. An encoder shall produce bitstreams within the limitations imposed by the optional fields (see below). A decoder shall be able to accept all bit streams within the limitations indicated by the optional fields. The optional fields are integers with units defined in Table �seq table is11172cap_tab�3�.

TABLE �seq table�3�/H.245

Units for IS11172-2 codepoints

ASN.1 Codepoint�Units for referenced parameter��videoBitRate�400 bit/s��vbvBufferSize�16384 bits��samplesPerLine�samples per line��linesPerFrame�lines per frame��pictureRate�refer to Section 2.4.3.2 of IS11172-2��luminanceSampleRate�samples per second��

�seq section \c�7�.�seq sub_section \c�2�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�6�	Audio Capabilities

This indicates audio capabilities. The indication of more than a single capability within a single AudioCapability does not indicate simultaneous processing capability. Simultaneous processing capability can be indicated by instances of AudioCapability in different AlternativeCapabilitySets in a single CapabilityDescriptor.

The capability to transmit and/or receive G-series audio is indicated by a choice of integers. When an H.222.1 multiplex is used, these numbers refer to the available STD buffer size in units of 256 octets. When an H.223 multiplex is used, these numbers refer to the maximum number of audio frames per AL-SDU. When an H.225.0 multiplex is used, these numbers indicate the maximum number of audio frames per packet. The exact meaning of the codepoints is given in Table �seq table gseriescap_tab�4�.

TABLE �seq table�4�/H.245

G-series audio codepoints

ASN.1 Codepoint�Semantic meaning of codepoint��g711Alaw64k�G.711 audio at 64 kbit/s, A-law��g711Alaw56k�G.711 audio at 56 kbit/s, A-law, truncated to 7 bits��g711Ulaw64k�G.711 audio at 64 kbit/s, �symbol 109 \f "Symbol"��-law��g711Ulaw56k�G.711 audio at 56 kbit/s, �symbol 109 \f "Symbol"��-law, truncated to 7 bits��g722-64k�G.722 7 KHz audio at 64 kbit/s��g722-56k�G.722 7 KHz audio at 56 kbit/s��g722-48k�G.722 7 KHz audio at 48 kbit/s��g7231�G.723.1 at either 5.3 or 6.3 kbit/s��g728�G.728 audio at 16 kbit/s��g729�G.729 audio at 8 kbit/s��g729AnnexA�G.729AnnexA audio at 8 kbit/s��g729wAnnexB�G.729 audio at 8 kbit/s with silence suppression as in Annex B��g729AnnexAwAnnexB�G.729AnnexA audio at 8 kbit/s with silence suppression as in Annex B��g7231AnnexCCapability�G.723.1 with Annex C��

G7231: indicates the ability to process audio codec G723.1. maxAl-sduAudioFrames indicates the maximum number of audio frames per AL-SDU. The boolean silenceSupression, when true, indicates the capability to use silence compression defined in G.723.1 Annex A.

G7231AnnexCCapability: indicates the ability to process audio codec G723.1 with its annex C. maxAl-sduAudioFrames indicates the maximum number of audio frames per AL-SDU. The boolean silenceSupression, when true, indicates the capability to use silence compression defined in G.723.1 Annex A. g723AnnexCAudioMode shall not be present when G7231AnnexCCapability is included in a TerminalCapabilitySet message, but shall be present when G7231AnnexCCapability is included in an OpenLogicalChannel message. The fields highRateMode0, highRateMode1, lowRateMode0, lowRateMode1, sidMode0, and sidMode1 indicate the number of octets per frame for each of the audio and error protection modes of G.723.1 and G.723.1 Annex C that will be used on the logical channel.

IS11172AudioCapability: indicates the ability to process audio coded according to ISO/IEC 11172-3 [�seq reference mpeg1_audio_ref�34�].

Booleans that have the value of true indicate that the particular mode of operation is possible, while a value of false indicates that it is not. The booleans audioLayer1, audioLayer2 and audioLayer3 indicate which audio coding layers can be processed. The booleans audioSampling32k, audioSampling44k1 and audioSampling48k indicate which of the audio sample rates, 32KHz, 44.1KHz and 48KHz respectively, can be processed. The booleans singleChannel and twoChannels indicate capability for single channel and stereo/dual channel operation respectively. The integer bitRate indicates the maximum audio bit rate capability, and is measured in units of kbit/s.

IS13818AudioCapability: indicates the ability to process audio coded according to ISO/IEC 13818-3 [�seq reference mpeg2_audio_ref�35�].

Booleans that have the value of true indicate that the particular mode of operation is possible, while a value of false indicates that it is not. The booleans audioLayer1, audioLayer2 and audioLayer3 indicate which audio coding layers can be processed. The booleans audioSampling16k, audioSampling22k05, audioSampling24k, audioSampling32k, audioSampling44k1 and audioSampling48k indicate which of the audio sample rates, 16KHz, 22.05KHz, 24KHz, 32KHz, 44.1KHz and 48KHz respectively, can be processed.

The booleans concerned with multi-channel operation indicate capability to operate in the particular modes, as specified in Table �seq table multi_chan_audio_tab�5�.

TABLE �seq table�5�/H.245

ISO/IEC 13818-3 multi-channel codepoints

ASN.1 Codepoint�Semantic meaning of codepoint��singleChannel�One channel, using the 1/0 configuration. Single channel mode (as in ISO/IEC 11172-3)��twoChannels�Two channels, using the 2/0 configuration. Stereo or dual channel mode (as in ISO/IEC 11172-3)��threeChannels2-1�Three channels, using the 2/1 configuration. Left, Right and single surround channel ��threeChannels3-0�Three channels, using the 3/0 configuration. Left, Centre and Right, without surround channel ��fourChannels2-0-2-0�Four channels, using the 2/0 + 2/0 configuration. Left and Right of the first programme and Left and Right of the second programme ��fourChannels2-2�Four channels, using the 2/2 configuration. Left, Right, Left surround and Right surround��fourChannels3-1�Four channels, using the 3/1 configuration. Left, Centre, Right, and a single surround channel��fiveChannels3-0-2-0�Five channels, using the 3/0 + 2/0 configuration. Left, Centre and Right of the first programme and Left and Right of the second programme��fiveChannels3-2�Five channels, using the 3/2 configuration. Left, Centre, Right, Left surround and Right surround��

The boolean lowFrequencyEnhancement indicates the capability for a low frequency enhancement channel.

The boolean multilingual, when true, indicates the capability to support up to seven multilingual channels, and when false that no multilingual channel is supported.

The integer bitRate indicates the maximum audio bit rate capability, and is measured in units of kbit/s.

�seq section \c�7�.�seq sub_section \c�2�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�7�	Data Application Capabilities

This indicates data capabilities. The indication of more than a single capability within a single DataApplicationCapability does not indicate simultaneous processing capability. Simultaneous processing capability can be indicated by instances of DataApplicationCapability in different AlternativeCapabilitySets in a single CapabilityDescriptor.

Recommendations that use this Recommendation may place restrictions on which of these modes may be signalled.

Some of the data capabilities require bi-directional logical channels, for example, to run a retransmission protocol. This requirement is implicitly included in the appropriate capability codepoints.

DataApplicationCapability: is a list of data applications and bit rates. Each data application indicated shall be supported by one or more DataProtocolCapabilitys.

maxBitRate indicates the maximum bit rate in units of 100 bit/s at which a transmitter can transmit video or a receiver can receive the given data application.

t120 indicates the capability to support the T.120 [�seq reference t120_ref�25�] protocol.

dsm-cc indicates the capability to support the DSM-CC [�seq reference dsmcc_ref�36�] protocol.

userData indicates the capability to support unspecified user data from external data ports.

t84 indicates the capability to support the transfer of T.84 [�seq reference t84_ref�24�] type images (JPEG, JBIG, Facsimile Gr.3/4).

t434 indicates the capability to support the transfer of T.434 [�seq reference t434_ref�26�] telematic binary files.

h224 indicates the capability to support the real-time simplex device control protocol H.224 [�seq reference h224_ref�9�].

nlpid indicates the capability to support the network layer protocol as specified by nlpidData as defined in ISO/IEC TR9577 [�seq reference nlpid_ref�37�]. These protocols include Internet protocol (IP) and IETF Point-to-Point protocol (PPP), among others.

Note: the use of the NLPID is extensively described in IETC RFC1490, 'Multiprotocol Interconnect over Frame Relay'.

dsvdControl indicates the capability of the DSVD terminal to support an out-of-band control channel.

h222DataPartitioning indicates the capability to support the modified and restricted usage of data partitioning of H.262, as specified in H.222.1, in which the enhancement data is transmitted as a data channel supported by the listed DataProtocolCapability.

t30fax: This codepoint indicates the use of T.30 Annex C analog mode (G3V), as specified in Rec. T.39 for the DSVF/MSVF modes.

DataProtocolCapability: contains a list of data protocols.

v14buffered indicates the capability to support a specified data application using buffered V.14 [�seq reference v14_ref�27�].

v42lapm indicates the capability to support a specified data application using the LAPM protocol defined in V.42 [�seq reference v42_ref�29�].

hdlcFrameTunnelling indicates the capability to support a specified data application using HDLC Frame Tunnelling. Refer to clause 4.5.2 of ISO/IEC 3309 [�seq reference is3309_ref�32�].

h310SeparateVCStack indicates the capability to support a specified data application using the protocol stack defined in H.310 for the transport of H.245 messages over a separate ATM VC to that used for audiovisual communication.

h310SingleVCStack indicates the capability to support a specified data application using the protocol stack defined in H.310 for the transport of H.245 messages in the same ATM VC as that used for audiovisual communication.

transparent indicates the capability to support a specified data application using transparent data transfer.

v120 : use of v120 is for further study in H.323

separateLANStack indicates that a separate transport stack will be used to transport the data. The intent of a separate network connection for data is indicated by dataType in OpenLogicalChannel resolving to values h310SeparateVCStack or separateLANStack of DataProtocolCapability. When the selected DataApplicationCapability is t120, these choices imply use of the T.123 basic profile for B-ISDN and LAN, respectively. Alternative LAN profiles may be selected by a nonStandard DataProtocolCapability.

If separateLANStack is selected and separateStack is present in the OpenLogicalChannel request, the receiver should attempt to establish the stack indicated. It will respond OpenLogicalChannelAck if successful, otherwise OpenLogicalChannelReject with a suitable cause.

If separateLANStack is selected and separateStack is absent in the OpenLogicalChannel request, the receiver should supply an appropriate separateStack in its OpenLogicalChannelAck response. The receiver of this (the original requester) should then attempt to establish the stack indicated. It will issue CloseLogicalChannel if unsuccessful.

If separateLANStack is selected and separateStack is present in the OpenLogicalChannel request, it can be overridden by separateStack in the OpenLogicalChannelAck response. If the original requester does not tolerate an override, it will issue CloseLogicalChannel.

If separateLANStack is selected and separateStack is absent in the OpenLogicalChannel request and also absent in the OpenLogicalChannelAck response, the original requester can infer that the responder does not understand these ASN.1 extensions and should issue CloseLogicalChannel to clean up.

v76wCompression indicates the capability to support data compression on a V.76 data channel.

T84Profile: indicates the types of still image profile that the terminal is able to support

t84Unrestricted provides no indication of the type of T.84 still image that the terminal is able to support: information in the T.84 layer should be used to determine whether a particular image can be received.

t84Restricted indicates the type of T.84 still image that the terminal is able to support.

qcif indicates the support of a sequential colour YCrCb type image with QCIF resolution

cif indicates the support of a sequential colour YCrCb type image with CIF resolution

ccir601Seq indicates the support of a sequential colour YCrCb type image with CCIR601 resolution

ccir601Prog indicates the support of a progressive colour YCrCb type image with CCIR601 resolution

hdtvSeq indicates the support of a sequential colour YCrCb type image with HDTV resolution

hdtvProg indicates the support of a progressive colour YCrCb type image with HDTV resolution

g3FacsMH200x100 indicates the support of a sequential Facsimile Gr. 3 MH (Modified Huffman) coded bi-level image at the normal (200x100ppi) resolution

g3FacsMH200x200 indicates the support of a sequential Facsimile Gr. 3 MH (Modified Huffman) coded bi-level image at the high (200x200ppi) resolution

g4FacsMMR200x100 indicates the support of a sequential Facsimile Gr. 4 MMR (Modified Modified Reed) coded bi-level image at the normal (200x100ppi) resolution

g4FacsMMR200x200 indicates the support of a sequential Facsimile Gr. 4 MMR (Modified Modified Reed) coded bi-level image at the high (200x200ppi) resolution

jbig200x200Seq indicates the support of a sequential bi-level JBIG coded bi-level image at the 200x200ppi resolution

jbig200x200Prog indicates the support of a progressive bi-level JBIG coded bi-level image at the 200x200ppi resolution

jbig300x300Seq indicates the support of a sequential bi-level JBIG coded bi-level image at the 300x300ppi resolution

jbig300x300Prog	indicates the support of a progressive bi-level JBIG coded bi-level image at the 300x300ppi resolution

digPhotoLow	indicates the support of a sequential JPEG coded colour image of up to 720x576 image size.

digPhotoMedSeq indicates the support of a sequential JPEG coded colour image of up to 1440x1152 image size.

digPhotoMedProg indicates the support of a progressive JPEG coded colour image of up to 1440x1152 image size.

digPhotoHighSeq indicates the support of a sequential JPEG coded colour image of up to 2880x2304 image size.

digPhotoHighProg indicates the support of a progressive JPEG coded colour image of up to 2880x2304 image size.

�seq section \c�7�.�seq sub_section\c�2�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Terminal Capability Set Acknowledge

This is used to confirm receipt of a TerminalCapabilitySet from the peer CESE.

The sequenceNumber shall be the same as the sequenceNumber in the TerminalCapabilitySet for which this is the confirmation.

�seq section \c�7�.�seq sub_section\c�2�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	Terminal Capability Set Reject

This is used to reject a TerminalCapabilitySet from the peer CESE.

The sequenceNumber shall be the same as the sequenceNumber in the TerminalCapabilitySet for which this is the negative acknowledgement.

The reasons for sending this message are given in Table �seq table capsetrej_tab�6�.

TABLE �seq table�6�/H.245

Reasons for rejecting a TerminalCapabilitySet

ASN.1 codepoint�Cause��unspecified�No cause for rejection specified.��undefinedTableEntryUsed�A capability descriptor made reference to a capabilityTable entry that is not defined.��descriptorCapacityExceeded�The terminal was incapable of storing all of the information in the TerminalCapabilitySet.��tableEntryCapacityExceeded�The terminal was incapable of storing more entries than that indicated in highestEntryNumberProcessed or else could not store any.��

�seq section \c�7�.�seq sub_section\c�2�.�seq sub_sub_section�5��seq sub_sub_sub_section \r 0 \h��	Terminal Capability Set Release

This is sent in the case of a time out.

��seq section \c�7�.�seq sub_section�3��seq sub_sub_section \r 0 \h��	Logical channel signalling messages

This set of messages is for logical channel signalling. The same set of messages is used for uni-directional and bi-directional logical channel signalling; however, some parameters are only present in the case of bi-directional logical channel signalling.

'Forward' is used to refer to transmission in the direction from the terminal making the original request for a logical channel to the other terminal, and 'reverse' is used to refer to the opposite direction of transmission, in the case of a bi-directional channel request.

�seq section \c�7�.�seq sub_section\c�3�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Open Logical Channel

This is used to attempt to open a uni-directional logical channel connection between an out-going LCSE and a peer in-coming LCSE and to open a bi-directional logical channel connection between an out-going B-LCSE and a peer in-coming B-LCSE.

forwardLogicalChannelNumber: indicates the logical channel number of the forward logical channel that is to be opened.

forwardLogicalChannelParameters: include parameters associated with the logical channel in the case of attempting to open a uni-directional channel and parameters associated with the forward logical channel in the case of attempting to open a bi-directional channel.

reverseLogicalChannelParameters: include parameters associated with the reverse logical channel in the case of attempting to open a bi-directional channel. Its presence indicates that the request is for a bi-directional logical channel with the stated parameters, and its absence indicates that the request is for a uni-directional logical channel.

Note: H.222 parameters are not included in reverseLogicalChannelParameters as their values are not known to the terminal initiating the request.

portNumber is a user to user parameter that may be used by a user for such purposes as associating an input or output port, or higher layer channel number, with the logical channel.

dataType indicates the data that is to be carried on the logical channel.

If it is nullData, the logical channel will not be used for the transport of elementary stream data, but only for adaptation layer information - if video is to be transmitted in one direction only, but a retransmission protocol is to be used, such as AL3 defined in H.223, a return channel is needed to transport the retransmission requests - it may also be used to describe a logical channel that only contains PCR values in the case of H.222.1 Transport Streams [�seq reference h2221_ref�7�].

Terminals capable only of uni-directional (transmit or receive) operation on media types which make use of bi-directional channels shall send capabilities only for the supported direction of operation. The reverse direction shall use the nullData type, for which no capability is necessary. Transmit-only terminals should send transmit capabilities, but terminals should not assume that the absence of transmit capabilities implies that transmit-only operation is not possible.

separateStack indicates that a separate transport stack will be used to transport the data and provides an address to use to establish the stack which is either a Q.2931, E.164, or local area network transport address.

networkAccessParameters define the distribution, network address, and creation and association information to be used for the separateStack.

distribution shall be present when networkAddress is set to localAreaNetwork and shall indicate whether the networkAddress is a uni or multicast transport address.

networkAddress indicates the address of the actual stack in use: Q.2931, E.164, or local area network transport address.

associateConference indicates whether or not the data conference is new (associateConference=FALSE) or is an existing data conference which should be associated with the audio/video call (associateConference=TRUE)

externalReference indicates information which may be used to further provide association or information concerning the separateStack.

If it is of type VideoCapability, AudioCapability, the logical channel may be used for any of the variations indicated by each individual capability; and it shall be possible to switch between these variations using only signalling that is in-band to the logical channel - for example, in the case of H.261 video, if both QCIF and CIF are indicated, it shall be possible to switch between these on a picture by picture basis. In the case of DataApplicationCapability, only one instance of a capability can be indicated since there is no in-band signalling allowing a switch between variations

If it is encryptionData, the logical channel will be used for the transport of encryption information as specified.

H222LogicalChannelParameters: is used to indicate parameters specific to using H.222.1 [�seq reference h2221_ref�7�]. It shall be present in forwardLogicalChannelParameters and shall not be present in reverseLogicalChannelParameters.

resourceID indicates in which ATM Virtual Channel the logical channel is to be transported. The means by which this parameter is associated with an ATM Virtual Channel is not specified in this Recommendation.

subChannelID indicates which H.222.1 sub-channel is used for the logical channel. It shall be equal to the PID in a Transport Stream and the stream_id in a Program Stream.

pcr-pid indicates the PID used for the transport of Program Clock References when the Transport Stream is used. It shall be present when the ATM virtual channel carries a Transport Stream and shall not be present when the ATM virtual channel carries a Program Stream.

programDescriptors is an optional octet string, which, if present, contains one or more descriptors, as specified in H.222.0 and H.222.1, that describe the program that the information to be carried in the logical channel is a part of.

streamDescriptors is an optional octet string, which, if present, contains one or more descriptors, as specified in H.222.0 and H.222.1, that describe the information that is to be carried in the logical channel.

H223LogicalChannelParameters: is used to indicate parameters specific to using H.223 [�seq reference h223_ref�8�]. It shall be present in forwardLogicalChannelParameters and reverseLogicalChannelParameters.

adaptationLayerType indicates which adaptation layer and options will be used on the logical channel. The codepoints are as follows: nonStandard, al1Framed (AL1 framed mode), al1NotFramed (AL1 unframed mode), al2WithoutSequenceNumbers (AL2 with no sequence numbers present), al2WithSequenceNumbers (AL2 with sequence numbers present), and al3 (AL3, indicating the number of control field octets that will be present and the size of the send buffer, Bs, that will be used, the size being measured in octets).

segmentableFlag, when equal to true indicates that the channel is designated to be segmentable, and when equal to false indicates that the channel is designated to be non-segmentable.

V76LogicalChannelParameters: is used to indicate parameters specific to using V.76.

audioHeader is used to indicate the use of an audio header on the logical channel. This is a valid parameter for channels of the DataType audio.

suspendResume is used to indicate that the channel may use the suspend/resume procedures to suspend other logical channels. Three channel options may be selected; no suspend resume on the channel, suspend resume using an address or suspend resume without an address as defined in V.76. suspendResumewAddress indicates that the suspend/resume channel shall use the address field as defined in V.76. suspendResumewoAddress indicates that the suspend/resume channel shall not use the address field.

eRM indicates that the logical channel shall perform error recovery procedures as defined in V.76.

uNERM indicates that the logical channel shall operate in non error recovery mode as defined in V.76.

For description of n401, windowSize and loopbackTestProcedure see Recommendation V.42, 12.2.1 and its subsections. For the purposes of V.70, n401 shall be encoded in octets.

crcLength is an optional parameter that indicates the CRC length used in error recovery mode. If this parameter is not present, the default CRC length shall be used. crc8bit indicates to use an 8 bit CRC, crc16bit indicates use of the 16-bit CRC and crc32bit indicates to use a 32 bit CRC as defined in V.76.

recovery is an optional parameter that indicates the error recover procedures defined in V.76. If this parameter is not present, the default error recovery procedure shall be used. sREJ indicates to use the selective frame reject procedure and mSREJ indicates to use the multiple selective reject procedure as defined in V.76

uIH indicates the use of V.76 UIH frames.

rej indicates the use of the reject procedure in V.76.

V75Parameters is used to indicate parameter specific to using V.75. audioHeaderPresent indicates the presence of the V.75 audio header.

H2250LogicalChannelParameters: is used to indicate parameters specific to using H.225.0. It shall be present in forwardLogicalChannelParameters and reverseLogicalChannelParameters..

The sessionID is a unique RTP Session Identifier in the conference. It is used by the transmitter to refer to the session to which the logical channel applies. Only the master can create the session identification. By convention, there are two primary sessions. The first primary session with a session identification of 1 is the audio session and the second primary session with a session identification of 2 is the video session. A slave entity can open an additional session by providing a session identification of 0 in the openLogicalChannel message. The master will create a unique session identification and provide it in the openLogicalChannelAck message.

The associatedSessionID is used to associate one session with another. Typical use will be to associate an audio session with a video session to indicate which sessions to process for lip synchronization.

The mediaChannel indicates a transportAddress to be used for the logical channel. It is not present in the OpenLogicalChannel message when the transport is unicast. If the transportAddress is multicast, the master is responsible for creating the multicast transport address and shall include the address in the OpenLogicalChannel message. A slave entity that wishes to open a new multicast channel will provide zeroes in the multicast transportAddress field. The master will create and provide the multicast transportAddress in the OpenLogicalChannelAck message for the slave entity. Note that the MC will use the communicationModeCommand to specify the details about all the RTP Sessions in the conference.

The mediaChannel is used to describe the transport address for the logical channel. IPv4 and IPv6 addresses shall be encoded with the most significant octet of the address being the first octet in the respective OCTET STRING, e.g. the class B IPv4 address 130.1.2.97 shall have the ‘130’ being encoded in the first octet of the OCTET STRING, followed by the ‘1’ and so forth. The IPv6 address a148:2:3:4:a:b:c:d shall have the ‘a1’ encoded in the first octet, ‘48’ in the second, ‘00’ in the third, ‘02’ in the fourth and so forth. IPX addresses, node, netnum, and port shall be encoded with the most significant octet of each field being the first octet in the respective OCTET STRING.

mediaGuaranteedDelivery indicates whether or not the underlying media transport should be selected to provide or not provide guaranteed delivery of data.

mediaControlChannel indicates the media control channel in which the sender of the open logical channel will be listening for media control messages for this session. This field is present only when a media control channel is required.

mediaControlGuaranteedDelivery indicates whether or not the underlying media control transport should be selected to provide or not provide guaranteed delivery of data. This field is present only when a media control channel is required.

The silenceSuppression is used to indicate whether the transmitter stops sending packets during times of silence. It shall be included in the openLogicalChannel message for an audio channel and omitted for any other type of channel.

destination indicates the terminalLabel of the destination if one has been assigned.

dynamicRTPPayloadType indicates a dynamic payload value which is used in H.323 for the H.225.0 alternative H.261 video packetization scheme. This field is present only when a dynamic RTP payload is in use.

mediaPacketization indicates which optional media packetization scheme is in use.

�seq section \c�7�.�seq sub_section\c�3�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Open Logical Channel Acknowledge

This is used to confirm acceptance of the logical channel connection request from the peer LCSE or B-LCSE. In the case of a request for a uni-directional logical channel, it indicates acceptance of that uni-directional logical channel. In the case of a request for a bi-directional logical channel, it indicates acceptance of that bi-directional logical channel, and indicates the appropriate parameters of the reverse channel.

forwardLogicalChannelNumber indicates the logical channel number of the forward channel that is being opened.

reverseLogicalChannelParameters is present if and only if responding to a bi-directional channel request.

reverseLogicalChannelNumber indicates the logical channel number of the reverse channel.

portNumber is a user to user parameter that may be used by a user for such purposes as associating an input or output port, or higher layer channel number, with the reverse logical channel.

multiplexParameters indicate parameters specific to the multiplex, H.222, H.223, or H.225.0, that is used to transport the reverse logical channel.

separateStack indicates that a separate transport stack will be used to transport the data and provides an address, to use to establish the stack, which is either a Q.2931, E.164, or local area network transport address.

forwardMultiplexAckParameters indicate parameters specific to the multiplex, H.222, H.223, or H.225.0 that is used to transport the forward logical channel.

H2250LogicalChannelAckParameters are used to indicate parameters specific to using H.225.0.

sessionID is a unique RTP Session Identifier in the conference that can only be created by the master. It is created and provided by the master if the slave wishes to create a new session by specifying an invalid session identification of 0 in the openLogicalChannelAck message.

The mediaChannel indicates a transportAddress to be used for the logical channel. It shall be present in the OpenLogicalChannelAck message when the transport is unicast. If the transportAddress is multicast, the master is responsible for creating the multicast transport address and shall include the address in the OpenLogicalChannel message. A slave entity that wishes to open a new multicast channel will provide zeroes in the multicast transportAddress field. The master will create and provide the multicast transportAddress in the OpenLogicalChannelAck message for the slave entity. Note that the MC will use the communicationModeCommand to specify the details about all the RTP Sessions in the conference.

The mediaChannel is used to describe the transport address for the logical channel. IPv4 and IPv6 addresses shall be encoded with the most significant octet of the address being the first octet in the respective OCTET STRING, e.g. the class B IPv4 address 130.1.2.97 shall have the ‘130’ being encoded in the first octet of the OCTET STRING, followed by the ‘1’ and so forth. The IPv6 address a148:2:3:4:a:b:c:d shall have the ‘a1’ encoded in the first octet, ‘48’ in the second, ‘00’ in the third, ‘02’ in the fourth and so forth. IPX addresses, node, netnum, and port shall be encoded with the most significant octet of each field being the first octet in the respective OCTET STRING.

mediaControlChannel indicates the media control channel in which the sender of the openLogicalChannelAck will be listening for media control messages for this session. This field is present only when a media control channel is required.

dynamicRTPPayloadType indicates a dynamic payload value which is used in H.323 for the H.225.0 alternative H.261 video packetization scheme. This field is present only when a dynamic RTP payload is in use.

Note. H.223 parameters are not included in reverseLogicalChannelParameters as their values were specified in the OpenLogicalChannel request message.

�seq section \c�7�.�seq sub_section\c�3�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Open Logical Channel Reject

This is used to reject the logical channel connection request from the peer LCSE or B-LCSE.

