AVC-820

Telecommunication Standardization

Sector
Original: English
(TSS)
Experts Group for Video Coding and Systems in August
21, 1995
ATM and Other Network Environments
STUDY GROUP 15
CONTRIBUTION
Source: InSoft, Incorporated
email: rhp @insoft.com
voice: +1 (717) 730-9501
fax: +1 (717) 703-9504

Title: Non-MCU Multipoint Call Setup
Date: 8/21/95

Non-MCU Multipoint Call Setup (Version 1.0)
Page 1

Version 1.0 - Non-MCU Multipoint Call Setup
August 21, 1995

I. Overview

Non-MCU Multipoint LAN conferences is a standard feature of current LAN-
based video conferencing systems. For H.323 gateways and terminals to be
commercially viable products, they must support multipoint calls. Customers will
expect that terminals and gateways will be able to participate in these multipoint
calls. The result of not addressing this requirement is that each gateway and
terminal will by necessity have a unique, proprietary method of multipoint setup.

It follows that the initial H.323 specification must include LAN based multipoint
call setup. Unless the multipoint session setup is specified, there will be no
guidance given to gateway and terminal providers who wish to deliver
interoperable products meeting this customer requirement. The remainder of this
paper outlines a the structure of such a protocol.

In a non-MCU multipoint conference, there is no central mediator. Every
endpoint maintains the state of the conference, and keeps a full mesh of
connections to other conference members. This is accomplished via a
predefined network protocol and a finite state machine at each endpoint.

[I. H.323 Conference Engine

An H.323 Conference Engine is the core component on each endpoint which
holds the conference state. One Conference Engine runs per user. On multi-
user systems, more than one Conference Engine may run on a single CPU. The
Conference Engine provides these services over a virtual network, layered over
actual networks, giving user applications true interoperability.

lll. Endpoint Applications (Plugins)

The conference engines at each endpoint can support a number of distributed
applications which will be referred to as Plugins to this state machine. These
Plugins can be any number of distributed applications that can utilize the
services of the conference engine at that endpoint.

IV. States
The following details the states of the conference engine:

1. Dead
No conferencing activity is currently in progress for this node.

2. Prompting
Node received invitation and is waiting for user to decide whether to
accept

3. Accepted

Non-MCU Multipoint Call Setup (Version 1.0)
Page 2

Node Accepted, waiting for inviter to complete the handshake

. Running

Node is active in the conference. In the Running state, there is a roster of
conference members, each of which is marked either Active (has
Accepted, and can be communicated to in the session) or Pending (has
not yet Accepted).

V. State Transitions
The following explanatory text details the state transitions of an H.323
conference engine.

(

Dead to Prompting

When a member in the Dead state receives an invitation, it transitions to
Prompting and waits for the user to accept or reject this invitation.

Prompted to Dead

If the user rejects, the system sends a rejection, drops the connection, and
returns to Dead.

Prompted to Accepted

If the user accepts an invitation request, the system tells the inviter of this
state transition, and transitions the local node to Accepted.

Accepted to Running

After the prompted user accepts the invitation, the inviter will then send a
roster of conference members to the invited system. Next, the invited
system will transition to Running and connect to all of the currently active
members. When a Pending member connects, the member receiving the
connection will mark this conference member as Active.

Dead to Running (Confe)'ence Initiator)

To initiate a conference, the system transitions from Dead state to the
Running state. This endpoint connects to each one of the requested
conference members. Next it marks each of these new endoints as
Pending and sends each of the new endpoints an invitation. When a
member accepts, this members entry is marked as Active, and the initiator
sends a roster of conference members to the newly Active member. If the
endpoint rejects, (or if the connection drops), it is dropped from the roster,
and all Active members are notified.

Member Addition

To add a member to an existing conference, the initiating system adds this
member to the member list and marks this entry as Pending. Next, the
inviter connects to the new system and sends it an invitation. Following
this invitation, the inviting system notifies all Active members that a new

Non-MCU Multipoint Call Setup (Version 1.0)

Page 3

Pending member has been added. The acceptance of rejection of this
new system is then treated as detailed above.

(Simultaneous State Update
Corruption caused by simultaneous state update is prevented through the
use of mutex locks. These mutex locks are implemented via a token ring
scheme between all active conference partticipants.

