Telecommunication Standardization H225.0

Sector 	 Original: English

(TSS)

SG15/WP1 May 27-June 7, 1996

Question 2/15

STUDY GROUP 15 CONTRIBUTION

Source: IMTC/CNC(USA Proposed)

Title: Proposed Modifications to COM15-244(H.225.0)

Date: April 18, 1996

Summary: This recommendation describes a method for combining audio, video, data, and control information on a non-guaranteed quality of service LAN to provide conversational services in H.323 equipment. Included are such topics as audio coding, video coding, control and signaling messages, and methods for providing improved quality of service in this environment.

This version is a set of changes to the final white paper to be submitted on April 22/23 to SGC;

This version white rev 1 reflects changes from the January white document.

	�

��

INTERNATIONAL TELECOMMUNICATION UNION��

ITU-T DRAFT H.225.0

TELECOMMUNICATION (January 31, 1996)

STANDARDIZATION SECTOR Determined November 1995

OF ITU

LINE TRANSMISSION OF NON-TELEPHONE�SIGNALS

�

Media Stream Packetization and Synchronization on Non-Guaranteed Quality of Service LANs����

DRAFT ITU-T Recommendation H.225.0

		

FOREWORD

The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the International Tele�com�munication Union. The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, established the topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU�T is covered by the procedure laid down in WTSC Resolution No. 1 (Helsinki, March 1-12, 1993)

ITU-T Recommendation H.225.0 was prepared by the ITU-T Study Group 15 (1993-1996) and was approved under the WTSC Resolution No. 1 procedure on the xxth of xxxx 199x.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

��������

ã ITU 199x

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

�

SUMMARY

This Recommendation covers the technical requirements for narrow-band visual telephone services defined in H.200/AV.120-Series Recommendations, in those situations where the transmission path includes one or more Local Area Networks (LAN), each of which is configured and managed to provide a non-guaranteed Quality of Service (QoS) which is not equivalent to that of N-ISDN such that additional protection or recovery mechanisms beyond those mandated by Rec. H.320 need be provided in the terminals. It is noted that Recommendation H.322 addresses the use of some other LANs which are able to provide the underlying performance not assumed by the H.323/H.225.0 Recommendations.

This recommendation describes how audio, video, data, and control information on a non-guaranteed quality of service LAN can be managed to provide conversational services in H.323 equipment

�

Media Stream Packetization and Synchronization on Non-Guaranteed Quality of Service LANs

(Place, 199x)

The ITU,

considering

the widespread adoption of and the increasing use of the H.320 Recommendation for videophony and videoconferencing services over networks conforming to the N-ISDN characteristics specified in the I series Recommendations,

appreciating

the desirability and benefits of enabling the above services to be carried, wholly or in part, over Local Area Networks while also maintaining the capability of interworking with H.320 terminals

and noting

the characteristics and performances of the many types of Local Area Network which are of potential interest

recommends

that systems and equipment meeting the requirements of the H.322 or H.323 Recommendations are utilized to provide these facilities.

��TOC \o "1-3"�

1. Scope	8

2. References	10

3. Definitions	12

4.	Conventions	12

5.	Abbreviations	12

5.1.	General Abbreviations	12

5.2.	RAS Message Abbreviations	13

6. Packetization and Synchronization Mechanism	14

6.1.General Approach	14

6.2.	Use of RTP/RTCP	18

6.2.1.	Audio	19

6.2.2.	Video messages	20

6.2.3.Data messages	21

7. Initialization and Call Set Message Definitions	21

7.1.	Use of Q.931	21

7.2.	Common Q.931 Information Elements	23

7.2.1.	Header Information Elements	23

7.2.2.	Message-specific information elements	24

7.3.	Q.931 Message details	29

7.3.1.	Alerting	29

7.3.2.	Call Proceeding	30

7.3.3.	Connect	31

7.3.4.	Connect Acknowledge	32

7.3.5.	Disconnect	33

7.3.6.	User Information	33

7.3.7.	Notify	34

7.3.8.	Progress	34

7.3.9.	Release	34

7.3.10.	Error! Reference source not found.Release Complete	34

7.3.11.	Error! Reference source not found.Setup	35

7.3.12.	Error! Reference source not found.Setup Acknowledge	37

7.3.13. Status	37

7.4.	Q.932 Message Details	37

7.4.1.	Facility	38

7.4.2.	Hold	38

7.4.3.	Hold Acknowledge	38

7.4.4.	Hold Reject	39

7.4.5.	Retrieve	39

7.4.6.	Retrieve Acknowledge	39

7.4.7.	Retrieve Reject	40

7.5.	Q.931 Timer Values	40

7.6.	 H.225.0 RAS Message Common Parts	40

7.7.	Required Support of RAS Messages	43

7.8.	Terminal and Gateway Binding Messages	44

7.9.	Terminal and Gateway Registration Messages	45

7.10.	Terminal/ Gatekeeper Unregistration Messages	47

7.11.	Terminal to Gatekeeper Admission Messages	48

7.12.	Terminal to Gatekeeper Requests for Changes in Bandwidth	51

7.13.	Location Request Messages	52

7.14.	Disengage Messges	54

7.15.	Status Request Messages	55

7.16.	Non-Standard Message	57

7.17.	Message Not Understood	57

8.	Mechanisms for maintaining QOS	57

8.1.General Approach and Assumptions	57

8.2. Use of RTCP in Measuring QOS	58

8.2.1. Sender Reports	58

8.2.2. Receiver Reports	58

8.3.	Audio/Video Jitter Procedures	59

8.4.	Audio/Video Skew Procedures	59

8.5.	Procedures for Maintaining QOS	59

8.6.	Echo Control	60

9.	Annex A: RTP/RTCP(Normative)	61

9.1.	Introduction	61

9.2.	RTP Use Scenarios	62

9.2.1.	Simple Multicast Audio Conference	63

9.3.	Audio and Video Conference	63

9.4.	Mixers and Translators	63

9.5.	Definitions	64

10.	Byte Order, Alignment, and Time Format	66

10.1.	RTP Data Transfer Protocol	66

10.1.1.	RTP Fixed Header Fields	66

10.1.2.	Multiplexing RTP Sessions	68

10.1.3.	Profile-Specific Modifications to the RTP Header	68

10.2.	RTP Control Protocol -- RTCP	69

10.2.1.	RTCP Packet Format	70

10.2.2.	RTCP Transmission Interval	71

10.3.	RTP Translators and Mixers	83

10.3.1.	General Description	83

10.3.2.	RTCP Processing in Mixers	85

10.3.3.	Cascaded Mixers	86

10.4.	SSRC Identifier Allocation and Use	86

10.4.1.	Probability of Collision	86

10.4.2.	Collision Resolution and Loop Detection	87

10.5.	Security	89

10.6.	RTP over Network and Transport Protocols	89

10.7.	Summary of Protocol Constants	90

10.7.1.	RTCP packet types	90

10.7.2.	SDES types	90

10.8.	Appendix A Algorithms:	92

10.9.	Bibliography	92

11.	Annex B: RTP Profile(Normative)	94

11.1.	Introduction	94

11.2.	RTP and RTCP Packet Forms and Protocol Behavior	94

11.3.	Payload Types	94

11.4.	Audio	95

11.4.1.	Encoding-Independent Recommendations	95

11.4.2.	Guidelines for Sample-Based Audio Encodings	96

11.4.3.	Guidelines for Frame-Based Audio Encodings	96

11.4.4.	Audio Encodings	96

11.5.	Video	97

11.6.	Payload Type Definitions	97

11.7.	Port Assignment	98

12.	Annex C: RTP payload format for H.261 video streams (Normative)	98

12.1.	Introduction	98

12.2.	Structure of the packet stream	99

12.2.1.	Overview of the ITU-T recommendation H.261	99

12.2.2.	Considerations for packetization	99

12.3.	Specification of the packetization scheme	100

12.3.1.	Usage of RTP	100

12.3.2.	Recommendations for operation with hardware codecs	102

12.3.3.	Packet loss issues	102

12.3.4.	Use of optional H.261-specific control packets	102

12.3.5.	control packets definition	103

12.4.	BIBLIOGRAPHY	104

13. Annex D: RTCP Extension for H.225.0	104

14.	Appendix A: RTP/RTCP(Informative)	106

15.	Appendix B: RTP Profile(Informative)	106

16.	Appendix C: H.261 Packetization(Informative)	106

17. Appendix D (Informative)	106

17.1. TCP/IP/UDP	106

15.1.1 Discovering the Gatekeeper	106

15.1.2 Endpoint to Endpoint Communications	106

17.2. SPX/IPX	107

15.2.1 Discoverying the Gatekeeper	107

15.2.2 Endpoint to Endpoint Communication	107

��

�autonumlgl �� Scope

This recommendation describes the means by which audio, video, data, and control are associated, coded, and packetized for transport between H.323 terminals on a non-guaranteed quality of service LAN, or between H.323 terminals and an H.323 gateway, which in turn may be connected to H.320, H.324, or H.310/H.321 terminals on N-ISDN, GSTN, or B-ISDN respectively. This gateway, terminal descriptions, and procedures are described in H.323 while H.225.0 covers protocols and message formats. Communication via an H.323 gateway to an H.322 gateway for guaranteed quality of service (QOS) LANs and thus to H.322 endpoints is also possible.

H.225.0 is intended to operate over a variety of different LANs, including IEEE 802.3, Token Ring, etc.. Thus, H.225.0 is defined as being above the transport layer such as TCP/IP/UDP, SPX/IPX, etc.. Specific profiles for particular transport protocol suites are included in Appendix DAnnex A of this recommendation. Thus, the scope of H.225.0 communication is between H.323 terminals and H.323 gateways on the same LAN, using the same transport protocol. This LAN may be a single segment or ring, or it logically could be an enterprise data network comprising multiple LANs bridged or routed to create one interconnected network. It should be emphasized that operation of H.323 terminals over the entire Internet, or even several connected LANs may result in poor performance. The possible means by which quality of service might be assured on this LAN network, or on the Internet in general is beyond the scope of this recommendation. However, H.225.0 provides a means for the user of H.323 equipment to determine that quality problems are the result of LAN congestion, as well as procedures for corrective actions. It is also noted that the use of multiple H.323 gateways connected over the public ISDN network is a straightforward method for increasing quality of service.

H.323/H.225.0 are intended to extend H.320/H.221 conferences/connections onto the non-guaranteed QOS LAN environment. As such the primary conference model� is one with size in the range of a few participants to a few thousand, as opposed to large-scale broadcast operations, with strong admission control, and tight conference control.

H.225.0 makes use of RTP/RTCP(Real-timeReal Time Transport Protocol/Real-Time TransportReal Time Control Protocol) for media stream packetization and synchronization for all underlying LANs (See Annex A, B, and C). Please note that the usage of RTP/RTCP as specified in H.225.0 is not tied in any way to the usage of TCP/IP/UDP. H.225.0 assumes a call model where initial signaling on a non-RTP transport address is used for call establishment and capability negotiation (see H.323 and H.245), followed by the establishment of one or more RTP/RTCP connections. H.225.0 contains details on the usage of RTP/RTCP.

In H.221, audio, video, data, and control are multiplexed into one or more synchronized physical SCN calls. On the LAN side of an H.323 call, none of these concepts apply. There is no need to carry from the SCN side the H.221 concept of a P*64 Kbs call, e.g. 2 by 64 Kbps, 3 by 64 Kbps, etc. Thus, on the LAN side, for example, there are only single "connection" calls with a maximum rate limited to 128 kbps, not 2 * 64 kbps fixed rate calls. Another example has single "connection" LAN calls with a maximum rate limited to 384 kbps interworking with 6 * 64 kbps on the WAN side�. The primary rationale of this approach is to put complexity in the gateway rather than the terminal and to avoid extending onto the LAN features of H.320 that are tightly tied to ISDN unless this is necessary.

In general, H.323 terminals are not aware directly of the H.320 transfer rate while interworking through an H.323 gateway; instead, the gateway uses H.245 FlowControlCommand messages to limit the media rate on each logical channel in use to that allowed by the H.221 multiplex. The gateway may allow the LAN side video rates to substantially underrun the WAN side rates (or the reverse) though the usage of a rate reducing function and H.261 fill frames; the details of such operations are beyond the scope of H.323/H.225.0. Note that the H.323 terminal is indirectly aware of the H.320 transfer rates via the video maximum bit rate fields in H.245, and the data maximum bit rate fields in H.245, and shall not transmit at rates that exceed these rates.

H.225.0 is designed so that, with an H.323 gateway, interoperability with H.320(1990), H.320(1993), and H.320(1996) terminals is possible. However, some features of H.225.0 may be directed toward allowing enhanced operations with future versions of H.320. It is also possible that the quality of service on the H.320 side may vary based on the features and capabilities of the H.323 gateway.

�

�embed MSDraw * mergeformat ���

Figure 1/H.225.0

Scope of H.225.0

The general approach of H.225.0 is to provide a means of synchronizing packets that makes use of the underlying LAN/transport facilities. H.225.0 does not require all media and control to be mixed into a single stream, which is then packetized. The framing mechanisms of H.221 are not utilized for the following reasons:

�symbol 183 \f "Symbol" \s 10 \h��	Not using H.221 allows each media to receive different error treatment as appropriate.

�symbol 183 \f "Symbol" \s 10 \h��	H.221 is relatively sensitive to the loss of random groups of bits; packetization allows greater robustness in the LAN environment.

�symbol 183 \f "Symbol" \s 10 \h��	H.245 and Q.931 can be sent over reliable links provided by the LAN.

�symbol 183 \f "Symbol" \s 10 \h��	The flexibility and power of H.245 as compared to H.242.

�autonumlgl �� References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; all users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.

1.	CCITT Recommendation G.711, Pulse Code Modulation of 3kHz Audio Channels, November 1988.

	

2.	CCITT Recommendation G.722, 7kHz Audio Coding within a 64 Kbit/s Channel, November 1988.

	

3.	CCITT Recommendation G.728, Coding of Speech at 16 Kbit/s Using Low-delay Code Excited Linear Prediction (LD-CELP), May 1992.

4.	ITU-T Recommendation G.723 (1995) - Dual Rate speech coder for multimedia communication transmitting at 5.3 and 6.3 kit/sec.

5.	ITU-T Recommendation G.729 (1995) - TBP.

	

6.	ITU-T Recommendation H.221(1993)�, Frame Structure for a 64 to 1920 Kbit/s channel in audiovisual teleservices.

	

7.	ITU-T Recommendation H.230(1993)�, Frame Synchronous Control and Indication Signals for Audiovisual Systems, December 1990

	

8.	ITU-T Recommendation H.233(1993) Confidentiality System for Audiovisual Services, March 1993.

	

9.	ITU-T Recommendation H.242(1993)�, System for Establishing Communication Between Audiovisual Terminals Using Digital Channels up to 2 Mbit/s.

	

10.	ITU-T Recommendation H.243(1993), Procedures for Establishing Communication Between Three or More Audiovisual Terminals using Channels up to 2 Mbit/sec.

	

11.	ITU-T Recommendation H.320(1993)�, Narrowband Visual Telephone Systems and Terminal Equipment.

	

12.	ITU-T Recommendation T.122(1993), Multipoint Communication Service for Audiographics and Audiovisual Conferencing Service Definition.

	

13.	ITU-T Recommendation T.123(1993), Protocol Stacks for Audiovisual and Audiographic Teleconference Applications.

	

14.	ITU-T Recommendation T.125(1994), Multipoint Communication Service Protocol Specification.

	

15.	ITU-T Recommendation H.321 (1995): Adaptation of H.320 Visual Telephone Terminals to B-ISDN Environments.

16.	ITU-T Recommendation H.322 (1995): Visual Telephone Systems and Terminal Equipment for Local Area Networks which Provide a Guaranteed Quality of Service.

17.	ITU-T Recommendation H.324 (1995): Terminal for Low Bitrate Multimedia Communications".

18.	ITU-T Recommendation H.310 (1996): Broad-band Audiovisual Communication Systems and terminals.

	

19.	 ITU-T Recommendation Q.931 (1993), ISDN User-Network Interface Layer 3 Specification for Basic Call Control

20.	 ITU-T Recommendation Q.932 (1993), Generic Procedures for the Control of ISDN Supplementary Services

	

21.	ITU-T Recommendation X.680 (1994), “Information Technology - Abstract Syntax Notation One (ASN.1) Specification of Basic Notation.”

22.	ITU-T Recommendation X.691 (1994), “Information Technology - ASN.1 Encoding Rules - Specification of Packed Encoding Rules (PER).”

23.	ITU-T Recommendation H.245 (1995), “Control Protocol for MultiMedia Communication.”

24.	ITU-T Recommendation H.24I (in preparation), “Interoperation Between H.242 terminals and H.245 terminals.” ITU-T Recommendation E.164 (1991), "Numbering Plan for the ISDN Era."

25.	ISO/IEC DIS 10646-1:1193 “Information Technology -- Universal Multiple Octet Coded Character Set (UCS) -- Part I: Architecture and basic multilingual plane,”

26. ITU-T Recommendation Q.950: Digital Subscriber Signaling System No. 1 (DSS 1) - Supplementary Services Protocols, Structure, and General Principles,

27.	ITU-T Recommendation H.261(1993)�, Video Codec for AudioVisual Services at px64 kbps

�autonumlgl �� Definitions

See definitions in H.323. In H.323 the term “endpoint” is used to refer to terminals, gateways, and MCUs as elements that are capable of receiving or initiating calls. In H.225.0 the term terminal is often used in a general way in descriptions of call setup, and should be understood as referring to an element that can take part in call setup, including a gateway or MCU

�autonumlgl ��	Conventions

In this document, “shall” refers to a mandatory requirement, while “should” refers to a suggestedrecommended but optional feature or procedure. The term “may” refers to an optional course of action without expressing a preference.

When a term such as “MCU” is used, an H.323 MCU is referred to. If an H.231 MCU is intended, this will be explicitly noted.

In this document, kilobits/sec is abbreviated Kbits/sec and is measured in units of 1000. Thus, 64 Kbits/seckbps is exactly 64,000 bps.

Unless otherwise specified, the aligned variant PER encoding of ASN.1 shall be used for all ASN.1 specified in this document.

Q.931 messages are ALL CAPS; ASN.1 is in bold.

�autonumlgl ��	Abbreviations

�AUTONUMLGL�	General Abbreviations

BAS �Bit rate Allocation Signal��CIF�Common Intermediate Format��CRV�Call Reference Value��ECS�Encryption Control Signal��FFS�For Further Study��GOB�Group of Blocks��H-MLP�High speed Multi-Layer Protocol ��HSD�High Speed Data��IA5�International Alphabet��IE�Information Element��IETF�Internet Engineering Task Force��IP�Internet Protocol��LAN�Local Area Network��LD-CELP�Low Delay - Code Excited Linear Prediction��LSB�Least Significant Bit��LSD�Low Speed Data��MB�Macro Block (see H.261)��MBE�Multi-Byte Extension��MCC�Multipoint Command Conference��MCN�Multipoint Command Negating��MCS�Multipoint Command Data Symmetrical Data Transmission��MCS�Symmetrical Data TransmissionMultipoint Communciation Service��MCU�Multipoint Control Unit

��MF�MultiFrame��MLP�Multi-Layer Protocol��MPI�Minimum Picture Interval��MSB�Most Significant Bit��NA�Not Applicable��NS�Non-Standard��NSAP�Network Service Access Point��PCM�Pulse Code Modulation��PDU�Protocol Data Unit��QCIF�Quarter Common Intermediate Format��QOS�Quality of Service��RAS�Registration, Admission, and Status��RTP�Real-timeReal Time Transport Protocol��RTCP�Real-timeReal Time Transport Control Protocol��SBE�Single Byte Extension��SC�Service Channel��SCM �Selected Communications Mode��SCN�Switched Circuit Network��TCP�Transport Control Protocol��TSAP�Transport Service Access Point��VCF�Video Command "Freeze Picture Request"��VCU�Video Command "Fast Update Request” ��UDP�User Datagram Protocol��

�AUTONUMLGL�	RAS Message Abbreviations

ARQ�Admissions Request��ACF�Admissions Confirm��ARJ�Admissions Reject��BRQ�Bandwidth Request��BCF�Bandwidth Confirm��BRJ�Bandwidth Reject��DRQ�Disengage Request��DCF�Disengage Confirm��DRJ�Disengage Reject��GRQ�Gatekeeper Request��GCF�Gatekeeper Confirm��GRJ�Gatekeeper Reject��IRQ�Information Request��IRR�Information Request Response��LRQ�Location Request��LCF�Location Confirm��LRJ�Location Reject��RRQ�Registration Request��RCF�Registration Confirm��RRJ�Registration Reject��URQ�Unregistration Request��UCF�Unregistration Confirm��URJ�Unregistration Reject��

�autonumlgl �� Packetization and Synchronization Mechanism

�autonumlgl ��General Approach

Before any calls are made, an endpoint may discover/register with a gatekeeper. If this is the case, it is desirable for the endpoint to know the vintage of the gatekeeper it is registering with. It is also desirable for the gatekeeper to know the vintage of endpoints that register with it. For these reasons, both the discovery and registration sequences contain an H.245 style OBJECT IDENTIFIER that allows the vintage to be determined in terms of the version of H.323 implemented. This sequence also may contain optional non-standard message parts to allow endpoints to establish non-standard relationships. At the end of this sequence, both gatekeepers and endpoints are aware of the version numbers and the non-standard status of each other.

The version number is mandatory and non-standard information is optional in the Setup/Connect sequence described below to allow two endpoints to inform each other of their vintage and non-standard status. Note, however, that all Q.931 messages have a field for an optional non-standard message in the user-to-user information element, and that all RAS channel messages have an optional field for non-standard information. In addition, a non-standard RAS message has been defined that can be sent at any time.

The unreliable channel for registration, admissions, and status messaging is called the RAS channel. The general approach to starting a call is to send a mandatory admission request on the RAS channel�, followed by an initial Setup Message on a reliable channel transport address (this address may have been returned in the admission confirmation message, or may have been known to the calling terminal). As a result of this initial message, a call setup sequence commences based on Q.931 operations with enhancements described below. The sequence is complete when the terminal receives in the Connect message a reliable transport address on which to send H.245 control messages�.

Once the reliable H.245 control channel has been established, additional channels for audio, video, and data may be established based on the outcome of the capability exchange using H.245 logical channel procedures. Also, the nature of the LAN side multi-media conference (centralized vs distributed/multicast) is negotiated on a per connection basis.� This negotiation is performed per media, in the sense that, for example, audio/video may be distributed, while data and control are centralized.

When messages are sent on the reliable H.245 control channel, more than one message may be sent in a single packet as long as whole messages are sent; there shall be no fragmentation of H.245 messages across packets.

H.225.0 terminals shall be capable of sending audio and video using RTP via unreliable channels to minimize delay. Error concealment or other recovery action maymust be applied to overcome lost packets; in general audio/video packets are not re-transmitted since this would result in excessive delay in the LAN environment.� It is assumed that bit errors are detected in the lower layers, and errored packets are not sent up to H.225.0. Note that audio/video and call signaling/H.245 control are never sent on the same channel, and do not share a common message structure. H.225.0 terminals shall be capable of sending and receiving audio and video on separate transport addresses using separate instances of RTP to allow for media-specific frame sequence numbers and separate quality of service treatment for each media. However, an optional mode where audio and video packets are mixed in a single frame which is sent to a single transport address is for further study.

T.120 capabilities are negotiated using H.245, and upon receipt of appropriate messages, T.120 conferences are established using the transport/LAN stacks of T.123 as appropriate. There is no synchronization of T.120 data with the audio/video in RTP, or with the H.245 or Q.931 signaling. T.120 shall be conveyed over the LAN between endpoints on another transport address . Thus, the typical point-to-point, or point-to-gateway link can be expected to have at least seven and up to nine9 TSAP identifiers if T.120 is used. Note that T.120 may require up to four connections using the T.120 TSAP identifier for all four MCS priority levels per T.120 conference the terminal is participating in. Table 1/H.225.0 shows the number of TSAP identifiers used for each media on a point-to-point call. It is also true that a given H.323 terminal may be able to participate in more than one conference at a time, resulting in the use of additional TSAP identifiers. All H.245 logical channels used are uni-directional except for those associated with T.120, which are bi-directional.

	

Number of TSAP

Ids

�Usage of TSAP Ids�Reliable or

Unreliable�Well Known or

Dynamic�Number of

Connections��1.�Audio/RTP�unreliable�dynamic�1 (Note 1)��1�Audio/RTCP�unreliable�dynamic�1 (Note 1)��1�Video/RTP�unreliable�dynamic�1 (Note 1)��1�Video/RTCP�unreliable�dynamic�1 (Note 1)��1�Call Signaling�reliable�well known or

dynamic�1 (Note 2)��1�H.245�reliable�dynamic�1��1�Data (T.120)]�reliable�dynamic�up to 4��1�RAS�unreliable�well known or

dynamic�1(Note 2)��Note 1: If more than one audio channel is desired, additional TSAP identifiers are required. The same applies to video. channels.

Note: 2: if well known TSAP identifiers are used, there can only be a single endpoint per network addressdevice. Also, in the direct call model the caller requires a well known TSAP identifier for the Call Signaling channel RAS channel to start the call.

Table 1/H.225.0

TSAP IDs used by H.225.0 per point-to-point unicast call

Although the transport address for, say, audio and video, may share the same LAN address and differ only by TSAP identifier, some manufacturers may choose to use different LAN addresses for audio and video. The only requirement is that the convention of Annex A/B should be followed in the numbering of TSAP identifiers in the RTP session.�

Table 1/H.225.0 describes the basic case of point-to-point unicast operations between two terminals. To facilitate the construction of gateways, MCUs, and gatekeepers, dynamic TSAP Idsports may be used instead of well known TSAP Ids.ports.. The following Ttable 2/H.225.0 and Table 3/H.225.0 s illustrate an example of TSAP Idport usage for the gateway/MCU case, and for the gatekeeper case.

Number of TSAP

Ids

�Usage of TSAP Ids�Reliable or

Unreliable�Well Known or

Dynamic �Number of

channels��1.�Audio/RTP�unreliable�dynamic�1 per audio stream��1�Audio/RTCP�unreliable�dynamic�1 per audio stream��1�Video/RTP�unreliable�dynamic�1 per video stream��1�Video/RTCP�unreliable�dynamic�1 per video stream��1�Call Signaling�reliable�dynamic(Note 1)�1��1�H.245�reliable�dynamic�1��1�Data (T.120)]�reliable�dynamic�up to 4��1�RAS�unreliable� dynamic(Note 1)�1��

Note 1: See Note 1 1-C offor Table 3/H.225.0 below

Table 2/H.225.0

TSAP IDs used on one MCU/Gateway Port(Unicast)

Number of TSAP

Ids

�Usage of TSAP Ids�Reliable or

Unreliable�Well Known or

Dynamic�Number of

channels��1�Call Signaling�reliable�dynamic

(Note 1)�2 per call(Note 2)��1�H.245�reliable�dynamic�0 or 2 per call(Note 3)��1�RAS�unreliable�well known�1��

Note 1: If the well known TSAP ID is used the gatekeepereway may be limited to a single endpoint per device; therefore dynamic TSAP IDs should be used.

Note 2: 0 for direct call model; 2 for gatekeeper mediated call model

Note 3: 0 for H.245 direct; 2 for H.245 via gatekeeper

Table 3/H.225.0

TSAP IDs useage by H.225.0 gatekeeper per endpoint supporting the gatekeeper mediated call model of Figure 11/H.323 for a point-to-point call

Note that a well-known reliable transport address is used for call setup for the terminal to terminal case, and also for the gatekeeper mediated case. The reliable call signaling connection shall be kept active according to the following rules:

1.	For terminal to terminal call signaling (Figure 9/H.323), either terminal may choose to close the reliable call signaling channel, or to leave it open.

2.	For the gatekeeper mediated call signaling case (Figure 8/H.323), the terminals shall keep the reliable port active throughout the call. However, the gatekeeper may chose to close this signaling channel, but should keep the channel open for calls that involve gateways. This will allow the end-to-end transmission of Q.931 information elements such as display information.

3.	If for some reason the reliable link becomes inactive via a transport level failure or other problem, the link shall be re-opened, and the call shall not be dropped. Call state and the use of the CRV(Call Reference Value from Q.931) is not affected by the closing of the reliable link unless the H.245 channel is also closed, indicating the end of the call.	

Note that more than one H.245 channel may be open at a given time, e.g. an endpoint may be in more than one call/conference at the same time. Note also that within a specific call, a terminal may have more than one channel of the same type open, e.g. two audio channels for stereo audio. The only limitation is that there shall be one and only one H.245 control channel in each direction per point-to-point call.

H.245 logical channel signaling is used to start and stop video, audio, and data protocol usage. This process calls for closing the open channel, and then re-opening with a new mode of operation. As part of the process of opening the channel, before sending the open logical channel acknowledgment the endpoint uses the ARQ/ACF or BRQ/BCF sequence to ensure that sufficient bandwidth is available for the new channel (unless sufficient bandwidth is available from a previous ARQ/ACF or BRQ/BCF sequence). In some cases, the gateway may find that the SCN side mode change occurs more quickly than the LAN side mode change, resulting in the possibility of the loss of audio information. This is discussed in more detail in H.24I, but Tthe gateway may adopt several approaches at the discretion of the manufacturer:

a.	The gateway may transcode audio, thus hiding the SCN mode changes,

b.	The gateway may simply throw away audio information, or

c.	The gateway may operate as an H.231 MCU, thus gaining control over all SCN side mode changes.

No general rule exists concerning whether H.245 or RTP procedures(See Annex A, B, and C) take precedence; each conflict and its resolution is specifically mentioned in this document.

Each H.245 logical channel shall be on a separate TSAP Identifier; there is currently no provision for running multiple H.245 logical channels over a single TSAP Identifier. Note also that there is no fixed association between SSRCs and logical channels, H.245 provides this association which may be used for audio/video synchronization.and that SSRCs may change over time. (OPEN)

In general, two types of conference modes of operation on the LAN side are possible: distributed and centralized. It is also possible that different choices may be made for different media, e.g. distributed audio/video and centralized data. Procedures for determining what sort of conference to establish are in H.323; the messages of H.225.0 are intended to support all allowed combinations, noting that distributed control and data are for further study although supported by the H.245 capability signaling.

�autonumlgl ��	Use of RTP/RTCP

The H.225.0 endpoint terminal shall use as a default a separate pair of TSAP IDs for audio and /video and the associated RTCP channel as described in Annex A and B. Optionally, endpoints may chose to use different LAN addresses for audio and video, but for each LAN address the convention of Annex A/B shouldshall be followed in the use of TSAP Ids. Using H.245 signaling, additional audio and video channels (2 TSAP IDs per channel, one for RTP and one for RTCP) may be established if the terminal supports this capability.

An optional capability to use a single transport address for both audio and video is for further study.

Unless an exception is specifically mentioned here, implementations shall follow those of RTP as contained in Annex A unless modified by text in H.2255.0. Implementations shall follow the RTP profile (Annex B) only as specifically mentioned in this document.