Note: In the case of a bi-directional channel request, rejection applies to both forward and reverse channels. It is not possible to accept one and reject the other.

forwardLogicalChannelNumber indicates the logical channel number of the forward channel specified in the request that is being rejected.

The cause field indicates the reason for rejection of the logical channel establishment. The cause values are given in Table �seq table openlcrej_tab�7�.

TABLE �seq table�7�/H.245

Reasons for rejecting a OpenLogicalChannel

ASN.1 codepoint�Cause��unspecified�No cause for rejection specified.��unsuitableReverseParameters�This shall only be used to reject a bi-directional logical channel request when the only reason for rejection is that the requested reverseLogicalChannelParameters are inappropriate. Such a rejection shall immediately be followed by initiating procedures to open a similar but acceptable bi-directional logical channel.��dataTypeNotSupported�The terminal was not capable of supporting the dataType indicated in OpenLogicalChannel.��dataTypeNotAvailable�The terminal was not capable of supporting the dataType indicated in OpenLogicalChannel simultaneously with the dataTypes of logical channels that are already open..��unknownDataType�The terminal did not understand the dataType indicated in OpenLogicalChannel.��dataTypeALCombinationNotSupported�The terminal was not capable of supporting the dataType indicated in OpenLogicalChannel simultaneously with the Adaptation Layer type indicated in H223LogicalChannelParameters��multicastChannelNotAllowed�Multicast Channel could not be opened��insuffientBandwdith�The channel could not be opened because permission to use the requested bandwidth for the logical channel was denied.��separateStackEstablishmentFailed�A request to run the data portion of a call on a separate stack failed.��invalidSessionID�Attempt by slave to set SessionID when opening a logical channel to the master��masterSlaveConflict�Attempt by slave to open logical channel in which the master has determined a conflict may occur. (See 8.4.1.3 and 8.5.1.3)��

�seq section \c�7�.�seq sub_section\c�3�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	Open Logical Channel Confirm

This is used in bi-directional signalling to indicate to the incoming B-LCSE that the reverse channel is open and can be used for transmission.

forwardLogicalChannelNumber indicates the logical channel number of the forward channel which was opened.

�seq section \c�7�.�seq sub_section\c�3�.�seq sub_sub_section�5��seq sub_sub_sub_section \r 0 \h��	Close Logical Channel

This is used by the out-going LCSE or B-LCSE to close a logical channel connection between two peer LCSEs or B-LCSEs.

Note. In the case of a bi-directional logical channel, this closes both forward and reverse channels. It is not possible to close one and not the other.

forwardLogicalChannelNumber indicates the logical channel number of the forward channel of the logical channel that is to be closed.

The source of the logical channel release is given in Table �seq table closelc_tab�8�.

TABLE �seq table�8�/H.245

Sources of logical channel release

ASN.1 codepoint�Cause��user�The LCSE or B-LCSE user is the source of the release.��lcse�The LCSE or B-LCSE is the source of the release. This may occur as a result of a protocol error.��

�seq section \c�7�.�seq sub_section\c�3�.�seq sub_sub_section�6��seq sub_sub_sub_section \r 0 \h��	Close Logical Channel Acknowledge

This is used to confirm the closing of a logical channel connection.

forwardLogicalChannelNumber indicates the logical channel number of the forward channel of the logical channel that is being closed.

�seq section \c�7�.�seq sub_section\c�3�.�seq sub_sub_section�7��seq sub_sub_sub_section \r 0 \h��	Request Channel Close

This is used to by the out-going CLCSE to request the closing of a logical channel connection between two peer LCSEs.

forwardLogicalChannelNumber indicates the logical channel number of the forward channel of the logical channel that is requested to close.

�seq section \c�7�.�seq sub_section\c�3�.�seq sub_sub_section�8��seq sub_sub_sub_section \r 0 \h��	Request Channel Close Acknowledge

This is used by the in-coming CLCSE to indicate that the logical channel connection will be closed.

forwardLogicalChannelNumber indicates the logical channel number of the forward channel of the logical channel that it has been requested to close.

�seq section \c�7�.�seq sub_section\c�3�.�seq sub_sub_section�9��seq sub_sub_sub_section \r 0 \h��	Request Channel Close Reject

This is used by the in-coming CLCSE to indicate that the logical channel connection will not be closed.

forwardLogicalChannelNumber indicates the logical channel number of the forward channel of the logical channel that it has been requested to close.

The cause field indicates the reason for rejection of the request to close the logical channel. The only valid cause value is unspecified.

�seq section \c�7�.�seq sub_section\c�3�.�seq sub_sub_section�10��seq sub_sub_sub_section \r 0 \h��	Request Channel Close Release

This is sent by the out-going CLCSE in the case of a time out.

forwardLogicalChannelNumber indicates the logical channel number of the forward channel of the logical channel that it has requested to close.

��seq section \c�7�.�seq sub_section�4��seq sub_sub_section \r 0 \h��	Multiplex Table signalling messages

This set of messages is for the secure transmission of H.223 multiplex table entries from the transmitter to the receiver.

�seq section \c�7�.�seq sub_section\c�4�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Multiplex Entry Send

This is used to send H.223 multiplex table entries from the transmitter to the receiver. It is sent from an out-going MTSE and a peer in-coming MTSE.

sequenceNumber is used to label instances of MultiplexEntrySend so that the corresponding response can be identified.

MultiplexEntryDescriptors is a set of 1 to 15 MultiplexEntryDescriptors.

MultiplexEntryDescriptor: describes a single multiplex table entry. It includes the MultiplexTableEntryNumber and a list of MultiplexElements. A missing element list indicates that the entry is deactivated.

MultiplexElement: is a recursive structure that describes a single element and a repeat count. If of type logicalChannelNumber, the element indicates a single slot from the given logical channel, and the repeat count indicates the length of the slot in octets. If of type subElementList, the element indicates a sequence of nested MultiplexElements, and the repeat count indicates the number of times to repeat the sequence. In either case, if the repeatCount field is untilClosingFlag, this means to repeat the element indefinitely until the closing flag of the MUX-PDU.

In each MultiplexEntryDescriptor, the repeatCount of the final MultiplexElement in the elementList shall be set to “untilClosingFlag”, and the repeatCount of all other MultiplexElements in the elementList shall be set to “finite". This ensures that all multiplex table entries define a multiplex sequence pattern of indefinite length, repeating until the closing flag of the MUX-PDU. A MultiplexEntryDescriptor with a missing elementList field shall indicate a deactivated entry.

Each MultiplexEntrySend request may contain up to 15 MultiplexEntryDescriptors, each describing a single multiplex table entry. Multiplex entries may be sent in any order.

�seq section \c�7�.�seq sub_section\c�4�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Multiplex Entry Send Acknowledge

This is used to confirm receipt of one or more multiplexEntryDescriptors from a MultiplexEntrySend from the peer MTSE.

The sequenceNumber shall be the same as the sequenceNumber in the MultiplexEntrySend for which this is the confirmation.

multiplexTableEntryNumber indicates which multiplex table entries are being confirmed.

�seq section \c�7�.�seq sub_section\c�4�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Multiplex Entry Send Reject

This is used to reject one or more multiplexEntryDescriptors from a MultiplexEntrySend from the peer MTSE.

The sequenceNumber shall be the same as the sequenceNumber in the MultiplexEntrySend for which this is the rejection.

MultiplexEntryRejectionDescriptions specifies which table entries are being rejected, and why. The causes of rejection are given in Table �seq table mux_entry_rej_tab�9�.

TABLE �seq table�9�/H.245

Reasons for rejecting a MultiplexEntrySend

ASN.1 codepoint�Cause��unspecified�No cause for rejection specified.��descriptorTooComplex�The MultiplexEntryDescriptor exceeded the capability of the receive terminal.��

�seq section \c�7�.�seq sub_section\c�4�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	Multiplex Entry Send Release

This is sent by the out-going MTSE in the case of a time out.

multiplexTableEntryNumber indicates which multiplex table entries have timed out.

��seq section \c�7�.�seq sub_section�5��seq sub_sub_section \r 0 \h��	Request Multiplex Table signalling messages

This set of messages is for the secure request of retransmission of one or more MultiplexEntryDescriptors from the transmitter to the receiver.

�seq section \c�7�.�seq sub_section\c�5�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h���seq sub_sub_sub_section \r 0 \h��	Request Multiplex Entry

This is used to request the retransmission of one or more MultiplexEntryDescriptors.

entryNumbers is a list of the MultiplexTableEntryNumbers of the MultiplexEntryDescriptors for which retransmission is requested.

�seq section \c�7�.�seq sub_section\c�5�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Request Multiplex Entry Acknowledge

This is used by the in-coming RMESE to indicate that the multiplex entry will be transmitted.

entryNumbers is a list of the MultiplexTableEntryNumbers of the MultiplexEntryDescriptors will be transmitted.

�seq section \c�7�.�seq sub_section\c�5�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Request Multiplex Entry Reject

This is used by the in-coming RMESE to indicate that the multiplex entry will not be transmitted.

entryNumbers is a list of the MultiplexTableEntryNumbers of the MultiplexEntryDescriptors will not be transmitted. The values of MultiplexTableEntryNumber in entryNumbers should match the values of MultiplexTableEntryNumber in rejectionDescriptions otherwise errors may occur during operation.

RequestMultiplexEntryRejectionDescriptions specifies which table entries are being rejected, and why. The causes of rejection are given in Table �seq table req_mux_ent_rej_tab�10�.

TABLE �seq table�10�/H.245

Reasons for rejecting a MultiplexEntrySend

ASN.1 codepoint�Cause��unspecified�No cause for rejection specified.��

�seq section \c�7�.�seq sub_section\c�5�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	Request Multiplex Entry Release

This is sent by the out-going RMESE in the case of a time out.

entryNumbers is a list of the MultiplexTableEntryNumbers of the MultiplexEntryDescriptors for which time-out has occurred.

��seq section \c�7�.�seq sub_section�6��seq sub_sub_section \r 0 \h��	Request Mode messages

This set of messages is used by a receive terminal to request particular modes of transmission from the transmit terminal.

�seq section \c�7�.�seq sub_section\c�6�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Request Mode

This is used to request particular modes of transmission from the transmit terminal. It is a list, in order or preference (most preferable first), of modes that the terminal would like to receive. Each mode is described using a ModeDescription.

sequenceNumber is used to label instances of RequestMode so that the corresponding response can be identified.

ModeDescription: is a set of one or more ModeElements.

ModeElement: is used to describe a mode element, that is, one of the constituent parts of a complete mode description. It indicates the type of elementary stream that is requested and optionally how it is requested to be multiplexed.

type is used to indicate the type of elementary stream that is requested. It is a choice of VideoMode, AudioMode, DataMode, and EncryptionMode.

h223ModeParameters: is used to indicate parameters specific to using H.223 [�seq reference h223_ref�8�].

adaptationLayerType indicates which adaptation layer and options are requested for the requested type. The codepoints are as follows: nonStandard, al1Framed (AL1 framed mode), al1NotFramed (AL1 unframed mode), al2WithoutSequenceNumbers (AL2 with no sequence numbers present), al2WithSequenceNumbers (AL2 with sequence numbers present), and al3 (AL3, indicating the number of control field octets that will be present and the size of the send buffer, Bs, that will be used, the size being measured in octets).

segmentableFlag, when equal to true indicates that segmentable multiplexing is requested, and when equal to false indicates that non-segmentable multiplexing is requested.

�seq section \c�7�.�seq sub_section \c�6�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�1�	Video Mode

This is a choice of VideoModes.

H261VideoMode: Indicates the requested picture resolution (either QCIF or CIF), bit rate, in units of 100 bit/s, and still picture transmission

H262VideoMode: Indicates the requested profile and level, and the optional fields, if present, indicate the requested values of the parameters given. The optional fields are integers with units defined in Table �seq table h262cap_tab�2�.

H263VideoMode: Indicates the requested picture resolution (SQCIF, QCIF, CIF, 4CIF and 16CIF) and bit rate, in units of 100 bit/s.

The booleans unrestrictedVector, arithmeticCoding, advancedPrediction, and pbFrames, when true, indicate that is it requested to use these optional modes that are defined in the annexes of H.263.

The boolean errorCompensation, when true, indicates that the encoder is capable of processing videoNotDecodedMBs indications and compensating errors as illustrated in appendix II of H.263. The encoder is not required to respond to videoNotDecoded indications. In a multipoint control unit (MCU), it may not be practical for the MCU to respond to all indications.

IS11172VideoMode: Indicates request for constrainedBitstream and the optional fields, if present, indicate the requested values of the parameters given. The optional fields are integers with units defined in Table �seq table is11172cap_tab�3�.

�seq section \c�7�.�seq sub_section \c�6�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�2�	Audio Mode

This is a choice of AudioModes.

The exact meaning of the G-series audio codepoints is given in Table �seq table gseriescap_tab�4�. There are four options for G.723.1 audio, to allow either of the bit rates (the low bit rate of 5.3 kbit/s or the high bit rate of 6.3 kbit/s) to be requested with or without the use of silence suppression.

G7231AnnexCMode: is used to request audio coded according to Annex C of G.723.1. maxAl-sduAudioFrames indicates the requested maximum number of audio frames per AL-SDU. The boolean silenceSupression, when true, requests the use of silence compression defined in G.723.1 Annex A. The fields of g723AnnexCAudioMode, highRateMode0, highRateMode1, lowRateMode0, lowRateMode1, sidMode0, and sidMode1 indicates the requested number of octets per frame for each of the audio and error protection modes of G.723.1 and G.723.1 Annex C.

IS11172AudioMode: is used to request audio coded according to ISO/IEC 11172-3 [�seq reference mpeg1_audio_ref�34�].

audioLayer indicates which coding layer is requested: either audioLayer1, audioLayer2 or audioLayer3.

audioSampling indicates which sample rate is requested: audioSampling32k, audioSampling44k1 and audioSampling48k indicate the audio sample rates 32KHz, 44.1KHz and 48KHz respectively.

multichannelType indicates which multi-channel mode is requested: singleChannel, twoChannelStereo and twoChannelDual request single channel, stereo and dual channel operation respectively.

bitRate indicates the requested audio bit rate, and is measured in units of kbit/s.

IS13818AudioMode: is used to request audio coded according to ISO/IEC 13818-3 [�seq reference mpeg2_audio_ref�35�].

audioLayer indicates which coding layer is requested: either audioLayer1, audioLayer2 or audioLayer3.

audioSampling indicates which sample rate is requested: audioSampling16k, audioSampling22k05, audioSampling24k, audioSampling32k, audioSampling44k1 and audioSampling48k indicate the audio sample rates 16KHz, 22.05KHz, 24KHz, 32KHz, 44.1KHz and 48KHz respectively.

multichannelType indicates which multi-channel mode is requested as specified in Table �seq table multi_chan_audio_tb2�11�.

TABLE �seq table�11�/H.245

ISO/IEC 13818-3 multi-channel codepoints

ASN.1 Codepoint�Semantic meaning of codepoint��singleChannel�One channel, using the 1/0 configuration. Single channel mode (as in ISO/IEC 11172-3)��twoChannelStereo�Two channels, using the 2/0 configuration, stereo channel mode (as in ISO/IEC 11172-3)��twoChannelDual�Two channels, using the 2/0 configuration, dual channel mode (as in ISO/IEC 11172-3)��threeChannels2-1�Three channels, using the 2/1 configuration. Left, Right and single surround channel ��threeChannels3-0�Three channels, using the 3/0 configuration. Left, Centre and Right, without surround channel ��fourChannels2-0-2-0�Four channels, using the 2/0 + 2/0 configuration. Left and Right of the first programme and Left and Right of the second programme ��fourChannels2-2�Four channels, using the 2/2 configuration. Left, Right, Left surround and Right surround��fourChannels3-1�Four channels, using the 3/1 configuration. Left, Centre, Right, and a single surround channel��fiveChannels3-0-2-0�Five channels, using the 3/0 + 2/0 configuration. Left, Centre and Right of the first programme and Left and Right of the second programme��fiveChannels3-2�Five channels, using the 3/2 configuration. Left, Centre, Right, Left surround and Right surround��The boolean lowFrequencyEnhancement, when true, requests a low frequency enhancement channel.

The boolean multilingual, when true, requests up to seven multilingual channels.

bitRate indicates the requested audio bit rate, and is measured in units of kbit/s.

�seq section \c�7�.�seq sub_section \c�6�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�3�	Data Mode

This is a choice of data applications and bit rates.

bitRate indicates the requested bit rate in units of 100 bit/s.

t120 requests the use of the T.120 [�seq reference t120_ref�25�] protocol.

dsm-cc requests the use of the DSM-CC [�seq reference dsmcc_ref�36�] protocol.

userData requests the use of unspecified user data from external data ports.

t84 requests the use of T.84 [�seq reference t84_ref�24�] for the transfer of such images (JPEG, JBIG, Facsimile Gr.3/4).

t434 requests the use of T.434 [�seq reference t434_ref�26�] for the transfer of telematic binary files.

h224 requests the use of the real-time simplex device control protocol H.224 [�seq reference h224_ref�9�].

nlpid requests the use of the use of the specified network link layer data application.

dsvdControl requests the use of the DSVD terminal to support an out-of-band control channel.

h222DataPartitioning requests the use of the modified and restricted usage of data partitioning of H.262, as specified in H.222.1, in which the enhancement data is transmitted as a data channel supported by the listed DataProtocolCapability.

�seq section \c�7�.�seq sub_section \c�6�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�4�	Encryption Mode

This is a choice of encryption modes.

h233Encryption requests the use of encryption according to H.233 and H.234 [�seq reference h233_ref�11�][�seq reference h234_ref�12�].

�seq section \c�7�.�seq sub_section\c�6�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Request Mode Acknowledge

This is sent to confirm that the transmit terminal intends to transmit in one of the modes requested by the receive terminal.

The sequenceNumber shall be the same as the sequenceNumber in the RequestMode for which this is the confirmation.

The response field indicates the action from the remote terminal. The possible values of response are given in Table �seq table con_req_mode_tab�12�.

TABLE �seq table�12�/H.245

Confirmation responses to Request Mode

ASN.1 codepoint�Response��willTransmitMostPreferredMode�The transmit terminal will change to the receiver's most preferred mode.��willTransmitLessPreferredMode�The transmit terminal will change to one of the receiver's preferred mode, but not the most preferred mode.��

�seq section \c�7�.�seq sub_section\c�6�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Request Mode Reject

This is sent to reject the request by the receive terminal.

The sequenceNumber shall be the same as the sequenceNumber in the RequestMode for which this is the response.

The cause field indicates the reason for rejection of the requested mode. The cause values are given in Table �seq table rej_req_mode_tab�13�.

TABLE �seq table�13�/H.245

Rejection responses to Request Mode

ASN.1 codepoint�Response��modeUnavailable�The transmit terminal will not change its mode of transmission as the requested modes are not available.��multipointConstraint�The transmit terminal will not change its mode of transmission due to a multipoint constraint.��requestDenied�The transmit terminal will not change its mode of transmission.��

�seq section \c�7�.�seq sub_section\c�6�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	Request Mode Release

This is used by the out-going MRSE in the case of a time out.

��seq section \c�7�.�seq sub_section�7��seq sub_sub_section \r 0 \h��	Round Trip Delay messages

This set of messages is used by a terminal to determine the round trip delay between two communicating terminals. It also enables a H.245 user to determine whether the peer H.245 protocol entity is alive.

�seq section \c�7�.�seq sub_section\c�7�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Round Trip Delay Request

This is sent from the out-going RTDSE to the in-coming RTDSE.

sequenceNumber is used to label instances of RoundTripDelayRequest so that the corresponding response can be identified.

�seq section \c�7�.�seq sub_section\c�7�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Round Trip Delay Response

This is sent from the in-coming RTDSE to the out-going RTDSE.

The sequenceNumber shall be the same as the sequenceNumber in the RoundTripDelayRequest for which this is the response.

�seq section \c�7�.�seq sub_section�8��seq sub_sub_section \r 0 \h��	Maintenance Loop messages

This set of messages is used by a terminal to perform maintenance loop functions.

�seq section \c�7�.�seq sub_section\c�8�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Maintenance Loop Request

This is sent to request a particular type of loop back. The types mediaLoop and logicalChannelLoop request the loopback of only one logical channel as indicated by LogicalChannelNumber, while the type systemLoop refers to all logical channels. The exact definition of these types is system specific and outside the scope of this Recommendation.

�seq section \c�7�.�seq sub_section\c�8�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Maintenance Loop Acknowledge

This is used confirm that the terminal will perform the loop as requested.

�seq section \c�7�.�seq sub_section\c�8�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Maintenance Loop Reject

This is used indicate that the terminal will not perform the loop as requested.

A terminal may use the cause canNotPerformLoop to indicate that it does not have the capability to perform the requested loop.

�seq section \c�7�.�seq sub_section\c�8�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	Maintenance Loop Command Off

On receipt of this command, the terminal shall disconnect all loops and restore audio, video and data paths to their normal condition.

�seq section \c�7�.�seq sub_section�9��seq sub_sub_section \r 0 \h��	Communication Mode Messages

This set of messages are used by an H.323 MC to convey the communication mode of an H.323 conference.

�seq section \c�7�.�seq sub_section\c�9�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Communication Mode Command

This command is sent by the H.323 MC to specify the communication mode for each data type: unicast or multicast. This command may cause a switch between a centralized and decentralized conference. A switch may involve closing all existing logical channels and opening new ones.

The CommunicationModeTable specifies all the sessions in the conference. For each session, the RTP session identifier, an associated RTP session ID, a terminal number, a description of the session, a mode for each data type, a unicast or multicast address for the media channel and an associated guaranteed delivery request, a media control address for the reverse RTCP channel and an associated guaranteed delivery request.

�seq section \c�7�.�seq sub_section\c�9�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Communication Mode Request

This is sent to the MC to request the communication mode of the current conference.

�seq section \c�7�.�seq sub_section\c�9�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Communication Mode Response

This is sent by the MC, in response to a CommunicationModeRequest to specify the communication mode of a conference.

�seq sub_sub_sub_section \r 0 \h���seq section \c�7�.�seq sub_section�11��seq sub_sub_section \r 0 \h��	Conference Request and Response Messages

TerminalID, which is used in the Conference Request and Response Messages, has a length of 128 octets. When communicating between an H.323 terminal and an H.320 terminal via a H.323 Gateway, this field will be truncated to 32 octets.

�seq section \c�7�.�seq sub_section\c�11�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Terminal List Request

This request equates to H.230 TCU as described in H.243.

�seq section \c�7�.�seq sub_section\c�11�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Terminal List Response

This request equates to a sequence of terminalNumbers as described in H.230.

�seq section \c�7�.�seq sub_section\c�11�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Make Me Chair

This request equates to CCA as described in H.230.

�seq section \c�7�.�seq sub_section\c�11�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	Cancel Make Me Chair

This request equates to CIS as described in H.230.

�seq section \c�7�.�seq sub_section\c�11�.�seq sub_sub_section�5��seq sub_sub_sub_section \r 0 \h��	Make Me Chair Response

This request equates to either H.230 CIT if the chair control token is granted or H.230 CCR if the chair control token is denied

�seq section \c�7�.�seq sub_section\c�11�.�seq sub_sub_section�6��seq sub_sub_sub_section \r 0 \h��	Drop Terminal

This request equates to CCD as described in H.230.

�seq section \c�7�.�seq sub_section\c�11�.�seq sub_sub_section�7��seq sub_sub_sub_section \r 0 \h��	Terminal Drop Reject

This response equates to CIR as described in H.230

�seq section \c�7�.�seq sub_section\c�11�.�seq sub_sub_section�8��seq sub_sub_sub_section \r 0 \h��	RequestTerminal ID

This request equates to TCP as described in H.230.

�seq section \c�7�.�seq sub_section\c�11�.�seq sub_sub_section�9��seq sub_sub_sub_section \r 0 \h��	MC Terminal ID Response

This response equates to TIP as described in H.230.

�seq section \c�7�.�seq sub_section\c�11�.�seq sub_sub_section�10��seq sub_sub_sub_section \r 0 \h��	Enter H.243 Password Request

This request equates to TCS1 as described in H.230.

�seq section \c�7�.�seq sub_section\c�11�.�seq sub_sub_section�11��seq sub_sub_sub_section \r 0 \h��	Password Response

This response equates to IIS as described in H.230.

�seq section \c�7�.�seq sub_section\c�11�.�seq sub_sub_section�12��seq sub_sub_sub_section \r 0 \h��	Enter H.243 Terminal ID Request

This request equates to TCS2/TCI as described in H.230.

�seq section \c�7�.�seq sub_section\c�11�.�seq sub_sub_section�13��seq sub_sub_sub_section \r 0 \h��	Terminal ID Response

This response equates to IIS as described in H.230.

�seq section \c�7�.�seq sub_section\c�11�.�seq sub_sub_section�14��seq sub_sub_sub_section \r 0 \h��	Enter H.243 Conference ID Request

This request equates to TCS3 as described in H.230.

�seq section \c�7�.�seq sub_section\c�11�.�seq sub_sub_section�15��seq sub_sub_sub_section \r 0 \h��	Conference ID Response

This response equates to IIS as described in H.230.

�seq section \c�7�.�seq sub_section\c�11�.�seq sub_sub_section�16��seq sub_sub_sub_section \r 0 \h��	Video Command Reject

This request equates to H.230 VCR.

�seq section \c�7�.�seq sub_section\c�11�.�seq sub_sub_section�17��seq sub_sub_sub_section \r 0 \h��	Enter Extension Address Request

This request equates to TCS4 as described in H.230.

�seq section \c�7�.�seq sub_section\c�11�.�seq sub_sub_section�18��seq sub_sub_sub_section \r 0 \h��	Extension Address Response

This response equates to IIS as described in H.230.

��seq section \c�7�.�seq sub_section�12��seq sub_sub_section \r 0 \h��	Commands

A command message requires action but no explicit response.

�seq section \c�7�.�seq sub_section\c�12�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Send Terminal Capability Set

specificRequest commands the far end terminal to indicate its transmit and receive capabilities by sending one or more TerminalCapabilitySets that contain the information requested, as specified below. This command may be sent at any time to elicit the capabilities of the remote terminal, for example, following an interruption or other cause for uncertainty; however, such messages should not be sent repetitively without strong cause.

A terminal shall only request the transmission of capabilityTableEntryNumbers and capabilityDescriptorNumbers that it has previously received. A terminal shall ignore any requests to transmit capabilityTableEntryNumbers and capabilityDescriptorNumbers that it has not previously transmitted and no fault shall be considered to have occurred.

The boolean multiplexCapability, when true, requests the transmission of the MultiplexCapability.

capabilityTableEntryNumbers is a set of the CapabilityTableEntryNumbers that indicate the CapabilityTableEntrys that the terminal requests to be transmitted.

capabilityDescriptorNumbers is a set of the capabilityDescriptorNumbers that indicate the CapabilityDescriptors that the terminal requests to be transmitted.

genericRequest commands the far end terminal to send its entire terminal capability set.

�seq section \c�7�.�seq sub_section\c�12�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Encryption

This command is used to exchange encryption capabilities and to command the transmission of an initialisation vector (IV), refer to H.233 and H.234 [�seq reference h233_ref�11�][�seq reference h234_ref�12�].

encryptionSE is an H.233 Session Exchange (SE) message, except that the error protection bits described in H.233 shall not be applied.

encryptionIVRequest commands the far-end encryptor to transmit a new IV in a logical channel opened for encryptionData.

encryptionAlgorithmID indicates to the receiver that the sending terminal will associate the given h233AlgorithmIdentifier value with the non-standard encryption algorithm associatedAlgorithm.