VI. Endpoint Actions
Each endpoint will need to have a set of actions to keep the distributed state
machine current. The following is a full list of these actions:

(Initiate(S)

S is set of prospective members. This is valid to perform when the state of
the engine is Dead. Initiate will first establish network connection to each
member of S. Next, it will send each one Identity and Invitation and then
transition to Running({},S). For any member which could not be reached,
that node is marked as if it rejected the invitation with the
memberRejected event.

(Accept(l)
This is valid to perform when the current state is Prompting(l). Acceptance

is sent to | and the state of the engine at this node is transitioned to
Accepted(l).

(Reject(l,R)

This is valid to perform when the current state of the engine is
Prompting(l). R is a reason for the rejection. When this action is
performed, a message is sent to | and the local state machine is
transitioned to the Dead state.

(Leave()

This is valid to perform when state is Running(A,P). A Farewell
messages is sent to all members of A and P then all opened connections
are closed. Next, the local state machine is transitioned to the Dead state.
(Note that it is actually possible to perform Leave if the state is Accepted(l)
or Prompting(l), in which case Leave is equivalent to Reject(l,Rejected).)

(Add(M)

M is new member to add to the conference session. This is valid to
perform when the state is Running(A,P). First, a network connection is
established to M and it is sent an Identity and Invitation. Next, the state
machine is transitioned to Running(A,P+{M}). If M could not be contacted,

that node is marked as if it rejected the invitation with the
memberRejected event.

Non-MCU Multipoint Call Setup (Version 1.0)
Page 4

Notes for Initiate and Add

A member to contact is specified by a triple {Username, Hostname, Addresses}.
<Username> @ <Hostname> is the user's written address. Addresses is a list of
network addresses for the user's machine (a list is required since machines are
capable of supporting multiple network interfaces). The addresses are listed in
the order in which they are preferred. (i.e., try address 1 first, then address 2, etc.
If the list is empty, Hostname is used to look up one address A; Addresses is
then the 1-entry list {A}.) Once a network-level connection has been made, the
inviter sends a ConnectName(Username) message to indicate which user is
being invited. (The same procedure is done when a new member receives a
Greeting message and needs to connect to the currently active members.)

VIl. Messages
In order to carry out the above actions, the following set of messages must be
employed:

(Invitation (List of prospective members)

This message is valid to receive when current state is Dead. This
Invitation is then relayed to the conference manager/node controlier
application. The engine is then transitioned to Prompting. When received
at inappropriate time, a rejection, Rejection(LineBusy), is sent to the
inviter and there is no further state transition.

(Acceptance (No arguments)

This message is valid to receive when the state is Running(A,P), and the
sender is in P. When this messages is received, the node should reply
with a Greeting(A'+{self},P') and transition to Running(A',P'), where
A'=A+{sender} and P'=P-{sender}.

(Rejection(R)

This message is valid to receive when the state is Running(A,P), and the
sender is in P. R is the reason the invitation was rejected. When received,
the node should transition to Running(A,P-{sender}) or to Dead if A and P-
{sender} are both empty.

(Greeting(A,P)

This messages is valid to receive when state is Accepted. This can only
be sent when state is Running(A,P). When received, the node should
connect to all members in A (except for itself and the sender), and send
each one Identity and Activate. Next, the node should transition to
Running(A-{self},P). If any of these connections fail, Leave the conference
immediately (otherwise, a non-fully connected conference could result
which would cause serious inconsistencies).

(Farewell (No arguments)

Non-MCU Multipoint Call Setup (Version 1.0)
Page 5

This messages is valid to receive at any time. If the current state is
Running(A,P), and sender is in A, the node should transition to
Running(A-{sender},P). If sender is in P, treat Farewell as equivalent to
Rejection(Unknown). If the state is Accepted(l) or Prompting(l), and
sender is same as |, transition to Dead. I[f state is now Dead, the
connection should then be closed.

(ldentity

This message is valid to receive at any time. Included in the message is
the address list, userName, and hostName. Record this information,
associated with sender's network connection, but don't transition.

(Activate(H)

This messages is valid to receive when state is Running(A,P) and H is in
P. The H in this messages is the unique user handle (an identifier for the
conference session). This message is sent by a member who has just
connected, after having been invited by someone else. On receipt, move
H from P to A and associate the connection with userHandle H.

(Pseudo-Message: Connection

When anyone connects, an Identity message should be sent immediately
to the connecting node.