RTP translators and mixers are not elements of the H.323 system, and any information about them in Annex A/B shall be regarded as informative. Note that both gateways and MCUs have some aspects of both mixers and translators, and the information in Annex A/B may be helpful in the implementation of gateways and MCUs. However, MCUs are not mixers, and mixers are not MCUs. Note that gateways, for example, on a LAN to LAN call via the gateway may act as translators.

Version (V): Version 2 of RTP shall be used

CSRC Count(CC): Use of the CSRC count in H.225.0 is optional. When not in use, the value of CC shall be zero(0). The CSRC may be used by MCUs to provide information on contributors to the audio sum when distributed audio processing is occurring. Note that there are no capabilities associated with the ability to understand the CSRC count so the MCU/MC has no way of knowing whether and how the terminal in the conference make use of the information.

CNAME: In the simplest case of a point-to-point connection on the LAN, the SSRC is used to identify an audio/video source from a terminal, and the two streams are associated by a CNAME as being supplied by the same endpoint as specified in Annex A. In classical RTP (see Appendix A), the CNAME is a domain name. However, classical RTP has no method to support an endpoint that makes use of more than one CNAME at the same time, e.g. if two pairs of audio/video are supplied from a single endpoint at the same time, perhaps making use of two cameras. However, support of this case is desirable.

Thus, H.323 requires a CNAME that has a part which is thought to be globally unique plus a part that is locally unique. Theses two parts are:

1)The H323_ID, or E.164 address, preferably the E.164 address of the terminal. and,

2)A source number that is incremented per source pair starting at one. {MUST BE BINARY}

Thus, the H.225.0 CNAME consists of the E.164 address or H.323_ID followed by an octet that is a number that increments by 1 for each audio/video pair currently in use per call at the terminal.

When using RTCP, eitherboth RR orand SR packets shallould be sent periodically as described in Annex ARTP. The CNAME SDES message � shall be used. Other SDES messages (see Annex A) are optional, but shall not be used for conference control or conference information when either H.245 and/or T.120 control functions are in use. Information provided by H.245 and/or T.120 shall be regarded as the correct information.

The RTCP BYE message shall not be used for RTP session termination. If an RTP BYE message is received by an H.225.0 system it shall be ignored. The H.323 terminal determines when a call is disconnected via the procedures of H.323. The only use of the RTCP BYE packet is for SSRC collision resolution.

The H.323 LAN terminal, when engaged in any conference, whether point-to-point or multi-point, shall restrict the logical channel bit rate averaged over a period as defined in H.245 by the manufacturer to that signaled in the H.245 FlowControlCommands, H.245 logical channel commands, and the T.120 flow control mechanism.

When the H.323 LAN terminal is connected to an H.323 gateway, the gateway shall use the means of H.245 and T.120 to force the H.323 terminal to transmit at a rate less than or equal to the SCN side media rates and receive at a rate equal or higher than the SCN rate, with the following exceptions:

�symbol 183 \f "Symbol" \s 10 \h��	Control bandwidth on the LAN need not match that in H.221.

�symbol 183 \f "Symbol" \s 10 \h��	Audio bandwidth on the LAN may match that in H.221 on the WAN, but with gateway transcoding a match is not required.

�symbol 183 \f "Symbol" \s 10 \h��	In the case where the gateway is using a rate reducer; the LAN side H.323 terminal shall not exceed match the H.245 signaled rate, which will probably be less than the rate being sent over the WAN.

Implementors should note that any use of multicast operations poses a privacy risk from non-H.323 RTP equipment that can only be overcome by the use of encryption. Encryption for H.323 endpoints is covered in H.323.. Also, the use of uni-cast will reduce the security risk without the use of encryption.

�autonumlgl ��	Audio

Before considering how audio is packetized using RTP, we must consider how it is signaled via H.245, and the relationship of this signaling to RTP. In general, when the audio channel is opened, an H.245 logical channel is opened. H.245 signaling in the AudioCapability structure is given in terms of the maximum number of frames per packet. The frame size for H.225.0 varies with the audio coding in use.

All H.323 terminals offering audio communication shall support G.711. For all frame oriented audio codecs receivers shall signal the maximum number of audio frames they are capable of accepting in a single audio packet. Transmitters may send any whole number of audio frames in each packet, up to the maximum stated by the receiver. Transmitters shall not split audio frames across packets, and shall send whole numbers of octets in each audio packet.

Sample based codecs, such as G.711 and G.722 shall be considered to be frame-oriented, with a frame size of one sample. For audio algorithms such as G.723 which use more than one size of audio frame, audio frame boundaries within each packet shall be signaled in-band to the audio channel.

For audio algorithms which use a fixed frame size(See G.728 and G.729 for the frame size used by each)audio frame boundaries shall be implied by the ratio of packet size to audio frame size; in other words only whole audio frames shall be put in the RTP packet.

Payload Type(PT): Only ITU-T payload types such as (0)[PCMU], (8)[PCMA]}, (9)[G722], and (15)[G728] shall be used. Dynamic payload types as described in Annex B shall be used for any ITU-T payload types not listed in Annex B.

It is recommended that if an interruption in sequence numbers is observed, the receiver may repeat the most recent received soundsoctet such that the amplitudevalue of the repeated soundoctet decays to silence in 10 msec; other similar procedures may be used at the discretion of the manufacturer.

When sending 48/56 Kbit/sec PCM, the H.323 gateway shall pad the extra 1 or 2 bits in each octet, and use the RTP values for PCMA or PCMU(8 or 0). For Mu-law the padding consists of "1" in both the 7th and 8th bit. For A-law the 7th bit shall be 0 and the 8th bit 1. In the reverse direction the H.323 gateway shall truncate 64 Kbit/sec G.711 on the LAN side to fit the G.711 rate being used in H.320. Thus, on the LAN side only 64 Kbit/sec G.711 shall be used.

When sending 48/56 Kbit/sec G.722 toward the LAN, the H.323 gateway shall pad the extra 1 or 2 bits in each octet, and use dynamic RTP payload types as signaled by H.245 to differentiate between 64 Kbps (which uses PT= 9xx) and the reduced rate cases. In the reverse direction the H.323 gateway shall truncate 64 Kbit/sec G.722 on the LAN side to fit the G.711 rate being used in H.320. Thus, on the LAN side only 64 Kbit/sec G.722 shall be used.

If possible, the H.323 terminal should make use of the silence suppression feature of RTP, especially when the conference is multicast. The H.323 terminal shall be able to receive silence compressed RTP streams. Coders may omit sending audio signals during silent periods after sending a single frame of silence, or may send silence background fill frames if such techniques are specified by the audio codec recommendation in use.

�autonumlgl ��	Video messages

Payload Type(PT): Only ITU-T payload types such as that for H.261 shall be used. Dynamic payload types may be used for H.263 or other ITU-T algorithms for which payload types do not exist.

Marker(M): Setting the marker bit at the end of a frame is not required. The use of the marker bit forces a video encoder to perform a look-ahead to the last macro block or GOB for each and every frame of video.

In order to recover from the loss of video packets, H.245’s VideoFastFastVideoUpdatePicture, VideoFastUpdateMB, and VideoFastUpdateGOB shall be supported . used instead Use of the RTCP control packets Full Intra Request (FIR) [send me a full frame] and Negative Acknowledgment (NACK) [Send me certain packetGOBs] is optional, and signaled in H.245 capabilities. The possible use of NACK and FIR is for further study, especially in the multicast case.

In Annex C section 11.3.3 error recovery method (3) may be impractical if the NACK does not arrive within one frame time.

H.261 is packetized on the LAN side as per Annex C. As long as sufficiently large RTP packets are available, fragmentation on MB boundaries by the transmitter is not required. However, if the H.323 terminal fragments H.261 packets on the RTP level, this fragmentation shall occur on MB boundaries. All H.323 terminals shall be able to receive MB fragmented packets asnd well as GOB fragmented packets, or packets with a mix of MBs and GOBs. Note that failure to support MB fragmentation in the transmitter may result in the loss of an entire GOB, and may also lower the packet rate. RTP packets used should not exceed the size of the MTU(Maximum Transfer Unit) on a given LAN to maximize robustness of operation. MBs shall not be split across packets; all packets shall end on a GOB or MB boundary. The H.323 transmitter may choose to fill out a packet containing a small GOB with additional MBs, but this is not required.

To preclude the possibility of corruption in multiple pictures caused by the loss of an RTP packet, the RTP packetizer in an H.323 endpoint shall not include video from more than one picture in an RTP packet.

The RTP packetizer shall not intentionally byte align video at the start of RTP packets. In other words, if EBIT=n in an RTP packet, SBIT in the next RTP packet shall equal n+1, modulo 8. This requirement would avoid possible additional end-to-end delay caused by bit-shifting at a Gateway. This requirement shall apply across picture boundaries.

Note that it is an intrinsic property of RTP that more than one video frame shall not be put into a single RTP level packet. Also note that the alignment of packets with picture headers does not apply to H.261, but may apply to H.263; this is for further study.

Annex DC specifies an H.323 extension to the video packet header that contains an optional octet count. The use of this optional extension is described in Annex DC. Terminals are not required to send this octet count, but shall be able to ignore it if it is sent.

 See Appendix D for LAN specific advice on video packetization.

�autonumlgl ��Data messages

There are no special data messages or formats; T.120 is used on the LAN as per T.123., Centralized vs. distributed data conferencing on the LAN is described in H.323, and is negotiated via H.245.

T.120 flow control on the LAN is managed using LAN protocols when requested by H.245 FlowControlCommands and maxBitRate limits.

See H.323 for the procedures used to connect a running T.120 conference to an H.323 conference, or to add an H.323 call to a T.120 conference.

 The protocol to be used by H.224 on the LAN is for further study.

�autonumlgl �� Initialization and Call Set Message Definitions

This section concerns the definition of messages for call setup, call control, and communications between terminals, gateways, gatekeepers, and MCUs.

�autonumlgl ��	Use of Q.931

Implementations shall follow the Q.931 as specified in H.225.0. Terminals may also support optional Q.931, Q.932, and Q.95x messages. The use of such messages is for further study. The Q.931 messages shall contain all of the mandatory information elements and may contain any of the optional information elements as defined in Q.931 as described in H.225.0. Note that the H.323 endpointterminal, may, according to Q.931, ignore all optional messages it does not support without harming interoperability, but shall respond to an unknown message with a STATUS message.

Each H.225.0 end point shall be able to receive and identify an incoming Q.931 message as such. It shall be capable of processing the mandated Q.931 messages; it may be capable of processing the optional Q.931 messages. In any case, each H.225.0 endpoint shall be able to ignore messages unknown to it without disturbing operation.

Each H.225.0 endpoint shall be able to interpret and generate the information elements mandated in the following for the respective Q.931 messages. It may interpret and generate the optional information elements as defined below as well. It also may interpret other information elements of Q.931 or other Q-series protocols. The end points shall be able to ignore unknown information elements contained in a Q.931 message without disturbing operation.

Intermediate systems (gateways and gatekeepers) shall follow the rules below with regard to Q.931 optional messages and information elements:

	1)The gateway should and the /gatekeeper shall forward all information elements (optional or mandatory) after appropriate modification associated with mandatory Q.931 messages either from the terminal to the gateway/terminal or in the reverse direction. This includes such information elements as user-to-user information and the display information.

	2)A gateway shouldhall forward all Q.931 optional messages and information elements in both directions. If the call signaling channel is not kept up by the gatekeeper, this is not possible.

	3) As long as the Q.931 call signaling channel is up, a gatekeeper shall forward all Q.931 optional messages and information elements in both directions. If the call signaling channel is not kept up by the gatekeeper, this is not possible.

In this version of H.225.0, all references are to the 1993 version of Q.931/Q.932. The procedures of Q.931/Section 3.1 for circuit mode connection setup are followed. However, the implementor is reminded that although "bearer" is being signaled for, no actual "B-channels" of the ISDN type exist on the LAN side. Successful completion of the "call" results in an end-to-end reliable channel supporting H.245 messaging. Actually "bearer" setup is done using H.245. However, the use of Q.931 on the LAN side enables interworking with Q.931 on the WAN side as well as providing a well-tested framework for general connection oriented calling features.

In general, the symmetric procedures of Annex D of Q.931 are used. This implies that the Q.931 state machine is followed as per Annex D of Q.931 with the exception that the procedure of D.3(Call Collisions) shall not be followed; recovery from this glare condition is left to the application layer). However, the gatekeeper may act as a Q.931 NETWORK to optionally support various of the Q.95x supplementary services. The details of such procedures are for further study; the ability to treat the gatekeeper as a NETWORK is associated with support of the Q.95x supplementary services.

Endpoints not supporting Q.931 shifted code sets shall ignore all Q.931 messages using such methods.

The following table shows what messages are mandatory and optional for H.323/H.225.0 call setup using Q.931 on the LAN:

Call Establishment Messages�Transmit(M, F, O, CM)��Receive and act onunderstand

(M, F, O�, CM)��Alerting�MO�MO��Call Proceeding�O�CM�O��Connect�M�M��Connect Acknowledge�FO�FO��Progress�OF�O��Setup�M�M��Setup Acknowledge.�O�O������Call Clearing Messages����Disconnect�F�FO��Release�FO�FM��Release Complete.�M��M������Call Information Phase Messages����Resume�O�O��Resume Acknowledge�O�O��Resume Reject�O�O��Suspend�O�O��Suspend Acknowledge�O�O��Suspend Reject�O�O��User Information�O�O������Miscellaneous Messages����Congestion Control �F�F��Information�O�O��Notify�O�O��Status �M��MO��Status Inquiry�O�M������Q.932 Messages����Facility�M�M��Hold�O�O��Hold Acknowledge�O�O��Hold Reject�O �O ��Retrieve�O �O ��Retrieve Acknowledge�O �O ��Retrieve Reject�O �O ��

Table 4/X.225.0

H.225.0 Usage of Q.931/2 Messages

�autonumlgl ��	Common Q.931 Information Elements

�autonumlgl ��	Header Information Elements

For all Q.931 messages, there are three common fields that are mandatory in addition to the message type that are described in this section.

�autonumlgl ��	Protocol Discriminator

As defined in subclause 4.2/Q.931

	Shall be set to 08H — this identifies the message as Q.931/I.451 user-network message 	(encoded following Figure 4�2/Q.931). If a gatekeeper is acting as a network to supply supplementary services, it may be appropriate to use another value. This is for further study.

�autonumlgl ��	Call reference

As defined in subclause 4.3/Q.931

A call reference value length of two octets shall be supported by any H.323 end point.

The call reference value is chosen at the side originating the call and has to be locally unique. For subsequent communication, the calling and the called side shall use this call reference value in all the messages belonging to this particular call.

The value is encoded following to Figure 4-5/Q.931 for a two-octet call reference. The most significant octet of the reference value is always encoded in octet number 2.

Note that the CRV is only unique on a particular part of a call, e.g. between two terminals, or between a terminal and a gatekeeper. The conference ID is globally unique within a conference, including a point-to-point call. IfHowever, that if a given terminal has two calls in the same conference, each shallwill have the same conference ID but different CRVs.

The high order bit of the CRV shallmay be set according to the procedures as described in Q.931

�autonumlgl ��	Message Type

The message type is encoded according to Figure 4-6/Q.931 using the values specified in Table 4�2/Q.931. H.225.0 specific extensions are for further study.

�autonumlgl ��	Message-specific information elements

The general encoding rules for the following information elements are defined in section 4.5.1 of Q.931 and Table 4-3/Q.931. These rules shall be followed. The escape mechanism (Figure 4-8/Q.931) is optional.

�autonumlgl ��	Bearer Capability

This information element is encoded according to Figure 4-11/Q.931 and Table 4-6/Q.931. If this information element is received in a LAN-to-LAN call it may be ignored by the receiver. The following applies to the use of the various fields of this information element (the octet number references refer to Figure 4-11/Q.931):

Information transfer capability (octet #3)

-	The extension bit (bit 8) shall be set to ‘1’.

-	The coding standard (bits 6, 7) shall be set to ‘00’ indicating ‘ITU-T’.

-	Information transfer capability (bits 0 - 5):

-	For calls originating from an ISDN end point the information indicated to the gateway shall be forwarded. Note: This is to allow some advance information about the nature of the connection to be forwarded to the H.323 end point, e.g. voice only vs. data vs. video; this would have an impact on the bandwidth required as well as on the ability/willingness to accept the call or not }

-	Calls that originate from an H.323 endpoint shall use this field to indicate their wish to place an audiovisual call. Therefore, the field shall be set either to ‘unrestricted digital information’, i. e. ‘01000’ or to ‘restricted digital information’, i. e. ‘01001’. If a speech only call is to be placed, the H.323 terminal shall set the information transfer capability to either ‘speech’ (i.e. ‘00000’) or to ‘3.1 kHz audio’ (i.e. ‘10000’).

Extension bit for octet #4 (bit 8)

-	Shall be set to ‘0’ if the information transfer rate is set to ‘multirate’; shall be set to ‘1’ otherwise.

Transfer Mode — octet #4 (bits 6, 7)

-	Shall specify ‘circuit mode’, value ‘00’.

Information transfer rate

-	Shall be encoded following Table 4-6/Q.931 except that the value ‘00000’ (for packet mode) is not permitted unless the gateway is connected to a packet network.

Rate multiplier — octet #4.1

-	Shall be present if information transfer rate is set to ‘multirate’.

-	The extension bit (bit 8) shall be set to ‘1’.

-	The bits 1 - 7 shall indicate the bandwidth needed for the call as defined in the following�(Note, that in contrast to Q.931, a value of ‘0000001’ is allowed here)

-	For a call originating from an ISDN end point the gateway shall simply pass on the information that it receives from the ISDN.

-	For a call incoming from an H.324 end point the gateway shall set the rate multiplier to 01H.

-	For a call incoming from B-ISDN some translation from Q.2931 to Q.931 needs to be performed.�This is for further study.

-	For a call originated from an H.323 end point, this shall be used to indicate the bandwidth to be used for this call. If the called system is another H.323 end point, this value may reflect the bandwidth to be used on the LAN but the receiving terminal is not required to follow this information. If a gateway is involved, then this value shall reflect the number of external connections to be set up. The bandwidth needed for the call is the bandwidth needed on the SCN side, and may or may not match the bandwidth allowed on the LAN by the ACF/BCF messages.�

Layer 1 protocol — octet #5

-	The extension bit (bit 8) shall be set to ‘1’.

-	Bits 6 and 7 shall indicate the layer one identifier, i. e. ‘01’

-	Bits 1 through 5 shall indicate the layer one protocol.

-	The allowed values are G.711 (A-law ‘00011’ and MuLaw ‘00010’) to indicate a voice-only call and H.221/H.242 (‘00101’) to indicate an H.323 videophone call.�

Octets #5a, #5b, #5c, #5d shall not be present.

Layer 2 protocol identifier — octet #6

-	Shall not be present.

Layer 3 protocol identifier — octet #7

-	Shall not be present.

�autonumlgl ��	Call identity

The possible use of the call identity IE is for further study. This study should consider multi-stage dialing, including terminal -> gatekeeper -> terminal and terminal -> gateway -> terminal, and loose source routing.

�autonumlgl ��	Call state

This information element is encoded following Figure 4-13/Q.931.

Octet #3 Coding Standard (bits 8-7)

-	 Set to "00" for CCITT(ITU) standardized coding

Call State Value (octet #3, bits 1-6)

- Set as per Table 4-8/Q.931 but do not use the global interface state values. Values are interpreted as User State as per use of Q.931 Annex D. Note that most of the listed codes will not be generated by an H.323 terminal.

�autonumlgl ��	Called party number

This information element is encoded following Figure 4-14/Q.931 and Table 4-9/Q.931.

Octet #3 Extension (bit 8)

-	Set to ‘1’.

Type of number (octet #3, bit 5-7)

-	Encoded following the values and rules of Table 4-9/Q.931.

Numbering plan identification (octet #3, bit 1-4)

-	Encoded following the values and rules of Table 4-9/Q.931. If set to “1001” in a LAN originated call, this indiates that (1)the E.164 address is not present in SETUP, and (2)the call will be routed via an H323_ID or transport address in the user-to-user information.

Number ”digits”

-	Any number of IA5 characters, according to the formats specified in the appropriate numbering/dialling plan.

�autonumlgl ��	Called party subaddress

Use as per Q.931.

�autonumlgl ��	Calling party number

This information element is encoded following Figure 4-16/Q.931 and Table 4-11/Q.931.

Octet #3 Extension (bit 8)

-	Set to ‘1’.

Type of number (octet #3, bit 5-7)

-	Encoded following the values and rules of Table 4-9/Q.931.

Numbering plan identification (octet #3, bit 1-4)

-	Encoded following the values and rules of Table 4-9/Q.931. . If set to “1001” in a LAN originated call, this indiates that (1)the E.164 address is not present in SETUP, and (2)the call will be routed via an H323_ID or transport address in the user-to-user information

Octet #3a

-	Shall not be present.

Number ”digits”

-	Any number of IA5 characters, according to the formats specified in the appropriate numbering/dialling plan.

�autonumlgl ��	Calling party subaddress

Use as per Q.931.

�autonumlgl ��	Cause

Optional for a H.323 entity. If received via a gateway from the SCN, the rules defined in Q.850 (add to ref section) apply. Note that either Cause or RelCompReason is mandatory for RELEASE COMPLETE.

�autonumlgl ��	Channel identification

Use is for further study; may be used to provide feedback on multiple call attempts.

�autonumlgl ��	Congestion level

Shall not be used.

�autonumlgl ��	Date/time

Encoded following Figure 4-21/Q.931.

�autonumlgl ��	Display

Encoded following Figure 4-22/Q.931. The maximum length of the entire information element is 82 octets.

�autonumlgl ��	Facility

Encoded following Figure 8-2/Q.932 and Table 8-5/Q.932. No restrictions apply.

The Facility IE PDU shall be formed according to ROSE (uses X.208 [Specification of ASN.1] and X.209 [Specification of basic encoding rules for ASN.1]) as defined in Q.932 and Q.952.

For the call forwarding case, the ROSE invoke component shall be completed as follows:

	invokeIdentifier = sequence number

	operationValue = callRerouting

	argument =

	{

		reroutingReason = cd			// cd = call deflection

		calledAddress = forwarded-to E164	// get alias from Facility-UUIE

		reroutingCounter = x

	}

The Facility-UUIE will be encapsulated within the ROSE PDU as defined in Q.932. If the forwarded-to endpoint cannot be specified with an E.164 address, the forwarding terminal shall supply either the alternativeAddress or alternativeAliasAddress.

In cases unique to H.323 (i.e., the FacilityReason codes found under the Facility-UUIE description found in H.225.0), the reroutingReason will be cd and the reason of the Facility-UUIE will contain the actual reason for the deflection. This means that the receiver of the Facility message must always check the Facility-UUIE reason.

To instruct an endpoint to call a different endpoint because the calling endpoint wishes to join a conference and the called endpoint does not have the MC, the Facility IE would be completed in nearly the same manner as for forwarding. The conferenceID shall indicate the conference to join and the reason in the Facility-UUIE shall be routeCallToMC.

To instruct the calling endpoint to signal the called endpoint through the called endpoint’s gatekeeper, the Facility IE would be completed in nearly the same manner as for forwarding. The reason in the Facility-UUIE shall be useMyGatekeeper.

Possible extensions for H.225.0 are for further study.

�autonumlgl ��	High layer compatibility

FFSShall not be used.

�autonumlgl ��	Keypad facility

Encoded following Figure 4-24/Q.931.

�autonumlgl ��	Low layer compatibility

FFSShall not be used.

�autonumlgl ��	More Data

Shall not be used.

�autonumlgl ��	Network-specific facilities

Shall not be used.

�autonumlgl ��	Notification indicator

Encoded following Figure 4-28/Q.931 and Table 4-19/Q.931.

�autonumlgl ��	Progress indicator

Encoded following Figure 4-29/Q.931 and Table 4-20/Q.931.

This information element is only required for interfacing an H.323 terminal to an ISDN- and ATM-based terminal where detailed call proceeding information is available. In this case, the gateway shall forward this information to the H.323 terminal. The H.323 end system need not interpret this information element.

If this information element is generated by an H.323 terminal, the following restrictions apply:

Coding standard (octet #3, bit 6,7)

-	Shall indicate ‘ITU-T’ (‘00’).

Location

-	Following Table 4-20/Q.931.

-	The values ‘user’ (‘0000’), ‘private network serving the local user’ (‘0001’), and ‘private network serving the remote user’ (‘0101’) are permitted.

Progress description

-	Following Table 4-20/Q.931.

�autonumlgl ��	Repeat indicator

Shall not be used.

�autonumlgl ��	Restart indicator

Shall not be used.

�autonumlgl ��	Segmented message

Shall not be used. Note that there is no critical upper limit on the message size in H.323/H.225.0.

�autonumlgl ��	Sending complete

Encoded following Figure 4-33/Q.931.

No restrictions apply.

�autonumlgl ��	Signal

Encoded following Figure 4-34/Q.931 and Table 4-24/Q.931.

No restrictions apply.

�autonumlgl ��	Transit network selection

Shall not be used.

�autonumlgl ��	User-user

Encoded following Figure 4-36/Q.931 and Table 4-26/Q.931.

The user-user information element shall be used by all H.323 entities to convey H.323-related information. Actual user-user information to be exchanged only between the involved terminals is nested in the H323-UserInformation PDU (to which no restrictions apply).

The following restrictions apply:

Protocol discriminator

-	Shall indicate X.208/X.209 (ASN.1) coded user information (‘00000101’).��Note: This is taken from the 1993 revision of Q.931 that references the earlier revisions of ASN.1. The correct references to ASN.1 are X.680 (syntax) and X.691 (PER).

User information

-	Shall contain an ASN.1 structure (TDB) that — besides the H.323 relevant information — includes the actual user data e. g. as follows. The ASN.1 is encoded using the basic aligned variant of the packed encoding rules as specified in X.691.

	H323-MESSAGES DEFINITIONS AUTOMATIC TAGS ::=

	BEGIN

�H323-UserInformation ::= SEQUENCE		-- root for all Q.931 related ASN.1�{�	h323-uu-pdu	H323-UU-PDU,�	user-data		SEQUENCE�			{�				protocol-discriminator	INTEGER (0..255),�				user-information		OCTET STRING (SIZE((1..131)),

…�			} OPTIONAL,�	...�}

-	H323-UU-PDU ::= 	SEQUENCE�{

		h323-message-body ::= CHOICE

		{�		setup		Setup-UUIE,�		callProgress	CallProgress-UUIE,�		connect		Connect-UUIE,�		alerting		Alerting-UUIE,

			userInformation	UI-UUIE,

			releaseComplete	ReleaseComplete-UUIE,

			connectAck	ConnectAck-UUIE-UUIE,

			facility		Facility-UUIE,�		�		...

		}

		nonStandardData		NonStandardParameter OPTIONAL,

		...�}	

-	For the user-information field the rules specified in section 4.5.30 of Q.931 apply.

�

�autonumlgl ��	Q.931 Message details

Note that the lengths of the information elements specified in the tables below do refer to messages that are generated by H.323 terminals only. Regardless of the specified sizes, messages forwarded from the SCCSN side may have different (larger) sizes.

Also note that the information elements specified below as mandatory, optional, or forbidden only refers to whether or not H.323 terminate may originate such information elements.

�autonumlgl ��	Alerting

Follow Table 3-2/Q.931 1993 version as modified below in Table A/H.225.0

This message may be sent by the called user to indicate that called user alerting has been initiated. In everyday terms, the "phone is ringing."

Information element�H.225.0 status(M/F/O)�Length in H.225.0��Protocol discriminator�M�1��Call reference�M�3��Message type�M�1��Bearer capability�O�5-6��Channel identification�FFS�NA��Progress indicator�O�2-4��Display�O�2-82��Signal�O�2-3��High layer compatibility�F�NA��User-to-User�M (Note 1)�2-131��

Table 5/H.225.0Alerting

Note 1: The User-to-User IE contains the ASN.1 shown below. The size shown is understood as the size of the user-information octet string and does not include the h323-uu-PDU.

The following information shall be provided in the ASN.1 User-to-User IE:

Alerting-UUIE			::=SEQUENCE

{

	protocolIdentifier	ProtocolIdentifier,		

	destinationInfo		EndpointType,			

	h245Address		TransportAddress OPTIONAL,		

	...

}

protocolIdentifier - set by the called endpoint to the version of H.225.0323 supported. Shall not be set by the gatekeeper.��destinationInfo - Contains a EndpointType to allow the caller to determine whether the call involves a gateway or not.��hH245Address - this is a specific transport address on which the called endpointterminal or gatekeeper handling the call would like to establish H.245 signaling. This address may also be sent in Call Proceeding or Connect. If present the calling endpoint shall open the H.245 control channel; if not the called party shall do so.��

�autonumlgl ��	Call Proceeding

This message may be sent by the called user to indicate that requested call establishment has been initiated and no more call establishment information will be accepted. See Table 6.

Information element�H.225.0 status(M/F/O)�Length in H.225.0��Protocol discriminator�M�1��Call reference�M�3��Message type�M�1��Bearer capability�O�5-6��Channel identification�FFS�NA��Progress indicator�O�2-4��Display�O�2-82��High layer compatibility�F�NA��User-to-User�M�2-131��

TABLE 6/H.225.0

Call Proceeding

The following information shall be provided in the ASN.1 User-to-User IE:

CallProceedingCall Progress-UUIE			::=SEQUENCE

{

	protocolIdentifier	ProtocolIdentifier,				

	destinationInfo		EndpointType,					

	h245Address		TransportAddress OPTIONAL,		

	...

}

protocolIdentifier - set by the called endpoint to the version of H.225.0323 supported. Shall not be set by the gatekeeper.��destinationInfo - Contains a EndpointType to allow the caller to determine whether the call involves a gateway or not.��hH245Address - this is a specific transport address on which the called endpointterminal or gatekeeper handling the call would like to establish H.245 signaling. This address shall be sent even if sent earlier in ALERTING. If present the calling endpoint shall open the H.245 control channel; if not the called party shall do so.��

�autonumlgl ��	Connect

Follow Table 3-4/Q.931, as modified below.

This message shall be sent by the called entity to the calling entity(gatekeeper, gateway, or calling terminal) to indicate call acceptance of the call by the called entity. See Table 7 below.

Information element�H.225.0 status(M/F/O)�Length in H.225.0��Protocol discriminator�M�1��Call reference�M�3��Message type�M�1��Bearer capability�O(Note 1)�5-6��Channel identification�FFS�NA��Progress indicator�O�2-4��Display�O�2-82��Date/Time�O�8��High layer compatibility�F�NA��Low layer compatibility�F�NA��High layer compatibility�F�NA��User-to-User�M (Note 2)�2-131��

Table 7/H.225.0

Connect

Note 1: BC is mandatory if the message is between a terminal and a gateway.

Note 2: The User-to-User IE contains the ASN.1 below.