�seq section \c�7�.�seq sub_section\c�12�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Flow Control

This command is used to specify the upper limit of bit rate of either a single logical channel or the whole multiplex. A terminal may send this command to restrict the bit rate that the far-end terminal sends. A terminal that receives this command shall comply with it.

When scope is of type logicalChannelNumber the limit applies to the given logical channel, when scope is of type resourceID the limit applies to the given ATM virtual channel, and when scope is of type wholeMultiplex the limit applies to the whole multiplex.

maximumBitRate is measured in units of 100 bit/s averaged over non-overlapping consecutive periods of one second. When this is present, the specified limit supersedes any previous limit, whether higher or lower. When it is not present any previous restriction on the bit rate for the channel is no longer applicable.

The point at which the bit rate limit is applied, and the specification of which bits are included in the calculation of bit rate is not specified in this Recommendation, but should be specified by recommendations that use this Recommendation.

Each transmission of this command affects a specific logical channel or the entire multiplex. More than one such command may be in effect at the same time, up to the number of open logical channels plus one, for the overall multiplex limitation.

Note. When the bit rate that can be transmitted on a logical channel is constrained to particular values, for example G.723.1 audio, and the request is to transmit at a rate lower than the lowest rate at which it would normally operate, it shall respond by stopping transmission on the logical channel.

�seq section \c�7�.�seq sub_section\c�12�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	End session

This command indicates the end of the H.245 session. After transmitting EndSessionCommand, the terminal shall not send any more of the messages defined in this Recommendation.

disconnect indicates that the connection will be dropped.

gstnOptions: is a choice of alternatives that will occur after ending the H.245 session when a V-series modem is used over the GSTN.

The possible options are given in Table �seq table end_session_tab�14�.

TABLE �seq table�14�/H.245

Options after EndSessionCommand when using an V-series modem over the GSTN

ASN.1 codepoint�Option��telephonyMode �The terminal shall initiate the cleardown procedures defined in the V-series modem recommendation, except that it shall not physically disconnect the GSTN connection.��v8bis�The terminal shall initiate the cleardown procedures defined in the V-series modem recommendation and enter a V.8bis session.��v34DSVD�The terminal shall preserve the V.34 modem connection, but use it to support V.DSVD.��v34DuplexFAX�The terminal shall preserve the V.34 modem connection, but use it to support T.30 FAX [�seq reference t30_ref�21�].��v34H324�The terminal shall preserve the V.34 modem connection, but use it to support H.324 [�seq reference h324_ref�18�].��

�seq section \c�7�.�seq sub_section\c�12�.�seq sub_sub_section�5��seq sub_sub_sub_section \r 0 \h��	Miscellaneous Command

This is used for a variety of commands, some of which are present in H.221 and H.230 [�seq reference h221_ref�5�][�seq reference h230_ref�10�].

logicalChannelNumber indicates the logical channel number to which the command applies. It shall indicate a logical channel opened for video data when the type is one of videoFreezePicture, videoFastUpdatePicture, videoFastUpdateGOB, videoTemporalSpatialTradeOff, videoSendSyncEveryGOB, videoFastUpdateMB, and videoSendSyncEveryGOBCancel. When the type is one of equaliseDelay, zeroDelay, multipointModeCommand or cancelMultipointModeCommand where multiple logical channels are involved, the logicalChannelNumber shall be arbitrary, but shall be a valid LogicalChannelNumber (i.e. in the range 1-65535) and the receiver shall ignore the value.

equaliseDelay and zeroDelay shall have the same meaning as the commands ACE and ACZ defined in H.230[�seq reference h230_ref�10�].

multipointModeCommand commands that a terminal in receipt shall comply with all requestMode requests issued by the MCU. An example of a mode change is an audio coding change from G.711 to G.728.

cancelMultipointModeCommand cancels a previously sent multipointModeCommand command.

videoFreezePicture commands the video decoder to complete updating the current video frame and subsequently display the frozen picture until receipt of the appropriate freeze-picture release control signal.

videoFastUpdatePicture commands the video encoder to enter the fast-update mode at its earliest opportunity.

videoFastUpdateGOB commands the far-end video encoder to perform a fast update of one or more GOBs. firstGOB indicates the number of the first GOB to be updated, and numberOfGOBs indicates the number of GOBs to be updated. It shall only be used with video compression algorithms that define GOBs, for example, H.261 and H.263.

videoTemporalSpatialTradeOff commands the far-end video encoder to change its trade-off between temporal and spatial resolution. A value of 0 commands a high spatial resolution and a value of 31 commands a high frame rate. The values from 0 to 31 indicate monotonically a desire for higher frame rate. Actual values do not correspond to precise values of spatial resolution or frame rate.

videoSendSyncEveryGOB commands the far-end video encoder to use sync for every GOB as defined in H.263 [�seq reference h263_ref�15�], until the command videoSendSyncEveryGOBCancel is received, from which time the far-end video encoder may decide the frequency of GOB syncs. These commands shall only be used with video encoded according to H.263.

videoFastUpdateMB commands the far-end video encoder to perform a fast update of one or more MBs. firstGOB indicates the number of the first GOB to be updated and is only relative to H.263, firstMB indicates the number of the first MB to be updated and is only relative to H.261 and numberOfMBs indicates the number of MBs to be updated. It shall only be used with video compression algorithms that define MBs, for example, H.261 and H.263. Terminals may respond to this command with a GOB update which includes the MBs requested.

maxH223MUXPDUsize commands the transmitter to restrict the size of the H223 MUX-PDUs that it transmits to a maximum of the specified number of octets.

�seq section \c�7�.�seq sub_section\c�12�.�seq sub_sub_section�6��seq sub_sub_sub_section \r 0 \h��	Conference Command

BroadcastMyLogicalChannel shall be similar to H.230 MCV but shall only refer to a single logical channel..

CancelBroadcastMyLogicalChannel shall be similar to as H.230 Cancel-MCV but shall only refer to a single logical channel.

MakeTerminalBroadcaster shall be defined as H.230 VCB.

CancelMakeTerminalBroadcaster shall be defined as Cancel-VCB.

SendThisSource shall be defined as H.230 VCS.

CancelSendThisSource shall be defined as H.230 Cancel-VCS.

DropConference shall be defined as H.230 CCK.

��seq section \c�7�.�seq sub_section�13��seq sub_sub_section \r 0 \h��	Indications

An indication contains information that does not require action or response.

�seq section \c�7�.�seq sub_section\c�13�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Function Not Understood

This is used to return requests, responses and commands that are not understood to the transmitter.

If a terminal receives a request, response or command that it does not understand, either because it is non-standard or has been defined in a subsequent revision of this Recommendation, it should respond by sending FunctionNotSupported or FunctionNotUnderstood.

NOTE: FunctionNotUnderstood was named FunctionNotSupported in version 1 of H.245. The name of this function was changed to allow for the addition of a more powerful FunctionNotSupported command without breaking backward compatibility with version 1 syntax .

�seq section \c�7�.�seq sub_section\c�13�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Miscellaneous Indication

This is used for a variety of indications, some of which are present in H.221 and H.230 [�seq reference h221_ref�5�][�seq reference h230_ref�10�].

logicalChannelNumber indicates the logical channel number to which the indication applies. It shall indicate a logical channel opened for video data when the type is videoIndicateReadyToActivate, and videoTemporalSpatialTradeOff. When the type is one of multipointConference, cancelMultipointConference, multipointZeroComm, cancelMultipointZeroComm, multipointSecondaryStatus, or cancelMultipointSecondaryStatus where multiple logical channels are involved, the logicalChannelNumber shall be arbitrary, but shall be a valid LogicalChannelNumber (i.e. in the range 1-65535) and the receiver shall ignore the value.

logicalChannelInactive is used to indicate that the content of the logical channel does not represent a normal signal. It is analogous to AIM and VIS defined in H.230.

logicalChannelActive is complementary to logicalChannelInactive. It is analogous to AIA and VIA defined in H.230. MultipointZeroComm, cancelMultipointZeroComm, multipointSecondaryStatus, and cancelMultipointSecondaryStatus shall have the same meaning as MIZ, cancelMIZ, MIS and cancelMIS respectively, as defined in H.230.

multipointConference indicates that the terminal is joined to an H.243 multipoint conference, and the terminal is expected to obey bit rate symmeterization. However, bit rate symmeterization will be enforced via FlowControlCommand messages. Note that multipointConference has exactly the same meaning has MCC in H.230. Note that multipointConference, like MCC, does not require mode symmetry.

videoIndicateReadyToActivate shall have the same meaning as VIR defined in H.230, that is, it is transmitted by a terminal whose user has decided not to send video unless he will also receive video from the other end.

videoTemporalSpatialTradeOff indicates to the far-end video decoder its current trade-off between temporal and spatial resolution. A value of 0 indicates a high spatial resolution and a value of 31 indicates a high frame rate. The values from 0 to 31 indicate monotonically a higher frame rate. Actual values do not correspond to precise values of spatial resolution or frame rate. A terminal that has indicated temporalSpatialTradeOffCapability shall transmit this indication whenever it changes its trade-off and when a video logical channel is initially opened.

videoNotDecodedMBs indicates to the far-end video encoder that a set of MBs has been received erroneously and that any MB in the specified set has been treated as not coded. The encoder may use this information to compensate transmission errors, as illustrated in appendix II of H.263. firstMB indicates the number of the first MB treated as not coded, and numberOfMBs indicates the number of MBs treated as not coded. The MB numbering is done according to H.263. The temporal reference of the picture containing not decoded MBs is indicated in temporalReference. This indication shall only be used with the H.263 video compression algorithm.

�seq section \c�7�.�seq sub_section\c�13�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Jitter Indication

This is used to indicate the amount of jitter, as estimated by the receive terminal, of a logical channel. It may be useful for choice of bit-rate and buffer control in video channels, or to determine an appropriate rate of transmission of timing information, etc.. The video encoder will then have the option of using this information to restrict the video bit-rate or the video decoder buffer fluctuations to help prevent decoder buffer underflow or overflow, given the occurring jitter. If the encoder takes this option, it will enable correct operation for existing designs of video decoder buffers, regardless of the amplitude of received jitter, as well as allow correct operation with minimum delay.

When scope is of type logicalChannelNumber the information applies to the given logical channel, when scope is of type resourceID the information applies to the given ATM virtual channel, and when scope is of type wholeMultiplex the information applies to the whole multiplex.

estimatedReceivedJitterMantissa and estimatedReceivedJitterExponent provide an estimate of the jitter that has been received by the terminal that has sent the message.

estimatedReceivedJitterMantissa indicates the mantissa of the jitter estimate as given in Table �seq table man_jit_tab�15�.

TABLE �seq table�15�/H.245

Mantissa of estimatedReceivedJitterMantissa in JitterIndication

estimatedReceivedJitterMantissa�Mantissa��0�1��1�2.5��2�5��3�7.5��

estimatedReceivedJitterExponent indicates the exponent of the jitter estimate as given in Table �seq table exp_jit_tab�16�.

TABLE �seq table�16�/H.245

Exponent of estimatedReceivedJitterExponent in JitterIndication

estimatedReceivedJitterExponent�Exponent��0�Out of Range��1�1 �symbol 109 \f "Symbol"��s��2�10 �symbol 109 \f "Symbol"��s��3�100 �symbol 109 \f "Symbol"��s��4�1 ms��5�10 ms��6�100 ms��7�1 s��

The jitter estimate is obtained by multiplying the mantissa by the exponent, unless estimatedReceivedJitterExponent is equal to zero, in which case the estimate is just known to be more than 7.5 seconds.

skippedFrameCount indicates how many frames have been skipped by the decoder since the last JitterIndication message was received. Since the maximum value that can be encoded is 15, if this option is implemented, this information must be transmitted before more than 15 frames have been skipped.

Note. Since frames are skipped when the decoder buffer underflows, additional jitter may cause the decoder buffer to underflow more or less often than the encoder expects frame skips to happen.

additionalDecoderBuffer indicates the additional size of the video decoder buffer over and above that required by the indicated profile and level. This is defined in the same way as vbv_buffer_size H.262 [�seq reference h262_ref�14�].

�seq section \c�7�.�seq sub_section\c�13�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	H.223 Skew Indication

This is used to indicate to the far-end terminal the average amount of time skew between two logical channels.

logicalChannelNumber1 and logicalChannelNumber2 are logical channel numbers of opened logical channels.

skew is measured in milliseconds, and indicates the delay that must be applied to data belonging to logicalChannelNumber2 as measured at the output of the multiplex, to achieve synchronisation with logicalChannelNumber1 as measured at the output of the multiplex. The skew includes differences in: sample time, encoder delay, and transmitter buffer delay, and is measured relative to the transmission time of the first bit of data representing a given sample point. The actual delay necessary for synchronisation is dependent on decoder implementation, and is a local matter for the receiver.

�seq section \c�7�.�seq sub_section\c�13�.�seq sub_sub_section�5��seq sub_sub_sub_section \r 0 \h��	New ATM Virtual Channel Indication

This is used to indicate the parameters of an ATM virtual channel that the terminal intends to open.

resourceID is used to identify the ATM virtual channel. The means by which this parameter is associated with an ATM virtual channel is not specified in this Recommendation.

bitRate indicates the bit rate, measured at the AAL-SAP, of the virtual channel, and is measured in units of 64 kbit/s.

bitRateLockedToPCRClock indicates that the bit rate of the virtual channel is clocked to the clock used to produce H.222.0 clock reference values (Program clock reference or System clock reference).

bitRateLockedToNetworkClock indicates that the bit rate of the virtual channel is clocked to the local network clock. This does not guarantee that the bit rate clock will be locked to the local network at the receiver, as common network clocks may not be available.

aal indicates which ATM Adaptation Layer will be used, and its parameters.

The sequence aal1 indicates which of the options for ATM adaptation layer 1, as specified in I.363 [�seq reference i363_ref�19�], are supported. The codepoints are defined in Table �seq table aal1_cap_tab�1�.

The sequence aal5 indicates which of the options for ATM adaptation layer 5, as specified in I.363 [�seq reference i363_ref�19�], are supported. forwardMaximumSDUSize and backwardMaximumSDUSize indicate the maximum CPCS-SDU size in the forward and reverse directions, measured in octets.

multiplex indicates the type of multiplex that will be used on the ATM virtual channel. The options are noMultiplex (No H.222.0 multiplex), H.222.0 Transport Stream and H.222.0 Program Stream.

�seq section \c�7�.�seq sub_section\c�13�.�seq sub_sub_section�6��seq sub_sub_sub_section \r 0 \h��	User Input

This is used for User Input messages.

alphanumeric is a string of characters coded according to T.51 [�seq reference t51_ref�23�]. This could be used for key-pad input, an equivalent to DTMF.

userInputSupportIndication: indicates to the remote terminal which GENERALSTRING types the terminal supports.

Note. It is expected that most implementations of PER decoders will not be capable of decoding other strings than IA5. This indication should be used to "warn" the remote terminal not to attempt fancy variable length coding schemes.

nonStandard is a NonStandardParameter indicating a non-standard use of the UserInput indication message.

The boolean basicString, when true, indicates that the characters 0-9, * and # are supported.

The boolean iA5String, when true, indicates that the complete IA5String character set is supported.

The boolean generalString, when true, indicates that the complete GeneralString character set is supported.

Note. Any data that is carried in H.245, including user input messages, will not be encrypted.

�seq section \c�7�.�seq sub_section\c�13�.�seq sub_sub_section�7��seq sub_sub_sub_section \r 0 \h��	Conference Indications

sbeNumber shall be defined as H.230 SBE Number.

terminalNumberAssign shall be defined as H.230 TIA.

terminalJoinedConference shall be defined as H.230 TIN.

terminalLeftConference shall be defined as H.230 TID.

seenByAtLeastOneOther shall be defined as H.230 MIV.

cancelSeenByAtLeastOneOther shall be defined as H.230 cancel-MIV.

seenByAll shall be defined as H.230 MIV.

cancelSeenByall shall be defined as H.230 MIV.

terminalYouAreSeeing shall be defined as H.230 TIN.

requestForFloor shall be defined as H.230 TIF.

�seq section \c�7�.�seq sub_section\c�13�.�seq sub_sub_section�8��seq sub_sub_sub_section \r 0 \h��	H2250 Maximum Logical Channel Skew

H2250MaximumSkewIndication indicates the maximum skew between logical channels.

skew is measured in milliseconds, and indicates the maximum number of milliseconds that the data on logicalChannelNumber2 is delayed from the data on logicalChannelNumber1 as delivered to the network transport. The skew is measured relative to the time of delivery to the network transport of the first bit of data representing a given sample point. Lip synchronization, if desired, is a local matter for the receiver and shall be achieved via use of timestamps.

�seq section \c�7�.�seq sub_section\c�13�.�seq sub_sub_section�9��seq sub_sub_sub_section \r 0 \h��	MC Location Indication

This indication is sent by the MC to indicate to other terminals the signalling address that should be used to reach the MC.

�seq section \c�7�.�seq sub_section\c�13�.�seq sub_sub_section�10��seq sub_sub_sub_section \r 0 \h��	Vendor Identification Indication

vendorIdentification indication should be sent at the start of each call to identify the manufacturer, product, and product version number..

�seq section \c�7�.�seq sub_section\c�13�.�seq sub_sub_section�11��seq sub_sub_sub_section \r 0 \h��	Function Not Supported

This is used to return requests, responses and commands that are not understood back to the transmitter.

The whole of the RequestMessage, ResponseMessage or CommandMessage is returned.

If a terminal receives a request, response or command that it does not understand, either because it is non-standard or has been defined in a subsequent revision of this Recommendation, it shall respond by sending FunctionNotSupported.

If a terminal receives a request, response or command that has incorrect encoding, it shall set cause to the value syntaxError. If it has correct encoding, but the encoded values are semantically incorrect, it shall set cause to the value semanticError. If the message is an unrecognised extension to MultimediaSystemControlMessage, RequestMessage, ResponseMessage or CommandMessage, it shall set cause to the value unknownFunction.

In each case, the whole MultimediaSystemControlMessage should be returned as an octet string in returnedFunction.

FunctionNotSupported shall not be used at any other time. In particular, when an unrecognised extension is present at other points in the syntax, FunctionNotSupported shall not be used: the terminal shall respond to the message in the normal way, as if no extension were present. FunctionNotSupported shall never be sent in response to a received indication.

��seq section�8��seq sub_section \r 0 \h��	Procedures

�seq section \c�8�.�seq sub_section�1��seq sub_sub_section \r 0 \h��	Introduction

This section defines generic multimedia system control procedures that use the messages defined in this Recommendation. Recommendations using this Recommendation shall indicate which of these procedures are applicable, as well as defining any specific requirements.

Procedures to perform the following functions are described in this section:

�symbol 183 \f "Symbol" \s 10 \h��	master-slave determination

�symbol 183 \f "Symbol" \s 10 \h��	terminal capability exchange

�symbol 183 \f "Symbol" \s 10 \h��	uni-directional logical channel signalling

�symbol 183 \f "Symbol" \s 10 \h��	bi-directional logical channel signalling

�symbol 183 \f "Symbol" \s 10 \h��	receive terminal close logical channel request

�symbol 183 \f "Symbol" \s 10 \h��	H.223 multiplex table entry modification

�symbol 183 \f "Symbol" \s 10 \h��	request multiplex entry

�symbol 183 \f "Symbol" \s 10 \h��	receiver to transmitter transmit mode request

�symbol 183 \f "Symbol" \s 10 \h��	round trip delay determination

�symbol 183 \f "Symbol" \s 10 \h��	maintenance loop

�symbol 183 \f "Symbol" \s 10 \h���seq section \c�8�.�seq sub_section\c�1�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Method of specification

Procedures are generally specified in this section using SDLs. The SDL provides a graphical specification of the procedures, and includes specification of actions in the event of exception conditions.

�seq section \c�8�.�seq sub_section\c�1�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Communication between protocol entity and protocol user

The interaction with the user of a particular function is specified in terms of primitives transferred at the interface between the protocol entity and the protocol user. Primitives are for the purpose of defining protocol procedures and are not intended to specify or constrain implementation. There may be a number of parameters associated with each primitive.

To assist in the specification, protocol states are defined. These states are conceptual and reflect general conditions of the protocol entity in the sequences of primitives exchanged between the protocol entity and the user, and the exchange of messages between the protocol entity and its peer.

For each protocol entity the allowed sequence of primitives between the user and the protocol entity is defined using a state transition diagram. The allowed sequence constrains the actions of the user, and defines the possible responses from the protocol entity.

A primitive parameter described as being null, is equivalent to the parameter not being present.

�seq section \c�8�.�seq sub_section\c�1�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Peer-to-peer communication

Protocol information is transferred to the peer protocol entity via the relevant messages defined in section 6. Some protocol entities described have state variables associated with them. A number of protocol entities described also have timers associated with them.

A timer is identified by the notation Tn, where n is a number. In the SDL diagrams setting a timer means that a timer is loaded with a specified value and the timer is started. Resetting a timer means that a timer is stopped with its value at the time of reset being retained. Timer expiry means that a timer has run for its specified time and has reached the value of zero.

A protocol entity may also have associated parameters. A parameter is identified by the notation Nn, where n is a number.

These timers and counters are listed in Appendix III.

Some protocol entities define an error primitive to report protocol error conditions to a management entity.

�seq section \c�8�.�seq sub_section\c�1�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	SDL Diagrams

The SDL diagrams show actions to the allowed interactions with the protocol user, and to reception of messages from the peer protocol entity. Primitives which are not allowed for a given state, as specified by the state transition diagrams, are not shown in the SDL diagrams. However the responses to the reception of inappropriate messages are described in the SDL diagrams.

�seq section \c�8�.�seq sub_section\c�1�.�seq sub_sub_section�5��seq sub_sub_sub_section \r 0 \h��	SDL Key

The SDL key is shown in Figure �seq figure FIGURE_SDL_KEY�1�.

�embed MSDraw * mergeformat ���

FIGURE �seq figure�1�/H.245

SDL key

��seq section \c�8�.�seq sub_section�2��seq sub_sub_section \r 0 \h��	Master slave determination procedures

�seq section \c�8�.�seq sub_section\c�2�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Introduction

Conflicts may arise when two or more terminals involved in a call initiate similar events simultaneously, for which resources are available for only one occurrence of the event e.g. opening of logical channels. To resolve such conflicts, one terminal may act as a master and the other terminals(s) may act as slave terminal(s). The procedures described here allow terminals in the call to determine which is the master terminal and which is the slave terminal(s).

The protocol described here is referred to as the Master Slave Determination Signalling Entity (MSDSE). There is one instance of the MSDSE in each terminal involved in a call.

Either terminal may initiate the master slave determination process by issuing the DETERMINE.request primitive to its MSDSE. The result of the procedure is returned by the DETERMINE.indication and DETERMINE.confirm primitives. While the DETERMINE.indication primitive indicates the result, it does not indicate that the result is known at the remote terminal. The DETERMINE.confirm primitive indicates the result and confirms that it is also known at the remote terminal.

A terminal shall respond to procedures that rely on knowledge of the result and are initiated by the remote terminal any time after the status determination result is known at the local terminal. This may be before the local terminal has received confirmation that the remote terminal also has knowledge of the result. A terminal shall not initiate procedures that rely on knowledge of the result until it has received confirmation that the remote terminal also has knowledge of the result.

The following text provides an overview of the operation of the protocol. In the case of any discrepancy with the formal specification of the protocol that follows, the formal specification will supersede.

�seq section \c�8�.�seq sub_section \c�2�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�1�	Protocol overview - initiation by local user

A master slave determination procedure is initiated when the DETERMINE.request primitive is issued by the MSDSE user. A MasterSlaveDetermination message is sent to the peer MSDSE, and timer T106 is started. If a MasterSlaveDeterminationAck message is received in response to the MasterSlaveDetermination message then timer T106 is stopped and the user is informed with the DETERMINE.confirm primitive that the master slave determination procedure was successful and a MasterSlaveDeterminationAck message is sent to the peer MSDSE. If however a MasterSlaveDeterminationReject message is received in response to the MasterSlaveDetermination message, then a new status determination number is generated, timer T106 is restarted, and another MasterSlaveDetermination message is sent. If after sending a MasterSlaveDetermination message N100 times, a MasterSlaveDeterminationAck still has not been received, then timer T106 is stopped and the user is informed with the REJECT.indication primitive that the master slave determination procedure has failed to produce a result.

If timer T106 expires then the MSDSE user is informed with the REJECT.indication primitive and a MasterSlaveDeterminationRelease message is sent to the peer MSDSE.

�seq section \c�8�.�seq sub_section \c�2�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�2�	Protocol overview - initiation by remote user

When a MasterSlaveDetermination message is received at the MSDSE, a status determination procedure is initiated. If the status determination procedure returns a determinate result, then the user is informed of the master slave determination result with the DETERMINE.indication primitive, a MasterSlaveDeterminationAck message is sent to the peer MSDSE, and timer T106 is started. If a MasterSlaveDeterminationAck message is received in response to the MasterSlaveDeterminationAck message, then timer T106 is stopped and the user is informed with the DETERMINE.confirm primitive that the master slave determination procedure was successful.

If timer T106 expires then the MSDSE user is informed with the REJECT.indication primitive.

If however the status determination procedure returns an indeterminate result, then the MasterSlaveDeterminationReject message is sent to the peer MSDSE.

�seq section \c�8�.�seq sub_section \c�2�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�3�	Protocol overview - simultaneous initiation

When a MasterSlaveDetermination message is received at the MSDSE that itself has already initiated a status determination procedure, and is awaiting a MasterSlaveDeterminationAck or MasterSlaveDeterminationReject message, then a status determination procedure is initiated. If the status determination procedure returns a determinate result, the MSDSE responds as if the procedure was initiated by the remote user, and the procedures described above for this condition apply.

If however the status determination procedure returns an indeterminate result, then a new status determination number is generated, and the MSDSE responds as if the procedure was again initiated by the local MSDSE user as described above.

�seq section \c�8�.�seq sub_section \c�2�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�4�	Status determination procedure

The following procedure is used to determine which terminal is the master from the terminalType and statusDeterminationNumber values. Firstly, the terminalType values are compared and the terminal with the larger terminal type number is determined as the master. If the terminal type numbers are the same, the statusDeterminationNumbers are compared using modulo arithmetic to determine which is master.

If both terminals have equal terminalType field values and the difference between statusDeterminationNumber field values modulo 224 is 0 or 223, an indeterminate result is obtained

�seq section \c�8�.�seq sub_section\c�2�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Communication between the MSDSE and the MSDSE user

�seq section \c�8�.�seq sub_section \c�2�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�1�	Primitives between the MSDSE and the MSDSE user

Communication between the MSDSE, and MSDSE user, is performed using the primitives shown in Table �seq table TABLE_PRIMS_MSDSE�17�.

TABLE �seq table�17�/H.245

Primitives and parameters

�type��generic name�request�indication�response�confirm��DETERMINE�- 1�TYPE�not defined 2�TYPE��REJECT�not defined�-�not defined�not defined��ERROR�not defined�ERRCODE�not defined�not defined��Notes:

1.	“-” means no parameters

2.	“not defined” means that this primitive is not defined.

�seq section \c�8�.�seq sub_section \c�2�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�2�	Primitive definition

The definition of these primitives is as follows:

a)	The DETERMINE primitive is used to initiate, and to return the result from, the master slave determination procedure.

The DETERMINE.request primitive is used to initiate the master slave determination procedure.

