Fiog

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO-IEC/JTC1/SC29/WG11
CODING OF MOVING PICTURES AND ASSOCIATED AUDIO INFORMATION

ISO-IEC/ITC1/SC29/WG11
MPEG92/
November 1992

CCITT Document # AVC-392
STUDY GROUP XV WP XV/1

Experts Group for ATM Video Coding

Ipswich October 1992 English Version

SOURCE: A. Reibman, K. Matthews, J. Mailhot, R. Aravind: AT&T Bell Laboratories
TITLE: Correction: Eliminating the limit cycle in leaky prediction
PURPOSE: Informational

1 Introduction

The document AVC-349 (MPEG92/493) incorrectly described solution 2 to the limit cycle problem with
leaky prediction (section 2.2). This document corrects the description, and should replace the previous
section 2. We also include syntax recommendations for MPEG.

As described in section 2 of AVC-349, the solution 2 to the limit cycle is equivalent to adding a
signal that varies between 0 and (2" — 1)/2" after multiplication but before truncation. The simplified
block diagram in Figure 1 illustrates this implementation. This block diagram can be used for any type
of multiplication: floating-point, or shift-and-subtract.

Mathematically, the difference signal at the encoder is

Yo = 2y — Tylaze— + 6,/27],
and the reconstructed signal at the decoder (less 128) is
wy =y + Tolowe—1 +b/27).

where b, is a psuedo-random auxiliary signal that varies from 0 to 2" — 1, as in AVC-349. The signal z;
the original input signal minus 128.

Because the leak factors have been chosen to be of the form (1 — 1/2"), the multiplication is simply
performed in hardware using shift-and-subtract. Figure 2 shows an alternate implementation of the
limit cycle fix (solution 2) using shift-and-subtract multiplication.

For example, suppose the input value is constant at 40, so z; = z;—; = 128 —40 = —88. Then, when
0 <b <8,y = —6, while when 8 < b, < 16, y; = -5, if & = 15/16. Without adding in the signal b,
the prediction error y; = —6 always (for truncation with either type of multiplication).

The signal b; must be the same at the encoder and the decoder to ensure there are no limit cycles.
Therefore, it should be sent in the picture layer immediately following the leak factor. This requires an
additional 6 bits per picture since the maximum n = 6. Because b, is constant throughout the picture,
a DC input gets transmitted as successive DC values, with no additional high frequency components.
The subscript ¢ is a temporal index.

The choice of the signal b; remains a subject of encoder design. However, a signal that works well is
a ramp signal with the bits reversed (the most significant bit becomes the least significant bit, etc.).

<+

4

2 Recommendations

Because the limit cycle problem appears with both floating-point multiplication and shift-and-subtract
multiplication, we suggest that the shift-and-subtract multiplication be adopted for ease of implemen-
tation.

To eliminate the limit cycle problem with leaky prediction, the following pseudo-code can be used
once per picture to generate the value of the auxiliary signal b,.

ramp++;

ramp %= 64;

bt=0;

i=ramp;

for (k=0; k<n; k++) {
bt = (bt<<1) + (i&0x01);
1= 1i>>1;

}

The value of the variable ramp is initialized once to zero at the beginning of the encoding process. The
variables bt and i are unsigned characters and k and ramp are integers. The variable bt contains the
value of the signal b;. Note that while ramp varies from 0 to 63, bt will vary from 0 to 2" — 1.

For ease of hardware implementation, shift-and-subtract multiplication should be used. The following
pseudo-code performs the leaky prediction multiplication:

val blk(i,j) -128;
val = val - ((val+bt) >> n);
blk(i,j) = val+128;

Before this operation, blk(i,j) contains the motion-compensated prediction pixel at location i,j in the
block. After this operation, it contains the value with leaky prediction.

The leak factor and value of the signal b; should be transmitted in the picture layer for every P
picture. One appropriate location is after the chroma_postprocessing_type bit in the picture layer,
with the syntax shown below.

if (picture_coding_type == 2) {
leak factor 3 uimsbf
leak_signal_b 6 uimsbf

}

by /2"

Figure 1(a). Encoder without limit cycles, any multiplier

Tl o la— 1

b/ 2"

Figure 1(b). Decoder without limit cycles, any multiplier

Xt Yt

shift
n bits

by

Figure 2(a). Encoder without limit cycles, using shift-and-subtract multiplier

Yt Wi

shift
n bits

by|

Figure 2(b). Decoder without limit cycles, using shift-and-subtract multiplier