The following information shall be provided in the ASN.1 User-to-User IE:

Connect-UUIE			::=SEQUENCE

{

	protocolIdentifier	ProtocolIdentifier,				

	hH245Address		TransportAddress OPTIONAL,				

	destinationInfo		EndpointType,					

	conferenceID		ConferenceIdentifier,				

	...

}

protocolIdentifier - set by the called endpoint to the version of H.323 supported��hH245Address - this is a specific transport address on which the called endpointterminal or gatekeeper handling the call would like to establish H.245 signaling. This address shall be sent even if sent earlier in ALERTING or CALL PROCEEDING. If present the calling endpoint shall open the H.245 control channel; if not the called party shall do so.��destinationInfo - Contains a EndpointType to allow the caller to determine whether the call involves a gateway or not.��conferenceID - Will contain a unique number to allow the conference to be uniquely identified from all others as received in the SETUP.��

�autonumlgl ��	Connect Acknowledge

Follow Table 3-6/Q.931 as modified below.

This message shall notmay be sent by the calling entity (terminal, gatekeeper) to indicate receipt of the CONNECT message.

Information element�H.225.0 status(M/F/O)�Length in H.225.0��Protocol discriminator�M�1��Call reference�M�32��Message type�M�1��Display�O�2-82��Signal�O�2-3��User-to-User�M�2-131��

Table 8/H.225.0

ConnectAck-UUIE			::=SEQUENCE

{

	protocolIdentifier	ProtocolIdentifier,				

	...

}

�autonumlgl ��	Disconnect

This message shall not be sent by an H.323 entity. However, it may be forwarded from the network via a gateway. Processing on receipt is optional.

The contents and semantics of a DISCONNECT message received from the network are defined in Table 3-6/Q.931.

�autonumlgl ��	User Information

This message may be sent to provide supplementary information. It may be used to deliver proprietary features.

This message may be sent by an H.323 entity; its processing on receipt is optional.

This message follows Table 3-7/Q.931 with the following modifications:

Information element�H.225.0 status(M/F/O)�Length in H.225.0��Protocol discriminator�M�1��Call reference�M�32��Message type�M�1��Sending complete�O�1��Display�O�2-82��Keypad facility�O�2-34��Signal�O�2-3��Called party number�O�2-*-35��User-to-User�M�2-131��

Table 9/H.225.0

Information Message Content

UI-UUIE	::=SEQUENCE

{

	protocolIdentifier	ProtocolIdentifier,			

	...

}

�autonumlgl ��	Notify

This message may be sent by an H.323 entity. However, it may be forwarded from the network via a gateway. Processing on receipt is optional.

The contents and semantics of a NOTIFY message received from the network are defined in Table 3-8/Q.931.

�autonumlgl ��	Progress

This message may shall not be sent by an H.323 entity. However, it may be forwarded from the network via a gateway. Processing on receipt is optional.

The contents and semantics of a PROGRESS message received from the network are defined in Table 3-9/Q.931.

�autonumlgl ��	Release

This message shall not be sent by an H.323 entity. However, it may be forwarded from the network via a gateway. Processing on receipt is optional.

The contents and semantics of a RELEASE message received from the network are defined in Table 3-10xx/Q.931.

�autonumlgl ��	Release Complete

This message shall be sent by a terminal to indicate release of the call if the reliable call signaling channel is open. Afterwards, the call reference value (CRV) is available for reuse.

The disconnect/release/release complete sequence is not used since the only added value is that a network-to-user information element can be appended to the release message. As this does not apply to the LAN environment, the single step method of sending only Release Complete is used.

Follow Table 3-11/Q.931. The following modifications apply:

Information element�H.225.0 status(M/F/O)�Length in H.225.0��Protocol discriminator�M�1��Call reference�M�32��Message type�M�1��Cause�CM (Note 1)�1��Display�O�2-82��Signal�O�2-3��User-to-User�M�2-131��

Table 10/H.225.0

Release Complete

Note 1: Either the Cause IE or the ReleaseCompleteReason shall be present.

An H.323 entity shall make use of the RejectReason contained in the user-to-user information element. If this message is forwarded from a SCN by a gateway the cause value shall be set as specified in Q.931.

ReleaseComplete-UUIE ::= SEQUENCE

{

	protocolIdentifier	ProtocolIdentifier,

	alternativeAddress	TransportAddress OPTIONAL,

		conferenceID		ConferenceIdentifier,			

	reason			ReleaseCompleteRejectReason OPTIONAL,			

	...

}

ReleaseCompleteRejectReason		::=CHOICE

{

	noBandwidth		NULL,		-- bandwidth taken away or ARQ denied

	gatekeeperResources	NULL,		-- exhausted		

	unreachableDestination	NULL, 	-- no transport path to the destination	

	destinationRejection	NULL,		-- rejected at destination

	invalidRevision		NULL,

	noPermission		NULL,		-- called party’s gatekeeper rejects

	unreachableGatekeeper	NULL,		-- terminal cannot reach gatekeeper for 							 ARQ		

	destinationBusy		NULL,

	notBound		NULL,		-- From local Gatekeeper

	gatewayResources	NULL,

	badFormatAddress	NULL,

	callerNotBound		NULL,		-- Destination Gatekeeper

		

		adaptiveBusy		NULL,		-- call is dropping due to LAN crowding

		inConf			NULL,open		-- no address in AlternativeAddress

		callOtherAddress	NULL,		-- for ad hoc conferencing)

	undefinedReason	NULL,

	...

}	

protocolIdentifier - set by the calling endpoint to the version of H.323 supported��reason - more information on why the call was released.��

�autonumlgl ��	Setup

This message shall be sent by a calling H.323 entity to indicate its desire to set up a connection to the called entity.

Follow Table 3-16/Q.931 as modified below:

Information element�H.225.0 status(M/F/O/CM)�Length in H.225.0��Protocol discriminator�M�1��Call reference�M(Note 2)�2��Message type�M�1��Sending complete�O�1��Repeat indicator�F�NA��Bearer capability�M�5-6��Channel identification�FFS�NA��Progress indicator�F�NA��Network specific facilities�F�NA��Display�O�2-82��Keypad facility�O�2-34��Signal�O�2-3��Calling party number�OM�2-131*��Calling party subaddress�CM(Note 1)�NA��Called party number�OM�2-131*��Called party subaddress�CM(Note 1)�NA��Transit network selection�F�NA��Repeat indicator�F�NA��Low layer compatibility�F�NA��High layer compatibility�F�NA��User-to-User�M�2-131��Note 1: Subaddresses are needed for some SCN call scenarios; they should not be used for LAN side only calls.

Note 2: If an ARQ was previously sent, the CRV used here shall be the same.

Table 11/H.225.0

In the User-user field the following information shall be provided in the ASN.1 User-to-User IE:

Setup-UUIE			::=SEQUENCE

{

	protocolIdentifier	ProtocolIdentifier,				

	h245Address		TransportAddress OPTIONAL,				

	sourceAddress		SEQUENCE OF AliasAddress OPTIONAL,

	sourceoriginatorInfo		EndpointType,						destinationAddress	SEQUENCE OF AliasAddress OPTIONAL,	-- Note(1)

	destCallSignalAddress	TransportAddress OPTIONAL,			-- Note(1)

	destExtraCallInfo	SEQUENCE OF AliasAddress OPTIONAL,	-- Note(12)

	destExtraCRV		SEQUENCE OF CallReferenceValue OPTIONAL,-- Note(12)

	activeMCConf		BOOLEAN,					

	conferenceID		ConferenceIdentifier,				

	conferenceGoal		::= CHOICE					-- Use is FFS

	{

		create		NULL,

		join		NULL,

		invite		NULL,

		...

	} OPTIONAL,

	callServices		QseriesOptions OPTIONAL,

	callType		CallType,

	...

}

Note 1: Both destinationAddress and destCallSignalAddress are not required, but at least one shall be present. There is no absolute rule over which is preferred as this may be site specific, but the E.164 address should be provided if available. It is cautioned that the best results will be obtained by considering the nature of the transport protocols in use.

Note 12: If the destExtraCallInfo is present, a CRV for each call to be made shall be supplied in destExtraCRV. These CRVs will be used to identify any response to each call launched. These procedures are for further study. If the destExtraCRV field is not present, a gateway shall aggregate all call information into into a single response, with the effect that if one call fails on the SCN side, the entire call is treated as a failure.

drotocolIdentifier - set by the calling endpoint to the version of H.323 supported��h245Address - this is a specific transport address on which the calling endpointterminal or gatekeeper handling the call would like to establish H.245 signaling. This should only be provided by the sender if it is capable of handling H.245 procedures before receiving a CONNECT on the Call Signaling channel. ��sourceAddress - contains the H323_IDs for the source; the E.164 number of the source is in the Q.931 part of SETUP. The primary address shall be first.��sourceOriginatorInfo - Contains a EndpointType to allow the called party to determine whether the call involves a gateway or not.��destinationAddress - this is the address the endpointwe wishes to be connected to. It is suggested that either transport address be used or the E.164/H.323_ID style of address. For the direct terminal to terminal case this address is already known so this field is redundant, but it is provided as confirming information.. The primary address shall be first. When calling an endpoint using only an E.164 address, this address shall be placed in the Q.931 IE.��destCallSignalAddress - needed to inform the gatekeeper of the destination terminal’s call signaling transport address; redundant in the direct terminal-to-terminal case but always filled in.��destExtraCallInfo - needed to make possible additional channel calls, i.e. for a 2*64 Kbps call on the WAN side. Shall only contain E.164 addresses. and shall not contain the number of the initial channel.��destExtraCRV - CRVs for the additional SCN calls specified by destExtraCallInfo. Their use is for further study.��activeMCConf - indicates to the gatekeeper of the called terminal that the calling endpointterminal is under the influence of an active MC��conferenceID - unique conference identifier��conferenceGoal - indicates a desire to join an existing conference, start a new conference, or to invite a party to join an existing conference��callServices - provides information on support of optional Q-series protocols to gatekeeper and called terminal.��callType - Using this value, called party's gatekeeper can attempt to determine ‘real’ bandwidth usage. The default value is pointToPoint for all calls; it should be recognized that the call type may change dynamically during the call. and that the final call type may not be known when the SETUP is sent.��

�autonumlgl ��	Setup Acknowledge

This message mayshall not be sent by an H.323 entity. However, it may be forwarded from the network via a gateway. Processing on receipt is optional.

The contents and semantics of a SETUP ACKNOWLEDGE message received from the network are defined in Table 3-16/Q.931.

�autonumlgl �� Status

The STATUS message shall be used to respond to an unknown call signaling message or to a STATUS INQUIRY message.

Follow Table 3-17/Q.931 with the single modification that the CRV is of length 2 octets.

�autonumlgl �� Status Inquiry

The STATUS INQUIRY message may be used to request call status as described in section 8.4.2 of H.323.

Follow Table 3-18/Q.931 with the single modification that the CRV is of length 32 octets.

�autonumlgl ��	Q.932 Message Details

The messages defined in the following are derived from Q.932 (1993). Refer to Q.932 for further details.

The message type information element shall be encoded following the rules of section 8.1 of Q.932.

�autonumlgl ��	Facility

The FACILITY message may be used to request or acknowledge a supplemetary service. It shall be used to provide information on where a call should be directed as part of call transfer or a terminal indicating that the incoming call must go through a gatekeeper.

Follow Table 7-2/Q.932. The following modifications apply:

Information element�H.225.0 status(M/F/O)�Length in H.225.0��Protocol discriminator�M�1��Call reference�M�32��Message type�M�1��Facility�M�8-*��Display�O�2-82��User-to-User�M�2-131��

Table 12/H.225.0: Facility

Facility-UUIE ::= SEQUENCE

{

	alternativeAddress	TransportAddress OPTIONAL,

	alternativeAliasAddress	SEQUENCE OF AliasAddress OPTIONAL,

		conferenceID		ConferenceIdentifier OPTIONAL,			

	reason			FacilityReason,			

	...

}

FacilityReason		::=CHOICE

{

		useMyGatekeeper	NULL,		-- call must use gatekeeper model

							-- gatekeeper is alternativeAddress

		callOtherAddress	NULL,		-- for call transfer

		routeCallToGatekeeper	NULL,

		callForwarded		NULL, (open)

		routeCallToMC		NULL,

		undDefinedReason	NULL,

		...

	},

protocolIdentifier - set by the calling endpoint to the version of H.323 supported��alternativeAddress - this is a specific transport address to which the calling party should direct the call; if present alternativeAliasAddress is not needed. ��alternativeAliasAddress - contains aliases that can be used to re-direct the call; if an alias is provided alternativeAddress is not needed.��conferenceID - unique conference identifier ��reason - more information on why the call was released.��

�autonumlgl ��	Hold

HOLD message is used to put an existing call in hold. Hold Ack is used by the User to indicate that the Hold function has been successfully performed.

Follow Table 7-3/Q.932. The following modifications apply:

Information element�H.225.0 status(M/F/O)�Length in H.225.0��Protocol discriminator�M�1��Call reference�M�2��Message type�M�1��Display�O�2-82��

Table 13/H.225.0: Hold

�autonumlgl ��	Hold Acknowledge

HOLD message is used to put an existing call in hold. Hold Ack is used by the User to indicate that the Hold function has been successfully performed.

Follow Table 7-4/Q.932. The following modifications apply:

Information element�H.225.0 status(M/F/O)�Length in H.225.0��Protocol discriminator�M�1��Call reference�M�2��Message type�M�1��Display�O�2-82��

Table 14/H.225.0 Hold Acknowledge

�autonumlgl ��	Hold Reject

This message is sent to indicate the denial of a request to hold a call.

Follow Table 7-5/Q.932. The following modifications apply:

Information element�H.225.0 status(M/F/O)�Length in H.225.0��Protocol discriminator�M�1��Call reference�M�2��Message type�M�1��Display�O�2-82��Cause�M�4-32��User-user�FFS�*��

Table 15/H.225.0: Hold Reject

�autonumlgl ��	Retrieve

This message shall be sent to request the retrieval of a held call.

Follow Table 7-7/Q.932. The following modifications apply:

Information element�H.225.0 status(M/F/O)�Length in H.225.0��Protocol discriminator�M�1��Call reference�M�2��Message type�M�1��Channel identification�FFS�NA��Display�O�2-82��User-user�FFS�*��

Table 16/H.225.0 Retrieve

�autonumlgl ��	Retrieve Acknowledge

This message is sent to indicate that the Retrieve has been sucessful.

Follow Table 7-8/Q.932. The following modifications apply:

Information element�H.225.0 status(M/F/O)�Length in H.225.0��Protocol discriminator�M�1��Call reference�M�2��Message type�M�1��Channel identification�FFS�NA��Display�O�2-82��User-user�FFS�*��

Table 17/H.225.0: Retrieve AcknowledgeHold Reject

�autonumlgl ��	Retrieve Reject

This message shall be sent to indicate the inability to perform the requested Retrieve.

Follow Table 7-9/Q.932. The following modifications apply:

Information element�H.225.0 status(M/F/O)�Length in H.225.0��Protocol discriminator�M�1��Call reference�M�32��Message type�M�1��Cause�M�4-32��Display�O�2-82��User-user�FFS�*��

Table 18/H.225.0 Retrieve RejectHold Reject

�autonumlgl ��	Q.931 Timer Values

Two Q.931 timers shall be supported:

·	The ”setup timer” (T303/See Q.931, Table 9-1 and Table 9-2)defining how long the calling endpointterminal shall wait for an ALERTING,CALL PROCEEDING, CONNECT, RELEASE COMPLETE or other message from the called endpointtity after it has sent a SETUP message.��This timeout value is shall be 4 seconds.�

·	The ”establishment timer”(T301/see Q.931. Table 9-1 and Table 9-2) defining after which time the calling endpointterminal shall stop waiting for ”ringing” the called endpoint terminal to respondif the called terminal does not ”answer” the call. This timer starts when ALERTINGlerting is received and normally terminates on CONNECT or when the caller terminates the call attempt and sends RELEASE COMPLETE..��This timeout value shall be 180 seconds (3 minutes) or greater

Note that the LAN side values of these timers is the same as that used in the SCN.

Other timers may be supported as part of optional Q.931, Q.932, and Q.95x features.

�autonumlgl ��	 H.225.0 RAS Message Common Parts

This section describes ASN.1 structures that are used in more than one RAS (Registration, Admission, and Status) messages. Some may also be used in the User-to-User part of the Q.931 messages.

requestSeqNum in messages is used to keep track of multiple outstanding requests. Any associated response messages (success or failure) shall have the corresponding requestSeqNum returned with it. Retransmitted messages shall have the same requestSeqNum. RequestSeqNum increments by 1 modulo 65536.

The protocolIdentifier is exactly as in H.245. It is included as part of discovery, registration and Setup/Connect to allow the parties involved to determine the vintage of the implementations involved.

nonStandardParameter: is exactly as in H.245 (see H.245/section 6; the definition is not reproduced here). This parameter is optional in the discovery, registration, and Setup/Connect sequences to allow the parties involved to determine the non-standard status of the endpoints involved. A gatekeeper or gateway is not obligated to pass on nonStandardData it does not support or understand as this might interfere with its operations.

The TransportAddress structure is meant to capture the various transport formats and includes any transport specific scheme in addition to the possibly local reference to a TSAP identifier.

IPv4 and IPv6 addresses shall be encoded with the most significant octet of the address being the first octet in the respective OCTET STRING, e.g. the class B IPv4 address 130.1.2.97 shall have the ‘130’ being encoded in the first octet of the OCTET STRING, followed by the ‘1’ and so forth.

The IPv6 address a148:2:3:4:a:b:c:d shall have the ‘a1’ encoded in the first octet, ‘48’ in the second, ‘00’ in the third, ‘02’ in the fourth and so forth.

IPX addresses, node, netnum, and port shall be encoded with the most significant octet of each field being the first octet in the respective OCTET STRING.

Note that this structure does not use the Transport Address = LAN Address plus TSAP identifier language of H.323. Instead, the terms common in each transport domain are used.

TransportAddress		::=CHOICE (open - octet string vs integer)

{

	ipAddress		SEQUENCE

	{

		ip	OCTET STRING (SIZE(4)),

		port		INTEGER(0..65535)

	},

	ipLooseSourceRoute	SEQUENCE	{

		ip	OCTET STRING (SIZE(4)),

		port		INTEGER(0..65535),.

		route		SEQUENCE OF OCTET STRING(SIZE(4)),

		routing 		CHOICE

		{

			strict	NULL,

			loose	NULL,

			…

		},

		…

	},

	ipxXAddress		SEQUENCE

	{

		node		OCTET STRING (SIZE(6)),

		netnum		OCTET STRING (SIZE(4)),

		port		OCTET STRING (SIZE(2))

	},

	ip6Address		SEQUENCE

	{

		ip	OCTET STRING (SIZE(16)),

		port		INTEGER(0..655354294967295),

		…

	},

	netBios		OCTET STRING (SIZE(16)),

	nsap		OCTET STRING (SIZE(1..20)),

	nonStandardAddressData	NonStandardParameter,	

	...	

}

EndpointType		::=SEQUENCE

{

	

nonStandardData	NonStandardParameter OPTIONAL,

vendor			VendorIdentifier,

gatekeeper		GatekeeperInfo OPTIONAL,BOOLEAN,

	gateway		GatewayInfoBOOLEAN OPTIONAL,

	mcuCU			McuInfoBOOLEAN OPTIONAL, -- mc must be set as well

	terminal		TerminalInfoBOOLEAN,

	mcC			BOOLEAN,	-- shall not be set by itself

	undefinedNode		BOOLEAN,	

	...

}

GatewayInfo		::=SEQUENCE

{

	protocol		SEQUENCE OF SupportedProtocols OPTIONAL,

	nonStandardData	NonStandardParameter OPTIONAL,

	...

}

SupportedProtocols 	::= CHOICE

{

nonStandardData	NonStandardParameter OPTIONAL,

	h310		H310Caps,

	h320		H320Caps,

	h321		H321Caps,

	h322		H322Caps,

	h323		H323Caps,

	h324		H324Caps,

	voice		VoiceCaps,

	t120-only	T120Caps,

	...

}

H310Caps 	::= SEQUENCE

{

nonStandardData	NonStandardParameter OPTIONAL,

	...

}

H320Caps 	::= SEQUENCE

{

nonStandardData	NonStandardParameter OPTIONAL,

	...

}

H321Caps 	::= SEQUENCE

{

nonStandardData	NonStandardParameter OPTIONAL,

	...

}

H322Caps ::= SEQUENCE

{

nonStandardData	NonStandardParameter OPTIONAL,

	...

}

H323Caps ::= SEQUENCE

{

nonStandardData	NonStandardParameter OPTIONAL,

	...

}

H324Caps ::= SEQUENCE

{

nonStandardData	NonStandardParameter OPTIONAL,

	...

}

VoiceCaps ::= SEQUENCE

{

nonStandardData	NonStandardParameter OPTIONAL,

	...

}

T120OnlyCaps ::= SEQUENCE

{

nonStandardData	NonStandardParameter OPTIONAL,

	...

}

McuInfo		::=SEQUENCE

{

	nonStandardData	NonStandardParameter OPTIONAL,

	…

}

TerminalInfo		::=SEQUENCE

{

	nonStandardData	NonStandardParameter OPTIONAL,

	…

}

GatekeeperInfo		::=SEQUENCE

{

	nonStandardData	NonStandardParameter OPTIONAL,

	…

}

VendorIdentifier		::=SEQUENCE

{

	productNumber		OCTET STRING(1..256) OPTIONAL,	-- per vendor

	versionNumber		OCTET STRING(1..256) OPTIONAL,	-- per productNumber

	...

}

The AliasAddress structure is meant to capture the various external address formats that reference a particular transport location on the LAN. When registering an E.164 address with a gatekeeper, an endpoint shall use only the digits 0-9 in the e164 field.

AliasAddress		::=CHOICE

{

	e164			IA5String (SIZE (1..128)) (FROM (“0123456789#*,”)),

OCTET STRING (SIZE(12832)),

	h323_ID			BMPString (SIZE (1..64)),	-- Basic ISO/IEC 10646-1 (Unicode)

OCTET STRING (SIZE(128)),

	...

}	

The QseriesOptions structure supplies information to the gatekeeper or other endpoints concerning the support provided by a terminal for optional Q-series protocols. It is used in the ARQ, SETUP, and RRQ messages.

QseriesOptions			::=SEQUENCECHOICE

{

	q932Full		BOOLEAN,	-- if true, indicates full support for Q.932

	q951Full		BOOLEAN, 	-- if true, indicates full support for Q.951

	q952Full		BOOLEAN, 	-- if true, indicates full support for Q.952

	q953Full		BOOLEAN, 	-- if true, indicates full support for Q.953

 	q954Full		BOOLEAN, 	-- if true, indicates full support for Q.954

 	q955Full		BOOLEAN, 	-- if true, indicates full support for Q.955

	q956Full		BOOLEAN, 	-- if true, indicates full support for Q.956

	q957Full		BOOLEAN, 	-- if true, indicates full support for Q.957

	q954InfoDetails		Q954DetailsInfo,	-- use instead of q954Full

	...

}

Q954Details			::=SEQUENCECHOICE

{

	conferenceCalling	BOOLEAN,

	threePartyService	BOOLEAN,

	...

}

Commonly used values include:

ConferenceIdentifier	::=	OCTET STRING (SIZE (16))

RequestSeqNum	::=	INTEGER (1..65535)

GatekeeperIdentifier	::=	OCTET STRING (SIZE(128))

BandWidth		::=	INTEGER (1.. 4294967295)	-- in 100s of bits

CallReferenceValue	::=	INTEGER (1..65535)

EndpointIdentifier	::=	OCTET STRING (SIZE(128))

ProtocolIdentifier	::=	OBJECT IDENTIFIER	

					-- shall be set to

					-- {itu-t (0) recommendation (0) h (8) 2250323 version (0) 1}

NonStandardParameter	::=SEQUENCE

{

	nonStandardIdentifier	NonStandardIdentifier,

	data			OCTET STRING

}

H221NonStandard		::=SEQUENCE

{	t35CountryCode	INTEGER(0..255),	-- country, as per T.35

	t35Extension		INTEGER(0..255),	-- assigned nationally

	manufacturerCode	INTEGER(0...65535),	-- assigned nationally

	...

}

NonStandardIdentifier		::=SEQUENCE

{

	object			OBJECT IDENTIFIER,

	h221NonStandard	H221NonStandard,

	...

}

The root structure for RAS messages is:

RasMessage	::= CHOICE

{

	gatekeeperRequest	GatekeeperRequest,

	gatekeeperConfirm	GatekeeperConfirm,

	gatekeeperReject	GatekeeperReject,

	registrationRequest	RegistrationRequest,

	registrationConfirm	RegistrationConfirm,

	registrationReject	RegistrationReject,

	unregistrationRequest	UnregistrationRequest,

	unregistrationConfirm	UnregistrationConfirm,

	unregistrationReject	UnregistrationReject,

	admissionRequest	AdmissionRequest,

	admissionConfirm	AdmissionConfirm,

	admissionReject	AdmissionReject,

	bandwidthRequest	BandwidthRequest,

	bandwidthConfirm	BandwidthConfirm,

	bandwidthReject	BandwidthReject,

	disengageRequest	DisengageRequest,

	disengageConfirm	DisengageConfirm,

	disengageReject	DisengageReject,

	locationRequest	LocationRequest,

	locationConfirm		LocationConfirm,

	locationReject		LocationReject,

	infoRequest		InfoRequest,

	infoRequestResponse	InfoRequestResponse,

	nonStandardMessage		NonStandardMessage,		-- See H.245 for ASN.1

	unknownMessage	UnknownMessage,

	...

}

�autonumlgl ��	Required Support of RAS MessagesMNRREReqR

The following table shows the RAS messages are supported by different endpoint types:

RAS Message�Endpoint

(Tx)�Endpoint

(Rx)�Gatekeeper

(Tx)�Gatekeeper (Rx)��GRQ�O���M��GCF��O�M���GRJ��O�M���RRQ�M���M��RCF��M�M���RRJ��M�M���URQ�O�M�O�M��UCF�M�O�M�O��URJ�OF �O�M�O��ARQ�M���M��ACF��M�M���ARJ��M�M���BRQ�M�M�O�M��BCF�M��M�M�O��BRJ�M�M�M�O��IRQ��M�M���IRR�M���M��DRQ�M�M�O�M��DCF�M�M�M�M��DRJ�M(Note 2)�M�M�M��LRQ�O��O�M��LCF��O�M�O��LCRJ��O�M�O��NSM�O�O�O�O��XRS�M�M�M�M��Note 1: M=Mandatory, O=Optional, F=forbidden, CM=conditionally mandatory, blank indicates “Not Applicable”

Note 2: Terminal shall not send DRJ while on a call in response to DRQ from a gatekeeper.

Table 19

Status of RAS Messages

�autonumlgl ��	Terminal and Gateway Discovery Messages

The GRQ message requests that any gatekeeper receiving it respond with a GCF granting it permission to register. The GRJ is a rejection of this request indicating that the requesting endpoint should seek another gatekeeper.

Note that one GRQ is sent per logical endpoint; thus an MCU or a Gateway might send many.

GatekeeperRequest		::=SEQUENCE --(GRQ)

{

	

	requestSeqNum	RequestSeqNum,			

	protocolIdentifier	ProtocolIdentifier,			

	nonStandardData	NonStandardParameter OPTIONAL,	

rasAddress		TransportAddress,			

endpointType		EndpointType,				

	gatekeeperIdentifier	GatekeeperIdentifier OPTIONAL,

	callServices		QseriesOptions OPTIONAL,

	endpointVendor		VendorIdentifier, (pro & con on OPTIONAL)

	endpointAlias		SEQUENCE OF AliasAddress OPTIONAL,

	...

}

requestSeqNum - this is a monotonically increasing number unique to the caller. It should be returned by the called in any messages associated with this specific message.��rasAddress - this is the transport address that this endpoint uses for registration and status messages.��endpointType - this specifies the type(s) of the terminal that is registering (the MC bit shall not be set by itself).��gatekeeperIdentifier - string to identify the gatekeeper that the terminal would like to receive permission to register from. A missing or null string gatekeeperIdentifier indicates that the terminal is interested in any available gatekeeper.��callServices - provides information on support of optional Q-series protocols to gatekeeper and called terminal.��

GatekeeperConfirm	::=SEQUENCE --(GCF)

{

	

	requestSeqNum	RequestSeqNum,

	protocolIdentifier	ProtocolIdentifier,			

	nonStandardData	NonStandardParameter OPTIONAL,

	gatekeeperIdentifier	GatekeeperIdentifier OPTIONAL,

	rasAddress		TransportAddress,

	proposal for priority (open)

	...

}

requestSeqNum - This shall be the same value that was passed in the GRQ by the caller.��gatekeeperIdentifier - string to identify gatekeeper that is sending the GCF.��rasAddress - this is the transport address that the gatekeeper uses for registration and status messages.��

GatekeeperReject		::=SEQUENCE --(GRJ)

{

	

	requestSeqNum	RequestSeqNum,

	protocolIdentifier	ProtocolIdentifier,			

	nonStandardData	NonStandardParameter OPTIONAL,

	gatekeeperIdentifier	GatekeeperIdentifier OPTIONAL,

	rejectReason		GatekeeperRejectReason,

	...

}

GatekeeperRejectReason		::=CHOICE

{

	rResource Unavailable		NULL,

	tTerminal Excluded		NULL,	- permission failure, not a resource 							failure

	iInvalid Revision			NULL,

	uUndefined Reason		NULL,

	...

}

requestSeqNum - This shall be the same value that was passed in the GRQ by the caller.��gatekeeperIdentifier - string to identify gatekeeper that is sending the GRJ.��rejectReason - codes for why the GRQ was rejected by this gatekeeper.��

�autonumlgl ��	Terminal and Gateway Registration Messages

The RRQ is a request from a terminal to a gatekeeper to register. If the gatekeeper responds with a RCF, the terminal shall use the responding gatekeeper for future calls. If the gatekeeper responds with a RRJ, the terminal must seek another gatekeeper to register with.

RegistrationRequest		::=SEQUENCE --(RRQ)

{

	requestSeqNum	RequestSeqNum,				

	protocolIdentifier	ProtocolIdentifier,						nonStandardData	NonStandardParameter OPTIONAL,	

	discoveryCompleteRequest	BOOLEAN,					

callSignalAddress	SEQUENCE OF TransportAddress,		

	rasAddress		SEQUENCE OF TransportAddress,		

terminalType		EndpointType,					

	terminalAlias		SEQUENCE OF AliasAddress OPTIONAL,		

	gatekeeperIdentifier	GatekeeperIdentifier OPTIONAL,

	endpointVendor		VendorIdentifier,

	...

