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Video Bridging Based on H.261 Standard
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Abstract

Multi-point ISDN videoconferencing with video bridging in network-based servers represents
a viable network service and is a new revenue source for network carriers. This paper presents
a technical analysis of a continuous presence video bridge using the H.261 video coding stan-
dard. We first compare the pros and cons of coded domain versus pel domain video bridges.
The architecture and the required operations of a coded domain bridge using H.261 are then
investigated. We derive the bounds of the bridge delay and the required buffer size for the
implementation of the bridge. The delay and the buffer occupancy of the video bridge depend
on the order, complexity, and the bit-distribution of the input video sources. To investigate a
typical case, we simulate the delay and the buffer occupancy of a video bridge. We also provide
a heuristic method to estimate the delay in a typical case. Several techniques are discussed to
minimize the bridge delay and the buffer size. Finally, we simulate an intra slice coding scheme
and show that the delay and the buffer size can be reduced significantly using this technique.

1 Introduction

Multi-point videoconferencing is a natural evolution of two-point videoconferencing. To estab-
lish multi-point connections, coded video streams from the participants are sent to a Multi-point
Control Unit (MCU). In a "switched presence” MCU, either a signal selected by the conference
chairman or a signal selected based on audio channel activity is broadcast to all participants[1].
In a "continuous presence” MCU, multiple video streams from the participants are combined so
that each participant can see multiple participants all the time. The "switched presence” MCU
has been standardized recently[2, 3] while the ”continuous presence” MCU is still under active
research. In this paper, we focus on video combining in the ”continuous presence” MCU to support
network-based multi-point multimedia videoconferencing.

In the MCU, multiple coded video sources can be decoded, combined in the pixel domain, and
then encoded for distribution. In some special cases, however, the video sources can be combined
directly in the coded domain without transcoding. Video combining in the coded domain offers
shorter end-to-end delay, better picture quality, additional security capability, and lower MCU
cost. Bellcore has proposed to operate the user terminal in an asymmetric mode so that the MCU
can combine four QCIF (Quarter Common Intermediate Format) H.261[4] coded videos into one
CIF video in the coded domain for continuous presence multi-point videoconferencing. A QCIF
video combiner will provide users a continuous presence view of up to four conferees at one time.
Although the concept of the QCIF combiner is simple, many implementation issues need to be
studied in more detail. The issues that need to be answered include the combiner architecture,
required size of buffers, end-to-end delay, picture quality, and system complexity.

Two examples of continuous presence applications are shown in Fig. 1. In Fig. 1(a), conferees
are involved in a multi-way videoconference. QCIF videos from the conferees are transmitted to



Pel Domain DCT Domain VLC Domain

Delay long long short
Buffer Size large large small
Complexity high medium low
Flexibility high medium low
Degradation more a little none

Table 1: Qualitative Comparisons between Three Approaches

the MCU with a transmission rate R. For each conferee, the MCU selects and combines four QCIF
videos into a CIF video and transmits it back to the conferee with a transmission rate 4R. Fig.
1(b) is a remote classroom application where the MCU combines 4 QCIF remote-site videos into a
CIF video so that the teacher can interact with 4 remote sites simultaneously. The video from the
teacher is broadcast to all the remote students. '

The organization of this paper is as follows. Section 2 describes and compares pixel-domain and
coded-domain combining. The rest sections are more focused on the coded-domain QCIF combiner.
Section 3 describes the architectures of the QCIF combiner. Section 4 presents theoretical analysis
for the delay and buffer size. Section 5 shows some simulation results. Section 6 discusses techniques
to imprgve the end-to-end delay. Finally, conclusions are provided in Section 7.

2 Coded-Domain vs. Pel-Domain Video Combining

Since the raw video data rate is large and the network bandwidth is limited, video data
usually have to be compressed for network transmission. Therefore, video bridging in the network
normally requires video decoding, combining in the pel domain, and encoding for retransmission.
For some coded bit streams, however, video combining can be done in the coded domain. We
define coded-domain video combining as a process that does not decode the compressed data down
to the pel domain. The compressed data are either not decoded at all or only partially decoded
for combining. In the not decoded case, the video bridge only has to process data header and
concatenate the remaining data stream without modification, e.g., the proposed QCIF combiner.
In this case, we are mainly dealing with data coded by variable-length codes (VLCs). We will refer
to this case by VLC-domain approach. In the partially decoded case, video bridging is usually
done after decoding variable-length codes, e.g., DCT-domain video compositing[5]. For pel domain
video combining, the compressed data have to be fully decoded and then, after combining in the
pel domain, encoded again. Table 1 gives a qualitative summary of the pros and cons of these three
approaches and we will discuss further in the following subsections.

2.1 Delay

It can be observed (see Sec. 4) that the buffers used to smooth out the variable-rate bit stream
contribute a major delay, compared to other delays such as processing delay and transmission
delay. In the pel-domain approach and the DCT-domain approach, this rate-smoothing delay has
to be incurred twice due to repetitive VLC decoding and encoding. The VLC-domain approach (or
QCIF combiner) only incurs such delay once so its total delay can be shorter. The delay issue will
be discussed in detail in Sec. 4 and a quantitative comparison of delays in the VLC-domain and
pel-domain combining will be provided in Sec. 5.
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2.2 Buffer Size

In the pel-domain approach and the DCT-domain approach, the video bridge needs one buffer
for each input signal and another buffer for the output variable-rate coded data (assuming only one
output). However, the QCIF combiner (the VLC-domain approach) needs only buffers for inputs.
It can be seen in Sec. 5 that the input buffers for different approaches all have a comparable size.
If the output buffer has the size of all input buffers summed together, the QCIF combiner can save
half of the memory by saving the output buffer, assuming only one output. If multiple different
outputs are needed the saving is even more significant.