The DETERMINE.indication primitive is used to indicate the result of the master slave determination procedure. As the result of the procedure may not be known at the remote terminal, the terminal shall not initiate any procedures that rely on knowledge of the result, although it shall respond to any procedures that rely on knowledge of the result.

The DETERMINE.confirm primitive is used to indicate the result of the master slave determination procedure and that the result of the procedure is known at both terminals. The terminal may initiate, and shall respond to, any procedures that rely on knowledge of the result.

b)	The REJECT primitive indicates that the master slave determination procedure was unsuccessful.

c)	The ERROR primitive reports MSDSE errors to a management entity.

�seq section \c�8�.�seq sub_section \c�2�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�3�	Parameter definition

The definition of the primitive parameters shown in Table �seq table TABLE_PRIMS_MSDSE�17� are as follows:

a)	The TYPE parameter indicates the terminal status. It has the value of "MASTER" or "SLAVE".

b)	The ERRCODE value indicates the type of MSDSE error Table �seq table TABLE_ERR_MSDSE�21� indicates the values that the ERRCODE parameter may take.

�seq section \c�8�.�seq sub_section \c�2�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�4�	MSDSE states

The following states are used to specify the allowed sequence of primitives between the MSDSE and the MSDSE user.

State 0: IDLE

No master slave determination procedure has been initiated.

State 1: OUTGOING AWAITING RESPONSE

The local MSDSE user has requested a master slave determination procedure. A response from the remote MSDSE is awaited.

State 2: INCOMING AWAITING RESPONSE

The remote MSDSE has initiated a master slave determination procedure in the local MSDSE. An acknowledgement was sent to the remote MSDSE and a response from the remote MSDSE is awaited.

�seq section \c�8�.�seq sub_section \c�2�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�5�	State transition diagram

The allowed sequence of primitives between the MSDSE and the MSDSE user is defined here. The allowed sequences are shown in Figure �seq figure FIGURE_PS_MSDSE�2�.

�

FIGURE �seq figure�2�/H.245

State transition diagram for sequence of primitives at MSDSE

�seq section \c�8�.�seq sub_section\c�2�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Peer to peer MSDSE communication

�seq section \c�8�.�seq sub_section \c�2�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�1�	MSDSE messages

Table �seq table TABLE_MSDSE_PDUS�18� shows the MSDSE messages and fields, defined in section 6, which are relevant to the MSDSE protocol.

TABLE �seq table�18�/H.245

MSDSE message names and fields

function�message�field��determination�MasterSlaveDetermination�terminalType

statusDeterminationNumber���MasterSlaveDeterminationAck�decision���MasterSlaveDeterminationReject�cause��error recovery�MasterSlaveDeterminationRelease�-���seq section \c�8�.�seq sub_section \c�2�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�2�	MSDSE state variables

The following MSDSE state variables are defined:

sv_TT

This state variable holds the terminal type number for this terminal.

sv_SDNUM

This state variable holds the status determination number for this terminal.

sv_STATUS

This state variable is used to store the result of the latest master slave determination procedure. It has values of "master", "slave", and "indeterminate".

sv_NCOUNT

This state variable is used to count the number of MasterSlaveDetermination messages that have been sent during the OUTGOING AWAITING RESPONSE state.

�seq section \c�8�.�seq sub_section \c�2�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�3�	MSDSE timers

The following timer is specified for the out-going MSDSE:

T106

This timer is used during the OUTGOING AWAITING RESPONSE state and during the INCOMING AWAITING RESPONSE state. It specifies the maximum allowed time during which no acknowledgement message may be received.

�seq section \c�8�.�seq sub_section \c�2�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�4�	MSDSE counters

The following parameter is specified for the MSDSE:

N100

This parameter specifies the maximum value of sv_NCOUNT.

�seq section \c�8�.�seq sub_section\c�2�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	MSDSE procedures

�seq section \c�8�.�seq sub_section \c�2�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�1�	Introduction

Figure �seq figure FIGURE_SUM_MSDSE�3� summarises the MSDSE primitives and their parameters, and messages.

�embed MSDraw * mergeformat ���

FIGURE �seq figure�3�/H.245

Primitives and messages in the MSDSE.

�seq section \c�8�.�seq sub_section \c�2�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�2�	Primitive parameter default values

Where not explicitly stated in the SDL diagrams the parameters of the indication and confirm primitives assume values as shown in Table �seq table TABLE_DEF_PAR_MSDSE�19�.

TABLE �seq table�19�/H.245

Default primitive parameter values

primitive�parameter�default value��DETERMINE.confirm�TYPE�MasterSlaveDeterminationAck.decision��DETERMINE.indication�TYPE�sv�_STATUS��

�seq section \c�8�.�seq sub_section \c�2�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�3�	Message field default values

Where not explicitly stated in the SDL diagrams the message fields assume values as shown in Table �seq table TABLE_PDU_DEF_MSDSE�20�.

TABLE �seq table�20�/H.245

Default message field values

message�field�default value��MasterSlaveDetermination�terminalType

statusDeterminationNumber�sv_TT

sv_SDNUM��MasterSlaveDeterminationAck�decision�Opposite of sv_STATUS i.e

if(sv_STATUS == master) decision = slave

if(sv_STATUS == slave) decision = master��MasterSlaveDeterminationReject�cause�identicalNumbers��

�seq section \c�8�.�seq sub_section \c�2�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�4�	ERRCODE parameter values

Table �seq table TABLE_ERR_MSDSE�21� shows the values that the ERRCODE parameter of the ERROR.indication primitive may take for the MSDSE.

TABLE �seq TABLE�21�/H.245

ERRCODE parameter values at MSDSE

error type�error code�error condition�state��no response from remote MSDSE�A�local timer T106 expiry�OUTGOING AWAITING RESPONSE

INCOMING AWAITING RESPONSE��remote sees no response from local MSDSE�B�remote timer T106 expiry�OUTGOING AWAITING RESPONSE

INCOMING AWAITING RESPONSE��inappropriate message�C�MasterSlaveDetermination�INCOMING AWAITING RESPONSE���D�MasterSlaveDeterminationReject�INCOMING AWAITING RESPONSE��inconsistent field value�E�MasterSlaveDeterminationAck.decision != sv_STATUS�INCOMING AWAITING RESPONSE��maximum number of retries�F�sv_NCOUNT == N100�OUTGOING AWAITING RESPONSE���seq section \c�8�.�seq sub_section \c�2�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�5�	SDLs

The MSDSE procedures are expressed in SDL form in Figure �seq figure FIGURE_SDL_MSDSE�4�.

terminalTypeProcess is process that returns a number that identifies different types of terminal, such as, terminals, MCUs and gateways.

randomNumber is process that returns a random number in the range 0..224-1.

�embed MSDraw * mergeformat ���

FIGURE �seq figure�4�(i)/H.245

MSDSE SDL

�

FIGURE �seq figure \c�4�(ii)/H.245

MSDSE SDL (continued)

�

FIGURE �seq figure \c�4�(iii)/H.245

MSDSE SDL (continued)

�

FIGURE �seq figure \c�4�(iv)/H.245

MSDSE SDL (continued)

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�4�(v)/H.245

MSDSE SDL (concluded)

��seq section \c�8�.�seq sub_section�3��seq sub_sub_section \r 0 \h��	Capability exchange procedures

�seq section \c�8�.�seq sub_section\c�3�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Introduction

These procedures are used by terminals to communicate their capabilities, and are referred to as the Capability Exchange Signalling Entity (CESE). Procedures are specified in terms of primitives and states at the interface between the CESE and the CESE user. Protocol information is transferred to the peer CESE via relevant messages defined in section 6. There is an out-going CESE and an in-coming CESE. At each of the out-going and in-coming ends there is one instance of the CESE for each call.

All terminals intended for use in point-to-point applications or those connected to an MCU shall be able to identify a TerminalCapabilitySet and its structure, and such capability values therein that are mandatory for those applications; any unrecognised capability values shall be ignored, and no fault shall be implied.

The capability exchange may be performed at any time. The capability exchange may signal both changed and unchanged capabilities. Unchanged capabilities should not be sent repetitively without strong cause.

The following text provides an overview of the operation of the protocol. In the case of any discrepancy with the formal specification of the protocol that follows, the formal specification will supersede.

8.3.1.1	Protocol overview - out-going CESE

A capability exchange is initiated when the TRANSFER.request primitive is issued by the user at the out-going CESE. A TerminalCapabilitySet message is sent to the peer incoming CESE, and timer T101 is started. If a TerminalCapabilitySetAck message is received in response to the TerminalCapabilitySet message then timer T101 is stopped and the user is informed with the TRANSFER.confirm primitive that the capability exchange was successful. If however a TerminalCapabilitySetReject message is received in response to the TerminalCapabilitySet message then timer T101 is stopped and the user is informed with the REJECT.indication primitive that the peer CESE user has refused the capability exchange.

If timer T101 expires then the out-going CESE user is informed with the REJECT.indication primitive and a TerminalCapabilitySetRelease message is sent.

8.3.1.2	Protocol overview - in-coming CESE

When a TerminalCapabilitySet message is received at the incoming CESE, the user is informed of the capability exchange request with the TRANSFER.indication primitive. The in-coming CESE user signals acceptance of the capability exchange request by issuing the TRANSFER.response primitive, and a TerminalCapabilitySetAck message is sent to the peer out-going CESE. The in-coming CESE user signals rejection of the capability exchange request by issuing the REJECT.request primitive, and a TerminalCapabilitySetReject message is sent to the peer out-going CESE.

�seq section \c�8�.�seq sub_section\c�3�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Communication between CESE and CESE user

�seq section \c�8�.�seq sub_section \c�3�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�1�	Primitives between CESE and CESE user

Communication between the CESE and CESE user, is performed using the primitives shown in Table �seq table TABLE_PRIMS_CESE�22�.

TABLE �seq table�22�/H.245

Primitives and parameters

�type��generic name�request�indication�response�confirm��TRANSFER�PROTOID

MUXCAP

CAPTABLE

CAPDESCRIPTORS�PROTOID

MUXCAP

CAPTABLE

CAPDESCRIPTORS�- 1�-��REJECT�CAUSE�SOURCE

CAUSE�not defined 2�not defined��Notes:

1.	“-” means no parameters

2.	“not defined” means that this primitive is not defined.

�seq section \c�8�.�seq sub_section \c�3�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�2�	Primitive definition

The definition of these primitives is as follows:

a)	The TRANSFER primitives are used for transfer of the capability exchange.

b)	The REJECT primitives are used to reject a capability descriptor entry, and to terminate a current capability transfer.

�seq section \c�8�.�seq sub_section \c�3�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�3�	Parameter definition

The definition of the primitive parameters shown in Table �seq table TABLE_PRIMS_CESE�22� are as follows:

a)	The PROTOID parameter is the protocol identifier parameter. This parameter is mapped to the protocolIdentifier field of the TerminalCapabilitySet message and carried transparently to the peer CESE user. This parameter is mandatory.

b)	The MUXCAP parameter is the multiplex capability parameter. This parameter is mapped to the multiplexCapability field of the TerminalCapabilitySet message and carried transparently to the peer CESE user. This parameter is optional.

c)	The CAPTABLE parameter is the capability table parameter. There may be one or more capability table entries described within this parameter. This parameter is mapped to the capabilityTable field of the TerminalCapabilitySet message and carried transparently to the peer CESE user. This parameter is optional.

d)	The CAPDESCRIPTORS parameter is the capability descriptors parameter. There may be one or more capability descriptors described within in this parameter. This parameter is mapped to the capabilityDescriptors field of the TerminalCapabilitySet message and carried transparently to the peer CESE user. this parameter is optional.

e)	The SOURCE parameter indicates the source of the REJECT.indication primitive. The SOURCE parameter has the value of "USER" or "PROTOCOL". The latter case may occur as the result of a timer expiry.

f)	The CAUSE parameter indicates the reason for rejection of a CAPTABLE or CAPDESCRIPTORS parameter. The CAUSE parameter is not present when the SOURCE parameter indicates "PROTOCOL".

�seq section \c�8�.�seq sub_section \c�3�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�4�	CESE states

The following states are used to specify the allowed sequence of primitives between the CESE and the CESE user.

The states for an out-going CESE are:

State 0: IDLE

The CESE is idle.

State 1: AWAITING RESPONSE

The CESE is waiting for a response from the remote CESE.

The states for an in-coming CESE are:

State 0: IDLE

The CESE is idle.

State 1: AWAITING RESPONSE

The CESE is waiting for a response from the CESE user.

�seq section \c�8�.�seq sub_section \c�3�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�5�	State transition diagram

The allowed sequence of primitives between the CESE and the CESE user is defined here. The allowed sequence of primitives relates to states of the CESE as viewed from the CESE user. The allowed sequences are specified separately for each of an out-going CESE and an in-coming CESE, as shown in Figure �seq figure FIGURE_PS_OUT_CESE�5� and Figure �seq figure FIGURE_PS_IN_CESE�6� respectively.

�embed MSDraw * mergeformat ���

FIGURE �seq figure�5�/H.245

State transition diagram for sequence of primitives at CESE out-going

�

FIGURE �seq figure�6�/H.245

State transition diagram for sequence of primitives at CESE in-coming

�seq section \c�8�.�seq sub_section\c�3�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Peer to peer CESE communication

�seq section \c�8�.�seq sub_section \c�3�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�1�	Messages

Table �seq table TABLE_CESE_PDUS�23� shows the CESE messages and fields, defined in section 6, which are relevant to the CESE protocol.

TABLE �seq table�23�/H.245

CESE message names and fields

function�message�direction�field��transfer�TerminalCapabilitySet�O -> I 1�sequenceNumber�����protocolIdentifier�����multiplexCapability�����capabilityTable�����capabilityDescriptors���TerminalCapabilitySetAck�O <- I�sequenceNumber��reject�TerminalCapabilitySetReject�O <- I�sequenceNumber�����cause��reset�TerminalCapabilitySetRelease�O -> I�-��Notes:

1.	Direction: O - out-going, I - in-coming.

�seq section \c�8�.�seq sub_section \c�3�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�2�	CESE state variables

The following state variables are defined at the out-going CESE:

out_SQ

This state variable is used to indicate the most recent TerminalCapabilitySet message. It is incremented by one and mapped to the TerminalCapabilitySet message sequenceNumber field before transmission of the TerminalCapabilitySet message. Arithmetic performed on out_SQ is modulo 256.

The following state variables are defined at the in-coming CESE:

in_SQ

This state variable is used to store the value of the sequenceNumber field of the most recently received TerminalCapabilitySet message. The TerminalCapabilitySetAck and TerminalCapabilitySetReject messages have their sequenceNumber fields set to the value of in_SQ, before being sent to the peer CESE.

�seq section \c�8�.�seq sub_section \c�3�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�3�	CESE timers

The following timer is specified for the out-going CESE:

T101

This timer is used during the AWAITING RESPONSE state. It specifies the maximum time during which no TerminalCapabilitySetAck or TerminalCapabilitySetReject message may be received.

�seq section \c�8�.�seq sub_section\c�3�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	CESE procedures

Figure �seq figure FIGURE_SUM_CESE�7� summarises the CESE primitives and their parameters, and messages, for each of the out-going and in-coming CESE.

�embed MSDraw * mergeformat ���

FIGURE �seq figure�7�/H.245

Primitives and messages in the Capability Exchange Signalling Entity

�seq section \c�8�.�seq sub_section \c�3�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�1�	Primitive parameter default values

Where not explicitly stated in the SDL diagrams the parameters of the indication and confirm primitives assume values as shown in Table �seq table TABLE_DEF_PAR_CESE�24�.

TABLE �seq table�24�/H.245

Default primitive parameter values

primitive�parameter�default value��TRANSFER.indication�PROTOID�TerminalCapabilitySet.protocolIdentifier���MUXCAP�TerminalCapabilitySet.multiplexCapability���CAPTABLE�TerminalCapabilitySet.capabilityTable���CAPDESCRIPTORS�TerminalCapabilitySet.capabilityDescriptors��REJECT.indication�SOURCE�USER���CAUSE�null���seq section \c�8�.�seq sub_section \c�3�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�2�	Message field default values

Where not explicitly stated in the SDL diagrams the message fields assume values as shown in Table �seq table TABLE_PDU_DEF_CESE�25�.

TABLE �seq table�25�/H.245

Default message field values

message�field�default value 1��TerminalCapabilitySet�sequenceNumber�out_SQ���protocolIdentifier�TRANSFER.request(PROTOID)���multiplexCapability�TRANSFER.request(MUXCAP)���capabilityTable�TRANSFER.request(CAPTABLE)���capabilityDescriptors�TRANSFER.request(CAPDESCRIPTORS)��TerminalCapabilitySetAck�sequenceNumber�in_SQ��TerminalCapabilitySetReject�sequenceNumber�in_SQ���cause�REJECT.request(CAUSE)��TerminalCapabilitySetRelease�-�-��Notes:

1.	A message field shall not be coded, if the corresponding primitive parameter is null i.e. not present.

�seq section \c�8�.�seq sub_section \c�3�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�3�	SDLs

The out-going CESE and the in-coming CESE procedures are expressed in SDL form in Figure �seq figure FIGURE_SDL_OUT_CESE�8� and Figure �seq figure FIGURE_SDL_IN_CESE�9�, respectively.

�

FIGURE �seq figure�8�(i)/H.245

Out-going CESE SDL

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�8�(ii)/H.245

Out-going CESE SDL (concluded)

�

FIGURE �seq figure�9�(i)/H.245

In-coming CESE SDL

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�9�(ii)/H.245

In-coming CESE SDL (concluded)

��seq section \c�8�.�seq sub_section�4��seq sub_sub_section \r 0 \h��	Uni-directional Logical Channel signalling procedures

�seq section \c�8�.�seq sub_section\c�4�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Introduction

The protocol specified here provides reliable opening and closing of uni-directional logical channels using acknowledged procedures.

The protocol specified here is referred to as the Logical Channel Signalling Entity (LCSE). Procedures are specified in terms of primitives at the interface between the LCSE and the LCSE user, and LCSE states. Protocol information is transferred to the peer LCSE via relevant messages defined in section 6.

There is an out-going LCSE and an in-coming LCSE. At each of the out-going and in-coming sides there is one instance of the LCSE for each uni-directional logical channel. There is no connection between an in-coming LCSE and an out-going LCSE at one side, other than via primitives to and from the LCSE user. LCSE error conditions are reported.

Data shall only be sent on a logical channel in the ESTABLISHED state. If data is received on a logical channel that is not in the ESTABLISHED state the data shall be discarded and no fault shall be considered to have occurred.

Mode switching should be performed by closing and opening existing logical channels, or by opening new logical channels.

Note. Some recommendations that use this Recommendation may define some default logical channels. These shall be considered ESTABLISHED from the start of communication and shall not be opened using these procedures. They may, however, be closed by these procedures, and subsequently be re-opened for the same or a different purpose.

A terminal that is no longer capability of processing the signals on a logical channel should take appropriate action: this should include closing the logical channel and transmitting the relevant (changed) capability information to the remote terminal.

The following text provides an overview of the operation of the LCSE protocol. In the case of discrepancy between this and the formal specification, the formal specification will supersede.

�seq section \c�8�.�seq sub_section \c�4�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�1�	Protocol overview

The opening of a logical channel is initiated when the ESTABLISH.request primitive is issued by the user at the out-going LCSE. An OpenLogicalChannel message, containing forward logical channel parameters but not including reverse logical channel parameters, is sent to the peer incoming LCSE, and timer T103 is started. If an OpenLogicalChannelAck message is received in response to the OpenLogicalChannel message then timer T103 is stopped and the user is informed with the ESTABLISH.confirm primitive that the logical channel has been successfully opened. The logical channel may now be used to transmit user information. If however an OpenLogicalChannelReject message is received in response to the OpenLogicalChannel message then timer T103 is stopped and the user is informed with the RELEASE.indication primitive that the peer LCSE user has refused establishment of the logical channel.

If timer T103 expires in this period then the user is informed with the RELEASE.indication primitive, and a CloseLogicalChannel message is sent to the peer in-coming LCSE.

A logical channel which has been successfully established may be closed when the RELEASE.request primitive is issued by the user at the out-going LCSE. A CloseLogicalChannel message is sent to the peer incoming LCSE, and the timer T103 is started. When a CloseLogicalChannelAck message is received, timer T103 is stopped and the user is informed that the logical channel has been successfully closed with the RELEASE.confirm primitive.

If timer T103 expires in this period then the user is informed with the RELEASE.indication primitive.

Before either of the OpenLogicalChannelAck or OpenLogicalChannelReject messages have been received in response to a previously sent OpenLogicalChannel message, the user at the out-going LCSE may close the logical channel using the RELEASE.request primitive.

Before the CloseLogicalChannelAck message is received in response to a previously sent CloseLogicalChannel message, the user at the outgoing LCSE may establish a new logical channel by issuing the ESTABLISH.request primitive.

�seq section \c�8�.�seq sub_section \c�4�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�2�	Protocol overview - in-coming LCSE

When an OpenLogicalChannel message is received at the incoming LCSE, the user is informed of the request to open a new logical channel with the ESTABLISH.indication primitive. The in-coming LCSE user signals acceptance of the request to establish the logical channel by issuing the ESTABLISH.response primitive, and an OpenLogicalChannelAck message is sent to the peer out-going LCSE. The logical channel may now be used to receive user information. The in-coming LCSE user signals rejection of the request to establish the logical channel by issuing the RELEASE.request primitive, and an OpenLogicalChannelReject message is sent to the peer out-going LCSE.

A logical channel which has been successfully established may be closed when the CloseLogicalChannel message is received at the in-coming LCSE. The in-coming LCSE user is informed with the RELEASE.indication primitive, and the CloseLogicalChannelAck message is sent to the peer out-going LCSE.

�seq section \c�8�.�seq sub_section \c�4�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�3�	Conflict resolution

Conflicts may arise when requests to open logical channels are initiated at the same time. It may be possible to determine that there is a conflict from knowledge of exchanged capabilities.

Terminals shall be capable of detecting when conflict has arisen, or might arise, and shall act as follows.

Before logical channels can be opened, one terminal must be determined as the master terminal, and the other as the slave. The protocol defined in 8.2 provides one means to make this decision. The master terminal shall reject immediately any request from the slave that it identifies as a conflicting request. The slave terminal may identify such conflicts, but shall respond to the request from the master terminal, with the knowledge that its earlier request will be rejected.

Note. Such conflicts might be caused by limited terminal resources, for example, when receive and transmission capabilities are dependent, as in the case of a terminal that can support a number of audio algorithms, but can only decode the same algorithm as it is encoding.

�seq section \c�8�.�seq sub_section\c�4�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Communication between the LCSE and the LCSE user

�seq section \c�8�.�seq sub_section \c�4�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�1�	Primitives between the LCSE and the LCSE user

Communication between the LCSE and the LCSE user is performed using the primitives shown in Table �seq table TABLE_PRIMS_LCSE�26�.

TABLE �seq table�26�/H.245

Primitives and parameters

�type��generic name�request�indication�response�confirm��ESTABLISH�FORWARD_PARAM�FORWARD_PARAM�- 1�-��RELEASE�CAUSE�SOURCE

CAUSE�not defined 2�-��ERROR�not defined�ERRCODE�not defined�not defined��Notes:

1.	“-” means no parameters.

2.	“not defined” means that this primitive does not exist.

�seq section \c�8�.�seq sub_section \c�4�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�2�	Primitive definition

The definition of these primitives is as follows:

a)	The ESTABLISH primitives are used to establish a logical channel for audiovisual and data communication.

b)	The RELEASE primitives are used to release a logical channel.

c)	The ERROR primitive reports LCSE errors to a management entity.

�seq section \c�8�.�seq sub_section \c�4�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�3�	Parameter definition

The definition of the primitive parameters shown in Table �seq table TABLE_PRIMS_LCSE�26� are as follows:

a)	The FORWARD_PARAM parameter specifies the parameters associated with the logical channel. This parameter is mapped to the forwardLogicalChannelParameters field of the OpenLogicalChannel message and is carried transparently to the peer LCSE user.

b)	The SOURCE parameter indicates to the LCSE user the source of the logical channel release. The SOURCE parameter has the value of "USER" or "LCSE", indicating either the LCSE user, or the LCSE. The latter may occur as the result of a protocol error.

c)	The CAUSE parameter indicates the reason as to why the peer LCSE user rejected a request to establish a logical channel. The CAUSE parameter is not present when the SOURCE parameter indicates "LCSE".

d)	The ERRCODE parameter indicates the type of LCSE error. TABLE �seq table TABLE_ERRCODE_LCSE�30� shows the allowed values of the ERRCODE parameter.

�seq section \c�8�.�seq sub_section \c�4�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�4�	LCSE states

The following states are used to specify the allowed sequence of primitives between the LCSE and the LCSE user, and the exchange of messages between peer LCSEs. The states are specified separately for each of an out-going LCSE and an in-coming LCSE. The states for an out-going LCSE are:

State 0: RELEASED

The logical channel is released. The logical channel shall not be used to send out-going data.

State 1: AWAITING ESTABLISHMENT

The out-going LCSE is waiting to establish a logical channel with a peer in-coming LCSE. The logical channel shall not be used to send out-going data.

State 2: ESTABLISHED

The LCSE peer-to-peer logical channel connection has been established. The logical channel may be used to send out-going data.

State 3: AWAITING RELEASE

The out-going LCSE is waiting to release a logical channel with the peer in-coming LCSE. The logical channel shall not be used to send out-going data.

The states for an in-coming LCSE are:

State 0: RELEASED

The logical channel is released. The logical channel shall not be used to receive in-coming data.

State 1: AWAITING ESTABLISHMENT

The in-coming LCSE is waiting to establish a logical channel with a peer out-going LCSE. The logical channel shall not be used to receive in-coming data.

State 2: ESTABLISHED

An LCSE peer-to-peer logical channel connection has been established. The logical channel may be used to receive in-coming data.

�seq section \c�8�.�seq sub_section \c�4�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�5�	State transition diagram

The allowed sequence of primitives between the LCSE and the LCSE user is defined here. The allowed sequence of primitives relates to states of the LCSE as viewed from the LCSE user. The allowed sequences are specified separately for each of an out-going LCSE and an in-coming LCSE, as shown in Figure �seq figure FIGURE_PS_OUT_LCSE�10� and Figure �seq figure FIGURE_PS_IN_LCSE�11� respectively.

�

FIGURE �seq figure�10�/H.245

State transition diagram for sequence of primitives at out-going LCSE

�embed MSDraw * mergeformat ���

FIGURE �seq figure�11�/H.245

State transition diagram for sequence of primitives at in-coming LCSE

�seq section \c�8�.�seq sub_section\c�4�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Peer to peer LCSE communication

�seq section \c�8�.�seq sub_section \c�4�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�1�	LCSE messages

Table �seq table TABLE_LCSE_PDUS�27� shows the LCSE messages and fields, defined in section 6, which are relevant to the LCSE protocol.

TABLE �seq table�27�/H.245

LCSE message names and fields

function�message�direction�field��establishment�OpenLogicalChannel�O -> I 1�forwardLogicalChannelNumber�����forwardLogicalChannelParameters���OpenLogicalChannelAck�O <- I�forwardLogicalChannelNumber���OpenLogicalChannelReject�O <- I�forwardLogicalChannelNumber�����cause��release�CloseLogicalChannel�O -> I�forwardLogicalChannelNumber�����source���CloseLogicalChannelAck�O <- I�forwardLogicalChannelNumber��Notes:

1.	Direction: O - out-going, I - in-coming.

�seq section \c�8�.�seq sub_section \c�4�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�2�	LCSE state variables

The following state variable is defined at the out-going LCSE:

out_LCN

This state variable distinguishes between out-going LCSEs. It is initialised at out-going LCSE initialisation. The value of out_LCN is used to set the forwardLogicalChannelNumber field of LCSE messages sent from an out-going LCSE. For LCSE messages received at an out-going LCSE, the message forwardLogicalChannelNumber field value is identical to the value of out_LCN.