}

requestSeqNum -. this is a monotonically increasing number unique to the caller. It should be returned by the called in any response associated with this specific message.��protocolIdentifier - identifies the vintage of the calling terminal.��nonStandardData - if present, lists the non-standard capabilities of the calling terminal.��discoveryComplete - set to TRUE if the requesting endpoint has preceded this message with the gatekeeper discovery procedure; set to FALSE if registering only. Note that registration may age, and the endpoint will get a failure on an RRQ or ARQ with a reason code of discoveryRequired or notRegistered respectively. This indicates that the endpoint should perform the discovery procedure (either dynamic or static) before issuing the RRQ with discoveryComplete set to TRUE.

discoveryRequest - set to TRUE if requesting a new discovery permission with called gatekeeper; set to FALSE if registering only. Note that discovery permission may age, and the terminal will get a failure on re-registration and that it must re-register but it won’t want to do the whole discovery process again.��callSignalAddress - this is the transport call control address for this sendpoint.. If multiple transports are supported, they must be registered all at once. This address includes local port information.��rasAddress - this is the registration and status transport address for this endpoint.��terminalType - this specifies the type(s) of the terminal that is(are) registering; note that the MC bit shall not be set by itself; either the terminal, MCU, gateway, or gatekeeper bit shall also be set.��terminalAlias -This optional value is a list of external addresses, by which external (to the LAN) terminals may identify this terminal such as E.164 numbers or H323_IDs. If the terminalAlias is null, or an E.164 address is not present, an E.164 address may be assigned by the gatekeeper, and included in the RCF. Note that multiple E.164 addresses or H323_IDs may refer to the same transport addresses. All of the endpoint’s alias’s shall be included in each RRQ.��gatekeeperIdentifier - string to identify the gatekeeper that the terminal wishes to register with.��

RegistrationConfirm	::=SEQUENCE --(RCF)

{

	requestSeqNum	RequestSeqNum,				

	protocolIdentifier	ProtocolIdentifier,				

	nonStandardData	NonStandardParameter OPTIONAL,

	callSignalingAddress	SEQUENCE OF TransportAddress,		

	terminalAlias		SEQUENCE OF AliasAddress OPTIONAL,

	gatekeeperIdentifier	GatekeeperIdentifier OPTIONAL,

	endpointID		EndpointIdentifier,				

	...	

}

requestSeqNum - This should be the same value that was passed in the RRQ by the caller.��protocolIdentifier - identifies the vintage of the accepting gatekeeper.��nonStandardData - if present, lists the non-standard capabilities of the gatekeeper.��callSignalingAddress - this is an array of transport addresses for H.225.0 call control messages; one for each transport that the gatekeeper will respond to. This address includes the TSAP identifier. ��terminalAlias -This optional value is a list of external addresses, by which external (to the LAN) terminals may identify this terminal such as E.164 numbers or H323_IDs.��gatekeeper identifier - string to identify the gatekeeper that has accepted the terminals registration.��endpointID - a gatekeeper assigned terminal identity string; shall be echoed in subseqent RAS messages.��

RegistrationReject		::=SEQUENCE --(RRJ)

{

	requestSeqNum	RequestSeqNum,				

	protocolIdentifier	ProtocolIdentifier,				

	nonStandardData	NonStandardParameter OPTIONAL,

	rejectReason		RegistrationRejectReason,					

	gatekeeperIdentifier	GatekeeperIdentifier OPTIONAL,

	...

}

requestSeqNum - This should be the same value that was passed in the RRQ by the caller.��protocolIdentifier - identifies the vintage of the accepting gatekeeper.��nonStandardData - if present, lists the non-standard capabilities of the gatekeeper.��rejectReason - the reason for the rejection of the registration��gatekeeper identifier - string to identify the gatekeeper that has accepted the terminal’s registration.��

RegistrationRejectReason		::=CHOICE

{

	discoveryRequired		NULL,	-- registration permission has aged

	duplicateRegistrationRequest	NULL,	-- informative; not protocol error

	duplicateDiscoveryRequest	NULL, 	-- informative; not protocol error

	invalidRevision			NULL,

	invalidCallSignal Address	NULL,

		invalidRASAddress		NULL,	-- supplied address is invalid

	duplicateAlias			SEQUENCE OF AliasAddressNULL,	-- alias registered to another endpointtransport

		invalidTerminalType		NULL,

	undefinedReason		NULL,

	transportNotSupported		NULL,	-- one or more of the transports

	...

}

�autonumlgl ��	Terminal/ Gatekeeper Unregistration Messages

The URQ requests that the association between a terminal and a gatekeeper be broken. Note that unregister is bi-directional; i.e. a Gatekeeper can request a terminal to consider itself unregistered, and a terminal can inform a Gatekeeper that it is revoking a previous registration.

UnregistrationRequest		::=SEQUENCE --(URQ)

{

	requestSeqNum	RequestSeqNum,			

callSignalAddress	SEQUENCE OF TransportAddress,	

	rasAddress		SEQUENCE OF TransportAddress,	

	endpointterminalAlias		SEQUENCE OF AliasAddress OPTIONAL,		

	nonStandardData	NonStandardParameter OPTIONAL,

	endpointID		EndpointIdentifier OPTIONAL,

	...

}

requestSeqNum -. this is a monotonically increasing number unique to the caller. It should be returned by the called in any response associated with this specific message.��cCallSignalAddress - this is one or more of the transport call signaling addresss for this endpoint which are to be unregistered.. ��rasAddress - this is the registration and status transport address for this endpoint.��endpointterminalAlias -This optional value is a list of external addresses, by which external (to the LAN) terminals may identify this terminal such as E.164 numbers or H323_IDs. All H323_IDs are unregistered in a single message. The E.164 address, if assigned, is required. Only values listed here are unregistered; this allows, for example, an H323_ID to be unregistered while leaving the E.164 address registered.��endpointID - confirmation of identity; not sent by the gatekeeper��

UnregistrationConfirm	::=SEQUENCE --(UCF)

{

	requestSeqNum	RequestSeqNum,				

	nonStandardData	NonStandardParameter OPTIONAL,

	...

}

requestSeqNum - This should be the same value that was passed in the URQ by the caller.��

UregistrationReject		::=SEQUENCE --(URJ)

{

	

	requestSeqNum	RequestSeqNum,				

	rejectReason		UnregRejectReason,				

	nonStandardData	NonStandardParameter OPTIONAL,

	...

}

requestSeqNum - This should be the same value that was passed in the URQ by the caller.��rejectReason - the reason for the rejection of the unregistration��

UnregqRejectReason		::=CHOICE

{

	notCurrentlyRegistered	NULL,	

	callInProgress		NULL,	

	undefinedReason	NULL,

		...

}

�autonumlgl ��	Terminal to Gatekeeper Admission Messages

The ARQ message requests that an endpoint be allowed access to the LAN by the gatekeeper, which either grants the reqest with an ACF or denies it with an ARJ.

AdmissionRequest		::=SEQUENCE --(ARQ)

{

	requestSeqNum	RequestSeqNum,		

	callType	CallType,		

	callModel	CallModel OPTIONALBOOLEAN,		

	endpointIdentifier	EndpointIdentifier,		

	destinationInfo	SEQUENCE OF AliasAddress OPTIONAL, --Note 1

	destCallSignalAddress	TransportAddress OPTIONAL,	-- Note 1

	destExtraCallInfo	SEQUENCE OF AliasAddress OPTIONAL,

	srcInfo	SEQUENCE OF AliasAddress,	

	srcCallSignalAddress	TransportAddress OPTIONAL,

	bandWidth	BandWidth, 				callReferenceValue	CallReferenceValue,			

	nonStandardData	NonStandardParameter OPTIONAL,

	callServices	QseriesOptions OPTIONAL,

	conferenceID	ConferenceIdentifier,

	activeMC	BOOLEAN,

	answerCall	BOOLEAN,	-- answering a call		

	...

}

Note 1: Both destinationInfo and destCallSignalAddress are not required, but at least one shall be present unless the endpoint is answering a call. There is no absolute rule over which is preferred as this may be site specific, but the E.164 address should be provided if available. It is cautioned that the best results will be obtained by considering the nature of the transport protocols in use.

CallType			::=CHOICE

{	

	pPointToPoint		NULL,		-- Point to point

	oOneToN		NULL,		-- no interaction (FFS)

	nNToOne		NULL,		-- no interaction (FFS)

	nNToN			NULL,		-- interactive (multipoint)

	aAnswerCall		NULL,		-- answering a call

	...

}

	

CallModel	::=CHOICE

{

	direct			NULL,

	gatekeeperRouted	NULL,

	...

}

requestSeqNum - this is a monotonically increasing number unique to the caller. It should be returned by the called in any messages associated with this specific message.��callType - Using this value, gatekeeper can attempt to determine ‘real’ bandwidth usage. The default value is pointToPoint(1) for all calls; it should be recognized that the call type may change dynamically during the call. and that the final call type may not be known when the ARQ is sent.��callModel - if direct(0), the endpoint is requesting the direct terminal to terminal call model. If gatekeeperRouted(1), the endpoint is requesting the gatekeeper mediated model. The gatekeeper is not required to comply with this request.��endpointIdentifier - This is an endpoint identifier that was assigned to the terminal by RCF, probably the E.1643 address or H323_ID. It is used as a security measure to help ensure that this is a registered terminal within its zone.��destinationInfo - sequence of external addresses for the destination terminal, such as E.164 addresses or H323_IDs. ��destCallSignalAddress - transport address used at the destination for call signaling��destExtraCallInfo - contains external addresses for multiple calls��srccrInfo - sequence of external addresses for the source terminal, such as E.164 addresses or H323_IDs. ��srccrCallSignalAddress - transport address used at the source for call signaling��bandWidth - the number of 100 bps requested for the bi-directional call. For example, a 128 Kbit/sec call would be signaled as a request for 256 Kbit/sec. The value refers only to the audio and video bit rate excluding headers and overhead. ��callReferenceValue - the CRV from Q.931 for this call; only local validity This is used by a gatekeeper to associated the ARQ with a particular call.��callServices - provides information on support of optional Q-series protocols to gatekeeper and called terminal.��conferenceID - unique conference identifier��activeMC - if TRUE, the calling party has an active MC; otherwise FALSE��answerCall - used to indicate to a gatekeeper that a call is incoming.��

AdmissionConfirm	::=SEQUENCE --(ACF)

{

	requestSeqNum	RequestSeqNum,			

	bandWidth		BandWidth,				

	callModel		CallModelBOOLEAN,				

	destCallSignalreplyAddress		TransportAddress,			

	irrFrequency		INTEGER (1..65535) OPTIONAL,			

	nonStandardData	NonStandardParameter OPTIONAL,

	...	

}

	

requestSeqNum - This shall be the same value that was passed in the ARQ by the caller.��bandWidth - the allowed maximum bandwidth for the call; may be less than that requested.��callModel - tells terminal whether call signaling sent on destCallSignalreplyAddress goes to a gatekeeper or to a terminal. A value of gatekeeperRouted(0) indicates that call signaling is being passed via the gatekeeper, while directa (1) indicates that the endpoint-to-endpoint call mode is in use.��destCallSignalreplyAddress - the transport address to send Q.931.0 call signaling, but may be an endpoint or gatekeeper address depending on the call model in use.��irrFrequency - the frequency, in seconds, that the endpointterminal shall send IRRs to the gatekeeper while on a call, including while on hold. If not presentzero, the endpointterminal does not send IRRs while active on a call, and it is expected that the gatekeeper will poll the endpointterminal.��

AdmissionReject		::=SEQUENCE --(ARJ)

{

	requestSeqNum	RequestSeqNum,		

	rejectReason		AdmissionRejectReason,	

	nonStandardData	NonStandardParameter OPTIONAL,

	...

}

AdmissionRejectReason		::= CHOICE

{

	calledPartyNnotRegistered			NULL,	-- can’t translate address	

	invalidPermission		NULL,	-- permission has expired

	requestDenied			NULL,	-- no bandwidth available

	undefinedReason		NULL,

	callerNotRegistered		NULL,

	routeCallToGatekeeper		NULL,

	invalidEndpointID		NULL,

	resourceUnavailable		NULL,

		...

}

requestSeqNum - This shall be the same value that was passed in the ARQ by the caller.��rejectReason - reason the bandwidth request was denied��

�autonumlgl ��	Terminal to Gatekeeper Requests for Changes in Bandwidth

The BRQ message requests that an endpoint be granted a changed LAN bandwidth allocation by the gatekeeper, which either grants the reqest with a BCF or denies it with a BRJ. Note that if an increase in bandwidth requires a gateway in the call to make additional calls on the SCN, an additional SETUP message shall be sent including the required E.164 address(es). This call is associated with the first via the conferenceID.

The gatekeeper may request that an endpoint raise or lower the bandwidth in use with a BRQ. If the request is to raise the rate, the endpoint may reply with either BRJ or BCF. If the reqest is for a lower rate, the endpoint shall reply with a BCF.

BandwidthRequest		::=SEQUENCE --(BRQ)

{

	

	requestSeqNum	RequestSeqNum,			

	endpointIdentifier	EndpointIdentifier,			

	conferenceID		ConferenceIdentifier,			

	callReferenceValue	CallReferenceValue,			

	callType		CallType OPTIONAL,

 	bandWidth		BandWidth, 				

	nonStandardData	NonStandardParameter OPTIONAL,

	...

}

requestSeqNum - this is a monotonically increasing number unique to the caller. It should be returned by the called in any messages associated with this specific message.��endpointIdentifier - This is an endpoint identifier that was assigned to the terminal by RCF, probably the E.163 address or H323_ID. It is used as a security measure to help ensure that this is a registered terminal within its zone.��conference ID - ID of the call that is to have the bandwidth changed. ��callReferenceValue - the CRV from Q.931 for this call; only local validity This is used by a gatekeeper to associate the BARQ with a particular call.��callType - Using this value, gatekeeper can attempt to determine ‘real’ bandwidth usage.��bandWidth - the NEW number of 100 bps increments requested for the call. This is an absolute value that includes only audio and video bitstreams not counting headers and overhead.��

BandwidthConfirm	::=SEQUENCE --(BCF)

{

	

	requestSeqNum	RequestSeqNum,			

	bandWidth		BandWidth, 					

	nonStandardData	NonStandardParameter OPTIONAL,

	...

}

requestSeqNum - This should be the same value that was passed in the BRQ by the caller.��bandWidth - the maximum allowed at this time in increments of 100 bps. ����

BandwidthReject		::=SEQUENCE --(BRJ)

{

	

	requestSeqNum	RequestSeqNum,		

	rejectReason		BandRejectReason,		

	allowedBandWidth	BandWidth, 			

	nonStandardData	NonStandardParameter OPTIONAL,

	...

}

BandRejectReason		::= CHOICE

{

	notBound			NULL,	-- discovery permission has aged

	invalidConferenceID		NULL,	-- possible revision

	invalidPermission		NULL,	-- true permission violation

	insufficientResources		NULL,	

		invalidRevision			NULL,

	undefinedReason		NULL,

		...

}

requestSeqNum - This should be the same value that was passed in the BRQ by the caller.��rejectReason - the reason the change was rejected by the gatekeeper.��allowedBandWidth - the maximum allowed at this time in increments of 100 bps including the current allocation.��

�autonumlgl ��	Location Request Messages

The LRQ requests that a gatekeeper provide address translation. The gatekeeper responds with an LCF containing the transport address of the destination, or rejects the request with LRJ.

LocationRequest		::=SEQUENCE --(LRQ)

{

	requestSeqNum		RequestSeqNum,		

	endpointIdentifier		EndpointIdentifier OPTIONAL,		

	destinationInfo			SEQUENCE of AliasAddress, 		nonStandardData		NonStandardParameter OPTIONAL,

	replyAddress			TransportAddress,

	...

}

requestSeqNum - this is a monotonically increasing number unique to the caller. It should be returned by the called in any messages associated with this specific message.��endpointIdentifier - This is an endpoint identifier that was assigned to the terminal by RCF, probably the E.1643 address or H323_ID. It is used as a security measure to help ensure that this is a registered terminal within its zone.��destinationInfo - sequence of external addresses for the destination terminal, such as E.164 addresses or H323_IDs. ��replyAddress - transport address to send the LCF/LRQ destCallSignalAddress - transport address used at the destination for call signaling��destExtraCallInfo - contains external addresses for multiple calls��

LocationConfirm	::=SEQUENCE --(LCF)

{

	requestSeqNum	RequestSeqNum,			

	callSignalAddress	TransportAddress,			

	rasAddress		TransportAddress,			 	nonStandardData	NonStandardParameter OPTIONAL,

	proposal to add foreign registration

	...	

}

	

requestSeqNum - This shall be the same value that was passed in the LCF by the caller.��callSignalAddress - the transport address to send Q.931.0 call signaling; uses the reliable well known or dynamic port port, but may be an endpoint or gatekeeper address depending on the call model in use.��rasAddress - registration, addmissions, and status address for the located endpoint.��

LocationReject		::=SEQUENCE --(LRJ)

{

	requestSeqNum	RequestSeqNum,		

	rejectReason		LocationRejectReason,	

	nonStandardData	NonStandardParameter OPTIONAL,

	...

}

LocationRejectReason		::=CHOICE

{

	notRegistered			NULL,

	invalidPermission		NULL,	-- exclusion by administrator or feature

	requestDenied			NULL,	-- can't find location

	undefinedReason		NULL,

		...

}

requestSeqNum - This shall be the same value that was passed in the LRQ by the caller.��rejectReason - reason the location request was denied��

�autonumlgl ��	Disengage Messages

If sent from a terminal to a gatekeeper, the DRQ informs the gatekeeper that an endpoint call is being dropped. If sent from a gatekeeper to a terminal, the DRQ forces a call to be dropped; such a request shall not be refused. The DRQ is not sent between terminals directly. There is no DRJ since none is needed.

Note that DRQ is not the same as ReleaseComplete since its purpose is to inform the gatekeeper of the termination of a call; the gatekeeper may not receive the release complete if it is not terminating the call signaling channel.

DisengageRequest		::=SEQUENCE --(DRQ)

{

	requestSeqNum	RequestSeqNum,			

	endpointIdentifier	EndpointIdentifier,			

	conferenceID		ConferenceIdentifier,		

	callReferenceValue	CallReferenceValue,			

	disengageReason	DisengageInfo,				

	nonStandardData	NonStandardParameter OPTIONAL,

	releaseCompInfo	ReleaseCompleteRejectReason OPTIONAL,	

	...	

}

DisengageInfo		::=CHOICE

{

	forcedDrop			NULL,	-- gatekeeper is forcing the drop

	normalDrop			NULL,	-- associated with normal drop

	undefinedReason		NULL,

		...

}

requestSeqNum - this is a monotonically increasing number unique to the caller. It should be returned by the called in any messages associated with this specific message.��endpointIdentifier - This is an endpoint identifier that was assigned to the terminal by RCF, probably the E.1643 address or H323_ID. It is used as a security measure to help ensure that this is a registered terminal within its zone.��conference ID - ID of the call that is to have the bandwidth released. ��callReferenceValue - the CRV from Q.931 for this call; only local validity This is used by a gatekeeper to associated the message with a particular call.��disengageReason - the reason the change was requested by the gatekeeper or the terminal.��

DisengageConfirm		::=SEQUENCE --(DCF)

{

	requestSeqNum	RequestSeqNum,		

	nonStandardData	NonStandardParameter OPTIONAL,

	...

}

requestSeqNum - This should be the same value that was passed in the DRQ by the caller.��

DRJ is sent by the gatekeeper if the endpoint is unregistered.

DisengageReject	::= SEQUENCE --(DRJ)

{

	requestSeqNum	RequestSeqNum,		

	rejectReason		DisengageRejectInfo,		

	nonStandardData	NonStandardParameter OPTIONAL,

	...

}

DisengageRejectInfo		::=CHOICE

{

	notRegistered			NULL,	-- not registered with gatekeeper

	requestToDropOther		NULL, 	-- can’t request drop for others

		...

}

requestSeqNum - This should be the same value that was passed in the DRQ by the caller.��

�autonumlgl ��	Status Request Messages

The IRQ is sent from a gatekeeper to a terminal requesting status information in the form of an IRR. The IRR may be also be sent by the terminal at an interval specified in the ACF message without the receipt of an IRQ from the gatekeeper. This message should not be confused with the Q.931 STATUS message.

InfoRequest	::=SEQUENCE --(IRQ)

{

	requestSeqNum	RequestSeqNum,				

	callReferenceValuecrvcallID	CallReferenceValue,			

	nonStandardData	NonStandardParameter OPTIONAL,

	replyAddress	TransportAddress OPTIONAL,

	...

}

requestSeqNum - this is a monotonically increasing number unique to the caller. It should be returned by the called in any messagePDUs associated with this specific message.��callReferenceValuecrvCallID - CRV of the call that the query is about. If zero, this message is interpreted as a request for an IRR for each call the terminal is active on. If the terminal is not active on any calls, an IRR shall be sent in response to a CallReferenceValue of 0 with all appropriate fields provided.��replyAddress - a transport address to send IRR to, perhaps not that of the gatekeeper��

The addition of other fields such as CNAME, CSRC, or SSRC is for further study.

InfoReportResponse	::=SEQUENCE --(IRR)

{

	requestSeqNum	RequestSeqNum,			

	endpointType		EndpointType,				

	callID			CallReferenceValue,			

	conferenceID		ConferenceIdentifier,			

	originator		BOOLEAN,				

	sendAudioAddress	SEQUENCE OF TransportAddress,	

	sendVideoAddress	SEQUENCE OF TransportAddress OPTIONAL,

	sendAudioCtrlAddress	SEQUENCE OF TransportAddress,	

	sendVideoCtrlAddress	SEQUENCE OF TransportAddress OPTIONAL,

	sendDataAddress	SEQUENCE OF TransportAddress OPTIONAL,

	sendH245Address	TransportAddress,			

	sendCallSignaladdress	TransportAddress,			

	sendRASAddress	TransportAddress,			

	recAudioAddress	SEQUENCE OF TransportAddress,	

	recVideoAddress	SEQUENCE OF TransportAddress OPTIONAL,

	recAudioCtrlAddress	SEQUENCE OF TransportAddress,	

	recVideoCtrlAddress	SEQUENCE OF TransportAddress OPTIONAL,

	recDataAddress		SEQUENCE OF TransportAddress OPTIONAL,

	recH245Address	TransportAddress,			

	recCallSignallAddress	TransportAddress,			

	recRASAddress	TransportAddress,				

	callType		CallType,				

	bandWidth		BandWidth,				

	nonStandardData	NonStandardParameter OPTIONAL,

	...

}

InfoRequestResponse	::=SEQUENCE --(IRR)

{

	nonStandardData	NonStandardParameter OPTIONAL,

	requestSeqNum	RequestSeqNum,			

	endpointType		EndpointType,

	endpointId		EndpointIdentifier,�	rasAddress		TransportAddress,			

	callSignalAddress	SEQUENCE OF TransportAddress,

	endpointAlias		SEQUENCE OF AliasAddress OPTIONAL,

	perCallInfo		SEQUENCE OF SEQUENCE�	{				

		nonStandardData	NonStandardParameter OPTIONAL,

		callReferenceValue	CallReferenceValue,			

		conferenceID		ConferenceIdentifier,			

		originator		BOOLEAN OPTIONAL,				

		audio			SEQUENCE OF RTPSession OPTIONAL,

		video			SEQUENCE OF RTPSession OPTIONAL,

		data			SEQUENCE OF TransportChannelInfo OPTIONAL,

		h245			TransportChannelInfo,

		callSignaling		TransportChannelInfo,

		callType		CallType,				

		bandWidth		BandWidth,				

		

		...

	} OPTIONAL,

	...

}

TransportChannelInfo ::= SEQUENCE

{

	sendAddress		TransportAddress OPTIONAL,

	recvAddress		TransportAddress OPTIONAL,

	...

}

RTPSession ::= SEQUENCE

{

	rtpAddress		TransportChannelInfo,

	rtcpAddress		TransportChannelInfo,

	cname			PrintableString,

	ssrc			INTEGER (1..4294967295),

	sesssionId		INTEGER (1..255),�	associatedSessionIds	SEQUENCE OF INTEGER (1..255),

	...

}

requestSeqNum - this shall contain the sequence number from the IRR or onezero for an unsolicited report to the gatekeeper.��endpointType - provides information about the endpoint. ��endpointID - value assigned by the gatekeeper in the ACF.��rasAddress - address for registration, admissions, etc.��callSignalAddress - address of H.225.0 call signaling��endpointAlias - alias(s) for endpoint��callReferenceValueCallD -Q.931 CRV(Call ID) of that call that the response is about. ��conferenceID - unique conference identifier��originator - if TRUE1, the endpoint being queried was the call originator, if FALSE0 the endpoint was the call destination.��sendAudioAddress - provides the transport addresses, which may differ only by TSAP identifier, of each audio stream to which the terminal is sending audio.��sendVideoAddress - provides the transport addresses, which may differ only by TSAP identifier, of each video stream to which the terminal is sending video.��sendAudioCtrlAddress - provides the transport addresses, which may differ only by TSAP identifier, of each audio stream to which the terminal is sending RTCP for the audio stream.��sendVideoCtrlAddress - provides the transport addresses, which may differ only by TSAP identifier, of each video stream to which the terminal is sending RTCP for the video stream.��sendDataAddress - provides the transport addresses, which may differ only by TSAP identifier, of each data stream to which the terminal is sending data.��sendH245Address - provides the transport address to which the terminal is sending H.245 control messages. Note that this address may be on the gatekeeper or on the terminal.��sendCallSignalAddress - provides the transport address to which the terminal is sending H.225.0 call control messages.��sendRASAddress - provides the transport address to which the terminal is sending RAS messages.��recAudioAddress - provides the transport addresses, which may differ only by TSAP identifier, of each audio stream for which the terminal is receiving audio.��recVideoAddress - provides the transport addresses, which may differ only by TSAP identifier, of each video stream for which the terminal is receiving video.��recAudioCtrlAddress - provides the transport addresses, which may differ only by TSAP identifier, of each audio RTCP stream.��recVideoCtrlAddress - provides the transport addresses, which may differ only by TSAP identifier, of each video RTCP stream.��recDataAddress - provides the transport addresses, which may differ only by TSAP identifier, of each data stream on which the terminal is receiving data.��recH245Address - provides the transport address on which the terminal is receiving H.245 control messages.��recdestCallSignalAddress - provides the transport address on which the terminal is receiving H.225.0 call control messages.��recRASAddress - provides the transport address on which the terminal is receiving R&S messages.��callType - provides information on call topology.��bandwidth - current usage in increments of 100 bps; includes only audio and video excluding headers and overhead.. ��

�autonumlgl ��	Non-Standard M essage

The NonStandardMessage structure of H.245 may be used on the RAS channel. However, this should be understood as an H.225.0 RAS channel non-standard message rather than as part of H.245 although the syntax is identical. Copy in from H.245 as per Lucent and add requestSeqNum. is as follows:

NonStandardMessage		::=SEQUENCE

{

	nonStandardData	NonStandardParameter,

	...

}

�autonumlgl ��	Message Not Understood

This message is sent whenever an H.323 endpoint receives a RAS message it does not understand.

UnknownMessageResponse		::=	SEQUENCE		-- XRS

{

	requestSeqNum	RequestSeqNum,

...

}

END		-- of ASN.1

�autonumlgl ��	Mechanisms for maintaining QOS

�autonumlgl ��General Approach and Assumptions

Transport QOS(Quality of service) on a LAN includes such characteristics as:

·	Bit error rate.

	

·	Packet loss rate.

	

·	Delay.

Any transport QOS related signaling (e.g. a reservation request to a router) is done by the terminal as soon as possiblebefore the call request to the gatekeeper, or by the gatekeepr on its behalf. The terminal indicates which should be done via the ARQ message. The terminal may wish to make any reservations since the gatekeeper may not be logically near the terminal, or be able to make QOS related requests on behalf of the terminal. The means by which either the terminal or the gatekeeper make QOS or bandwidth reservations are beyond the scope of this recommendation.

The Sender and Receiver Reports of RTCP shall be the means by which QOS will be assessed.

There are two types of congestion related delay that might be measured:

�symbol 183 \f "Symbol" \s 10 \h��	Short term increases in delay that will result in a perceptible but not annoying slowing of the frame rate.

�symbol 183 \f "Symbol" \s 10 \h��	A general rise in delay due to LAN congestion over time such that a feedback based mechanism is useful.

Essentially, short term bursts are approached by error concealment, and a longer term congestion is approached by reducing the multi-media load. The assumption is made that all LAN multimedia terminals are H.323 terminals, and all will attempt to reduce LAN usage as congestion rises rather than "steal" bandwidth from each other.

Bit errors on a LAN generally are either corrected at a lower layer, or result in packet loss, so they are not considered further in this section.

Packet loss requires the receiver to be able to compensate for lost packets in a fashion that conceals errors to the maximum possible extent. For data and control, retransmission at the transport layer is used. For audio and video, retransmission is for further studyoptional.

A given level of transport QOS results in a level of user-perceived audio/video QOS that is a function in part of the effectiveness of the methods used to overcome transport QOS problems.

�autonumlgl �� Use of RTCP in Measuring QOS

�autonumlgl �� Sender Reports

The sender report serves three main purposes:

1.	Allow synchronization of multiple RTP streams, such as audio and video.

2.	Allow the receiver to know the expected data rate and packet rate.

3.	Allow the receiver to measure the distance in time to the sender.

Of these three purposes, (1) is the most relevant to H.225.0. Manufacturers may make use of the sender reports in other ways at their discretion.

The relevant field for stream synchronization is the RTP timestamp and the NTP timestamp in the sender report of RTCP. The NTP timestamp (if available) gives “wall clock” time and corresponds to the RTP timestamp which has the same units and random offset as the RTP capture timestamp in the media packets. Although not required in RTCP, the H.323 terminal should provide the NTP timestamp. The CNAME in RTCP binds the different SSRC identifiers from the same sender and can be used for synchronization.

�autonumlgl �� Receiver Reports

Four parts of the Receiver Reports are used in H.225.0 to measure QOS:

1.	Fraction Lost

2.	The cumulative packets lost

3.	The extended highest sequence number received

4.	Interarrival jitter

Items 2 and 3 are used to compute the number of packets lost since the previous receiver report. This can be taken as a long term measure of LAN congestion. See Annex A section 6.3.4 for a sample computation. If this loss rate exceeds a value set by the manufacturer the H.225.0 terminal should reduce the media rates on the LAN side according to the procedures in section 8.4 below. If item 1 exceeds a value set by the manufacturer, it may also be desirable to take corrective action.

If the interval between receiver reports exceeds a value set by the manufacturer minutes, H.323 terminals should use item 1 as an indicator of serious congestion requiring media rate reduction on the LAN side.

Item 4 should be used as an indication of impending congestion. If interarrival jitter increases for three consecutive receiver reports, the H.323 sending terminal should take corrective action.

�autonumlgl ��	Audio/Video Jitter Procedures

H.245 provides commands and procedures for round-trip indications using RoundTripDelayRequest and RoundTripDelayResponse. On a multipoint call the MC responds to a request from the endpoint. RTCP contains a method of calculating round-trip delays based on the Sender Report and the Receiver Report messages. Note that the quantity being measured in each case is not the same, so there is no conflict in using both methods to measure jitter.

See H.323 section 6.2.5 for a discussion of how H.245 level signaling can be used to optionally reduce jitter related delays.