2.3 Complexity and Flexibility

The video bridge using the pel-domain approach has the highest complexity among the three
approaches since a full decoder is needed for each input and a full encoder is needed for the output.
The complexity of a QCIF combiner is the lowest since only data headers have to be modified.
The detailed architecture of a QCIF combiner will be discussed in Sec. 3. The complexity of a
video bridge using DCT-domain approach is in the middle. It requires VLC decoders and a VLC
encoder, but not full video decoders and encoder. ’

Although the pel-domain approach has the highest complexity, it certainly has the highest
flexibility. In the pel domain, video can be manipulated pel by pel. Different coding standards or
algorithms can be accommodated and transcoding is straight forward. In constrast, video combining
in the VLC domain is very restricted. Only those segments which can be identified by “clear”
codewords! can be accessed as a whole. For example, in H.261 standard, the smallest unit that
can be accessed without VLC decoding is GOB (group of blocks). We can only put together GOBs
to form a CIF or QCIF picture. The flexibility of the DCT-domain approach is once again in the
middle.

2.4 Picture Quality

One concern for the pel-domain approach is that the repetitive encoding and decoding processes
may degrade the final picture quality due to the numerical inaccuracy in motion compensation,
DCT, quantization, and their inverse operations. In contrast to this, the VLC-domain approach
can fully preserve the transmitted picture quality. For the DCT-domain approach, the picture
quality can also be preserved if no requantization is needed, otherwise the picture quality would
degrade a little, but should be better than that of the pel-domain approach.

To investigate how much degradation a cascade of regular pel-domain combining bridge may
introduce, we did two simulations using the H.261 video standard{4]. In the first simulation, we
assume the macroblock boundary of the pictures does not change in combining. The sequence
"Miss America” with a CIF-format was used as the input to the first H.261 codec, and the codec
output was used as the input of the next codec. A total of four stages were cascaded, where all four
codecs were set to have the identical coding rate, buffer size, and quantization step-size adjustment
intervals. Fig. 2 shows the peak-signal-to-noise-ratios (PSNR’s) for the four successive decoded
outputs. In can be seen that the first frame has the same PSNR for all four stages because it
is intra-frame coded at identical block boundaries and no motion-compensation reference is used.
Starting from the second frame, the four decoded outputs have a spreaded PSNR’s, with a difference
of approximately 1 dB for four stages. Since the accuracy of motion compensation depends on the
accuracy of the reference and since we use a high rate coding (approximately 512 kbps in this case),

1A “clear” codeword is a codeword with a special pattern which cannot be formed by any concatenations of other
VLC codewords. Thus, it can be recognized without VLC decoding.
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Figure 2: PSNR’s for 4 successively coded ’Miss America’ at 512 kbps

the visual picture quality does not degrade too much in this case. Indeed, under careful scrutiny
we could not see a visual difference between the first and the fourth output. Similarly, when we
decrease the coding rate down to about 128 kbps, the visual quality and the PSNR spread is also
quite insignificant as shown in Fig. 3.

In the second simulation, we allowed the picture’s macroblock boundary to change in combining.
This considers the fact that in the pel-domain combining the boundary may not be identical. A
two-pel and two-line increment was introduced for each of the first three stage outputs, and we
compare only the overlapped portion of the four outputs. Fig. 4 shows the PSNR spread, which
is about 1 dB larger than Fig. 2. The first frames also show different PSNR’s because the block
boundary was changed from stage to stage here.

From the above results it can be seen that although the pel-domain combining results in slightly
degraded picture quality, the degradation is insignificant and almost undetectable subjectively.

'3 Architecture and Operation of the QCIF Combiner

The rest of this paper will focus more on the QCIF combiner. This section will discuss the
architecture and operation of the QCIF combiner. Hereafter, the coded-domain approach refers to
the VLC-domain approach only, not the DCT-domain approach.

3.1 Architecture of the QCIF Combiner

The primary task of the QCIF combiner is to multiplex variable-length coded GOBs into a single
bit stream. It is easy to understand that a buffer is needed for each input to accommodate variable-
length GOBs and to hold them until they are transmitted. The basic architecture of the QCIF
combiner is shown in the central portion of Fig. 5, which consists of four buffers and an intelligent
multiplexer. Note that an output buffer is not required since the data can be held in the input
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Figure 5: QCIF Combining System

buffers. Also note that each input rate is at R but the output rate is at 4R. For teleconferencing
applications ' as shown in Fig. 1(a), this would imply that an asymmetric connection between each
conferee and MCU is required. Using the currently available ISDN standards, however, symmetrical
links must be used. Each user has to reserve a 4R duplex channel and restrain their actually
transmitted rate at R by bit stuffing or some other means. There are two possible ways to do bit
stuffing within H.261: one is the fill frame specified under error correction frame, and the other is
MBA (MicroBlock Address) stuffing. However, the MBA stuffing is variable-length coded. Only
fill error correction frame can be easily detected and discarded by MCU without variable-length
decoding.

In a more generic sense, a QCIF combining MCU can also offer a service which provides each
user a customized continuous presence view of up to four conferees. A general architecture for such
a service is shown in Fig. 6, where we assume that there are M different inputs and N different
customized outputs. Each input data stream first undergoes preprocessing which includes end-to-
end signaling, H.221 demultiplexing/control, forward error correction and the removal of redundant
bits. The data after preprocessing are then broadcast to N memories, each corresponding to an
output and used as a buffer. The multiplexers will combine the outputs according to users’ selections
or some control algorithm. The postprocessor does the inverse of the preprocessor, which includes
bit stuffing, H.221 multiplexing/control, and forward error correction. Note that even though
M x N memory units are shown here, only 4N memory units are actually required for the QCIF
combiner. Fig. 7 shows a cross-bar switch which reduces the memory requirement to 4V units.

3.2 Operation of the QCIF Combiner

A convenient multiplexing unit for the QCIF combiner is the group-of-block (GOB). A GOB
has a clear code delimiter that can be detected by the preprocessor without doing variable length
decoding. In the H.261 syntax, only the picture layer and the GOB layer have clear codes. GOB
layer multiplexing can render shorter delay than picture layer multiplexing and is thus the preferred
approach.