The following state variable is defined at the in-coming LCSE:

in_LCN

This state variable distinguishes between in-coming LCSEs. It is initialised at in-coming LCSE initialisation. The value of in_LCN is used to set the forwardLogicalChannelNumber field of LCSE messages sent from an in-coming LCSE. For LCSE messages received at an in-coming LCSE, the message forwardLogicalChannelNumber field value is identical to the value of in_LCN.

�seq section \c�8�.�seq sub_section \c�4�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�3�	LCSE timers

The following timer is specified for the out-going LCSE:

T103

This timer is used during the AWAITING ESTABLISHMENT and AWAITING RELEASE states. It specifies the maximum allowed time during which no OpenLogicalChannelAck, OpenLogicalChannelReject or CloseLogicalChannelAck message may be received.

�seq section \c�8�.�seq sub_section\c�4�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	LCSE procedures

�seq section \c�8�.�seq sub_section \c�4�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�1�	Introduction

FIGURE �seq figure FIGURE_SUM_LCSE�12� summarises the primitives and their parameters, and the messages, for each of the out-going and in-coming LCSE.

�embed MSDraw * mergeformat ���

FIGURE �seq figure�12�/H.245

Primitives and messages in the Logical Channel Signalling Entity

�seq section \c�8�.�seq sub_section \c�4�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�2�	Primitive parameter default values

Where not explicitly stated in the SDL diagrams the parameters of the indication and confirm primitives assume values as shown in Table �seq table TABLE_DEF_PAR_LCSE�28�.

TABLE �seq table�28�/H.245

Default primitive parameter values

primitive�parameter�default value 1��ESTABLISH.indication�FORWARD_PARAM�OpenLogicalChannel.forwardLogicalChannelParameters��RELEASE.indication�SOURCE�CloseLogicalChannel.source���CAUSE�null��Notes:

1.	A primitive parameter shall be coded as null, if an indicated message field is not present in the message.

�seq section \c�8�.�seq sub_section \c�4�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�3�	Message field default values

Where not explicitly stated in the SDL diagrams the message fields assume values as shown in Table �seq table TABLE_PDU_DEF_LCSE�29�.

TABLE �seq table�29�/H.245

Default message field values

message�field�default value 1��OpenLogicalChannel2�forwardLogicalChannelNumber�out_LCN���forwardLogicalChannelParameters�ESTABLISH.request(FORWARD_PARAM)��OpenLogicalChannelAck�forwardLogicalChannelNumber�in_LCN��OpenLogicalChannelReject�forwardLogicalChannelNumber�in_LCN���cause�RELEASE.request(CAUSE)��CloseLogicalChannel�forwardLogicalChannelNumber�out_LCN���source�user��CloseLogicalChannelAck�forwardLogicalChannelNumber�in_LCN��Notes:

1.	A message field shall not be coded, if the corresponding primitive parameter is null i.e. not present.

2.	reverseLogicalChannelParameters are not coded in uni-directional logical channel signalling procedures.

�seq section \c�8�.�seq sub_section \c�4�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�4�	ERRCODE parameter values

The ERRCODE parameter of the ERROR.indication primitive indicates a particular error condition. Table �seq table TABLE_ERRCODE_LCSE�30� shows the values that the ERRCODE parameter may take at the out-going LCSE. There is no ERROR.indication primitive associated with the in-coming LCSE.

TABLE �seq table�30�/H.245

ERRCODE parameter values at out-going LCSE

error type�error code�error condition�state��inappropriate message�A�OpenLogicalChannelAck�RELEASED���B�OpenLogicalChannelReject�RELEASED

ESTABLISHED���C�CloseLogicalChannelAck�ESTABLISHED��no response from peer LCSE�D�timer T103 expiry�AWAITING ESTABLISHMENT

AWAITING RELEASE���seq section \c�8�.�seq sub_section \c�4�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�5�	SDLs

The out-going LCSE and the in-coming LCSE procedures are expressed in SDL form in Figure �seq figure FIGURE_SDL_OUT_LCSE�13� and Figure �seq figure FIGURE_SDL_IN_LCSE�14� respectively.

�embed MSDraw * mergeformat ���

FIGURE �seq figure�13�(i)/H.245

Out-going LCSE SDL

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�13�(ii)/H.245

Out-going LCSE SDL (continued)

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�13�(iii)/H.245

Out-going LCSE SDL (continued)

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�13�(iv)/H.245

Out-going LCSE SDL (concluded)�

�embed MSDraw * mergeformat ���

FIGURE �seq figure�14�(i)/H.245

In-coming LCSE SDL

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�14�(ii)/H.245

In-coming LCSE SDL (continued)

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�14�(iii)/H.245

In-coming LCSE SDL (concluded)

��seq section \c�8�.�seq sub_section�5��seq sub_sub_section \r 0 \h��	Bi-directional Logical Channel signalling procedures

�seq section \c�8�.�seq sub_section\c�5�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Introduction

The protocol specified here provides reliable opening and closing of bi-directional logical channels using acknowledged procedures.

The protocol specified here is referred to as the Bi-directional Logical Channel Signalling Entity (B-LCSE). Procedures are specified in terms of primitives at the interface between the B-LCSE and the B-LCSE user, and B-LCSE states. Protocol information is transferred to the peer B-LCSE via relevant messages defined in section 6.

There is an out-going B-LCSE and an in-coming B-LCSE. At each of the out-going and in-coming sides there is one instance of the B-LCSE for each bi-directional logical channel. There is no connection between an in-coming B-LCSE and an out-going B-LCSE at one side, other than via primitives to and from the B-LCSE user. B-LCSE error conditions are reported.

A bi-directional logical channel consists of a pair of associated uni-directional channels. 'Forward' (Out-going side) is used to refer to transmission in the direction from the terminal making the request for a bi-directional logical channel to the other terminal, and 'reverse' (In-coming side) is used to refer to the opposite direction of transmission.

Data shall only be sent on a bi-directional logical channel in the ESTABLISHED state. However, data may be received on the forward channel when the in-coming B-LCSE is in the AWAITING CONFIRMATION state. Data that is received while in other states than the ESTABLISHED state and the AWAITING CONFIRMATION state shall be discarded and no fault shall be considered to have occurred.

A terminal may reject a request to open a bi-directional logical channel solely because it can not support the requested reverse channel parameters. In this case it shall reject the request with cause equal to unsuitableReverseParameters, and shall immediately initiate procedures to establish a bi-directional logical channel as requested by the remote terminal, in which the reverse parameters are identical to the forward parameters of the remote terminal's failed request, and with forward parameters that the terminal can support and which the remote terminal is known to be able to support.

Mode switching should be performed by closing and opening existing logical channels, or by opening new logical channels.

Note. Some recommendations that use this Recommendation may define some default logical channels. These shall be considered ESTABLISHED from the start of communication and shall not be opened using these procedures. They may, however, be closed by these procedures, and subsequently be re-opened for the same or a different purpose.

A terminal that is no longer capable of processing the signals on a logical channel should take appropriate action: this should include closing the logical channel and transmitting the relevant (changed) capability information to the remote terminal.

The following text provides an overview of the operation of the B-LCSE protocol. In the case of discrepancy between this and the formal specification, the formal specification will supersede.

�seq section \c�8�.�seq sub_section \c�5�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�1�	Protocol overview

The opening of a logical channel is initiated when the ESTABLISH.request primitive is issued by the user at the out-going B-LCSE. An OpenLogicalChannel message, containing both forward and reverse logical channel parameters, is sent to the peer incoming B-LCSE, and timer T103 is started. If an OpenLogicalChannelAck message is received in response to the OpenLogicalChannel message then timer T103 is stopped, an OpenLogicalChannelConfirm message is sent to the peer in-coming B-LCSE, and the user is informed with the ESTABLISH.confirm primitive that the logical channel has been successfully opened. The logical channel may now be used to transmit and receive user information. If however an OpenLogicalChannelReject message is received in response to the OpenLogicalChannel message then timer T103 is stopped and the user is informed with the RELEASE.indication primitive that the peer B-LCSE user has refused establishment of the logical channel.

If timer T103 expires in this period then the user is informed with the RELEASE.indication primitive, and a CloseLogicalChannel message is sent to the peer in-coming B-LCSE.

A logical channel which has been successfully established may be closed when the RELEASE.request primitive is issued by the user at the out-going B-LCSE. A CloseLogicalChannel message is sent to the peer incoming B-LCSE, and the timer T103 is started. When a CloseLogicalChannelAck message is received, timer T103 is stopped and the user is informed that the logical channel has been successfully closed with the RELEASE.confirm primitive.

If timer T103 expires in this period then the user is informed with the RELEASE.indication primitive.

Before either of the OpenLogicalChannelAck or OpenLogicalChannelReject messages have been received in response to a previously sent OpenLogicalChannel message, the user at the out-going B-LCSE may close the logical channel using the RELEASE.request primitive.

Before the CloseLogicalChannelAck message is received in response to a previously sent CloseLogicalChannel message, the user at the outgoing B-LCSE may establish a new logical channel by issuing the ESTABLISH.request primitive.

�seq section \c�8�.�seq sub_section \c�5�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�2�	Protocol overview - in-coming B-LCSE

When an OpenLogicalChannel message is received at the incoming B-LCSE, the user is informed of the request to open a new logical channel with the ESTABLISH.indication primitive. The in-coming B-LCSE user signals acceptance of the request to establish the logical channel by issuing the ESTABLISH.response primitive, and an OpenLogicalChannelAck message is sent to the peer out-going B-LCSE. The forward channel of the bi-directional logical channel may now be used to receive user information. The in-coming B-LCSE user signals rejection of the request to establish the logical channel by issuing the RELEASE.request primitive, and an OpenLogicalChannelReject message is sent to the peer out-going B-LCSE.

When an OpenLogicalChannelConfirm message is received at the incoming B-LCSE, the user is informed that the bi-directional logical channel is established with the ESTABLISH.confirm primitive. The reverse channel of the bi-directional logical channel may now be used to transmit user information.

A logical channel which has been successfully established may be closed when the CloseLogicalChannel message is received at the in-coming B-LCSE. The in-coming B-LCSE user is informed with the RELEASE.indication primitive, and the CloseLogicalChannelAck message is sent to the peer out-going B-LCSE.

�seq section \c�8�.�seq sub_section \c�5�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�3�	Conflict resolution

Conflicts may arise when requests to open logical channels are initiated at the same time. It may be possible to determine that there is conflict from knowledge of exchanged capabilities. On other occasions, both terminals may initiate the opening of a bi-directional logical channel for the same purpose, even though the exact parameters requested may be different, and both terminals have sufficient capability for both requests. Terminals shall be capable of detecting when both of these situations have arisen, any shall act as follows.

Before logical channels can be opened, one terminal must be determined as the master terminal, and the other as the slave. The protocol defined in 8.2 provides one means to make this decision. The master terminal shall reject immediately any request from the slave that it identifies as a conflicting request. The slave terminal may identify such conflicts, but shall respond to the request from the master terminal, with the knowledge that its earlier request will be rejected.

In the second type of conflict defined above, it is impossible to distinguish when two bi-directional channels are actually wanted from the case when only one is wanted. Terminals shall respond assuming that only one is wanted, but a terminal may subsequently repeat its request if the assumption was incorrect.

�seq section \c�8�.�seq sub_section\c�5�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Communication between the B-LCSE and the B-LCSE user

�seq section \c�8�.�seq sub_section \c�5�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�1�	Primitives between the B-LCSE and the B-LCSE user

Communication between the B-LCSE and the B-LCSE user is performed using the primitives shown in Table �seq table TABLE_PRIMS_BLCSE�31�.

TABLE �seq table�31�/H.245

Primitives and parameters

�type��generic name�request�indication�response�confirm��ESTABLISH�FORWARD_PARAM

REVERSE_PARAM�FORWARD_PARAM

REVERSE_PARAM�REVERSE_DATA�REVERSE_DATA��RELEASE�CAUSE�SOURCE

CAUSE�not defined 2�- 1��ERROR�not defined�ERRCODE�not defined�not defined��Notes:

1.	“-” means no parameters.

2.	“not defined” means that this primitive does not exist.

�seq section \c�8�.�seq sub_section \c�5�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�2�	Primitive definition

The definition of these primitives is as follows:

a)	The ESTABLISH primitives are used to establish a logical channel for audiovisual and data communication.

b)	The RELEASE primitives are used to release a logical channel.

c)	The ERROR primitive reports B-LCSE errors to a management entity.

�seq section \c�8�.�seq sub_section \c�5�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�3�	Parameter definition

The definition of the primitive parameters shown in Table �seq table TABLE_PRIMS_BLCSE�31� are as follows:

a)	The FORWARD_PARAM parameter specifies the parameters associated with the forward channel, that is, from the terminal containing the outgoing B-LCSE to the terminal containing the incoming B-LCSE. This parameter is mapped to the forwardLogicalChannelParameters field of the OpenLogicalChannel message and is carried transparently to the peer LCSE user.

b)	The REVERSE_PARAM parameter specifies the parameters associated with the reverse channel, that is, from the terminal containing the incoming B-LCSE to the terminal containing the outgoing B-LCSE. This parameter is mapped to the reverseLogicalChannelParameters field of the OpenLogicalChannel message and is carried transparently to the peer LCSE user.

c)	The REVERSE_DATA parameter specifies some parameters associated with the reverse channel, that is, from the terminal containing the incoming B-LCSE to the terminal containing the outgoing B-LCSE. This parameter is mapped to the reverseLogicalChannelParameters field of the OpenLogicalChannelAck message and is carried transparently to the peer B-LCSE user.

d)	The SOURCE parameter indicates to the B-LCSE user the source of the logical channel release. The SOURCE parameter has the value of "USER" or "B-LCSE", indicating either the B-LCSE user, or the B-LCSE. The latter may occur as the result of a protocol error.

e)	The CAUSE parameter indicates the reason as to why the peer B-LCSE user rejected a request to establish a logical channel. The CAUSE parameter is not present when the SOURCE parameter indicates "B-LCSE".

f)	The ERRCODE parameter indicates the type of B-LCSE error. TABLE �seq table TABLE_ERRCODE_BLCSE�35� shows the allowed values of the ERRCODE parameter.

�seq section \c�8�.�seq sub_section \c�5�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�4�	B-LCSE states

The following states are used to specify the allowed sequence of primitives between the B-LCSE and the B-LCSE user, and the exchange of messages between peer B-LCSEs. The states are specified separately for each of an out-going B-LCSE and an in-coming B-LCSE. The states for an out-going B-LCSE are:

State 0: RELEASED

The logical channel is released. The logical channel shall not be used to send or receive data.

State 1: AWAITING ESTABLISHMENT

The out-going B-LCSE is waiting to establish a logical channel with a peer in-coming B-LCSE. The logical channel shall not be used to send or receive data.

State 2: ESTABLISHED

The B-LCSE peer-to-peer logical channel connection has been established. The logical channel may be used to send and receive data.

State 3: AWAITING RELEASE

The out-going B-LCSE is waiting to release a logical channel with the peer in-coming B-LCSE. The logical channel shall not be used to send data, but data may continue to be received.

The states for an in-coming B-LCSE are:

State 0: RELEASED

The logical channel is released. The logical channel shall not be used to receive or send data.

State 1: AWAITING ESTABLISHMENT

The in-coming B-LCSE is waiting to establish a logical channel with a peer out-going B-LCSE. The logical channel shall not be used to receive or send data.

State 2: AWAITING CONFIRMATION

The in-coming B-LCSE is awaiting confirmation that the logical channel is established with a peer out-going B-LCSE. The logical channel shall not be used to send data, but data may be received.

State 3: ESTABLISHED

An B-LCSE peer-to-peer logical channel connection has been established. The logical channel may be used to receive and send data.

�seq section \c�8�.�seq sub_section \c�5�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�5�	State transition diagram

The allowed sequence of primitives between the B-LCSE and the B-LCSE user is defined here. The allowed sequence of primitives relates to states of the B-LCSE as viewed from the B-LCSE user. The allowed sequences are specified separately for each of an out-going B-LCSE and an in-coming B-LCSE, as shown in Figure �seq figure FIGURE_PS_OUT_BLCSE�15� and Figure �seq figure FIGURE_PS_IN_BLCSE�16� respectively.

�

FIGURE �seq figure�15�/H.245

State transition diagram for sequence of primitives at out-going B-LCSE

�embed MSDraw * mergeformat ���

FIGURE �seq figure�16�/H.245

State transition diagram for sequence of primitives at in-coming B-LCSE

�seq section \c�8�.�seq sub_section\c�5�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Peer to peer B-LCSE communication

�seq section \c�8�.�seq sub_section \c�5�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�1�	B-LCSE messages

Table �seq table TABLE_BLCSE_PDUS�32� shows the B-LCSE messages and fields, defined in section 6, which are relevant to the B-LCSE protocol.

TABLE �seq table�32�/H.245

B-LCSE message names and fields

function�message�direction�field��establishment�OpenLogicalChannel�O -> I 1�forwardLogicalChannelNumber�����forwardLogicalChannelParameters�����reverseLogicalChannelParameters���OpenLogicalChannelAck�O <- I�forwardLogicalChannelNumber�����reverseLogicalChannelParameters���OpenLogicalChannelReject�O <- I�forwardLogicalChannelNumber�����cause���OpenLogicalChannelConfirm�O->I�forwardLogicalChannelNumber��release�CloseLogicalChannel�O -> I�forwardLogicalChannelNumber�����source���CloseLogicalChannelAck�O <- I�forwardLogicalChannelNumber��Notes:

1.	Direction: O - out-going, I - in-coming.

�seq section \c�8�.�seq sub_section \c�5�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�2�	B-LCSE state variables

The following state variable is defined at the out-going B-LCSE:

out_LCN

This state variable distinguishes between out-going B-LCSEs. It is initialised at out-going B-LCSE initialisation. The value of out_LCN is used to set the forwardLogicalChannelNumber field of B-LCSE messages sent from an out-going B-LCSE. For B-LCSE messages received at an out-going B-LCSE, the message forwardLogicalChannelNumber field value is identical to the value of out_LCN.

The following state variable is defined at the in-coming B-LCSE:

in_LCN

This state variable distinguishes between in-coming B-LCSEs. It is initialised at in-coming B-LCSE initialisation. The value of in_LCN is used to set the forwardLogicalChannelNumber field of B-LCSE messages sent from an in-coming B-LCSE. For B-LCSE messages received at an in-coming B-LCSE, the message forwardLogicalChannelNumber field value is identical to the value of in_LCN.

�seq section \c�8�.�seq sub_section \c�5�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�3�	B-LCSE timers

The following timer is specified for the out-going and incoming B-LCSE:

T103

At the out-going B-LCSE this timer is used during the AWAITING ESTABLISHMENT and AWAITING RELEASE states. It specifies the maximum time during which no OpenLogicalChannelAck, OpenLogicalChannelReject or CloseLogicalChannelAck message may be received.

At the incoming B-LCSE, this timer is used during the AWAITING CONFIRMATION state. It specifies the maximum time during which no OpenLogicalChannelConfirm message may be received.

�seq section \c�8�.�seq sub_section\c�5�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	B-LCSE procedures

�seq section \c�8�.�seq sub_section \c�5�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�1�	Introduction

FIGURE �seq figure FIGURE_SUM_BLCSE�17� summarises the primitives and their parameters, and the messages, for each of the out-going and in-coming B-LCSE.

�embed MSDraw * mergeformat ���

FIGURE �seq figure�17�/H.245

Primitives and messages in the Bi-directional Logical Channel Signalling Entity

�seq section \c�8�.�seq sub_section \c�5�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�2�	Primitive parameter default values

Where not explicitly stated in the SDL diagrams the parameters of the indication and confirm primitives assume values as shown in Table �seq table TABLE_DEF_PAR_BLCSE�33�.

TABLE �seq table�33�/H.245

Default primitive parameter values

primitive�parameter�default value 1��ESTABLISH.indication�FORWARD_PARAM�OpenLogicalChannel.forwardLogicalChannelParameters���REVERSE_PARAM�OpenLogicalChannel.reverseLogicalChannelParameters��ESTABLISH.confirm�REVERSE_DATA�OpenLogicalChannelAck.reverseLogicalChannelParameters��RELEASE.indication�SOURCE�CloseLogicalChannel.source���CAUSE�null��Notes:

1.	A primitive parameter shall be coded as null, if an indicated message field is not present in the message.

�seq section \c�8�.�seq sub_section \c�5�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�3�	Message field default values

Where not explicitly stated in the SDL diagrams the message fields assume values as shown in Table �seq table TABLE_PDU_DEF_BLCSE�34�.

TABLE �seq table�34�/H.245

Default message field values

message�field�default value 1��OpenLogicalChannel�forwardLogicalChannelNumber�out_LCN���forwardLogicalChannelParameters�ESTABLISH.request(FORWARD_PARAM)���reverseLogicalChannelParameters�ESTABLISH.request(REVERSE_PARAM)��OpenLogicalChannelAck�forwardLogicalChannelNumber�in_LCN���reverseLogicalChannelParameters�ESTABLISH.response(REVERSE_DATA)��OpenLogicalChannelReject�forwardLogicalChannelNumber�in_LCN���cause�RELEASE.request(CAUSE)��OpenLogicalChannelConfirm�forwardLogicalChannelNumber�out_LCN��CloseLogicalChannel�forwardLogicalChannelNumber�out_LCN���source�user��CloseLogicalChannelAck�forwardLogicalChannelNumber�in_LCN��Notes:

1.	A message field shall not be coded, if the corresponding primitive parameter is null i.e. not present.

�seq section \c�8�.�seq sub_section \c�5�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�4�	ERRCODE parameter values

The ERRCODE parameter of the ERROR.indication primitive indicates a particular error condition. Table �seq table TABLE_ERRCODE_BLCSE�35� shows the values that the ERRCODE parameter may take at the out-going B-LCSE and Table �seq table TABLE_ERRCODE_BLCSE2�36� shows the values that the ERRCODE parameter may take at the in-coming B-LCSE.

TABLE �seq table�35�/H.245

ERRCODE parameter values at out-going B-LCSE

error type�error code�error condition�state��inappropriate message�A�OpenLogicalChannelAck�RELEASED���B�OpenLogicalChannelReject�RELEASED

ESTABLISHED���C�CloseLogicalChannelAck�ESTABLISHED��no response from peer B-LCSE�D�timer T103 expiry�AWAITING ESTABLISHMENT

AWAITING RELEASE��TABLE �seq table�36�/H.245

ERRCODE parameter values at in-coming B-LCSE

error type�error code�error condition�state��inappropriate message�E�OpenLogicalChannelConfirm�AWAITING ESTABLISHMENT��no response from peer B-LCSE�F�timer T103 expiry�AWAITING CONFIRMATION���seq section \c�8�.�seq sub_section \c�5�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�5�	SDLs

The out-going B-LCSE and the in-coming B-LCSE procedures are expressed in SDL form in Figure �seq figure FIGURE_SDL_OUT_BLCSE�18� and Figure �seq figure FIGURE_SDL_IN_BLCSE�19� respectively.

�embed MSDraw * mergeformat ���

FIGURE �seq figure�18�(i)/H.245

Out-going B-LCSE SDL

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�18�(ii)/H.245

Out-going B-LCSE SDL (continued)

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�18�(iii)/H.245

Out-going B-LCSE SDL (continued)

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�18�(iv)/H.245

Out-going B-LCSE SDL (concluded)

�embed MSDraw * mergeformat ���

FIGURE �seq figure�19�(i)/H.245

In-coming B-LCSE SDL

�embed Word.Picture.6 ���

FIGURE �seq figure \c�19�(ii)/H.245

In-coming B-LCSE SDL (continued)

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�19�(iii)/H.245

In-coming B-LCSE SDL (continued)

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�19�(iv)/H.245

In-coming B-LCSE SDL (concluded)

��seq section \c�8�.�seq sub_section�6��seq sub_sub_section \r 0 \h��	Close Logical Channel procedures

�seq section \c�8�.�seq sub_section\c�6�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Introduction

These procedures are used by a terminal to request the remote terminal to close a logical channel. Note that these are only close request procedures; the actual logical channel close occurs using the LCSE and B-LCSE procedures. The procedures are referred to here as the Close Logical Channel Signalling Entity (CLCSE). Procedures are specified in terms of primitives and states at the interface between the CLCSE and the CLCSE user. Protocol information is transferred to the peer CLCSE via relevant messages defined in section 6. There is an out-going CLCSE and an in-coming CLCSE. At each of the out-going and in-coming ends there is one instance of the CLCSE for each logical channel.

If a terminal is incapable of processing the in-coming signals, it may use these procedures to request the closing of the relevant logical channels.

A terminal that answers such a response positively, that is, by issuing the CLOSE.response primitive, shall initiate the closing of the logical channel by sending the RELEASE.request primitive to the appropriate LCSE or B-LCSE as soon as possible.

The following text provides an overview of the operation of the protocol. In the case of any discrepancy with the formal specification of the protocol that follows, the formal specification will supersede.

�seq section \c�8�.�seq sub_section \c�6�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�1�	Protocol overview - outgoing CLCSE

A close logical channel request procedure is initiated when the CLOSE.request primitive is issued by the user at the out-going CLCSE. A RequestChannelClose message is sent to the peer incoming CLCSE, and timer T108 is started. If a RequestChannelCloseAck message is received in response to the RequestChannelClose message then timer T108 is stopped and the user is informed with the CLOSE.confirm primitive that the close logical channel request procedure was successful. If however a RequestChannelCloseReject message is received in response to the RequestChannelClose message then timer T108 is stopped and the user is informed with the REJECT.indication primitive that the peer CLCSE user has refused to close the logical channel.

If timer T108 expires then the out-going CLCSE user is informed with the REJECT.indication primitive and a RequestChannelCloseRelease message is sent.

�seq section \c�8�.�seq sub_section \c�6�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�2�	Protocol overview - incoming CLCSE

When a RequestChannelClose message is received at the incoming CLCSE, the user is informed of the close logical channel request with the CLOSE.indication primitive. The in-coming CLCSE user signals acceptance of the close logical channel request by issuing the CLOSE.response primitive, and a RequestChannelCloseAck message is sent to the peer out-going CLCSE. The in-coming CLCSE user signals rejection of the close logical channel request by issuing the REJECT.request primitive, and a RequestChannelCloseReject message is sent to the peer out-going CLCSE.

�seq section \c�8�.�seq sub_section\c�6�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Communication between CLCSE and CLCSE user

�seq section \c�8�.�seq sub_section \c�6�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�1�	Primitives between CLCSE and CLCSE user

Communication between the CLCSE and CLCSE user, is performed using the primitives shown in Table �seq table TABLE_PRIMS_CLCSE�37�.

TABLE �seq table�37�/H.245

Primitives and parameters

�type��generic name�request�indication�response�confirm��CLOSE�- 1 �- �- �- ��REJECT�CAUSE�SOURCE

CAUSE�not defined 2�not defined��Notes:

1.	"-" means no parameters.

2.	“not defined” means that this primitive is not defined.

�seq section \c�8�.�seq sub_section \c�6�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�2�	Primitive definition

The definition of these primitives is as follows:

a)	The CLOSE primitives are used to request closure of a logical channel.

b)	The REJECT primitives are used to reject the closing of a logical channel.