�autonumlgl ��	Audio/Video Skew Procedures

See H.323 section 6.2.6 for a discussion of how H.245 level signaling is used to limit the skew between different logical channels.

�autonumlgl ��	Procedures for Maintaining QOS

A number of methods exist for the H.323 gateway/terminal to respond to an increase in packet loss or interarrival jitter in the far end receiver. These methods can be grouped into those that are appropriate for a rapid response to a short term problem, such as a lost or delayed packet, and those that are appropriate for a response to a longer term problem such as growing congestion on the LAN. Note that these methods do not seek to maintain the current quality of service, but instead to provide for an orderly degradation of service. The following priorities shall be observedr such that , if present, media shall be degraded in the following order: Video, Data, Audio, Control., with most important first:

	1)Control

	2)Audio

	3)Data

	4)Video

Short term responses:

·	Reducing the frame rate for a short period of time. This may result in the H.323 gateway sending additional H.261 fill frames in the LAN->WAN direction to compensate for the packet under flow.

	

·	Reduce packet rate by switching to the optional mode where audio/video are mixed in one packet. (for further study)

	

·	Packet rate can also be reduced via the use of MB fragmentation of the video stream. 	

Longer term responses:

�symbol 183 \f "Symbol" \s 10 \h��	Reducing media bit rate(e.g. switching from 384 Kbit/sec to 256 Kbit/sec). This may involve a simple instruction to the encoder in a terminal, or it may involve the use of a rate reducer function in the H.323 gateway. These changes are signaled via H.245 FlowControl commands, or by logical channel signaling as appropriate.

�symbol 183 \f "Symbol" \s 10 \h��	Turning off media of lessor importance (e.g. turning off video to allow a large amount of T.120 traffic). These changes are signaled via closing H.245 logical channels.

�symbol 183 \f "Symbol" \s 10 \h��	Returning a busy signal (adaptive busy) to the receiver as an indication of LAN congestion. This may be combined with turning off a media, or even all media other than the control Transport Port. Adaptive busy is signaled via a Q.931 cause value in Release Complete.

It should be noted that responding to interarrival jitter in a multi-router path where a large percentage of packets arrive out of order is difficult. It may be impossible to distinguish this source of jitter from other sources, or to base error recovery strategy on measured jitter. However, packet loss is quantifiable and unambiguous.

�AUTONUMLGL�	Echo Control

Control of acoustic echo is the responsibility of the H.323 terminal. In general, given the delay involved in video/audio compression, it is assumed that all H.320/H.323/H.324 terminals have some form of echo control (cancellation or switching).

However, when the H.323 terminal is used to call a GSTN telephone, it is typically that case that the GSTN phone does not support echo control. Thus, the user of the H.323 terminal may hear acoustic echo return from the GSTN side. This acoustic echo return can be minimized by the use of a speakerphone with echo control, or the use of a handset or ear phones. Manufacturers may add loss to the audio path when an H.323 terminal is connected to a GSTN POTS phone.

Control of hybrid (2 to 4 wire) echo is the responsibility of the H.323 gateway.

��autonumlgl ��	Annex A: RTP/RTCP(Normative)

The reader should note that all references in this section are to a bibliography, and are non-normative, with the exception of [7] to ISO-10646-1, which also appears in the H.225.0 references section. In some cases a reference will appear to Appendix A; such references are for informative purposes only. All details required to implement H.323/H.225.0 are contained in this annex and other related annexs and documents published by the ITU-T or ISO.

Readers should note that this annex is not the complete and primary specification of RTP/RTCP;is not the preferred RTP/RTCP for usage on the Internet; please refer to Appendix A for this informative reference. Thise annex is intended only for usage with H.323/H.225.0.

Readers should also note that the terminology used in this annex differs somewhat from that used in H.323/H.225.0 according to the following table:

H.323/H.225.0 Term�Annex A(RTP/RTCP) Term��media stream�data��transport address�transport address��LAN address�network address��TSAP identifier�port��Annex A�specification or document��shall�must��should�should��

It should be further noted that "translators" and "mixers" are not part of the H.323 system. H.323 endpoints such as gateways and MCUs have some of the characteristics of translators and mixers, so this text has been retained as a guide to the implementor. However, support for translators and mixers is not part of H.323, and these sections shall be considered informative.

Finally, implementors are reminded to implement RTP only as described in H.225.0, including Annexes A, B, and C, which contain details and clarifications relevant to H.323/H.225.0. In all cases, the text of H.225.0 shall have precedence over text in Annex A, B, or C.

�AUTONUMLGL�	Introduction

This memorandum specifies the real-time transport protocol (RTP), which provides end-to-end delivery services for data with real-time characteristics, such as interactive audio and video. Those services include payload type identification, sequence numbering, timestamping and delivery monitoring. Applications typically run RTP on top of UDP to make use of its multiplexing and checksum services; both protocols contribute parts of the transport protocol functionality. However, RTP may be used with other suitable underlying network or transport protocols (see Section �ref rtp_over_network�Error! Reference source not found.10.6.	RTP over Network and Transport Protocols�). RTP supports data transfer to multiple destinations using multicast distribution if provided by the underlying network.

Note that RTP itself does not provide any mechanism to ensure timely delivery or provide other quality-of-service guarantees, but relies on lower-layer services to do so. It does not guarantee delivery or prevent out-of-order delivery, nor does it assume that the underlying network is reliable and delivers packets in sequence. The sequence numbers included in RTP allow the receiver to reconstruct the sender's packet sequence, but sequence numbers might also be used to determine the proper location of a packet, for example in video decoding, without necessarily decoding packets in sequence.

While RTP is primarily designed to satisfy the needs of multi- participant multimedia conferences, it is not limited to that particular application. Storage of continuous data, interactive distributed simulation, active badge, and control and measurement applications may also find RTP applicable.

This document defines RTP, consisting of two closely-linked parts:

o the real-time transport protocol (RTP), to carry data that has real-time properties.

o the RTP control protocol (RTCP), to monitor the quality of service and to convey information about the participants in an on-going session. The latter aspect of RTCP may be sufficient for "loosely controlled" sessions, i.e., where there is no explicit membership control and set-up, but it is not necessarily intended to support all of an application's control communication requirements. This functionality may be fully or partially subsumed by a separate session control protocol, which is beyond the scope of this document.

RTP represents a new style of protocol following the principles of application level framing and integrated layer processing proposed by Clark and Tennenhouse [1]. That is, RTP is intended to be malleable to provide the information required by a particular application and will often be integrated into the application processing rather than being implemented as a separate layer. RTP is a protocol framework that is deliberately not complete. This document specifies those functions expected to be common across all the applications for which RTP would be appropriate. Unlike conventional protocols in which additional functions might be accommodated by making the protocol more general or by adding an option mechanism that would require parsing, RTP is intended to be tailored through modifications and/or additions to the headers as needed. Examples are given in Sections �ref profileSpecifMods�Error! Reference source not found.10.1.3.Profile-Specific Modifications to the RTP Header

�.

Therefore, in addition to this document, a complete specification of RTP for a particular application will require one or more companion documents (see Annex B and C):

o a profile specification document, which defines a set of payload type codes and their mapping to payload formats (e.g., media encodings). A profile may also define extensions or modifications to RTP that are specific to a particular class of applications. Typically an application will operate under only one profile. A profile for audio and video data may be found in Annex B.

o payload format specification documents, which define how a particular payload, such as an audio or video encoding, is to be carried in RTP. See Annex C.

Several RTP applications, both experimental and commercial, have already been implemented from draft specifications. These applications include audio and video tools along with diagnostic tools such as traffic monitors. Users of these tools number in the thousands. However, the current Internet cannot yet support the full potential demand for real-time services. High-bandwidth services using RTP, such as video, can potentially seriously degrade the quality of service of other network services. Thus, implementors should take appropriate precautions to limit accidental bandwidth usage. Application documentation should clearly outline the limitations and possible operational impact of high-bandwidth real- time services on the Internet and other network services.

�AUTONUMLGL�	RTP Use Scenarios

The following sections describe some aspects of the use of RTP. The examples were chosen to illustrate the basic operation of applications using RTP, not to limit what RTP may be used for. In these examples, RTP is carried on top of IP and UDP, and follows the conventions established by the profile for audio and video specified in Annex B.

�AUTONUMLGL�	Simple Multicast Audio Conference

A working group of the IETF meets to discuss the latest protocol draft, using the IP multicast services of the Internet for voice communications. Through some allocation mechanism the working group chair obtains a multicast group address and pair of ports. One port is used for audio data, and the other is used for control (RTCP) packets. This address and port information is distributed to the intended participants. If privacy is desired, the data and control packets may be encrypted as specified in H.323.The audio conferencing application used by each conference participant sends audio data in small chunks of, say, 20 ms duration. Each chunk of audio data is preceded by an RTP header; RTP header and data are in turn contained in a UDP packet. The RTP header indicates what type of audio encoding (such as PCM, ADPCM or LPC) is contained in each packet so that senders can change the encoding during a conference, for example, to accommodate a new participant that is connected through a low-bandwidth link or react to indications of network congestion.

The Internet, like other packet networks, occasionally loses and reorders packets and delays them by variable amounts of time. To cope with these impairments, the RTP header contains timing information and a sequence number that allow the receivers to reconstruct the timing produced by the source, so that in this example, chunks of audio are contiguously played out the speaker every 20 ms. This timing reconstruction is performed separately for each source of RTP packets in the conference. The sequence number can also be used by the receiver to estimate how many packets are being lost.

Since members of the working group join and leave during the conference, it is useful to know who is participating at any moment and how well they are receiving the audio data. For that purpose, each instance of the audio application in the conference periodically multicasts a reception report plus the name of its user on the RTCP (control) port. The reception report indicates how well the current speaker is being received and may be used to control adaptive encodings. In addition to the user name, other identifying information may also be included subject to control bandwidth limits. A site sends the RTCP BYE packet (Section �ref byeRTCP�Error! Reference source not found.10.2.4.	BYE: Goodbye RTCP packet �) when it leaves the conference.

�AUTONUMLGL�	Audio and Video Conference

If both audio and video media are used in a conference, they are transmitted as separate RTP sessions RTCP packets are transmitted for each medium using two different UDP port pairs and/or multicast addresses. There is no direct coupling at the RTP level between the audio and video sessions, except that a user participating in both sessions should use the same distinguished (canonical) name in the RTCP packets for both so that the sessions can be associated.

One motivation for this separation is to allow some participants in the conference to receive only one medium if they choose. Further explanation is given in Section �ref multiplexRTP�Error! Reference source not found.10.1.2.	Multiplexing RTP Sessions �. Despite the separation, synchronized playback of a source's audio and video can be achieved using timing information carried in the RTCP packets for both sessions.

�AUTONUMLGL�	Mixers and Translators

So far, we have assumed that all sites want to receive media data in the same format. However, this may not always be appropriate. Consider the case where participants in one area are connected through a low-speed link to the majority of the conference participants who enjoy high-speed network access. Instead of forcing everyone to use a lower-bandwidth, reduced-quality audio encoding, an RTP-level relay called a mixer may be placed near the low-bandwidth area. This mixer resynchronizes incoming audio packets to reconstruct the constant 20 ms spacing generated by the sender, mixes these reconstructed audio streams into a single stream, translates the audio encoding to a lower-bandwidth one and forwards the lower- bandwidth packet stream across the low-speed link. These packets might be unicast to a single recipient or multicast on a different address to multiple recipients. The RTP header includes a means for mixers to identify the sources that contributed to a mixed packet so that correct talker indication can be provided at the receivers.

Some of the intended participants in the audio conference may be connected with high bandwidth links but might not be directly reachable via IP multicast. For example, they might be behind an application-level firewall that will not let any IP packets pass. For these sites, mixing may not be necessary, in which case another type of RTP-level relay called a translator may be used. Two translators are installed, one on either side of the firewall, with the outside one funneling all multicast packets received through a secure connection to the translator inside the firewall. The translator inside the firewall sends them again as multicast packets to a multicast group restricted to the site's internal network.

Mixers and translators may be designed for a variety of purposes. An example is a video mixer that scales the images of individual people in separate video streams and composites them into one video stream to simulate a group scene. Other examples of translation include the connection of a group of hosts speaking only IP/UDP to a group of hosts that understand only ST-II, or the packet-by-packet encoding translation of video streams from individual sources without resynchronization or mixing. Details of the operation of mixers and translators are given in Section �ref transMixer�Error! Reference source not found.10.3.	RTP Translators and Mixers �.

�AUTONUMLGL�	Definitions

RTP payload: The data transported by RTP in a packet, for example audio samples or compressed video data. The payload format and interpretation are beyond the scope of this document.

RTP packet: A data packet consisting of the fixed RTP header, a possibly empty list of contributing sources (see below), and the payload data. Some underlying protocols may require an encapsulation of the RTP packet to be defined. Typically one packet of the underlying protocol contains a single RTP packet, but several RTP packets may be contained if permitted by the encapsulation method (see Section �ref rtp_over_network�Error! Reference source not found.10.6.	RTP over Network and Transport Protocols�).

RTCP packet: A control packet consisting of a fixed header part similar to that of RTP data packets, followed by structured elements that vary depending upon the RTCP packet type. The formats are defined in Section �ref rtpContrProtocol�Error! Reference source not found.10.2.	RTP Control Protocol -- RTCP�. Typically, multiple RTCP packets are sent together as a compound RTCP packet in a single packet of the underlying protocol; this is enabled by the length field in the fixed header of each RTCP packet.

Port: The "abstraction that transport protocols use to distinguish among multiple destinations within a given host computer. TCP/IP protocols identify ports using small positive integers." [2] The transport selectors (TSEL) used by the OSI transport layer are equivalent to ports. RTP depends upon the lower-layer protocol to provide some mechanism such as ports to multiplex the RTP and RTCP packets of a session.

Transport address: The combination of a network address and port that identifies a transport-level endpoint, for example an IP address and a UDP port. Packets are transmitted from a source transport address to a destination transport address.

RTP session: The association among a set of participants communicating with RTP. For each participant, the session is defined by a particular pair of destination transport addresses (one network address plus a port pair for RTP and RTCP). The destination transport address pair may be common for all participants, as in the case of IP multicast, or may be different for each, as in the case of individual unicast network addresses plus a common port pair. In a multimedia session, each medium is carried in a separate RTP session with its own RTCP packets. The multiple RTP sessions are distinguished by different port number pairs and/or different multicast addresses.

Synchronization source (SSRC): The source of a stream of RTP packets, identified by a 32-bit numeric SSRC identifier carried in the RTP header so as not to be dependent upon the network address. All packets from a synchronization source form part of the same timing and sequence number space, so a receiver groups packets by synchronization source for playback. Examples of synchronization sources include the sender of a stream of packets derived from a signal source such as a microphone or a camera, or an RTP mixer (see below). A synchronization source may change its data format, e.g., audio encoding, over time. The SSRC identifier is a randomly chosen value meant to be globally unique within a particular RTP session (see Section �ref ssrcAllocUse�Error! Reference source not found.10.4.	SSRC Identifier Allocation and Use�). A participant need not use the same SSRC identifier for all the RTP sessions in a multimedia session; the binding of the SSRC identifiers is provided through RTCP (see Section �ref cname�Error! Reference source not found.10.2.3.1.	CNAME: Canonical end-point identifier SDES item

�). If a participant generates multiple streams in one RTP session, for example from separate video cameras, each must be identified as a different SSRC.

Contributing source (CSRC): A source of a stream of RTP packets that has contributed to the combined stream produced by an RTP mixer (see below). The mixer inserts a list of the SSRC identifiers of the sources that contributed to the generation of a particular packet into the RTP header of that packet. This list is called the CSRC list. An example application is audio conferencing where a mixer indicates all the talkers whose speech was combined to produce the outgoing packet, allowing the receiver to indicate the current talker, even though all the audio packets contain the same SSRC identifier (that of the mixer).

End system: An application that generates the content to be sent in RTP packets and/or consumes the content of received RTP packets. An end system can act as one or more synchronization sources in a particular RTP session, but typically only one.

Mixer: An intermediate system that receives RTP packets from one or more sources, possibly changes the data format, combines the packets in some manner and then forwards a new RTP packet. Since the timing among multiple input sources will not generally be synchronized, the mixer will make timing adjustments among the streams and generate its own timing for the combined stream. Thus, all data packets originating from a mixer will be identified as having the mixer as their synchronization source.

Translator: An intermediate system that forwards RTP packets with their synchronization source identifier intact. Examples of translators include devices that convert encodings without mixing, replicators from multicast to unicast, and application- level filters in firewalls.

Monitor: An application that receives RTCP packets sent by participants in an RTP session, in particular the reception reports, and estimates the current quality of service for distribution monitoring, fault diagnosis and long-term statistics. The monitor function is likely to be built into the application(s) participating in the session, but may also be a separate application that does not otherwise participate and does not send or receive the RTP data packets. These are called third party monitors.

Non-RTP means: Protocols and mechanisms that may be needed in addition to RTP to provide a usable service. In particular, for multimedia conferences, a conference control application may distribute multicast addresses and keys for encryption, negotiate the encryption algorithm to be used, and define dynamic mappings between RTP payload type values and the payload formats they represent for formats that do not have a predefined payload type value. For simple applications, electronic mail or a conference database may also be used. The specification of such protocols and mechanisms is outside the scope of this document.

�AUTONUMLGL�	Byte Order, Alignment, and Time Format

All integer fields are carried in network byte order, that is, most significant byte (octet) first. This byte order is commonly known as big-endian. The transmission order is described in detail in [3]. Unless otherwise noted, numeric constants are in decimal (base 10).

All header data is aligned to its natural length, i.e., 16-bit fields are aligned on even offsets, 32-bit fields are aligned at offsets divisible by four, etc. Octets designated as padding have the value zero.

Wallclock time (absolute time) is represented using the timestamp format of the Network Time Protocol (NTP), which is in seconds relative to 0h UTC on 1 January 1900 [4]. The full resolution NTP timestamp is a 64-bit unsigned fixed-point number with the integer part in the first 32 bits and the fractional part in the last 32 bits. In some fields where a more compact representation is appropriate, only the middle 32 bits are used; that is, the low 16 bits of the integer part and the high 16 bits of the fractional part. The high 16 bits of the integer part must be determined independently.

�AUTONUMLGL�	RTP Data Transfer Protocol

�AUTONUMLGL�	RTP Fixed Header Fields

The RTP header has the following format:

0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |V=2|P|X| CC |M| PT | sequence number |

 +-+

 | timestamp |

 +-+

 | synchronization source (SSRC) identifier |

 +=+

 | contributing source (CSRC) identifiers |

 | |

 +-+

The first twelve octets are present in every RTP packet, while the list of CSRC identifiers is present only when inserted by a mixer. The fields have the following meaning:

version (V): 2 bits This field identifies the version of RTP. The version defined by this specification is two (2). (The value 1 is used by the first draft version of RTP and the value 0 is used by the protocol initially implemented in the "vat" audio tool.)

padding (P): 1 bit If the padding bit is set, the packet contains one or more additional padding octets at the end which are not part of the payload. The last octet of the padding contains a count of how many padding octets should be ignored. Padding may be needed by some encryption algorithms with fixed block sizes or for carrying several RTP packets in a lower-layer protocol data unit.

extension (X): 1 bit If the extension bit is set, the fixed header is followed by exactly one header extension, with a format defined in Section �ref profileSpecifMods�Error! Reference source not found.10.1.3.Profile-Specific Modifications to the RTP Header

�.

CSRC count (CC): 4 bits The CSRC count contains the number of CSRC identifiers that follow the fixed header.

marker (M): 1 bit The interpretation of the marker is defined by a profile. It is intended to allow significant events such as frame boundaries to be marked in the packet stream. A profile may define additional marker bits or specify that there is no marker bit by changing the number of bits in the payload type field (see Section �ref profileSpecifMods�Error! Reference source not found.10.1.3.Profile-Specific Modifications to the RTP Header

�).

payload type (PT): 7 bits This field identifies the format of the RTP payload and determines its interpretation by the application. A profile specifies a default static mapping of payload type codes to payload formats. Additional payload type codes may be defined dynamically through non-RTP means (see Section �ref definitions�Error! Reference source not found.9.5.	Definitions�). An initial set of default mappings for audio and video is specified in Annex B. An RTP sender emits a single RTP payload type at any given time; this field is not intended for multiplexing separate media streams (see Section �ref multiplexRTP�Error! Reference source not found.9.5.2.	Multiplexing RTP Sessions �).

sequence number: 16 bits The sequence number increments by one for each RTP data packet sent, and may be used by the receiver to detect packet loss and to restore packet sequence. The initial value of the sequence number is random (unpredictable) to make known-plaintext attacks on encryption more difficult, even if the source itself does not encrypt, because the packets may flow through a translator that does. Techniques for choosing unpredictable numbers are discussed in [5].

timestamp: 32 bits The timestamp reflects the sampling instant of the first octet in the RTP data packet. The sampling instant must be derived from a clock that increments monotonically and linearly in time to allow synchronization and jitter calculations (see Section �ref srReport�Error! Reference source not found.9.6.2.4.	SR: Sender report RTCP packet

�). The resolution of the clock must be sufficient for the desired synchronization accuracy and for measuring packet arrival jitter (one tick per video frame is typically not sufficient). The clock frequency is dependent on the format of data carried as payload and is specified statically in the profile or payload format specification that defines the format, or may be specified dynamically for payload formats defined through non-RTP means. If RTP packets are generated periodically, the nominal sampling instant as determined from the sampling clock is to be used, not a reading of the system clock. As an example, for fixed-rate audio the timestamp clock would likely increment by one for each sampling period. If an audio application reads blocks covering 160 sampling periods from the input device, the timestamp would be increased by 160 for each such block, regardless of whether the block is transmitted in a packet or dropped as silent.

The initial value of the timestamp is random, as for the sequence number. Several consecutive RTP packets may have equal timestamps if they are (logically) generated at once, e.g., belong to the same video frame. Consecutive RTP packets may contain timestamps that are not monotonic if the data is not transmitted in the order it was sampled, as in the case of MPEG interpolated video frames. (The sequence numbers of the packets as transmitted will still be monotonic.)

SSRC: 32 bits The SSRC field identifies the synchronization source. This identifier is chosen randomly, with the intent that no two synchronization sources within the same RTP session will have the same SSRC identifier. An example algorithm for generating a random identifier is presented in Appendix A.6. Although the probability of multiple sources choosing the same identifier is low, all RTP implementations must be prepared to detect and resolve collisions. Section �ref ssrcAllocUse�Error! Reference source not found.9.8.	SSRC Identifier Allocation and Use� describes the probability of collision along with a mechanism for resolving collisions and detecting RTP-level forwarding loops based on the uniqueness of the SSRC identifier. If a source changes its source transport address, it must also choose a new SSRC identifier to avoid being interpreted as a looped source.

CSRC list: 0 to 15 items, 32 bits each The CSRC list identifies the contributing sources for the payload contained in this packet. The number of identifiers is given by the CC field. If there are more than 15 contributing sources, only 15 may be identified. CSRC identifiers are inserted by mixers, using the SSRC identifiers of contributing sources. For example, for audio packets the SSRC identifiers of all sources that were mixed together to create a packet are listed, allowing correct talker indication at the receiver.

�AUTONUMLGL�	Multiplexing RTP Sessions

For efficient protocol processing, the number of multiplexing points should be minimized, as described in the integrated layer processing design principle [1]. In RTP, multiplexing is provided by the destination transport address (network address and port number) which define an RTP session. For example, in a teleconference composed of audio and video media encoded separately, each medium should be carried in a separate RTP session with its own destination transport address. It is not intended that the audio and video be carried in a single RTP session and demultiplexed based on the payload type or SSRC fields. Interleaving packets with different payload types but using the same SSRC would introduce several problems:

1. If one payload type were switched during a session, there would be no general means to identify which of the old values the new one replaced.

2. An SSRC is defined to identify a single timing and sequence number space. Interleaving multiple payload types would require different timing spaces if the media clock rates differ and would require different sequence number spaces to tell which payload type suffered packet loss.

3. The RTCP sender and receiver reports (see Section �ref senderAndRecReports�Error! Reference source not found.9.6.3.	Sender and Receiver Reports �) can only describe one timing and sequence number space per SSRC and do not carry a payload type field.

4. An RTP mixer would not be able to combine interleaved streams of incompatible media into one stream.

5. Carrying multiple media in one RTP session precludes: the use of different network paths or network resource allocations if appropriate; reception of a subset of the media if desired, for example just audio if video would exceed the available bandwidth; and receiver implementations that use separate processes for the different media, whereas using separate RTP sessions permits either single- or multiple-process implementations.

Using a different SSRC for each medium but sending them in the same RTP session would avoid the first three problems but not the last two.

�AUTONUMLGL�Profile-Specific Modifications to the RTP Header

The existing RTP data packet header is believed to be complete for the set of functions required in common across all the application classes that RTP might support. However, in keeping with the ALF design principle, the header may be tailored through modifications or additions defined in a profile specification while still allowing profile-independent monitoring and recording tools to function.

o The marker bit and payload type field carry profile-specific information, but they are allocated in the fixed header since many applications are expected to need them and might otherwise have to add another 32-bit word just to hold them. The octet containing these fields may be redefined by a profile to suit different requirements, for example with a more or fewer marker bits. If there are any marker bits, one should be located in the most significant bit of the octet since profile-independent monitors may be able to observe a correlation between packet loss patterns and the marker bit.

o Additional information that is required for a particular payload format, such as a video encoding, should be carried in the payload section of the packet. This might be in a header that is always present at the start of the payload section, or might be indicated by a reserved value in the data pattern.

o If a particular class of applications needs additional functionality independent of payload format, the profile under which those applications operate should define additional fixed fields to follow immediately after the SSRC field of the existing fixed header. Those applications will be able to quickly and directly access the additional fields while profile-independent monitors or recorders can still process the RTP packets by interpreting only the first twelve octets.

If it turns out that additional functionality is needed in common across all profiles, then a new version of RTP should be defined to make a permanent change to the fixed header.

�AUTONUMLGL�	RTP Header Extension

An extension mechanism is provided to allow individual implementations to experiment with new payload-format-independent functions that require additional information to be carried in the RTP data packet header. This mechanism is designed so that the header extension may be ignored by other interoperating implementations that have not been extended.

Note that this header extension is intended only for limited use. Most potential uses of this mechanism would be better done another way, using the methods described in the previous section. For example, a profile-specific extension to the fixed header is less expensive to process because it is not conditional nor in a variable location. Additional information required for a particular payload format should not use this header extension, but should be carried in the payload section of the packet.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | defined by profile | length |

 +-+

 | header extension |

 | |

If the X bit in the RTP header is one, a variable-length header extension is appended to the RTP header, following the CSRC list if present. The header extension contains a 16-bit length field that counts the number of 32-bit words in the extension, excluding the four-octet extension header (therefore zero is a valid length). Only a single extension may be appended to the RTP data header. To allow multiple interoperating implementations to each experiment independently with different header extensions, or to allow a particular implementation to experiment with more than one type of header extension, the first 16 bits of the header extension are left open for distinguishing identifiers or parameters. The format of these 16 bits is to be defined by the profile specification under which the implementations are operating. This RTP specification does not define any header extensions itself.

�AUTONUMLGL�	RTP Control Protocol -- RTCP

The RTP control protocol (RTCP) is based on the periodic transmission of control packets to all participants in the session, using the same distribution mechanism as the data packets. The underlying protocol must provide multiplexing of the data and control packets, for example using separate port numbers with UDP. RTCP performs four functions:

1. The primary function is to provide feedback on the quality of the data distribution. This is an integral part of the RTP's role as a transport protocol and is related to the flow and congestion control functions of other transport protocols. The feedback may be directly useful for control

of adaptive encodings [6,7], but experiments with IP multicasting have shown that it is also critical to get feedback from the receivers to diagnose faults in the distribution. Sending reception feedback reports to all participants allows one who is observing problems to evaluate whether those problems are local or global. With a distribution mechanism like IP multicast, it is also possible for an entity such as a network service provider who is not otherwise involved in the session to receive the feedback information and act as a third-party monitor to diagnose network problems. This feedback function is performed by the RTCP sender and receiver reports, described below in Section �ref senderAndRecReports�Error! Reference source not found.9.6.3.	Sender and Receiver Reports �.

2. RTCP carries a persistent transport-level identifier for an RTP source called the canonical name or CNAME, Section �ref cname�Error! Reference source not found.9.6.4.1.	CNAME: Canonical end-point identifier SDES item

�. Since the SSRC identifier may change if a conflict is discovered or a program is restarted, receivers require the CNAME to keep track of each participant. Receivers also require the CNAME to associate multiple data streams from a given participant in a set of related RTP sessions, for example to synchronize audio and video.

3. The first two functions require that all participants send RTCP packets, therefore the rate must be controlled in order for RTP to scale up to a large number of participants. By having each participant send its control packets to all the others, each can independently observe the number of participants. This number is used to calculate the rate at which the packets are sent, as explained in Section �ref rtcpTransInterval�Error! Reference source not found.9.6.2.	RTCP Transmission Interval �.

4. A fourth, optional function is to convey minimal session control information, for example participant identification to be displayed in the user interface. This is most likely to be useful in "loosely controlled" sessions where participants enter and leave without membership control or parameter negotiation. RTCP serves as a convenient channel to reach all the participants, but it is not necessarily expected to support all the control communication requirements of an application. A higher-level session control protocol, which is beyond the scope of this document, may be needed.

Functions 1-3 are mandatory when RTP is used in the IP multicast environment, and are recommended for all environments. RTP application designers are advised to avoid mechanisms that can only work in unicast mode and will not scale to larger numbers.

�AUTONUMLGL�	RTCP Packet Format

This specification defines several RTCP packet types to carry a variety of control information:

SR: Sender report, for transmission and reception statistics from participants that are active senders

RR: Receiver report, for reception statistics from participants that are not active senders

SDES: Source description items, including CNAME

BYE: Indicates end of participation

APP: Application specific functions

Each RTCP packet begins with a fixed part similar to that of RTP data packets, followed by structured elements that may be of variable length according to the packet type but always end on a 32-bit boundary. The alignment requirement and a length field in the fixed part are included to make RTCP packets "stackable". Multiple RTCP packets may be concatenated without any intervening separators to form a compound RTCP packet that is sent in a single packet of the lower layer protocol, for example UDP. There is no explicit count of individual RTCP packets in the compound packet since the lower layer protocols are expected to provide an overall length to determine the end of the compound packet.

Each individual RTCP packet in the compound packet may be processed independently with no requirements upon the order or combination of packets. However, in order to perform the functions of the protocol, the following constraints are imposed:

o Reception statistics (in SR or RR) should be sent as often as bandwidth constraints will allow to maximize the resolution of the statistics, therefore each periodically transmitted compound RTCP packet should include a report packet.

o New receivers need to receive the CNAME for a source as soon as possible to identify the source and to begin associating media for purposes such as lip-sync, so each compound RTCP packet should also include the SDES CNAME.

o The number of packet types that may appear first in the compound packet should be limited to increase the number of constant bits in the first word and the probability of successfully validating RTCP packets against misaddressed RTP data packets or other unrelated packets.