To combine four QCIF coded data streams, the processor has to detect picture and GOB headers
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QCIF 1 QCIF II QCIF III QCIF IV
GN;y GNpo | GN;y GNpo | GN;y GNo | GNy GNo
1 1 1 2 1 7 1 8
3 3 3 4 3 9 3 10
5 5 5 6 5 11 5 12

GN;: The Group Number of the input QCIF.
GNg: The Group Number of the output CIF.

Table 2: The Mapping of GNs

and then relabel these headers. The following lists some changes that have to be made by the MCU
multiplexer. :

1. Picture Layer: Only the picture headers of the first QCIF are retained. The other three
QCIF picture headers are discarded.

TR: Temporal reference for the CIF can be kept to be the same as the first QCIF’s TR.
PTYPE: Bit-4 of the PTYPE (totally six bits) is changed to “1” to indicate “CIF”

2. GOB Layer:

GN: Group number has to be converted from (1,3,5) to (1 to 12) according to Table 2.
GQUANT: The quantizer step-size of the group is kept unchanged.

3. Macroblock layers and block layers are unchanged and directly multiplexed after their
GOB headers.

Bit stuffing may be needed to fill up the output stream and to maintain a constant-rate output
channel. Such bit stuffing can be easily done by the fill frame specified under the error correction
framing structure of H.261[4, Sec. 5.4.3]. Each error correction frame consists of 1 bit for framing
and 511 bits of BCH(511,493) code. If the first bit of the 493 data bits is 0, the following 492 bits
are filled with 1, otherwise they are real data. Please refer to [4, Sec. 5.4.3] for detailed description
of the framing pattern. In H.261, MBA (MacroBlock Address) stuffing can also be used for bit
stuffing. However, using MBA stuffing requires to detect macroblock boundary and is thus less
desirable.

4 Theoretical Analysis

Currently, most video codecs use some kind of variable length codes to further compress video
signals losslessly after some lossy coding schemes. In order to match a conventional constant bit-
rate transmission channel, a buffer is needed at the encoders to smooth the variable rate output
into a fixed rate output, and a similar buffer is needed at the decoders to reverse the process. It is
observed that this bit-rate matching process in the buffers introduces a majority of delay, compared
to processing (encoding/decoding) delay and transmission delay. If video bridging is done in the
pel domain, the video bridge has to fully decode multiple images, merge them together, and then
encode the combined image. Thus, overall delay for such video bridging is essentially twice the
encoder-decoder-pair delay. On the other hand, if video bridging is done in the variable-length

10




Encoder Decoder
— Buffer Buffer -

Br(t) r(t) Br(t)

v
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coded domain, although buffers are still needed in the video bridge for multiplexing, the overall
delay can be only slightly larger than the codec-pair delay. In this section, we will give a theoretical
analysis for the codec-pair case (without video bridge involved) which serves as a foundation for
further understanding the case with video bridge. Unfortunately, the problem for the video bridge
case is too complicated for a similar analysis. However, we still can derive a lower bound and an
upper bound for the end-to-end delay as well as the required buffer size from some extreme cases.
A heuristic method is also given to roughly estimate the end-to-end delay for typical cases. This
estimate has been verified by the simulation results in Sec. 5 and Sec. 6.3.

4.1 The Codec-Pair Case

We will derive here the relationship between buffer size and the delay it introduces in the
codec-pair case. The derivation and its results mostly follow [9], which should be referenced for
details. Fig. 8 shows a generic encoder/decoder buffer pair system. The encoder and decoder buffer
occupancies at time ¢ are denoted by Br(t) and Bp(t) respectively. Between these two buffers, there
is a transmission channel. The transmission rate is represented by r(t). The transmission delay
is assumed to be zero since it is relatively small and roughly constant. We will focus here on
the behavior of the two buffers. The buffers are subject to overflow or underflow if they are not
controlled. The control of the encoder buffer usually involves some tradeoff between bit rate and
picture quality. Namely, the encoder reduces its generated bit rate by using coarser quantizers,
which implies lower quality, when the encoder buffer approaches overflow, and vice versa when
approaching underflow. However, underflow of the encoder buffer generally is not considered to
be a problem since it can be easily solved by sending stuffing bits. The details of encoder buffer
control have been discussed by many papers(7, 8] and will not be covered here. Throughout this
paper, we will only assume that the encoder buffer is under effective control and never overflows
or underflows. We will derive the sufficient conditions for a decoder buffer without overflow or
underflow.

For a real-time video codec, the delay from the camera to a display is constant if a smooth video
display is produced without repeating or dropping frames. Since the processing delay in the rest of
the system is usually constant, the delay from the time a particular data enters the encoder buffer to
the time that data leaves the decoder buffer is also constant. We denote this delay by T'. It follows
from the constant delay property that the occupancy of the decoder buffer is strongly correlated
to that of the encoder buffer. If we trace a particular data word d that enters the encoder buffer at
t = ¢, it will leave the decoder buffer at ¢ = t' + T according to the constant delay property. The
data flowing through the transmission channel from ¢’ to ¢’ + T will be those data in the encoder
buffer when t = ¢’ and the data in the decoder buffer when ¢ = ¢/ + T. Thus, the relationship
between the encoder buffer occupancy and the decoder buffer occupancy is as follows.

Br(t' +T) = / T it Br(t), vt (1)

tl
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In order to prevent decoder buffer overflow, its size, denoted by Sg, has to be sufficiently large
so that it is always greater than or equal to the right hand side of (1). The most pessimistic case
occurs when the encoder buffer is empty at ¢ = ¢’ and r(t) is at its maximum rate, X, all the time
from ¢’ to ¢’ 4+ T. Thus, the sufficient condition for no decoder buffer overflow is

Sp> KT. (2)

On the other hand, the decoder buffer will never underflow as long as all data reaches the
decoder buffer within the time T' after they entered the encoder buffer. The most pessimistic case
occurs when the encoder buffer is nearly full and the data just entering the encoder buffer has to
wait until all the data in front of it have been transmitted. The maximum waiting time is St/X,
where ST denotes the encoder buffer size. Consequently, in order to guarantee no underflow, the
constant delay, T, has to be greater than or equal to this maximum waiting time.