(Pseudo-Message: Connection died

A network connection has been broken from a remote end. In state
Running(A,P), if sender is in P, treat this as if a Rejection(Unknown) was
received, and this endpoint should transition to Running(A,P-{sender}).
Otherwise, the broken connection should be treated as if a Farewell was
received, and transition to Running(A-{sender},P). If the current state is
Accepted(l) or Prompting(l) and if this local node was the sender, it should
transition to Dead.

(ConnectName(U)

This messages is sent from A to B when A first connects to B. U is a NULL-
terminated string, the username of the user being invited. On a multi-user
system, this allows multiple users to run at the same time. Incoming
connections can be directed to the appropriate conference engine based
on their ConnectName. On a single-user system, this serves as a sanity
check, to make sure that the user being invited is the one currently using
the system.

Data(Arguments not all listed here)

When a data packet is received, route it to the appropriate endpoint application
(plugin). If the appropriate plugin is not available, reply with a bounce packet (if
supported: See Feature Flags).

Non-MCU Multipoint Call Setup (Version 1.0)

Page 6

VIIl. Feature Flags

This protocol includes some optional features with the capability to be expanded
as needed. As new capabilities are added to the engine, a new flag is defined
for each. These flags indicate the set of capabilities which an engine implements
and are exchanged in the Identity message, in appCaps.featureFlags. Currently
defined features include:

(Ping
An engine can give a bounce message when a packet is received for an
inactive plugin. This bounce message is in the Ping protocol:

1. send a Ping to a plugin
2. itit is registered, a PingReply is sent;
3. if itis not registered, a bounce message is returned

If a Ping is addressed to a member whose engine does not have the Ping
feature, the engine sends a CantPing to the originator instead of
forwarding the Ping.

(Clip
Includes a clipboard facility, which can be accessed remotely via the
network connection. If a clipboard request is addressed to a member
whose engine does not have the Clip feature, the engine sends a
clipboard NoClip message to the originator instead of forwarding the
request.

(Mutex

Supports mutex locks in the conference. An engine which does not have
the Mutex feature is left out of the token ring used for mutex locks.

(Reasons

Includes a reason argument in the Rejection message. A Rejection
message received from an engine which does not include this flag is
treated as if the reason were Invalid.

These flags allow backwards compatibility with older conference engines. They
also allow engines to behave properly when talking to a new engine with some
features not yet implemented. This allows developers to test their engines
against a reference implementation early in the development cycle, before
implementing the complete feature set.

Villl. Protocol Specification
The following is the protocol specification for the H.323 conference engine.

H.323 Conference Engine PDU Header:

Description Octets Notes

Non-MCU Multipoint Call Setup (Version 1.0)
Page 7

PDU length 1-4

Protocol major version number 5-6 Currently 2
Protocol minor version number 7-8 Currently 0

PDU type tag 9 See ConfdMsgTag
Alignment bytes 10-12 Reserved; setto 0
PDU Argument, if any 13 See below.

There is a different PDU Argument format for each type of message. Some
messages have no argument.

Message: Invitation (type tag confdMsgTaglnvitation, which is 1)

Description Octets Notes

inviterindex 1 Index of sender's entry in
roster

Number of members (N) 2 Number of members in roster

Alignment 3-4 Reserved; setto 0

Roster. N entries; format of each is
DveConfParticipant (q.v.)

Entry O 5-124

Entry 1 125-244

Entry (N-1) 5+120*(N-1)
to 5+120*N

Message: Acceptance (type tag confdMsgTagAcceptance, which is 2)
Acceptance has no argument.

Message: Rejection (type tag confdMsgTagRejection, which is 3)

Description Octets Notes
reasonCode 1-4 Rejection reason. A reason
code is a

ConfdRejectionReason (q.v.)

Message: Greeting (type tag confdMsgTagGreeting, which is 4)

Description Octets Notes

Number of members (N) 1

Recipient index 2 Index of recipients entry in
the roster (below)

Alighment 3-4 Reserved; set to 0

N roster entries 5-(4+N*size)

Entry format (relative to start

of entry):

Member 1-s(q.v.) DveConfParticipantLong

Active flags +1-s+2 Boolean

Alignments +2-5+3 Reserved; set to 0

Non-MCU Multipoint Call Setup (Version 1.0)
Page 8

Message: Farewell (type tag confdMsgTagFarewell, which is 5)
Farewell has no argument.