Thus, all RTCP packets must be sent in a compound packet of at least two individual packets, with the following format recommended:

Encryption prefix: If and only if the compound packet is to be encrypted, it is prefixed by a random 32-bit quantity redrawn for every compound packet transmitted.

SR or RR: The first RTCP packet in the compound packet must always be a report packet to facilitate header validation as described in Appendix A.2. This is true even if no data has been sent nor received, in which case an empty RR is sent, and even if the only other RTCP packet in the compound packet is a BYE.

Additional RRs: If the number of sources for which reception statistics are being reported exceeds 31, the number that will fit into one SR or RR packet, then additional RR packets should follow the initial report packet.

SDES: An SDES packet containing a CNAME item must be included in each compound RTCP packet. Other source description items may optionally be included if required by a particular application, subject to bandwidth constraints (see Section �ref allocSourceDescBW�Error! Reference source not found.9.6.2.2.	Allocation of source description bandwidth�).

BYE or APP: Other RTCP packet types, including those yet to be defined, may follow in any order, except that BYE should be the last packet sent with a given SSRC/CSRC. Packet types may appear more than once.

It is advisable for translators and mixers to combine individual RTCP packets from the multiple sources they are forwarding into one compound packet whenever feasible in order to amortize the packet overhead (see Section �ref transMixer�Error! Reference source not found.9.7.	RTP Translators and Mixers �). An example RTCP compound packet as might be produced by a mixer is shown in Fig. 1. If the overall length of a compound packet would exceed the maximum transmission unit (MTU) of the network path, it may be segmented into multiple shorter compound packets to be transmitted in separate packets of the underlying protocol. Note that each of the compound packets must begin with an SR or RR packet.

An implementation may ignore incoming RTCP packets with types unknown to it. Additional RTCP packet types may be registered with the Internet Assigned Numbers Authority (IANA).

��AUTONUMLGL�	RTCP Transmission Interval

if encrypted: random 32-bit integer

 |

 |[------- packet -------][----------- packet -----------][-packet-]

 |

 | receiver reports chunk chunk

 V item item item item

 --

 |R[SR|# sender #site#site][SDES|# CNAME PHONE |#CNAME LOC][BYE##why]

 |R[|# report # 1 # 2][|# |#][##]

 |R[|# # #][|# |#][##]

 |R[|# # #][|# |#][##]

 --

 |<------------------ UDP packet (compound packet) --------------->|

 #: SSRC/CSRC

Figure 1/H.225.0-Annex A: Example of an RTCP compound packet

RTP is designed to allow an application to scale automatically over session sizes ranging from a few participants to thousands. For example, in an audio conference the data traffic is inherently self- limiting because only one or two people will speak at a time, so with multicast distribution the data rate on any given link remains relatively constant independent of the number of participants. However, the control traffic is not self-limiting. If the reception reports from each participant were sent at a constant rate, the control traffic would grow linearly with the number of participants. Therefore, the rate must be scaled down.

For each session, it is assumed that the data traffic is subject to an aggregate limit called the "session bandwidth" to be divided among the participants. This bandwidth might be reserved and the limit enforced by the network, or it might just be a reasonable share. The session bandwidth may be chosen based or some cost or a priori knowledge of the available network bandwidth for the session. It is somewhat independent of the media encoding, but the encoding choice may be limited by the session bandwidth. The session bandwidth parameter is expected to be supplied by a session management application when it invokes a media application, but media applications may also set a default based on the single-sender data bandwidth for the encoding selected for the session. The application may also enforce bandwidth limits based on multicast scope rules or other criteria.

Bandwidth calculations for control and data traffic include lower-layer transport and network protocols (e.g., UDP and IP) since that is what the resource reservation system would need to know. The application can also be expected to know which of these protocols are in use. Link level headers are not included in the calculation since the packet will be encapsulated with different link level headers as it travels.

The control traffic should be limited to a small and known fraction of the session bandwidth: small so that the primary function of the transport protocol to carry data is not impaired; known so that the control traffic can be included in the bandwidth specification given to a resource reservation protocol, and so that each participant can independently calculate its share. It is suggested that the fraction of the session bandwidth allocated to RTCP be fixed at 5%. While the value of this and other constants in the interval calculation is not critical, all participants in the session must use the same values so the same interval will be calculated. Therefore, these constants should be fixed for a particular profile.

The algorithm described in Appendix A.7 was designed to meet the goals outlined above. It calculates the interval between sending compound RTCP packets to divide the allowed control traffic bandwidth among the participants. This allows an application to provide fast response for small sessions where, for example, identification of all participants is important, yet automatically adapt to large sessions. The algorithm incorporates the following characteristics:

o Senders are collectively allocated at least 1/4 of the control traffic bandwidth so that in sessions with a large number of receivers but a small number of senders, newly joining participants will more quickly receive the CNAME for the sending sites.

o The calculated interval between RTCP packets is required to be greater than a minimum of 5 seconds to avoid having bursts of RTCP packets exceed the allowed bandwidth when the number of participants is small and the traffic isn't smoothed according to the law of large numbers.

o The interval between RTCP packets is varied randomly over the range [0.5,1.5] times the calculated interval to avoid unintended synchronization of all participants [8]. The first RTCP packet sent after joining a session is also delayed by a random variation of half the minimum RTCP interval in case the application is started at multiple sites simultaneously, for example as initiated by a session announcement.

o A dynamic estimate of the average compound RTCP packet size is

calculated, including all those received and sent, to automatically adapt to changes in the amount of control information carried.

This algorithm may be used for sessions in which all participants are allowed to send. In that case, the session bandwidth parameter is the product of the individual sender's bandwidth times the number of participants, and the RTCP bandwidth is 5% of that.

�AUTONUMLGL�	Maintaining the number of session members

Calculation of the RTCP packet interval depends upon an estimate of the number of sites participating in the session. New sites are added to the count when they are heard, and an entry for each is created in a table indexed by the SSRC or CSRC identifier (see Section �ref collisResLoopDetect�Error! Reference source not found.9.8.2.	Collision Resolution and Loop Detection�) to keep track of them. New entries may not be considered valid until multiple packets carrying the new SSRC have been received (see Appendix A.1). Entries may be deleted from the table when an RTCP BYE packet with the corresponding SSRC identifier is received.

A participant may mark another site inactive, or delete it if not yet valid, if no RTP or RTCP packet has been received for a small number of RTCP report intervals (5 is suggested). This provides some robustness against packet loss. All sites must calculate roughly the same value for the RTCP report interval in order for this timeout to work properly.

Once a site has been validated, then if it is later marked inactive the state for that site should still be retained and the site should continue to be counted in the total number of sites sharing RTCP bandwidth for a period long enough to span typical network partitions. This is to avoid excessive traffic, when the partition heals, due to an RTCP report interval that is too small. A timeout of 30 minutes is suggested. Note that this is still larger than 5 times the largest value to which the RTCP report interval is expected to usefully scale, about 2 to 5 minutes.

�AUTONUMLGL�	Allocation of source description bandwidth

This specification defines several source description (SDES) items in addition to the mandatory CNAME item, such as NAME (personal name) and EMAIL (email address). It also provides a means to define new application-specific RTCP packet types. Applications should exercise caution in allocating control bandwidth to this additional information because it will slow down the rate at which reception reports and CNAME are sent, thus impairing the performance of the protocol. It is recommended that no more than 20% of the RTCP bandwidth allocated to a single participant be used to carry the

additional information. Furthermore, it is not intended that all SDES items should be included in every application. Those that are included should be assigned a fraction of the bandwidth according to their utility. Rather than estimate these fractions dynamically, it is recommended that the percentages be translated statically into report interval counts based on the typical length of an item.

For example, an application may be designed to send only CNAME, NAME and EMAIL and not any others. NAME might be given much higher priority than EMAIL because the NAME would be displayed continuously in the application's user interface, whereas EMAIL would be displayed only when requested. At every RTCP interval, an RR packet and an SDES packet with the CNAME item would be sent. For a small session operating at the minimum interval, that would be every 5 seconds on the average. Every third interval (15 seconds), one extra item would be included in the SDES packet. Seven out of eight times this would be the NAME item, and every eighth time (2 minutes) it would be the EMAIL item.

When multiple applications operate in concert using cross-application binding through a common CNAME for each participant, for example in a multimedia conference composed of an RTP session for each medium, the additional SDES information might be sent in only one RTP session. The other sessions would carry only the CNAME item.

�AUTONUMLGL�	Sender and Receiver Reports

RTP receivers provide reception quality feedback using RTCP report packets which may take one of two forms depending upon whether or not the receiver is also a sender. The only difference between the sender report (SR) and receiver report (RR) forms, besides the packet type code, is that the sender report includes a 20-byte sender information section for use by active senders. The SR is issued if a site has sent any data packets during the interval since issuing the last report or the previous one, otherwise the RR is issued.

Both the SR and RR forms include zero or more reception report blocks, one for each of the synchronization sources from which this receiver has received RTP data packets since the last report. Reports are not issued for contributing sources listed in the CSRC list. Each reception report block provides statistics about the data received from the particular source indicated in that block. Since a maximum of 31 reception report blocks will fit in an SR or RR packet, additional RR packets may be stacked after the initial SR or RR packet as needed to contain the reception reports for all sources heard during the interval since the last report.

The next sections define the formats of the two reports, how they may

be extended in a profile-specific manner if an application requires additional feedback information, and how the reports may be used. Details of reception reporting by translators and mixers is given in Section �ref transMixer�Error! Reference source not found.9.7.	RTP Translators and Mixers �.

�AUTONUMLGL�	SR: Sender report RTCP packet

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |V=2|P| RC | PT=SR=200 | length |

 +-+

 | SSRC of sender |

 +=+=+=+=+=+=+=+=+=+=+=+=end of header=+=+=+=+=+=+=+=+=+=+=+=+=+=+

 | NTP timestamp, most significant word |

 +-+

 | NTP timestamp, least significant word |

 +-+

 | RTP timestamp |

 +-+

 | sender's packet count |

 +-+

 | sender's octet count |

 +=+=+=+=+=+=+=+=end of sender information=+=+=+=+=+=+=+=+=+=+=+=+

 | SSRC_1 (SSRC of first source) |

 +-+

 | fraction lost | cumulative number of packets lost |

 +-+

 | extended highest sequence number received |

 +-+

 | interarrival jitter |

 +-+

 | last SR (LSR) |

 +-+

 | delay since last SR (DLSR) |

 +=+

 | SSRC_2 (SSRC of second source) |

 +-+

 : ... :

 +=+

 | profile-specific extensions |

 +-+

The sender report packet consists of three sections, possibly followed by a fourth profile-specific extension section if defined. The first section, the header, is 8 octets long. The fields have the following meaning:

version (V): 2 bits Identifies the version of RTP, which is the same in RTCP packets as in RTP data packets. The version defined by this specification is two (2).

padding (P): 1 bit If the padding bit is set, this RTCP packet contains some additional padding octets at the end which are not part of the control information. The last octet of the padding is a count of how many padding octets should be ignored. Padding may be needed by some encryption algorithms with fixed block sizes. In a compound RTCP packet, padding should only be required on the last individual packet because the compound packet is encrypted as a whole.

reception report count (RC): 5 bits The number of reception report blocks contained in this packet. A value of zero is valid.

packet type (PT): 8 bits Contains the constant 200 to identify this as an RTCP SR packet.

length: 16 bits The length of this RTCP packet in 32-bit words minus one, including the header and any padding. (The offset of one makes zero a valid length and avoids a possible infinite loop in scanning a compound RTCP packet, while counting 32-bit words avoids a validity check for a multiple of 4.)

SSRC: 32 bits The synchronization source identifier for the originator of this SR packet.

The second section, the sender information, is 20 octets long and is present in every sender report packet. It summarizes the data transmissions from this sender. The fields have the following meaning:

NTP timestamp: 64 bits Indicates the wallclock time when this report was sent so that it may be used in combination with timestamps returned in reception reports from other receivers to measure round-trip propagation to those receivers. Receivers should expect that the measurement accuracy of the timestamp may be limited to far less than the resolution of the NTP timestamp. The measurement uncertainty of the timestamp is not indicated as it may not be known. A sender that can keep track of elapsed time but has no notion of wallclock time may use the elapsed time since joining the session instead. This is assumed to be less than 68 years, so the high bit will be zero. It is permissible to use the sampling clock to estimate elapsed wallclock time. A sender that has no notion of wallclock or elapsed time may set the NTP timestamp to zero.

RTP timestamp: 32 bits Corresponds to the same time as the NTP timestamp (above), but in the same units and with the same random offset as the RTP timestamps in data packets. This correspondence may be used for intra- and inter-media synchronization for sources whose NTP timestamps are synchronized, and may be used by media- independent receivers to estimate the nominal RTP clock frequency. Note that in most cases this timestamp will not be equal to the RTP timestamp in any adjacent data packet. Rather, it is calculated from the corresponding NTP timestamp using the relationship between the RTP timestamp counter and real time as maintained by periodically checking the wallclock time at a sampling instant.

sender's packet count: 32 bits The total number of RTP data packets transmitted by the sender since starting transmission up until the time this SR packet was generated. The count is reset if the sender changes its SSRC identifier.

sender's octet count: 32 bits The total number of payload octets (i.e., not including header or padding) transmitted in RTP data packets by the sender since starting transmission up until the time this SR packet was generated. The count is reset if the sender changes its SSRC identifier. This field can be used to estimate the average payload data rate.

The third section contains zero or more reception report blocks depending on the number of other sources heard by this sender since the last report. Each reception report block conveys statistics on the reception of RTP packets from a single synchronization source. Receivers do not carry over statistics when a source changes its SSRC identifier due to a collision. These statistics are:

SSRC_n (source identifier): 32 bits The SSRC identifier of the source to which the information in this reception report block pertains.

fraction lost: 8 bits The fraction of RTP data packets from source SSRC_n lost since the previous SR or RR packet was sent, expressed as a fixed point number with the binary point at the left edge of the field. (That is equivalent to taking the integer part after multiplying the loss fraction by 256.) This fraction is defined to be the number of packets lost divided by the number of packets expected, as defined in the next paragraph. An implementation is shown in Appendix A.3. If the loss is negative due to duplicates, the fraction lost is set to zero. Note that a receiver cannot tell whether any packets were lost after the last one received, and that there will be no reception report block issued for a source if all packets from that source sent during the last reporting interval have been lost.

cumulative number of packets lost: 24 bits The total number of RTP data packets from source SSRC_n that have been lost since the beginning of reception. This number is defined to be the number of packets expected less the number of packets actually received, where the number of packets received includes any which are late or duplicates. Thus packets that arrive late are not counted as lost, and the loss may be negative if there are duplicates. The number of packets expected is defined to be the extended last sequence number received, as defined next, less the initial sequence number received. This may be calculated as shown in Appendix A.3.

extended highest sequence number received: 32 bits The low 16 bits contain the highest sequence number received in an RTP data packet from source SSRC_n, and the most significant 16 bits extend that sequence number with the corresponding count of sequence number cycles, which may be maintained according to the algorithm in Appendix A.1. Note that different receivers within the same session will generate different extensions to the sequence number if their start times differ significantly.

interarrival jitter: 32 bits An estimate of the statistical variance of the RTP data packet interarrival time, measured in timestamp units and expressed as an unsigned integer. The interarrival jitter J is defined to be the mean deviation (smoothed absolute value) of the difference D in packet spacing at the receiver compared to the sender for a pair of packets. As shown in the equation below, this is equivalent to the difference in the "relative transit time" for the two packets; the relative transit time is the difference between a packet's RTP timestamp and the receiver's clock at the time of arrival, measured in the same units.

If Si is the RTP timestamp from packet i, and Ri is the time of arrival in RTP timestamp units for packet i, then for two packets i and j, D may be expressed as

D(i,j)=(Rj-Ri)-(Sj-Si)=(Rj-Sj)-(Ri-Si)

The interarrival jitter is calculated continuously as each data packet i is received from source SSRC_n, using this difference D for that packet and the previous packet i-1 in order of arrival (not necessarily in sequence), according to the formula

J=J+(|D(i-1,i)|-J)/16 Whenever a reception report is issued, the current value of J is sampled.

The jitter calculation is prescribed here to allow profile- independent monitors to make valid interpretations of reports coming from different implementations. This algorithm is the optimal first- order estimator and the gain parameter 1/16 gives a good noise reduction ratio while maintaining a reasonable rate of convergence [9]. A sample implementation is shown in Appendix A.8.

last SR timestamp (LSR): 32 bits The middle 32 bits out of 64 in the NTP timestamp (as explained in Section �ref byteOrderTimeFormat�Error! Reference source not found.9.4.	Byte Order, Alignment, and Time Format�) received as part of the most recent RTCP sender report (SR) packet from source SSRC_n. If no SR has been received yet, the field is set to zero.

delay since last SR (DLSR): 32 bits The delay, expressed in units of 1/65536 seconds, between receiving the last SR packet from source SSRC_n and sending this reception report block. If no SR packet has been received yet from SSRC_n, the DLSR field is set to zero.

Let SSRC_r denote the receiver issuing this receiver report. Source SSRC_n can compute the round propagation delay to SSRC_r by recording the time A when this reception report block is received. It calculates the total round-trip time A-LSR using the last SR timestamp (LSR) field, and then subtracting this field to leave the round-trip propagation delay as (A- LSR - DLSR). This is illustrated in Fig. 2.

This may be used as an approximate measure of distance to cluster receivers, although some links have very asymmetric delays.

��AUTONUMLGL�	Receiver report RTCP packet

[10 Nov 1995 11:33:25.125] [10 Nov 1995 11:33:36.5]

 n SR(n) A=b710:8000 (46864.500 s)

 -->

 v ^

 ntp_sec =0xb44db705 v ^ dlsr=0x0005.4000 (5.250s)

 ntp_frac=0x20000000 v ^ lsr =0xb705:2000 (46853.125s)

 (3024992016.125 s) v ^

 r v ^ RR(n)

 -->

 |<-DLSR->|

 (5.250 s)

 A 0xb710:8000 (46864.500 s)

 DLSR -0x0005:4000 (5.250 s)

 LSR -0xb705:2000 (46853.125 s)

 delay 0x 6:2000 (6.125 s)

Figure 2/Annex A-H.225.0: Example for round-trip time computation

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |V=2|P| RC | PT=RR=201 | length |

 +-+

 | SSRC of packet sender |

 +=+

 | SSRC_1 (SSRC of first source) |

 +-+

 | fraction lost | cumulative number of packets lost |

 +-+

 | extended highest sequence number received |

 +-+

 | interarrival jitter |

 +-+

 | last SR (LSR) |

 +-+

 | delay since last SR (DLSR) |

 +=+

 | SSRC_2 (SSRC of second source) |

 +-+

 : ... :

 +=+

 | profile-specific extensions |

 +-+

The format of the receiver report (RR) packet is the same as that of the SR packet except that the packet type field contains the constant 201 and the five words of sender information are omitted (these are the NTP and RTP timestamps and sender's packet and octet counts). The remaining fields have the same meaning as for the SR packet.

An empty RR packet (RC = 0) is put at the head of a compound RTCP packet when there is no data transmission or reception to report.

�AUTONUMLGL�	Extending the sender and receiver reports

 A profile should define profile- or application-specific extensions to the sender report and receiver if there is additional information that should be reported regularly about the sender or receivers. This method should be used in preference to defining another RTCP packet type because it requires less overhead:

o fewer octets in the packet (no RTCP header or SSRC field);

o simpler and faster parsing because applications running under that profile would be programmed to always expect the extension fields in the directly accessible location after the reception reports.

If additional sender information is required, it should be included first in the extension for sender reports, but would not be present in receiver reports. If information about receivers is to be included, that data may be structured as an array of blocks parallel to the existing array of reception report blocks; that is, the number of blocks would be indicated by the RC field.

�AUTONUMLGL�	Analyzing sender and receiver reports

It is expected that reception quality feedback will be useful not only for the sender but also for other receivers and third-party monitors. The sender may modify its transmissions based on the feedback; receivers can determine whether problems are local, regional or global; network managers may use profile-independent monitors that receive only the RTCP packets and not the corresponding RTP data packets to evaluate the performance of their networks for multicast distribution.

Cumulative counts are used in both the sender information and receiver report blocks so that differences may be calculated between any two reports to make measurements over both short and long time periods, and to provide resilience against the loss of a report. The

difference between the last two reports received can be used to estimate the recent quality of the distribution. The NTP timestamp is included so that rates may be calculated from these differences over the interval between two reports. Since that timestamp is independent of the clock rate for the data encoding, it is possible to implement encoding- and profile-independent quality monitors.

An example calculation is the packet loss rate over the interval between two reception reports. The difference in the cumulative number of packets lost gives the number lost during that interval. The difference in the extended last sequence numbers received gives the number of packets expected during the interval. The ratio of these two is the packet loss fraction over the interval. This ratio should equal the fraction lost field if the two reports are consecutive, but otherwise not. The loss rate per second can be obtained by dividing the loss fraction by the difference in NTP timestamps, expressed in seconds. The number of packets received is the number of packets expected minus the number lost. The number of packets expected may also be used to judge the statistical validity of any loss estimates. For example, 1 out of 5 packets lost has a lower significance than 200 out of 1000.

From the sender information, a third-party monitor can calculate the average payload data rate and the average packet rate over an interval without receiving the data. Taking the ratio of the two gives the average payload size. If it can be assumed that packet loss is independent of packet size, then the number of packets received by a particular receiver times the average payload size (or the corresponding packet size) gives the apparent throughput available to that receiver.

In addition to the cumulative counts which allow long-term packet loss measurements using differences between reports, the fraction lost field provides a short-term measurement from a single report. This becomes more important as the size of a session scales up enough that reception state information might not be kept for all receivers or the interval between reports becomes long enough that only one report might have been received from a particular receiver.

The interarrival jitter field provides a second short-term measure of network congestion. Packet loss tracks persistent congestion while the jitter measure tracks transient congestion. The jitter measure may indicate congestion before it leads to packet loss. Since the interarrival jitter field is only a snapshot of the jitter at the time of a report, it may be necessary to analyze a number of reports from one receiver over time or from multiple receivers, e.g., within a single network.

�AUTONUMLGL�	SDES: Source description RTCP packet

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |V=2|P| SC | PT=SDES=202 | length |

 +=+

 | SSRC/CSRC_1 |

 +-+

 | SDES items |

 | ... |

 +=+

 | SSRC/CSRC_2 |

 +-+

 | SDES items |

 | ... |

 +=+

The SDES packet is a three-level structure composed of a header and zero or more chunks, each of of which is composed of items describing the source identified in that chunk. The items are described individually in subsequent sections.

version (V), padding (P), length: As described for the SR packet (see Section �ref srReport�Error! Reference source not found.9.6.3.1.	SR: Sender report RTCP packet

�).

packet type (PT): 8 bits Contains the constant 202 to identify this as an RTCP SDES packet.

source count (SC): 5 bits The number of SSRC/CSRC chunks contained in this SDES packet. A value of zero is valid but useless.

Each chunk consists of an SSRC/CSRC identifier followed by a list of zero or more items, which carry information about the SSRC/CSRC. Each chunk starts on a 32-bit boundary. Each item consists of an 8-bit type field, an 8-bit octet count describing the length of the text (thus, not including this two-octet header), and the text itself. Note that the text can be no longer than 255 octets, but this is consistent with the need to limit RTCP bandwidth consumption.

The text is encoded according to the UTF-2 encoding specified in Annex F of ISO standard 10646 [10]. This encoding is also known as UTF-8 or UTF-FSS. It is described in "File System Safe UCS Transformation Format (FSS_UTF)", X/Open Preliminary Specification, Document Number P316 and Unicode Technical Report #4. US-ASCII is a subset of this encoding and requires no additional encoding. The presence of multi-octet encodings is indicated by setting the most significant bit of a character to a value of one.

Items are contiguous, i.e., items are not individually padded to a 32-bit boundary. Text is not null terminated because some multi-octet encodings include null octets. The list of items in each chunk is terminated by one or more null octets, the first of which is interpreted as an item type of zero to denote the end of the list, and the remainder as needed to pad until the next 32-bit boundary. A chunk with zero items (four null octets) is valid but useless.

End systems send one SDES packet containing their own source identifier (the same as the SSRC in the fixed RTP header). A mixer sends one SDES packet containing a chunk for each contributing source from which it is receiving SDES information, or multiple complete SDES packets in the format above if there are more than 31 such sources (see Section �ref transMixer�Error! Reference source not found.9.7.	RTP Translators and Mixers �).

The SDES items currently defined are described in the next sections. Only the CNAME item is mandatory. Some items shown here may be useful only for particular profiles, but the item types are all assigned from one common space to promote shared use and to simplify profile- independent applications. Additional items may be defined in a profile by registering the type numbers with IANA.

�AUTONUMLGL�	CNAME: Canonical end-point identifier SDES item

0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | CNAME=1 | length | user and domain name ...|

 +-+

The CNAME identifier has the following properties:

o Because the randomly allocated SSRC identifier may change if a conflict is discovered or if a program is restarted, the CNAME item is required to provide the binding from the SSRC identifier to an identifier for the source that remains constant.

o Like the SSRC identifier, the CNAME identifier should also be unique among all participants within one RTP session.

o To provide a binding across multiple media tools used by one participant in a set of related RTP sessions, the CNAME should

be fixed for that participant.

o To facilitate third-party monitoring, the CNAME should be suitable for either a program or a person to locate the source.

Therefore, the CNAME should be derived algorithmically and not entered manually, when possible. To meet these requirements, the following format should be used unless a profile specifies an alternate syntax or semantics. The CNAME item should have the format "user@host", or "host" if a user name is not available as on single- user systems. For both formats, "host" is either the fully qualified domain name of the host from which the real-time data originates, formatted according to the rules specified in RFC 1034 [11], RFC 1035 [12] and Section 2.1 of RFC 1123 [13]; or the standard ASCII representation of the host's numeric address on the interface used for the RTP communication. For example, the standard ASCII representation of an IP Version 4 address is "dotted decimal", also known as dotted quad. Other address types are expected to have ASCII representations that are mutually unique. The fully qualified domain name is more convenient for a human observer and may avoid the need to send a NAME item in addition, but it may be difficult or impossible to obtain reliably in some operating environments. Applications that may be run in such environments should use the ASCII representation of the address instead.

Examples are "doe@sleepy.megacorp.com" or "doe@192.0.2.89" for a multi-user system. On a system with no user name, examples would be "sleepy.megacorp.com" or "192.0.2.89".

The user name should be in a form that a program such as "finger" or "talk" could use, i.e., it typically is the login name rather than the personal name. The host name is not necessarily identical to the one in the participant's electronic mail address.

This syntax will not provide unique identifiers for each source if an application permits a user to generate multiple sources from one host. Such an application would have to rely on the SSRC to further identify the source, or the profile for that application would have to specify additional syntax for the CNAME identifier.

If each application creates its CNAME independently, the resulting CNAMEs may not be identical as would be required to provide a binding across multiple media tools belonging to one participant in a set of related RTP sessions. If cross-media binding is required, it may be necessary for the CNAME of each tool to be externally configured with the same value by a coordination tool. Application writers should be aware that private network address assignments such as the Net-10 assignment proposed in RFC 1597 [14] may create network addresses that are not globally unique. This would lead to non-unique CNAMEs if hosts with private addresses and no direct IP connectivity to the public Internet have their RTP packets forwarded to the public Internet through an RTP-level translator. (See also RFC 1627 [15].) To handle this case, applications may provide a means to configure a unique CNAME, but the burden is on the translator to translate CNAMEs from private addresses to public addresses if necessary to keep private addresses from being exposed.

�AUTONUMLGL�	NAME: User name SDES item

See Appendix A

	

�AUTONUMLGL�	EMAIL: Electronic mail address SDES item

See Appendix A

�AUTONUMLGL�	PHONE: Phone number SDES item

See Appendix A

�AUTONUMLGL�	LOC: Geographic user location SDES item

See Appendix A

�AUTONUMLGL�	TOOL: Application or tool name SDES item

See Appendix A

�AUTONUMLGL�	NOTE: Notice/status SDES item

See Appendix A

�AUTONUMLGL�	PRIV: Private extensions SDES item

See Appendix A

�AUTONUMLGL�	BYE: Goodbye RTCP packet

See Appendix A

�AUTONUMLGL�	APP: Application-defined RTCP packet

See Appendix A

�AUTONUMLGL�	RTP Translators and Mixers

In addition to end systems, RTP supports the notion of "translators" and "mixers", which could be considered as "intermediate systems" at the RTP level. Although this support adds some complexity to the protocol, the need for these functions has been clearly established by experiments with multicast audio and video applications in the Internet. Example uses of translators and mixers given in Section �ref mixerAndTrans2_3�Error! Reference source not found.9.2.3.	Mixers and Translators � stem from the presence of firewalls and low bandwidth connections, both of which are likely to remain.

�AUTONUMLGL�	General Description

An RTP translator/mixer connects two or more transport-level "clouds". Typically, each cloud is defined by a common network and transport protocol (e.g., IP/UDP), multicast address or pair of unicast addresses, and transport level destination port. (Network- level protocol translators, such as IP version 4 to IP version 6, may be present within a cloud invisibly to RTP.) One system may serve as a translator or mixer for a number of RTP sessions, but each is considered a logically separate entity.

In order to avoid creating a loop when a translator or mixer is installed, the following rules must be observed:

o Each of the clouds connected by translators and mixers participating in one RTP session either must be distinct from all the others in at least one of these parameters (protocol, address, port), or must be isolated at the network level from the others.

o A derivative of the first rule is that there must not be multiple translators or mixers connected in parallel unless by some arrangement they partition the set of sources to be forwarded.

Similarly, all RTP end systems that can communicate through one or more RTP translators or mixers share the same SSRC space, that is, the SSRC identifiers must be unique among all these end systems. Section �ref collisResLoopDetect�Error! Reference source not found.9.8.2.	Collision Resolution and Loop Detection� describes the collision resolution algorithm by which SSRC identifiers are kept unique and loops are detected.

There may be many varieties of translators and mixers designed for different purposes and applications. Some examples are to add or remove encryption, change the encoding of the data or the underlying protocols, or replicate between a multicast address and one or more unicast addresses. The distinction between translators and mixers is that a translator passes through the data streams from different sources separately, whereas a mixer combines them to form one new stream:

Translator: Forwards RTP packets with their SSRC identifier intact; this makes it possible for receivers to identify individual sources even though packets from all the sources pass through the same translator and carry the translator's network source address. Some kinds of translators will pass through the data untouched, but others may change the encoding of the data and thus the RTP data payload type and timestamp. If multiple data packets are re-encoded into one, or vice versa, a translator must assign new sequence numbers to the outgoing packets. Losses in the incoming packet stream may induce corresponding gaps in the outgoing sequence numbers. Receivers cannot detect the presence of a translator unless they know by some other means what payload type or transport address was used by the original source.