T > S7/K. (3)

In summary, from (2) and (3), the sufficient conditions for a decoder buffer without overflow or
under flow are as follows.
St/K <T < Sr/K. (4)

Note that the delay is proportional to the buffer size (or more accurately the maximum buffer
occupancy), and is inversely proportional to the transmission rate.

For an H.261 codec, the maximum buffer occupancy is usually incurred by an intra coded frame
(I-frame) and is roughly about the size of the largest intra coded frame. H.261 limits the maximum
number of bits that can be generated by a frame to 64 kbits for QCIF and 256 kbits for CIF.
Such limits not only define the required buffer size but also bound the end-to-end delay. Assuming
the transmission rate R is p X 64 kbps, the maximum delay will be 1/p second for QCIF and 4/p
seconds for CIF. In practice, the delay may vary over time because of repeat frame or skip frame
operations. Usually, the delay is initially set by the first intra coded frame. This delay will not
change until a repeat frame operation or a skip frame operation is performed. The repeat frame
operation is needed to increase the delay when a new frame is larger than the frame which set the
current delay and the current delay is not long enough to deliver the new frame (i.e., the receiver
buffer underflow). Repeat frame can be easily done by the decoder without any action by the
encoder. On the other hand, the skip frame operation, which reduces the delay, has to be done by
the encoder to provide correct motion vectors. Otherwise the decoder is out of trace of the encoder,
and can only recover until the next intra coded frame. If the encoder does not skip frames, the
delay usually will be a non-decreasing function over time and is flat after displaying the largest
frame. The final delay may not be equal to the bounds we just mentioned. The constant delay
property holds between these step-wise changes or after a steady state is reached.

4.2 The Video Bridge Case

We define the total end-to-end delay as the time difference between the time that the first bit
of the first QCIF frame enters the transmitter buffer and the time that the last bit of the combined
CIF frame comes out of the receiver buffer. The videoconferencing terminal clocks can be locked
to the network clock so that the data transmission is synchronous between the terminals and the
network. These synchronous terminal clocks also ensure the frame rates of different input QCIFs
are exactly the same but their frame phases may be different. However, we will assume they are
all the same for the reason of simplicity. If the frame phases are not synchronous, the required
buffer size for the bridge buffers may have to increase slightly to accommodate for the difference.
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Figure 9: The Structure of Combining Four QCIFs into a CIF, where Sij

The exact amount of buffer increase is dependent on how the phase off-sync is handled but it is
believed that the amount should be in the order of R/F. Throughout this paper, we also assume
the I-frames of different input QCIF's are synchronous, unless mentioned otherwise.

4.2.1 Minimum Cases

The minimum delay in a codec-pair case occurs when the bit rate in each frame is constant
over the frame time, such as in the fixed-length coder case. In this case, no buffer is required
for transmission and receiving. Suppose F is the frame rate. Then, the transmission rate R of a
QCIF encoder will be 3F GOB-units per second and the delay of such QCIF codec-pair is just 1/F
(=3/3F) second, which is the frame period time and is 133.33, 66.67, and 33.33 ms for a frame rate
of 7.5, 15, and 30 frames/sec respectively.

When a bridge is inserted in this minimum-delay case, the additional bridge delay can be derived
using Fig. 9. Suppose pels are combined at GOB level in the bridge. At the end of 1/F second, all
GOBs, from S11 to $43, are already loaded into the bridge input buffers, but only S11, S21, 512,
$22, and S13 have been transmitted. The other 7 GOBs will be transmitted at rate 4R, which is
equal to 12F GOB-units/sec. Thus, the total end-to-end delay is 1/F + 7/12F = 19/12F, which is
equal to 52.78 ms for a frame rate of 30. The required buffer size for QCIF IV will be the largest
among four since it is last transmitted. While it is waiting for its turn to transmit, the data in its
buffer are accumulated. The maximum buffer occupancy is equal to the waiting time multiplied
by the input rate (R). The waiting time is equal to the time required to transmit a frame of QCIF
I, which is 1/F, added by the time required to transmit S23 and S31, which is 2/4R. Thus, the
required buffer size for QCIF IV is 3.5 GOB-units. Similarly, the required buffer size for QCIF III
is 3.25 GOB-units (= [3/R + 1/4R]R). The required buffer sizes for QCIF I and II are the same,
1.75 GOB-units (= [7/4R)R). All of the required buffer sizes are quite small. For example, if R is
64 kbps and frame rate is 30 frames/sec, the required buffer size for QCIF IV is about 2.5 kbits.
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4.2.2 Maximum Cases

To find the maximum delay, we need to use a worst-case-dominant property of bridge buffers.
Define the picture complexity of a QCIF as the number of bits required to code it using intra-
frame mode. Assuming the four input QCIFs generate their intra-frame modes simultaneously, the
worst-case-dominant property states that the end-to-end delay is determined by the most complex
I-frame, regardless of when it happens in the bridging process. Using this property, we can thus
assume that the maximum delay happens on the first frame, which simplifies the analysis.

The maximum delay happens when the 4 input QCIFs all have the highest possible picture
complexity — in H.261, this is defined as 64 kbits for a QCIF picture. If the transmission rate is
px64 kb/s, the maximum delay happens when QCIF II is distributed unevenly, i.e., $21 = S22
=0 and S23 = 64 kbits. In this case, at the end of 64k/(px64k) = 1/p second (the time finishing
transmitting QCIF I), there are 3x64 kbits (= 192 kbits) left, which have to be transmitted at
4px64 kb/s. Thus, the end-to-end delay is 1/p + 3/4p = 7/4p seconds. The longest delay happens
when p = 1, which is 1.75 sec.