�seq section \c�8�.�seq sub_section \c�6�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�3�	Parameter definition

The definition of the primitive parameters shown in Table �seq table TABLE_PRIMS_CLCSE�37� are as follows:

a)	The SOURCE parameter indicates the source of the REJECT.indication primitive. The SOURCE parameter has the value of "USER" or "PROTOCOL". The latter case may occur as the result of a timer expiry.

b)	The CAUSE parameter indicates the reason for refusal to close a logical channel. The CAUSE parameter is not present when the SOURCE parameter indicates "PROTOCOL".

�seq section \c�8�.�seq sub_section \c�6�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�4�	CLCSE states

The following states are used to specify the allowed sequence of primitives between the CLCSE and the CLCSE user.

The states for an out-going CLCSE are:

State 0: IDLE

The CLCSE is idle.

State 1: AWAITING RESPONSE

The CLCSE is waiting for a response from the remote CLCSE.

The states for an in-coming CLCSE are:

State 0: IDLE

The CLCSE is idle.

State 1: AWAITING RESPONSE

The CLCSE is waiting for a response from the CLCSE user.

�seq section \c�8�.�seq sub_section \c�6�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�5�	State transition diagram

The allowed sequence of primitives between the CLCSE and the CLCSE user is defined here. The allowed sequences are specified separately for each of an out-going CLCSE and an in-coming CLCSE, as shown in Figure �seq figure FIGURE_PS_OUT_CLCSE�20� and Figure �seq figure FIGURE_PS_IN_CLCSE�21� respectively.

�

FIGURE �seq figure�20�/H.245

State transition diagram for sequence of primitives at CLCSE out-going

�embed MSDraw * mergeformat ���

FIGURE �seq figure�21�/H.245

State transition diagram for sequence of primitives at CLCSE in-coming

�seq section \c�8�.�seq sub_section\c�6�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Peer to peer CLCSE communication

�seq section \c�8�.�seq sub_section \c�6�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�1�	Messages

Table �seq table TABLE_CLCSE_PDUS�38� shows the CLCSE messages and fields, defined in section 6, which are relevant to the CLCSE protocol.

TABLE �seq table�38�/H.245

CLCSE message names and fields

function�message�direction�field��transfer�RequestChannelClose�O -> I 1�forwardLogicalChannelNumber���RequestChannelCloseAck�O <- I�forwardLogicalChannelNumber���RequestChannelCloseReject�O <- I�forwardLogicalChannelNumber��reset�RequestChannelCloseRelease�O -> I�forwardLogicalChannelNumber��Notes:

1.	Direction: O - out-going, I - in-coming.

�seq section \c�8�.�seq sub_section \c�6�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�2�	CLCSE state variables

The following state variable is defined at the out-going CLCSE:

out_LCN

This state variable distinguishes between out-going CLCSEs. It is initialised at out-going CLCSE initialisation. The value of out_LCN is used to set the forwardLogicalChannelNumber field of CLCSE messages sent from an out-going CLCSE. For CLCSE messages received at an out-going CLCSE, the message forwardLogicalChannelNumber field value is identical to the value of out_LCN.

The following state variable is defined at the in-coming CLCSE:

in_LCN

This state variable distinguishes between in-coming CLCSEs. It is initialised at in-coming CLCSE initialisation. The value of in_LCN is used to set the forwardLogicalChannelNumber field of CLCSE messages sent from an in-coming CLCSE. For CLCSE messages received at an in-coming CLCSE, the message forwardLogicalChannelNumber field value is identical to the value of in_LCN.

�seq section \c�8�.�seq sub_section \c�6�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�3�	CLCSE timers

The following timer is specified for the out-going CLCSE:

T108

This timer is used during the AWAITING RESPONSE state. It specifies the maximum time during which no RequestChannelCloseAck or RequestChannelCloseReject message may be received.

�seq section \c�8�.�seq sub_section\c�6�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	CLCSE procedures

Figure �seq figure FIGURE_SUM_CLCSE�22� summarises the CLCSE primitives and their parameters, and messages, for each of the out-going and in-coming CLCSE.

�embed MSDraw * mergeformat ���

FIGURE �seq figure�22�/H.245

Primitives and messages in the Close Logical Channel Signalling Entity

�seq section \c�8�.�seq sub_section \c�6�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�1�	Primitive parameter default values

Where not explicitly stated in the SDL diagrams the parameters of the indication and confirm primitives assume values as shown in Table �seq table TABLE_DEF_PAR_CLCSE�39�.

TABLE �seq table�39�/H.245

Default primitive parameter values

primitive�parameter�default value��REJECT.indication�SOURCE�USER���CAUSE�null��

�seq section \c�8�.�seq sub_section \c�6�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�2�	Message field default values

Where not explicitly stated in the SDL diagrams the message fields assume values as shown in Table �seq table TABLE_PDU_DEF_CLCSE�40�.

TABLE �seq table�40�/H.245

Default message field values

message�field�default value��RequestChannelClose�forwardLogicalChannelNumber�out_LCN��RequestChannelCloseAck�forwardLogicalChannelNumber�in_LCN��RequestChannelCloseReject�forwardLogicalChannelNumber�in_LCN���cause�REJECT.request(CAUSE)��RequestChannelCloseRelease�forwardLogicalChannelNumber�out_LCN��

�seq section \c�8�.�seq sub_section \c�6�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�3�	SDLs

The out-going CLCSE and the in-coming CLCSE procedures are expressed in SDL form in Figure �seq figure FIGURE_SDL_OUT_CLCSE�23� and Figure �seq figure FIGURE_SDL_IN_CLCSE�24� respectively.

�

FIGURE �seq figure�23�(i)/H.245

Out-going CLCSE SDL

�

FIGURE �seq figure \c�23�(ii)/H.245

Out-going CLCSE SDL (concluded)

�

FIGURE �seq figure�24�(i)/H.245

In-coming CLCSE SDL

�

FIGURE �seq figure \c�24�(ii)/H.245

In-coming CLCSE SDL (concluded)

��seq section \c�8�.�seq sub_section�7��seq sub_sub_section \r 0 \h��	H.223 Multiplex Table Procedures

�seq section \c�8�.�seq sub_section\c�7�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Introduction

The multiplex table serves to associate each octet within a H.223 MUX-PDU [8] with a particular logical channel number. The H.223 multiplex table may have up to 16 entries, numbered from 0 to 15. Table entries 1 to 15 shall be sent from transmitters to receivers as specified in the following procedures.

The procedures described here are referred to as the Multiplex Table Signalling Entity (MTSE). Procedures are specified in terms of primitives and states at the interface between the MTSE and the MTSE user. Protocol information is transferred to the peer MTSE via relevant messages defined in section 6.

There is an out-going MTSE and an in-coming MTSE. There is one instance of the MTSE for each multiplex table entry.

A transmit terminal uses this protocol to signal to a remote terminal one or more new multiplex table entries. The remote terminal may accept or reject the new multiplex table entries. If the remote terminal accepts a multiplex table entry, the previous entry at the given entry number is replaced with the new entry.

The transmitter may deactivate a multiplex table entry by sending a MultiplexEntryDescriptor with no elementList. The transmitter shall at no time use a multiplex table entry that is deactivated. Before transmitting a MultiplexEntrySend, the transmitter shall stop using the entries that are described by it. It shall not restart using those entries until it has received a MultiplexEntrySendAck. This procedure is used because if the use of these multiplex table entries is not stopped before sending the MultiplexEntrySend, errors may cause an ambiguity in the receiver.

The transmitter shall stop using deactivated entries before sending the MultiplexEntrySend indicating that they have been deactivated. Deactivated entries may be used again at any time by transmitting a MultiplexEntrySend message for activating that entry. Deactivating entries that are no longer required by the transmitter may increase the probability of detecting errors in the H.223 Multiplex Code field.

Note: While some multiplex table entries are being updated, other (active) entries may continue to be used. Also, a multiplex table entry may be deleted in the same MultiplexEntrySend that is used to modify other multiplex table entries.

At the start of communication, unless specified otherwise in an appropriate recommendation, only table entry 0 is available for transmission, and table entries 1 to 15 are deactivated.

A Request Multiplex Entry procedure may be used at any time to elicit retransmission of specified multiplex table entries from the remote terminal, for example, following an interruption or other cause for uncertainty.

The following text provides an overview of the operation of the protocol. In the case of any discrepancy with the formal specification of the protocol that follows, the formal specification will supersede.

�seq section \c�8�.�seq sub_section \c�7�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�1�	Protocol overview - outgoing MTSE

A multiplex table entry send request procedure is initiated when the TRANSFER.request primitive is issued by the user at the out-going MTSE. A MultiplexEntrySend message is sent to the peer incoming MTSE, and timer T104 is started. If a MultiplexEntrySendAck message is received in response to the MultiplexEntrySend message then timer T104 is stopped and the user is informed with the TRANSFER.confirm primitive that the multiplex table entry send request was successful. If however a MultiplexEntrySendReject message is received in response to the MultiplexEntrySend message then timer T104 is stopped and the user is informed with the REJECT.indication primitive that the peer MTSE user has refused to accept the multiplex table entry.

If timer T104 expires then the out-going MTSE user is informed with the REJECT.indication primitive and a MultiplexEntrySendRelease message is sent.

Only MultiplexEntrySendAck and MultiplexEntrySendReject messages which are in response to the most recent MultiplexEntrySend message are accepted. Responses to earlier MultiplexEntrySend messages are ignored.

A new multiplex table entry send request procedure may be initiated with the TRANSFER.request primitive by the user at the out-going MTSE before a MultiplexEntrySendAck or a MultiplexEntrySendReject message has been received.

�seq section \c�8�.�seq sub_section \c�7�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�2�	Protocol overview - incoming MTSE

When a MultiplexEntrySend message is received at the in-coming MTSE, the user is informed of the multiplex table entry send request with the TRANSFER.indication primitive. The in-coming MTSE user signals acceptance of the multiplex table entry by issuing the TRANSFER.response primitive, and a MultiplexEntrySendAck message is sent to the peer out-going MTSE. The in-coming MTSE user signals rejection of the multiplex table entry by issuing the REJECT.request primitive, and a MultiplexEntrySendReject message is sent to the peer out-going MTSE.

A new MultiplexEntrySend message may be received before the in-coming MTSE user has responded to an earlier MultiplexEntrySend message. The in-coming MTSE user is informed with the REJECT.indication primitive, followed by the TRANSFER.indication primitive, and the in-coming MTSE user responds to the new multiplex table entry.

If a MultiplexEntrySendRelease message is received before the in-coming MTSE user has responded to an earlier MultiplexEntrySend message, then the in-coming MTSE user is informed with the REJECT.indication, and the earlier multiplex table entry is discarded.

�seq section \c�8�.�seq sub_section\c�7�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Communication between the MTSE and MTSE user

�seq section \c�8�.�seq sub_section \c�7�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�1�	Primitives between MTSE and MTSE user

Communication between the MTSE, and MTSE user, is performed using the primitives shown in Table �seq table TABLE_PRIMS_MTSE�41�.

TABLE �seq table�41�/H.245

Primitives and parameters

�type��generic name�request�indication�response�confirm��TRANSFER�MUX-DESCRIPTOR�MUX-DESCRIPTOR�- 1�-��REJECT�CAUSE�SOURCE

CAUSE�not defined 2�not defined��Notes:

1.	“-” means no parameters

2.	“not defined” means that this primitive is not defined.

�seq section \c�8�.�seq sub_section \c�7�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�2�	Primitive definition

The definition of these primitives is as follows:

a)	The TRANSFER primitives are used to transfer multiplex table entries.

b)	The REJECT primitives are used to reject a multiplex table entry, and to terminate a multiplex table entry transfer.

�seq section \c�8�.�seq sub_section \c�7�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�3�	Parameter definition

The definition of the primitive parameters shown in Table �seq table TABLE_PRIMS_MTSE�41� are as follows:

a)	The MUX-DESCRIPTOR parameter is a multiplex table entry. This parameter is mapped to the MultiplexEntryDescriptor field of the multiplexEntrySend message and carried transparently from the MTSE user at the out-going MTSE to the MTSE user at the in-coming MTSE. There may be multiple MUX-DESCRIPTORs associated with the TRANSFER primitive.

b)	The SOURCE parameter indicates the source of the REJECT.indication primitive. The SOURCE parameter has the value of "USER" or "PROTOCOL". The latter case may occur as the result of a timer expiry.

c)	The CAUSE parameter indicates the reason for rejection of a multiplex table entry. The CAUSE parameter is not present when the SOURCE parameter indicates "PROTOCOL".

�seq section \c�8�.�seq sub_section \c�7�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�4�	MTSE states

The following states are used to specify the allowed sequence of primitives between the MTSE and the MTSE user. The states are specified separately for each of an out-going MTSE and an in-coming MTSE. The states for an out-going MTSE are:

State 0: IDLE

There is no MTSE transfer is in progress. The multiplex table entry may be used by the transmitter.

State 1: AWAITING RESPONSE

The MTSE user has requested the transfer of a multiplex table entry, and a response from the peer MTSE is awaited. The multiplex table entry shall not be used by the transmitter.

The states for an in-coming MTSE are:

State 0: IDLE

There is no MTSE transfer in progress. The multiplex table entry may be in use by the transmitter.

State 1: AWAITING RESPONSE

The peer MTSE has transferred a multiplex table entry, and a response from the MTSE user is awaited. The multiplex table entry may not be in use by the transmitter.

�seq section \c�8�.�seq sub_section \c�7�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�5�	State transition diagram

The allowed sequence of primitives between the MTSE and the MTSE user is defined here. The allowed sequences are specified separately for each of an out-going MTSE and an in-coming MTSE, as shown in Figure �seq figure FIGURE_PS_OUT_MTSE�25� and Figure �seq figure FIGURE_PS_IN_MTSE�26� respectively.

�

FIGURE �seq figure�25�/H.245

State transition diagram for sequence of primitives at out-going MTSE

�

FIGURE �seq figure�26�/H.245

State transition diagram for sequence of primitives at in-coming MTSE

�seq section \c�8�.�seq sub_section\c�7�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Peer to peer MTSE communication

�seq section \c�8�.�seq sub_section \c�7�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�1�	Messages

Table �seq table TABLE_MTSE_PDUS�42� shows the MTSE messages and fields, defined in section 6, which are relevant to the MTSE protocol.

TABLE �seq table�42�/H.245

MTSE message names and fields

function�message�direction�field��transfer�MultiplexEntrySend�O -> I 1�sequenceNumber�����multiplexEntryDescriptors.multiplexTableEntryNumber�����multiplexEntryDescriptors.elementList���MultiplexEntrySendAck�O <- I�sequenceNumber�����multiplexTableEntryNumber��reject�MultiplexEntrySendReject�O <- I�sequenceNumber�����multiplexTableEntryNumber�����rejectionDescriptions.cause��reset�MultiplexEntrySendRelease�O -> I�multiplexTableEntryNumber��Notes:

1.	Direction: O - out-going, I - in-coming.

�seq section \c�8�.�seq sub_section \c�7�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�2�	MTSE state variables

The following state variables are defined at the out-going MTSE:

out_ENUM

This state variable distinguishes between out-going MTSEs. It is initialised at out-going MTSE initialisation. The value of out_ENUM is used to set the multiplexTableEntryNumber field of MTSE messages sent from an out-going MTSE. For MTSE messages received at an out-going MTSE, the message multiplexTableEntryNumber field value is identical to the value of out_ENUM.

out_SQ

This state variable is used to indicate the most recently sent MultiplexEntrySend message. It is incremented by one and mapped to the MultiplexEntrySend message sequenceNumber field before transmission of a MultiplexEntrySend message. Arithmetic performed on out_SQ is modulo 256.

The following state variables are defined at the in-coming MTSE:

in_ENUM

This state variable distinguishes between in-coming MTSEs. It is initialised at in-coming MTSE initialisation. The value of in_ENUM is used to set the multiplexTableEntryNumber field of MTSE messages sent from an in-coming MTSE. For MTSE messages received at an in-coming MTSE, the message multiplexTableEntryNumber field value is identical to the value of in_ENUM.

in_SQ

This state variable is used to store the value of the sequenceNumber field of the most recently received MultiplexEntrySend message. The MultiplexEntrySendAck and MultiplexEntrySendReject messages have their sequenceNumber fields set to the value of in_SQ, before being sent to the peer MTSE.

�seq section \c�8�.�seq sub_section \c�7�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�3�	MTSE timers

The following timer is specified for the out-going MTSE:

T104

This timer is used during the AWAITING RESPONSE state. It specifies the maximum time during which no MultiplexEntrySendAck or MultiplexEntrySendReject message may be received.

�seq section \c�8�.�seq sub_section\c�7�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	MTSE procedures

�seq section \c�8�.�seq sub_section \c�7�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�1�	Introduction

Figure �seq figure FIGURE_SUM_MTSE�27� summarises the primitives and their parameters, and the messages and relevant fields, for each of the out-going and in-coming MTSE.

�embed MSDraw * mergeformat ���

FIGURE �seq figure�27�/H.245

Primitives and messages in the Multiplex Table Signalling Entity

�seq section \c�8�.�seq sub_section \c�7�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�2�	Primitive parameter default values

Where not explicitly stated in the SDL diagrams the parameters of the indication and confirm primitives assume values as shown in Table �seq table TABLE_DEF_PAR_MTSE�43�.

TABLE �seq table�43�/H.245

Default primitive parameter values

primitive�parameter�default value��TRANSFER.indication�MUX-DESCRIPTOR�MultiplexEntrySend.multiplexEntryDescriptors.elementList��REJECT.indication�SOURCE�USER���CAUSE�null���seq section \c�8�.�seq sub_section \c�7�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�3�	Message field default values

Where not explicitly stated in the SDL diagrams the message fields assume values as shown in Table �seq table TABLE_PDU_DEF_MTSE�44�.

TABLE �seq table�44�/H.245

Default message field values

message�field�default value 1��MultiplexEntrySend�sequenceNumber�out_SQ���multiplexEntryDescriptors.multiplexTableEntryNumber�out_ENUM���multiplexEntryDescriptors.elementList�TRANSFER.request(MUX-DESCRIPTOR)��MultiplexEntrySendAck�sequenceNumber�in_SQ���multiplexTableEntryNumber�in_ENUM��MultiplexEntrySendReject�sequenceNumber�in_SQ���rejectionDescriptions.multiplexTableEntryNumber�in_ENUM���rejectionDescriptions.cause�REJECT.request(CAUSE)��MultiplexEntrySendRelease�multiplexTableEntryNumber�out_ENUM��

Notes:

1.	A message field shall not be coded, if the corresponding primitive parameter is null i.e. not present.

�seq section \c�8�.�seq sub_section \c�7�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�4�	SDLs

The out-going MTSE and the in-coming MTSE procedures are expressed in SDL form in Figure �seq figure FIGURE_SDL_OUT_MTSE�28� and Figure �seq figure FIGURE_SDL_IN_MTSE�29� respectively.

�

FIGURE �seq figure�28�(i)/H.245

Out-going MTSE SDL

�

FIGURE �seq figure \c�28�(ii)/H.245

Out-going MTSE SDL (continued)

�

FIGURE �seq figure \c�28�(iii)/H.245

Out-going MTSE SDL (concluded)

�

FIGURE �seq figure�29�(i)/H.245

In-coming MTSE SDL

�

FIGURE �seq figure \c�29�(ii)/H.245

In-coming MTSE SDL (concluded)

��seq section \c�8�.�seq sub_section�8��seq sub_sub_section \r 0 \h��	Request Multiplex Entry procedures

�seq section \c�8�.�seq sub_section\c�8�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Introduction

These procedures are used by a terminal to request the retransmission of one or more MultiplexEntryDescriptors. The procedures are referred to here as the Request Multiplex Entry Signalling Entity (RMESE). Procedures are specified in terms of primitives and states at the interface between the RMESE and the RMESE user. Protocol information is transferred to the peer RMESE via relevant messages defined in section 6. There is an out-going RMESE and an in-coming RMESE. There is one instance of the RMESE for each multiplex table entry.

A terminal that answers such a response positively, that is, by issuing the SEND.response primitive, shall initiate the Multiplex Table procedures to send the multiplex table entry as soon as possible.

The following text provides an overview of the operation of the protocol. In the case of any discrepancy with the formal specification of the protocol that follows, the formal specification will supersede.

NOTE. This protocol has been defined so that there is an independent RMESE for each multiplex table entry, and the syntax has been defined to allow a single message to carry information relating to one or more multiplex table entries. The way that messages are constructed is an implementation decision: for example, a terminal may respond to a RequestMultiplexEntry message requesting three entries to be sent with one, two or three response messages.

�seq section \c�8�.�seq sub_section \c�8�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�1�	Protocol overview - outgoing RMESE

A request multiplex entry procedure is initiated when the SEND.request primitive is issued by the user at the out-going RMESE. A RequestMultiplexEntry message is sent to the peer incoming RMESE, and timer T107 is started. If a RequestMultiplexEntryAck message is received in response to the RequestMultiplexEntry message then timer T107 is stopped and the user is informed with the SEND.confirm primitive that the request multiplex entry procedure was successful. If however a RequestMultiplexEntryReject message is received in response to the RequestMultiplexEntry message then timer T107 is stopped and the user is informed with the REJECT.indication primitive that the peer RMESE user has refused to send the multiplex entry.

If timer T107 expires then the out-going RMESE user is informed with the REJECT.indication primitive and a RequestMultiplexEntryRelease message is sent.

�seq section \c�8�.�seq sub_section \c�8�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�2�	Protocol overview - incoming RMESE

When a RequestMultiplexEntry message is received at the incoming RMESE, the user is informed of the multiplex entry request with the SEND.indication primitive. The in-coming RMESE user signals acceptance of the multiplex entry request by issuing the SEND.response primitive, and a RequestMultiplexEntryAck message is sent to the peer out-going RMESE. The in-coming RMESE user signals rejection of the multiplex entry request by issuing the REJECT.request primitive, and a RequestMultiplexEntryReject message is sent to the peer out-going RMESE.

�seq section \c�8�.�seq sub_section\c�8�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Communication between RMESE and RMESE user

�seq section \c�8�.�seq sub_section \c�8�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�1�	Primitives between RMESE and RMESE user

Communication between the RMESE and RMESE user, is performed using the primitives shown in Table �seq table TABLE_PRIMS_RMESE�45�.

TABLE �seq table�45�/H.245

Primitives and parameters

�type��generic name�request�indication�response�confirm��SEND�- 1 �- �- �- ��REJECT�CAUSE�SOURCE

CAUSE�not defined 2�not defined��Notes:

1.	"-" means no parameters.

2.	“not defined” means that this primitive is not defined.

�seq section \c�8�.�seq sub_section \c�8�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�2�	Primitive definition

The definition of these primitives is as follows:

a)	The SEND primitives are used to request the transmission of a multiplex entry.

b)	The REJECT primitives are used to reject the request for transmission of a multiplex entry.

�seq section \c�8�.�seq sub_section \c�8�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�3�	Parameter definition

The definition of the primitive parameters shown in Table �seq table TABLE_PRIMS_RMESE�45� are as follows:

a)	The SOURCE parameter indicates the source of the REJECT.indication primitive. The SOURCE parameter has the value of "USER" or "PROTOCOL". The latter case may occur as the result of a timer expiry.

b)	The CAUSE parameter indicates the reason for refusal to send a multiplex table entry. The CAUSE parameter is not present when the SOURCE parameter indicates "PROTOCOL".

�seq section \c�8�.�seq sub_section \c�8�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�4�	RMESE states

The following states are used to specify the allowed sequence of primitives between the RMESE and the RMESE user.

The states for an out-going RMESE are:

State 0: IDLE

The RMESE is idle.

State 1: AWAITING RESPONSE

The RMESE is waiting for a response from the remote RMESE.

The states for an in-coming RMESE are:

State 0: IDLE

The RMESE is idle.

State 1: AWAITING RESPONSE

The RMESE is waiting for a response from the RMESE user.

�seq section \c�8�.�seq sub_section \c�8�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�5�	State transition diagram

The allowed sequence of primitives between the RMESE and the RMESE user is defined here. The allowed sequences are specified separately for each of an out-going RMESE and an in-coming RMESE, as shown in Figure �seq figure FIGURE_PS_OUT_RMESE�30� and Figure �seq figure FIGURE_PS_IN_RMESE�31� respectively.

�embed MSDraw * mergeformat ���

FIGURE �seq figure�30�/H.245

State transition diagram for sequence of primitives at RMESE out-going

�embed MSDraw * mergeformat ���

FIGURE �seq figure�31�/H.245

State transition diagram for sequence of primitives at RMESE in-coming

�seq section \c�8�.�seq sub_section\c�8�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Peer to peer RMESE communication

�seq section \c�8�.�seq sub_section \c�8�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�1�	Messages

Table �seq table TABLE_RMESE_PDUS�46� shows the RMESE messages and fields, defined in section 6, which are relevant to the RMESE protocol.

TABLE �seq table�46�/H.245

RMESE message names and fields

function�message�direction�field��transfer�RequestMultiplexEntry�O -> I 1�multiplexTableEntryNumber���RequestMultiplexEntryAck�O <- I�multiplexTableEntryNumber���RequestMultiplexEntryReject�O <- I�multiplexTableEntryNumber�����rejectionDescriptions.cause��reset�RequestMultiplexEntryRelease�O -> I���Notes:

1.	Direction: O - out-going, I - in-coming.

�seq section \c�8�.�seq sub_section \c�8�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�2�	RMESE state variables

The following state variable is defined at the out-going RMESE:

out_ENUM

This state variable distinguishes between out-going RMESEs. It is initialised at out-going RMESE initialisation. The value of out_ENUM is used to set the multiplexTableEntryNumber field of RMESE messages sent from an out-going RMESE. For RMESE messages received at an out-going RMESE, the message multiplexTableEntryNumber field value is identical to the value of out_ENUM.

The following state variable is defined at the in-coming RMESE:

in_ENUM

This state variable distinguishes between in-coming RMESEs. It is initialised at in-coming RMESE initialisation. The value of in_ENUM is used to set the multiplexTableEntryNumber field of RMESE messages sent from an in-coming RMESE. For RMESE messages received at an in-coming RMESE, the message multiplexTableEntryNumber field value is identical to the value of in_ENUM.

�seq section \c�8�.�seq sub_section \c�8�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�3�	RMESE timers

The following timer is specified for the out-going RMESE:

T107

This timer is used during the AWAITING RESPONSE state. It specifies the maximum time during which no RequestMultiplexEntryAck or RequestMultiplexEntryReject message may be received.

�seq section \c�8�.�seq sub_section\c�8�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	RMESE procedures

Figure �seq figure FIGURE_SUM_RMESE�32� summarises the RMESE primitives and their parameters, and messages, for each of the out-going and in-coming RMESE.

�embed MSDraw * mergeformat ���FIGURE �seq figure�32�/H.245

Primitives and messages in the Request Multiplex Entry Signalling Entity

�seq section \c�8�.�seq sub_section \c�8�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�1�	Primitive parameter default values

Where not explicitly stated in the SDL diagrams the parameters of the indication and confirm primitives assume values as shown in Table �seq table TABLE_DEF_PAR_RMESE�47�.

TABLE �seq table�47�/H.245

Default primitive parameter values

primitive�parameter�default value��REJECT.indication�SOURCE�USER���CAUSE�null��

�seq section \c�8�.�seq sub_section \c�8�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�2�	Message field default values

Where not explicitly stated in the SDL diagrams the message fields assume values as shown in Table �seq table TABLE_PDU_DEF_RMESE�48�.