Mixer: Receives streams of RTP data packets from one or more sources, possibly changes the data format, combines the streams in some manner and then forwards the combined stream. Since the timing among multiple input sources will not generally be synchronized, the mixer will make timing adjustments among the streams and generate its own timing for the combined stream, so it is the synchronization source. Thus, all data packets forwarded by a mixer will be marked with the mixer's own SSRC identifier. In order to preserve the identity of the original sources contributing to the mixed packet, the mixer should insert their SSRC identifiers into the CSRC identifier list following the fixed RTP header of the packet. A mixer that is also itself a contributing source for some packet should explicitly include its own SSRC identifier in the CSRC list for that packet.

For some applications, it may be acceptable for a mixer not to identify sources in the CSRC list. However, this introduces the danger that loops involving those sources could not be detected.

The advantage of a mixer over a translator for applications like audio is that the output bandwidth is limited to that of one source even when multiple sources are active on the input side. This may be important for low-bandwidth links. The disadvantage is that receivers on the output side don't have any control over which sources are passed through or muted, unless some mechanism is implemented for remote control of the mixer. The regeneration of synchronization information by mixers also means that receivers can't do inter-media synchronization of the original streams. A multi-media mixer could do it.

[E1] [E6]

 | |

 E1:17 | E6:15 |

 | | E6:15

 V M1:48 (1,17) M1:48 (1,17) V M1:48 (1,17)

 (M1)-------------><T1>-----------------><T2>-------------->[E7]

 ^ ^ E4:47 ^ E4:47

 E2:1 | E4:47 | | M3:89 (64,45)

 | | |

 [E2] [E4] M3:89 (64,45) |

 | legend:

 [E3] --------->(M2)----------->(M3)------------| [End system]

 E3:64 M2:12 (64) ^ (Mixer)

 | E5:45 <Translator>

 |

 [E5] source: SSRC (CSRCs)

 ------------------->

Figure 3/Annex A-H.225.0: Sample RTP network with end systems, mixers and translators

A collection of mixers and translators is shown in Figure 3 to illustrate their effect on SSRC and CSRC identifiers. In the figure, end systems are shown as rectangles (named E), translators as triangles (named T) and mixers as ovals (named M). The notation "M1: 48(1,17)" designates a packet originating a mixer M1, identified with M1's (random) SSRC value of 48 and two CSRC identifiers, 1 and 17, copied from the SSRC identifiers of packets from E1 and E2.

�AUTONUMLGL�	RTCP Processing in Translators

In addition to forwarding data packets, perhaps modified, translators and mixers must also process RTCP packets. In many cases, they will

take apart the compound RTCP packets received from end systems to aggregate SDES information and to modify the SR or RR packets. Retransmission of this information may be triggered by the packet arrival or by the RTCP interval timer of the translator or mixer itself.

A translator that does not modify the data packets, for example one that just replicates between a multicast address and a unicast address, may simply forward RTCP packets unmodified as well. A translator that transforms the payload in some way must make corresponding transformations in the SR and RR information so that it still reflects the characteristics of the data and the reception quality. These translators must not simply forward RTCP packets. In general, a translator should not aggregate SR and RR packets from different sources into one packet since that would reduce the accuracy of the propagation delay measurements based on the LSR and DLSR fields.

SR sender information: A translator does not generate its own sender information, but forwards the SR packets received from one cloud to the others. The SSRC is left intact but the sender information must be modified if required by the translation. If a translator changes the data encoding, it must change the "sender's byte count" field. If it also combines several data packets into one output packet, it must change the "sender's packet count" field. If it changes the timestamp frequency, it must change the "RTP timestamp" field in the SR packet.

SR/RR reception report blocks: A translator forwards reception reports received from one cloud to the others. Note that these flow in the direction opposite to the data. The SSRC is left intact. If a translator combines several data packets into one output packet, and therefore changes the sequence numbers, it must make the inverse manipulation for the packet loss fields and the "extended last sequence number" field. This may be complex. In the extreme case, there may be no meaningful way to translate the reception reports, so the translator may pass on no reception report at all or a synthetic report based on its own reception. The general rule is to do what makes sense for a particular translation.

A translator does not require an SSRC identifier of its own, but may choose to allocate one for the purpose of sending reports about what it has received. These would be sent to all the connected clouds, each corresponding to the translation of the data stream as sent to that cloud, since reception reports are normally multicast to all participants.

SDES: Translators typically forward without change the SDES information they receive from one cloud to the others, but may, for example, decide to filter non-CNAME SDES information if bandwidth is limited. The CNAMEs must be forwarded to allow SSRC identifier collision detection to work. A translator that generates its own RR packets must send SDES CNAME information about itself to the same clouds that it sends those RR packets.

BYE: Translators forward BYE packets unchanged. Translators with their own SSRC should generate BYE packets with that SSRC identifier if they are about to cease forwarding packets.

APP: Translators forward APP packets unchanged.

�AUTONUMLGL�	RTCP Processing in Mixers

Since a mixer generates a new data stream of its own, it does not pass through SR or RR packets at all and instead generates new information for both sides.

SR sender information: A mixer does not pass through sender information from the sources it mixes because the characteristics of the source streams are lost in the mix. As a synchronization source, the mixer generates its own SR packets with sender information about the mixed data stream and sends them in the same direction as the mixed stream.

SR/RR reception report blocks: A mixer generates its own reception reports for sources in each cloud and sends them out only to the same cloud. It does not send these reception reports to the other clouds and does not forward reception reports from one cloud to the others because the sources would not be SSRCs there (only CSRCs).

SDES: Mixers typically forward without change the SDES information they receive from one cloud to the others, but may, for example, decide to filter non-CNAME SDES information if bandwidth is limited. The CNAMEs must be forwarded to allow SSRC identifier collision detection to work. (An identifier in a CSRC list generated by a mixer might collide with an SSRC identifier generated by an end system.) A mixer must send SDES CNAME information about itself to the same clouds that it sends SR or RR packets.

Since mixers do not forward SR or RR packets, they will typically be extracting SDES packets from a compound RTCP packet. To minimize overhead, chunks from the SDES packets may be aggregated into a single SDES packet which is then stacked on an SR or RR packet originating from the mixer. The RTCP packet rate may be different on each side of the mixer.

A mixer that does not insert CSRC identifiers may also refrain from forwarding SDES CNAMEs. In this case, the SSRC identifier spaces in the two clouds are independent. As mentioned earlier, this mode of operation creates a danger that loops can't be detected.

BYE: Mixers need to forward BYE packets. They should generate BYE packets with their own SSRC identifiers if they are about to cease forwarding packets.

APP: The treatment of APP packets by mixers is application-specific.

�AUTONUMLGL�	Cascaded Mixers

An RTP session may involve a collection of mixers and translators as shown in Figure 3. If two mixers are cascaded, such as M2 and M3 in the figure, packets received by a mixer may already have been mixed and may include a CSRC list with multiple identifiers. The second mixer should build the CSRC list for the outgoing packet using the CSRC identifiers from already-mixed input packets and the SSRC identifiers from unmixed input packets. This is shown in the output arc from mixer M3 labeled M3:89(64,45) in the figure. As in the case of mixers that are not cascaded, if the resulting CSRC list has more than 15 identifiers, the remainder cannot be included.

�AUTONUMLGL�	SSRC Identifier Allocation and Use

The SSRC identifier carried in the RTP header and in various fields of RTCP packets is a random 32-bit number that is required to be globally unique within an RTP session. It is crucial that the number be chosen with care in order that participants on the same network or starting at the same time are not likely to choose the same number.

It is not sufficient to use the local network address (such as an IPv4 address) for the identifier because the address may not be unique. Since RTP translators and mixers enable interoperation among multiple networks with different address spaces, the allocation patterns for addresses within two spaces might result in a much higher rate of collision than would occur with random allocation.

Multiple sources running on one host would also conflict.

It is also not sufficient to obtain an SSRC identifier simply by calling random() without carefully initializing the state. An example of how to generate a random identifier is presented in Appendix A.6.

�AUTONUMLGL�	Probability of Collision

Since the identifiers are chosen randomly, it is possible that two or more sources will choose the same number. Collision occurs with the highest probability when all sources are started simultaneously, for example when triggered automatically by some session management event. If N is the number of sources and L the length of the identifier (here, 32 bits), the probability that two sources independently pick the same value can be approximated for large N [20] as 1 - exp(-N**2 / 2**(L+1)). For N=1000, the probability is roughly 10**-4.

The typical collision probability is much lower than the worst-case above. When one new source joins an RTP session in which all the other sources already have unique identifiers, the probability of collision is just the fraction of numbers used out of the space. Again, if N is the number of sources and L the length of the identifier, the probability of collision is N / 2**L. For N=1000, the probability is roughly 2*10**-7. The probability of collision is further reduced by the opportunity for a new source to receive packets from other participants before sending its first packet (either data or control). If the new source keeps track of the other participants (by SSRC identifier), then before transmitting its first packet the new source can verify that its identifier does not conflict with any that have been received, or else choose again.

�AUTONUMLGL�	Collision Resolution and Loop Detection

Although the probability of SSRC identifier collision is low, all RTP implementations must be prepared to detect collisions and take the appropriate actions to resolve them. If a source discovers at any time that another source is using the same SSRC identifier as its own, it must send an RTCP BYE packet for the old identifier and choose another random one. If a receiver discovers that two other sources are colliding, it may keep the packets from one and discard the packets from the other when this can be detected by different source transport addresses or CNAMEs. The two sources are expected to resolve the collision so that the situation doesn't last.

Because the random identifiers are kept globally unique for each RTP session, they can also be used to detect loops that may be introduced by mixers or translators. A loop causes duplication of data and control information, either unmodified or possibly mixed, as in the following examples:

o A translator may incorrectly forward a packet to the same

multicast group from which it has received the packet, either directly or through a chain of translators. In that case, the same packet appears several times, originating from different network sources.

o Two translators incorrectly set up in parallel, i.e., with the same multicast groups on both sides, would both forward packets from one multicast group to the other. Unidirectional translators would produce two copies; bidirectional translators would form a loop.

o A mixer can close a loop by sending to the same transport destination upon which it receives packets, either directly or through another mixer or translator. In this case a source might show up both as an SSRC on a data packet and a CSRC in a mixed data packet.

A source may discover that its own packets are being looped, or that packets from another source are being looped (a third-party loop). Both loops and collisions in the random selection of a source identifier result in packets arriving with the same SSRC identifier but a different source transport address, which may be that of th e end system originating the packet or an intermediate system. Consequently, if a source changes its source transport address, it must also choose a new SSRC identifier to avoid being interpreted as a looped source. Loops or collisions occurring on the far side of a translator or mixer cannot be detected using the source transport address if all copies of the packets go through the translator or mixer, however collisions may still be detected when chunks from two RTCP SDES packets contain the same SSRC identifier but different CNAMEs.

To detect and resolve these conflicts, an RTP implementation must include an algorithm similar to the one described below. It ignores packets from a new source or loop that collide with an established source. It resolves collisions with the participant's own SSRC identifier by sending an RTCP BYE for the old identifier and choosing a new one. However, when the collision was induced by a loop of the participant's own packets, the algorithm will choose a new identifier only once and thereafter ignore packets from the looping source transport address. This is required to avoid a flood of BYE packets.

This algorithm depends upon the source transport address being the same for both RTP and RTCP packets from a source. The algorithm would require modifications to support applications that don't meet this constraint.

This algorithm requires keeping a table indexed by source identifiers and containing the source transport address from which the identifier was (first) received, along with other state for that source. Each SSRC or CSRC identifier received in a data or control packet is looked up in this table in order to process that data or control information. For control packets, each element with its own SSRC, for example an SDES chunk, requires a separate lookup. (The SSRC in a reception report block is an exception.) If the SSRC or CSRC is not found, a new entry is created. These table entries are removed when an RTCP BYE packet is received with the corresponding SSRC, or after no packets have arrived for a relatively long time (see Section �ref maintNumbSessMem�Error! Reference source not found.9.6.2.1.	Maintaining the number of session members�).

In order to track loops of the participant's own data packets, it is also necessary to keep a separate list of source transport addresses (not identifiers) that have been found to be conflicting. Note that this should be a short list, usually empty. Each element in this list stores the source address plus the time when the most recent conflicting packet was received. An element may be removed from the list when no conflicting packet has arrived from that source for a time on the order of 10 RTCP report intervals (see Section �ref rtcpTransInterval�Error! Reference source not found.9.6.2.	RTCP Transmission Interval �).

For the algorithm as shown, it is assumed that the participant's own source identifier and state are included in the source identifier table. The algorithm could be restructured to first make a separate comparison against the participant's own source identifier.

IF the SSRC or CSRC identifier is not found in the source identifier table: THEN create a new entry storing the source transport address and the SSRC or CSRC along with other state. CONTINUE with normal processing.

(identifier is found in the table)

IF the source transport address from the packet matches the one saved in the table entry for this identifier: THEN CONTINUE with normal processing.

(an identifier collision or a loop is indicated)

IF the source identifier is not the participant's own: THEN IF the source identifier is from an RTCP SDES chunk containing a CNAME item that differs from the CNAME in the table entry: THEN (optionally) count a third-party collision.

ELSE (optionally) count a third-party loop. ABORT processing of data packet or control element.

(a collision or loop of the participant's own data)

IF the source transport address is found in the list of conflicting addresses: THEN IF the source identifier is not from an RTCP SDES chunk containing a CNAME item OR if that CNAME is the participant's own: THEN (optionally) count occurrence of own traffic looped. mark current time in conflicting address list entry. ABORT processing of data packet or control element. log occurrence of a collision. create a new entry in the conflicting address list and mark current time. send an RTCP BYE packet with the old SSRC identifier. choose a new identifier. create a new entry in the source identifier table with the old SSRC plus the source transport address from the packet being processed. CONTINUE with normal processing.

In this algorithm, packets from a newly conflicting source address will be ignored and packets from the original source will be kept. (If the original source was through a mixer and later the same source is received directly, the receiver may be well advised to switch unless other sources in the mix would be lost.) If no packets arrive from the original source for an extended period, the table entry will be timed out and the new source will be able to take over. This might occur if the original source detects the collision and moves to a new source identifier, but in the usual case an RTCP BYE packet will be received from the original source to delete the state without having to wait for a timeout.

When a new SSRC identifier is chosen due to a collision, the candidate identifier should first be looked up in the source identifier table to see if it was already in use by some other source. If so, another candidate should be generated and the process repeated.

A loop of data packets to a multicast destination can cause severe network flooding. All mixers and translators are required to implement a loop detection algorithm like the one here so that they can break loops. This should limit the excess traffic to no more than one duplicate copy of the original traffic, which may allow the

session to continue so that the cause of the loop can be found and fixed. However, in extreme cases where a mixer or translator does not properly break the loop and high traffic levels result, it may be necessary for end systems to cease transmitting data or control packets entirely. This decision may depend upon the application. An error condition should be indicated as appropriate. Transmission might be attempted again periodically after a long, random time (on the order of minutes).

�AUTONUMLGL�	Security

See Appendix A for an informative look at some Internet security methods. H.323 privacy and key exchange methods are described in H.323.

�AUTONUMLGL�	RTP over Network and Transport Protocols

This section describes issues specific to carrying RTP packets within particular network and transport protocols. The following rules apply unless superseded by protocol-specific definitions outside this specification.

RTP relies on the underlying protocol(s) to provide demultiplexing of RTP data and RTCP control streams. For UDP and similar protocols, RTP uses an even port number and the corresponding RTCP stream uses the next higher (odd) port number. If an application is supplied with an odd number for use as the RTP port, it should replace this number with the next lower (even) number.

RTP data packets contain no length field or other delineation, therefore RTP relies on the underlying protocol(s) to provide a length indication. The maximum length of RTP packets is limited only by the underlying protocols.

If RTP packets are to be carried in an underlying protocol that provides the abstraction of a continuous octet stream rather than messages (packets), an encapsulation of the RTP packets must be defined to provide a framing mechanism. Framing is also needed if the underlying protocol may contain padding so that the extent of the RTP payload cannot be determined. The framing mechanism is not defined here.

A profile may specify a framing method to be used even when RTP is carried in protocols that do provide framing in order to allow carrying several RTP packets in one lower-layer protocol data unit, such as a UDP packet. Carrying several RTP packets in one network or transport packet reduces header overhead and may simplify synchronization between different streams.

�AUTONUMLGL�	Summary of Protocol Constants

This section contains a summary listing of the constants defined in this specification.

The RTP payload type (PT) constants are defined in profiles rather than this document. However, the octet of the RTP header which contains the marker bit(s) and payload type must avoid the reserved values 200 and 201 (decimal) to distinguish RTP packets from the RTCP SR and RR packet types for the header validation procedure described in Appendix A.1. For the standard definition of one marker bit and a 7-bit payload type field as shown in this specification, this restriction means that payload types 72 and 73 are reserved.

�AUTONUMLGL�	RTCP packet types

abbrev. name value SR sender report 200 RR receiver report 201 SDES source description 202 BYE goodbye 203 APP application-defined 204

These type values were chosen in the range 200-204 for improved header validity checking of RTCP packets compared to RTP packets or other unrelated packets. When the RTCP packet type field is compared to the corresponding octet of the RTP header, this range corresponds to the marker bit being 1 (which it usually is not in data packets) and to the high bit of the standard payload type field being 1 (since the static payload types are typically defined in the low half). This range was also chosen to be some distance numerically from 0 and 255 since all-zeros and all-ones are common data patterns.

Since all compound RTCP packets must begin with SR or RR, these codes were chosen as an even/odd pair to allow the RTCP validity check to test the maximum number of bits with mask and value.

Other constants are assigned by IANA. Experimenters are encouraged to register the numbers they need for experiments, and then unregister those which prove to be unneeded.

�AUTONUMLGL�	SDES types

abbrev. name value END end of SDES list 0 CNAME canonical name 1 NAME user name 2

EMAIL user's electronic mail address 3 PHONE user's phone number 4 LOC geographic user location 5 TOOL name of application or tool 6 NOTE notice about the source 7 PRIV private extensions 8

Other constants are assigned by IANA. Experimenters are encouraged to register the numbers they need for experiments, and then unregister those which prove to be unneeded.

�AUTONUMLGL�	RTP Profiles and Payload Format Specifications

A complete specification of RTP for a particular application will require one or more companion documents of two types described here: profiles, and payload format specifications.

RTP may be used for a variety of applications with somewhat differing requirements. The flexibility to adapt to those requirements is provided by allowing multiple choices in the main protocol specification, then selecting the appropriate choices or defining extensions for a particular environment and class of applications in a separate profile document. Typically an application will operate under only one profile so there is no explicit indication of which profile is in use. A profile for audio and video applications may be found in Annex B.

The second type of companion document is a payload format specification, which defines how a particular kind of payload data, such as H.261 encoded video, should be carried in RTP. These documents are typically titled "RTP Payload Format for XYZ Audio/Video Encoding". Payload formats may be useful under multiple profiles and may therefore be defined independently of any particular profile. The profile documents are then responsible for assigning a default mapping of that format to a payload type value if needed. See Annex C for this information.

Within this specification, the following items have been identified for possible definition within a profile, but this list is not meant to be exhaustive:

RTP data header: The octet in the RTP data header that contains the marker bit and payload type field may be redefined by a profile to suit different requirements, for example with more or fewer marker bits (Section �ref profileSpecifMods�Error! Reference source not found.9.5.3.Profile-Specific Modifications to the RTP Header

�).

Payload types: Assuming that a payload type field is included, the profile will usually define a set of payload formats (e.g., media encodings) and a default static mapping of those formats to payload type values. Some of the payload formats may be defined by reference to separate payload format specifications. For each payload type defined, the profile must specify the RTP timestamp clock rate to be used (Section �ref rtpFixedHeaderFields�Error! Reference source not found.9.5.1.	RTP Fixed Header Fields�).

RTP data header additions: Additional fields may be appended to the fixed RTP data header if some additional functionality is required across the profile's class of applications independent of payload type (Section �ref profileSpecifMods�Error! Reference source not found.9.5.3.Profile-Specific Modifications to the RTP Header

�).

RTP data header extensions: The contents of the first 16 bits of the RTP data header extension structure must be defined if use of that mechanism is to be allowed under the profile for implementation-specific extensions (Section �ref profileSpecifMods�Error! Reference source not found.9.5.3.Profile-Specific Modifications to the RTP Header

�).

RTCP packet types: New application-class-specific RTCP packet types may be defined and registered with IANA.

RTCP report interval: A profile should specify that the values suggested in Section �ref rtcpTransInterval�Error! Reference source not found.9.6.2.	RTCP Transmission Interval � for the constants employed in the calculation of the RTCP report interval will be used. Those are the RTCP fraction of session bandwidth, the minimum report interval, and the bandwidth split between senders and receivers. A profile may specify alternate values if they have been demonstrated to work in a scalable manner.

SR/RR extension: An extension section may be defined for the RTCP SR and RR packets if there is additional information that should be reported regularly about the sender or receivers (Section �ref extendSenderRecRep�Error! Reference source not found.9.6.3.3.	Extending the sender and receiver reports�).

SDES use: The profile may specify the relative priorities for RTCP SDES items to be transmitted or excluded entirely (Section �ref allocSourceDescBW�Error! Reference source not found.9.6.2.2.	Allocation of source description bandwidth�); an alternate syntax or semantics for the CNAME item (Section �ref cname�Error! Reference source not found.9.6.4.1.	CNAME: Canonical end-point identifier SDES item

�); the format of the LOC item (Section �ref locGeoUserLocSDEC�Error! Reference source not found.9.6.4.5.	LOC: Geographic user location SDES item�); the semantics and use of the NOTE item (Section �ref noteNoticeStatusSDEC�Error! Reference source not found.9.6.4.7.	NOTE: Notice/status SDES item �); or new SDES item types to be registered with IANA.

Security: A profile may specify which security services and algorithms should be offered by applications, and may provide guidance as to their appropriate use (Section �ref security9�Error! Reference source not found.9.9.	Security �).

String-to-key mapping: A profile may specify how a user-provided password or pass phrase is mapped into an encryption key.

Underlying protocol: Use of a particular underlying network or transport layer protocol to carry RTP packets may be required.

Transport mapping: A mapping of RTP and RTCP to transport-level addresses, e.g., UDP ports, other than the standard mapping defined in Section 10, p. 39 may be specified.

Encapsulation: An encapsulation of RTP packets may be defined to allow multiple RTP data packets to be carried in one lower-layer packet or to provide framing over underlying protocols that do not already do so (Section �ref rtp_over_network�Error! Reference source not found.9.10.	RTP over Network and Transport Protocols�).

�AUTONUMLGL�	Appendix A Algorithms

This Appendix can be found as Appendix A/H.225.0. All such sample implementations are non-normative and hence are not included here

�AUTONUMLGL�	Bibliography

Note that the material in this bibliography is informative, and is not required to implement this annex.

[1] D. D. Clark and D. L. Tennenhouse, "Architectural considerations for a new generation of protocols," in SIGCOMM Symposium on Communications Architectures and Protocols , (Philadelphia, Pennsylvania), pp. 200--208, IEEE, Sept. 1990. Computer Communications Review, Vol. 20(4), Sept. 1990. [Informative reference]

[2] D. E. Comer, Internetworking with TCP/IP , vol. 1. Englewood Cliffs, New Jersey: Prentice Hall, 1991.

[3] J. Postel, "Internet protocol," RFC 791, Internet Engineering Task Force, Sept. 1981.

[4] D. Mills, "Network time protocol (v3)," RFC 1305, Internet Engineering Task Force, Apr. 1992.

[5] D. Eastlake, S. Crocker, and J. Schiller, "Randomness recommendations for security," RFC 1750, Internet Engineering Task Force, Dec. 1994.

[6] J.-C. Bolot, T. Turletti, and I. Wakeman, "Scalable feedback control for multicast video distribution in the internet," in SIGCOMM Symposium on Communications Architectures and Protocols , (London, England), pp. 58--67, ACM, Aug. 1994.]

[7] I. Busse, B. Deffner, and H. Schulzrinne, "Dynamic QoS control of multimedia applications based on RTP," Computer Communications , Jan. 1996.]

[8] S. Floyd and V. Jacobson, "The synchronization of periodic routing messages," in SIGCOMM Symposium on Communications Architectures and Protocols (D. P. Sidhu, ed.), (San Francisco, California), pp. 33--44, ACM, Sept. 1993. also in [25].]

[9] J. A. Cadzow, Foundations of digital signal processing and data analysis New York, New York: Macmillan, 1987.]

[10] International Standards Organization, "ISO/IEC DIS 10646-1:1993 information technology -- universal multiple-octet coded character set (UCS) -- part I: Architecture and basic multilingual plane," 1993. [11] P. Mockapetris, "Domain names - concepts and facilities," STD 13, RFC 1034, Internet Engineering Task Force, Nov. 1987.

[12] P. Mockapetris, "Domain names - implementation and specification," STD 13, RFC 1035, Internet Engineering Task Force, Nov. 1987.

[13] R. Braden, "Requirements for internet hosts - application and support," STD 3, RFC 1123, Internet Engineering Task Force, Oct. 1989.

[14] Y. Rekhter, R. Moskowitz, D. Karrenberg, and G. de Groot, "Address allocation for private internets," RFC 1597, Internet Engineering Task Force, Mar. 1994.

[15] E. Lear, E. Fair, D. Crocker, and T. Kessler, "Network 10 considered harmful (some practices shouldn't be codified)," RFC 1627, Internet Engineering Task Force, July 1994.

[16] D. Crocker, "Standard for the format of ARPA internet text messages," STD 11, RFC 822, Internet Engineering Task Force, Aug. 1982.

[17] W. Feller, An Introduction to Probability Theory and its Applications, Volume 1 , vol. 1. New York, New York: John Wiley and Sons, third ed., 1968.]

[18] D. Balenson, "Privacy enhancement for internet electronic mail: Part III: algorithms, modes, and identifiers," RFC 1423, Internet Engineering Task Force, Feb. 1993.

[19] V. L. Voydock and S. T. Kent, "Security mechanisms in high-level network protocols," ACM Computing Surveys , vol. 15, pp. 135--171, June 1983.]

[20] R. Rivest, "The MD5 message-digest algorithm," RFC 1321, Internet Engineering Task Force, Apr. 1992.

��autonumlgl ��	Annex B: RTP Profile(Normative)

See the introduction to Annex A; all the warnings mentioned there apply to this Annex as well. An informative reference to the full IETF document can be found in Appendix B; however, this Annex contains all information needed for the implementation of H.323.

�AUTONUMLGL�	Introduction

This profile defines aspects of RTP left unspecified in Annex A. This profile is intended for the use within audio and video conferences with minimal session control. In particular, no support for the negotiation of parameters or membership control is provided. The profile is expected to be useful in sessions where no negotiation or membership control are used (e.g., using the static payload types and the membership indications provided by RTCP), but this profile may also be useful in conjunction with a higher-level control protocol.

Use of this profile occurs by use of the appropriate applications; there is no explicit indication by port number, protocol identifier or the like.

Other profiles may make different choices for the items specified here.

�AUTONUMLGL�	RTP and RTCP Packet Forms and Protocol Behavior

The section "RTP Profiles and Payload Format Specification" enumerates a number of items that can be specified or modified in a profile. This section addresses these items. Generally, this profile follows the default and/or recommended aspects of the RTP specification.

RTP data header: The standard format of the fixed RTP data header is used (one marker bit).

Payload types: Static payload types are defined in Section �ref BpayloadTypeDef�Error! Reference source not found.10.6.	Payload Type Definitions�.

RTP data header additions: No additional fixed fields are appended to the RTP data header.

RTP data header extensions: No RTP header extensions are defined, but applications operating under this profile may use such extensions. Thus, applications should not assume that the RTP header X bit is always zero and should be prepared to ignore the header extension. If a header extension is defined in the future, that definition must specify the contents of the first 16 bits in such a way that multiple different extensions can be identified.

RTCP packet types: No additional RTCP packet types are defined by this profile specification.

RTCP report interval: The suggested constants are to be used for the RTCP report interval calculation.

SR/RR extension: No extension section is defined for the RTCP SR or RR packet.

SDES use: Applications may use any of the SDES items described. While CNAME information is sent every reporting interval, other items should be sent only every fifth reporting interval.

Security: The RTP default security services are not the default under this profile.

String-to-key mapping: See Appendix B for this informative information.

Underlying protocol: Any underlying protocol is allowed an described in Appendix D that meets certain requirements.

Transport mapping: The standard mapping of RTP and RTCP to transport-level addresses is used.

Encapsulation: No encapsulation of RTP packets is specified.

�AUTONUMLGL�	Payload Types

See Appendix B for information on registering new payload types.

Note that not all encodings to be used by RTP need to be assigned a static payload type. Non-RTP means beyond the scope of this memo (such as directory services or invitation protocols) may be used to establish a dynamic mapping between a payload type drawn from the range 96-127 and an encoding. For implementor convenience, this profile contains descriptions of encodings which do not currently have a static payload type assigned to them.

The available payload type space is relatively small. Thus, new static payload types are assigned only if the following conditions are met:

o The encoding is of interest to the Internet community at large.

o It offers benefits compared to existing encodings and/or is required for interoperation with existing, widely deployed conferencing or multimedia systems.

o The description is sufficient to build a decoder.

�AUTONUMLGL�	Audio

�AUTONUMLGL�	Encoding-Independent Recommendations

For applications which send no packets during silence, the first packet of a talkspurt (first packet after a silence period) is distinguished by setting the marker bit in the RTP data header. Applications without silence suppression set the bit to zero.

The RTP clock rate used for generating the RTP timestamp is independent of the number of channels and the encoding; it equals the number of sampling periods per second. For N-channel encodings, each sampling period (say, 1/8000 of a second) generates N samples. (This terminology is standard, but somewhat confusing, as the total number of samples generated per second is then the sampling rate times the channel count.)

If multiple audio channels are used, channels are numbered left-to- right, starting at one. In RTP audio packets, information from lower-numbered channels precedes that from higher-numbered channels.

�For more than two channels, the convention should use the following notation:

 l left

 r right

 c center

 S surround

 F front

 R rear

 channels description channel

 1 2 3 4 5 6

 2 stereo l r

 3 l r c

 4 quadrophonic Fl Fr Rl Rr

 4 l c r S

 5 Fl Fr Fc Sl Sr

 6 l lc c r rc S

Samples for all channels belonging to a single sampling instant must be within the same packet. The interleaving of samples from different channels depends on the encoding. General guidelines are given in Sections �ref BguideSampBasedAudio�Error! Reference source not found.10.4.2.	Guidelines for Sample-Based Audio Encodings� and �ref BguideFrameBasAudio�Error! Reference source not found.10.4.3.	Guidelines for Frame-Based Audio Encodings�.

The sampling frequency should be drawn from the set: 8000, 11025, 16000, 22050, 24000, 32000, 44100 and 48000 Hz. (The Apple Macintosh computers have native sample rates of 22254.54 and 11127.27, which can be converted to 22050 and 11025 with acceptable quality by dropping 4 or 2 samples in a 20 ms frame.) However, most audio encodings are defined for a more restricted set of sampling frequencies. Receivers should be prepared to accept multi-channel audio, but may choose to only play a single channel.