Message: /dentity (type tag confdMsgTagldentity, which is 6)

Description Octets Notes

addresses 1-452 DvelPAList

appCaps 453-472 ConfdAppCaps

serial 473-536 O-terminated str, ""
userName 537-569 O-terminated str, username
hostName 570-634 O-terminated str, hostname

Message: ConnectName (type tag confdMsgTagConnectName, which is 7)

Description Octets Notes
userName 1-33

Message: PluginData (type tag confdMsgTagPluginData, which is 8)

Description Octets Notes
size 1-4 .

Protocol major version # 5-6 Currently 0
Protocol minor version # 7-8 Currently 1
Destination port 9-12

Source port 13-16

Routing flags 17-20

Plugin Protocol 21-24

Message tag 25-28

Recipient list 29-60 DvePartList
Payload 61- Optional.

Message: RejectionReport (type tag confdMsgTagRejectionReport, which is 9)

Description Octets Notes
Rejecter 1-120 DveConfParticipant
Reason 121-124 ConfdRejectionReason

Message: NewMember (type tag confdMsgTagNewMember, which is 10)

Description Octets Notes
Member 1-120 DveConfParticipant

Message: Activate (type tag confdMsgTagActivate, which is 11)

Description Octets Notes
User handle 1

Non-MCU Multipoint Call Setup (Version 1.0)
Page 9

Data structures used above:

ConfdAppCaps:
Description Octets Notes
Hardware type 1-2
OS type 3-4
Feature flags 5-8
App's major version # 9-10
App's minor version # 11-12
Max participants app supports 3-14
Max UDP datagram size 15-16
Real hardware type 17-18 For emulation support
Real OS type 19-20
DvelPAList:
Description Octets Notes
16 address entries 1-448
Entry format (relative to entry start):
Host address 1-20 DvelPA
Port # 21-22
Reserved (set to 0) 23-28
Number of addresses 449-452
DVEConfParticipant:
Description Octets Notes
Address 1-20 DvelPA
userName 21-52 O-terminated
hostName 53-116 O-terminated
userHandle 117 Handle of member in
conference
Alignment 118-12 Reserved; setto 0
DveConfParticipantLong:
Description Octets Notes
Address list 1- DvelPAList
Member DveConfParticipant
ConfdRejectionReason:

The following is the list of the rejection reasons that could be encountered during
the course of a conference session:

(Not Present (confdRejectionReasonNotPresent, which is 1)

(Line Busy (confdRejectionReasonLineBusy, which is 2)

(Rejected (confdRejectionReasonRejected, which is 3)

Non-MCU Multipoint Call Setup (Version 1.0)
Page 10

{ Can't Connect: Unknown Host
(confdRejectionReasonCantConnect_HostUnknown, which is 4)

(Can't Connect: Unreachable Host
(confdRejectionReasonCantConnect_HostUnreachable, which is 5)

(Can't Connect: Unreachable Network
(confdRejectionReasonCantConnect_NetworkUnreachable, which is 6)

(Can't Connect: No Registrar
(confdRejectionReasonCantConnect_NoRegistrar, which is 7)

(Can't Connect: No Engine (confdRejectionReasonCantConnect_NoEngine,
which is 8)

(Can't Connect: Local (confdRejectionReasonCantConnect_Local, which is 9)

(Can't Connect: Unknown (confdRejectionReasonCantConnect_Unknown,
which is 10)

(Can't Connect: Unknown Host (Remote)
(confdRejectionReasonRemoteCantConnect_HostUnknown, which is 10)

{ Can't Connect: Unreachable Host (Remote)
(confdRejectionReasonRemoteCantConnect_HostUnreachable, which is 11)

{ Can't Connect: Unreachable Network (Remote)

(confdRejectionReasonRemoteCantConnect_NetworkUnreachable, which is
12)

(Can't Connect: No Registrar (Remote)
(confdRejectionReasonRemoteCantConnect_NoRegistrar, which is 13)

(Can't Connect: No Engine (Remote)
(confdRejectionReasonRemoteCantConnect_NoEngine, which is 14)

(Can't Connect: Local (Remote)
(confdRejectionReasonRemoteCantConnect_Local, which is 15)

(Can't Connect: Unknown (Remote)
(confdRejectionReasonRemoteCantConnect_Unknown, which is 16)

Non-MCU Multipoint Call Setup (Version 1.0)
Page 11