TABLE �seq table�48�/H.245

Default message field values

message�field�default value��RequestMultiplexEntry�multiplexTableEntryNumber�out_ENUM��RequestMultiplexEntryAck�multiplexTableEntryNumber�in_ENUM��RequestMultiplexEntryReject�multiplexTableEntryNumber�in_ENUM���cause�REJECT.request(CAUSE)��RequestMultiplexEntryRelease�multiplexTableEntryNumber�out_ENUM��

�seq section \c�8�.�seq sub_section \c�8�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�3�	SDLs

The out-going RMESE and the in-coming RMESE procedures are expressed in SDL form in Figure �seq figure FIGURE_SDL_OUT_RMESE�33� and Figure �seq figure FIGURE_SDL_IN_RMESE�34� respectively.

�embed MSDraw * mergeformat ���

FIGURE �seq figure�33�(i)/H.245

Out-going RMESE SDL

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�33�(ii)/H.245

Out-going RMESE SDL

�embed MSDraw * mergeformat ���

FIGURE �seq figure�34�(i)/H.245

In-coming RMESE SDL

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�34�(ii)/H.245

In-coming RMESE SDL (concluded)

��seq section \c�8�.�seq sub_section�9��seq sub_sub_section \r 0 \h��	Mode Request procedures

�seq section \c�8�.�seq sub_section\c�9�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Introduction

The procedures described here allow a terminal to request a remote terminal to use a particular mode of operation in its transmit direction. The procedures are referred to here as the Mode Request Signalling Entity (MRSE). Procedures are specified in terms of primitives and states at the interface between the MRSE and the MRSE user. Protocol information is transferred to the peer MRSE via relevant messages defined in section 6. There is an out-going MRSE and an in-coming MRSE. At each of the out-going and in-coming ends there is one instance of the MRSE per call.

A terminal that answers such a response positively, that is, by issuing the TRANSFER.response primitive, shall initiate the logical channel signalling procedures to establish the appropriate mode of transmission as soon as possible.

If the currently valid capabilities received from the remote terminal contain one or more transmission capabilities, a terminal may select a mode that it prefers to have transmitted to it by performing the Mode Request procedures. A terminal whose currently valid capabilities contain one or more transmission capabilities and which is in receipt of such a request, should comply with the request.

A mode request shall not be sent to a terminal whose currently valid capabilities contain no transmission capabilities, that is, the terminal does not wish to, and shall not, be remotely controlled. If such a terminal does however receive a mode request, it may comply.

A terminal that receives multipointModeCommand shall comply with all received mode requests, until the command is cancelled by receipt of cancelMultipointModeCommand. A mode request may be sent to a terminal whose currently valid capabilities contain no transmission capabilities when multipointModeCommand has previously been sent.

The requested mode may include channels which are already open. For example, if a channel for G.723.1 was currently open and a terminal wished to receive an additional G.728 channel, it would send a mode request containing both the G.723.1 and the G.728 channel. If the G.723.1 channel request were absent, this would indicate that G.723.1 was no longer desired.

Note. The request mode description specifies a complete mode. If, for example, video is currently being transmitted and a mode request is received that does not include any specification for video, then this requests video transmission to stop.

Where one source is feeding several receivers it may be unable to respond to any received signals such as requests to transmit in a particular mode.

The following text provides an overview of the operation of the MRSE protocol. In the case of any discrepancy between this and the formal specification, the formal specification will supersede.

�seq section \c�8�.�seq sub_section \c�9�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�1�	Protocol overview - out-going MRSE

A mode request procedure is initiated when the TRANSFER.request primitive is issued by the user at the out-going MRSE. A RequestMode message is sent to the peer incoming MRSE, and timer T109 is started. If a RequestModeAck message is received in response to the RequestMode message then timer T109 is stopped and the user is informed with the TRANSFER.confirm primitive that the mode request was successful. If however a RequestModeReject message is received in response to the RequestMode message then timer T109 is stopped and the user is informed with the REJECT.indication primitive that the peer MRSE user has refused to accept the mode request.

If timer T109 expires then the out-going MRSE user is informed with the REJECT.indication primitive and a RequestModeRelease message is sent.

Only RequestModeAck and RequestModeReject messages which are in response to the most recent RequestMode message are accepted. Messages in response to earlier RequestMode messages are ignored.

A new mode request procedure may be initiated with the TRANSFER.request primitive by the user at the out-going MRSE before a RequestModeAck or a RequestModeReject message has been received.

�seq section \c�8�.�seq sub_section \c�9�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�2�	Protocol overview - in-coming MRSE

When a RequestMode message is received at the in-coming MRSE, the user is informed of the mode request with the TRANSFER.indication primitive. The in-coming MRSE user signals acceptance of the mode request by issuing the TRANSFER.response primitive, and a RequestModeAck message is sent to the peer out-going MRSE. The in-coming MRSE user signals rejection of the mode request by issuing the REJECT.request primitive, and a RequestModeReject message is sent to the peer out-going MRSE.

A new RequestMode message may be received before the in-coming MRSE user has responded to an earlier RequestMode message. The in-coming MRSE user is informed with the REJECT.indication primitive, followed by the TRANSFER.indication primitive, and the in-coming MRSE user responds to the new multiplex table entry.

If a RequestModeRelease message is received before the in-coming MRSE user has responded to an earlier RequestMode message, then the in-coming MRSE user is informed with the REJECT.indication, and the earlier mode request is discarded.

�seq section \c�8�.�seq sub_section\c�9�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Communication between MRSE and MRSE user

�seq section \c�8�.�seq sub_section \c�9�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�1�	Primitives between MRSE and MRSE user

Communication between the MRSE and MRSE user, is performed using the primitives shown in Table �seq table TABLE_PRIMS_MRSE�49�.

TABLE �seq table�49�/H.245

Primitives and parameters

�type��generic name�request�indication�response�confirm��TRANSFER�MODE-ELEMENT�MODE-ELEMENT�MODE-PREF�MODE-PREF��REJECT�CAUSE�SOURCE

CAUSE�not defined 1�not defined��Notes:

1.	“not defined” means that this primitive is not defined.

�seq section \c�8�.�seq sub_section \c�9�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�2�	Primitive definition

The definition of these primitives is as follows:

a)	The TRANSFER primitives are used for the transfer of the mode request.

b)	The REJECT primitives are used to reject a mode request.

�seq section \c�8�.�seq sub_section \c�9�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�3�	Parameter definition

The definition of the primitive parameters shown in Table �seq table TABLE_PRIMS_MRSE�49� are as follows:

a)	The MODE-ELEMENT parameter specifies a mode element. This parameter is mapped to the requestedModes field of the RequestMode message and is carried transparently from the out-going MRSE user to the in-coming MRSE user. This parameter is mandatory. There may be multiple MODE-ELEMENTS associated with the TRANSFER primitives.

b)	The MODE-PREF parameter informs the user as to whether the most preferred mode requested will be used or not. This parameter is mapped to the response field of the RequestModeAck message and carried transparently from the in-coming RMSE user to the out-going RMSE user. It has two values being "MOST-PREFERRED" and "LESS-PREFERRED".

c)	The SOURCE parameter indicates the source of the REJECT.indication primitive. The SOURCE parameter has the value of "USER" or "PROTOCOL". The latter case may occur as the result of a timer expiry.

d)	The CAUSE parameter indicates the reason for refusal to reject a mode request. The CAUSE parameter is not present when the SOURCE parameter indicates "PROTOCOL".

�seq section \c�8�.�seq sub_section \c�9�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�4�	MRSE states

The following states are used to specify the allowed sequence of primitives between the MRSE and the MRSE user. The states for an out-going MRSE are:

State 0: IDLE

The MRSE is idle.

State 1: AWAITING RESPONSE

The MRSE is waiting for a response from the remote MRSE.

The states for an in-coming MRSE are:

State 0: IDLE

The MRSE is idle.

State 1: AWAITING RESPONSE

The MRSE is waiting for a response from the MRSE user.

�seq section \c�8�.�seq sub_section \c�9�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�5�	State transition diagram

The allowed sequence of primitives between the MRSE and the MRSE user is defined here. The allowed sequences are specified separately for each of an out-going MRSE and an in-coming MRSE, as shown in Figure �seq figure FIGURE_PS_OUT_MRSE�35� and Figure �seq figure FIGURE_PS_IN_MRSE�36� respectively.

�

FIGURE �seq figure�35�/H.245

State transition diagram for sequence of primitives at MRSE out-going

�

FIGURE �seq figure�36�/H.245

State transition diagram for sequence of primitives at MRSE in-coming

�seq section \c�8�.�seq sub_section\c�9�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Peer to peer MRSE communication

�seq section \c�8�.�seq sub_section \c�9�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�1�	Messages

Table �seq table TABLE_MRSE_PDUS�50� shows the MRSE messages and fields, defined in section 6, which are relevant to the MRSE protocol.

TABLE �seq table�50�/H.245

MRSE message names and fields

function�message�direction�field��mode request�RequestMode�O -> I 1�sequenceNumber�����requestedModes���RequestModeAck�O <- I�sequenceNumber�����response���RequestModeReject�O <- I�sequenceNumber�����cause��reset�RequestModeRelease�O -> I�-��Notes:

1.	Direction: O - out-going, I - in-coming.

�seq section \c�8�.�seq sub_section \c�9�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�2�	MRSE state variables

The following state variables are defined at the out-going MRSE:

out_SQ

This state variable is used to indicate the most recent RequestMode message. It is incremented by one and mapped to the RequestMode message sequenceNumber field before transmission of the RequestMode message. Arithmetic performed on out_SQ is modulo 256.

The following state variables are defined at the in-coming MRSE:

in_SQ

This state variable is used to store the value of the sequenceNumber field of the most recently received RequestMode message. The RequestModeAck and RequestModeReject messages have their sequenceNumber fields set to the value of in_SQ, before being sent to the peer MRSE.

�seq section \c�8�.�seq sub_section \c�9�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�3�	MRSE timers

The following timer is specified for the out-going MRSE:

T109

This timer is used during the AWAITING RESPONSE state. It specifies the maximum time during which no RequestModeAck or RequestModeReject message may be received.

�seq section \c�8�.�seq sub_section\c�9�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	MRSE procedures

Figure �seq figure FIGURE_SUM_MRSE�37� summarises the MRSE primitives and their parameters, and messages, for each of the out-going and in-coming MRSE.

�embed MSDraw * mergeformat ���

FIGURE �seq figure�37�/H.245

Primitives and messages in the Mode Request Signalling Entity

�seq section \c�8�.�seq sub_section \c�9�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�1�	Primitive parameter default values

Where not explicitly stated in the SDL diagrams the parameters of the indication and confirm primitives assume values as shown in Table �seq table TABLE_DEF_PAR_MRSE�51�.

TABLE �seq table�51�/H.245

Default primitive parameter values

primitive�parameter�default value��TRANSFER.indication�MODE-ELEMENT�RequestMode.requestedModes��TRANSFER.confirm�MODE-PREF�RequestModeAck.response��REJECT.indication�SOURCE�USER���CAUSE�null��

�seq section \c�8�.�seq sub_section \c�9�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�2�	Message field default values

Where not explicitly stated in the SDL diagrams the message fields assume values as shown in Table �seq table TABLE_PDU_DEF_MRSE�52�.

TABLE �seq table�52�/H.245

Default message field values

message�field�default value��RequestMode�sequenceNumber�out_SQ���requestedModes�TRANSFER.request(MODE-ELEMENT)��RequestModeAck�sequenceNumber�in_SQ���response�TRANSFER.response(MODE-PREF)��RequestModeReject�sequenceNumber�in_SQ���cause�REJECT.request(CAUSE)��RequestModeRelease�-�-��

�seq section \c�8�.�seq sub_section \c�9�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�3�	SDLs

The out-going MRSE and the in-coming MRSE procedures are expressed in SDL form in Figure �seq figure FIGURE_SDL_OUT_MRSE�38� and Figure �seq figure FIGURE_SDL_IN_MRSE�39� respectively.

�

FIGURE �seq figure�38�(i)/H.245

Out-going MRSE SDL

�

FIGURE �seq figure \c�38�(ii)/H.245

Out-going MRSE SDL (continued)

�

FIGURE �seq figure \c�38�(iii)/H.245

Out-going MRSE SDL (concluded)

�

FIGURE �seq figure�39�(i)/H.245

In-coming MRSE SDL

�

FIGURE �seq figure \c�39�(ii)/H.245

In-coming MRSE SDL (concluded)

��seq section \c�8�.�seq sub_section�10��seq sub_sub_section \r 0 \h��	Round trip delay procedures

�seq section \c�8�.�seq sub_section\c�10�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Introduction

Procedures are described here that allow the determination of the round trip delay between two communicating terminals. This function also enables a H.245 user to determine if the peer H.245 protocol entity is still alive.

The function described here is referred to as the Round Trip Delay Signalling Entity (RTDSE). Procedures are specified in terms of primitives and states at the interface between the RTDSE and the RTDSE user. There is one instance of the RTDSE in each terminal. Any terminal may perform the round trip delay determination.

The following text provides an overview of the operation of the RTDSE protocol. In the case of any discrepancy between this and the formal specification, the formal specification will supersede.

�seq section \c�8�.�seq sub_section \c�10�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�1�	Protocol overview - RTDSE

A round trip delay determination procedure is initiated when the TRANSFER.request primitive is issued by the RTDSE user. A RoundTripDelayRequest message is sent to the peer RTDSE, and timer T105 is started. If a RoundTripDelayResponse message is received in response to the RoundTripDelayRequest message then timer T105 is stopped and the user is informed with the TRANSFER.confirm primitive of the round trip delay, which is the value of timer T105.

If a RoundTripDelayRequest message is at any time received from the peer RTDSE, a RoundTripDelayResponse message is immediately sent to the peer RTDSE.

If timer T105 expires then the RTDSE user is informed with the EXPIRY.indication primitive

Only the RoundTripDelayResponse message which is in response to the most recent RoundTripDelayRequest message is accepted. Messages in response to earlier RoundTripDelayRequest messages are ignored.

A new round trip delay determination procedure may be initiated with the TRANSFER.request primitive by the RTDSE user before a RoundTripDelayResponse message has been received.

�seq section \c�8�.�seq sub_section\c�10�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Communication between the RTDSE and the RTDSE user

�seq section \c�8�.�seq sub_section \c�10�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�1�	Primitives between the RTDSE and the RTDSE user

Communication between the RTDSE, and RTDSE user, is performed using the primitives shown in Table �seq table TABLE_PRIMS_RTDSE�53�. These primitives are for the purpose of defining RTDSE procedures and are not meant to specify or constrain implementation.

TABLE �seq table�53�/H.245

Primitives and parameters

�type��generic name�request�indication�response�confirm��TRANSFER�- 1�not defined 2�not defined�DELAY��EXPIRY�not defined�-�not defined�not defined��Notes:

1.	“-” means no parameters

2.	“not defined” means that this primitive is not defined.

�seq section \c�8�.�seq sub_section \c�10�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�2�	Primitive definition

The definition of these primitives is as follows:

a)	The TRANSFER primitive is used to request, and report upon, the round trip delay determination.

b)	The EXPIRY primitive indicates that no response has been received from the peer terminal.

�seq section \c�8�.�seq sub_section \c�10�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�3�	Parameter definition

The definition of the primitive parameters shown in Table �seq table TABLE_PRIMS_RTDSE�53� are as follows:

a)	The DELAY parameter returns the measured round trip delay.

�seq section \c�8�.�seq sub_section \c�10�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�4�	RTDSE states

The following states are used to specify the allowed sequence of primitives between the RTDSE and the RTDSE user.

State 0: IDLE

There is no RTDSE transfer in progress.

State 1: AWAITING RESPONSE

The RTDSE user has requested the measurement of the round trip delay. A response from the peer RTDSE is awaited.

�seq section \c�8�.�seq sub_section \c�10�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�5�	State transition diagram

The allowed sequence of primitives between the RTDSE and the RTDSE user is defined here. The allowed sequences are shown in Figure �seq figure FIGURE_PS_RTDSE�40�.

�

FIGURE �seq figure�40�/H.245

State transition diagram for sequence of primitives at RTDSE

�seq section \c�8�.�seq sub_section\c�10�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Peer to peer RTDSE communication

�seq section \c�8�.�seq sub_section \c�10�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�1�	Messages

Table �seq table TABLE_RTDSE_PDUS�54� shows the RTDSE messages and fields, defined in section 6, which are relevant to the RTDSE protocol.

TABLE �seq table�54�/H.245

RTDSE Message names and fields

function�Message�field��transfer�RoundTripDelayRequest�sequenceNumber���RoundTripDelayResponse�sequenceNumber���seq section \c�8�.�seq sub_section \c�10�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�2�	RTDSE state variables

The following RTDSE state variables are defined:

out_SQ

This state variable is used to indicate the most recent RoundTripDelayRequest message. It is incremented by one and mapped to the RoundTripDelayRequest message sequenceNumber field before transmission of an RoundTripDelayRequest message. Arithmetic performed on out_SQ is modulo 256.

�seq section \c�8�.�seq sub_section \c�10�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�3�	RTDSE timers

The following timer is specified for the RTDSE:

T105

This timer is used during the AWAITING RESPONSE state. It specifies the maximum time during which no RoundTripDelayResponse message may be received.

�seq section \c�8�.�seq sub_section\c�10�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	RTDSE procedures

�seq section \c�8�.�seq sub_section \c�10�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�1�	Introduction

Figure �seq figure FIGURE_SUM_RTDSE�41� summarises the RTDSE primitives and their parameters, and messages.

�embed MSDraw * mergeformat ���

FIGURE �seq figure�41�/H.245

Primitives and messages in the RTDSE.

�seq section \c�8�.�seq sub_section \c�10�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�2�	Primitive parameter default values

Where not explicitly stated in the SDL diagrams the parameters of the indication and confirm primitives assume values as shown in Table �seq table TABLE_DEF_PAR_RTDSE�55�.

TABLE �seq table�55�/H.245

Default primitive parameter values

primitive�parameter�default value��TRANSFER.confirm�DELAY�initial value of timer T105 minus value of timer T105��EXPIRY.indication�-�-��

NOTE. Timers are defined to count down to zero. The DELAY parameter indicates the time that the timer has been running, and so has the value of the difference between the initial setting and the retained value of the timer.

�seq section \c�8�.�seq sub_section \c�10�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�3�	Message field default values

Where not explicitly stated in the SDL diagrams the message fields assume values as shown in Table �seq table TABLE_PDU_DEF_RTDSE�56�.

TABLE �seq table�56�/H.245

Default message field values

message�field�default value��RoundTripDelayRequest�sequenceNumber�out_SQ��RoundTripDelayResponse�sequenceNumber�RoundTripDelayRequest.sequenceNumber��

�seq section \c�8�.�seq sub_section \c�10�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�4�	SDLs

The RTDSE procedures are expressed in SDL form in Figure �seq figure FIGURE_SDL_RTDSE�42�.

�

FIGURE �seq figure�42�(i)/H.245

RTDSE SDL

�

FIGURE �seq figure \c�42�(ii)/H.245

RTDSE SDL (concluded)

��seq section \c�8�.�seq sub_section�11��seq sub_sub_section \r 0 \h��	Maintenance Loop procedures

�seq section \c�8�.�seq sub_section\c�11�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h��	Introduction

The protocol specified here provides reliable operation of maintenance loops using acknowledged procedures.

The protocol specified here is referred to as the Maintenance Loop Signalling Entity (MLSE). Procedures are specified in terms of primitives at the interface between the MLSE and the MLSE user, and MLSE states. Protocol information is transferred to the peer MLSE via relevant messages defined in section 6.

There is an out-going MLSE and an in-coming MLSE. At each of the out-going and in-coming sides there is one instance of the MLSE for each bi-directional logical channel, and one for the system loop. There is no connection between an in-coming MLSE and an out-going MLSE at one side, other than via primitives to and from the MLSE user. MLSE error conditions are reported.

The terminal that contains the in-coming MLSE shall loop the appropriate data while it is in the LOOPED state, and not at any other time. The terminal that contains the out-going MLSE shall be capable of receiving looped data while in any state, but while in the LOOPED state, should receive looped data only.

Note. The MaintenanceLoopOffCommand message applies to all MLSEs. It is always used to stop all maintenance loops.

The following text provides an overview of the operation of the MLSE protocol. In the case of discrepancy between this and the formal specification, the formal specification will supersede.

�seq section \c�8�.�seq sub_section \c�11�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�1�	Protocol overview - out-going

The establishment of a maintenance loop is initiated when the LOOP.request primitive is issued by the user at the out-going MLSE. An MaintenanceLoopRequest message is sent to the peer incoming MLSE, and timer T102 is started. If an MaintenanceLoopAck message is received in response to the MaintenanceLoopRequest message then timer T102 is stopped and the user is informed with the LOOP.confirm primitive that the maintenance loop has been successfully established. If however an MaintenanceLoopReject message is received in response to the MaintenanceLoopRequest message then timer T102 is stopped and the user is informed with the RELEASE.indication primitive that the peer MLSE user has refused establishment of the maintenance loop.

If timer T102 expires in this period then the user is informed with the RELEASE.indication primitive, and a MaintenanceLoopOffCommand message is sent to the peer in-coming MLSE. This will cancel all maintenance loops, and not just the one concerned with the particular MLSE.

A maintenance loop that has been successfully established may be cancelled when the RELEASE.request primitive is issued by the user at the out-going MLSE. A MaintenanceLoopOffCommand message is sent to the peer incoming MLSE.

Before either of the MaintenanceLoopAck or MaintenanceLoopReject messages have been received in response to a previously sent MaintenanceLoopRequest message, the user at the out-going MLSE may cancel the maintenance loop using the RELEASE.request primitive.

�seq section \c�8�.�seq sub_section \c�11�.�seq sub_sub_section \c�1�.�seq sub_sub_sub_section�2�	Protocol overview - in-coming

When an MaintenanceLoopRequest message is received at the incoming MLSE, the user is informed of the request to establish a maintenance loop with the LOOP.indication primitive. The in-coming MLSE user signals acceptance of the request to establish the maintenance loop by issuing the LOOP.response primitive, and an MaintenanceLoopAck message is sent to the peer out-going MLSE. The maintenance loop shall now be performed. The in-coming MLSE user signals rejection of the request to establish the maintenance loop by issuing the RELEASE.request primitive, and an MaintenanceLoopReject message is sent to the peer out-going MLSE.

A maintenance loop that has been successfully established may be cancelled when the MaintenanceLoopOffCommand message is received at the in-coming MLSE. The in-coming MLSE user is informed with the RELEASE.indication primitive.

�seq section \c�8�.�seq sub_section\c�11�.�seq sub_sub_section�2��seq sub_sub_sub_section \r 0 \h��	Communication between the MLSE and the MLSE user

�seq section \c�8�.�seq sub_section \c�11�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�1�	Primitives between the MLSE and the MLSE user

Communication between the MLSE and the MLSE user is performed using the primitives shown in Table �seq table TABLE_PRIMS_MLSE�57�.

TABLE �seq table�57�/H.245

Primitives and parameters

�type��generic name�request�indication�response�confirm��LOOP�LOOP_TYPE�LOOP_TYPE�- 1�-��RELEASE�CAUSE�SOURCE

CAUSE�not defined 2�not defined��ERROR�not defined�ERRCODE�not defined�not defined��Notes:

1.	“-” means no parameters.

2.	“not defined” means that this primitive does not exist.

�seq section \c�8�.�seq sub_section \c�11�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�2�	Primitive definition

The definition of these primitives is as follows:

a)	The LOOP primitives are used to establish a maintenance loop.

b)	The RELEASE primitives are used to cancel a maintenance loop.

c)	The ERROR primitive reports MLSE errors to a management entity.

�seq section \c�8�.�seq sub_section \c�11�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�3�	Parameter definition

The definition of the primitive parameters shown in Table �seq table TABLE_PRIMS_MLSE�57� are as follows:

a)	The LOOP_TYPE parameter specifies the parameters associated with the maintenance loop. It has values of “SYSTEM”, “MEDIA”, and “LOGICAL_CHANNEL”. This parameter, and the logical channel number, determine the value of the type field of the MaintenanceLoopRequest message which is then carried transparently to the peer MLSE user.

b)	The SOURCE parameter indicates to the MLSE user the source of the maintenance loop release. The SOURCE parameter has the value of "USER" or "MLSE", indicating either the MLSE user, or the MLSE. The latter may occur as the result of a protocol error.

c)	The CAUSE parameter indicates the reason as to why the peer MLSE user rejected a request to establish a maintenance loop. The CAUSE parameter is not present when the SOURCE parameter indicates "MLSE".

d)	The ERRCODE parameter indicates the type of MLSE error. TABLE �seq table TABLE_ERRCODE_MLSE�61� shows the allowed values of the ERRCODE parameter.

�seq section \c�8�.�seq sub_section \c�11�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�4�	MLSE states

The following states are used to specify the allowed sequence of primitives between the MLSE and the MLSE user, and the exchange of messages between peer MLSEs. The states are specified separately for each of an out-going MLSE and an in-coming MLSE. The states for an out-going MLSE are:

State 0:. NOT LOOPED

There is no maintenance loop.

State 1:. AWAITING RESPONSE

The out-going MLSE is waiting to establish a maintenance loop with a peer in-coming MLSE.

State 2:. LOOPED

The MLSE peer-to-peer maintenance loop has been established. All data received on the appropriate channel should be looped data.

The states for an in-coming MLSE are:

State 0:. NOT LOOPED

There is no maintenance loop.

State 1:. AWAITING RESPONSE

The in-coming MLSE is waiting to establish a maintenance loop with a peer out-going MLSE. The appropriate data shall not be looped.

State 2:. LOOPED

An MLSE peer-to-peer maintenance loop has been established. All data received on the appropriate channel shall be looped.

�seq section \c�8�.�seq sub_section \c�11�.�seq sub_sub_section \c�2�.�seq sub_sub_sub_section�5�	State transition diagram

The allowed sequence of primitives between the MLSE and the MLSE user is defined here. The allowed sequence of primitives relates to states of the MLSE as viewed from the MLSE user. The allowed sequences are specified separately for each of an out-going MLSE and an in-coming MLSE, as shown in Figure �seq figure FIGURE_PS_OUT_MLSE�43� and Figure �seq figure FIGURE_PS_IN_MLSE�44� respectively.

�embed MSDraw * mergeformat ���

FIGURE �seq figure�43�/H.245

State transition diagram for sequence of primitives at out-going MLSE

�embed MSDraw * mergeformat ���

FIGURE �seq figure�44�/H.245

State transition diagram for sequence of primitives at in-coming MLSE

�seq section \c�8�.�seq sub_section\c�11�.�seq sub_sub_section�3��seq sub_sub_sub_section \r 0 \h��	Peer to peer MLSE communication

�seq section \c�8�.�seq sub_section \c�11�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�1�	MLSE messages

Table �seq table TABLE_MLSE_PDUS�58� shows the MLSE messages and fields, defined in section 6, which are relevant to the MLSE protocol.

TABLE �seq table�58�/H.245

MLSE message names and fields

function�message�direction�field��establish�MaintenanceLoopRequest�O -> I 1�type���MaintenanceLoopAck�O <- I�type���MaintenanceLoopReject�O <- I�type�����cause��release�MaintenanceLoopOffCommand�O -> I�-��Notes:

1.	Direction:. O - out-going, I - in-coming.

�seq section \c�8�.�seq sub_section \c�11�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�2�	MLSE state variables

The following state variable is defined at the out-going MLSE:

out_MLN

This state variable distinguishes between out-going MLSEs. It is initialised at out-going MLSE initialisation. The value of out_MLN is used to set the type field of MaintenanceLoopRequest messages sent from an out-going MLSE.