The maximum occupancy of the QCIF TV buffer occurs when QCIF I has 64 kbits and S23 and
S31 both also have 64 kbits. The 64 kbits of QCIF I have to be transmitted at only R (= p x 64 K)
due to the bottle neck of input rate, but S23 and S31 can be transmitted at 4R. Thus, the required
size of the QCIF IV buffer is

(64 + 2 x 64
pXx64 4xpx64

)Xp)(64=1.5x64=96kbit5.

Note that it is independent of p. The required size for all other QCIF buffers should not be larger
than 96 kbits.

4.2.3 Typical Cases

It can be seen that the upper bound and lower bound on the end-to-end delay given above may
be too loose and cannot provide a clear picture of the typical delay in practical cases. Here we will
provide a simple heuristic method to estimate the typical delay in practical situations. Because of
the worst-case-dominant property, we will use the maximum sizes of GOBs to estimate the delay.
We denote S1 = S11 4+ 512 + 513 and similarly for 52, S3, and S4. The subscript maz will be
used to denote their maximum values in the actual video sequences. The end-to-end delay D can
be estimated as follows.

D = max(dy,ds,ds,dy), (3)
where d, = Sinee | S2nas t Sl + Shnas )
iy = Stnes | Shnact St -
dy = S3gax+54j£az’ ®)
4 = Zp= (9)

As before, R is the transmission rate from each QCIF coder to the MCU and is also the target
coded rate of each QCIF. Usually, d; would be the maximum if Si,,,, is much larger than the other
three such that the transmission of Si,,,, at rate R from a QCIF coder to the MCU is the bottle
neck. If there is no dominant QCIF, d; is usually the largest one since it consists of more terms than
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others. According to the simulation results presented in Sec. 5 and Sec. 6.3, this delay estimation
is correct within 22 ms for most cases. However, it is not valid for cases where intra-mode coded
frames of four input QCIF's are not in the same CIF frame.

5 Simulation Results

A simulation program was written to simulate the system shown in Fig. 5, which starts with
four encoder buffers, goes through the QCIF combiner, and ends at the decoder buffer. This
program reads four data sets, each for a QCIF video source. Each data set consists of a sequence
of numbers and each number represents the number of coded bits for a GOB in a QCIF picture.
The simulation uses a GOB (in a QCIF) period as a clock tick, which is 11 ms for a frame rate
of 30 frames/sec. At every clock tick, the program reads four numbers (each of which represents
the number of GOB coded bits for one of the four QCIF source pictures) and outputs the buffer
occupancies of all nine buffers. Initially, the decoder buffer outputs nothing until all the coded bits
in the first frame are in the decoder buffer. Once all the bits in the first frame have arrived at
the decoder, these bits are removed from the decoder buffer in a clock tick and the first frame of
the combined CIF picture is assumed to be displayed. The end-to-end delay is the time elapsed
beginning from the time when the first bit of a frame entering the encoder buffer to the time when
this frame is displayed. After the first frame is displayed, the decoder is assumed to display a frame
of picture every frame period (which consists three clock ticks in our simulation). If the coded
bits in the next frame have not all arrived at the decoder yet (which is a decoder buffer underflow
situation), the decoder repeats the previous frame and the uncomplete frame is kept in the decoder
buffer. Thus, each frame repeat will increase the end-to-end delay by a frame period. Eventually,
the end-to-end delay will be long enough such that frame repeat will never happen again. The size
of each buffer in the system is assumed to be large enough and never overflow. The phases and
frequencies of four QCIF frames are assumed to be synchronous in our simulation.

In our simulation, we also assumed that the GOBs in a combined CIF frame are sent in the
order of GOB number as shown in Fig. 9. Since the GOB number in H.261 standard is explicitly
represented by 4 bits, it may be allowed to send GOBs in a frame in any arbitrary order. A QCIF
combiner may be able to take advantage of this flexibility to reduce the delay by sending available
GOBs in a frame first. However, some H.261 codec manufacturers may not interpret the standard
to the extent of allowing random order of GOBs. Without changing H.261, we decided to follow
the GOB number in sending them.

The source pictures used in our simulation consisted of four sequences: “Claire,” “Miss Amer-
ica,” “Salesman,” and “Swing.” Each of them was decimated to the size of a QCIF picture and
then coded by an H.261 encoder very similar to the RM8[10}, which has a simple buffer rate control
algorithm. The frame rate is 30 frame/sec.? Two sets of data were generated for two different
target rates, 64 kbps and 128 kbps respectively. An intra-mode coded frame (I-frame) is used in
every 33 frames. Some interesting statistical data about the number of coded bits in a frame are
shown in Table 3. The maximum number of coded bits in a frame occurred in one of the I-frames.
These maximum numbers are all several times larger than the mean numbers. It is easy to un-
derstand these maximum number of coded bits in an I-frame is closely related to the maximum
buffer occupancy and thus, as explained in the last section, is a major factor on determining the
end-to-end delay. The maximum number of coded bits in a frame can be used as an index of picture

2The frame rate was chosen arbitrarily. The simulation results are equally valid for other frame rates by using
equations (5) to (9) and the fact that the intraframe coded rate or complexity is independent of the frame rate using
the RM8 rate control algorithm.
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64 kbps 128 kbps
Picture maX. min. mean | max. min. mean
Miss America | 10043 795 2110 | 10043 1368 4129
Claire 13096 681 2106 | 13096 1344 4197
Salesman 14569 614 2071 | 14569 1523 4089
Swing 26074 334 2127 | 26074 1526 4225

TwaRS

Table 3: Statistics of the Number of Coded Bits in a QCIF Frame

64 kbps 128 kbps
ID Picture Delay B!, Bl..|Delay Bf. BlL..
M | Miss America 16 8038 11248 9 6476 12729
C Claire 18 11213 12798 9 9265 12798
S Salesman 20 12436 14220 10 10356 14220
W Swing 36 23941 25596 18 21808 25596

Delay: in clock ticks.
B! .z: Maximum transmitter buffer occupancy (bits).

B},.» Maximum receiver buffer occupancy (bits).

Table 4: Simulation Results of a QCIF Codec

complexity. According to this index, the “Swing” has the highest complexity and “Miss America”
has the lowest. Hereafter, we will refer to the pictures using the picture ID shown in Table 3. Note
that the maximum numbers for the 64 kbps target rate and for the 128 kbps target rate are the
same due to the simple rate control algorithm of RMS8[10].

We also simulated the QCIF codec case (without QCIF combiner) for each of the source pictures.
The simulation results on end-to-end delay and maximum buffer occupancies are shown in Table
4. These data will be used as reference points later. Note that, for each picture, the maximum
receiver buffer occupancies for 64 kbps and 128 kbps target rate are almost all the same due to
their identically coded I-frames. Also note that, for each picture except “Miss America,” the delay
for 128-kbps case is half of the delay for 64-kbps case due to twice of the transmission rate. The
only exception is due to the quantum increase (3 clock ticks) of a repeat frame that occurred to
“Miss America” and the discrepancy is within 3 clock ticks.

5.1 The End-to-end Delay

In this subsection, we focus on the end-to-end delay of the video combining system shown in
Fig. 5. It is obvious that this delay depends on the bit-rate traffic generated by the four combined
QCIF pictures. In order to obtain a maximum number of simulation cases with limited test source
pictures, we tried four different source pictures in each of four different positions in CIF. Thus, 256
(4*) cases were simulated. We will use a vector formed by the picture IDs to refer to each case.
For example, the case (M,C,S,W) is the case with picture M, C, S, and W at the position I, II,
III, and IV shown in Fig. 9 respectively. First, we will summarize the simulation results of four
source pictures with target rate of 64 kbps. The delay distribution of 256 cases is shown in Fig.
10. The unit of delay time used in the figure is the clock tick of the simulation program, i.e., 1/90
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Figure 10: The Delay Distribution (QCIF Target Rate: 64 kbps)

sec. The shortest delay is 266.67 ms (24 clock ticks) and the longest delay is 644.44 ms (58 clock
ticks). There are three cases with the shortest delay, (M,M,C,S), (M,M,M,M), and (M,M,5,C).
Case (W,W,W,W) has the longest delay. Roughly, this is consistent with intuition that shorter
delay results from less complex pictures. There are two peaks (at delay = 36 and 37) in Fig. 10.
They are due to the dominant complexity of the “Swing” (W). The cases with W at IV and other
pictures at other positions all have the delay of 36 clock ticks. The cases with W at III and other
pictures at other positions all have the delay of 37 clock ticks. Thus, each has 27 (3%) cases with
the same delay. The cases with the same four pictures permuted at different positions may result
in quite different length of delay. For example, with M, C, S, and W permuted, the delay can vary
from 36 to 47 clock ticks. After reviewing all cases carefully, we concluded that the shortest delay
among different position permutations usually results from placing QCIF pictures in the order from
the least complex to the most complex. However, the longest delay may not result from a reverse
order of the above. It usually results from placing the most complex picture at position I and the
least complex one at position II. Note that these are only two rough rules of thumb. The actual
cases may differ from these by 3 clock ticks or less caused by quantum effect of repeats. The most
important observation is that the overall delays from all our experiments are less than two times
the maximal codec delay (without the combiner) among four QCIF pictures, which is better than
the transcoding approach.

We repeated the same simulations for the source pictures coded at the target bit rate of 128
kbps. The delay distribution of 256 cases with different pictures at different positions is shown in
Fig. 11. Compared with the cases with the target rate of 64 kbps, the end-to-end delays of 128
kbps cases are roughly all reduced by half. This is consistent with the equations (5)-(9): the delay
is inversely proportional to the transmission rate. Note that the number of coded bits in an I-frame
with target rate of 128 kbps is the same as that of the same I-frame with target rate of 64 kbps due
to the simple rate control algorithm of RM8. Thus, when transmission rate increases two times,
we can expect that the delay will be reduced by half.
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5.2 Buffer Sizes

We need to know two things about the buffer sizes: 1) the required buffer size in the QCIF com-
biner, and 2) whether the required buffer size for the CIF receiver is affected. The QCIF combiner
under consideration is more or less passive to the QCIF transmitter. Thus, the required buffer size
for the QCIF transmitter is not affected. The required transmitter buffer size to accommodate all
four test pictures of 64-kbps target rate is 23941 bits and that of 128-kbps is 21808 bits according
to our simulations (both are set by “Swing”).

The maximum buffer occupancies of the QCIF combiner appeared in our simulations for different
target rates and different QCIF positions are shown in Table 5. The simulations consisted of 256
cases for each target rate with different pictures at different positions. Comparing these maximum
buffer occupancies for different QCIF positions, we can observe that QCIF IV’s is the largest,
followed by QCIF II's, QCIF IIT’s, and QCIF I’s is the smallest. However, they are not substantially
different. The maximum buffer occupancies for the target rate of 128 kbps are slightly smaller than
those for 64 kbps. It is also interesting to note that most of the maxima for a bridge buffer
occurred with the “simplest” picture at the position corresponding to this buffer and with the
most “complex” picture at the other three positions. A last but important observation is that the
required size of each bridge buffer is slightly larger than a QCIF receiver buffer shown in Table 4.
The largest shown in Table 5, 29927, is about 17% larger than the largest shown in Table 4, 25596.

The maximum occupancy of the receiver buffer appearing in our simulations is 105892 bits for
the target rate of 64 kbps, and 108051 bits for that of 128 kbps. Both of them are set by the case
with “Swing,” the most complex picture, at all four QCIF positions. They are only slightly greater
than four times (actually, 4.14 and 4.22 times respectively) the maximum buffer occupancy of a
QCIF receiver (25596 bits). Thus, the required buffer size of the CIF receiver is roughly unchanged,
compared to the case with the same CIF being transmitted without the QCIF combiner.
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Target Rate | QCIF 1 QCIFII QCIFIII QCIFIV

64 kbps 28536 29607 28440 29927
(MWWW) (WMWW) (WWXX) (WWWM)
128 kbps 27496 28646 28440 20862

(MWWW) (WMWW) (WWYX) (WWWY)

What shown in the parentheses is the combination of the pictures which set the maximum.
The picture IDs are defined as before.
X represents M, C, S, or W.
Y represents C, S, or W.

Table 5: The Maximum Buffer Occupancies (in bits) of the Four Bridge Buffers in Simulations

6 Possible Improvements

It is very important to keep the end-to-end delay low for interactive two-way (and multi-
way) communication applications. The typical end-to-end delay for an H.261 codec (without video
bridges) is already a quarter second long. The cases with video bridges would have even longer
delays. It is thus desired to reduce the codec delay such that the cases with video bridges will also
be improved. In this section, we will first discuss two possible simple methods to reduce the video
bridge delay. However, these two methods are not applicable to reducing the codec-pair delay.
Three more advanced schemes will then be discussed, which reduce delay in more fundamental
ways — they reduce the codec-pair delay as well as the video bridge delay. Note that these three
schemes have been considered in the low delay coding of MPEG2(11, Appendix H]. We then focus
on the intra slice technique. Simulation results are presented to verify the delay reduction.

6.1 Two Simple Methods

In the above simulations, the I-frames of four QCIFs are assumed to be synchronous with one
another. Thus, a CIF I-frame is formed by the QCIF combiner every 33 frames in our experiments.
However, H.261 allows the coded mode to be specified on the macro-block level. Therefore, it is
possible to let the I-frames of four QCIFs to occur in different CIF frames so that only one QCIF
in a combined CIF frame is intra-mode coded. Such off-sync I-frames can be arranged by the
MCU through the fast update signal in H.221[6]. In order to investigate the effect of this off-sync
I-frame arrangement, we used the same source picture for each of the four combining QCIFs. For
an off-sync distance of n frames, n, 2n, and 3n “blank” frames were added in front of the original
QCIF 11, III, and IV sequence, respectively. A “blank” frame can be viewed as a frame of picture
with all of its coefficients equal to zero, and its coded bit stream will consist of only the necessary
headers without real bodies. The simulation results for four source pictures with target coded rate
of 64 kbps are shown in Fig. 12. Roughly speaking, the delay decreases as the distance between
I-frames increases. Note that, as the off-sync distance increases to more than 8 frames, the distance
between the I-frames of QCIF IV and those of QCIF I is shorter than others and is decreasing.
Thus, simulations for an off-sync of more than 10 frames are not necessary. The delays for pictures
M, C, and S all reached their individual minimum (16, 21, and 23 respectively) when the off-sync
distance (n) was increased to 6. The delay for “Swing” reached its own minimum (36) later when
n = 8. Compared to the single QCIF codec delays shown in Table 4, these minima are the same
as or within 3 clock ticks of those. We can conclude that such simple scheme can effectively reduce
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Figure 12: Delay versus Off-Sync Distance

the end-to-end delay. The only penalty is that we may have to wait longer to see the first good
frame of QCIF IV in the combined CIF picture.

Another possible scheme to reduce delay is to use a symmetric duplex channel between users
and MCU. Thus, the transmission rate from the transmitter to the MCU is the same as the user
receiving rate, 4R, where R is the target coded rate for a QCIF. If we utilize this full capacity to
transmit data to the MCU, the end-to-end delay can be reduced. Certainly, bit stuffing will be
needed when there is no data in the buffers of QCIF encoders. The delay distribution of 256 cases
is shown in Fig. 13. Compared to the case with transmission rate at R (Fig. 10), these delays are
reduced by 5 to 24 clock ticks, or by 20% to 50%.

6.2 Three Advanced Schemes

From the above analysis and simulations we see that variation in the coded data stream is the
major source of delay. The MCU is basically a passive multiplexer which has very little control
of the overall delay. If all coders generate bursty data that have very high rate peaks, the buffers
have to accommodate the worst case and a long delay is inevitable. Such high peaks usually results
from complete intra-mode frame or field coding. Low delay schemes have to either deal with these
intra-mode coded frames or avoid using them.

The first scheme is called the skip frame method, which reduces the delay by skipping a few
frames after a “large” frame, usually an intra-mode coded frame. The frame following the skipped
frames uses the “large” frame as the reference for its motion compensation. To fill the display
pipe, the frame prior to the “large” frame is repeated before the “large” frame is fully decoded and
available. This method may result in quality degradation in the few frames immediately after the
skipped frames since the reference frame for motion compensation is a few frames away. It also
may result in jerky motion artifacts due to the skipped frames.

The other two techniques both try to distribute intra coded data across every frame and thus
smooth out the bit-rate variation. In the leaky prediction scheme, each frame (except perhaps the
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first frame) is leaky predictive coded using motion compensation. The leaky prediction distributes
a tiny portion of the intra-frame information to each predictive frame so no complete intra-mode
coded frame is generated. This results in smooth bit-rate variation and thus a lower end-to-end
delay. The first frame can be intra coded but then skip frame has to be used to cut back the delay
before leaky prediction can be applied. Alternatively, the first frame can be coded directly using
leaky prediction with reference to a blank picture. In this way, the reconstructed images will be
very rough for the first few frames and gradually build up to the normal images. The same thing
happens when there is a scene cut.

The third technique is the intra slice scheme. The idea is to update (i.e., intra encode) a small
segment in each frame. Thus, no “large” frame will be generated. Each frame consists of a segment
that is intra coded and the rest of the frame is predictive coded by motion compensation. In this
way, the number of bits generated from each frame varies smoothly frame by frame. Thus, it results
in a lower delay. Similar to the leaky prediction scheme, the picture can initially be intra coded
and then skip a few frames, or can be built up gradually. In the latter approach, segments of the
picture remain blank initially until they are intra coded. As those segments are intra coded and
appear one by one, a sweep sense of updating is created.

Note that the skip frame scheme and the intra slice scheme can be used without changing the
H.261 syntax, but the leaky prediction scheme cannot. We will focus on the inira slice scheme
for the rest of the section because it is simple, effective, and can be accommodated by the current
H.261 syntax. In the H.261 syntax, the coding mode can be specified macroblock by macroblock.
Each macroblock can be intra coded individually without changing the current H.261 syntax. Each
updating segment can certainly contain more than one macroblock. Usually, it is convenient to
have the number of macroblocks in the segment be a divisor of the total number of macroblocks in
a frame. In our experiment, we updated 3 macroblocks every QCIF frame or 12 macroblocks every
CIF frame. There are 99 macroblocks in a QCIF frame or 396 macroblocks in a CIF frame. It takes
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64 kbps 128 kbps

Picture max. min. mean | maX. min. mean
Miss America | 2810 784 1900 | 7205 784 4175
Claire 2960 1335 2098 | 5485 1846 4162

Salesman 2665 1471 2102 | 6649 2715 4188
Swing 4541 1227 2100 | 8731 2646 4179

s wAaRB

Table 6: Statistics of the Number of Coded Bits in a QCIF Frame Using Intra Slice Scheme

33 frames to build up or refresh the whole picture. If the frame rate is 30 frames/sec, the refresh
cycle will be 1.1 seconds. It can be shown by the simulation results in the following subsection
that the intra slice scheme can drastically reduce the end-to-end delay for both the codec-pair case
and the video bridge case. The required buffer sizes are also drastically reduced. Using a QCIF
transmission rate of 64 kb/s and 30 frames per second, the overall delays are reduced by 67% to
86% for different combinations of QCIF pictures. Before this modification, the overall delays ranged
from 266.7 ms to 644.4 ms. After the modification, the overall delays became 66.7 ms to 111.1 ms.
The required sizes of the transmitter buffers, the combiner input buffers, and the receiver buffer
are reduced by 90%, 84%, and 78% respectively.

6.3 Simulation Results of the Intra Slice Scheme

The source pictures used in the intra slice simulations are the same four pictures as before.
Some important statistical data of these pictures coded by the intra slice scheme are shown in Table
6. Compared to Table 3, their dynamic ranges have been reduced drastically, 4.56 times to 11.69
times for the target rate of 64 kbps and 1.35 times to 4.03 times for the target rate of 128 kbps.
This dynamic range reduction effectively reduces the delay of the video codec. Table 7 shows the
simulation results of the QCIF codec case (without QCIF combiner). All the delays can be reduced
to only 6 clock ticks (= 2 frames) except for the 128-kbps “Miss America”, whose delay is even
better, only 3 clock ticks (1 frame). Note that the maximum buffer occupancies are also reduced
drastically. For the most complex picture, “Swing,” the maximum transmitter buffer occupancy is
reduced by 9.94 times for 64-kbps target rate and by 4.88 times for 128-kbps. For “Swing,” the
maximum receiver buffer occupancy is reduced by 6 times for 64-kbps target rate and by 3 times
for 128-kbps.

Similar to the simulations described in Sec. 5, the QCIF combiner simulations were done for
256 cases with four different pictures at each of the four QCIF positions. The simulation were done
separately for the target rate of 64 kbps and 128 kbps. The end-to-end delay distribution of these
256 cases is shown in Fig. 14. The delays for 64-kbps target rate are shortened to only 6 to 10 clock
ticks, and those for 128-kbps target rate are similar, from 6 to 9 clock ticks. These are very close
to the delay (6 clock ticks) of the QCIF codec case (without QCIF combiner), which is the best we
can get. Unlike the results shown in Sec. 5, the delay for a picture combination with 64-kbps target
rate is similar to the delay for the same picture combination with 128-kbps target rate, not twice
as much. However, more than half of the combinations with 128-kbps target rate have delay of 6
clock ticks while only more than one third of the combinations with 64-kbps target rate have the
minimum delay. From these results, one can conclude that the intra slice scheme not only reduces
the delay effectively, but also makes the delay more consistent, i.e. reduces its variance. Using intra
slice scheme, the extra delay added by the QCIF combiner is very minor for all the cases.
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Figure 14: The Delay Distribution for the Intra Slice Scheme
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Target Rate | QCIFT _ QCIF _ QCIF I QCIF IV
64 kbps 4266 4266 4691 4977
(ZWWW) (WZWW) (WCSW) -
128 kbps 8532 8532 8532 9954
ZWWW) (WZWW) - (WWWW)

What shown in the parentheses is the combination of the pictures which set the maximum,
The picture IDs are defined as before. Z represents M, C, or S.

Table 8: The Maximum Buffer Occupancies (in bits) of the Four Bridge Buffers in Intra Slice
Simulations

intra slice. However, this approach can either degrade the picture quality or reduce the coding
efficiency due to the confinement of the motion vectors.

7 Conclusions

Video bridging is needed in providing multi-point video conference services through public
switched networks. End-to-end delay, picture quality, and system complexity are the major issues

combiner and show that it can provide a better performance than 2 pel-domain combiner in terms
of delay, picture quality, and complexity. We analyze the delay introduced by the combiner and
decide the required size of the internal buffer for the QCIF combiner. We perform simulations to
show the typical performance of the QCIF combiner. We also investigate several techniques to
reduce the end-to-end delay. From these results, we show that coded domain QCIF combining can
be reasonably achieved for multi-point networked videoconferencing applications.
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