The following recommendations are default operating parameters. Applications should be prepared to handle other values. The ranges given are meant to give guidance to application writers, allowing a set of applications conforming to these guidelines to interoperate without additional negotiation. These guidelines are not intended to restrict operating parameters for applications that can negotiate a set of interoperable parameters, e.g., through a conference control protocol.

For packetized audio, the default packetization interval should have a duration of 20 ms, unless otherwise noted when describing the encoding. The packetization interval determines the minimum end-to- end delay; longer packets introduce less header overhead but higher delay and make packet loss more noticeable. For non-interactive applications such as lectures or links with severe bandwidth constraints, a higher packetization delay may be appropriate. A receiver should accept packets representing between 0 and 200 ms of audio data. This restriction allows reasonable buffer sizing for the receiver.

�AUTONUMLGL�	Guidelines for Sample-Based Audio Encodings

In sample-based encodings, each audio sample is represented by a fixed number of bits. Within the compressed audio data, codes for individual samples may span octet boundaries. An RTP audio packet may contain any number of audio samples, subject to the constraint that the number of bits per sample times the number of samples per packet yields an integral octet count. Fractional encodings produce less than one octet per sample.

The duration of an audio packet is determined by the number of samples in the packet.

For sample-based encodings producing one or more octets per sample, samples from different channels sampled at the same sampling instant are packed in consecutive octets. For example, for a two-channel encoding, the octet sequence is (left channel, first sample), (right channel, first sample), (left channel, second sample), (right channel, second sample), For multi-octet encodings, octets are transmitted in network byte order (i.e., most significant octet first).

The packing of sample-based encodings producing less than one octet per sample is encoding-specific.

�AUTONUMLGL�	Guidelines for Frame-Based Audio Encodings

Frame-based encodings encode a fixed-length block of audio into another block of compressed data, typically also of fixed length. For frame-based encodings, the sender may choose to combine several such frames into a single message. The receiver can tell the number of frames contained in a message since the frame duration is defined as part of the encoding.

For frame-based codecs, the channel order is defined for the whole block. That is, for two-channel audio, right and left samples are coded independently, with the encoded frame for the left channel preceding that for the right channel.

All frame-oriented audio codecs should be able to encode and decode several consecutive frames within a single packet. Since the frame size for the frame-oriented codecs is given, there is no need to use a separate designation for the same encoding, but with different number of frames per packet.

�AUTONUMLGL�	Audio Encodings

 encoding sample/frame bits/sample ms/frame

 __

 G722 sample 8

 G728 frame N/A 2.5

 PCMA sample 8

 PCMU sample 8

Table 1/Annex B-H.225.0: Properties of Audio Encodings

The characteristics of standard audio encodings are shown in Table 1 and their payload types are listed in Table 2.

See Appendix B for information on any coding not listed in Table 1. Support for such codings is not part of the H.323 recommendation.

�AUTONUMLGL�	G722

G722 is specified in ITU-T recommendation G.722, "7 kHz audio-coding within 64 Kbit/s".

�AUTONUMLGL�	G728

G728 is specified in ITU-T recommendation G.728, "Coding of speech at 16 Kbit/s using low-delay code excited linear prediction".

�AUTONUMLGL�	PCMA

PCMA is specified in CCITT/ITU-T recommendation G.711. Audio data is encoded as eight bits per sample, after logarithmic scaling.

�AUTONUMLGL�	PCMU

PCMU is specified in CCITT/ITU-T recommendation G.711. Audio data is encoded as eight bits per sample, after logarithmic scaling.

�AUTONUMLGL�	Video

The following video encodings are currently defined, with their abbreviated names used for identification. See Appendix B for any coding not described here. Such coding are not part of the H.323 recommendation.

H261

The encoding is specified in CCITT/ITU-T standard H.261. The packetization and RTP-specific properties are described in Annex C.

�AUTONUMLGL�	Payload Type Definitions

Table 2 defines this profile's static payload type values for the PT field of the RTP data header.

In addition, payload type values in the range 96-127 may be defined dynamically through a conference control protocol, which is beyond the scope of this document. For example, a session directory could specify that for a given session, payload type 96 indicates PCMU encoding, 8,000 Hz sampling rate, 2 channels. The payload type range marked 'reserved' has been set aside so that RTCP and RTP packets can be reliably distinguished (see Section �ref summaryProtocolConst�Error! Reference source not found.9.11.	Summary of Protocol Constants�).

An RTP source emits a single RTP payload type at any given time; the interleaving of several RTP payload types in a single RTP session is not allowed, but multiple RTP sessions may be used in parallel to send multiple media. The payload types currently defined in this profile carry either audio or video, but not both. However, it is allowed to define payload types that combine several media, e.g., audio and video, with appropriate separation in the payload format. Session participants agree through mechanisms beyond the scope of this specification on the set of payload types allowed in a given session. This set may, for example, be defined by the capabilities of the applications used, negotiated by a conference control protocol or established by agreement between the human participants.

All current video encodings use a timestamp frequency of 90,000 Hz, the same as the MPEG presentation time stamp frequency. This frequency yields exact integer timestamp increments for the typical 24 (HDTV), 25 (PAL), and 29.97 (NTSC) and 30 Hz (HDTV) frame rates and 50, 59.94 and 60 Hz field rates. While 90 kHz is the recommended rate for future video encodings used within this profile, other rates are possible. However, it is not sufficient to use the video frame rate (typically between 15 and 30 Hz) because that does not provide adequate resolution for typical synchronization requirements when calculating the RTP timestamp corresponding to the NTP timestamp in an RTCP SR packet [See Annex A] The timestamp resolution must also be sufficient for the jitter estimate contained in the receiver reports.

The standard video encodings and their payload types are listed in Table 2/Annex B-H.225.0.

�AUTONUMLGL�	Port Assignment

As specified in the RTP protocol definition, RTP data is to be carried on an even UDP port number and the corresponding RTCP packets are to be carried on the next higher (odd) port number.

Applications operating under this profile may use any such UDP port pair. For example, the port pair may be allocated randomly by a session management program. A single fixed port number pair cannot be required because multiple applications using this profile are likely to run on the same host, and there are some operating systems that do not allow multiple processes to use the same UDP port with different multicast addresses.

 PT encoding audio/video clock rate channels

 name (A/V) (Hz) (audio)

	__

 0 PCMU A 8000 1

 8 PCMA A 8000 1

 9 G722 A 8000 1

	15 G728 A 8000

	31 H261 V 90000

	96--127 dynamic ?

Table 2/Annex B-H.225.0: Payload types (PT) for standard audio and video encodings

 Note: Payload types 1-7,10-14,16-30, and 30-95 are reserved. See Appendix B for more information.

However, port numbers 5004 and 5005 have been registered for use with this profile for those applications that choose to use them as the default pair. Applications that operate under multiple profiles may use this port pair as an indication to select this profile if they are not subject to the constraint of the previous paragraph. Applications need not have a default and may require that the port pair be explicitly specified. The particular port numbers were chosen to lie in the range above 5000 to accomodate port number allocation practice within the Unix operating system, where port numbers below 1024 can only be used by privileged processes and port numbers between 1024 and 5000 are automatically assigned by the operating system.

�

�autonumlgl ��	Annex C: RTP payload format for H.261 video streams (Normative)

See the introduction to Annex A; all the warnings mentioned there apply to this Annex as well. An informative reference to the full IETF document can be found in Appendix C; however, this Annex contains all information needed for the implementation of H.323.

�AUTONUMLGL�	Introduction

The ITU-T recommendation H.261 [2] specifies the encodings used by ITU-T compliant video-conference codecs. Although these encodings were originally specified for fixed data rate ISDN circuits, experiments have shown that they can also be used over packet-switched networks such as the Internet.

The purpose of this memo is to specify the RTP payload format for encapsulating H.261 video streams in RTP [See Annex A].

�AUTONUMLGL�	Structure of the packet stream

�AUTONUMLGL�	Overview of the ITU-T recommendation H.261

The H.261 coding is organized as a hierarchy of groupings. The video stream is composed of a sequence of images, or frames, which are themselves organized as a set of Groups of Blocks (GOB). Note that H.261 "pictures" are referred as "frames" in this document. Each GOB holds a set of 3 lines of 11 macro blocks (MB). Each MB carries information on a group of 16x16 pixels: luminance information is specified for 4 blocks of 8x8 pixels, while chrominance information is given by two "red" and "blue" color difference components at a resolution of only 8x8 pixels. These components and the codes representing their sampled values are as defined in the ITU-R Recommendation 601 [3].

This grouping is used to specify information at each level of the hierarchy:

- At the frame level, one specifies information such as the delay from the previous frame, the image format, and various indicators.

- At the GOB level, one specifies the GOB number and the default quantifier that will be used for the MBs.

- At the MB level, one specifies which blocks are present and which did not change, and optionally a quantifier and motion vectors.

Blocks which have changed are encoded by computing the discrete cosine transform (DCT) of their coefficients, which are then quantized and Huffman encoded (Variable Length Codes).

The H.261 Huffman encoding includes a special "GOB start" pattern, composed of 15 zeroes followed by a single 1, that cannot be imitated by any other code words. This pattern is included at the beginning of each GOB header (and also at the beginning of each frame header) to mark the separation between two GOBs, and is in fact used as an indicator that the current GOB is terminated. The encoding also includes a stuffing pattern, composed of seven zeroes followed by four ones; that stuffing pattern can only be entered between the encoding of MBs, or just before the GOB separator.

�AUTONUMLGL�	Considerations for packetization

H.261 codecs designed for operation over ISDN circuits produce a bit stream composed of several levels of encoding specified by H.261 and companion recommendations. The bits resulting from the Huffman encoding are arranged in 512-bit frames, containing 2 bits of synchronization, 492 bits of data and 18 bits of error correcting code. The 512-bit frames are then interlaced with an audio stream and transmitted over px64 kbps circuits according to specification H.221 [1].

When transmitting over the Internet, we will directly consider the output of the Huffman encoding. All the bits produced by the Huffman encoding stage will be included in the packet. We will not carry the 512-bit frames, as protection against bit errors can be obtained by other means. Similarly, we will not attempt to multiplex audio and video signals in the same packets, as UDP and RTP provide a much more efficient way to achieve multiplexing.

Directly transmitting the result of the Huffman encoding over an unreliable stream of UDP datagrams would, however, have poor error resistance characteristics. The result of the hierachical structure of H.261 bit stream is that one needs to receive the information present in the frame header to decode the GOBs, as well as the information present in the GOB header to decode the MBs. Without precautions, this would mean that one has to receive all the packets that carry an image in order to properly decode its components.

If each image could be carried in a single packet, this requirement would not create a problem. However, a video image or even one GOB by itself can sometimes be too large to fit in a single packet. Therefore, the MB is taken as the unit of fragmentation. Packets must start and end on a MB boundary, i.e. a MB cannot be split across multiple packets. Multiple MBs may be carried in a single packet when they will fit within the maximal packet size allowed. This practice is recommended to reduce the packet send rate and packet overhead.

To allow each packet to be processed independently for efficient resynchronization in the presence of packet losses, some state information from the frame header and GOB header is carried with each packet to allow the MBs in that packet to be decoded. This state information includes the GOB number in effect at the start of the packet, the macroblock address predictor (i.e. the last MBA encoded in the previous packet), the quantizer value in effect prior to the start of this packet (GQUANT, MQUANT or zero in case of a beginning of GOB) and the reference motion vector data (MVD) for computing the true MVDs contained within this packet. The bit stream cannot be fragmented between a GOB header and MB 1 of that GOB.

Moreover, since the compressed MB may not fill an integer number of octets, the data header contains two three-bit integers, SBIT and EBIT, to indicate the number of unused bits in the first and last octets of the H.261 data, respectively.

�AUTONUMLGL�	Specification of the packetization scheme

�AUTONUMLGL�	Usage of RTP

The H.261 information is carried as payload data within the RTP protocol. The following fields of the RTP header are specified:

- The payload type should specify H.261 payload format (see Annex Bthe companion RTP profile document RFC TBD).

- The RTP timestamp encodes the sampling instant of the first video image contained in the RTP data packet. The RTP timestamp may be the same on successive packets if a video image occupies more than one packet. For H.261 video streams, the RTP timestamp is based on a 90kHz clock. This clock rate is a multiple of the natural H.261 frame rate (i.e. 30000/1001 or approx. 29.97 Hz). That way, for each frame time, the clock is just incremented by the multiple and this removes inaccuracy in calculating the timestamp. Furthermore, the initial value of the timestamp is random (unpredictable) to make known-plaintext attacks on encryption more difficult, see RTP [Annex A]. Note that if multiple frames are encoded in a packet (e.g. when there are very little changes between two images), it is necessary to calculate display times for the frames after the first using the timing information in the H.261 frame header. This is required because the RTP timestamp only gives the display time of the first frame in the packet.

- The marker bit of the RTP header is set to one in the last packet of a video frame, and otherwise, must be zero. Thus, it is not necessary to wait for a following packet (which contains the start code that terminates the current frame) to detect that a new frame should be displayed.

The H.261 data will follow the RTP header, as in:

0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 . .

 . RTP header .

 . .

 +-+

 | H.261 header |

 +-+

 | H.261 stream

 +-+

The H.261 header is defined as following:

0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |SBIT |EBIT |I|V| GOBN | MBAP | QUANT | HMVD | VMVD |

 +-+

The fields in the H.261 header have the following meanings:

Start bit position (SBIT): 3 bits Number of bits that should be ignored in the first data octet.

End bit position (EBIT): 3 bits Number of bits that should be ignored in the last data octet.

INTRA-frame encoded data (I): 1 bit Set to 1 if this stream contains only INTRA-frame coded blocks. Set to 0 if this stream may or may not contain INTRA-frame coded blocks. The sense of this bit may not change during the course of the session.

Motion Vector flag (V): 1 bit Set to 0 if motion vectors are not used in this stream. Set to 1 if motion vectors may or may not be used in this stream. The sense of this bit may not change during the course of the session.

GOB number (GOBN): 4 bits Encodes the GOB number in effect at the start of the packet. Set to 0 if the packet begins with a GOB header.

Macroblock address predictor (MBAP): 5 bits Encodes the macroblock address predictor (i.e. the last MBA encoded in the previous packet). This predictor ranges from 0-32 (to predict the valid MBAs 1-33), but because the bit stream cannot be fragmented between a GOB header and MB 1, the predictor at the start of the packet can never be 0. Therefore, the range is 1-32, which is biased by -1 to fit in 5 bits. For example, if MBAP is 0, the value of the MBA predictor is 1. Set to 0 if the packet begins with a GOB header.

Quantizer (QUANT): 5 bits Quantizer value (MQUANT or GQUANT) in effect prior to the start of this packet. Set to 0 if the packet begins with a GOB header.

Horizontal motion vector data (HMVD): 5 bits Reference horizontal motion vector data (MVD). Set to 0 if V flag is 0 or if the packet begins with a GOB header. HMVD values are 5-bit 2's complement numbers directly representing the values [-16,+15], where -16 is not used.

Vertical motion vector data (VMVD): 5 bits Reference vertical motion vector data (MVD). Set to 0 if V flag is 0 or if the packet begins with a GOB header. VMVD values are 5-bit 2's complement numbers directly representing the values [-16,+15], where -16 is not used.

Note that the I and V flags are hint flags, i.e. they can be inferred from the bit stream. They are included to allow decoders to make optimizations that would not be possible if these hints were not provided before bit stream was decoded. Therefore, these bits cannot change for the duration of the stream. A conformant implementation can always set V=1 and I=0.

Horizontal and vertical motion vector data must be set to zero when the MTYPE of the last MB encoded in the previous packet was not motion compensated.

�AUTONUMLGL�	Recommendations for operation with hardware codecs

Packetizers for hardware codecs can trivially figure out GOB boundaries using the GOB-start pattern included in the H.261 data. (Note that software encoders already know the boundaries.) The cheapest packetization implementation is to packetize at the GOB level all the GOBs that fit in a packet. But when a GOB is too large, the packetizer has to parse it to do MB fragmentation. (Note that only the Huffman encoding must be parsed and that it is not necessary to fully decompress the stream, so this requires relatively little processing; example implementations can be found in Appendix C) It is recommended that MB level fragmentation be used when feasible in order to obtain more efficient packetization. Using this fragmentation scheme reduces the output packet rate and therefore reduces the overhead.

At the receiver, the data stream can be depacketized and directed to a hardware codec's input. If the hardware decoder operates at a fixed bit rate, synchronization may be maintained by inserting the stuffing pattern between MBs (i.e., between packets) when the packet arrival rate is slower than the bit rate.

�AUTONUMLGL�	Packet loss issues

On the Internet, most packet losses are due to network congestion rather than transmission errors. Using UDP, no mechanism is available at the sender to know if a packet has been successfully received. It is up to the application, i.e. coder and decoder, to handle the packet loss. Each RTP packet includes a a sequence number field which can be used to detect packet loss.

H.261 uses the temporal redundancy of video to perform compression. This differential coding (or INTER-frame coding) is sensitive to packet loss. After a packet loss, parts of the image may remain corrupt until all corresponding MBs have been encoded in INTRA-frame mode (i.e. encoded independently of past frames). There are several ways to mitigate packet loss:

(1) One way is to use only INTRA-frame encoding and MB level conditional replenishment. That is, only MBs that change (beyond some threshold) are transmitted.

(2) Another way is to adjust the INTRA-frame encoding refreshment rate according to the packet loss observed by the receivers. The H.261 recommendation specifies that a MB is INTRA-frame encoded at least every 132 times it is transmitted. However, the INTRA-frame refreshment rate can be raised in order to speed the recovery when the measured loss rate is significant.

(3) The fastest way to repair a corrupted image is to request an INTRA-frame coded image refreshment after a packet loss is detected. One means to accomplish this is for the decoder to send to the coder a list of packets lost. The

coder can decide to encode every MB of every GOB of the following video frame in INTRA-frame mode (i.e. Full INTRA-frame encoded), or if the coder can deduce from the packet sequence numbers which MBs were affected by the loss, it can save bandwidth by sending only those MBs in INTRA-frame mode. This mode is particularly efficient in point-to-point connection or when the number of decoders is low. The next section specifies how the refresh function may be implemented.

�AUTONUMLGL�	Use of optional H.261-specific control packets

This specification defines two H.261-specific RTCP control packets, "Full INTRA-frame Request" and "Negative Acknowledgement", described in the next section. Their purpose is to speed up refreshment of the video in those situations where their use is feasible. Support of these H.261-specific control packets by the H.261 sender is optional; in particular, early experiments have shown that the usage of this feature could have very negative effects when the number of sites is very large. Thus, these control packets should be used with caution.

The H.261-specific control packets differ from normal RTCP packets in that they are not transmitted to the normal RTCP destination transport address for the RTP session (which is often a multicast address). Instead, these control packets are sent directly via unicast from the decoder to the coder. The destination port for these control packets is the same port that the coder uses as a source port for transmitting RTP (data) packets. Therefore, these packets may be considered "reverse" control packets.

As a consequence, these control packets may only be used when no RTP mixers or translators intervene in the path from the coder to the decoder. If such intermediate systems do intervene, the address of the coder would no longer be present as the network-level source address in packets received by the decoder, and in fact, it might not be possible for the decoder to send packets directly to the coder.

Some reliable multicast protocols use similar NACK control packets transmitted over the normal multicast distribution channel, but they typically use random delays to prevent a NACK implosion problem . The goal of such protocols is to provide reliable multicast packet delivery at the expense of delay, which is appropriate for applications such as a shared whiteboard.

On the other hand, interactive video transmission is more sensitive to delay and does not require full reliability. For video applications it is more effective to send the NACK control packets as soon as possible, i.e. as soon as a loss is detected, without adding any random delays. In this case, multicasting the NACK control packets would generate useless traffic between receivers since only the coder will use them. But this method is only effective when the number of receivers is small. e.g. if the H.261 specific control packets are used only in point-to-point connections or in point-to- multipoint connections when there are less than 10 participants in the conference.

�AUTONUMLGL�	Control packets definition

�AUTONUMLGL�	Full INTRA-frame Request (FIR) packet

0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |V=2|P| MBZ | PT=RTCP_FIR | length |

 +-+

 | SSRC |

 +-+

This packet indicates that a receiver requires a full encoded image in order to either start decoding with an entire image or to refresh its image and speed the recovery after a burst of lost packets. The receiver requests the source to force the next image in full "INTRA-frame" coding mode, i.e. without using differential coding. The various fields are defined in the RTP specification [Annex A]. SSRC is the synchronization source identifier for the sender of this packet. The value of the packet type (PT) identifier is the constant RTCP_FIR (192).

�AUTONUMLGL�	Negative ACKnowledgements (NACK) packet

The format of the NACK packet is as follow:

0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |V=2|P| MBZ | PT=RTCP_NACK | length |

 +-+

 | SSRC |

 +-+

 | FSN | BLP |

 +-+

The various fields T, P, PT, length and SSRC are defined in the RTP specification [Annex A]. The value of the packet type (PT) identifier is the constant RTCP_NACK (193). SSRC is the synchronization source identifier for the sender of this packet.

The two remaining fields have the following meanings:

First Sequence Number (FSN): 16 bits Identifies the first sequence number lost.

Bitmask of following lost packets (BLP): 16 bits A bit is set to 1 if the corresponding packet has been lost, and set to 0 otherwise. BLP is set to 0 only if no packet other than that being NACKed (using the FSN field) has been lost. BLP is set to 0x00001 if the packet corresponding to the FSN and the following packet have been lost, etc.

�AUTONUMLGL�	BIBLIOGRAPHY

[1] Frame structure for Audiovisual Services for a 64 to 1920 kbps Channel in Audiovisual Services ITU-T (International Telecommunication Union - Telecommunication Standardisation Sector) Recommendation H.221, 1990.

[2] Video codec for audiovisual services at p x 64 Kbit/s ITU-T (International Telecommunication Union - Telecommunication Standardisation Sector) Recommendation H.261, 1993.

[3] Digital Methods of Transmitting Television Information ITU-R (International Telecommunication Union - Radiocommunication Standardisation Sector) Recommendation 601, 1986.

��autonumlgl �� Annex D: RTCP Extension for H.225.0

This section defines an optional extension to the RTCP header.

Extension to the RTP header is signaled by the extension (X) bit. If the X bit in the RTP header is one, a variable-length header extension is appended to the RTP header, following the CSRC list if present with the following format:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| defined by profile | length |

+-+

| header extension |

The header extension contains a 16-bit length field that counts the number of 32-bit words in the extension, excluding the four-octet extension header (therefore zero is a valid length). Only a single extension may be appended to the RTP data header. To allow multiple interoperating implementations to each experiment independently with different header extensions, or to allow a particular implementation to experiment with more than one type of header extension, the first 16 bits of the header extension are left open for distinguishing identifiers or parameters. The format of these 16 bits is to be defined by the profile specification under which the implementations are operating. The RTP specification does not define any header extensions itself. Note that the H.261 header does not provide an extension mechanism.

The required extension will include: cyclic byte count and last GOB number. This data is needed in order to estimate lost packets and reproduce artificial GOB headers in order to keep codecs syncronized even when the LAN suffers from momentary high traffic load. The 16 bit code for used with this option is 0x0001.

·	Byte Count: 24 bits for the byte count which is equivalent to 16384Kbytes of continuous lost information.

·	GOBN: 48 bits, last GOB in the frame (max GOB is 126 for H.261).

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Byte Count | GOBN | ResrvdFRMN |

+-+

The Byte Countnumber starts at a random value and wraps moduloe 224 and is never reset.

RTP payload format for H.261A video streams (Normative)

�AUTONUMLGL�	Introduction

To facilitate interfacing H.323 video streams to the SCN via gateways, H.323 defines a modified form of the RTP H.261 video payload. This eases buffer management and interoperability with remote SCN codecs. Support of the H.261A payload type is signalled using H.245 capability sets and in the openLogicalChannel message using RTP dynamic payload types.

�AUTONUMLGL�	H.261A RTP Packetization

This version is an extension of the version described in Annex C except that an additional 32-bit word is appended to the H.261 header. The procedures that are described in Annex C also apply to this annex.

The H.261A data will follow the RTP header, as in:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 . .

 . RTP header .

 . .

 +-+

 | H.261A header |

 +-+

 | H.261 stream

 +-+

The H.261A header is defined as:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | H.261 header |

 +-+

 | Byte Count | LGOBN | Res |

 +-+

The fields in the H.261A header have the following meanings:

H.261 header: 32 bits As described in Annex C

Byte Count: 24 bits Indicates the cumulative number of octets that have been sent in the H.261 stream part of the RTP packets. If the last byte of a packet is only partially filled (as indicated by EBIT), then it is not counted in the cumulative byte count. This modulo 224 byte count starts at a random value and is never reset.

Last GOB Number (LGOBN): 4 bits, the GOB number of the last GOB in the RTP packet (max GOB number is 12 for H.261).

Reserved (RES): Reserved

Both of the additional fields may be used when packets are lost or delivered out of order. The Byte Count can be used to determine how much stuffing will be needed in the SCN stream and facilitates buffer management. The last GOB number simplifies determining which GOBs have been lost due to packet loss.

�

�autonumlgl ��	Appendix A: RTP/RTCP(Informative)

See RFC 1889, "Real-TimeReal Time Transport Protocol" for the referenced informative material.

�autonumlgl ��	Appendix B: RTP Profile(Informative)

See RFC 1890, "RTP Profile for Audio and Video Conferences with Minimal Control" for the referenced informative material.

�autonumlgl ��	Appendix C: H.261 Packetization(Informative)

See RFC XXXX, "RTP Payload Format for H.261 Video Streams" for the referenced informative material.

�autonumlgl �� Appendix D (Informative)

This appendix provides additional details concerning the operation of H.225.0 on various actual LAN protocol stacks. This appendix is non-normative. LANs used in H.225.0 shall provide both reliable and unreliable modes of operation, including a means to distinguish packet boundries.

�autonumlgl �� TCP/IP/UDP

Note that UDP can fragment and re-assemble large video packets, but that failure to perform MB packetization may lead to the loss of an entire GOB.

IP multicast should be used for GRQ distribution as opposed to media access layer broadcast.

�embed MSDraw * mergeformat ����embed MSDraw * mergeformat ����embed MSDraw * mergeformat ���

1615.1.1 Discovering the Gatekeeper

Following the gatekeeper discovery and registration procedures described in section 7 of H.323, endpoints should use the following multicast address or well known port when attempting to discover the gatekeeper as appropriate for their network configuration:

	Gatekeeper IP Discovery Multicast Address	xxxx

	Gatekeeper UDIP Registration and Status Port	yyyy

1615.1.2 Endpoint to Endpoint Communications

Endpoints which wish to receive calls from endpoints outside the zone of their gatekeeper should use the following ports for the RAS channel and the Call Signaling channel:

	Endpoint IP RAS Port				aaaa

	Endpoint TCIP Call Signaling Port			bbbb

While it is permitted to use dynamic values for these ports to allow multiple endpoints in a single device, it must be understood that this will prevent interoperation with endpoints outside the zone of the gatekeeper except via a gateway in the zone.�

�autonumlgl �� SPX/IPX

Note that since there is no network re-assembly of large packets, the use of MB fragmentation is essential.

.

�embed MSDraw * mergeformat ����embed MSDraw * mergeformat ���

1615.2.1 Discovering the Gatekeeper

In IPX terminology, a “socket” is the equivalent of a “port” in IP and a “TSAP Identifier” in H.225.0/H.323.

On IPX based networks, the gatekeepers should advertise the “gatekeeper service type” defined below to allow endpoints to locate them on a network. Likewise, endpoints should query for the “gatekeeper service type” to find the location of the nearest gatekeeper.

	Gatekeeper Service Type		eeee

Note: The service type is referred to as the SAP socket in some IPX documentation.

1615.2.2 Endpoint to Endpoint Communication

Endpoints which wish to receive calls from endpoints outside the zone of their gatekeeper should use the following sockets for RAS and Call signaling.

	Endpoint IP RAS Port				aaaa

	Endpoint IPX Call Signaling Port		bbbb

While it is permitted to use dynamic values for these sockets to allow multiple endpoints in a single device, it must be understood that this will prevent interoperation with endpoints outside the zone of the gatekeeper except via a gateway in the zone.

�An optional broadcast only conference model is under consideration; of necessity the broadcast model does not provide tight admissions or conference control.

�Note that video and data rates on the LAN side must match the video and data rates in the SCN side H.320 multiplex; the audio and control rates are not required to match. Stated another way we would normally expect that, using H.245 flow control, the LAN/SCN gateway will force the video and data rates to fit into the H.221 SCN multiplex. However, since audio may be transcoded in the gateway often, we will frequently find that the LAN audio rate and the SCN rate do not match. Also there should be no expectation that the H.221 bit rate for control (800 bps) will generally match the H.245 bit rate on the LAN side. Also note that the LAN rate may under-run the SCN rate for either/both video or/and data, but it cannot exceed the maximum amount that fits into the SCN side multiplex.

�Previously CCITT Recommendation

�Previously CCITT Recommendation

�Previously CCITT Recommendation

�Previously CCITT Recommendation

�Previously CCITT Recommendation

�A terminal that is not registered with a gatekeeper is not required to send an admissions request.

� Note that the H.245 address may be sent in the ALERTING or CALL PROCEEDING message rather than the CONNECT message to shorten call setup time. Note that the H.245 channel may be opened immediately after the receipt of the H.245 address in the SETUP message.

�The LAN side conference may be part centralized and part distributed, as decided by the MC controlling the conference. However, the terminal is not aware of this fact. Generally, of course, all terminals will see the same Selected Communications Mode(SCM)[see H.243 for a definition].

�Retransmission of full frames, MBs, or GOBsS may be requested via H.245 signaling.

�NoteNote that if more than one audio/video session is operating at the same time, RTP has no convention for additional port assignment. Also note that any TSAP Idport can be used for the initial RTP session; the major reason to follow the RTP convention is for possible IETF RTP interoperability.

�MCUs may change CNAMEs during conferences.

� M=Mandatory, F=Forbidden, O=Optional, CM=Conditional Mandatory. Something is CM if it is required once an option is supported.

� Note that STATUS shall not be sent in response to a message listed here as "O"; the receiver shall simply ignore the message if it does not support it.

� Terminals intended to use gateways shall receive and act on CALL PROCEEDING.

� Release Complete is required for any situation in which the H.225.0 reliable call signaling channel is open. If this channel is not open, H.245 session end may be used to terminate the conference.

� The endpoint shall respond to an unknown message with a STATUS message; response to STATUS INQUIRY is also mandatory. However, an endpoint is not required to send STATUS INQUIRY. As a practical matter, the endpoint should be able to understand a STATUS message received in response to a message sent that was not known to the receiver.

�Note that if a gatekeeper sends a BRQ requesting a lower rate, the endpoint shall reply with BCF if the lower rate is supported, otherwise with BRJ. If a gatekeeper sends a BRQ requesting a higer rate, the endpoint may reply with BCF or BRJ.

Source: Dale Skran	+1 908 957 5988

 2G432 AT&T	+1 908 957 5627

 200 Laurel Ave.

 Middletown, NJ 07748