The following state variable is defined at the in-coming MLSE:

in_MLN

This state variable distinguishes between in-coming MLSEs. It is initialised at in-coming MLSE initialisation. For MaintenanceLoopRequest messages received at an in-coming MLSE, the message type field value is consistent with the value of in_MLN.

in_TYPE

This state variable stores the value of LOOP_TYPE when the MaintenanceLoopRequest is received. This state variable assists in setting the value of the type field in the MaintenanceLoopAck message.

�seq section \c�8�.�seq sub_section \c�11�.�seq sub_sub_section \c�3�.�seq sub_sub_sub_section�3�	MLSE timers

The following timer is specified for the out-going MLSE:

T102

This timer is used during the AWAITING RESPONSE state. It specifies the maximum allowed time during which no MaintenanceLoopAck or MaintenanceLoopReject message may be received.

�seq section \c�8�.�seq sub_section\c�11�.�seq sub_sub_section�4��seq sub_sub_sub_section \r 0 \h��	MLSE procedures

�seq section \c�8�.�seq sub_section \c�11�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�1�	Introduction

FIGURE �seq figure FIGURE_SUM_MLSE�45� summarises the primitives and their parameters, and the messages, for each of the out-going and in-coming MLSE.

�embed MSDraw * mergeformat ���

FIGURE �seq figure�45�/H.245

Primitives and messages in the Maintenance loop Signalling Entity

�seq section \c�8�.�seq sub_section \c�11�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�2�	Primitive parameter default values

Where not explicitly stated in the SDL diagrams the parameters of the indication and confirm primitives assume values as shown in Table �seq table TABLE_DEF_PAR_MLSE�59�.

TABLE �seq table�59�/H.245

Default primitive parameter values

primitive�parameter�default value 1��LOOP.indication�LOOP_TYPE�MaintenanceLoopRequest.type��RELEASE.indication�SOURCE�USER���CAUSE�MaintenanceLoopReject.cause��Notes:

1.	A primitive parameter shall be coded as null, if an indicated message field is not present in the message.

�seq section \c�8�.�seq sub_section \c�11�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�3�	Message field default values

Where not explicitly stated in the SDL diagrams the message fields assume values as shown in Table �seq table TABLE_PDU_DEF_MLSE�60�.

TABLE �seq table�60�/H.245

Default message field values

message�field�default value 1��MaintenanceLoopRequest�type�LOOP.request(LOOP_TYPE) and out_MLN2��MaintenanceLoopAck�type�in_LOOP and in_MLN3��MaintenanceLoopReject�type�in_LOOP and in_MLN3���cause�RELEASE.request(CAUSE)��MaintenanceLoopOffCommand�-�-��Notes:

1.	A message field shall not be coded, if the corresponding primitive parameter is null i.e. not present.

2.	The value of the type field is derived from the LOOP_TYPE parameter and the logical channel number.

3.	The value of the type field is derived from the in_LOOP and in_MLN state variables.

�seq section \c�8�.�seq sub_section \c�11�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�4�	ERRCODE parameter values

The ERRCODE parameter of the ERROR.indication primitive indicates a particular error condition. Table �seq table TABLE_ERRCODE_MLSE�61� shows the values that the ERRCODE parameter may take at the out-going MLSE. There is no ERROR.indication primitive associated with the in-coming MLSE.

TABLE �seq table�61�/H.245

ERRCODE parameter values at out-going MLSE

error type�error code�error condition�state��inappropriate message�A�MaintenanceLoopAck�LOOPED��no response from peer MLSE�B�timer T102 expiry�AWAITING RESPONSE���seq section \c�8�.�seq sub_section \c�11�.�seq sub_sub_section \c�4�.�seq sub_sub_sub_section�5�	SDLs

The out-going MLSE and the in-coming MLSE procedures are expressed in SDL form in Figure �seq figure FIGURE_SDL_OUT_MLSE�46� and Figure �seq figure FIGURE_SDL_IN_MLSE�47� respectively.

�embed MSDraw * mergeformat ���

FIGURE �seq figure�46�(i)/H.245

Out-going MLSE SDL

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�46�(ii)/H.245

Out-going MLSE SDL (continued)

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�46�(iii)/H.245

Out-going MLSE SDL (concluded)

�embed MSDraw * mergeformat ���

FIGURE �seq figure�47�(i)/H.245

In-coming MLSE SDL

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�47�(ii)/H.245

In-coming MLSE SDL (continued)

�embed MSDraw * mergeformat ���

FIGURE �seq figure \c�47�(iii)/H.245

In-coming MLSE SDL (concluded)

�ANNEX A

Annex A	Annex A - Object identifier assignments

A==

(This annex forms an integral part of this Recommendation)

Table A-1 lists the assignment of Object Identifiers defined for use by this Recommendation.

Table A-1

Object Identifier Value�Description��{itu-t (0) recommendation (0) h (8) 245 version (0) 1}�This Object Identifier is used to indicate the version of this Recommendation in use as a multimedia system control protocol. This indicates the first version of this recommendation.��{itu-t (0) recommendation (0) h (8) 245 version (0) 2}�This Object Identifier is used to indicate the version of this Recommendation in use as a multimedia system control protocol. At this time there are two standardised versions defined. This indicates the second version of this recommendation.���APPENDIX I

(This appendix does not form an integral part of this Recommendation)

Appendix I	Appendix I - Overview of ASN.1 syntax

I.�seq section \r 1�1��seq sub_section \r 0 \h���seq sub_sub_section \r 0 \h��	Introduction to ASN.1

Abstract Syntax Notation One (ASN.1) is a data specification language. It was originally standardized as part of the X.400 electronic mail series as X.409. This evolved to X.208 and most recently X.680. ASN.1 allows unambiguous specification of complex data structures including those with variable-length fields, optional fields and recursion.

The above Recommendations deal only with the syntax and semantics of ASN.1 specifications. The binary encoding of data structures is covered in other Recommendations, notably X.690 (basic encoding rules or BER) and X.691 (packed encoding rules or PER). BER allows data to be deciphered by systems that have general knowledge of ASN.1 but do not know the details of the specification used to form the data. In other words, the data types are encoded along with the data values. PER is much more efficient since only data values are encoded and the coding is designed with very little redundancy. This method can be used when both the transmitter and the receiver expect data to adhere to a known structure.

H.245 is implemented using the packed encoding rules. Since both sides of a call know that messages will conform to the H.245 specification it is not necessary to encode that specification into the messages. For decoding simplicity, the aligned variant of PER is used. This forces fields that require eight or more bits to be aligned on octet boundaries and to consume an integral number of octets. Alignment is done by padding the data with zeros before large fields.

I.�seq section�2��seq sub_section \r 0 \h���seq sub_sub_section \r 0 \h��	Basic ASN.1 data types

The simplest data type is BOOLEAN, which represents the values FALSE and TRUE. These are encoded in a single bit as 0 and 1 respectively. For example, segmentableFlag BOOLEAN is coded

Value�Encoding��FALSE�0��TRUE�1��

The most fundamental data type is INTEGER, which represents whole number values. Integers can be unconstrained as in:

	bitRate	INTEGER

or they can be constrained to a range of values, for example:

	maximumAl2SDUSize	INTEGER (0..65535)

Constrained integers are encoded differently depending on the size of the range. Suppose N is the number of integers in the range, i.e. the upper limit minus the lower limit plus one. Depending on N, the constrained integer will be encoded in one of five ways:

N�Encoding��1�no bits needed��2-255�an unaligned field of 1 to 8 bits��256�an aligned 8-bit field��257-65536�an aligned 16-bit field��larger�as the minimum number of aligned octets preceded by the above encoding of the number of octets��

In all cases, the number that is actually used is the value to be encoded minus the lower limit of the range. In these examples "pad" represents zero to seven 0 bits that are added to the encoding so that the following field will start on a 8-bit boundary.

		firstGOB	INTEGER (0..17)

Value�Encoding��0�00000��3�00011��

		h233IVResponseTime	INTEGER (0..255)

Value�Encoding��3�pad 00000011��254�pad 11111110��

		skew	INTEGER (0..4095)

Value�Encoding��3�pad 00000000 00000011��4095�pad 00001111 11111111��

Unconstrained (2's complement) integer values that can be represented in 127 octets or less are encoded in the minimum number of octets needed. The number of octets (the length) is encoded as an aligned octet that precedes the number itself. For example,

-1�pad 00000001 11111111��0�pad 00000001 00000000��128�pad 00000010 00000000 10000000��1000000�pad 00000011 00001111 01000010 01000000��

ASN.1 supports a variety of string data types. These are variable-length lists of bits, octets or other short data types. They are typically encoded as a length followed by the data. The length can be encoded as an unconstrained integer or as a constrained integer if the SIZE of the string is specified. For example,

	data		OCTET STRING

Since the length of the octet string is not bounded, it will have to be encoded as a semi-constrained whole number (has a lower bound, but no upper bound). First, the data is padded so that the encoding will be aligned. The rest of the code is as follows:

Length�Encoding��0 to 127�8-bit length followed by the data��128 to 16K-1�16-bit length with the MSB set, then the data��16K to 32K-1�11000001, 16K octets of data, then code the rest��32K to 48K-1�11000010, 32K octets of data, then code the rest��48K to 64K-1�11000011, 48K octets of data, then code the rest��64K or more�11000100, 64K octets of data, then code the rest��

This method is called "fragmentation". Note that if the length is a multiple of 16K, then the representation will end with an octet of zero indicating a zero-length string.

I.�seq section�3��seq sub_section \r 0 \h���seq sub_sub_section \r 0 \h��	Aggregate data types

ASN.1 includes several aggregate or container data types that are similar in concept to C's union, struct and array types. These are, respectively, CHOICE, SEQUENCE and SEQUENCE OF. In all cases they are encoded with some bits specific to the container followed by the normal encodings of the contents.

CHOICE is used to select exactly one of a group of data types. For example,

	VideoCapability	::= CHOICE

	{

		nonStandard	NonStandardParameter,

		h261VideoCapability	H261VideoCapability,

		h262VideoCapability	H262VideoCapability,

		h263VideoCapability	H263VideoCapability,

		is11172VideoCapability	IS11172VideoCapability,

		...

	}

An index number is assigned to each choice, starting with zero. The index of the actual choice is encoded as a constrained integer. The index is followed by the encoding of the actual selection or nothing if the selection is NULL. If the extension marker is present (as above), the index is preceded by a bit that is zero if the actual choice is from the original list.

SEQUENCE is simply a grouping of dissimilar data types. Individual elements of the sequence may be OPTIONAL. The encoding is very simple. If there is an extension marker the first bit indicates the presence of additional elements. This is followed by a series of bits, one for each optional element that indicates if that data is present. This is followed by the encodings of the components of the sequence. For example,

	H261VideoCapability	::= SEQUENCE

	{

		qcifMPI		INTEGER (1..4) OPTIONAL,	-- units 1/29.97 Hz

		cifMPI		INTEGER (1..4) OPTIONAL, 	-- units 1/29.97 Hz

		temporalSpatialTradeOffCapability	BOOLEAN,

		...

	}

The encoding has one bit for the extension marker, two bits for the optional fields, two bits each for any optional field that is present, one bit for the boolean and then any extension data. Note that in this sequence has no padding for octet alignment.

The SEQUENCE OF and SET OF types describe a collection of similar components (an array). SEQUENCE OF implies that the order of the elements is significant, with SET OF the element order is arbitrary. The PER encoding is the same for both types.

These types can have a SIZE constraint or an unconstrained number of elements. If the number is known a priori and is less than 64K, it is not encoded. Otherwise the actual number of components is encoded as a constrained or semi-constrained length. This is followed by the encoding of the data. If the length is at least 16K and is encoded then the list of data will be broken into fragments like the octet string. In this case the fragments are broken after some number of component fields (16K, 32K, etc.), not after some number of octets.

I.4	Object Identifier type

Normally the type of a value is given in the ASN.1 specification so that the only information that needs to be coded and transmitted is the data itself. Occasionally, however, it is desirable to encode the data type as well as the data value. For example, protocolIdentifier contains

	protocolIdentifier	OBJECT IDENTIFIER,

				-- shall be set to the value

				-- {itu-t (0) recommendation (0) h (8) 245 version (0) 1}

This is encoded as the data encoded with the BER (X.690) preceded by the length of that encoding in octets. The length is encoded as a semi-constrained whole number (see the OCTET STRING example above).The following illustrates how this is encoded.

The first octet indicates the length of the encoding that follows.

The first two components of the object identifier are combined together as 40*first one + second one, in this case 40*0+0 = 0. The others are encoded as they are. Each is encoded into a series of octets, the first bit of which indicates whether there is any more. So

	0 -> 0000 0000,

	8 -> 0000 0100,

while 245, being more than 127 becomes 1000 0001 0111 0101,

So the entire encoding in hexadecimal consists of the seven octets 06000881 750001

�APPENDIX II

(This appendix does not form an integral part of this Recommendation)

Appendix II	Appendix II - Examples of H.245 procedures

II.1	Introduction

This appendix illustrates examples of the procedures defined in 8/H.245. Figure II.1-1 shows the key to diagrams used in this appendix.

�

FIGURE II.1-1

Key to figures

II.2	Master Slave Determination Signalling Entity

In the following figures messages are represented by the shortened names given in Table 2-1.

Table 2-1/H.245

Master slave determination shortened names

message�name in examples��MasterSlaveDetermination�MSD��MasterSlaveDeterminationAck�MSDAck��MasterSlaveDeterminationReject�MSDReject��MasterSlaveDeterminationRelease�MSDRelease��

In the following figures IDLE, OUTGOING AWAITING RESPONSE, and INCOMING AWAITING RESPONSE states are labelled as "0", "1", and "2" respectively.

In the following figures the parameter value associated with the DETERMINE.indication and DETERMINE.confirm primitives is that of the TYPE parameter. The field value associated with the MasterSlaveDeterminationAck message is that of the decision field.

�

FIGURE II.2-1/H.245

Master slave determination - master at remote MSDSE

�

FIGURE II.2-2/H.245

Master slave determination - slave at remote MSDSE

�

FIGURE II.2-3/H.245

Master slave determination - first attempt produced an indeterminate result. The second attempt was successful.

�

FIGURE II.2-4/H.245

Master slave determination - simultaneous determination

�

FIGURE II.2-5/H.245

Master slave determination - simultaneous determination but with the first attempt returning an indeterminate result.

In Figure II.2-6 local timer T106 has expired. Only the terminal on the right knows its status. The terminal on the right is able to receive new commands but may not request anything of the other terminal that relies on knowledge of the status determination result. The terminal on the left can neither accept nor initiate new procedures. A second status determination procedure should be initiated.

�

FIGURE II.2-6/H.245

Master slave determination - local timer T106 expiry with slave at remote end.

In Figure II.2-7 remote timer T106 has expired during the INCOMING AWAITING ACKNOWLEDGEMENT state. Both terminals know their status. The terminal on the left may receive and issue commands. However the remote terminal does not know if the local terminal is ready to receive, and can not issue commands that rely on knowledge of the status determination result. A second status determination procedure should be initiated.

�

FIGURE II.2-7/H.245

Master slave determination - remote timer T106 expiry with master at remote end.

In Figure II.2-8 remote timer T106 has expired during the OUTGOING AWAITING ACKNOWLEDGEMENT state during a simultaneous determination procedure. Both terminals know their status. The terminal on the right can receive and issue commands. However the terminal on the left does not know if the other terminal is ready to receive, and can not issue commands that rely on knowledge of the status determination result. It may receive such commands. A second status determination procedure should be initiated.

�

FIGURE II.2-8/H.245

Master slave determination - simultaneous determination procedures with timer T106 expiry at slave.

In Figure II.2-9 remote timer T106 has expired during the INCOMING AWAITING ACKNOWLEDGEMENT state, during a simultaneous determination procedure. Both terminals know their status. The terminal on the left can receive and issue commands. However the terminal on the right does not know if the other terminal is ready to receive, and can not issue commands that rely on knowledge of the status determination result. It may receive such commands. A second status determination procedure should be initiated.

�

FIGURE II.2-9/H.245

Master slave determination - simultaneous determination procedures with timer T106 expiry during INCOMING AWAITING ACKNOWLEDGEMENT.

In Figure II.2-10 an indeterminate result was obtained N100 times. In this case N100 = 3.

�

FIGURE II.2-10/H.245

Master slave determination - indeterminate result with N100 = 3.

II.3	Capability Exchange Signalling Entity

The following figures illustrate CESE procedures. The IDLE and AWAITING RESPONSE states are labelled as "0" and "1" respectively.

�

FIGURE II.3-1/H.245

Capability exchange with acceptance from the peer in-coming CESE user

�

FIGURE II.3-2/H.245

Capability exchange with rejection from peer in-coming CESE user.

�

FIGURE II.3-3/H.245

Capability exchange with timer T101 expiry. The TerminalCapabilitySetRelease message arrives at the in-coming CESE before response from the in-coming CESE user.

�

FIGURE II.3-4/H.245

Capability exchange with timer T101 expiry followed by a second capability exchange. The TerminalCapabilitySetRelease message arrives at the in-coming CESE after response from the in-coming CESE user. At the out-going CESE the TerminalCapabilitySetAck message in response to the first TerminalCapabilitySet message is ignored. Only the second capability exchange is successful.

II.4	Logical Channel Signalling Entity

The following figures illustrate LCSE procedures. The out-going LCSE states of RELEASED, AWAITING ESTABLISHMENT, ESTABLISHED, and AWAITING RELEASE are labelled as "0", "1", "2", and "3" respectively. The in-coming LCSE states of RELEASED, AWAITING ESTABLISHMENT, and ESTABLISHED, are labelled as "0", "1", and "2" respectively.

�

FIGURE II.4-1/H.245

Logical channel establishment

�

FIGURE II.4-2/H.245

Logical channel release

�

FIGURE II.4-3/H.245

Logical channel establishment rejection by peer LCSE user

�

FIGURE II.4-4/H.245

Logical channel release followed by immediate re establishment

�

FIGURE II.4-5/H.245

Logical channel establishment request with expiry of timer T103 due to slow response from peer in-coming LCSE user.

�

FIGURE II.4-6/H.245

Logical channel establishment request with expiry of timer T103. Timer T103 has expired after transmission of the OpenLogicalChannelAck message at the in-coming LCSE, but before reception of the OpenLogicalChannelAck message at the out-going LCSE.

�

FIGURE II.4-7/H.245

Logical channel release request with expiry of timer T103.

II.5	Close Logical Channel Signalling Entity

The following figures illustrate CLCSE procedures. The IDLE and AWAITING RESPONSE states are labelled as "0" and "1" respectively.

�

FIGURE II.5-1/H.245

Close logical channel request

�

FIGURE II.5-2/H.245

Close logical channel request with rejection from peer in-coming CLCSE user.

�

FIGURE II.5-3/H.245

Close logical channel request with timer T108 expiry. The RequestChannelCloseRelease message arrives at the in-coming CLCSE before response from the in-coming CLCSE user.

�

FIGURE II.5-4/H.245

Close logical channel request with timer T108 expiry followed by a second close logical channel request. The close channel request is confirmed on reception of the first RequestChannelClose message.

II.6	Multiplex Table Signalling Entity

The following figures illustrate MTSE procedures. The IDLE and AWAITING RESPONSE states are labelled as "0" and "1" respectively.

�

FIGURE II.6-1/H.245

Successful multiplex table send request

�

FIGURE II.6-2/H.245

Multiplex table send request with rejection from the peer MTSE user.

�

FIGURE II.6-3/H.245

Multiplex table send request with a second multiplex table send request before acknowledgement of the first request. The first request was unsuccessful.

�

FIGURE II.6-4/H.245

Multiplex table send request with timer T104 expiry.

�

FIGURE II.6-5/H.245

Multiplex table send request with timer T104 expiry followed by a second multiplex table send request. The first MultiplexEntrySendAck message is ignored at the out-going MTSE. Only the second request was successful.

II.7	Mode Request Signalling Entity

The following figures illustrate MTSE exchanges. The IDLE and AWAITING RESPONSE states are labelled as "0" and "1" respectively.

�

FIGURE II.7-1/H.245

Successful mode request.

�

FIGURE II.7-2/H.245

Mode request with rejection from the peer MTSE user.

�

FIGURE II.7-3/H.245

Mode request with a second mode request before acknowledgement of the first request. The first request was unsuccessful.

�

FIGURE II.7-4/H.245

Mode request with timer T109 expiry. The mode request was unsuccessful.

�

FIGURE II.7-5/H.245

Mode request with timer T109 expiry followed by a second mode request. The first RequestModeAck message is ignored at the out-going MRSE. Only the second request was successful.

II.8	Round Trip Delay Signalling Entity

The following figures illustrate RTDSE procedures. The RTDSE states of IDLE and AWAITING RESPONSE are labelled as "0" and "1" respectively.

�

FIGURE II.8-1/H.245

Round trip delay determination procedure

�

FIGURE II.8-2/H.245

Round trip delay determination procedure with an earlier unacknowledged round trip delay procedure outstanding.

�

FIGURE II.8-3/H.245

Round trip delay determination procedure with timer T105 expiry.

�

FIGURE II.8-4/H.245

Round trip delay determination procedure with timer T105 expiry, followed by a second round trip delay determination procedure. The RoundTripDelayResponse message from the first procedure arrives during the second procedure and is ignored.

II.9.	Bi-directional Logical Channel Signalling Entity

The following figures illustrate B-LCSE procedures. The out-going B-LCSE states of RELEASED, AWAITING ESTABLISHMENT, ESTABLISHED, and AWAITING RELEASE are labelled as "0", "1", "2", and "3" respectively. The in-coming B-LCSE states of RELEASED, AWAITING ESTABLISHMENT, AWAITING CONFIRMATION, and ESTABLISHED, are labelled as "0", "1", "2", and "3" respectively.

�

FIGURE II.9-1/H.245

Bi-directional logical channel establishment

�

FIGURE II.9-2/H.245

Bi-directional logical channel release

�

FIGURE II.9-3/H.245

Bi-directional logical channel establishment rejection by peer B-LCSE user

�

FIGURE II.9-4/H.245

Bi-directional logical channel release followed by immediate re establishment

�

FIGURE II.9-5/H.245

Bi-directional logical channel establishment request with expiry of timer T103 at the out-going side due to slow response from peer in-coming B-LCSE user.

�

FIGURE II.9-6/H.245

Bi-directional logical channel establishment request with expiry of timer T103 at the out-going side. Timer T013 at the out-going side has expired after transmission of the OpenLogicalChannelAck message at the in-coming B-LCSE, but before reception of the OpenLogicalChannelAck message at the out-going B-LCSE.

�

FIGURE II.9-7/H.245

Bi-directional logical channel release request with expiry of timer T103 at the out-going side.

�APPENDIX III

(This appendix does not form an integral part of this Recommendation)

Appendix III	Appendix III - Summary of procedure timers and counters

This appendix provides a list of the timers and counters specified in section 8.

This Recommendation does not define the values loaded into these timers. The values may be defined in other recommendations such as H.310, H.323 and H.324.

III.�seq section \r 1�1��seq sub_section \r 0 \h���seq sub_sub_section \r 0 \h��	Timers

Table III.1 shows the timers specified in this Recommendation

TABLE III.1/ H.245

Procedure Timers

Timer�Procedure�Definition��T106�Master Slave Determination�This timer is used in the OUTGOING AWAITING RESPONSE state and during the INCOMING AWAITING RESPONSE state. It specifies the maximum time during which no acknowledgement message may be received.��T101�Capability Exchange�This timer is used in the AWAITING RESPONSE state. It specifies the maximum time during which no TerminalCapabilitySetAck or TerminalCapabilitySetReject message may be received.��T103�Uni-directional and Bi-directional Logical Channel Signalling�This timer is used in the AWAITING ESTABLISHMENT and AWAITING RELEASE states. It specifies the maximum time during which no OpenLogicalChannelAck or OpenLogicalChannelReject or CloseLogicalChannelAck message may be received.��T108�SEND Logical Channel�This timer is used in the AWAITING RESPONSE state. It specifies the maximum time during which no RequestMultiplexEntryAck or RequestMultiplexEntryReject message may be received.��T104�H.223 Multiplex Table�This timer is used in the AWAITING RESPONSE state. It specifies the maximum time during which no MultiplexEntrySendAck or MultiplexEntrySendReject message may be received.��T109�Mode Request�This timer is used in the AWAITING RESPONSE state. It specifies the maximum time during which no RequestModeAck or RequestModeReject message may be received.��T105�Round Trip Delay�This timer is used in the AWAITING RESPONSE state. It specifies the maximum time during which no RoundTripDelayResponse message may be received.��T107�Request Multiplex Entry�This timer is used during the AWAITING RESPONSE state. It specifies the maximum time during which no RequestMultiplexEntryAck or RequestMultiplexEntryReject message may be received.��T102�Maintenance Loop�This timer is used during the AWAITING RESPONSE state. It specifies the maximum allowed time during which no MaintenanceLoopAck or MaintenanceLoopReject message may be received.���III.�seq section�2��seq sub_section \r 0 \h���seq sub_sub_section \r 0 \h��	Counters

Table III.2 shows the counters specified in this Recommendation

TABLE III.2/ H.245

Procedure Counters

Timer�Procedure�Definition��N100�Master slave determination�This counter specifies the maximum number of times that MasterSlaveDetermination messages will be sent during the OUTGOING AWAITING RESPONSE state.���APPENDIX IV

(This appendix does not form an integral part of this Recommendation)

Appendix IV	Appendix IV - H.245 Extension Procedure

H.245 is a “living document” used by a number of systems Recommendations including H.310, H.323, H.324, and V.70, which is expected to be extended, in a backward-compatible way, likely at each meeting of ITU-T Study group 16. This appendix explains the procedure that should be used to add extensions to H.245.

At a given point in time there is only one H.245 syntax in force. No other ITU-T Recommendation should include other variants of H.245 syntax in their Recommendations in a normative manner.

Requests for extensions to H.245 should be submitted as a White Contribution or formal liaison to Study group 16, with a copy sent as early as possible to the H.245 Rapporteur and editor. Such requests should include:

1.	Functional requirements for syntax to be drafted by the H.245 editor or proposed syntax based on the current approved version of H.245, and,

2.	Proposed semantics for section 7/H.245, and,

3.	Proposed procedures for section 8/H.245 if new procedures are requested.

All extensions to H.245 must be backwards compatible with all previous versions of H.245. Pre-existing syntax, semantics, and procedures cannot be changed. The meaning of pre-existing syntax cannot be changed.

Requests should be submitted as early as possible to allow time for review of extensions by H.245 experts in Study group 16. It must be understood that the exact requested syntax may be modified because of:

1.	Verification of correct ASN.1 syntax

2.	Harmonization with other, conflicting, requests for H.245 extensions

3.	Backward compatibility with pre-existing versions of H.245

4.	Expert review of placement of new functions relative to the existing H.245 structure

The H.245 editor will review all extension requests and propose final text for extended versions of H.245 for Study group 16 approval by the Resolution 1 process. Upon Study Group approval of each new version of H.245, the H.245 version number in protocolIdentifier will be incremented to identify the new version.

Please note that it is the intention of Study group 16 to accept only harmonized H.245 extensions originating from the H.245 editor.

* Contact:	Mike Nilsson	Tel.: +44 1473 645413

	BT Labs	Fax: +44 1473 643791

	Ipswich, UK	E-mail: nilssome@boat.bt.com

�page �vi�	Recommendation H.245

		Recommendation H.245	�page �v�

�page �110�	Recommendation H.245

		Recommendation H.245	�page �109�

