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1 INTRODUCTION

This document gives a comprehensive description of the MPEG-2 Test Model (TM). This model is used
in the course of the research for comparison purposes.

In order to obtain results for comparison this document describes some techniques that are not a matter of
standardisation. Some of these techniques are of debatable value but are included to provide a common
basis for comparisons. In order to have comparable simulation results the methods described in this
document are therefore mandatory. '

Those parts which have been changed from TM2, revision 1 are marked up by a bar in the margin.
The readers are asked to give comments and corrections to remove ambiguous parts. Please send them to:

Arian Koster

PTT Research

Tel: +31 70 332 5664

Fax: +31 70 332 6477

Email: a.koster@research.ptt.nl
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2 GENERAL CODEC OUTLINE

The generic structure of the test model is based on the following main issues:

input / output format CCIR 601
Pre- and post processing, as described in section 3.

Random access of coded pictures, which requires the definition of Group of pictures, as described in
Section 4 and 6.

Motion Vector search in forward and/or backward direction, as described in Section 5.

Prediction modes, forward, backward and bi-directional motion compensated, field or frame motion
compensation, as described in section 6.

DCT, on frames or fields as described in section 7
Entropy coding, as described in section 8.

4 Mbps and 9 Mbps target rate, including multiplexing and regulation, as described in section 9 an
10 respectively.

Scalable bitstreams as described in Appendix D.
Experiments for cell loss are given in Appendix F.

Experiments for compatibility are given in Appendix G.

2.1 Arithmetic Precision

In order to reduce discrepancies between implementations of this TM, the following rules for arithmetic
* operations are specified.

(@)

(®)

©

@

Where arithmetic precision is not specified, such as in the calculation of DCT transform
coefficients, the precision should be sufficient so that significant errors do not occur in the final
integer values

The operation / specifies integer division with truncation towards zero. For example, 7/4 is
truncated (o 1, and -7/4 is truncated to -1.

The operation // specifies integer division with rounding to the nearest integer. Half-integer
values are rounded away from zero unless otherwise specified. For example, 3//2 is rounded to 2
and -3//2 is rounded to -2.

Where ranges of values are given by two dots, the end points are included if a bracket is present,
and excluded if the 'less then' (<) and 'greater then' (>) characters are used. For example, [a.. b>
means from ato b, including a but excluding b.



19-Oct-92  Proposal for Test Model 2, Draft Revision 2

3 SOURCE FORMATS

This section gives a description of the Source Formats and their conversion from and to CCIR 601. For
the purposes of the simulation work, only the particular formats explained in this section will be used,
except for CCIR 601 which is well defined in the CCIR documentation.

3.1 Input Formats

The Input Formats consists of component coded video Y, Cb and Cr. The simulated algorithm uses two
source input formats for moving pictures. The differences are the number of lines, the frame rate and the
pixel aspect ratio. One is for 525 lines per frame and 60Hz, the other one is for 625 lines per frame and
50Hz.

Input Formats derived from CCIR 601 and defined in this chapter are:

. 4:2:2-50  The actual CCIR 601 signal at 50Hz

. 4:2:2-60 The actual CCIR 601 signal at 60Hz

. 4:2:0 CCIR 601 with half chrominance resolution at S0Hz

. 4:2:0 CCIR 601 with half chrominance resolution at 60Hz

o SIF-525  Progressive format, with 1/8 of the 4:2:0-60 resolution

J SIF-625  Progressive format, with 1/8 of the 4:2:0-50 resolution

. CIF Progressive format, as SIF but fixed paramets, being the maximum of SIF-525 and SIF-
625 '

. SIF-odd  SIFtaken from CCIR 601 odd fields

. SIF-even SIF taken from CCIR 601 even fields

. HHR Interlaced format with Half horizontal resolution of 4:2:0

. SIF-1 Interlaced format, with 1/8 of the 4:2:0 resolution

The parameters for the so called active 4:2:0-525-format and active 4:2:0-625-format frames are:

4:2:0-625 4:2:2-625 4:2:0-525 4:2:2-525
Number of active lines
Luminance (Y) 576 576 480 480/ 488 ?
Chrominance (Cb,Cr) 288 576 240 480/ 488 ?
Number of active pixels per line
Luminance (Y) 704 704 720 720
Chrominance (Cb,Cr) 352 352 360 360
Frame rate (Hz) 25 25 30 30
Frame aspect ratio (hor:ver) 4:3 4:3 4:3 43

Table 3.1: Active 4:2:0 and 4:2:2 Formats

For compatibility with MPEGI1 or scalability a second set of formats is defined, the MPEG1 SIF. The
term SIF is used to indicate this format defined in table 3.2. The parameters for the so called active SIF-
525 and active SIF-625 frames are:

SIF525 SIF625

Number of active lines

Luminance (Y) 240 288

Chrominance (Cb,Cr) 120 144
Number of active pixels per line

Luminance (Y) 352 352

Chrominance (Cb,Cr) 176 176
Frame rate (Hz) 30 25
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[ Frame _aspect ratio (hor:ver) [ 4:3 [ 4:3 |

Table 3.2: Active SIF Format

For compatibility with H.261 a third format is defined, the Common Intermediate Format (CIF). The
parameters for the so called active CIF are:

CIF

Number of active lines

Luminance (Y) 288

Chrominance (Cb,Cr) 144
Number of active pixels per line

Luminance (Y) 352

Chrominance (Cb,Cr) 176
Frame rate (Hz) ‘ 30
Frame _aspect ratio (hor:ver) 4:3

Table 3.3: Active CIF Format

When scalable extensions are used, a hierarchy of formats can exist, with the highest resolution equal
to the CCIR 601 Active 4:2:0 format, and with lower resolutions having either 1/2, 1/4, or 1/8, the
number of pixels in each row and column.

3.2 Definition of fields and frames

The CCIR 601 and the active 4:2:0 formats are both interlaced. A frame in these formats consists of two
fields. The two fields are merged in one frame. The odd lines are within one field the even lines in the
other field. There is a sampling time difference between the two fields. Let us define FIELDI as the field
preceding FIELD2. '

1. Video data is 50 Hz or 60 Hz fields per second. The first field is the odd field, and is numbered
field 1. The second field is the even field and is numbered field 2 and so on. So odd numbered
fields are odd fields and even numbered fields are even fields.

2. 50 Hz fields have 288 lines each, and 60 Hz fields have 240 lines each. The fields are
considered to be interlaced, and the first line of the first (odd) field is above the first line of the
second (even) field for both 50 and 60 Hz.

3. The field lines are numbered as if they are combined into a frame, and the numbering starts at
one. So, the first line of the frame, which is the first line of the first (odd) field is line 1. The
second line of the frame which is the first line of the second (even) field is line 2. And so on, SO
odd numbered lines are in odd fields, and even numbered lines are in even fields.

4. For display of 50 Hz material, the 288 lines are the active 288 lines of that format. This will
display correctly since in that format, the first line of the first field is above the first line of the
second field.

5. For display of 60 Hz material, the 240 lines are placed in a specific set of the 243 active lines of
that format. The first (odd) field is displayed on lines 21, 23, ..., 499, and the second (even) field
is displayed on lines 22, 24, ..., 500. The active lines 19, 501, and 503 of the odd fields and the
active lines 18, 20, and 502 of the even fields are displayed as black.

11
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3.3 Conversion of CCIR 601 to the Input formats

For conversions to several formats a number of filters will be defined. At the edges of the picture data is
it recommended to repeat the pixel valuc at edge.

3.3.1 Conversion of CCIR 601 to the 4:2:0 format

Pre processing is applied to convert the CCIR 601 format to the 4:2:0 format. This is described in the
following.

First the signal is cropped from 720 luminance pels per line to 704 pels per line by removing 8 pels from
the left and 8 pels from the right. Similarly the 360 chrominance pels per line are cropped to 352 pels per
line by removing 4 pels from the left and 4 pels from the right.

Luminance: two fields are merged in their geometrical order to form a frame.
Remark: Some processing in the running of the coding scheme is however field based (DCT coding,
prediction); thus it is still needed to know for each line of pixels which field it originates from.

Chrominance: The following 7 tap vertical filter is used to pre-filter the FIELD1
[-29, 0, 88, 138, 88, 0, -29] /256
Then, vertical sub sampling by 2 is performed.
The following 4-tap vertical filter is used to decimate the FIELD2:
[1,7,7,1V/16
Then, vertical sub sampling by 2 is performed.

The two sub sampled chrominance fields are merged to form a frame. This is shown in figure 3.1.

Original Flelds
gdd Even

F1

Figure 3.1: 4:2:0 Chrominance sub sampling in the fields

12
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Figure 3.2 : 4:2:0 Chrominance sub sampling in a frame

NOTE: The horizontal positions of the chrominance sample is not rigth in between 4 luminance
pixels.

In figure 3.1 and 3.2 the following symbols are used:
the vertical position of the original lines
the vertical position of lines of the sub sampled odd field
the vertical position of lines of the sub sampled even field

3.3.2 Gonversion of CCIR 601 to SIF

The CCIR 601 formats are converted into their corresponding SIFs by sampling odd fields and using the
decimation filter of table 3.4.

720

Foommmm e + 720 360
| | 480 to-mmm - + 240 t-------- +240
[ | /576 | | /288 | | /288
I | | I | I
[ Y | +------ > | e e | |
A [ | | Horizontall |
| | | | Decimation]| |
| I | | Filter | |
| | R + Fo--m-mm- +
oo +

CCIR 601 0dd field only SIF

525/625

360
R + 360 180
| | 480 +--------- + 240 +--~--+ 240 180
| | /576 | | /288 | | /288 +----+ 120
| Cr,Cb +----- > | LR > | +----- > | | 144
| | | |Horizontal | |vertical | |
| | | |Decimation] |Decimation+----+
| [ R + Filter +----+Filter
LR + ‘

CCIR 601 0dd field only SIF
525/625

Figure 3.3 Conversion from CCIR 601 into SIF

13
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The filter coefficients are depicted in table 3.4.

[29[ o] 8 [138] 8 [ 0 ]-29] 1256

Table 3.4 Decimation filter
Note: the odd fields contain the top most full line
3.3.3. Gonversion of CCIR 601 to SIF Odd and SIF Even

The CCIR 601 formats are converted into their corresponding SIF Odd by sampling odd fields and SIF
Even by sampling even fields and then applying horizontal decimation files of Table 3.4 in each case.

720 s 240
480 Horizontal 1288
/576 Decimation
0dd Field Filter SIF Odd
Y
Field 240 360
Split 1288
— 240
1Zon!
CCIR 601 Decimation 1288
6525/625 Even Field Filter SIF Even
360
240 240 180
360 /288 1288 120
Horizontal Vertical 144
Decimation Decimation SIF Odd
Odd Field Filter Filter
Cr,Cb
360 240 240
/288 /288 180 199
Horizontal Vertical 1144
CCIR 601 Decimation Decimation SIF Even
525/625 Even Field Filter Filter

Fig 3.4: Conversion from CCIR 601 into SIF Odd and SIF Even
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3.3.4 Conversion of CCIR 601 to HHR

The CCIR 601 formats are converted into their corresponding HHR's by first decimating to SIF Odd and
SIF Even as in previous section, and then creating interlaced frames by alternating between lines of SIF
Odd's and SIF Even's.

720 240 360
720 /288 240 360
480 Horizontal 288
/576 Decimation
0dd Field Filter SIF Odd 480
Y
Field 240 360 Field /576
Split 1288 240 | Merge
Horizontal ﬂ
CCIR 601 Decimation HHR
525/625 Even Field Filter SIF Even
360 240 240 180
560 fared a8 120
480 Horizontal Vertical '/li 180
1576 Decimation Decimation SIF Odd
Odd Field  Filter Filter 240
Cr,Cb ¢ /288
Field 860 240 240 Field
Split 1288 288 180 190 | Merge T
Horizontal Vertical ./li
CCIR 601 Decimation Decimation SIF Even
525/625 EvenField Filter Filter

Fig. 3.5 Conversion from CCIR 601 into HHR

15
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3.3.5 Conversion of CCIR 601 to SIF Interlaced (SIF-I)

The CCIR formats are converted into their corresponding SIF interlaced by following the sequence of
decimation operations show in Fig. 3.6. The horizontal filter used for decimation is from Table 3.4. The
filter used for vertical decimation of odd fields is also from Table 3.4; for decimation of even fields a
new filter is specified below.

360
o w 120
720 144
Horizontal
480 r & Vertical 360
1578 i Decimation 0dd
¥ 0Odd Field Pocimd 240
Field 720 240 360 120 Field 288
Spli M
plit 8 ma | ¥ SR 1
| Horizontal
CCIR 601 & Vertical
526/625 Even Field gﬁ‘::’tmn Even
360 240 180 240 120
180
360 1288 1288 /144 180 0
2
Horizontal Vertical Vertical .~ ]
480 Decimation Decimation Decimation 180
1576 Odd Field Filter Filters Filter
CeCh __ 120
’ Fiold 360 240 180 94 180 120 eo | Fied /44
Split 1288 1288 /144 180 P Merge gp 1
Horizontal Vertical Vertical
CCIR 601 Decimation Decimation Decimation
525/625 EV en Field F ilml‘ Filters F ilber
Fig. 3.6: Conversion from CCIR 601 into SIF Interlaced (SIF-I)
Horizontal Filter: Table 3.4
Vertical Filter:
Odd Field Table 3.4
Even Field -4,23,109, 109, 23, -4

Note: The SIF-I interlaced pictures generated seem devoid of jerkiness but appear blurry. Better choice
of decimation filters needs further investigation.

3.4 Conversion of the Input Formats to CCIR 601

3.4.1 Conversion of the 4:2:0 Format to CCIR 601

Luminance samples of each 4:2:0 field are copied to the corresponding CCIR 601 field.
Chrominance samples are not horizontally resampled.

Vertical resampling of the chrominance is done differently on ficld 1 and field 2 because of the different
locations of the chrominance samples.
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In field 1, the chrominance samples in the CCIR 601 field are obtained by interpolating the chrominance
samples in field 1 only of the 4:2:0 format. Referring to line numbers defined in the 4:2:2 frame, samples
on lines 1, 5, 9 etc. are copied from the corresponding lines in the 4:2:0 field. Samples on lines 3, 7, 11
etc. are interpolated by the even tap filter [1, 1)//2 from the corresponding adjacent lines in the 4:2:0
field.

In field 2, the chrominance samples in the CCIR 601 field are obtained by interpolating the chrominance
samples in field 2 only of the 4:2:0 format. Referring to line numbers defined in the 4:2:2 frame, samples
on lines 2, 6, 10 etc. are interpolated from the corresponding adjacent lines in the 4:2:0 field using a [1,
3)//4 filter. Samples on lines 4, 8, 12 etc. are interpolated by a [3, 1)//4 filter from the corresponding
adjacent lines in the 4:2:0 field.

3.4.2 Conversion of SIF to CCIR 601

A STF is converted to its corresponding CCIR 601 format by using the interpolation filter of table 3.5.

720
360 720 t------mmmm e eea- +
t---=--=-- + 240 Fom e + 240 | |
| | /288 | | /288 | [
| +------ > | R > | Y | 480
| | Horiz | |Vertical| | /576
| | Interp. | | Interp | |
t-------- + Filt to-crmme e + Filter | |
I e e +
SIF 525/625
CCIR 601
360
180 360 e e +
180 120 +---~-+ 240 R e + 240 ] |
+----+ /144 | | /288 | | /288 | | 480
[ +------- > - --- > | t-------- >| Cr,Cb | /576
| | ] |Horizontal | | Vertical| |
+----+Vertical| | Interp | | Interp | |
Interp +----+ Filter to---- - + Filter | |
Filter Fo----- - +
SIF 525/625 CCIR 601

Figure 3.7: Conversion of SIFs to CCIR 601 formats

The filter coefficients are shown in table 3.6.

[-12] 0] 140256 140 0 [-12] 1256

Table 3.5 Interpolation filter

Note: the active pel area should be obtained from the significant pel area by padding a black level around
the border of the significant pel arca.
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3.4.3 Conversion of SIF Odd and SIF Even to CCIR 601

SIF Odd and SIF Even are interpolated using interpolation filters of Table 3.5 and interlaced CCIR 601 is
created by merging of fields by alternating between lines of upsampled odd and even fields.

360 240 720
/288 240 7920
Horizontal /288
Interpolation
SIFOdd Filter 480
Y 1576
/288 240 | Merge
Horizontal /288
Interpolation ] CCIR 601
SIF Even Tilter
180 120 180 940 860
/144 /288 240 360
Vertical Horizontal /288 ‘
F Interpolation Interpolation
SIF - Flter Filter
0dd CrCh 480
120 180 540 360 Field | /6
180 144 7288 240 | Merge
Vertical Horizontal /288
Interpolation Interpolation CCIR 601
SIF Filter Filter
Even

Figure 3.8: Conversion of SIF Odd and Even to CCIR 601
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3.4.4 Conversion of HHR to CCIR 601

HHR is split into SIF Odd and SIF Even, each of which are interpolated using interpolation filter of Table
3.5 and interlaced CCIR 601 is created by merging of fields consisting of alternating between lines of
upsampled odd and even fields.

360 240 720
360 1288 240 720
Horizontal /288
480 Interpolation
Filt
/676, SIF O0dd ilter Y 50
Field 360 949 720 Fleld /576
Split /288 240 | Merge
Horizontal /283
HHR Interpolation CCIR 601
525/625 SIF Even Filter
120 240 360
180 1144 ] 288 240 260
D Vertical Horizontal ﬂ
180 949 Interpolation Interpolation
288 Filter Filter 50
Field 120 240 360 Pela | & |76
Split 180 1144 [ 288 240 | Merge
£26/625 Vertical Horizontal /283
Interpolation Interpolation CCIR 601
Filter Filter

Figure 3.9: Conversion of HHR to CCIR 601
3.4.5 Conversion of SIF interlaced to CCIR 601

SIF interlaced format is interpolated to CCIR 601 by following the sequence of operations shown in Fig.
3.9. The horizontal filter used for interpolation is that of Table 3.5. The filter used for vertical
interpolation of odd fields is also that of Table 3.5; for vertical interpolation of even fields a new filter is
specified below.

360 120 720
/144 m 720
Horizontal —_—
360 240 | & Vertical
/288 Interpolation
— Filters ¥ 4_80
Field 360 190 720 Field 1576
SIF 1 Split 1144 240 | Merge
Horizontal /283
& Vertical CCIR 601
Interpolation 525/625
Filters
60 180 120 180 940 360
180 /144 /288 240
172 1988 360
— Vertical Horizontal
180 240 |_ Interpolation Interpolation
Filter i
/288 Y Filter cech 480
Field 6o 180 120 180 240 360 Field | "~ | /576
SIF 1 Selit 180 19 /144 /288 240 | Merge
D — Vertical Horizontal /288
Interpolation Interpolation CCIR 601
Filter Filter 525/625
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Figure 3.10: Conversion of SIF interlaced (SIF-I) to CCIR 601

Horizontal Filter: Table 3.5
Vertical Filter:
Odd field: Table 3.5
Even field: -4, 40, 220, 220, 40, -4

Note: The upsampled CCIR 601 pictures seem devoid of jerkiness but appear quite blurry. Better choice
of interpolation filters needs further investigation.
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4 LAYERED STRUCTURE OF VIDEQ DATA

4.1 Sequence

A sequence consists of one or more concatenated Groups of Pictures.

4.2 Group of pictures

A Group of Pictures consists of one or more consecutive pictures. The order in which pictures are
displayed differs from the order in which the coded versions appear in the bitstream. In the bitstream, the
first frame in a Group of Pictures is always an intra picture. In display order, the last picture in a Group of
Pictures is always an intra or predicted picture, and the first is either an intra picture or the first bi-
directional picture of the consecutive series of bi-directional pictures which immediately precedes the
first intra picture.

It should be noted that the first Group of pictures will start with an Intra Picture, and as consequence this
Group of pictures will have less Bi-directional pictures then the other Groups of pictures.

A sequence can contain at the same time Field-Pictures and Frame-Pictures. However, in most
experiments, the Field/Frame nature of the Pictures is predefined according to the picture-coding-type,
and according to the hardware complexity that would be required to decode such sequences.

As guideline, the following levels are proposed for experiments (cf document 334):

Level 5 : (Equivalent to the Frame-Sequence of TM-1)
All pictures are transmitted as Frame-picture

Level 4 :.
I- and P-pictures are transmitted as Frame-picture.
B-Pictures are transmitted as Field-pictures only.

Level 4 (alternate) :.
P-Pictures are transmitted as Frame-picture.
I-Pictures are Field-pictures, field 2 being a P-field.
B-Pictures must be transmitted as Field-picture only.

Level 3 :
Each I-, P- and B-Picture is transmitted in Field-picture only.
B-Field are predicted using only 3 reference fields

Level 2 : (Equivalent to the Ficld-Sequence of TM-1 with 2 reference fields)
Each I-, P- and B-Picture is transmitted in Field-picture only.
B-Field are predicted using only 2 reference fields

Level 1 : (for low delay experiments)
Each Picture is transmitted in Field-picture.
No B-Picture is allowed.
P-Fields are predicted using 2 refcrence fields

Level 0 : (cheapest hardware)
Each Picture is transmitted in Field-picture.
No B-Picture is allowed.
P-Fields are predicted using only 1 reference ficld

Field | can be used as prediction for field 2 except in the case of B-Fields.

The number of fields that can be used for prediction is flexible when Field-Picture are used. For forward
prediction, the minimum number of reference fields is 1, and the maximum is 2.
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Reference fields for forward prediction are the latest two fields NOT part of a B-picture. This means in
particular that when a Field-structure P-Picture is decoded, field 2 will use field 1 as one reference.
As a side effect, unless M=1, FAMC cannot be used to predict the field 2 of a Field-structure P-Picture.

4.3 Picture

Each Picture can be Frame-Structure or Field-Structure this is applicable to interlaced and progressive
material. Frame structure, frame prediction may be used for progressive material. However it does not
prohibit to use frame field adaptive or field structure.

4.3.1 Field-Structure Picture

The terms Field-Picture and Frame-Picture is used instead of Field-Structure Picture. and Frame-
Structure Picture.

A Field-Picture is formed of two fields transmitted in a successive order. The transmission order of the
fields is fixed and same as display order (FIELDI first, FIELD2 second) in case of the simplified syntax.

In the syntax for the core experiments the transmission order of the fields is flexible in case of Field-
Structure P- or I-Pictures, but not flexible in case of Field-Structure B-Pictures (field 1 followed by field
2),

In Field-Structure P- and B-Pictures, both fields must be P- or B-. The fields of those Field-Pictures are
called P-Field and B-Field..

However, when an Intra Field-Picture, It is possible (but not required) to use Predictive-coding-type to
transmit the second field.

A Picture Header is transmitted before each field of the Field-Picture. Therefore, if a transmission error
causes the decoder to desynchronize while decoding field 1 of a Field-Structure B-Picture, a resync can
be done at the Picture Header of field 2, and field 2 can be decoded correctly.

' In case of Field-Pictures, Field 1 can be used as prediction for field 2 except in the case of B-Fields.
For all P-Field-Pictures the two last coded P-Field-Pictures are used as prediction.
4.3.2. Frame Pictures
Pictures can be intra, predicted, or interpolated pictures (known as I-pictures, P-pictures, and B-pictures -
see section 6.1). The arrangement of pictures, in display order, in a Group of Pictures of this TM for the

frame-picture coding mode is shown in Figure 4.1. In the figure frames -1 to 13 are part of a Group of
Picture.
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Predicted Intrs Predicted Predicted Intra
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Figure 4.1 Structure of a Group of Pictures in Frame Picture Coding mode in display order

4.4 Macro block Slice

A frame is devided into a number of contiguous macroblock slices, for this TM a fixed structure is used
and given in figure 4.2.

R R T p—— +
e i +
L e +
L e +
i +
R +
R e +
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e +
e +
R R R +
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+36- o m oo +
i +

Figure 4.2 Arrangement of Slices in a Picture in Frame Coding mode

For the purposes of simulation, each frame consists of 30 or 36 Macro block Slices (MBS, see section
4.4). 4:2:0-525 has 30 MBSs and 4:2:0-625 has 36. These MBSs cover the significant pel area. The
arrangement of these MBSs in a frame is shown in figure 4.2.

A Macroblock Slice consists of a variable number of macroblocks. A Macroblock Slice can start at any

MB and finish at any other MB in the same frame. In this Test Model, a Macroblock Slice consists of a
single row of 44 Macroblocks, beginning at the left edge of the picture, and ending at the right edge.

Figure 4.3: Test model Macroblock Slice Structure
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When scalable extensions are used (Annex D), the Slice layer may contain Macroblocks of resolution
lower than 16x16.

4.4.1 Slave Slice (Frequency scalable extension)

Slave slices are layers of Slave macroblocks which are spatially co-located with the Macroblocks in
the Slice layer.

4.4.2 Slices in a PictureCompatibility Experiment G.2(i)

Odd Field Slice Multiplexing

SIF Odd
CCIR 601 Odd

SIF Odd
CCIR 601 Odd

Even Field Slice Multiplexing

SIF Even
CCIR 601 Even

SIF Even
CCIR 601 Even

4.4.3 Slices in a PictureCompatibility Experiment G.2(ii)

Odd Field Slice Multiplexing

SIF Odd
CCIR 601 Odd

SIF Odd
CCIR 601 Odd

Even Field Slice Multiplexing
CCIR 601 Even
CCIR 601 Even

4.4.4 Slices in a PictureCompatibility Experiment G.3

Frame Slice Multiplexing

HHR Frame
CCIR 601 Frame

HHR Frame
CCIR 601 Frame
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| 4.4.5 Slice in a PictureCompatibility Experiment G.4

| Frame Slice Multiplexing

SIF Odd

SIF Odd

SIF Even

CCIR 601 Frame
CCIR 601 Frame
SIF Odd

SIF Even

CCIR 601 Frame
CCIR 601 Frame

SIF Odd

SIF Even

CCIR 601 Frame
CCIR 601 Frame
SIF Even

CCIR 601 Frame
CCIR 601 Frame

4.5 Macroblock

A 4:2:0 Macroblock consists of 6 blocks. This structure holds 4 Y, 1 Cb and 1 Cr Blocks and is depicted
in figure 4.4a.

+---t---+
11 2| +---+ 4---+
R it I 5 | [ 6 |
I 31 4 | t---+ 4---+
to-t---1+

Y Cb Cr

Figure 4.4a: General 4:2:0 Macroblock structure

‘When the picture format is 4:2:2, a Macroblock consists of 8 blocks.

L e et T B
11210 151 | 6]
e T e S
3141 |71 | 8]
R e A SR S T

Y Cb Cr
Figure 4.4b: 4:2:2 Macroblock structure

| When the picture format is 4:4:4, a Macroblock consists of 12 blocks.

e R et I R N A LT

X121 15191 | 6110 |

e L I e e T ST gy

3441 (7111 ] | 8 |12 |

S et T L ST s
Y Ch Cr

25




19-Oct-92  Proposal for Test Model 2, Draft Revision 2

Figure 4.4c: 4:4:4 Macroblock structure

The internal organisation within the Macroblock is different for Frame and Field DCT coding, and is
depicted for the luminance blocks in figure 4.5 and 4.6. The chrominance block is in frame order for
both DCT coding macroblock types.
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Figure 4.5 : Luminance Macroblock Structure in Frame DCT Coding
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Figure 4.6 : Luminance Macroblock Structure in Field DCT Coding

When scalable extensions are used (Annex D), Macroblocks may contain scaled_blocks of resolution
lower than 8x8.

4.5.1 Slave_macroblock (Frequency scalable extension)

Slave_macroblocks are layers of slave_blocks which are spatially co-located with the scaled_blocks
in the Macroblock layer.
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4.6 Block

A Block consists of an array of 8x8 coefficients. Figure 4.7 shows coefficients in the block in zigzag
scanned order.

e R et et et T
| 1] 2| 6| 7|15]|16]28]29]
i e e e e it
| 31 51 8114117127130[43]| |
R e e et et Skt S
| 4] 9]113]18[26(31[42]44| |
R e R et T 4
|10112]19]25(32]41|45|54/|

Femm - > increasing cycles per
picture width

i e el Sl LRl Rt Rl Bt & increasing cycles per
[11]20]124]33]40(46]53|55] picture height

i e il Ll Db Rl R
121]23]34]39|47]52]|56]|61]|

Rl e e e e el DL S
122[35(38(48|51]57]60]62]

Ll e ek L A e S
[36[37]49]|50(|58[59]63|64 |

Rl e b s EE D el S

Figure 4.7: Block structure

4.6.1 Scaled_block (Frequency scalable extension)

When freqﬁency scalable extensions are used (Annex D), a scaled_block is used instead of a block. A
scaled_block may consist of an array of N x N coefficients, where N is 1, 2, 4, or 8".

4.6.2 Slave_block (Frequency scalable extension)
. Slave_blocks are arrays of coefficients, which are used to enhance the spatial or amplitude resolution

of the coefficients in the corresponding Scaled_block layer. Figure 4.8 shows the Scaled_block
and Slave_block structures that are possible in a frequency scalable bitstream.

Block 1 Block 2 Block_4 Block_8
+--+ +--+--+ e e e R LD Bl bt s L TR e s 3
I 1] b1l 2] [ 11 21 6] 7] | 11 2] 6] 7115]116]|28]29]|
+--+ t--t+--+ b s R s I et DR R B e EE SR
| 3] 4| | 31 5| 8]13] [ 31 S| 8114[17]127130(43]
R LRl S R I SRS Rt St Sl Rl EEL BT R
I 41 9112]14] | 41 9113]|18]26|31142]44|
L e e et I e e e e e R e
[10]11]15]16| [10]12]19(25(32]41|45]|54|

Y i SE S

et R e e &
[11]20]24133|40]46|53|55]
R R e s e i 2
121123134 ]39)47(52|56|61]
e e it et &
1221353814851 |57|60|62|
i e e et Tt &
136[37149]50]58|59(|63[64|
R et el S I S S

Figure 4.8: Block structures for scalable bitstreams
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5 MOTION ESTIMATION AND COMPENSATION

To exploit temporal redundancy, motion estimation and compensation are used for prediction.
Prediction is called forward if reference is made to a frame in the past (in display order) and called
backward if reference is made to a frame in the future. It is called interpolative if reference is made to

both future and past.

For this TM the search range should be appropriate for each sequence, and therefore a vector search
range per sequence is listed below:

Table Tennis:  £15 pels/frame + 7 pels horizontal, + 3 pels vertical/field
Flower Garden 115 pels/frame + 7 pels horizontal, + 3 pels vertical/field
Calendar +15 pels/frame + 7 pels horizontal, + 3 pels vertical/field
Popple *15 pels/frame + 7 pels horizontal, + 3 pels vertical/field
Football 131 pels/frame 115 pels horizontal, £ 7 pels vertical/field
PRL CAR 163 pels/frame *31 pels horizontal, +15 pels vertical/field

A positive value of the horizontal or vertical component of the motion vector signifies that the prediction
is formed from pixels in the referenced frame, which are spatially to the right or below the pixels being
predicted.

5.1 Motion Vector Estimation

For the P and B-frames, two types of motion vectors, Frame Motion Vectors and Field Motion Vectors,
will be estimated for each macroblock. In the case of Frame Motion Vectors, one motion vector will be
generated in each direction per macroblock, which corresponds to a 16x16 pels luminance area. For the
case of Field Motion Vectors, two motion vectors per macroblock will be generated for each direction,

one for each of the fields. Each vector corresponds to a 16x8 pels luminance area.

The algorithm uses two steps. First a full search algorithm is applied on original pictures with full pel
accuracy. Second a half pel refinement is used, using the local decoded picture.
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5.1.1 Full Search

A simplified Frame and Field Motion Estimation routine is listed below. In this routine the following
relation is used:

(AE of Frame) = (AE of FIELD1) + (AE of FIELD2)
where AE represents a sum of absolute errors.

With this routine three vectors are calculated, MV_FIELD], MV_FIELD2 and MV_FRAME.,

Min FIELD1 = MAXINT;

Min_FIELDZ = MAXINT;
for (y = -YRange; y < YRange; y++) {
for (x = -XRange; x < XRange; x++) {

AE FIELD1 = AE Macroblock(prediction mb(x,y),
lines of FIELD1 of current mb);
AE FIELD2 = AE Macroblock(prediction mb(x,y),
lines_of FIELD2 of current mb);
AE FRAME = AE FIELD1 + AE FIELD2;
if (AE_FIELD1 < Min FIELDI) {
MV_FIELDl = (X,y); ‘
Min FIELD1 = AE FIELD1;
)
if (AE FIELD2 < Min FIELD2) {
MV _FIELD2 = (X,Vy):
Min FIELD2 = AE FIELD2;
}
if (AE FRAME < Min FRAME) {
MV_FRAME = (X,Y);
Min_FRAME = AE FRAME;

}

The search is constrained to take place within the boundaries of the significant pel area. Motion vectors
which refer to pixels outside the significant pel area are excluded.

+5.1.2 Half pel search

The half pel refinement uses the eight neighbouring half-pel positions in the referenced corresponding
local decoded field or frame which are evaluated in the following order:

AN K-
NowN
0 L W

where O represents the previously evaluated integer-pel position. The value of the spatially interpolated
pels are calculated as follows:

Sx+0.5,y ) = (SEY)+S(x+1,y)¥/2,
S(x ,y+0.5) = (S(x.y)+S(x,y+1))72,
S(x+0.5,y+0.5) = (SCLYH+S(x+1,y)+ S0, y+1)+S(x+1 y+1)i4.

where x, y are the integer-pel horizontal and vertical coordinates, and S is the pel value. If two or more
positions have the same total absolute difference, the first is used for motion estimation.
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NOTE: In field searches, the refence system is the correspondig field. In a field the line distance is
1.

5.2 Motion Compensation

Motion compensation is performed differently for field coding and for frame coding. General formulas
for frame and field coding are listed below.

Forward motion compensation is performed as follows:
S(x, y) =S1(x + FMVx(x,y), y + FMVy(x, y))
Backward motion compensation is performed as follows:
S(x, ¥) =SM+1(x + BMVx(xy), y + BMVy(x.y))
Temporal interpolation is performed by averaging.

Sx.y) =( S1(x + FMVx(x,y) .y +FMVy(x,y)) +
SM1(x + BMVx(x,y), y + BMVy(x,y))//2

where FMYV is the forward motion compensated macroblock, thus making reference to a 'previous
picture', and BMV is the backward motion compensated macroblock, making reference to a 'future
picture'.

A displacement vector for the chrominance is derived by halving the component values of the
corresponding MB vector, using the formula from CD 11172, section ......:

right_for = (recon_right_for/ 2) >> 1;

down_for = (recon_down_for/ 2) >> 1;

right_half for = recon_right_for/2 - 2*right_for;

down_half_for = recon_down_for/2 - 2*¥down_for;
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5.2.1 Frame Motion Compensation

In frame prediction macroblocks there is one vector per macroblock. Vectors measure displacements on
a frame sampling grid. Therefore an odd-valued vertical displacement causes a prediction from the fields
of opposite parity. Vertical half pixel values are interpolated between samples from fields of opposite
parity. Chrominance vectors are obtained directly by using the formulae above. The vertical motion
compensation is illustrated in figure 5.1.

Reference Frame
Vertical_MV = 0 @ I
ps0) |
| oMV =1
Sl

Figure 5.1: Frame Motion Conipensation
5.2.2 Field Motion Compensation

Field-based MV is expressed in the very same way as frame-based vectors would be if the source
(reference) field and the destination field were considered as "frames" (see Figure).

Considering that in each field, lines are numbers 1.0, 2.0, 3.0, ... (1 is the top line of the field), if the pel
located at line “n" of the destination field is predicted from line "m" of the reference field, the vertical

coordinate of the field vector is "n-m".

Note: "m" and "n" are expressed in units of one vertical half-pel in the field.

When necessary, motion_vertical_field_select (one bit) will be transmitted to identify the selected field.
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5.2.2.1. Chrominance Field-based MV

In 4:2:0 sequences :

¢ The vertical coordinate of the chrominance Field-based MV is derived by dividing by 2 the vertical
coordinate of the luminance Field-based MV, as done in MPEG-1.

¢ The horizontal coordinate of the chrominance MV (Field-based or Frame-based) is derived by
dividing by 2 the horizontal coordinate of the luminance MV, as done in MPEG-1.

In 4:2:2 sequences :
o The vertical coordinate of the Field-based MV for chrominance is equal to the vertical coordinate of
the luminanceField-based MV.
- o The horizontal coordinate of the chrominance MV (Field-based or Frame-based) is derived by
dividing by 2 the horizontal coordinate of the luminance MV, as done in MPEG-1.

In 4:4:4 sequences :
o The horizontal (resp. vertical) coordinate of MV for chrominance is equal to the horizontal (resp.
vertical) coordinate of the luminance MV.

We use "field_motion _type" in the macroblock layer to specify 16x8 motion compensation block. If
"field_motion_type" is ""10", 18x8 motion compensation is used instead of SFAMC.

"field_motion_type"
code predictiontype motion_vector_count mv_format
10 16x8 2 field

"sub_MB_type" should be added just after "backward_reference_ficld".
This is 1 bit flag, wimsbf.

sub_MB_type=="0" indicates the condition written in Core Exp. L9 3(1).
sub_MB_type=="1" indicates the condition written in Core Exp. L9 3(2).
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6 MODES AND MODE SELECTION

In section 6.1, a coding structure with different picture modes is introduced. Within each picture,
macroblocks may be coded in several ways, thus aiming at high coding efficiency. The MB modes for
intra, predicted and interpolated pictures are shown in 6.2 to 6.4.

6.1 Picture types

Pictures are coded in several modes as a trade-off between coding efficiency and random accessibility.
There are basically three picture coding modes, or picture types:

- I-pictures: intra coded pictures.

- P-pictures: forward motion-compensated prediction pictures.

- B-pictures: motion compensated interpolation pictures.

Although, in principle, freedom could be allowed for choosing one of these methods for a certain picture,
for the Test model a fixed, periodic structure is used depending on the respective picture.

Every N-th picture of a sequence starting with the first picture is coded as intra picture i.e. pictures 1,
N+1, etc. (see Fig. 5.1). Following every M-th picture in between (within a Group of Pictures) is a
predicted picture coded relative to the previous predicted or intra picture. The interpolated pictures are
coded with reference to the two closest previous and next predicted or intra pictures. In this TM, M=3
and N=15 for 29.97 Hz and M=3 and N=12 for 25 Hz.

The following parameters are currently to be used for most of the core- experiments:

Picture rate 25 Hz 29.97 Hz
N 12 15
M 3 3

Coding modes available for predicted and interpolated pictures are described in detail in the following
paragraphs.

| 6.2 Macroblock types in an intra picture

In an [-picture the following macroblock types are provided:
- Intra

- Intra with modified quantizer

See alsotable B.2a

Independent of the macroblock type a compatible prediction and field/frame DCT coding indications are
given in the bitstream, see also chapter 9, the macroblock layer section.

The macroblock type selection is done in the following order:
- Compatible prediction

- Field/frame DCT coding

- Modified quantizer

33




19-Oct-92  Proposal for Test Model 2, Draft Revision 2

6.3 Macroblock types in a predicted picture

In predicted pictures the following macroblocks types can be distinguished:
- Motion compensation coded
- No motion compensation coded .
- Motion compensation not coded
- Intra
- Moation compensation coded with modified quantizer
- No Motion compensation coded with modified quantizer
Intra with modified quantizer
See also table B.2b

Independent of the macroblock type a compatible prediciion, field/frame DCT coding and field/frame
motion vector prediction indications are given in the bitstream, see also chapter 9, the macroblock layer
section.

Macroblock type selection is done in the following order:
- MC/no MC - Field/Frame prediction

- Intra/Inter

- Compatible prediction

- Modified quantizer

- Field/frame DCT coding

- Coded/not Coded

NOTE: If two previous fields are allowed as reference fields, the noMC mode does not specify which of
the reference fields is to be used for the prediction. Thus, the noMc mode shall refer to the reference field
of the same parity as the target field. In the case a (0,0) MV is to be used with the reference field of the
opposite parity, the noMC mode cannot be used. The (0, 0) MYV must be explicitly transmitted (after the
appropriate selection bit).

6.4 Macroblock types in an interpolated picture

_In interpolated pictures the following macroblock types are provided:
- Interpolate, not Coded
- Interpolate, Coded
- Backwards, not Coded
- Backwards, Coded
- Forwards, not Coded
- Forwards, Coded
- Intra
- Interpolate with modified quantizer
- Backwards with modified quantizer
- Forwards with modified quantizer
- Intra with modified quantizer

Independent of the macroblock type a compatible prediction, field/frame DCT coding and field/frame
motion vector prediction indications are given in the bitstream, see also chapter 9, the macroblock layer
section.

Macroblock type selection is done in the following order:

- Interpolative/Forwards/Backwards - Frame/Field prediction
- Intra/Inter

- Compatible prediction
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- Modified quantizer
Field/frame DCT coding
- Coded/not Coded

6.5 Selection criteria

The following rules apply to interlace and compatible bitstreams. A subset of them apply to scalable
bitstreams as well. For details refer to Annex D.

6.5.1 Motion Compensation/No Motion Compensation - Frame/Field

For P-pictures, the decision of selecting the Frame Motion Vector or the Field Motion Vector is by SE
comparison of each error signal: If (SE of Frame) <= (SE of FIELD1 + SE of FIELD?2) then the Frame
Motion Vector is chosen.

The decision of MC/no MC will be SE based. If (SE of MC) < (SE of No MC) then MC mode.
6.5.2 Forward/Backward/Interpolative - Field/Frame prediction

Each B-picture Macroblock has possible Forward/Backward/Interpolated modes, and each mode has
further Frame/Field prediction mode, so there totally 6 possible modes. All SE of the error signals of
each mode will be calculated, and the mode with the least SE is chosen. In the case of two modes having
the same SE, the mode with Frame prediction only will have higher priority, and also forward prediction
will have higher priority than backward with interpolated mode the least priority.

6.5.3 Compatible prediction

When the experiment is.not intended for compatible coding, this mode is not selected. When the
experiment is intended for compatible coding the following criterion is used.

See appendix G.

-6.5.4 Intra/inter coding

The implementation of the intra/non-intra decision is based on the comparison of VAR and VAROR as
computed in the following algorithm:

for(i=1;i<=16; i++) {
for j=1;])<=16; j++) {
OR =O(,j)
Dif = OR - S(i,j);
VAR = VAR + Dif*Dif;
VAROR=VAROR + OR*OR;
MWOR =MWOR + OR;
) ,
)
VAR = VAR/256;
VAROR=VAROR/256 - MWOR/256*MWOR/256;

Where: O(i,j) denotes the pixels in the original macroblock. S(i,j) denotes the pixels of the reconstructed
macroblock, in the picture referred to by the motion vector. Full arithmetic precision is used. The
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characteristics of the decision are described in Fig. 6.1. (Non-intra decision includes the solid line in Fig.

6.1.)
256
192
128
64
VAR
Figure 6.1: Characteristic Intra/Inter
6.5.5 Modified Quantizer

In chapter 10 "Rate control and quantization control" the algorithm for the calculation of the quantizer is
given. If the quantizer given by this algorithm is not equal to the previous quantizer the modified
quantizer indication is used.

6.5.6 Field/Frame DCT coding decisions

| Frame based DCT coding rather than field based DCT coding is used if the following equation holds:
if (var_1 <= var_2 + offset)
Frame based DCT coding

else

Field based DCT coding

offset = 4096 for intra MB
offset = O for inter MB
Where var_1 and Var_2 are calculated with the following lines:

var_1 =

var_2 =

for (Pix
for

)

for

)
]

0;
0;
(Line
Sum =
var_1

(Line
Sum_1
Sum_2
var_2

Pix < 16; Pix++) {

= 0; Line < 16; Line += 2) {
O(Pix, Line) - O(Pix, Linet+l);
+= (sum * sum);

= 0; Line < 16; Line += 4) {
= O(Pix, Line) - O(Pix, Line+2);
= O(Pix, Line+l) - O(Pix, Line+3);
= (sum_1 * sum 1) + (sum 2 * sum 2)

where O(Pix, Line) denotes a pel of the 16 x 16 macroblock to be transformed.
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6.5.7 Coded/Not Coded

The choice of coded or not coded is a result of quantization. When all coefficients are zero then a block
is not coded. A Macroblock is not coded if no block in it is coded, else it is coded.
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7 TRANSFORMATION AND QUANTIZATION

While mode selection and local motion compensation are based on the macroblock structure, the
transformation and quantization is based on 8*8 blocks.

Blocks are transformed with a 2-dimensional DCT as explained in Appendix A. Each block of 8*8 pixels

thus results in a block of 8*#8 transform coefficients. The DCT coefficients are quantized as described in
sections 7.1 and 7.2.

7.1 Quantization of Intra Macroblocks
Intra frame DCT coefficients are quantized with a uniform quantizer without a dead-zone.
7.1.1 DC Coefficients

The quantizer step-size for the DC coefficient of the luminance and chrominance components is always
8. Thus, the quantized DC value, QDC, is calculated as:

QDC=dc//8

where "dc" is the 11-bit unquantized mean value of a block.

7.1.2 AC Coefficients

AC coefficients ac(i,j) are first quantised by individual quantisation factors,
ac~(i,j) = (16 * ac(i,j) //wi(i,j)

where q(i,j) is the (i,j)th element of the Intra quantizer matrix given in figure 7.1. ac~(i,j) is limited to
the range [-2048, 2047].

8 16 19 22 26 27 29 34
16 16 22 24 27 29 34 37
19 22 26 27 29 34 34 38
22 22 26 27 29 34 37 40
22 26 27 29 32 35 40 48
26 27 29 32 35 40 48 58
26 27 29 34 38 46 56 69
27 29 35 38 46 56 69 83

Figure 7.1 - Intra quantizer matrix

The step-size for quantizing the scaled DCT coefficients, ac~(i,j), is derived from the quantization
parameter, mquant (also called quantiser_scale see section 9). Mquant is calculated for each macroblock
by the algorithm defined in Section 10 and is stored in the bitstream in the slice header and, optionally, in
any macroblock (see Section 9 for the syntax of the bit-stream and Section 10 for the calculation of
mquant in the encoder).
The quantized level QAC(i,j) is given by:

QAC(i,)) = [ac~(i,}) + sign(ac~(1,j)))*((p * mquant) // q)] / (2*mquant)

and QAC(,)j) is limited to the range [-255..255].
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For this TM p=3, and q = 4.

7.2 Quantization Non Intra Macroblocks

Non-intra macroblocks in Predicted and Interpolated pictures are quantized with a uniform quantizer that
has a dead-zone about zero. A non-intra quantizer matrix, given in figure 7.2, is used.

16 17 18 19 20 21 22 23
17 18 19 20 21 22 23 24
18 19 20 21 22 23 24 25
19 20 21 22 23 24 26 27
20 21 22 23 25 26 27 28
21 22 23 24 26 27 28 30
22 23 24 26 27 28 30 31
23 24 25 27 28 30 31 33

Figure 7.2 - Non-intra quantizer matrix

The step-size for quantizing both the scaled DC and AC coefficients is derived from the quantization
parameter, mquant. Mquant is calculated for each macroblock by the algorithm defined in Section 10.
The following formulae describe the quantization process. Note that INTRA type macroblocks in
predicted and interpolated pictures are quantized in exactly the same manner as macroblocks in Intra-
pictures (section 7.1) and not as described in this section.

ac~(i,j) = (16 * ac(i,j)) // wn(i,j)

where:
q(i,j) is the non-intra quantizer matrix given in figure 7.2

QACG,) =ac~(,j) /(2*mquant) IF mquant == odd
= (ac~(i,j)+1)/ (2*mquant) IF mquant == even AND ac~(i,j)<0
= (ac~(i,j)-1) / (2*mquant) IF mquant == even AND ac~(i,j)>0

QAC (i,j) is limited to the range [-255..255].
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7.3 Dequantization

7.3.1 Intra-coded macroblocks

This section applies to all macroblocks in Intra-Frames and Intra macroblocks in Predicted and
Interpolated Frames. Reconstruction levels, rec(i,j), are derived from the following formulae.

Where:

rec(i,j) = mquant * 2 * QAC(,j) * wi(ij)/ 16

if (rec (i,j) is an EVEN number && rec(i,j) > 0)
© rec (i,j) =rec(i,j)-1-

if (rec (i,j) is an EVEN number && rec(i,j) < 0)
rec (1,j) = rec(i,j) + 1

if (QAC (i,j) == 0)
rec (i,j)=0

The DC term is special case
rec (1,1) =8 * QDC

mquant is the quantization parameter stored in the bitstream and calculated according to the
algorithm in section 10.

rec(i,j) is limited to the range [-2048..2047].

7.3.2 Non-Intra-coded macroblocks

This section applies to all non-Intra macroblocks in Predicted and Interpolated Pictures. Reconstruction
levels, rec(i,j), are derived from the following formulae.

if (QAC(,j)>0)
rec(i,j) = (2 * QAC(,j) + 1) * mquant * wN(i,j)/ 16

if (QAC(,)) < 0)
rec(i,j) = (2 * QAC(,j) - 1) * mquant * wN(i,j) / 16

if (rec (i,j) is an EVEN number && rec(i,) > 0)
rec (i,j) = rec(i,j) - 1

if (rec (1,j) is an EVEN number && rec(i,j) <0)
rec (i,j) = rec(i,j) + 1

if (QAC (i,j) ==0)
rec (i,j) =0

rec(i,)) is limited to the range {-2048..2047].
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8 CODING

This section describes the coding methods used to code the attributes and data in each macroblock. The
overall syntax of the video coding is described in the following section, section 9.

The spatial position of each macroblock is encoded by a variable length code, the macroblock address
(MBA). The use of macroblock addressing is described in section 8.1.

Macroblocks may take on one of a number of different modes. The modes available depend on the
picture type. Section 6 describes the procedures used by the encoder to decide on which mode to use.
The mode selected is identified in the bitstream by a variable length code known as MTYPE. The use of
MTYPE is described in section 8.2.

The coding of motion vectors is addressed in section 8.3.

Some blocks do not contain any DCT coefficient data. To transmit which blocks of a macroblock are
coded and which are non-coded, the coded block pattern (CBP) variable length code is used (see section
8.9).

The coefficients in a block are coded with VLC tables as described in section 8.5, 8.6, and 8.7.

For additional information about frequency and spatially scalable bitstreams, refer to Annex D, G and
L

8.1 Macroblock Addressing

Relative addressing is used to code the position of all macroblocks in all pictures. Macroblocks for
which no data is stored are run-length encoded using the MBA; these macroblocks are called skipped
macroblocks.

In Intra pictures there are no skipped macroblocks. In predicted pictures a macroblock is skipped if its
motion vector is zero, all the quantized DCT coefficients are zero, and it is not the first or last

- macroblock in the slice. In interpolated pictures, a macroblock is skipped if it has the same MTYPE as
the prior macroblock, its motion vectors are the same as the corresponding motion vectors in the prior
macroblock, all its quantized DCT coefficients are zero, and it is not the first or last macroblock in the
slice.

‘A macroblock address (MBA) is a variable length code word indicating the position of a macroblock
within a MB-Slice. The order of macroblocks is top-left to bottom-right in raster-scan order and is shown
in Figure 4.2. For the first non-skipped macroblock in a macroblock slice, MBA is the macroblock count
from the left side of the picture. For the Test Model this corresponds to the absolute address in figure
4.3. For subsequent macroblocks, MBA is the difference between the absolute addresses of the
macroblock and the last non-skipped macroblock. The code table for MBA is given in Table B.1.

The macro_block_escape is a fixed bit-string "0000 0001 000" which is used when the difference
macroblock_address_increment is greater then 33. It causes the value of macroblock_address_increment
to be 33 greater than the value that will be decoded by subsequenct macroblock_escapes and the
macroblock_address_increment codewords.

For example, if there are two macroblock_escape codewords preceding the

macroblock_address_increment, then 66 is added to the value indicated by
macroblock_address_increment.
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An extra code word is available in the table for bit stuffing immediately after a macroblock slice header
or a coded macroblock (MBA Stuffing). This code word should be discarded by decoders.

8.2 Macroblock Type

Each picture has one of the three modes:

1 Intra (-pictures)
2 Predicted (P-pictures)
3 Interpolated (B-pictures)

For these three picture types different VLC tables for the Macroblock types are used. See table B.2a for
Intra, table B.2b for predictive-coded pictures and table B.2¢ for bidirectionally predictive-coded
pictures.

Methods for mode decisions are described in section 6. In macroblocks that modify the quantizer control
parameter the MTYPE code word is followed by a 5-bit number giving the new value of the quantization
parameter, mquant, in the range [1..31].

8.2.1 Compatible Prediction Flag

$$$$ Update
A one or two-bit codeword, compatible_type, immediately follows the MBTYPE VLC, if the bitstream
is indicated as being compatible in the sequence header.

The definition of this codeword is in the definition of the Macroblock layer.

8.2.2 Field/Frame Coding Flag

A one-bit flag, interlaced_macroblock_type, immediately follows the MBTYPE VLC. If its value is 1
it indicates that the macroblock coefficient data is in field order as described in chapter 4. If its value is 0
it indicates that the macroblock coefficient data is in frame order.

'8.2.3 Field/Frame Motion Compensation Flag

A one-bit flag, interlaced_motion_type, immediately follows the interlaced_macroblock_type flag. If
its value is 1 it indicates that field-based motion prediction is used as described in section 5.2.2. If its
value is 0 it indicates that frame-based motion prediction is used as described in section 5.2.1. If field-
based prediction is used twice as many motion vectors are stored as are needed in the case of frame-based
prediction.

8.3 Motion Vectors

Motion vectors for predicted and interpolated pictures are coded differentially within a macroblock slice,
obeying the following rules:

- Every forward or backward motion vector is coded relative to the last vector of the same type.

Each component of the vector is coded independently, the horizontal component first and then the
vertical component.
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- The prediction motion vector is set to zero in the macroblocks at the start of a macroblock slice, or
if the last macroblock was coded in the intra mode. (Note: that in predictive pictures a No MC
decision corresponds to a reset to zero of the prediction motion vector.)

- In interpolative pictures, only vectors that are used for the selected prediction mode (MB type) are
coded. Only vectors that have been coded are used as prediction motion vectors.

The VLC used to encode the differential motion vector data depends upon the range of the vectors. The
maximum range that can be represented is determined by the forward_f_code and backward_f code
encoded in the picture header. (Note: in this Test Model the full_pel flag is never set - all vectors have
half-pel accuracy).

The differential motion vector component is calculated. Its range is compared with the values given in
table 8.1 and is reduced to fall in the correct range by the following algorithm:

if (diff_vector < -range)

diff_vector = diff_vector + 2*range;
else if (diff_vector > range-1)

diff_vector = diff_vector - 2*range;

forward_f code Range
or backward_f code

1 16

2 32

3 64

4 128

5 256

6 512

7 1024

Table 8.1 Range for motion vectors

. This value is scaled and coded in two parts by concatenating a VLC found from table B.4 and a fixed
length part according to the following algorithm:

Let f_code be either the forward_f_code or backward_f code as appropriate, and diff_vector be the
differential motion vector reduced to the correct range.

if (diff_vector == 0) {
residual = 0;
vlc_code_magnitude = 0;

}
else {
scale_factor = 1 << (f_code - 1);
residual = (abs(diff_vector) - 1) % scale_factor:;
vlc_code_magnitude = (abs (diff_vector) - residual) / scale_factor;
if (scale_factor '= 1)
vlc_code_magnitude += 1;
)

vic_code_magnitude and the sign of diff_vector are encoded according to table B.4. The residual is
encoded as a fixed length code using (f_code-1) bits.
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For example to encode the following string of vector components (measured in half pel units)
3 10 30 30-14-16 27 24
The range is such that an f value of 2 can be used. The initial prediction is zero, so the differential values are:
3720 0-44-243-3

The differential values are reduced to the range -32 to +31 by adding or subtracting the modulus 64 corresponding to
the forward_f_code of 2:

372 020 -2-21 -3

These values are then scaled and coded in two parts (the table gives the pair of values to be encoded (vlc,
residual)):

2.0 4o 10,1 0,0 10,1) 1, 1) (-11,0) (-2,0)

The order in a slice is in raster scan order, except for Macroblocks coded in Field prediction mode, where
the upper two luminance blocks vector is predicted from the preceding Macroblock and the two lower
luminance blocks vector is predicted from

In MBs that are field DCT coded, chrominance block structure is as follows :

0 When the picture format is 4:2:2 and 4:4:4, the chrominance blocks structure is analogous to that of the
luminance.

0 When the picture format is 4:2:0, the chrominance blocks is structure is equal to that used for frame
coded MBs. In other words, chrominance is always frame coded.

It was agreed that when frame-based prediction is used in non-
progressive pictures, the reference field for chrominance prediction may
not be the correct one.

There are four prediction motion vectors : PMV1, PMV2, PMV3 and PMV4. They are reset to zero at
. the start of a slice and at intra-coded MBs.

The prediction MVs (PMV1 to PMV4) are always expressed in Frame MV coordinates.

For the prediction of Field-based MVs (mv_type == "field"), the following rules are used:

. On the decoder side : ‘
When a Field-based MV is derived, the vertical coordinate of the PMYV is shifted right by 1 bit
(with sign extension) before adding the vertical differential.
Then the Field-based MV is stored in the appropriate PMV(s) after shifting left by 1 bit its
vertical coordinate.

. On the encoder side :
When a Field-based MV is encoded, the vertical coordinate of the PMYV is shifted right by 1 bit
(with sign extension) before it is subtracted from the field MV vertical coordinate.
Then the Field-based MV is stored in the appropriate PMV(s) after shifting left by 1 bit its
vertical coordinate.

1. mv_type == "frame" :
| In P-Pictures or P-Fields, PMV1 is used. PMV2, PMV3 and PMV4 are resct to PMV1

In B-Pictures or B-Fields, PMV1 is used for forward motion vector prediction, and PMV3 is used for
backward motion vector prediction. PMV2 is reset to PMV1, and PMV4 is reset to PMV3.

44



19-Oct-92  Proposal for Test Model 2, Draft Revision 2

2. mv_type == "field" :

In P-Frame-Pictures or P-Field-Pictures:

PMV1 is used for vectors used to predict FIELDI from FIELD1
PMV?2 is used for vectors used to predict FIELD1 from FIELD2
PMV3 is used for vectors used to predict FIELD2 from FIELDI
PMV4 is used for vectors used to predict FIELD2 from FIELD2

In B-Picture, PMV1 and PMV3 are used for forward motion vector prediction from field 1 and 2, and
PMV2 and PMV4 are used for backward motion vector prediction from fields 1 and 2.

8.4 Coded Block Pattern

There are three types for the coded block pattern, one for the 4:2:0, one the 4:2:2 coding modes and one
for 4:4:4,

8.4.1 4:2:.0

If MTYPE shows that the macroblock is not INTRA coded and all the coefficients of a block are zero
after quantization, the block is declared to be not coded. If all six blocks in a macroblock are not coded,
the macroblock is declared to be not coded. In all other cases the macroblock is declared to be coded.
If the MTYPE shows that the macroblock is INTRA all blocks are declared to be coded and the CBP
code word is not used.

A pattern number defines which blocks within the MB are coded;

Pattern number = 32*P] + 16*P9 + 8*P3 + 4%P4+ 2*P5 + Pg

where Py is 1 if any coefficient is present for block n, else 0. Block numbering is given in Figure 4.4.
The pattern number is coded using table B.3 Coded Block pattern

8.4.24:2:2
When the picture format is 4:2:2, the pattern number is coded with an 8 bit FLC.

-8.4.34:4:4
When the picture format is 4:4:4, use 12 bit FLC.

8.5 Intra picture Coefficient Coding
8.5.1 DC Prediction

After the DC coefficient of a block has been quantized to 8 bits according to section 7.1.1, it is coded loss
less by a DPCM technique. Coding of the luminance blocks within a macroblock follows the normal
scan of figure 4.4. Thus the DC value of block 4 becomes the DC predictor for block 1 of the following
macroblock. Three independent predictors are used, one each for Y, Cr and Cb.

At the left edge of a macroblock slice, the DC predictor is set to 128 (for the first block (luminance) and
the chrominance blocks). At the rest of a macroblock slice, the DC predictor is snmply the previously
coded DC value of the same type (Y, Cr, or Cb).

At the decoder the original quantized DC values are exactly recovered by following the inverse
procedure.
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The differential DC values thus generated are categorised according to their "size" as shown in the table
below.

DIFFERENTIAL DC SIZE
(absolute value)

0 0
1 1
2t03 2
4t07 3
8tols 4
16 t0 31 5
32t0 63 6
64t0 127 7
128 t0 255 8

Table 8.2 Differential DC size and VLC
The size value is VLC coded according to table B.5a (luminance) and B.5b (chrominance).
For each category enough additional bits are appended to the SIZE code to uniquely identify which

difference in that category actually occurred (table 8.3). The additional bits thus define the signed
amplitude of the difference data. The number of additional bits (sign included) is equal to the SIZE

value.

DIFFERENTIAL DC | SIZE | ADDITIONAL CODE
-255t0-128 8 00000000 to 01111111
-127t0-64 7 0000000to 0111111
-63t0-32 6 000000to 011111
-31to-16 5 00000 to 01111
-15t0-8 4 0000to 0111
-7t0-4 3 000to 011

310-2 2 00to01

-1 1 0

0 0

1 1 1

2to3 2 10to 11

4t07 3 100to 111

8to 15 4 1000 to 1111

16 to 31 5 10000 to 11111
32t063 6 100000to 111111
6410127 7 1000000to 1111111
128 to 255 8 10000000 to 11111111

Table 8.3. Differential DC additional codes

8.5.2 AC Coefficients

AC coefficients are coded as described in section 8.7.
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| 8.6 Non-Intrapicture Coefficient Coding
8.6.1 Intra blocks

Intra blocks in non-intra pictures are coded as in intra pictures. At the start of the macroblock, the DC
predictors for luminance and chrominance are reset to 128, unless the prévious block was also intra; in
this case, the predictors are obtained from the previous block as in intra pictures (section 8.5. 1).

- AC coefficients are coded as described in section 8.7.Transform coefficient data is always present for all
6 blocks in a macroblock when MTYPE indicates INTRA.

8.6.2 Non intra blocks

In other cases MTYPE and CBP signal which blocks have coefficient data transmitted for them. The
quantized transform coefficients are sequentially transmitted according to the zig-zag sequence given in
Figure 4.5.

8.6.3 Frequency scalable blocks

| Coding of intra and non intra blocks in a frequency scalable bitstream is described in Annex D.

8.7 Coding of Transform Coefficients

The combinations of zero-run and the following value are encoded with variable length codes as listed in
table B.5¢ to B.5f. End of Block (EOB) is in this set. Because CBP indicates those blocks with no
coefficient data, EOB cannot occur as the first coefficient. Hence EOB does not appear in the VLC table
for the first coefficient. Note that EOB is stored for all coded blocks.

The last bit 's' denotes the sign of the level, '0' for positive '1' for negative.

The most commonly occurring combinations of successive zeros (RUN) and the following value
(LEVEL) are encoded with variable length codes. Other combinations of (RUN, LEVEL) are encoded

“with a 20-bit or 28-bit word consisting of 6 bits ESCAPE, 6 bits RUN and 8 or 16 bits LEVEL. For the
variable length encoding there are two code tables, one being used for the first transmitted LEVEL in
INTER and INTER + MC blocks, the second for all other LEVELS except the first one in INTRA blocks,
which is encode as described in section 8.6.1. See table B.5g

DOCUMENT 408 PROPOSES MAXIMUM 24 BITS WORD FOR RUN/LEVEL ESCAPE AND
EXTENDED RANGE
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9 VIDEO MULTIPLEX CODER

In this section the video multiplex is explained. Unless specified otherwise the most significant bit
occurs first. This is Bit 1 and is the left most bit in the code tables in this document.

9.1 Method of Describing Bitstream Syntax

Each data item in the bitstream is in bold type. It is described by its name, its length in bits, and a
mnemonic for its type and order of transmission.

The action caused by a decoded data element in a bitstream depends on the value of that data element
and on data elements previously decoded. The following constructs are used to express the conditions
when data elements are present, and are in normal type:

while ( condition ) { If the condition is true, then the group of data elements occurs next
data_element in the data stream. This repeats until the condition is not true.
}

do {

data_element The data element always occurs at least once.
} while (condition )  The data element is repeated until the condition is not true.

if (condition) { If the condition is true, then the first group of data elements occurs
data_element next in the data stream.
}

else { If the condition is not true, then the second group of data elements
data_element occurs next in the data stream.
}

for ( i=0;i<n;i++) { The group of data elements occurs n times. Conditional constructs
data_element within the group of data elements may depend on the value of the
. loop control variable i, which is set to zero for the first occurrence,
} incremented to one for the second occurrence, and so forth,

As noted, the group of data elements may contain nested conditional constructs. For compactness, the {}
are omitted when only one data element follows.

data_element [n] data_element [n] is the n+1th element of an array of data.

data_element [m..n) is the inclusive range of bits between bit m and bit n in the data_element.
While the syntax is expressed in procedural terms, it should not be assumed that this section implements
a satisfactory decoding procedure. In particular, it defines a correct and error-free input bitstream.
Actual decoders must include a means to look for start codes in order to begin decoding correctly, and to

identify errors, erasures or insertions while decoding. The methods to identify these situations, and the
actions to be taken, are not standardised.
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Definition of bytealigned function

The function bytealigned () returns 1 if the current position is on a byte boundary, that is the next bit in
the bitstream is the first bit in a byte. '

Definition of nextbits function

The function nextbits () permits comparison of a bit string with the next bits to be decoded in the
bitstream.

Definition of next start_code function

The next_start_code function removes any zero bit and zero byte stuffing and locates the next start code.

next_start_code() {
while ( !bytealigned() )
zero_bit 1 "o"
while ( nextbits() !='0000 0000 0000 0000 0000 0001')
zero_byte 8 "00000000"
}

9.2 Mnemonics

The following mnemonics are defined to describe the different data types used in the coded bit-stream.

bslbf Bit string, left bit first, where "left" is the order in which bit strings are written in the
standard. Bit strings are written as a string of 1s and Os within single quote marks, e.g. '1000
0001". Blanks within a bit string are for ease of reading and have no significance.

uimsbf Unsigned integer, most significant bit first.

viclbf Variable length code, left bit first, where "left" refers to the order in which the VLC codes
' are written in Annex B,

The byte order of multi-byte words is most significant byte first.
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9.3 Specification of the Coded Video Bitstream Syntax
9.3.1 Start Codes

Start codes are reserved bit patterns that do not otherwise occur in the video stream. All start codes are byte aligned.

name hexadecimal value
picture_start_code 00000100
slice_start_codes (including slice_vertical _positions 00000101
through
000001 AF
reserved 000001B0
reserved 000001B1
user_data_start_code 000001B2
sequence_header_code 00000183
sequence_error_code 000001B4
extension_start_code 000001B5S
reserved 000001B6
sequence_end_code 000001B7
group_start_code 000001B8
system start codes (see note) 000001B9
through
000001 FF
NOTE - system start codes are defined in Part 1 CD 11172

The use of the start codes is defined in the following syntax description with the exception of the
sequence_error_code. The sequence_error_code has been allocated for use by the digital storage media interface to
indicate where uncorrectable errors have been detected.

9.3.1.1 Slice Start Codes - For Scalability and Compatibility

name hexadecimal value
picture_start_code 00000100
slice_start_codes (including slice_vertical_positions 00000101
through
000001 AF
slice_start_codes (note) 000001B0
sif_even_start_code 000001B1
user_data_start_code 000001B2
sequence_header_code 000001B3
sequence_error_code 000001B4
extension_start_code 000001B5
|| ccir_slice_start_code 000001B6
sequence_cnd_code 00000187
group_start_code 000001B8
system start codes (see note) 000001B9
through
000001 FF
NOTE - system start codes are defined in Part 1 CD 11172

note:  In the above table, slice_start_codes identify lowest spatial or frequency scal in the bitstream.
Thus in a compatible coding scheme (G.2..G4.) they are used to identify sif_odd_slice or
hhr_slice, whereas in frequency scalable schems or in spatial/frequency hybrid schemes they
identify the lowest frequency scale present.
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[Editors note: proper names need to be defined for sif_even_start_code and ccir_slice_start _code in

order to reflect the generic coding approach of MPEG this table needs to be mixed with the table in
9.3.1]

9.3.2 Video Sequence Layer

video_sequence() {
next_start_code()
do {
sequence_header()
do {
group_of_pictures()
} while ( nextbits() == group_start_code )
} while ( nextbits() == sequence_header_code )
sequence_end_code 32 bslbf
}
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sequence_header() {
sequence_header_code
horizontal_size_value
vertical_size_value
“pel_aspect_ratio
picture_rate
bit_rate
marker_bit
vbv_buffer_size
constrained_parameter_flag
load_intra_quantizer_matrix
if (load_intra_quantizer_matrix )
intra_quantizer_matrix[64]
load_non_intra_quantizer_matrix
if (load_non_intra_quantizer_matrix )
non_intra_quantizer_matrix[64]
next_start_code()
if (nextbits() == extension_start_code ) {
extension_start_code
sscalable
fscalable
chroma_format
extent_horizontal_size
if (extenet_horizontal_size)
horizontal_size_extension
extent_vertical_size
if (extenet_vertical_size)
vertical size extension
reserved
if (fscalable) {
do {
fscale code
} while (nextbits !='00000111")
end_of fscales_code
)
if (sscalable) {
do{
sscale_code
} while (nextbits !='00001111")
end_of sscales_code

)

while ( nextbits () !="0000 0000 0000 0000 0000 0001" ) {

sequence_extension_data
}
next_start_code()

)
if (nextbits() == user_data_start_code ) {

user_data_start_code

while ( nextbits() != 0000 0000 0000 0000 0000 0001" ) {

user_data
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}
next_start_code()

)

| horizontal_size_value - This word forms the 12 least significant bits from horizontal_size.
| vertical_size_value - This word forms the 12 least significant bits from vertical_size.

horizontal_size - The horizontal_size is a 16 bit unsigned integer, the 12 least significant bits are
defined in horizontal_size_value, the 4 most signifincant bits are defined in horizontal_size_extension.
The horizontal_size is the width of the displayable part of each luminance picture in pels. The width of
the encoded luminance picture in macroblocks, mb_width, is (horizontal_size+15)/16. The displayable
part of the picture is left-aligned in the encoded picture.

vertical_size - The vertical_size is a 16 bit unsigned integer, the 12 least significant bits are defined in
vertical_size_value, the 4 most signifincant bits are defined in vertical_size_extension. The vertical_size
is the height of the displayable part of each luminance picture in pels. The height of the encoded
luminance picture in macroblocks, mb_height, is (vertical_size+15)/16. The displayable part of the
picture is top-aligned in the encoded picture.,

| extent_horizontal_size - This is a one-bit integer defined in the following table.

0  No horizontal extension
1 Horizontal extension

Default value: 0
| horizontal_size_extension - This word forms the 4 most significant bits from horizontal_size.
| extent_vertical_size - This is a one-bit integer defined in the following table.

0 No vertical extension
1 Vertical extension

Default value: 0

| vertical_size_extension - This word forms the 4 most significant bits from vertical_size.
NOTE: It should be take into consideration that by extending the horizotal and vertical size to 64 K
pels, the requirement on picture size which was new in the Rio meeting, is not yet met. Therefore it

is suggested that the requirements group will take this new requirement into it's due consideration.

extended_syntax - This is NOT a syntax element, extended_syntax is set to 1 when the
extension_start_code is found in the sequence_header, otherwise it is set to 0.

fscalable - This is a one-bit integer defined in the following table.

0 not fscalable
1 fscalable

Dcfault value: O
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sscalable - This is a one-bit integer defined in the following table:

0 not sscalable
1 sscalable

Default value: O

sscale_code - This is an 8-bit integer that defines the coding standard and compatibility for each
spatial resolution lower layer. The DCT size for all spatial scales is 8. The 8 bit integer is split into 3
fields to indicate coding standard, format and subsampling ratio.

standard name format subsampling ratio
3 bits 2 bits 3 bits
code standard code format code SST

0 H.261 0 progressive 0
1 MPEG-1 1 odd 1 1/2h
2 MPEG-2 2 even 2 12v
3 reserved 3 interlaced 3 1/2h,1/2v
4 " 4 reserved
5 ”" S "
6 " 6 "
7 end 7 "

Example: A bitstream with sscale_code 43 (hex) would be interpreted to mean that the lower layer is
MPEG-1 coded, ODD field only and the resolution is 1/2 both vertically and horizontally (i.e if this layer
CCIR601 then the lower layer is SIF_ODD).

NOTE: This syntax is an interim solution for the representaion of coding
standard, picture format and relative picture size.

chroma_format - This is a 2 bit integer defined in the following table:

00 reserved
01 4:2:0
10 4:2:2
11 4:4:4

Default value: 01
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fscale_code - This is an 8-bit integer that defines the DCT size for the scalable layers, i.e. DCT_size
= l<<scale_code. The values of this integer are:

fscale code

scale 1 layer

scale 2 layer

scale 4 layer

scale 8 layer
reserved

reserved

reserved

end_of fscales code
reserved

D NV WO

256 reserved

Example: The bitstream with fscale_codes 1, 2, 3, 3, 7 would be interpreted to mean that there are four
layers, a scale-2, followed by a scale-4, followed by two scale-8 layers.

sscale_code - This is an 8-bit integer that defines the coding standard and compatibility if any for each
spatial resolutioni layer. The DCT size for all spatial scales is 8. The values of this integer are:

sscale code Feature of Spatial Scale

[1] not compatible

MPEG-1 compatible sif ~4d

H@61 compatible cif

MPEG-1 compatible sif i

MPEG-1 compatible hhr

sif even coded with MPEG-1 compatible sif odd
ccir 601 coded with MPEG-1 compatible sif odd
ccir 601 coded with MPEG-1 compatible sif i
ccir 601 coded with sif even and MPEG-1 compatible sif odd
ccir 601 coded with MPEG-1 compatible hhr
reserved

reserved

[SISTS)

end of escale ende

OISR =] ST TS R~ I I NS RN S

o
I3
3

e

reserved

Example: A bitstream with sscale-codes 1,5,8,15 would be interpreted to mean that there are three spatial
layers, MPEG-1 compatible SIF Odd, followed by SIF Even coded with respect to SIF Odd, followed by
CCIR 601 coded with respect to both SIF Odd and SIF Even.
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9.3.4 Group of Pictures Layer

group_of_pictures() {
group_start_code 32 bslbf
time code 2§
closed_gop 1
broken_link 1
next_start_code()
if ( nextbits() == extension_start_code ) {
extension_start_code 32 bslbf
while ( nextbits(Q !='0000 6000 0000 0000 0000 0001 ) {
group_extension_data 8
}
next_start_code()

}
if ( nextbits() = user_data_start_code ) {
user_data_start code 32 bsIbf
while ( nextbits() !="'0000 0000 0000 0000 0000 0001') {
user_data 8
)
next_start_code()
)
do{
picture()
} while ( nextbits() == picture_start_code )

i

temporal_reference -- The temporal_reference is an unsigned integer associated with each input picture. It is
incremented by one, modulo 1024, for each input picture. For the earliest picture (in display order) in each group of
pictures, the temporal_reference is reset to zero.

| Temporal Reference is the straightforward source picture order because of the allowance of picture drop.
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9.3.5 Picture Layer

picture() {
picture_start_code
temporal reference
picture_coding_type
vbv_delay
if ( picture_coding_type == 2 Il picture_coding_type == 3) {
full_pel forward_vector
forward_f code
}
if ( picture_coding_type = 3) {
full_pel_backward_vector
backward_f code
}
while ( nextbits() =='1') {
extra_bit_picture
extra_information_picture
)
extra_bit_picture
next_start_code()
if (nextbits() == extension_start_code ) {
extension_start_code
if ( picture_coding_type == 2 Il picture_coding_type == 3) {
forward_vertical f code
}
if ( picture_coding_type ==3) {
backward_vertical_f code
}
picture_structure
forward_reference ficlds
backward_reference_fields
if (chroma_format == "01") { /* 4:2:0 %/
chroma_postprocessing_type
Yelse
reserved
)
while ( nextbits() !='0000 06000 0000 0000 0000 0001') {
picture_extension_data
}
next_start_code()
}
if ( nextbits() == user_data_start_code ) {
user_data_start_code
while ( nextbits() !='0000 0000 0000 0000 0000 0001') {
user_data
}
next_start_code()
}
do {
slice()
if ( fscalable [l sscalable ) {

57

32
10

16

—

p—

32

bslbf

uimsbf
uimsbf
uimsbf

uimsbf

uimsbf

lVll‘l

'IOUl

bslbf

uimsbf

uimsbf
uimsbf
uimsbf
uimsbf

wimsbf

uimsbf

bsibf




19-Oct-92  Proposal for Test Model 2, Draft Revision 2

while ( nextbits() == slave_slice_start_code ) {
slave_slice()
)

}
} while ( nextbits() == slice_start_code )

)

temporal_reference -- The temporal_reference is an unsigned integer associated with each input picture. It is
incremented by one, modulo 1024, for each input picture. For the earliest picture (in display order) in each group of
pictures, the temporal_reference is reset to zero. Its unit is "Frame". (see also Appendix H on Low delay)
forward_vertical _f code --

backward_vertical_f code --

picture_structure - This is a 2-bit integer defined in the table below.

11 | Frame-Picture

01 | Field 1 of a Field-Picture
10 | Field 2 of a Field-Picture
00 | reserved

Default value: 11

forward_reference_fields - This is a 2-bit integer defined in the table below.

11 | Forward prediction from Field 1 and Field 2
01 | Forward prediction only from Field 1
10 | Forward prediction only from Field 2
00 | No forward prediction in this Picture

In Intra Pictures this field is allways set to "00".
. Default value: 11, what is the meaning of this field for non-interlaced pictures

backward_reference_fields - This is a 2-bit integer defined in the table below.

11 | Backward prediction from Field 1 and Field 2
01 | Backward prediction only from Field 1
10 | Backward prediction only from Field 2
00 | Nobackward prediction in this Picture

In Intra and Predicted Pictures this field is always set to "00".
Default value: 11, what is the meaning of this field for non-interlaced pictures

chroma_postprocessing_type - This is a 1bit integer that indicate how the chrominance samples of a
4:2:0 Picture must be postprocessed for display. It is defined in the table below.

0 SIF interlaced (for interlaced Pictures)
1 SIF (for progressive Pictures)

Default value: 1
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9.3.6 Slice Layer

slice) {
slice_start_code 32 bslbf
quantizer scale 5 uimsbf
l if (fscalable) {
extra_bit_slice 1 "1
dct_size 8 uimsbf
>
while ( nextbits() =="1") {
extra_bit_slice 1 "1
extra_information_slice 8
}
extra_bit_slice 1 "o"
do{
macroblock()
} while (nextbitsQ) !="'000 0000 0000 0000 0000 0000' )
next_start_code()
}

9.3.6.1 Slave Slice Layer

slave_slice()

2 bsibf

slave slice_start code 3
quantizer_delta_magnitude 5 uimsbf
quantizer_delta_sign 1 uimsbf
det_size 8

uimsbf
for (s=0; s<slice_size; s++) ’
slave_macroblock(dct_size)

| . For frequency scalable bitstreams, the following definitions apply: dct_size - 1, 2, 4, or 8.
quantizer_delta: This integer is added to all "quantizer_scale" values in the slice and
macroblock layers, to derive the corresponding quantizer_scale values (mquant) in the slave_slice and
slave_macroblock layers. For the Test Model this delta is zero.
quantizer_delta_magnitude:  specifies the magnitude of "quantizer_delta".
quantizer_delta_sign: specifies the sign of "quantizer_delta".
slice_size: the total number of macroblocks in the slice layer (44).
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9.3.7 Macroblock Layer

macroblock() {
while (nextbits() == '0000 0001 111"

macroblock_stuffing 11 vlclbf
while ( nextbitsQ) == '0000 0001 000")

macroblock_escape 11 viclbf
macroblock_address_increment 1-11 viclbf

if (extended_syntax ) { /* not MPEG-1 syntax */
if (sscalable ) {

compatible_type 1 uimsbf
if (compatible_type) {
compatible_code_macroblock() v e
Yelse {
macroblock_type 1-6 viclbf
}
Yelse {
macroblock_type 1-6 viclbf
)

if ( macroblock_motion_forward Il
macroblock_motion_backward ) {

if ( picture_structure == "11") { /* Frame-Picture */
frame_motion_type 2 uimsbf
Yelse {
field_motion_type 2 uimsbf
}
}
if ( picture_structure =="11") /* Frame-Picture */
&& ( (macroblock_intra Il macroblock_pattern ) )
dct_type 1 uimsbf
}
} else { /* MPEG-1 syntax */
macroblock type 1-6 viclbf
)
if ( macroblock_quant )
quantizer_scale 5 uimsbf

if ( macroblock_motion_forward )
forward_motion_vectors()
if ( macroblock_motion_backward )
backward_motion_vectors()
if ( macroblock_pattern )
coded_block_pattern()
for (i=0; i<block_count; i++ ) {
if ( scalable ) {
scaled_block(i)
}
else {
block( i)
}
b
if ( picture_coding_type == 4)
end_of_macroblock 1 "1
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compatible_code_macroblock() {
weight code 2 uimsbf
compatible_macroblock_type 1-6 viclbf
)

compatible_type -- This is a one-bit integer indicating whether the macroblock has prediction from a
lower layer enabled. If this is set to "'1", the macroblock has prediction from the lower layer.

weight_code -- This is a two-bit code (for the moment) indicating the temporal-spatial weight used for the
prediction from the lower layer, defined in the following table:

Case 1 Case 2 Case 3

weight_code wl wl w2 wl w2
00
01
10
11

compatible_macroblock_type -- For the three picture types I,P and B there are different VLC tables for the
compatible_macroblock_types. These are given in tables B.2e for intra pictures, B.2f for predicted pictures and B.2g
for bidirectional pictures.

det_type - This is a one-bit integer indicating whether the macroblock is frame DCT coded or field DCT
coded. If this is set to "1", the macroblock is field DCT coded.

field_motion_type - This is a 2-bit code indicating the macroblock motion prediction, defined in the
following table:

code| prediction type motion vector count myv format
00 | Field-based prediction 1 field

01 | Dual-field prediction 2 field

10 | Simplified FAMC 1 frame

11 | CORE EXPERIMENTS

frame_motion_type - This is a 2-bit code indicating the macroblock motion prediction, defined in the
following table:

code| prediction type motion_vector count myv_format
00 | Field-based prediction 2 field

01 | Frame-based prediction 1 frame

10 | Simplified FAMC 1 frame

11 | CORE EXPERIMENTS

motion_vector_count - This is NOT a syntax element. motion_vector_count is derived from
field_motion_type or frame_motion_type as indicated in the tables.

mv_format- This is NOT a syntax element. mv_format is derived from field_motion_type or
frame_motion_type as indicated in the tables. mv_format indicates if the motion vector is a field-
motion vector or a frame-motion vector. mv_format is used in the syntax of the motion vectors.and in
the process of motion vector prediction.
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block_count - This is nor a syntax element. block_count is derived from chroma_format as follows :

chroma format block count
4:2:0 6
4:2:2 8
4:4:4 12
The 6 blocks in a 4:2:0 MB are numbered in the following order : 112 5 6

3|4

In this case, cbp is a 6-bit integer represented as : <b1><b2><b3><b4><b5><b6>, where <bl> is the
most significant bit. <bn> is set to 1 when block n is coded.

The 8 blocks in a 4:2:2 MB are numbered in the following order : 1]2 5 6

314 7 8

In this case, cbp is a 8-bit integer represented as : <b1><b2><b3><b4><b5><b6><b7><b8>, where <bl>
is the most significant bit. <br> is set to 1 when block 7 is coded.

NOTE THAT ORDER HAS BEEN CHANGED FOR 4:2:2 FOR EASIER HARDWARE
IMPLEMENTATION.

The 12 blocks in a 4:4:4 MB are in the following order : 112 519 6110

314 7111 8112

In this case, chp is a 12-bit integer represented as : <bl>...<b12>, where <bl> is the most significant bit.
<bn> is set to 1 when block n is coded.

motion_vector () {

motion_horizontal_code 1-11 viclbf
if ( (horizontal_f != 1) && (motion_horizontal_code !=0) )
motion_horizontal r 1-6 uimsbf
motion_vertical_code 1-11 viclbf
if ((vertical_f !'= 1) && (motion_vertical_code !=0) )
motion_vertical_r 1-6 uimsbf
)

forward_field_motion_vector () {
if (forward_reference_field = "11")
motion_vertical_field_select 1 uimsbf
motion_vector()

)

backward_field_motion_vector () {
if (backward_reference_field == "11")
motion_vertical_field_select 1 uimsbf
motion_vector()

)

COMMENT : IN CASE OF DUAL-FIELD PREDICTION AND "DUAL-PRIME" CORE
EXPERIMENT,, THE SYNTAX ALLOWS ARBITRARY REFERENCE FIELD SELECTION FOR
EACH VECTOR. THIS FLEXIBILITY MAY BE NOT NECESSARY
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motion_vertical_field_select - This a | bit defined as follows :

0 prediction comes from Reference Field 1
1 prediction comes from Reference Field 2

forward_motion_vectors () {
if ( motion_vector_count == 1) {
if (mv_format == frame ) {
motion_vector()
Yelse {
forward_field_motion_vector()
)
yelse {
forward_field_motion_vector() .
forward_field_motion_vector()
}
)

backward_motion_vectors () {
if ( motion_vector_count == 1) {
if ( mv_format == frame ) {
motion_vector()
}else {
backward_field_motion_vector()
}
yelse {
backward_ficld_motion_vector()
backward_field_motion_vector()
}
)

coded_block_pattern () {
if (chroma_format =="01") 1* 4:2:0 %/

coded_block_pattern_420 3-9 viclbf
else if ( chroma_format == "10") /* 4:2:2 %/

coded_block_pattern_422 8 uimsbf
else /* 4:4:4 %/

coded_block_pattern_444 12 uimsbf

}
9.3.7.1 Slave Macroblock Layer

slave_macroblock(dct size) {
| for (i=0; i < block count; i++) {
slave block{i, dct size]
}

)
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9.3.8 Block Layer

NOTE : 9-BIT DC PRECISION AND EXTENDED RANGE OF QAC COEFFICIENT WOULD IMPLY CHANGES
IN THE SYNTAX OF BLOCK LAYER

block(1) {

if ( pattern_codefi] ) {
if ( macroblock_intra) {

if (i<4){
dct_dc_size_luminance 2-7 viclbf
if(dct_dc_size_luminance != 0)
dct_dc_differential 1-8 uimsbf
}
else {
dct_dc_size_chrominance 2-8 viclbf
if(dct_dc_size_chrominance !=0)
dct_dc_differential 1-8 uimsbf
}
}
else {
dct_coeff first 2-28 viclbf
)

if ( picture_coding type !=4) {
while ( nextbits() !="'10"
det_coeff_next 3-28 viclbf
end of block 2 '10"
}
}
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9.3.8.1 Scaled Block Layer

| For scalable bitstreams the following syntax extensions apply:

scaled_block(i) {
if (pattern_code[i]) {
if (macroblock intra) {

if (i<4) |
dct_dc_size luminance 2-7  vlclbf
if (dct_dc_size luminance != 0) '
dct_dc_differential 1-8  vlclbf
)
else {
dct_dc_size_chrominance 2-8 vlclbf
if (dct_dc_size chrominance != 0)
dct_dc_differential 1-8  vleclbf
]
}
if (dct_size > 1) {
while ((nextbits() != eob_code) && more coefs)
next_dct coef(dct_size) 2-16  vlclbf
if (more_ coefs)
end of block 2-16  vlclbf

}
}
}
}

slave block [i,dct_size] (
if (pattern codel[il]) {

while ((nextbits() != eob_code) && more_coefs) {
next dct_ coef(dct size) 2-16  vlclbf
}
if (more coefs) [
end of block 2-16  vlclbf
}

}
}

- pattern_code(i) - For slave_blocks, this code is the same as that of the correlated scaled_block in the
slice layer.

more_coefs - more_coefs is true if we have not already decoded the last coefficient in the block of
DCT coefficients except that, for the 8x8 slave_slice, more_coefs is always true (this is to retain
‘compatibility with MPEG-1 style of coding 8x8 blocks, which always includes an end_of_block code).

eob_code - An end_of_block Huffman code specified in the appropriate resolution scale VLC table.

next_dct_coef - DCT coefficient coded by run/amplitude or run/size VLCs. The VLC table used
depends on "dct_size", as explained in Annex D.
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10 RATE CONTROL AND QUANTIZATION CONTROL

This section describes the procedure for controlling the bit-rate of the Test Model by adapting the
macroblock quantization parameter. The algorithm works in three-steps:

1 Target bit allocation: this step estimates the number of bits available to code the next picture. It is
performed before coding the picture.

2 Rate control: by means of a "virtual buffer", this step sets the reference value of the quantization
parameter for each macroblock.

3  Adaptive quantization: this step modulates the reference value of the quantization parameter
according to the spatial activity in the macroblock to derive the value of the quantization
parameter, mquant, that is used to quantize the macroblock.

Step 1 - Bit Allocation
Complexity estimation

After a picture of a certain type (I, P, or B) is encoded, the respective "global complexity measure” (Xj,
Xp, or Xp) is updated as:

Xi=Si Qi, Xp=SpQp, Xp=SpQp

where Sj, Sp, Sp are the number of bits generated by encoding this picture and Qj, Qp and Qp are the
average quantization parameter computed by averaging the actual quantization values used during the
encoding of the all the macroblocks, including the skipped macroblocks.
Initial values

Xj =160 * bit_rate/ 115

Xp =60 * bit_rate/ 115

Xp =42 * bit_rate/ 115

bit_rate is measured in bits/s.
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Picture Target Setting :
| The target number of bits for the next picture in the Group of pictures (Tj, Tp, or Tp) is computed as:
R
Tj = max { , bit_rate/ (8*picture rate) }
1+ +
XiKp XiKp
R
Tp =max { , bit_rate / (8*picture_rate)}
Np + -emeeeemeeeeee
R
Th = max { , bit_rate / (8*picture_rate)}
Np + —---omemmeee-

Kp and Kp are "universal" constants dependent on the quantization matrices. For the matrices
specified in sections 7.1 and 7.2 Kp=1.0andKp = 1.4.

R is the remaining number of bits assigned to the GROUP OF PICTURES. R is updated as
follows:

After encoding a picture ,R =R - Sjp b

Where is Sjp b is the number of bits generated in the picture just encoded (picture type is I, P
or B).

Before encoding the first picture in a GROUP OF PICTURES (an I-picture):
R=G+R
G = bit_rate * N/ picture_rate
N is the number of pictures in the GROUP OF PICTURES.

At the start of the sequence R = 0.

Np and Ny are the number of P-pictures and B-pictures remaining in the current GROUP OF
PICTURES in the encoding order.

(1] B]B]lPIBIBlPIB]B]P]B]B
R-bits
ND=2
Np=4

Figure 10.1 - GROUP OF PICTURES structure
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Step 2 - Rate Control

T

o

MB Index == MB_Cnt

Figure 10.2 : Rate Control for P-pictures

Before encoding macroblock j (j >= 1), compute the fullness of the appropriate virtual buffer:

o TiG-D
dj'=do* + Bj.] - --------
MB_cnt
or
Tp G-
diP = doP + Bj. - -----e-
MB_cnt
or
Tb G-1)
dP=do® + Bjp - -ereere-
MB_cnt

depending on the picture type.

where
| do!, dgP, dob are initial fullnesses of virtual buffers - one for each picture type.

Bj is the number of bits generated by encoding all macroblocks in the picture up to and
including j.

I MB_cnt is the number of macroblocks in the picture.
dji, djp. djb are the fullnesses of virtual buffers at macroblock j- one for cach picture type.

| The final fullness of the virtual buffer (d J'i . djp, djb: j=MB_cnt) is used as doi' doP, dob for encoding
the next picture of the same type.
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Next compute the reference quantization parameter Qj for macroblock j as follows:

where the "reaction parameter" r is given by
r=2*bit_rate/ picture_rate

and d; is the fullness of the appropriate virtual buffer.

The initial value for the virtual buffer fullness is:
dot=10* 31

doP = Kp do!
doP = Kp dof

Step 3 - Adaptive Quantization

Compute a spatial activity measure for the macroblock j from the four luminance sub-blocks using the
intra (i.e. original) pixels values:

actj=1+ min (var_sblk)
sblk=1,4

where
1 64
var_sblk = --- SUM (Pk - P_mean ) 2
64 k=1
1 64
P_mean= --- SUM Pg
64 k=1
and Py are the pixel values in the original 8*8 block.

Normalise actj:

2 * actj+ avg_act

N_actj =
actj+ 2 * avg_act

avg_act is the average value of act; the last picture to be encoded. On the first picture, avg_act = 400.
Obtain mquant; as:

mquantj = Qj * N_acy;
where Qj is the reference quantization parameter obtained in step 2. The final value of mquant;j is

clipped to the range [1..31] and is used and coded as described in sections 7, 8 and 9 in either the slice or
macroblock layer.
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Known Limitations
- Step 1 does not handle scene changes efficiently.

- Step 3 does not work well on highly interlaced material, since the entire method uses picture
macroblocks.

- A wrong value of avg_act is used in step 3 after a scene change.

- VBV compliance is not guaranteed.
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APPENDIX A: DISCRETE COSINE TRANSFORM (DCT)

The 2-dimensional DCT is defined as:

7 7 (2x+1)u*pi (2y+1)v*pi
F(u,v) = (1/4) C(u) C(v) SUM SUM f(x,y)cos{ } cos{ )3
x=0 y=0 16 16

withu,v,x,y=0,1,2,...7

where x, y = spatial coordinates in the pel domain
u, v = coordinates in the transform domain

C(u), C(v) = I/SQRT (2) for u, v=0
1 otherwise

The inverse DCT (IDCT) is defined as:

7 7 (2x+1)u*pi Qy+1)v*pi
f(x,y) = (1/4) SUM SUM C(u) C(v) F(u,v) cos{ Yeos{ b3
u=0 v=0 16 16

The input to the forward transform and output from the inverse transform is represented with 9 bits. The
coefficients are represented in 12 bits. The dynamic range of the DCT coefficients is (-2048, ..., 2047).

Accuracy Specification

The 8 by 8 inverse discrete transform shall conform to IEEE Draft Standard Specification for the Implementations of 8
by 8 Inverse Discrete Cosine Transform, P1180/D2, July 18, 1990. Note that Section 2.3 P1180/D2 "Considerations of
Specifying IDCT Mismatch Errors" requires the specification of periodic intra-picture coding in order to control the

. accumulation of mismatch errors. The maximum refresh period requirement for this standard shall be 132 pictures,
the same as indicated in P1180/D2 for visual telephony according to CCITT Recommendation H.261 (see
Bibliography).
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APPENDIX B: VARIABLE LENGTH CODE TABLES

Introduction

This annex contains the variable length code tables for macroblock addressing, macroblock type, macroblock pattern,
motion vectors, and DCT coefficients. '

B.1 Macroblock Addressing

Table B.1. Variable length codes for macroblock_address_increment.

macroblock_address_ increment macroblock_address_ increment
increment VLC code value increment VLC code value
1 1 0000 0101 10 17
011 2 0000 0101 01 18
010 3 0000 0101 00 19
0011 4 00000100 11 20
0010 5 0000 0100 10 21
0001 1 6 0000 0100 011 22
0001 0 7 0000 0100 010 23
0000 111 8 0000 0100 001 24
0000 110 9 0000 0100 000 25
0000 1011 10 0000 0011 111 26
0000 1010 11 00000011110 27
0000 1001 12 0000 0011 101 28
0000 1000 13 0000 0011 100 29
00000111 14 0000 0011 011 30
00000110 15 0000 0011 010 31
00000101 11 16 0000 0011 001 32
0000 0011 000 33
0000 0001 111 macroblock_stuffing
0000 0001 000 macroblock_escape
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Table B.2a. Variable length codes for macroblock_type in intra-coded pictures (I-pictures).

VLC code

macroblock_ | macroblock_ | macroblock | macroblock macroblock_ | macroblock_
quant motion_ motion_ pattern intra compatible
forward backward
1 0 0 0 1 0
01 1 0 0 0 1 0

Table B.2b. Variable length codes for macroblock_type in predictive-coded pictures (P-pictures).

VLCcode [ macroblock_ |macroblock_ |macroblock | macroblock_ macroblock_ | macroblock_
quant motion_ motion_ pattern’ intra compatible
forward backward
1 0 1 0 1 0 0
01 0 0 0 1 0 0
001 0 1 0 0 0 0
00011 0 0 0 0 1 0
00010 1 1 0 1 0 0
00001 1 0 0 1 0 0
000001 1 0 0 0 1 0

Table B.2c. Variable length codes for macroblock_type in bidirectionally predictive-coded pictures (B-pictures).

VLCcode | macroblock_ |macroblock_ | macroblock_ | macroblock_ | macroblock_ macroblock_
quant motion_ motion_ pattern intra compatible
forward backward
10 (e 1 1 0 0 0
11 0 1 1 1 0 0
010 0 0 1 0 0 0
011 0 0 1 1 0 0
0010 0 1 0 0 0 0
0011 0 1 0 1 0 0
00011 0 0 0 0 1 0
00010 1 1 1 1 0 0
000011 1 1 0 1 0 0
.| 000010 1 0 1 1 0 0
000001 1 0 0 0 1 0

Table B.2d. Variable length codes for macroblock_type in DC intra-coded pictures (D-pictures).

VLCcode | macroblock_ | macroblock_ | macroblock_ | macroblock macroblock_
quant motion_ motion_ pattern intra
forward backward
1 0 0 0 0 1

73




19-Oct-92  Proposal for Test Model 2, Draft Revision 2

| Table B.2e. Variable length codes for compatible_macroblock_type in intra-coded pictures (I-pictures).

VLC code | macroblock_ | macroblock_ | macroblock | macroblock_ | macroblock_ | macroblock
quant motion_ motion_ pattern intra compatible
forward backward
1 0 0 0 1 0 1
01 1 0 0 1 0 1
001 0 0 0 0 0 1

| Table B.2f. Variable length codes for compatible_macroblock_type in predictive-coded pictures (P-pictures).

VLC code | macroblock_ | macroblock_ | macroblock | macroblock_ | macroblock_ | macroblock_
quant motion_ motion_ pattern intra compatible
forward backward
1 0 1 0 1 0 1
01 0 1 0 0 0 1
001 0 0 0 1 0 1
00011 1 1 0 1 0 1
00010 1 1 0 0 0 1
00001 1 0 0 1 0 1
000001 0 0 0 0 0 1

Table B.2g. Variable length codes for compatible_macroblock_type in bidirectionally predictive-coded
pictures (B-pictures).
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VLC code | macroblock | macroblock_ | macroblock_ | macroblock_ | macroblock_ | macroblock_
quant motion_ motion_ pattern intra compatible
forward backward
10 0 1 0 1 0 1
11 0 0 1 1 0 1
010 0 1 0 0 0 1
011 0 0 1 0 0 1
0010 1 1 0 1 0 1
0011 1 0 1 1 0 1
00011 1 1 0 0 0 1
00010 1 0 1 0 0 1
000011 | 0 0 1 0 1
000010 0 0 0 0 0 1




B.3 Macroblock Pattern
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Table B.3. Variable length codes for coded_block_pattern.

coded_block_pattern coded_block_pattern

VLC code cbp VLC code cbp
111 60 0001 1100 35
1101 4 0001 1011 13
1100 8 0001 1010 49
1011 16 0001 1001 21
1010 32 0001 1000 41
10011 12 0001 0111 14
10010 48 0001 0110 50
1000 1 20 0001 0101 22
1000 0 40 0001 0100 4?2
01111 28 0001 0011 15
01110 44 0001 0010 51
01101 52 0001 0001 23
01100 56 0001 0000 43
01011 1 0000 1111 25
01010 61 00001110 37
01001 2 00001101 26
01000 62 00001100 38
0011 11 24 0000 1011 29
0011 10 36 0000 1010 45
0011 01 3 0000 1001 53
0011 00 63 0000 1000 57
0010111 5 0000 0111 30
0010110 9 0000 0110 46
0010 101 17 0000 0101 54
0010 100 33 0000 0100 58
0010011 6 0000 0011 1 31
0010010 10 00000011 0 47
0010 001 18 0000 0010 1 55
0010 000 34 0000 0010 0 59
0001 1111 7 0000 0001 1 27
00011110 11 0000 0001 0 39
0001 1101 19
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B.4 Motion Vectors

Table B.4. Variable length codes for motion_horizontal_forward_code, motion_vertical_forward_code,
motion_horizontal_backward_code, and motion_vertical_backward_code.

motion

VLC code code
0000 0011 001 -16
0000 0011 011 -15
00000011 101 -14
00000011111 -13
0000 0100 001 -12
0000 0100011 -11
00000100 11 -10
0000 0101 01 -9
00000101 11 -8
00000111 -7
0000 1001 -6
0000 1011 -5
0000 111 -4
0001 1 -3
0011 2
011 -1
1 0
010 1
0010 2
00010 . 3
0000 110 4
0000 1010 5
0000 1000 6
0000 0110 7
0000 0101 10 8
0000 0101 00 9
00000100 10 10
0000 0100 010 11
0000 0100 000 12
00000011110 13
0000 0011 100 14
0000 0011 010 15
0000 0011 000 16
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B.5 DCT Coefficients

Table B.5a Variable length codes for dct_dc_size_luminance.

VLC code dct_dc_size luminance
100

00

01

101

110
1110
11110
111110
1111110

0NV hH WN—O

Table B.5b. Variable length codes for det_dc_size_chrominance.

VLC code dct_dc_size_chrominance
00

01

10

110

1110
11110
111110
1111110
11111110

OOV AWN—=O
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Table B.5c. Variable length codes for det_coeff_first and dct_coeff_next.

dct_coeff_first and dct_coeff_ne
variable length codle (INOTE1){ run level

10 end_of_block
ls (NOTE2)
11s (NOTE3)
0lls

0100 s

0101 s

00101s

00111 s
00110s

0001 10s

0001 11s
000101 s
000100 s
0000110s
0000100 s
0000111s

0000 101 s

0000 01
00100110 s
0010 0001 s
00100101 s
00100100 s
00100111 s
00100011 s
00100010 s
0010 0000 s
00000010 10s 0
0000001100 s
0000001011 s 2
00000011 11s 4
0000001001 s 5
00000011 10s 14
0000001101 s 15
0000 001000 s 16

Laadil o i & I S S 7S B S

&

ape

W OO0 VWRINONAUNM—ALWONO—=OO

bt ot ot
w N - O

—
_—m DR W R N = D) WO N

NOTEI - The last bit 's' denotes the sign of the level, '0' for positive
'1* for negative.

NOTE2 - This code shall be used for dct_coeff_first.

NOTES3 - This code shall be used for dct_coeff_next.
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Table B.5d. Variable length codes for dct_coeff_first and dct_coeff_next (continued).

det_coeff_first and dct_coeff_nex]
variable length code  (NOTE)

g
5

level

0000 0001 1101 s
0000 0001 1000 s
0000 0001 0011 s
0000 0001 0000 s
0000 0001 1011 s
0000 0001 0100 s
0000 0001 1100 s
0000 0001 0010 s
0000 0001 1110
0000 0001 0101 s
0000 0001 0001 s
00000001 1111 s
0000 0001 1010 s
0000 0001 1001 s
0000 0001 0111 s
0000 0001 0110 s
0000 0000110105
0000000011001 s
0000 0000 11000 s
00000000 10111 s
0000 0000 1011 0s
0000 0000 10101 s
0000 0000 10100 s
0000 00001001 1 s
0000 0000 1001 0 s
0000 0000 10001 s
0000 0000 10000 s 10
00000000 11111 s 22
0000 0000 11110 23
00000000 11101 s 24
00000000 11100s 25
000000001101 1s 26

-

:OO\!O\AQ.)N'—‘OOOO

[V — — —
O w N SO o O NN
— — w W (9] ®©
— p— et —_— N NN n — s \O

e e = RN WA NN

NOTE - The last bit 's' denotes the sign of the level, '0' for positive,
'1' for negative.
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Table B.Se. Variable length codes for dct_coeff_first and dct_coeff_next (continued).

dct_coeff_first and dct_coeff_nex

variable length code  (NOTE)| run level
000000000111 11 s 0 16
000000000111 10s 0 17
0000 0000011101 s 0 18
0000 00000111 00s 0 19
00000000011011 s 0 20
0000 0000011010 0 21
0000 0000011001 s 0 22
0000 0000 011000 s 0 23
000000000101 11 s 0 24
0000 00000101 10s 0 25
0000 00000101 01 s 0 26
0000 0000 0101 00 s 0 27
0000 0000010011 s 0 28
0000 0000 010010 s 0 29
0000 0000 0100 01 s 0 30
0000 0000 0100 00 s 0 31
0000 0000 0011 000 s 0 32
0000 00000010 111 s 0 33
0000 00000010110 s 0 34
0000 0000 0010 101 s 0 35
0000 0000 0010 100 s 0 36
0000 0000 0010011 s 0 37
0000 0000 0010010 s 0 38
0000 0000 0010 001 s 0 39
0000 0000 0010 000 s 0 40
0000 00000011 111 s 1 8
0000 0000 0011 110 s 1 9
0000 0000 0011 101 s 1 10
0000 0000 0011 100 s 1 11
0000 0000 0011 Ol1 s 1 12
0000 0000 0011 010 s 1 13
0000 0000 0011 001 s 1 14
NOTE - The last bit 's' denotes the sign of the level, '0' for positive,
'1' for negative.
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Table B.5f. Variable length codes for dct_coeff_first and dct_coeff_next (continued).

det_coeff_first and dct_coeff_nex]
variable length codle ~ (NOTE)| run level

0000 0000 0001 0011 s 15

1
0000 0000 0001 0010 s 1 16
0000 0000 0001 0001 s 1 17
0000 0000 0001 0000 s 1 18
0000 0000 0001 0100 s 6 3
0000 0000 0001 1010 s 11 2
0000 0000 0001 1001 s 12 2
(000 0000 0001 1000 s 13 2
0000 0000 0001 0111 s 14 2
0000 0000 0001 0110 s 15 2
0000 0000 0001 0101 s 16 2
0000 0000 0001 1111 s 27 1
0000 0000 0001 1110s 28 1
0000 0000 0001 1101 s 29 1
0000 0000 0001 1100 s 30 1
0000 0000 0001 1011 s 31 1

NOTE - The last bit 's' denotes the sign of the level, '0' for positive,
'l' for negative.

Table B.5g. Encoding of run and level following escape code as a 20-bit fixed length code (-127 <=level <= 127) or
as a 28-bit fixed length code (-255 <= level <= -128, 128 <= level <= 255).

fixed length code run fixed length code level
0000 00 0 forbidden -256
0000 01 1 1000 0000 0000 0001 -255
0000 10 2 1000 0000 0000 0010 -254

100000000111 1111 -129
1000 0000 1000 0000 -128

1000 0001 -127
1000 0010 -126
111111 63 11111110 -2
11111111 -1
forbidden 0
0000 0001 1
01111111 127

0000 0000 1000 0000 128
0000 0000 1000 0001 129

000000001111 1111 255
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APPENDIX C : VIDEO BUFFER VERIFIER

Constant rate coded video bitstreams shall meet constraints imposed through a Video Buffering Verifier (VBV)
defined in Section C.1.

The VBV is a hypothetical decoder which is conceptually connected to the output of an encoder. Coded data is placed
in the buffer at the constant bit rate that is being used. Coded data is removed from the buffer as defined in Section
C.1.4, below. It is a requirement of the encoder (or editor) that the bit stream it produces will not cause the VBV to
either overflow of underflow. If low buffering delay is intended with allowing picture dropping, the buffer occupancy
just after decoding a picture shall further conform to Item 5 below.

C.1 Video Buffering Verifier

1. The VBY and the video encoder have the same clock frequency as well as the same picture rate, and are operated
synchronously.

2. The VBV has a receiving buffer of size B, where B is given in the vbv_buffer_size field in the
sequence header. {For low delay operation, the buffer size B is interpreted as corresponding to the
maximum number of bits per picture generated at the encoder when picture dropping takes place}

3. The VBV is initially empty. It is filled from the bitstream for the time specified by the vbv_delay field in the video
bitstream.

4. This item applies to cases that all pictures are coded and transmitted. All of the data for the picture which has been
in the buffer longest is instantaneously removed. Then after each subsequent picture interval all of the data for the
picture which (at that time) has been in the buffer longest is instantaneously removed. Sequence header and group of
picture layer data elements which immediately precede a picture are removed at the same time as that picture. The
VBYV is examined immediately before removing any data (sequence header data, group of picture layer or picture) and
immediately after each picture is removed. Each time the VBV is examined its occupancy shall lie between zero bits
and B bits where B is the size of the VBV buffer indicated by vbv_buffer_size in the sequence header.

5. This item applies to cases that some pictures are not coded nor transmitted.

" Encoder may wish to realize low buffering delay with allowing occasional picture droppings. It will
regulate its information generation by setting a virtual buffer size Bl smaller than B for stationary
pictures. The VBV operates as follows;

All of the data for the non-dropped picture which has been in the buffer longest is instantaneously
‘removed. Then after each interval all data of the non-dropped picture which (at that time) has been in
the buffer longest is instantaneously removed. Sequence header, group of picture layer data elements
and headers of dropped pictures which immediately precede a picture are removed at the same time as
that picture. At some decoding timing where picture dropping takes place in the coder, there will be no
sufficient data to remove. In that case, no data removing takes place.

During the stationary state with low buffering delay, the VBV occupancy immediately after each picture
is removed shall lie between zero and (Bl - RIP).

To meet this requirement the number of bits dc for the coded picture just before the steady state
(including any preceding header and group of picture layer data elements) must saltisfy;

no dropped picture Bp-Bl+RIP <dc<Bp
one dropped picture Bp - Bl + 2R/P < dc < Bp + R/IP
two dropped pictures Bp - Bl + 3RIP < dc < Bp + 2R/P
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| n dropped pictures Bp - Bl + (n+1)RIP < dc < Bp + nRIP
| where:

Bp: VBV buffer occupancy just before removing the data
Bl: VBV buffer corresponding to low delay operation

R : bit rate

P : picture rate

| Thisisa requirement on the video bitstream including coded picture data, user data and all stuffing.

To meet these requirements the number of bits for the (n+1)'th coded picture d (including any preceding sequence
. . n+l
header and group of picture layer data elements) must satisfy:

dn+1>Bn+2R/P-B

d <=B +R/P
n+l n

where:
n>=0
B_ is the buffer occupancy just after time t
n,. n
R'= bit rate
P = number of pictures per second
tn is the time when the n'th coded picture is removed from the VBV buffer
$$$$ insert figure here

Figure C.1 VBV Buffer Occupancy
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APPENDIX D: SCALABILITY SYNTAX, ENCODER, AND DECODER
DESCRIPTION

D.1 INTRODUCTION

The syntax for frequency domain scalable bitstreams has been detailed in Chapter 9. This appendix
describes the operation of the Test Model encoder and decoder for frequency domain scalability
experiments, in the spirit of a delta with respect to the non-scalable Test Model. Where core experiments
depart from these descriptions, the departures are documented in the descriptions of the core experiments
themselves.

The frequency domain scalability syntax extensions enable the implementation of hierarchical pyramid
and sub-band schemes in the frequency (DCT) domain. Although the syntax is flexible, the Test Model
corresponds to a three layer case with the following resolutions:

1.CCIR 601  704x480(576) (Scale-8)
2. SIF 352x240(288)  (Scale-4)
3. QSIF 176x120(144)  (Scale-2)

Figures D.1 and D.2 are block diagrams of the Test Model encoder and decoder for the frequency domain
scalability experiments.

+
. DCT, [ Q . QP T»w.c. —-
IQP ¢
+
+
IDCT, = IQM
2610 P Y 64
+ 48 ‘ -
QP , n 64
16
+
VLG,
2010 P> _+16
12 ‘
QP , #— R 16
4
- VILC o [0

Figure D.1: Frequency domain encoder
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(D.1) shift = 1 + log2(8/s)
(D.2) factor = 16/s

(D.3)xs = n >> shift
(D.4) fxs = n - factor * xs
(D.5)ys = m >> shift

(D.6) fys = m - factor * ys

Then, the prediction picture at pixel (x,y) of scale-s Ps(x,y) is given by

Ps(x,y) = ((factor-fys)/factor) * [p1] + (fys/factor) * [p2 ],

where

pl = ((factor-fxs)/factor) * Rs(x+xs, y+ys) + (fxs/factor) * Rs(x+xs+1, y+ys),

and

pé = ((factor-fxs)/factor) * Rs(x+xs, y+ys+1) + (fxs/factor) ¥ Rs(x+xs+1, y+ys+1).

Overall, there is division by factor**2, which can be implemented as a logical shift right by 2*
log2(factor) = 2*(4 - log2(scale)) bits.

Chrominance motion-compensation is the same, except that at scale-s, equations (D.1-6) are applied
using s/2 instead of s.

D.4 MODES AND MODE SELECTION

The same picture types and coding modes used in the non-scalable Test Model are used in the frequency
domain scalable extension. However, the selection criteria are not completely identical. The motion
compensation/no motion compensation, forward/backward/interpolated and intra/inter coding

* decisions are made by examining the appropriate high resolution signals, in the same manner as for the
non-scalable case. However, the determination whether a block is coded or not coded is made by
examining the quantized DCT coefficients of all layers. Furthermore, only the frame modes of DCT
coding and motion compensation are used, so no frame/field tests are required. The modified quantizer
scheme of Test Model 1, Chapter 10 is sufficient as is, since the same rate control strategy is used in the
‘frequency domain scalable extension.

D.5 UPWARD DCT COEFFICIENT PREDICTION

In a pyramidal frequency domain scalable codec, DCT coefficients in a low resolution layer are used to
predict the corresponding coefficients in the next (higher) resolution layer. Thus, the 2x2 DCT
coefficients of the Test Model slice layer are used to predict the upper-left 2x2 coefficients of the
corresponding coefficients in the 4x4 slave_slice layer. Similarly, the 4x4 coefficicnts of the first
slave_slice layer are used to predict the upper-left 4x4 coefficients of the corresponding coefficients in
the 8x8 slave_slice layer. After computing the prediction differences, these differences
together with the new (not predicted) coefficient data are coded using a zig-zag scan pattern as shown in
Figure 4.8 of Test Model 1.
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D.6 TRANSFORMATION AND QUANTIZATION
D.6.2 Transformation

In order to facititate upward DCT coefficient prediction, DCT and IDCT formulas with non-standard
normalization are used, as defined in Table D.1.

Table D.1: DCT definitions for frequency domain scalability.

Scale Forward DCT Inverse DCT
2 4*DCT(2x2) IDCT(2x2)/4
4 2*DCT(4x4) IDCT(4x4)/2
8 DCT(8x8) IDCT(8x8)

Here, DCT(NxN) and IDCT(NxN) are the standard 2-dimensional definitions for the transforms of size
NxN.

D.6.2 Upward Coefficient Prediction and Quantization

In the scalable Test Model, the same quantization matrix is used for all resolution scales. For the 2x2
layer, the upper left 2x2 elements of the 8x8 quantizer matrix are used. Similarly, for the 4x4 layer, the
upper left 4x4 elements of the 8x8 matrix are used. Prior to quantization of a particular scale, the
quantized and rebuilt coefficients from the next lower scale are used as a prediction of the corresponding
coefficients in the current scale. Because of these features and the fact that, in the scalable Test Model
extension, the same MQUANT value is applied to the coefficients of all layers, the quantized DCT
coefficients in the 2x2 and 4x4 layers could be obtained by simply extracting the appropriate coefficients
from the corresponding set of quantized 8x8 coefficients.

(We emphasize that, the generality exists to use at least different MQUANT values in different layers, as

is done in some of the Core Experiments. See section D.6.3. It may also be desirable to use different

quantization matrices in different scales, in some applications. However, this is not supported in the
_current Test Model.)

Aside from the above considerations, quantization in the scalable extensions is identical to that in the
non-scalable Test Model. In general, to rebuild the DCT coefficients for a target scale, the following
steps are needed:

1. dequantization of the DCT coefficients of the target scale and all lower scales using the appropriate
quantizer scale factor "MQUANT _s" (MQUANT_2 for scale 2, MQUANT_4 for scale 4, and
MQUANT _8 for scale 8), and quantization matrix, and

2. for appropriate coefficients, summation of the corresponding coefficient resulting from the previous
step (upward DCT coefficient prediction).

Note that this method differs from that in the scalable extension of Test Model 1.
D.6.3 BANDWIDTH CONTROL OF RESOLUTION LAYERS

The Slave_slice layer specification includes a quantizer_delta parameter. For each MB in a slave_slice
layer, this delta is specified with reference to the corresponding quantizer scale factor used in the Slice
layer, as explained in section 9.3.6. This parameter is used to derive the "MQUANT" values used in the
slave layers. For the basic encoder, quantizer_delta is always zero.
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D.7 CODING
D.7.1 DCT COEFFICIENT CODING

Coding of DCT coefficients is done using a combination of two-dimensional run/amplitude VLC tables
and FLC escape tables. The FLC coding is exactly as in Test Model 1. However, there is one VLC table
for each scale. The VLC tables are specified below.

Table I: Scale 2 run/amplitude variable length codes

| Run  Amplitude length Codeword |

| EOB 1 1 I
| 0 1 2 01s |
) 2 4 0011s ]
| 1 1 4 0010s |
| o 3 5 00011s |
| 2 1 6 000101s I
| o 4 6 000100s [
| 1 2 7 0000111s [
| o 5 7 0000110s |
| o 6 7 0000101s |
| 1 3 8 00001001s |
| 3 1 8 00001000s |
| o 7 8 00000111s |
| ESCAPE 8 00000110 |
I 0 ' 8 8 00000101s |
|2 2 8 00000100s |
| 0 9 9 000000111s |
|1 4 9 000000110s |
| o 10 9 000000101s |
| o 11 9 000000100s |
|1 5 10 0000000111ls |
) 12 10 0000000110s |
| o 13 10 0000000101s |
|1 6 10 0000000100s |
| 2 3 10 0000000011s |
| 0 14 11 00000000101s |
| 0 15 11 00000000100s |
[ 1 7 11 00000000011s |
| 0 16 11 00000000010s |
| o 17 12 000000000011s |
| 1 8 12 000000000010s |
| o 18 12 |

000000000001s

Table II: Scale 4 run/amplitude variable length codes

| 0O 1] 2 | 1i1s [l 1 5 | 10 | 0000001110s |
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| EOB | 2| 10 [| 14 1| 10 | 0000001101s |
| 1 1| 3 | 011s [l 13 1] 10 | 0000001100s |
| 0 2 | 4 | 0101s Il 0 11 | 10 | 0000001011s ]
| 2 1| 4 | 0100s I 3 3| 10 | 0000001010s |
| 3 | 5 | 00111s Il 6 2 | 10 | 0000001001s |
] O 3| 5 | 00110s Il 0 12 | 10 | 0000001000s |
| 4 1| 5 | 00101s 111 6 | 10 | 000000011l1s |
| 1 2 | 6 | 001001s [ 15 1] 11 [ 00000001101s |
| 5 1] 6 | 001000s Ir 2 4 | 11 | 00000001100s |
| O 4 | 6 | 000111s [l 0 13} 11 | 00000001011s |
| 6 1 7 | 0001101s It 0 14 | 11 | 00000001010s |
[ © 5 | 7 | 0001100s [ 4 3 | 11 | 00000001001s |
| 2 2| 7 | 0001011s [ 1 7 1 11 | 00000001000s |
| 9 1] 7 | 0001010s [l 5 3| 11 [ 00000000111s |
I 7 11 7 | 0001001s [l 0 15 | 11 | 00000000110s |
| 1 3] 7 | 0001000s [l 9 2 | 12 | 00000000101ls |
| 8 1] 7 | 0000111s [ 3 4 | 12 | 000000001010s |
| O 6 | 7 | 0000110s [l 0 16 | 12 | 000000001001s |
| 3 2 | 8 | 00001011s [ 1 8 | 12 | 000000001000s |
| O 7 1 8 | 00001010s [ 0 17 | 12 | 000000000111ls |
| 10 1 8 | 00001001s [ 7 2 | 12 | 000000000110s |
| o 8 | 8 | 00001000s [l 8 2 | 12 | 000000000101s |
| 1 4 | 9 | 000001111s || 2 5 | 13 | 0000000001001s |
| 4 2 | 9 | 000001110s |[|] O 18 | 13 | 0000000001000s |
[ 11 1] 9 | 000001101s || 1 9 | 13 | 0000000000111s |
| 5 2 | 9 | 000001100s || O 19 | 13 | 0000000000110s |
| O 9 | 9 | 000001011s || 4 4 | 13 | 0000000000101s |
| 2 3 | 9 | 000001010s || 1 10 | 13 | 0000000000100s |
| ESCAPE | 9 | 000001001 Il 5 4 | 13 | 0000000000011s |
[ 12 1| 9 | 000001000s || O 20 | 13 | 0000000000010s |
| 0 10 | 10 | 0000001111s || O 21 | 13 | 0000000000001s |

Table III: Scale 8 run/amplitude variable length code table

| Run Amp| LEN | CODEWORD | Run Amp | LEN | CODEWORD |
| EOB | 2| 11 | 31 1 | 10 | 0000010001s |
] 0 1] 3 ] 101s | 29 1| 11 | 00000100001s |
| 1 1] 3 | 100s | 2 3| 11 | 00000100000s [
P2 1 4 | 0111s | 19 2 | 11 | 00000011111s |
[ 10 1 | 5 | 01101s [ 10 S | 11 | 00000011110s [
| 3 1| 5 | 01100s | 8 3| 11 | 00000011101s |
| 4 1] 5 ] 0101ls | 13 4 | 11 | 00000011100s |
| 9 1| 5 | 01010s | o 7 | 11 | 00000011011s |
I 5 1] 5 | 01001s | 3 3| 11 | 00000011010s |
| 0 2| 5 | 01000s | 1 4 | 11 | 00000011001s |
| 8 1 | 6 | 001111s | 28 1 | 11 | 00000011000s |
| 6 1 | 6 | 001110s | 22 2 | 11 | 0000001011ls |
| 7 1| 6 | 001101s | 14 5 | 11 | 00000010110s |
[ 11 1 | 6 | 001100s | 20 3| 11 | 00000010101s |
[ 14 1 | 6 | 001011s | 9 4 | 11 | 00000010100s |
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| 12 1| 6
| 20 1| 6
| 13 1| 7
| 10 2 | 7
] 0 3 ] 7
| 15 1 | 7
| 35 1] 7
| 19 1] 7
| 21 1| 7
| 1 2 | 8
| ESCAPE | 8
| 16 1] 8
| © 4 | 8
| 9 2 | 8
| 10 3] 9
| 2 2 | 9
| 14 2 | 9
| 22 1 | 9
| 8 2 | 9
| 13 2 | 9
| 3 2 | 9
| 17 1| 9
| 23 1| 9
| 18 1| 9
] 0 5 | 9
| 24 1 | 9
| 20 2 | 9
| 25 1] 9
| 34 1| 9
| 1 3 | 10.
| 14 3 | 10
| 4 2 | 10
| 36 1| 10
.| 26 1| 10
| 11 2 | 10
| 10 4 | 10
| 35 2 | 10
| 12 2 | 10
] 5 2 | 10
| 33 1| 10
| 13 3 10
| 9 3 | 10
| 27 1| 10
| o 6 | 10
| 32 1] 10
| 6 2 | 10
| 7 2 | 10
| 14 4 | 10
| 30 1 10

001010s
001001s
0010001s
0010000s
0001111s
0001110s
0001101s
0001100s
0001011s
00010101s
00010100
00010011s
00010010s
00010001s
000100001s
000100000s
000011111s
000011110s
000011101s
000011100s
000011011s
000011010s
000011001s
000011000s
000010111s
000010110s
000010101s
000010100s
000010011s
0000100101s
0000100100s
0000100011s
0000100010s
0000100001s
0000100000s
0000011111s
0000011110s
0000011101s
0000011100s
0000011011s
0000011010s
0000011001s
0000011000s
0000010111s
0000010110s
0000010101s
0000010100s
0000010011s
0000010010s

D.8 VIDEO MULTIPLEX CODER
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00000010011s
00000010010s
000000100011s
000000100010s
000000100001s
000000100000s
000000011111s
000000011110s
000000011101s
000000011100s
000000011011s
000000011010s
000000011001s
000000011000s
000000010111s
000000010110s
000000010101s
000000010100s
000000010011s
000000010010s
000000010001s
000000010000s
000000001111s
000000001110s
000000001101s
000000001100s
0000000010111s
0000000010110s
0000000010101s
0000000010100s
0000000010011s
0000000010010s
0000000010001s
0000000010000s
0000000001111s
0000000001110s
0000000001101s
0000000001100s
0000000001011s
0000000001010s
0000000001001s
0000000001000s
0000000000111s
0000000000110s
0000000000101s
0000000000100s
0000000000011s
0000000000010s
0000000000001s
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See Test Model 2, Chapter 9.
D.9 RATE CONTROL AND QUANTIZATION CONTROL

Core Experiments that require methods other than those described in Test Model 1 contain descriptions.
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Appendix F: CELL LOSS EXPERIMENTS

F.1 Cell loss

Cell loss can occur unpredictably in ATM networks. This document proposes a method of simulating cell
loss. A specification for a packetized bitstream has been defined. A model of bursty cell loss is defined
and analysed in order to allow the simulation of bursty cell loss. The proposed specification and model
are simplified; no attempt is made to model actual ATM networks; the main objective of the model is to
allow consistent simulation of the effects of cell loss on video coding.

F.1.1 Bitstream specification

The coded bitstream is packetized into 48 byte cells consisting of a four bit sequence number (SN), a
four bit sequence number protection field (SNP) and 47 bytes of coded data. In the stored file each
cell is preceded by a Cell Identification byte (CI). The syntax is as follows:

< CT ><SN><SNP>< 47 bytes of data >

The CI byte consists of the bit string '1011010" followed by the priority bit. The priority bit is set to
‘1" for low priority cells and '0' for high priority cells. The cell loss ratio for low priority cells may be
different to that for high priority cells. SN is incremented by one after every cell. The sequence
number protection is set to zero.

For a lost cell the cell is discarded.
F.1.2 Calculation of cell loss probabilities

This section outlines a method for determining whether any cell in a bitstream should be marked as
lost. Cell loss is assumed to be random, with the probability of cell loss depending only on whether
the previous cell of the same priority was lost.

Firstly the mean cell loss rate and the mean burst of consecutive cells lost is calculated from the
" probabilities of cell loss. These equations are then rearranged in order to express the cell loss
probabilities in terms of the mean cell loss rate and the mean burst of consecutive cells lost.

The following notation is used. The probability that any cell is lost is given by P, the probability that a
cell is lost given that the previous one was not lost is given by Pp and the probability that a cell is lost
‘given that the previous one was lost is given by P|. These probabilities are illustrated in the tree diagram
below. '
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Pl
|---=-=---- Lost Cell --------
| 1-pPl
P |
Unknown |
Previous ------ |
State I
1-P |

| Pn

j=----- Not Lost Cell ------

1-Pn

F.1.3 Calculation of mean cell loss rate

Lost Cell

| ---- Not Lost Cell

Lost Cell

|---- Not Lost Cell

The mean cell loss probability is given by P. In this section a relationship between P, P, and Pj is
derived, as follows, by finding two equivalent expressions for the probability of a given cell being
lost. A lost cell can occur in two ways: immediately after a cell has been lost and after a cell has been
received. The probability that a cell is lost, P, is the sum of the probability that the cell is lost given
the previous cell was lost multiplied by the probability that the previous cell was lost, P * Py, and the
probability that the cell is lost given the previous cell was not lost multiplied by the probability that

the previous cell was not lost, (1 - P) * Py. So,

P

P*P+ (1-P)*Pp
So

P Pn/ (1-P|+Pp

F.1.4 Calculation of mean burst of consecutive cells lost

A burst of lost cells is defined as a sequence of consecutive cells all of which are marked as lost. It is
preceded by and followed by one or more cells that are marked as not lost. The length of the burst of
lost cells is defined as the number of cells in a burst that are marked as lost. The mean burst of
consecutive cells lost is defined as the mean burst length. This number must always be greater than or

equal to one.

A burst starts when a cell is lost after one or more cells have not been lost. The probability that this is
a burst of length one is equal to the probability that the next cell is not lost, that is, 1 - P]. The
probability that this is a burst of length two is equal to the probability that the next cell is lost and the
one after that is not lost, that is, P * (1 - Pp). The probability of a burst of length n is Py(n-1) * (1 -

P)). The mean burst length, B, is therefore given by:

B

Summing this series leads to the result:

B

1/(1-Pp
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F.1.5 Calculation of cell loss probabilities
Rearranging equation (2) gives:
P = 1-1/B

Rearranging equation (1) gives:

Pn = P*(1-Pp/(1-P)
Using equation (3) gives:
Pn = P/(B*(1-P))

F.1.6 Simulation of cell loss

Proposal for Test Model 2, Draft Revision 2

©)

C))

Equations (3) and (4) allow the probabilities of cell loss to be calculated from the average cell loss
rate and the mean length of bursts of lost cells. Cell loss can easily be simulated using these
probabilities: assume that the first cell is received, then the probability that the next will be lost is
given by Pp. The probability that a cell is lost is always Py, unless the previous cell was also lost in

which case the relevant probability is Pj.

A simulation of cell loss only needs a random number generator, the values of P, and P} and the
knowledge of whether the previous cell of the same priority was lost or not. Pseudo-Pascal code to
perform cell loss is given below. Random is a function that returns a random number between zero

and one; its implementation is given below.

PreviousCelllost := FALSE;

Write('Enter mean cell loss rate and burst length');

Readln(P,B);
PL := 1 - 1/B
PN := P / (B * (1-P) )

For CellCount := 1 To NumberOfCells DO

BEGIN
CASE PreviousCellLost OF
TRUE : IF Random < PL THEN CellLost :=
ELSE CelllLost :=
FALSE : IF Random < PN THEN Celllost :=
ELSE Celllost :=
END;
Write(CellLost);
PreviousCellLost := CelllLost;
END;

END .

TRUE
FALSE;
TRUE
FALSE;

If the priority bit is used then the cell loss generator must be implemented separately for each of the

priorities.
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F.1.7 Random number generation

To ensure the consistent simulation of cell loss, it is necessary to ensure that the same sequence of
random numbers is generated by all simulations regardless of the machine or programming language
used. This section describes a method for the generation of such random numbers.

Random numbers are generated by use of a 31 bit shift register which cycles pseudo-randomly
through (2731 - 1) states (the value of zero is never achieved). The shift operation is defined by the
pseudo-Pascal code below.

DO 31 times
Begin
Bit30 := (ShiftRegister & 2730) DIV 2730
Bit25 (ShiftRegister & 2%25) DIV 2725
ShiftRegister := (2*ShiftRegister MOD 2731) + (Bit30 XOR
Bit25);
End

To generate a random number, the shift register is first shifted as above and then divided by (231 -
1). It may be easier to use it as it is, and multiply the probabilities in the program above by (2431 -

1.

A separate random number generator is used for low and high priority cell loss. For each, the shift
register is initialised to a value of 1 and is then shifted 100 times. If this is not done, the first few
random numbers will be small, leading to the loss of the first cells in the bitstream.

F.2 Parameters

This section suggests specific values of the parameters to allow consistent simulation of the effects of
cell loss on video coding.

The cell loss experiment will use a mean cell loss rate of 1 in 1000 and a mean burst length of 2.
Only low priority cells are lost. The following formula gives the value of P to use for low priority
“cells.

Total Bit rate
P=103 x

Total bit rate - Bit rate for high priority cells
For example:
Total bit rate 4Mbits/s
High priority bit rate 2Mbits/s (50% of Total)
then the mean cell loss rate figure for the cell loss simulation program is 2 x 10-3.

Other cell loss experiments at different cell loss rates can also be shown, cell loss rates such as 1 in
100.

For all experiments the following table should be completed.

High priority bit Low priority bit
rate rate

1-layer

96



19-Oct-92  Proposal for Test Model 2, Draft Revision 2

2-layer base
enhance

F.3 Experment to be supplied by Mike Biggar

F.4 Core Experiment on Cell Loss resilience by using frequency scanning

The purpose of this experiment is to compare the impacts of cell losses on both the block scanning (Basic
Mode) and the frequency scanning with MUVLC techniques.

The output bitstream of the frequency scanning mode will be split up into 2 layers (with 2 different
CLR's). The layer 1 will contain the (n-1) MSB's of the 4X4 LF coefficients; the layer 2 will contain the
LSB of the 4X4 LF coefficients and the full amplitude of the remaining 48 coefficients.

No concealment technique will be applied at the decoder side.

F.4.1 Global parameters of the experiment

The core experiment will be carried out by using the following parameters:

chroma_format: 4:2:0

picture_structure: frame picture

bit_rate: 4 Mbit/s

group of pictures structure: N=12 (15), M=3

prediction field/frame adaptive

transform field/frame adaptive

number of frames 50 (60)

The simulation of Cell Loss will be performed according to Appendix F - Section F.1 of TM2.
. The parameters for Cell Loss will be :

-Total bit rate : 4 Mbit/s
-High priority bit rate : 1.6 Mbit/s (40% of total).

F.4.2 Description of MUVLC

The MUVLC is described in Appendix Q - Section Q.8.2. and Appendix I - Section 1.8.3.

A C-program of the MUVLC algorithm will be distributed to interested parties by e-mail (send requests
to B. Hammer (Siemens), ha@bvax4.zfe.siemens.de, or J. De Lameillicure (HHD),

grunaaie@ w204zrz.zrz.tu-berlin.de).

F.4.3 Syntax modifications

For purpose of the frequency scanning experiments the slice layer, the macro block layer and the block
layer must be changed as indicated below:

F.4.3.1 Slice Layer
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slice() {
slice_start_code
quantizer_scale

no change
extra_bit_slice
slice_control()

slice_data()
}

| F.4.3.2 Slice Control Layer

slice_control() {
for (mb=0; mb<44; mb ++) {
while(nextbits() = '0000 0001 111"
macroblock_stuffing

same syntax as in macroblock() of TM2

if (macroblock_pattern)
coded_block_pattern()
}
)

| F.4.3.3 Slice Data Layer

slice_data() {
for (coef_i=1;coef_i<65; coef_i ++) {
buf_size =0
for (mb = 0; mb < 44; mb++) {
for(block_i=1; block_i<5; block_i++) {
if (pattern_code[mb][block_i]) {

buf_size++
)
}

)
for (mb = 0; mb < 44; mb++) {

if (pattern_code[mb]([5]) {
c_buf[buf_size] = dct_coef[mb][5][coef_i]
buf_size++
}

}
for (mb = 0; mb < 44; mb++) {
if (pattern_code[mb][6]) {
¢_buf[buf_size] = dct_coel[mb][6][coef_i]
buf_size++
b
)
if (coef_i<17)
muvlcO(c_buf,buf_size)
else
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muvlcl(c_buf,buf_size)
}
while(nextbits()!="0000 0000 0000 0000 0000 0001")
next_start_code()

)

muvlcO(c_buf,buf_size) {
pc_layerl = pc_code(c_buf,buf_size)
for(class=pc_layer1; class=0; class--) {
pl_layerl = pl_code(c_buf, buf_size)
run=0
for (buf_i = 0; buf_i < buf_size; buf_i ++) {
if(fc_coded[buf_i]) {
if (((c_buf[buf_i] >> class) & 0x1) == 1) {
rl = rl_code(run,pl_layer1)
ncb_layer] = ncb_code_MSB(c_buf[buf_i],pc_layerl)
ncb_layer2 = ncb_code_LSB(c_buffbuf_i],pc_layerl)
c_coded[buf_i] =1
run=0
}
else
run++
}
}
eoc = eoc_code(run,pl_layerl)
}
}

where ncb_code_LSB is the LSB of the coefficient:
ncb_code_MSB are the coefficient bits without the LSB.

. muvlcl(c_buf,buf_size) {
pc_layer2 = pc_code(c_buf,buf_size)
for(class=pc_layer2; class=0; class--) {
pl_layer2 = pl_code(c_buf, buf_size)
run=0
for (buf_i = 0; buf_i < buf_size; buf_i ++) {
if(c_coded[buf_i]) {
if (((c_buf[buf_i] >> class) & 0x1) == 1) {
rl = rl_code(run,pl_layer2)
ncb_layer2 = ncb_code(c_buffbuf_i],pc_layer2)
c_coded[buf_i] =1
run=0
}
else
run++
)
)
eoc = eoc_code(run,pl_layer2)
b
)
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rl_code(run,pl) {
while (run >= l<<pl) {

max_run
run -= I<<pl
}
prefix
run

)

eoc_code(run,pl) {
while (run > 0) {
max_run
run -= l<<pl

>
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I Appendix G: COMPATIBILITY AND SPATIAL SCALABILITY

Scalability is achieved by spatial reduction in the
implementation of the spatial scalabilty. The foll

pel and temporal domain. Compatibility is a specific
owing section will describe several core experiments.

An ad-hoc group will be formed, which will discuss results and will work on improvements.

I G.1 EXPERIMENTS LIST

19-Oct-92  Proposal for Test Mode! 2, Draft Revision 2

Expt. | Description Organizations Doc. No. | Picture
No. structure
1(a) Spatio-temporal weighted compatible field coding PTT, Col. U, 506 Field,
AT&T Frame
1(b) | Spatio-temporal weighted compatible frame coding BT, Bellcore, 506 Frame
AT&T, Sarnoff
1(c) H.261 based spatio-temporal weighted compatible CNET 506 Frame
frame coding
2(a) Spatio-temporal adaptive interlace-interlace conversion | AT&T, Bellcore, 509, new | Frame
Col. U, PTT, BT pIp
2(b) Interlace-interlace compatible coding AT&T, Bellcore, 506, 509, | Field, Frame
Col. U., PTT, BT new prp
| GUIDELINES
Bitrates
Expt. | Number of Bitrate Layer 1 Bitrate Layer 2
No. Layers Mbit/s Mbit/s
1a |2 1.15 2.85
1b) |2 1.15 2.85
1c) |2 1.15 2.85
2(a) 2 - -
200 |2 1.50 2.50
| CODING PARAMETERS AND STANDARD
M,N
|| Expt No. M,N for 30 Hz M,N for 25 Hz
1(a), 1(b),2(b) M=3, N=15 M=3, N=12
1(c) M=1, N=co M=1, N=co
MC Prediction Modes
| Frame Picture Field Picture
Frame MC Field MC
Field MC Field submacro MC
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G.2 EXPERIMENT DETAILS

G.2.1 Spatial-temporal weighting
Expt 1(a) Spatio-temporal weighted compatible field coding

This experiment compares two techniques, one that uses full "spatio-temporal weighted compatible field
coding" with that which uses only "spatial compatible field coding". The lower layer consists of SIF odd
fields which are coded using MPEG-1. The upper layer is either CCIR-601 fields or frames depending on
whether field- picture or frame- picture is employed. The upper layer is coded with MPEG-2 coding and
uses optional compatible prediction from the lower layer. The explanation of spatio-temporal weighted
compatible field coding, as well as the syntax is provided in Doc. MPEG 92/506.

The SIF layer decoded picture is upsampled for compatible prediction of odd- fields. The even- fields are
initially obtained by line shifting of odd- fields (vertical averaging). In the "spatio-temporal weighted
compatible field coding technique", the even fields just computed are weighted averaged with a temporal
mc prediction. The prediction signal is derived from the CCIR 601 decoded (frame or field) by using the
motion vectors included for macroblocks that may use spatio-temporal weighted mode. A 2- bit weight
code that represents spatial weight used in spatio-temporal prediction is specified on a macroblock basis.
This weight code corresponds to the least MSE and is selected after having compared MSE produced by
using all four weight codes to generate prediction.

It is important to recognize that for odd fields in CCIR 601 layer, full spatial prediction is available, i.e.,
in frame- pictures, for example, an 8x8 block from SIF- layer is upsampled horizontally to obtain a 16x8
block and used for compatible prediction without any modification. On the other hand, for even- fields in
CCIR-601 layer, a line shifted version of odd field obtained in the previous step froms thespatial
prediction and is weighted by "w" and summed with temporal prediction block of 16x8 macroblock by
mc prediction and weighted by "1-w".

Any syntax changes , macroblock ype tables or change of weights from those specified in Doc. MPEG
92/506 will be communicated with in the ad hoc group.

In Fig. 1(a), spatio-temporal weighted prediction is explained further. As shown, spatio-temporal

- weighting is applied to 16x8 even field submacroblock for frame- pictures. In case of field pictures

weighting is applied to 16x16 even field submacroblock.
All coding parameters and mc modes to be used are shown in tables.
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8 16
1:2.h \’
8 “pg 16
avg, v *
S 16
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XwW 16
8
T 16
mc pred fro 8 x (1-w)
higher layer
Fig. 1(a)
weight table:
w
1
1/2
/4
0
Expt 1(b) Spatio-temporal weighted compatible frame coding

This experiment compares two techniques , one that uses full "spatio-temporal weighted compatible
frame coding" with a reference technique, "spatial compatible frame coding". The lower layer is SIF odd
fields which is CCIR-601 frames coded frame- picture coding using MPEG-2 is applied for this layer
along with optional compatible prediction from the lower layer. Some explanation of spatio-temporal
weighted compatible frame coding, as well as syntax is provided in Doc. MPEG 92/506. Some changes
from the description in that document will be described here.

The SIF layer decoded picture is upsampled to provide compatible prediction for odd field of frame-
picture. The even- fields are initially obtained by line shifting of odd- fields (vertical averaging). In the
full "spatio-temporal weighted compatible frame coding" technique, a frame- spatial prediction
macroblock obtained by merging 16x8 blocks of upsampled odd and even fields is weighted averaged
with a 16x16 macroblock obtained by temporal mc prediction. The prediction signal is derived from the
CCIR-601 decoded frames by using the motion vectors included for macroblocks that may use spatio-
temporal weighted mode. A table for 2- bit weight code is provided in Fig. 1(b). This code actually a pair
of spatial weights (w1,w2) where w1 is applied to lines of field1 and w2 to lines of field2. The temporal
weights are easily computed as (1-w1, 1-w2) and are applied to lines of field1 and field2. Fig. 1(b) also
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shows the all necessary operations needed to derive a 16x16 macroblock for CCIR-601 layer by weighted
spatio-temporal combination. The values of weights provided in the table are a preliminary guess,
experimenters using different weights to determine the best set of weights must document statistics of
both, this sct and alternate set. For information purposes alternate better weights should also be
communicated with in the ad hoc group.

It is important to recognize the difference in this experiment as compared to experiment 1(a). Here,
spatio-temporal weighting is performed on 16x16 macroblocks, where as in experiment 1(a), for frame-
pictures, spatio-temporal weighting is performed on 16x8 even field macroblock. This has some impact,
not only related to the block size, but also to which predictions get filtered.

All coding parameters and motion compensation modes to be used are provided in the tables.

g 16
— 1: 16
. 13 l;; 'S Wl
avg,v 16
16
S 16
8
Xw
x (1-w1)
16
T x (1-w2)
m.c pred from> 16
higher layer
Fig. 1(b)
weights:
(wl,w2)
(1.9
(3/4,1/4)
(3/4,1/2)
(1/2,1/2)
Expt 1(c) H.261 based Spatio-temporal weighted compatible
frame coding
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This experiment is similar to Expt 1(b)., except that specifications for H.261 are used for coding the SIF
odd field (lower) layer. Two techniques are compared, one in which the higher layer uses full, "spatio-
temporal compatible coding", with the reference technique of “spatial compatible frame coding".

Expt 2(a) Spatio-temporal adaptive interlace-interlace
conversion

This experiment compares two techniques, one that uses "spatio-temporal adaptive interlace-interlace
conversion " and the other, a reference "spatial interlace-interlace conversion of TM2". The higher layer
is CCIR-601 frame pictures; a lower layer SIF 1 is derived from it. Both down sampling of CCIR-601 to
SIF_I as well as upsampling of SIF_I to CCIR-601 is investigated.

An example of "spatio-temporal adaptive interlace-interlace conversion" is specified in Doc. MPEG
92/509. This technique does not use motion compensation for deinterlacing. Any suggested modifications
to these specifications should be fully documented and documented and communicated with in the ad
hoc group. altemately, other methods of "“spatio-temporal adaptive interlace-interlace” conversion are
also allowed in this experiment as long as a comparison with "spatial interlace-interlace conversion of
TM2" is made and new technique is fully documented and communicated with in the ad hoc group as
soon as possible.

It is realized that the downsampling process is not a matter of standardization, however, both
downsampling and upsampling documentation is needed as a certain upsampling method which is
standardized may work well with specific downsampling method.

In comparing results of this experiment, a pair consisting of down sampled images shown at SIF_I
resolution, one corresponding to "spatio-temporal adaptive interlace-interlace" technique and the other
corresponding to the reference, "spatial interlace-interlace of TM2" is mandatory. In addition to down
sampled images, down and upsampled images are also necessary, again, a comparison as in
downsampling case is made, this time at upsampled CCIR-601 resolution. It is recommended that 3 test
scenes "Flowergarden", "Mobil Calendar" and "Football" be used for experiment. It is also suggested that
SNR value of SIF_I and upsampled CCIR-601 image with respect to original CCIR-601 image with

- respect to original CCIR-601 should be reported for comparison purposes.

Expt 2(b) Interlace-interlace compatible coding

In this experiment, compatible coding is performed using 2 layers, SIF_I and CCIR-601. Both SIF_I and
CCIR-601 are inherently frame- pictures. SIF_I is derived from CCIR-601 using'spatio-temporal
adaptive interlace-interlace conversion" (Doc. MPEG 92/509 or a new proposal). SIF I is coded using
MPEG-2 and upsampled both horizontally and vertically as compatible predictions for the higher layer.
For each macroblock in the higher layer, a 16x16 temporal prediction is obtained from upsampling an
8x8 block in the lower layer. Spatio-temporal weighted averaging is performed on these two 16x16
prediction to produce the final prediction macroblock. A 2- bit weight code is selected from the table
shown in Fig. 1(b) based on the minimum MSE. Therefore, the field1 spatial prediction is weighted by
w1, and the field2 spatial prediction is weighted by w2, and the temporal predictions for field] and 2 are
weighted by (1-w1) and (1-w2) respectively.

G.2.2 Coding

The use of coded block pattern is allowed for all compatible coded macroblocks.
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When compatible prediction is selected for an Intra macroblock, the DC value is not differentially coded
and all DC predictors are reset.

| Non-intra Weighting matrix is employed for quantizing all compatible predicted macroblocks.

l The macroblock types for compatible macroblocks are as follows:

NOTE: For compatible macroblocks, in the block layer it is no longer necessary to transmit the DC
coefficient with the differential DC code if a compatible prediction is made for this block.

Motion vector predictors (PMYV)
(see 8.3)

Macroblock Addressing and Skipped Macroblocks
In Intra pictures there are no skipped macroblocks. For compatibile macroblock_type a skipped
macroblock indicates that the macroblock is using base layer prediction only, no coeficients are coded.

In predicted pictures a macroblock is skipped if its motion vector is zero, all the quantized DCT
coefficients are zero, and it is not the first or last macroblock in the slice. For compatible
macroblock_type a skipped macroblock is not used.

In interpolated pictures, a macroblock is skipped if it has the same MTYPE or
compatible_macroblock_type as the prior macroblock, its motion vectors are the same as the
corresponding motion vectors in the prior macroblock, the compatible weight_codes are the same, all its
quantized DCT coefficients are zero, and it is not the first or last macroblock in the slice.

| Compatible prediction method

On a macroblock basis a prediction from the locally decoded picture from the base layer may be chosen.
This prediction is generated from a weighted average of the corresponding upsampled coded 8*8 block
of the lower layer( to a 16*8 block) and the normal prediction of the upper layer(See figure G.1 and
G.2). The 8*8 block is upsampled to a 16*8 block by a [1/2, 1, 1/2] filter (a similar operation is perform
on the chrominance 4*4 subblock 1o give a 8*4 prediction block).

InPUt_Q._ T 0 bits

Q 1
|
T 1
+
IT—sﬂ
MPEG-1
Uc Mc
T Transform Q Quantizer MC Motion
compensation
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Sw Weighted Switch Uc Up conversion

Figure G.1: Compatible encoder structure

MPEG-2 bits 1 1
Q T + 601
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MPEG-1 bits
a! ri—(+ SIF
Mc
T Transform Q Quantizer MC Motion
compensation
Sw Weighted Switch Uc Up conversion

Figure G.2: Compatible decoder structure

. Selection method

Selection is MSE based. The mode which gives the minimum is chosen.
Quantization

Quantization is in line with chapter 7. There is one exception, which is intra quantization in only used on
intra macroblock type and no compatible prediction (compatible_type = 0).

Coefficient coding

In all picture types, macroblocks in which a compatible prediction has been made (i.e. when
compatible_type is not 0) the quantized coefficients are sequentially transmitted according to the zig-zag
sequence given in figure 4.5.

The combinations of zero-run and the following value are encoded with variable length codes as listed in
table B.5c to B.5f. End of Block (EOB) is in this set. Because CBP indicates those blocks with no
coefficient data, EOB cannot occur as the first coefficient. Hence EOB does not appear in the VLC table
for the first coefficient. Note that EOB is stored for all coded blocks.
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The last bit 's' denotes the sign of the level, '0' for positive '1' for negative.
The remaining combinations of (RUN, LEVEL) are encoded with a 20-bit or 28-bit word consisting of 6

bits ESCAPE, 6 bits RUN and 8-bits or 16-bits LEVEL. RUN is a 6 bit fixed length code. LEVEL is an
8-bit or 16-bit fixed length code. See table B.5g
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Appendix H: LOW DELAY CODING

H.1 Simulation guidelines for low delay profile.
H.1.1 Coding structure.

In the low delay profile it is assumed that the total coding/decoding delay shall be kept below 150 ms.
However, it is realized that coding/decoding delay considerably below that limit could be desirable for
many applications (e.g. two way communication over satellite links).

In the following the delay will be measured in “field periods" - fp. For 50 and 60 Hz pictures the 150 ms
correspond to:

0 50 Hz -> 150 ms = 7.5 fp.
0 60 Hz -> 150 ms = 9.0 fp.

The coding/decoding delay is considered to consist mainly of two parts:

» Buffer delay. For low delay mode, forced intra slice/column is recommended for updating. With these
updating method, it is assumed that the buffer delay may be 2fp.

o Delay resulting from frame/field reordering. This will be called basic delay.

The sum of these two contribution should be below 150 ms - or as low as possible. The possible coding
modes fulfilling this criteria are listed in the table below.

Predictor performance:
Coding performance is important also for low delay coding. Performance depends to a large extent on
the quality of the predictor. The preferred predictors for the different modes are:

o Field coding and M>1: The predictors in TM1 performs well.

0 Frame coding and M=1: FAMC - or similar - are the preferred modes.

o Field coding and M=1: A prediction mode similar to FAMC have shown very
promising performance and would be preferable. The syntax is the same as for field
coding with one vector pr. MB as defined in TM1.

The table below list:

o Possible coding modes that fulfills the delay criteria.
o Preferred prediction modes (for M=1).

.0 Different delays.

| |- Performance ranking estimated by computer simulations.

Coding mode M Buffer Basic Total Performance ranking
delay delay delay (low="good")

Frame FAMC - or similar 1 2fp 2fp 4fp 2

Field FAMC - or similar 1 2fp Ofp 2fp 3

Field FAMC -or similar 2 2fp 4fp 6 fp 1

H.1.2 Handling of scene change to maintain low delay.

A major contribution to the buffer delay is the complete INTRA frames/fields coding. To get around this
delay it is necessary for the low delay profile to have the possibility of picture skipping. The encoder
may decide to skip frames after a "large" picture due to scene cut.
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For the prediction of pictures followed skipped one, the re-constructed image of the skipped picture is
forced to set to the re-constructed image of the "large" picture.

VBV consideration.
l | VBV specification for skipped picture can be found in Annex. C.

|D in ration
The following decoder is assumed

1) The decoder and the encoder have the same video clock frequency as well as the same
picture rate, and are operated synchronously [current VBV specification]. Some means are provided
externally to achieve this synchronism, e.g. by using sampling clock information contained in the picture
header, AAL, time stamp.

2) It has a receiving buffer of size B, which is given in the vbv_buffer_size field in the
sequence header [current VBV specification].

3) It receives coded data at a constant rate and write in the buffer [current VBV
specification].

4 The buffer is initially empty [current VBV specification].

5) Decoding starts after filling the buffer for the time specified by the vbv_delay field in the

video stream [current VBV specification].

6) At decoding timing with the same interval as that of encoder, all of the data for the non-
dropped picture which has been in the buffer longest is instantaneously removed, instantaneously
decoded and starts to be displayed [current VBV specification]..

D If there is no complete data for a coded picture, there takes place no decoding operation
and the most recent decoded field is displayed repeatedly [TM2 specification].

. Caoding control
Model for encoding

Two coding control examples, M=1 frame coding and M=2 field coding, are given to show that there
exist methods to meet the above mentioned decoder requirements.

This encoder operates as follows;

1) It has a transmission buffer of size B. This means that the maximum number of bits per
picture should be B.

2) The buffer is empty when encoding starts.

3) Just after a complete picture is input to the encoder, it instantaneously encodes the picture

and instantaneously sends coded data to the buffer.

4) The buffer content is read out at a constant rate.
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S) A buffer occupancy value Bl (less than B) is set corresponding to the required buffering
delay time (BI/R where R is transmission rate). For stationary signals, the coding operation is controlled
so that the buffer occupancy stays between zero and B] at any time.

6) If a scene change or forced updating takes place, the buffer occupancy exceedé BI, and
necessary number of pictures are dropped.

The encoder controls the bit generation for a picture by referring to the buffer occupancy just before the
encoding, and the estimated buffer occupancy just before encoding the next picture. If there is no
picture dropping, the low delay mode encoder controls so that no overflow nor underflow of the buffer
with size Bl should take place.

Example for M=1 frame coding

Figure 1 shows an example for M=1 frame coding with BI corresponding to 1.5 frame time delay. Until
frame F, low delay operation is maintained and G is the first frame of a new scene. Three frames H,IJ
are dropped and low delay operation is resumed from frame K. In order to do s0, the number of bits for
frame G should be regulated to fall in the zone between 0 and BI-R/P (R: transmission rate, P: picture
rate), filling dummy bits if necessary, just before starting to encode the next frame. Figure 2 shows such
regulation.

xampl M=2 field codin

Figure 3 shows an example for M=2 field coding with Bl corresponding to 2 field time delay. In this
case, the display order is different from the encoding order. Hence there may be two strategies; to drop
fields in the encoding order or in the display order. Figure 3 illustrates the two methods, which will give
different subjective impressions.

When fields are dropped in the encoding order, such as p6.,b3,b4,p9, repetition of the most previously
decoded field happens at maximum three places. Encoding of b7 and b8 should use only p5 and p10, or
p5 only in the worst case where pl0 is also dropped, thus the reproduced pictures will degrade. When
fields are dropped in the display order, such as b3,b4,p6,b7,b8, repetition of the previously coded field
happens at maximum two places. In this case, encoding of p9.pl0 is carried out by anticipating that
b7,b8 are to be dropped.

In either case, low delay operation is resumed from field pl3.

Since subjective impression is involved, the two methods should be experimented. If there is no
significant difference in impression, field dropping in the encoding order is more straightforward.
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Hander for ski ictu
In the skipped picture, only their picture headers is sent with indication of skipped picture in
dropped_picture, which is one bit integer defined in picture header.

Numbering of Temporal Reference

Temporal Reference is the straightforward source picture TR method as described in bit stream syntax.

Source picture ABCDEFGHIJKLMN
Coded picture ABCDEFG***KLMN
Sourcepicture TR 1234567 891011121314

| H.1.3 How to handle the first picture using forced intra slice

In the low delay profile it is of interest to study the “steady state" performance of buffer delay. It is
therefore desirable to pretend that we are in the steady state situation from the beginning of the sequence.
The proposed way to obtain this is the following:

- Code the first picture INTRA with QP=16 (for 4 Mb/s).
- After the first picture the buffer is set to a value corresponding to 1/60th of a second
(66667 bits for 4 Mb/s).
- The number of bits for the first picture - used for buffer regulation - is set to the average
number of bits for the sequence, and this picture is treated as P-picture in term of rate control.
- In evaluating the delay only buffer filling after the first picture is considered.

Note) In case of using intra picture, the first picture of the test sequence is coded as NORMAL Intra
Picture, and its rate control follows NORMAL rate control described in- TM.

H.1.4 Definition of intra slice/column coding.

. To reduce buffer delay the updating is made with forced INTRA slices rather than forced INTRA
pictures. The procedure for doing the forced INTRA slice coding is shown in the figure below. All the
modes given in the table above are covered. The updating for the different modes are arranged so that
the time for total update is the same for all modes.

.Instead of intra slice updating, intra column updating may be used. In this case one column of MBs is
treated as an "update slice". The updating procedure for columns can be the same as for slices indicated
in the figure below.

o Frame mode, M=1: Two slices pr. frame.
o Field mode, M=1: One slice every other field.
o Field mode, M=2: One slice every field for P-fields.

To guarantee that errors do not propagate there is restriction on predictions in region 1. Motion vectors in
region 1 may not refer to areas in region 2 (refer to the figure).

With this method the time for total refresh is 500 ms for 60 Hz sequences and 720 ms for 50 Hz

sequences. It should be noted that the maximum entry times for channel hopping are twice as large as the
mentioned values.
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Field, M =1 Field, M=2

PPBBPP

Intra slice - frame based

Intra slice - field based

Figure H.1 Low Delay Coding stategy
H.1.5 Rate control.

INTRA SLICES

For intra slice updating, a modified buffer regulation is introduced.

TMI rate control assumes that the generated bit amount Bj increases constantly. Therefore buffer

occupancy (] is calculated as follows.

d;’=d§+Bj—-]_Bj—l M

B,=T,*—) @

P MB_cnt

Here ﬁj is a prediction value of Bj . It increases linearly as shown in figure 2. When using intra

slices, é’, 18 modified as in figure 3.

Target bit amount is also modified to Tp + Tp . The target bit amounts are calculated as :
P 1
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_ Number _of _P _slices * Tp
P, Number_of _P_slices * Tp+ Number _of _I_slices * Ti

*T, ®»

Number _of _I_slices * Ti
Tp . *Ti @

: Number_of _P_slices * Tp+ Number _of _I_slices * Ti
The rate control may then be operated as in equation (1).

B B
Tpp Tpp+Tq

R

MB_cnt P [ P MB_cnt
Figure H.2 Figure H.3
SKIPPED PICTURES
For picture skipping the following buffer régulation is used:

- For the first picture after a scene change QP is fixed to the same value as for the first
picture.

- - Rate control is activated again from the second picture after the scene change.

- The number of bits generated in the skipped picture is forced to set to zero.

- The Step 1 of rate control in TM is active even in the skipped pictures.

- The Step2 and Step3 of rate control are active only in the coded pictures.

H.1.6 Influence of leaky prediction on low delay coding.
If leaky prediction is needed for other purposes, it could also be useful for the low delay profile. Forced

INTRA slices could be replaced by leaky prediction. Possible advantages could be reduced buffer delay
and no visible INTRA updating.

H.2 Experiments

The three coding structures were picked up for low delay at Angra meeting.
- Frame structure M=1
- Field structure M=1
- Field structure M=2
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The core experiments for low delay should be carried out on the above structures. The rate control with
forced intra picture and with picture skippirig can be found in Appendix H "Guide line of simulation
with low delay profile®. In other cases, rate control is as in TM1.

Experiment 1 Comparison of coding efficiency among predictions at low delay.
( Revised to Experiment 4 )

Experiment 2 Comparison of coding efficiency and delay between using intra picture and forced
intra slice

Forced intra slice can reduce the buffering delay because of smoothing the number of bits per frame. To
check the impact of intra slice , the coding efficiency and delay will be compared between using intra
picture and forced intra slice as the same table of experiment 1.

Experiment 3 Comparison of coding efficiency and delay between with and without picture
skipping

At scene change, picture skipping is useful technique to keep the delay low. The coding efficiency and
delay with/without picture skipping at scene change will be compared on the same table of experiment 1.
To get scene change, two sequences are combined (e.g. Flower Garden / Mobile Calendar ).

Experiment 4 Comparison of coding efficiency among predictions at low delay.

( Core experiment L10 in prediction ad-hoc group)

Every coding structure has several prediction modes. In order to seek the suitable prediction for low
delay, the performance of predictions will be compared within the following table.

prediction Ft/Fi/Dual’ Fr/F¥SVMC3 | Fi/F/SVMC3- | Fr/Fi/dual/ Fr/Fi/dual’
structure 1/2-pel _lsvmcs (SVMC3-dual)
Fr M=1
Fi M=1
Fi M=2
Experiments should be performed so that proper comparisons cab be made concerning;

- Prediction

- Coding structure.

Experiment No.5 (picture skipped order in field structure with M=2)
Picture skipped order in case of field structure M=2
Now we have two way of skipped order for field structure M=2 as
- Encoding order
- Display order.
These two ways should be compared in term of subjective impression. The detail can be found in the
revised "Simulation guide line for low delay profile."

The core experiments for low delay should be carried out on the above structures. The rate control with
forced intra picture and with picture skipping can be found in Appendix H "Guide line of simulation
with low delay profile“. In other cases rate control in as in TM1.

H.2.1 Comparison of coding efficiency among predictions at low delay.

Every coding structure has several prediction modes. In order to seek the suitable prediction for low
delay, the performance of predictions will be compared within the following table.
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prediction Fi/Fi Fi/FVFAMC SVMC Fr/Fi/Dual’/Dual
structure

Fr M=1

Fi M=1

Fi M=2

Experiments should be performed so that proper comparisons cab be made conceming;
- Prediction
- Coding structure.

H.2.2 Comparison of coding efficiency and delay between using intra picture
and forced intra slice

Forced intra slice can reduce the buffering delay because of smoothing the number of bits per picture. To
check the impact of intra slice , the coding efficiency and delay will be compared between using intra
picture and forced intra slice as the same table of experiment 1.

H.2.3 Comparison of coding efficiency and delay between with and without
picture skipping

At scene change, picture skipping is useful technique to keep the delay low. The coding efﬁciency and

delay with/without picture skipping at scene change will be compared on the same table of experiment 1. .
To get scene change, two sequences are combined (e.g. Flower Garden / Mobile Calendar ).
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APPENDIX | : FREQUENCY DOMAIN SCALABILITY CORE EXPERIMENTS

Core Experiment l.1: Interlace-in-Interlace Extraction

l.1.1: Background

It has become apparent that the case of a two-layer scalable video hierarchy with both layers interlaced is
very important. It is further noted that the quality of each layer is critical in some applications. It is
therefore important to investigate encoder solutions that address this issue.

To produce a lower resolution layer in frequency scalable video, a subset of the DCT coefficients of the
8x8 blocks are extracted. In the case of non-interlaced video, the upper left 4x4 coefficients are chosen.
When this technique is applied to interlaced source material, the temporal resolution is reduced by a
factor of two. This is unacceptable for high quality applications.

A first solution to this problem was to adaptively use frame and field coding and motion compensation
modes. However, field-based extraction of the lower layer produces samples on non-equally spaced
lines, none of which are spatially co-located with those produced by frame-based extraction as shown in
Figure I.1.

—Time —»
* ° . N
[ g . PY ®
* ° L PY +
[} . ° ®
— ® P Vertical
2 : ©
T e * .
L J - Py ®
Frame Frame Field
Raster

Figure I.1:Raster mis-match between frame and field based 4x4 extraction.

This effect results in very poor motion-compensated prediction when the current macroblock and the
prediction macroblock in the reference picture are coded in different modes. Moreover even at high bit
‘rates, a high quality lower layer signal is not available.

In an attempt to avoid the complexity of correcting the raster position of the field-based lower layer
pixels, some alternative solutions, involving the use of non-lowpass subsets of the DCT coefficients in
scale-4, have been proposed and will be evaluated during this core experiment.

It is well-understood that the interlaced-in-interlaced mode of operation could well be used with complex
encoder structures designed to satisfy quality requirements of specific applications. However, in order to
isolate the effect of the options under test from other aspects of frequency domain scalable systems, we
propose to conduct this core experiment using a simple encoder structure which produces a single layer
bit-stream.

Core experiment 1.1 addresses the low layer encoder, which produces SIF resolution pictures. This

decoder, given in Figure 1.2, is identical in structure to the upper layer decoder with the exception of the
quarter-pixel resolution for the motion-compensation as described in Appendix D. The decoder will
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decode the entire bit-stream, extracting one of the subsets of the scale-8 DCT coefficients given in Figure
L.3. Pictures produced with each of these subsets will be compared to determine which subset gives the
subjectively best tradeoff of motion rendition, vertical resolution, and aliasing.

+
bcT Select E
o= S%ect | ipcr,

Motion MCP,

Figure L2: Scale-4 decoder for core experiment L1

XXX X *® % % % X XXX * % % # X XXX * * % %
XX XX * * % * XX XX * % % % XX XX * % % %
X XXX % % % % * % % k k % % % * X X X % % % *
* kK k % k Kk k % * % % k k Kk *k % * * k k k k k *
% % % * % * % * k * % % % % * * % % * % %k * %
* % %k k Kk Kk Kk & * k kK Kk Kk x k % * % k Kk % Kk k *
* % k k Kk Kk % & XX XX * * & * X * x % % % % *
X XX X * % % % X X X X * * % % XX X * % % % %
(a) (b) (c)

Figure 1.3. Three possible DCT coefficient subsets.
Note: This core experiment uses a single-layer bit-stream. Bit-stream scalability requires additional

base/slave layer multiplexing, which in turn requires the scanning order to be defined appropriately. The
best scanning path depends on the selected set of DCT coefficients, and is still under investigation.

[.1.2: Description

_ The encoder and upper layer decoder are identical to their Test Model 1 non-scalable equivalents under
the following conditions:

e Chrominance sub-sampling 4:2:0

* Bit rate 4.0 Mb/s

e N=15(12), M=3

¢ Frame coding and motion compensation modes only

* Other aspects as in TM1 and/or as in TM2 Appendix D

The lower layer decoder has the following features which differ from the scalable Test Model 1 scale-4
decoder:

 scale-4 DCT coefficients extracted from single layer bit-stream
¢ 1/4 pixel motion vector resolution in scale 4

Test sequences: Bicycle, Cheer Leaders
1.1.3: Syntax Changes

None required for this core experiment.
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Core Experiment 1.2: Pyramid Encoder Improvements

This core experiment addresses the issue of retaining the high quality high resolution layer of frequency
domain scalable encoders, while improving the quality of the lower layer(s). The fundamental nature of
the experiment should make the results useful across a range of application profiles.

[.2.1: Background

A single-loop two-layer encoder using frame coding and motion-compensation modes only can be made
efficient at high resolution, but suffers from drift problems at lower resolutions. A significant
improvement in lower resolution quality is realized when the full precision of the motion vector
information as it exists in the bit-stream is used to perform the lower resolution motion compensation as
described in Appendix D. However, it is felt that more improvements can be made to the basic
framework of a multi-layer encoder to further improve the quality.

One investigation along this line has been the use of motion-compensation loops in more than the highest
resolution layer. When the multiple loops are uncoupled except for the upward coefficient prediction, as
shown in MPEG 91/212 Figures 5a and 6, the drift problem is solved, but at the expense of reducing the
upward prediction efficiency. The result is a tilt in the balance of quality away from the high resolution
layer. Overall, the coding noise is increased. In an attempt to control this quality balance more
carefully, coupled motion compensation prediction loops have been studied, in which the coupling takes
the follow form. At each layer, the prediction error signal is formed by a weighted average of the
appropriate DCT coefficients from more than one scale, as in MPEG 92/288 Figure 1. These weights
allow one to realize encoders which vary smoothly from the uncoupled case, which represents the best
drift correction we currently know of, to the simple case in which the low resolution coefficients are
extracted from the high resolution layer. It was hoped that some in-between setting of the weights would
produce a better quality balance. However, the basic problems of low layer drift and upward prediction
efficiency are not simultaneously resolved.

A solution to the drift problem was presented in MPEG 92/288 on the basis of a subband scheme using
multiple prediction loops in encoder and decoder. This scheme will be addressed in the next Core
_ Experiment trying to identify the maximum quality scheme with less hardware complexity constraints.

In an attempt to find simple solutions to the fundamental problems, we propose a Core Experiment in
which the value of the lower layer coefficients as a predictor for those in the higher layer is studied. In
particular, we envision two classes of variations. The first would use this upward DCT coefficient
prediction in all MBs of certain picture types but not in those of others. The second class would allow
adaptive use of the upward prediction on a macroblock basis. The purpose of the core experiment is to
compare the picture quality resulting from the various approaches.

The first variation to be tested is one in which the upward prediction is unconditionally disabled for P-
and B-pictures, to determine whether global prediciton of the prediction error (which is precisely what
the upward prediction is doing in P- and B-pictures) is effective. This encoder is known as Version A.
The second variation (Versions B and C) will employ adaptive upward coefficient prediction. This
adaptivity will be possible at the MB level.

In the conditional upward prediction encoder Version B, upward prediction is done if the mean square
prediction error is less than the energy of the predicted signal. As a benchmark, an encoder that uses the
mode requiring fewer bits will also be implemented (Version C). The results in terms of SNR and picture
quality produced by these two encoders will be compared with that of the basic encoder (with upward
prediction), as well as with Version A.
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In either of these experiments, improvements in the upward prediction will result in quality improvement
at both resolutions, since the quantization factors used in each scale are identical. It is also of interest to
consider the effect of conditional upward coefficient prediction in cases where the lower layer is bit-rate-
constrained through more coarse quantization, aa this is likely to worsen the prediction efficiency. It
should be noted that even in the worst case in which upward prediction never helps, the frequency
pyramid has advantages over simulcast in not requiring redundant coding of side information and in
efficiently coding I-picture data. Although no core experiment along these lines is proposed at this time,
independent investigation is encouraged. Furthermore, we feel that important improvements in frequency
domain scalable encoder performance can be made in areas other than conditional upward prediction and
motion vector resolution, and urge our MPEG colleagues to consider this problem.

These encoders all fall within the framework shown in Figure 1.4,
figure to be inserted
Figure L.4: Two-layer scalable encoder with conditional upward prediction.
The use of upward prediction is summarized in Table L.1.

Table I.1. Use of upward prediction in different picture types

Encoder Upward Prediction
Version I P B
A v n n
B v c c
C v c c

y: upward prediction used
n: upward prediction not used
¢: conditional

1.2.2: Description
The base encoder for this experiment has the following specifications:

-e  tworesolution layers (scale 8 and scale 4), pyramidal structure
two motion-compensation loops with down-sampling filter equivalant to an 8x8 forward DCT
performed on each block followed by a 4x4 IDCT on the upper left 4x4 subblock.
unconditional upward DCT coefficient prediction
equal MQUANT in all layers
e other aspects as in TM1 and/or TM2 Appendix D

Test sequence: Mobile and Calendar
1.2.3: Syntax Changes

To indicate the use of Version A in the Test Model, 3 single-bit codes, up_I, up_P, and up_B, are
inserted in the sequence layer after end_of fscales_code. The interpretation of these bits are as follows:

up_X =0 -> upward prediction used in I-pictures
up_I =1 -> upward prediction not used in I-pictures
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up_P = 0 -> upward prediction used'in P-pictures
up_P = 1 -> upward prediction not used in P-pictures

up_B = 0 -> upward prediction used in B-pictures
up_B =1 -> upward prediction not used in B-pictures

For Versions B and C, we use the up_IPB flags at the sequence layer, but with the following
interpretation:

up_I = 0 -> adaptive upward prediction used in [-pictures
up_I =1 -> upward prediction always used in I-pictures

up_P =0 -> adaptive upward prediction used in P-pictures
up_P =1 -> upward prediction always used in P-pictures

up_B =0 -> adaptive upward prediction used in B-pictures
up_B = 1 -> upward prediction always used in B-pictures

In order to indicate whether upward prediction is to be used in a given MB, we introduce a MB layer
codeword up_pred, used in a fashion similar to the currently existing MB syntax for compatible_type.
The interpretation of the codeword is simply:

up_pred = 1 -> perform upward prediction in the current MB
up_pred = 0 -> no upward prediction in the current MB

Syntax modification at the Macroblock layer (directly after the compatible_type test) is as follows:

I if (picture type == 1)
if (up I == 1)
up pred 1 uimsbf
l else if (picture type == 2)
if (up P == 1)
up pred 1 uimsbf

l else if (picture_type == 3)
if (up B == 3)
up pred 1 uimsbf

To emphasize, this codeword exists in the bit-stream only for Versions B and C of Core Experiment 1.2,
and only for picturetypes using adaptive upward prediction.

Core Experiment 1.3: Maximum Quality Encoder

The purpose is to find a two-layer coding scheme with best possible subjective quality, which should also
be balanced between the layers. The performance of subband and pyramid solutions to frequency
scalability will be compared.

Theoretically a critically sampled (subband) scheme for layered coding should yield a superior coding
performance over a pyramid scheme. It will then be suited to applications that are not satisfied with the
quality from the pyramid approaches developed in the scalability group as well as in the compatibility
group.
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However this involves optimization of the underlying algorithm, i.e. taking away as many constraints as
possible. Specifically no rate control will be used on the individual layers. Moreover one of the schemes
proposes to use a multiple loop decoder for the top layer(s).

The following algorithms are proposed for this experiment:

a) the best pyramid scheme that can be identified from Core Experiment 1.2
b) the subband scheme in Fig. 1 of MPEG 92/288 that was developed after the Haifa meeting.
¢) the new subband scheme proposed in Fig. 3 of MPEG 92/288

Common parameters:

Chrominance subsampling: 4:2:0

Bit rate: 4 MBit/s

N=12 (15), M=3

two resolution layers (scale 8 and scale 4)
Frame prediction and coding only

1/4 pixel motion vector resolution in scale 4
equal QP in all layers

other aspects as in TM1

The quality reference, for subjective comparisons as well as SNR calculations, is the SIF version of the
original signal.

The most appropriate scheme for a) and its parameters are subject to the results of core experiment 2.
Initially the encoder in MPEG 92/288 Fig 1. might be used with weighting factors of 0.5:0.5 for the two
prediction error signals. The downsampling filter is the same as in Core Experiment 1.2.

The weighting factors for b) shall be selected (iteratively) such that the SNR of the upper layer matches
the one of a). The SNR and - more important - the subjective quality of the lower layer will be compared
with a).

Proposal c) has no variables, so that a straight forward comparison of SNRs and picture quality with the
other two candidates can be done.

The two subband schemes need a change in DCT scanning order to allow for bitstream scalability. The
following scan order is proposed:

1 2 5 10 17 26 37 50
3 4 7 12 19 28 39 52

To signal the use of this scanning order for the subband schemes, a flag subband is introduced in the
sequence header right after the end_of_fscale_code flag:

subband = 1 -> alternate scan order

Note: The maximum quality issue is relatively independent from the-interlace-in interlace problem as
long as the results of Core Experiment 1.1 are applicable here. Therefore the above scanning can be used
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which is suitable for non-interlaced material. Mobile & Calendar (as a mildly interlaced sequence) is
selected as test sequence for this experiment.

Core Experiment 1.4: Scalable Side Information
l.4.1. Application

Any application which uses frequency scalability techniques and requires one or more layers with a
sufficiently low bandwidth that all overhead information can not be transmitted within or below that
layer. For example, multichannel transmission with a coding layer below 1 mbit/s.

1.4.2. Experiment details

1.4.2.1 Multichannel scalability, each channel with a fixed bandwidth.

Resolution scales: 1/16, 1/4, 1 (QSIF, SIF and 601)
Bitrates: 0.75, 1.5 and 4.0.
All layers must be at full temporal resolution.

1.4.2.2 Multichannel scalability for entertainment (each channel has fixed
bandwidth)

Resolution scales: 1/4, 1, 1 (SIF, 601 and 601)
Bitrates: 1.5, 3.0, 4.0.

All layers must be at full temporal resolution.
1.4.3. Syntax extensions

The primary extension to the syntax is to support sending side information (macroblock type, address
increment, coded block pattern and motion vector information) in the higher layers of the encoding. We
introduce a new type of slave slice, called an incremental_slice, which contains
incremental_macroblocks. Also we change the method of interpreting motion vector information.
Rather than send full size motion vectors in the lowest layer and scaling them in the decoder for use at
each layer , the motion vectors are sent at the scale appropriate to the dct_size of the slice within which

- they are transmitied. For use in higher quality slices they are scaled up. The higher layer slice may
optionally contain refinement information for the motion vector.

1.4.3.1 Sequence header:

Add a one bit code incremental_side_information which is set to one to indicate that the slave_slice
code now signals a incremental_slice and the use of incremental motion vectors.

incremental slice()

{
slave slice code 32 bslbf
slave slice uantizer_ ratio 9 uimsbf
dct_size 8 uimsbf
do {
incremental_macroblock(dct_size)
) while (nextbits() != 000 0000 0000 0000 0000 0000)

next_start code

}

incremental macroblock(dct size)

{

while ( nextbits() == 0000 0001 111)
macroblock stuffing 11 vlclbf
while ( nextbits() == 0000 0001 000)
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macroblock escape 11 vlclbf
macroblock address increment 1-11 vlclbf
if (new_macroblock)

macroblock type 1-6  vlclbf
else

slave macroblock type 1-3 vlclbf
if (macroblock quant)

quantizer scale 5 uimsbf

if (new _macroblock)
if (compatible)

compatible type 2 uimsbf
if (interlaced) {
if (picture structure == 0) {
if (macroblock intra || macroblock pattern)
interlaced macroblock type 1 uimsbf

if (macroblock_motion forward ||
macroblock motion backward)
interlace motion type 2 uimsbf
} else {
if (macroblock motion forward XOR
macroblock motion backward)
field intexlace_type 1 uimsbf
}
}
if (motion refinement) {
if (macroblock motion forward) {

motion horizontal forward code 1-11 vlclbf
if ((forward f != 1)&&
(motion_ horizontal forward code != 0))
motion horizontal : forward x ‘ 1-6 uimsbf
motion vert1ca1 forward code 1-11 vlelbf
if ((forward f 1= 1)ss
(motion vertical forward code != 0))
motion vertical forward r 1-6 uimsbf
if (interlace motion . type) (
motion horizontal forward code 2 1-11 vlelbf
if ((forward_f 1= 1)&&
(motion_horizontal forward code 2 != 0))
motion horizontal foxward r 2 1-6 uimsbf
motion vertlcal forward code 2 1-11 vlelbf
if ((forward_f T= 1)&s&
(motion vertical forward code_ 2 != 0))
motion vertical forward r 2 1-6  uimsbf

}

if (macroblock motion backward) ({

motion horizontal backward code 1-11 vlclbf
if ((backward f 1= 1)&as
(motion_horizontal backward code != 0))
motion horizontal backward r 1-6 uimsbf
motion vertical backward code 1-11 vlclbf
if ((backward f != 1)&&
(motion_vertical backward _code != 0))
motion vertical backward r 1-6 uimsbf
if (interlace motion type) {
motion horizontal backward code 2 1-11 vlclbf
if ((backward f 1= 1)&&
(motion horizontal backward code 2 != 0))
motion horizontal ] backward r 2 1-6 uimsbf
motion vertical backward code 2 1-11 vlclbf

if ((backward_f 1= 1)&&
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(motion vertical backward code 2 1= 0))
motion vertical backward r 2 1-6 uimsbf

}
}
if (chroma format == 0) {
if (macroblock pattern)
coded block pattern 3-9 vlclbf
for (i = 0; i < 6; i++)
if (new_macroblock)
scaled block(i)
else
slave_block(i, dct size)
} else (
if (macroblock pattern)
coded_block pattern 8 uimsbf
for (i = 0; i < 8; i++)
if (new_macroblock)
scaled block(i)
else
slave block(i, dct size)
}

}
if (picture coding type == 4)
end of macroblock 1 1

}

new_macroblock is true if no previous information has been sent about the macroblock at the current
macroblock address.

l.4.4. Coding
1.4.4.1 Slave Macroblock Addressin

Relative slave macroblock address are coded as described in section 8.1.

1.4.4.2 Slave Macroblock Type

Each macroblock has one of the three modes:

1 Intra (I-blocks)
2 Predicted (P-blocks)
3 Interpolated (B-blocks)

For these block types different VLC tables for the Slave Macroblock types are used. See table a for Intra,
table b for predictive-coded blocks and table ¢ for bidirectionally predictive-coded blocks. I blocks are all
blocks within an [ picture, intra and no motion compensation coded blocks within a P picture and intra
coded blocks within a B picture. P blocks are predicted blocks within a P picture and forward or
backward (but not both) predicted blocks within a B picture. B blocks are those blocks within a B picture
which are bi-directionally predicted. The block type is determined by the first macroblock_type
transmitted for the macroblock.

Methods for mode decisions are described in section 6. MTYPE is based on the highest resolution.

1.4.4.3 Macroblock_quant

In each slave macroblock the quantizer (mquant) used is the product of
quantizer_scale and slave_slice_quantizer_ratio,
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mquant = quantizer_scale * slave_slice_quantizer_ratio // 16

When macroblock_quant is 1 a new quantizer_scale is transmitted. When
macroblock_quant is O the quantizer_scale from the same macroblock at
the underlying layer is inherited. When new_macroblock is true (1) and
macroblock_quant is false (0), the incremental_macroblock inherits its
quantizer_scale from the left, rather than from below. If no macroblock
to the left has a quantizer_scale, then quantizer_scale is taken from

the base layer slice header.

1.4.4.4 Motion Vectors

Motion vectors are determined as described in Annex D. The scaled motion vector is transmitted in the
base layer. When a block is not transmitted then the motion vector is zero. Coding of this scaled motion
vector is as described in section 8. When A_mv_present is set, slave motion vectors are transmitted.
Slave motion vectors are coded as an increment to the appropriately scaled up motion vector of the
closest layer below. for which a motion vector exists. For example, if a motion vector was originally
transmitted in a layer with a dct_size of 2 and is now scaled up for use in a layer with dct_size of 4, it is
multiplied by two along each axis and the slave motion vector is added. This new vector forms the basis
for the scaled up vector of the next layer. The incremental motion vector is coded using the same
variable length code table B.4. The first value transmitted for a particular motion vector, base_vector, is
calculated as described in section 8.3 except the appropriate f_code is reduced by 1 for each scale
reduction factor of 2. All refinement motion vectors are calculated with an f_code of 1.

1.4.4.5 Slave Coded Block Pattern

When the coded block pattern is not sent as part of an incremental_macroblock, it is assumed to be zero -
- no DCT coefficients are decoded. The coded_block_pattern is not inherited between layers unlike in
normal frequeny scalability. Coded block pattern are determined by the quantized coefficients of the
current layer.

1.4.4.6 Coefficient Coding

A Coding of intra and non-intra blocks ina a scalable bitstream is described in Annex D.

.4.4.7 Multi-layer Rate Control

/A seperate mquant value is determined for each incremental macroblock in the bitstream. The quantizer
scale is only transmitted when needed as described above. The method for determining the mquant
values is described in Section 1.6, steps 1, 2a, and 3a.

1.4.4.8 Code / No Code decisions

Incremental macroblocks are not coded when there is no new information to be transmitted. When there
are DCT or motion vector refinements the incremental macroblock must be coded.

.4.4.9 Motion Estimation

A multiple level motion estimation routine is necessary for optimum refinement of the motion vectors at
each layer. A top down hierarchical search is used. A full search is done at the highest resolution from
original to original with a half pel refinement performed between original and reconstruction. The
original picture is decimated using a forward DCT kernel at high resolution, followed by a smaller
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inverse DCT of the low frequency components. The motion search in the lower scale is done from the
decimated original to the lower scale reconstruction *by a refinement search around the scaled motion
vector form the layer above. A search window of +/-1 pixel is used followed by a half pixel search.

1.4.5. Slave Macroblock Type

code

11
10

code

11
10

Table a. Variable length codes for slave_macroblock_type for blocks
that are intra-coded (I-pictures, P-pictures, B-pictures).

macroblock_quant delta_mv_present macroblock_pattern

o - O

0
0
0

O =

Table b. Variable length codes for slave_macroblock_type for blocks
that are predictive-coded ( P-pictures, B-pictures).

macroblock_quant delta_mv_present macroblock_pattern

0 ‘ 1 1
0 1
1 1 1

Table c. Variable length codes for slave_macroblock_type for blocks
that are bidirectionally predictive-coded (B-pictures).

VLC macroblock_quant | A_mv_present | macroblock_pattern
code
00
01
11
100
101

Lol Eaadl (=2 [=-} [ =}

0
1
1
0
1

I -1

Core Experiment [.5: Scalable VLC coding

Two suggestions have been presented aimed at improving the efficiency of VLC coding in scalable
systems (MPEG 92/361 & MPEG 92/356). MPEG 92/356 suggests a way to reduce the number of EOB's
that need to be sent by extendng the last run in each layer into the next one, and using that "run over" to
implicity specify an EOB for the layer. MPEG 92/361 suggests that different Run/Length VLC table be
used at each layer. Below, the 2 experiments are described. It is suggested that both experiments be
combined.

1.5.1: Experiment 1

1.5.1.1: Description
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The basic idea is to send implied EOB's at lower layers in order to reduce the total number of EOB's
transmitted, thereby improving the efficiency of the algorithm. There are two variations, one for subband
and one for pyramid scalable algorithms.

Subband Case (as suggested in MPEG 92/356)

Layer Coefficients always Coefficients carried
decoded over to next layer
fscale 2 1-5 4
fscale_4 6-14 11
fscale 8 15-64

At fscale_2, the first 5 coeffients in the standard zigzag scan are coded. Coefficient 4 is transmitted to
the decoder, but not used to decode the small picture, and simply stored for use at the next level, If
coefficient 5 is a zero, the encoder can choose to terminate the block at this layer with an EOB, or it can
code it as a zero in a run/length pair that runs over into the information for the next layer - implicitly
specifying the EOB. Any extra coefficients are thereby also transmitted to the decoder, but not used to
produce the lowest layer picture - they are stored for use at the next levels.

At fscale_4, decoding of VLC's continues at the position beyond the last coefficient transmitted from the
previous level, and then proceeds as it did for the previous level.
Fscale_8 continues similiarly, and terminates with an EOB or a coefficient in position 64.

Pyramid Case
Layer Coefficients always Coefficients carried
decoded over to next layer
fscale 2 1-5 4
fscale_4 6-25 11
fscale_8 26-64

" At fscale_2, coefficients for the first 5 coefficients are sent. If these S coefficients end in one or more
zeros, the encoder can choose to send it as an EOB, or code the next VLC, resulting in an implied EOB
as above in the sub-band case.

At fscale_4, differential values are coded for each coefficient that was transmitted at fscale_2, and
‘quantized values are transmitted for the remaining values in the block up to coefficient 14.

At fscale_8, values transmitted for coefficients that were transmitted at the previous layer are differential,
while values for the others are the quantized coefficients.Syntax Changes from MPEG 92/356.

| 1.5.1.2: Syntax Changes (from MPEG 92/356)

Sequence Layer:
do {

fscale num coef
fscale_max_run

} while(next bits != '10000000")
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caled Block

fscale_coef_cnt = coef_block(fscale num coef, fscale _max_run)
fscale_extra_prev = fscale coef_cnt - fscale_num coef

Slave Block Lavers:

fscale_rem coef = fscale num coef - fscale extra prev
if(fscale rem coef < 0) fscale num coef = 0
fscale_coef_cnt=coef_ block(fscale rem coef, fscale max_ run)
fscale_etra_prev = fscale coef cnt - fscale rem coef

int coef block(fscale num coef, fscale max run)
{
fscale_coef cnt = 0
run = 0
while( fscale coef_cnt < fscale num coef)
next_dct coef(dct_size)
fscale_coef cnt++
if(det_coef zero())run++
else run = 0
}
if (run != 0)({
do{
next_dct coef(dct_size)
fscale_coef cnt++
if (det _coef zero()){
run++
if (run== fscale max_run + 1){
end of block
break

}

} while(dct_coef zero())

}

return(fscale_ coef)

1.5.2: Experiment 1.5.2
1.5.2.1: Background and Description

- This experiment is to compare the result of using the standard VLC run/length table to using different
tables at each layer. Also, a different coefficient scan pattern derived from Subband coding can be used
in both pyramid coding and sub-band coding with the new set of Huffman tables.

Alternate Scan;

1l 2 5 10 17 26 37 50
3 4 7 12 19 28 39 52
6 8 9 14 21 30 41 54
11 13 15 16 23 32 43 56
18 20 22 24 25 34 45 58
27 29 31 33 35 36 47 60
38 40 42 44 46 48 49 62
51 53 55 57 59 61 63 64
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1.5.2.2: Syntax Changes and VLC's (from MPEG 92/361)

scaled block(i) f
if (pattern codel[i]) {
if (macroblock_intra) {

if (i<4) | .
dct_dc size luminance 2-7 vlclbf
if (dct_dc_size luminance != 0)
dct_dc_differential 1-8  vlclbf
} else {
dct_dc_size_chrominance 2-8 vliclbf
if (dct _dc_size chrominance != 0)
dct _dc_differential 1-8  vleclbf

}
if (dct size > 1) {

while (nextbits() != eob_code)
next dct_coef (dct_size) 2-16 vliclbf
end of block (dct_size) 2-16  vlclbf
}
}
}
1 lock L

slave block [i,dct size] {
if (pattern code[i]) {

while ((nextbits() != eob_code) && more coefs) {

next dect coef(dct size) 2-16 vlclbf
]
end of block (dct_size) 2-16 vlclbf

" Core Experiment 1.6: Slice vs. MB Rate Control

1.6.1: Background and Description

. This core experiment will compare the effect of performing rate control at a slice or MB granularity. The
outcome of this experiment is to determine whether higher resolution layer rate control at slice
granularity performs as well as at macroblock granularity.

In both approaches, rate control is carried out at macroblock granularity for the low resolution layer .
Also, for both approaches a multiplication factor is sent in the slice header for the higher resolution
layers. In the slice granularity approach, for the higher resolution layers, each macroblock Mquant is the
product of the multiplication factor and Mquant from the low resolution layer. For the macroblock
granularity approach, the cncoder can signal the use of :

s anew Mquant
e the slice multiplication factor

e the previous macroblock's Mquant

for each MB.
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Both approaches are based on the TM1 rate control algorithm. Only the equations that differ from TM1
are given below. The picture target setting equations are common to the two approaches:

Step 1 - Bit allocation
Complexity estimation

Xipb(m.h) = Sjpp(m,h) * Qjpp(lm,h)
where:
I refers to the lower resolution layer
m refers to the medium resolution layer
h refers to the higher resolution layer
Initial conditions:
X; (1 m,h) = 160 * br%(1,m,h) * bit_rate/115

1,m,h) = 60 * br%(1,m,h) * bit_rate/115
Xp(l m,h) = 42 * br%(1,m,h) * bit_rate/115

Pictur t settin
Tj(1,m,h) = max { Error!, br%(l,m,h)*bit_rate / (8*picture_rate)}
Tp(l,m,h) = max { Error!), br%(1,m,h)*bit_rate / (8*picture_rate)}
Ty(1,m,h) = max { Error!, br%(1,m,h)*bit_rate / (8*picture_rate)}
| After coding a picture, R(1,m,h) = R(l,m,h) - Sipb(l,m,h). Before encoding the first picture in a GOP:
R{l,m,h) = br%(l,m,h)*G + R({,m,h).
Step 2 - Rate Control

The two rate control aproaches differ at this step.

a) MB granularity approach
d j‘[’b(l,m.h) =d J-inb(l,m,h) + Bj.1(Lm,h) - Error!
Qj(l,m‘h) = Lrror!
Initial conditions:
do'(l m,h) = Error!
doP(Lm.1) = K * d!(L.m.h)
dO (L.m,h) = Ky, * dg'(l,m,h)

b) Slice granularitv approach
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dg'PP(,m.h) = dgg'P(l,m,h) + Bg 1 (Lm,h) - Error!
Qg(,m,h) = Error!
| where Slc_cnt is the number of slices in a picture and s is the current slice index.
Initial conditions:
dg'(lm,h) = Error!
dgPm.h) = Kp, * dgl,m,h)
do®(m.h) = K, * dg'lm.h)

Step 3 - Adaptive quantization
This step also differs for the two approaches.

a) MB granularity approach
mquantj(l,m,h) = Qj(l,m.h) * N_actj
where N_act; is as defined in the TM1
Slice granularity approach
For the lower resolution layer:
mquantj(l) = Qj(l) * N_actj;
For the higher resolution layers:
M_ratiog(m,h) = Error!

A 9 bit pattern (slave_slice_quantizer_ratio)

16 8 4 2 | 0.5 025 0.125 0.0625

is used to represent M_ratiog, e.g a slave_slice_quantizer_ratio of 0.75 would be represented as
000001100. At the decoder the MB mquant is

mquantj(m,h) = M_ratios(m,h)*mquamj(l).
[.6.2: Syntax extensions
a) MB granularity approach
A different mquant value may be required for each layer within the same macro-block. The syntax was
&.:xtended 10 support transmission of the extra quantizer information. The new slave macroblock definition
is:

slave macroblock(dct_size) {

slave macroblock quant 1 uimsbf
if (slave_macroblock quant)

slave macroblock quantizer_ scale 5 uimsbf
if (slave_macroblock quant != 1)

slave macroblock quantizer source 1 uimsbf
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for (i = 0; i < 6; i++) {
slave_block(i, dct_size)
}

}

When slave_macroblock_quant is 1, the slave macroblock contains a new 5 bit quantizer for use in
decoding the slave DCT coefficients. Otherwise a one bit field, slave_macroblock_quantizer source is
transmitted to indicate whether the slave_blocks should be dequantized using the same mquant as the
previous slave macroblock (slave_macroblock_quantizer_source = 1), or using the product of the lower
resolution layer macroblock’s quantizer and the slice quantizer multiplier - M_ratiog
(slave_macroblock_quantizer_source = 0)

b) Slice granularity approach

Slave glice layer:

slave_slice() {
slave_slice_start_code 32 bslbf
slave_slice_quantizer_ratio 9 bslbf
det_size8 uimsbf

for(s=0; s<slice_size; s++)
slave_macroblock(dct_size)

}

Core Experiment 1.7: Encoder with Drift Correction Layer and Improved
Motion Rendition

The purpose of this experiment is to investigate the effect of field/frame adaptive MC and DCT on a low
resolution layer of a frequency scalable bitstream. Another purpose is to investigate improvements to the
motion rendition of this layer.

The encoders we investigate generate a bitstream with three f-scalable layers: two 4x4 layers, and one
- 8x8 layer.

The data format is 4:2:2 to avoid the mismatch of the DCT mode. In the 4:2:0 format, the chrominance
blocks are coded with frame DCT even if the luminance blocks are coded with field DCTs.

‘The frame/field adaptive MC and DCT are as described in TM1. The decision algorithm is the same as
TM1 adapted to the simulation conditions below. Mode and other attributes of the slave layers are
inherited from the master layer, as with the basic codec.

1.7.1 SIMULATION CONDITIONS

Frame MC mode + Frame DCT mode

Field MC mode + Frame DCT mode

Frame MC mode + Field DCT mode

Field MC mode + Field DCT mode

Field/Frame adaptive mode, where DCT mode follows MC mode.

The actual experiments will use conditions 1 or 5 only.
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[.7.2 SYNTAX OF THE PROPOSED EXPERIMENT

Most of the basic syntax is preserved in this experiment. Some minor modifications are explained
throughout this text. One such modification is an extension of the basic multiplexing, to allow for the
existence of two layers at scale 4, only one of which (the base layer) is used in the reconstruction of the
high resolution (scale 8) pictures. The other scale 4 layer (slave 2 below) is used as an SNR enhancement
for the scale 4 base layer only.

4x4 base bitstream master
8x8 bitstream slave 1
4x4 difference bitstream slave 2

To indicate this, the "fscalable" flag in the sequence header is set, followed by the following fscales:

bitstream scale code
4x4 2
8x8 3

4x4 difference 2
end_of scale 7

In decoding at the 8x8 resolution, the last 4x4 layer should be ignored.
1.7.3 ENCODER DESCRIPTION

The block diagram of the drift correction encoder is specified in Figure L.6. This encoder generates three
hierarchical layers. Two of the hierarchical layers are generated in the same manner as the basic
encoder, i.e. by extracting the 4x4 DCT coefficients from the full resolution 8x8 blocks. These two
layers are the only ones required to reconstruct the full resolution video. The third layer is a difference
layer generated by subtracting the output of a second encoder (operating at the 4x4 resolution) from the
extracted 4x4 coefficient layer. Therefore this layer contains data that can be used to correct the drift
error that would be generated by decoding with the extracted 4x4 layer alone.
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Figure L5: Drift correcting encoder

1.7.3.1 Rate Control of the difference bitstream

Basically this drift correction method is able to be applied to every picture type: I, P, and B. However,
the I-picture does not need to be compensated, because it does not have a "drift error"’. B-pictures also
may not need to be compensated, because drift error in these pictures do not propagate. Therefore
compensation may only be needed for P-pictures. If this is the case, we propose to keep the 4x4
difference slave_slices in the bitstream, but only with some flag to indicate that it is empty.

The rate control of P-picture is based on TM1. The modification is only the initial values:
Xi = bitrate/ 115

Xp = 260*bitrate/ 115
Xb = bitrate/ 115

There are two sets of target bitrates for this experiment:
1) difference bitstream: 0.5 Mbit/s
4x4 + 8x8 bitstream: 3.5 Mbit/s

2) difference bitstream: 1.0 Mbit/s
4x4 + 8x8 bitstream; 3.0 Mbit/s

I.7.4 DECODER DESCRIPTION

The corresponding decoder is shown in Figure 1.7. The decoder for the 8x8 resolution is the same as a
basic encoder with two layers. It therefore has no drift error. To decode 4x4 resolution video without
drift error, the two 4x4 layers should be dequantized and added before applying the inverse DCT.
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Figure L6: Drift correctirig decoder
1.7.5 EXPERIMENTS
The results from the following experiments should be compared.
1.7.5.1 ADAPTIVE DCT/MC CODING

In this experiment Simulation codition 5 is used.

1.7.5.2 SCAN PATTERNS FOR INTERLACE-IN-INTERLACE DECODING

For this experiment Simulation condition 1 is used. In addition, instead of the upper left 4x4 coefficients,
the upper left and the lower left 4x2 coefficients are extracted and supplied to the 4x4 IDCT. The zig-
zag scan needs to be modified for this experiment:

1 2 6 7 23 24 35 36

3 5 8 13 25 34 37 46

17 18 22 26 33 38 45 47

19 21 27 32 39 44 48 54

20 28 31 40 43 49 53 55

29 30 41 42 50 52 56 61

4 9 12 14 51 57 60 62

10 11 15 16 58 59 63 64

Core Experiment 1.8: Frequency Scanning

Frequency scanning combined with an entropy coding technique, called MUVLC (Modified Universal
Variable Length Coding) has been proposed to increase the coding efficiency of the test model and to
improve the performance of scalable systems both in terms of coding efficiency and functionality.[4,6].
The purpose of this experiment is to compare the coding efficiency of the proposed method when applied
in the framework of a single loop scalable encoder with the performance of a corresponding nonscalable
coder using block scanning.

In the following the principle of the algorithm and its adaptation to the TM2 syntax are described. A C-
program of the MUVLC algorithm will be distributed to interested parties by e-mail.
(send your request to: Bernard Hammer (Siemens), e-mail: ha@bvax4.zfe.siemens.de)
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1.8.1 Global parameters of the experiment

The core experiment should be carried out using the syntax of a single loop scalable encoder (as
described in 9.3.3 ff and in appendix D) with the following parameters:

chroma_format: 4:2:0

picture_structure: frame picture

bit_rate: 4 Mbit/s

group of pictures structure: N=12 (15), M=3

resolution layers: 3 (scale_8, scale_4, scale_2)

rate control equal QP in all layers, mquant = non adaptive

1.8.2 Principle of MUVLC

In contrast to entropy coding using block scanning, as described in 8.5 - 8.7, the proposed frequency
scanning method applies run length coding to coefficients of different blocks, but which have the same
scanning number respectively representing the same frequency band.

The code for a slice is generated in six basic steps:

1) arrange the coefficients of all coded blocks (indicated by the CBP), which belong to a macroblock
slice, according their scanning number in 64 stripes;

2) for encoding a stripe select from the table, given below, the magnitude class in which the coefficient
with highest amplitude falls and transmit the 3 bit class prefix code PC;

magpitude range  class C prefix class code (PC)
0- 1 0 000
2- 3 1 001
4- 7 2 010
8- 15 3 011
16 - 31 4 100
- 32- 63 5 101
64-127 6 110
128 - 255 7 111

3) transmit the 3 bit line prefix code PL,which determines the Adaptive Truncated Runlength (ATRL)
code [2] used in step 4).for this class.

4) encode each non zero coefficient of class C using a code of the form

(RL NCB)
where RL gives the position of the coefficient in the class relativ to its previous nonzero coefficient. NCB
gives the exact value of the coefficient by transmitting the C least significant bits of its magnitude plus

one sign bit. Each class code string is terminated by an End of Class (EOC) code word.

5) repeat step 3) to 4) for all remaining magnitude classes . Coefficients which have been alrcady
encoded in the previous classes are ignored for calculating the runlength code RL.

6) repeat step 2) to 5) for all stripes of the slice
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Thus the code for a slice gets the following structure:

PC PL (RL NCB) (RL NCB) (RL NCB) .......EOC stripe 1, class C
PL (RL NCB) (RL NCB) (RL NCB)....... EOC stripe 1, class C-1
PL (RL NCB) (RL NCB) (RL NCB)........EOC stripe 1, class 0

PC PL (RL NCB) (RL NCB) (RL NCB) .......EOC stripe 2, class C
PL (RL NCB) (RL NCB) (RL NCB).......EOC stripe 64 , class 0

1.8.2.1 Principle of ATRL

Table 1.8.1 shows the basic code structure of an ATRL-code with PL=3, A "0"in the source pattern
denotes a coefficient of a lower class while "1" indicates the occurence of a coefficient within the current
magnitude class.

The maximal run length, which can be encoded by ATRL with a single codeword is truncated to a length
of M = 2**PL-1.To cope with runs having more than M preceding "0"s the first codeword is used for
extension by runs of M+1 "0"s.

The extension code word is coded by a single bit set to "0", while run lengths codewords consist of a
prefix set to "1" followed by PL bits which give the number of preceding "0"s.

To indicate the End of Class (EOC) a position outside the stripe is addressed by sending one or more
extension codewords

source pattern Run length (RL) RL- Code

00000000 8 0

1 0 1000
01 1 1001
001 2 1010
0001 3 1011
00001 4 1100
000001 5 1101
0000001 6 1110
00000001 7 1111

Table 1.6.1: Truncated run-length code for PL=3 and M=8.

To cope with the different statistics of each magnitude class PL may vary between O and 7

in order to minimize the code length.
The code length is calculated by the formula below:

for (i=1; i<=k; i++)
code_length += run_length[i] / (M+1)

code_length +=k * (1+PL) + zero_run_length / (M+1) +1
with  run_length [i] = run length of the nonzero coefficient i in a class
k = number of non zero coefficients in a class

zero_run_length = number of zero coefficients following coefficient k

1.8.3 Arrangement of luminance and chrominance coefficients
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| 1.8.3.1 Interleaving of luminance and chrominance coefficients within a stripe

| Y-coefficients (max. 176) Cb-coefficients (max. 44) Cr-coefficients (max. 44)

| 1.8.3.2 Scanning order of blocks within a macroblock

| Blocks are scanned according the numbering as being described for block_count in 9.3.7

| 1.8.3.3 Scanning order of coefficients within a bl

1 2 51017 26 37 50 scale 2layer: 1- 4
3 4 71219 28 39 52 scale_4 layer: 5-16
6 8 914 2130 41 54 scale_8 layer: 17 - 64
11 13 15 16 23 32 43 56
18 20 22 24 25 34 45 58
27 29 31 33 35 36 47 60
38 40 42 44 46 48 49 62
51 53 55 57 59 61 63 64

| 1.8.4 Syntax modifications

For purpose of the frequency scanning experiments the slice layer, the macro block layer and the block
layer must be changed as indicated below:

| 1.8.4.1 Slice Layer

slice() {
slice_start_code
quantizer_scale

no change
extra_bit_slice
slice_control()

slice_data()

}

| '1.8.4.2 Slice Control Layer

slice_control() {
for (mb=0; mb<44; mb ++) {
while(nextbits() == '0000 0001 111"
macroblock_stuffing

same syntax as in macroblock() of TM2

if (macroblock_pattern)
coded_block_pattern()

}
)
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| 1.8.4.3 Slice Data Layer

slice_data() {
for (layer=0; layer<3; layer++) {
if (layer!=0)
slave_slice_start code 32
for (coef_i=start[layer];coef_i<end[layer]; coef_i ++) {
buf_size=0
for (mb = 0; mb < 44; mb++) {
for(block_i=1; block_i<5; block_i++) {
if (pattern_code[mb][block_i]) {
c_buf[buf_size] = dct_coef[mb][block_il[coef_i]
buf_size++

}

}
}
for (mb = 0; mb < 44; mb++) {
if (pattern_code[mb]([5]) {
c_buffbuf_size] = dct_coef[mb][5][coef_i]
buf_size++
}
3
for (mb = 0; mb < 44; mb++) {
if (pattern_code[mb][6]) {
c_buf[buf_size] = dct_coef[mb][6][coef_i]
buf_size++
}
)
muvlc(c_buf,buf_size)
}

}
while(nextbits()!="0000 0000 0000 0000 0000 00001)

next_start_code()

1}

with start [0] = 1; end [0]= 4
start [1]= §; end{1]1=16
start [2] = 17; end (2] = 64
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muvlc(c_buf,buf_size)
pe = pc_code(c_buf,buf size) 3
for(class=pc; class=0; class--) {
pl = pl_code(c_buf, buf_size) 3
nn=0
for (buf_i = 0; buf_i < buf_size; buf_i ++) {
if(!c_coded[buf_i)) {
if (((c_buffbuf_i] >> class) & 0x1) == 1) {
1l =1l_code(run,pl)
ncb = ncb_code(c_buffbuf _i],pc) 1-8
¢_coded[buf_i] =1
run=90
}
else
run++
}
)
eoc = eoc_code(run,pl)
}
}

rl_code(run,pl) {
while (run >= 1<<pl) {
max_run 1 "
run -= l<<pl
)
prefix 1 "1
run i 1-8

3

| eoc_code(run,pl) {

while (run >=0) {

max_run 1 "0"
nun -= l<<pl

}

| 1.85 Supplementary experiments
| » Change of processing order of luminance and chrominance coefficients within a stripe

» the coding efficiency may be increased by processing luminance and chrominance coefficients
with similar statistical behaviour within a stripe, i.e. Y- and Cb- and Cr-coefficients corresponding
tothe same sampling frequency '

* to improve the access to image data it is desirable to have luminance and chrominance information
of an image region close together in the bit stream. Instead of processing luminance and
chroninance coefficients in separate blocks as proposed in the core experiment, interleavin g of the
components may be possible without significant loss of coding efficiency.

| « Removal of Coded Block Pattern (CBP) in the Slice Control Layer
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The use of CBP as proposed in the core experiments implies, that the length of each stripe will
differ.which may adds some complexity to the hardware. Having in mind that CBP gives no
significant gain in coding efficiency at bitrates > 1 Mbit/s it seems obvious to skip CBP and use
the run length coding ability of MUVLC instead.

| 1.8.6 References -

(1] B. Macq: "An Universal Entropy Coder for Transform or Hybrid Coding", Picture Coding
Symposium, session 12, March 26-28 1990, Cambridge, Mass., USA.

[2] H. Tanaka and A. Leon-Garcia: "Efficient Run-Length Encoding", IEEE Transactions on
Information Theory, vol. IT-28, no.6, pp. 880-890, November 1982.

[3] CCIR Study Group - Document CMTT-2/31, March 1990 - Belgium RTT

[4] G. Schamel et al "Experiments with UVLC-coding" doc MPEG92/289

[5] Th. Selinger, "Implementation Study of a MUVLD", doc MPEG 92/388

[6] A. Knoll "Experiments with UVLC-coding" doc MPEG 92/391

Core Experiment |.9: Efficient Frequency Scalability Core Experiment

1.9.1: Background and Description
Reference: MPEG 92/356
Goals:

1. Study impact on picture quality of encofrcing DCT coefficients of lower frequency scales to be
subset of coefficients along the zigzag scan of 8x8 DCT coefficient block.

2. Measure saving in overhead bits (in sub-band approach) of sending EOB code conditionally,
assuming lower layer frequency scale docoders with limited run/length capability.

Experiment:

This experiment consists of studying the impact on picture quality of using for lower frequency scales,
coefficients that fall along the zigzag scan of the 8x8 DCT coefficient block, compared to choosing
coefficients for lower frequency scales corresponding to a square block. A two layer approach with the
foliowing parameters is used:

Frequency # of coefficients # of coefficients
Scale belonging to sub-band | selected in zigzag scan
fscale 4 16 14
fscale 8 48 50

The second part of this experiment measures the savings in EOB overhead bits because of including
implicit EOB (marked by the first coefficient of the next higher frequency scale). A three layer sub-band
splitting of 8x8 DCT coefficients is employed and EOBs are sent only when absolutely necessary,
depending on the decoding capabilities of the corresponding decoder. The parameters used are:

Frequency # of coefficients # of coefficients Maximum run
Scale belonging to sub-band | selected in zigzag scan allowed in VLC
fscale 2 4 3 3
fscale 4 12 11 15
fscale 8 48 50 63
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1.9.2 Syntax Specification

See Section L.5.1.2 for this syntax.

Core Experiment .10: Spatial/Frequency Hybrid Scalability

[.10.1: Background and Description

Reference: MPEG 92/355, MPEG 92/356

Goal:

Investigate the effectiveness of spatial/frequency hybrid to derive well-balanced multi-resolution scales.
Experiment:

This is a revised specification of experiment 1.3.1 of Appendix I in TM1. In this experiment, one spatial
layer and two frequency layers are generated. The SIF odd fields are encoded using MPEG-1, but the
resulting bit-stream is partitioned in "fscale4" and “fscale8" sub-streams representing frequency scales
derived from SIF resolution. In generating "fscale4" and fscale8", use of efficient frequency scaling (Doc
MPEG 92/356) is made to keep complexity of generating frequency scales low and to minimize the
overhead. The total bit-rate for "fscale4" and "fscale8" is 1.15 Mbit/s.

The higher layer is CCIR-601 field-structure encoded using MPEG-2 at 2.85 Mbit/s. The motion
compensation prediction options in field structure coding, such as adaptive field/dual field are utilized.
For CCIR-601 Odd fields, an optional prediction is generated by interpolating the reconstructed SIF
picture.

The block diagram and syntax are described in Doc MPEG 92/355, syntax for more efficient frequency
scalability is given in Doc MPEG 92/356.

I.11 Core experiment on multi loop decoding

The purpose of the experiment is to identify the impact of different methods of coupling the prediction
signals in a pyramid two loop frequency scalable coder. These methods are compared against a scheme
“without this coupling and the "minumum drift decoder" (described in document MPEG 92/466) working

on the bit stream of a single prediction loop encoder.

| 1.11.1 Experimental conditions

* Test Model 2 with frame MC / frame DCT only

* 4 Mbit/s, M=3, N=12(15), 4:2:0

* two prediction loops & two bit stream layers

* ME on upper layer; 1/4 pel MC on lower layer

* same quantizer on both layers

* DCT coefficient prediction

* syntax as in App. D of TM2

* lower layer input signal: DCT decimated

* all interscale links with 4*4 DCT pattern extraction

* Test sequences: Mobile, Bus, Table Tennis (2 seconds each)
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| 1.11.2 Parameter under study

Under study is the method of merging the 4*4 and 8*8 prediction signals in the 8*8 coding loop. The
following versions are suggested (MPEG documents in brackets give more details, e.g. block diagrams of
coders):

(a) Conditional replacement of low-freq. 4*4 coefficients (92/488)
(b) Unconditional replacement of low-freq. 4*4 coefficients (92/288)
(c) Weighted addition (ratio 1:1) of both prediction signals (92/501)
(d) No connection between prediction loops (92/486)

| and, as a benchmark with minimum imipact on the upper layer quality:

(e) "Minimum drift decoder" for the lower layer, working on a single prediction loop encoder, with a two
layer bit stream generated by employing the scanning pattern proposed in Fig. Lx.1

(Leading zeros in the scan for the 8*8 layer shall not be transmitted, i.e. coefficient 17 is coded as
{Run=0,Amplitude }!)

| Versions (a) to (c) require the use of a multi-loop decoder.

| 1.11.3 Variations of the Experiment

As a variation to versions (a) to (c) the output of the 4*4 VLC can be switched off. To maintain the two bit
stream layers, the 8*8 coefficient stream can be distributed the same way as in (e). The 4*4 reconstructed
signal will then be retrieved from this second layer. This results in a "DCT-subband" structure of the

scheme. :

Furthermore all sequences can be processed employing the 4*3+4*] interlace extraction pattern for (a)
DCT decimation; (b) coupling of prediction signals and (c) prediction of DCT coefficients.

Experiments with MB adaptive switching of these pattern as well as with the use of adaptive frame/field
MC in both layers are encouraged.

1 2 5 10}17 26 37 50
3 4 7 12|19 28 39 52
6 8 9 14|21 30 41 54
11 13 15 16123 32 43 56

‘18 20 22 24 25 34 45 58
27 29 31 33 35 36 47 60
38 40 42 44 46 48 49 62
51 53 55 57 59 61 63 64

| Figure I.11.1 Scanning pattern for (¢) and experiment variation (same as in L.3)

| Core Experiment 1.12: Adaptive'lnter-'scale Prediction

| 1.12.1. Objective

adaptively on a macroblock by macroblock basis, in a frequency domain layered coding system. It was

The objective of this core experiment is to assess the effectiveness of using inter-scale prediction
shown in MPEG 92/486 and 92/501 (Core Experiment 1.2) that adaptive inter-scale prediction is not
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particularly effective when the quantization factors of the two layers are identical in all macroblocks. In
such cases, corresponding coefficients in different scales are highly correlfated, even in motion-
compensated difference blocks, because the differences result only from non-identical motion-
compensation. However, in cases where lower layers are rate-controlled by quantization which differs
from that of the higher layer, the increase in quantization noise levels of the lower scale should reduce
the correlation between corresponding coefficients in different scales. This experiment is an extension of
Core Experiment 1.2 (MPEG 92/NO245 Test Model 2), under identical conditions, except for the use of
rate control in the lower layer.

| 1.12.2. Simulation Conditions

Sequence format: 4:2:0

Picture structure: Frame

Coding and MC modes: Frame only
Number of layers: 2 (scales 4 and 8)
Scale-8 bit rate: 4.0 Mbit/sec
Scale-4 bit rate: 1.5, 2,0 Mbit/sec
GOP size: 15 frames/GOP
M: 3

| Rate control for scale-4 will be performed as in Core Experiment 1.6 (slice granularity).
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Appendix K: MOTION COMPENSATION FOR SIMPLIFIED FAMC
K.1. Motion Compensation

The basic idea of FAMC is that a trajectory is defined by one transmitted motion vector. To calculate the
prediction value, the two pixels are used in each horizontal and vertical direction with corresponding
weighting coefficients, and these two pixels should be located in the each side of the trajectory. As the
results, FAMC prediction is the interpolation from four pixels in reference frame. The address
calculations of these 4 points are defined in the followings, and it is illustrated in Fig. K.1. The horizontal
(X) axis interpolation is rounded in half pixel precision because of hardware simplification, and the
vertical interpolation is arithmetic precision interpolation.

Reference frame Predicted frame

Figure K.0 Principle of FAMC (Vertical direction)

ref_1stFi
N o > Q=ref_frame

LstFi_line O Oy <
P=ref_frame
(x_1stFil, y_l1stFi) FAMC_MV(x], y)=
a*ref_1stFi+b*ref_2ndFi)/(2*(a+b))
R=ref_frame
. - (x_2ndFil, y;zndFl) Seref frame
2ndFi_line © O O nar,y 2ndFi)
ref_2ndFi
=R+S

Q original pixel
® Interpolated pixel.

Figure K.1: FAMC prediction for 1stFi line
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xorigjn
0 ' xorigin_xxx
0
1
yorigin
' Shift by M
0—x14—15
yorigin_xxx ) —_—
A Macro block
L
yi—e |
|
15 Frame

Figure K.2: The relation of variables

LeﬁPel 0, RtghtPel 703 ToplsthLme —0 Bottom]stFmee 478,
Top2ndFiLine = 1, Bottom2ndFiLine = 479

M = 16 // (2*Frame_Distance)) /* M =N * 16; N = 1/(2*Frame_Distance) */
M =8 When Frame Distance=1 ¥/
/* =4 When Frame_Distance=2 */
/* =3 When Frame Distance=3 */
/* For first Field */
xorigin_IstFil = xorigin + (2 ¥ FAMC MVx)/Z
xorigin_IstFi2 = xorigin + (2 * FAMC _MVx)//2
xorigin_2ndFil = xorigin + (2*FAMC MVx - (M*FAMC MVx)//8)/2
xorigin_2ndFi2 = xorigin + (2*FAMC_MVx - (M*FAMC MVx)//8)//2
yorigin_IstFi = yorigin + Adjacent_IstFi_Line_for_Ist Field_for_Forward (Frame Distance,
FAMC MVy)

yorigin_2ndFi = yorigin + Adjacent 2ndFi_Line_for 1st Field for . Forward(Frame_Distance,
FAMC MVy)

Jor (xl=0; xI<16; ++xl) {

x_IstFil = xl + xorigin_IstFil /* Addressing X of pixel P */
x_IstFi2 = xl + xorigin_IstFi2 /* Addressing X of pixel Q %/
x_2ndFil = xl + xorigin_2ndFil /* Addressing X of pixel R */
x_2ndFi2 = xl + xorigin_2ndFi2 /* Addressing X of pixel S ¥/

/* In case that the required pixel is out of frame */
if(x_IstFil < LeftPel) x_IstFil = LeftPel
if(x_IstFil > RightPel) x_1stFil = RightPel
if(x_2ndFil < LeftPel) x_2ndFil = LeftPel
if (x_2ndFil > RightPel) x_2ndFil = RightPel

Jor (yI=0; yl<16; yl=yl+2) {
y_IstFi =yl + yorigin_1stFi /* Addressing Y of P & Q pixels */
¥_2ndFi = yl + yorigin 2ndFi /* Addressing Y of R & S pixels */

/* In case that the required pixel is out of frame */
if(y_IstFi < ToplstFiLine) y 1stFi = ToplstFiLine
if (y_IstFi > BottomlstFiLine) y_IstFi = BottomlstFiLine
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if (y_2ndFi < Top2ndFiLine) y 2ndFi = Top2ndFiLine
if (y_2ndFi > Bottom2ndFiLine) y_2ndFi = Bottom2ndFiLine

/* interpolation ¥/

ref 1stFi = ref frame(x_IstFil,y_IstFi) + ref frame(x_IstFi2,y_1stFi)

ref 2ndFi = ref frame(x_2ndFil,y 2ndFi) + ref frame(x_2ndFi2,y 2ndFi)

FAMC MB(xlyl) = (a*ref 1stFi + b*ref 2ndFi)ll16

}
}

/* For Second Field */
xorigin_2ndFil = xorigin +(2 * FAMC_MVx)/2
xorigin_2ndFi2 = xorigin +(2 * FAMC_MVx)/{2
xorigin_I1stFil = xorigin +(2 * FAMC MVx + (M*FAMC_MVXx)//8)/2
xorigin_IstFi2 = xorigin +(2 ¥ FAMC _MVx + (M*FAMC _MVx)//8)i/12
yorigin_2ndFi = yorigin + Adjacent 2ndFi Line_for 2nd_Field for Forward (Frame_Distance,
FAMC_MVy)
yorigin_1stFi = yorigin + Adjacent_IstFi Line for 2nd_Field for Forward (Frame_Distance,
FAMC MVy)

Jor (xI=0; xI<16; ++xI) {

x_2ndFil = xl + xorigin_2ndFil /* Addressing X of pixel R */
x_2ndFi2 = xl + xorigin_2ndFi2 /* Addressing X of pixel S ¥/
x_IstFil = xl + xorigin_IstFil M Addressing X of pixel P ¥/
x_IstFi2 = xl + xorigin_1stFi2 /* Addressing X of pixel Q  */

/* In case that the required pixel is out of frame */
if (x 2ndFil < LeftPel) x_2ndFil = LeftPel
if (x_2ndFil > RightPel) x_2ndFil = RightPel
if (x_IstFil < LeftPel) x_IstFil = LeftPel
if (x_1stFil > RightPel) x_IstFil = RightPel

Jor (yl=1; yl<16; yl=yl+2) {
y_2ndFi = yl + yorigin_2ndFi /* Addressing Y of R & S pixels */
y_1stFi =yl + yorigin_1stFi /* Addressing Y of P & Q pixels */

/* In case that the required pixel is out of frame */
if (y_1stFi < ToplstFiLine) y_lstFi = ToplstFiLine
if (y_IstFi > BottomlstFiLine)y 1stFi = BottomlstFiLine
if (y_2ndFi < Top2ndFiLine) y 2ndFi = Top2ndFiLine
if (y_2ndFi > Bottom2ndFiLine) y_2ndFi = Bottom2ndFiLine

/* interpolation ¥/
ref 2ndFi = ref frame(x_2ndFily 2ndFi) + ref frame(x_2ndFi2,y 2ndFi)
ref IstFi = ref frame(x_IstFil)y 1stFi) + ref frame(x_IstFi2,y 1stFi)
FAMC MB(xl,yl) = (a*ref 2ndFi + b*ref 1stFi)ll16
}
}
}

Backward Motion Compensation is a little different from forward one because the relative position of
both field of reference and predicted frame is inversed. That is, in forward prediction, 2nd field of
reference is near to predicted frame, but in backward prediction, 1st field of reference is near to predicted
one in time domain. Different points from forward are indicated by UNDER LINE.
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Reference Predicted Predicted Reference

lstFl 2ndF1 lstFl 2ndF1 lstF1 2ndF1 lstF1 2ndF1

H i

2) Backward prediction Tlme

1) Forward prcd1ctlon

Figure K.3 Difference of forward and backward prediction in FAMC

 FAM r B rd (Fri rigil MV FAMC MB
LeftPel = 0, RzghtPel =703, ToplstFiLine = 0, BottomlstFthe 478
Top2ndFiLine = 1, Bottom2ndFiLine = 479
M = 16 ]/ (2*Frame_Distance)) M M=N*16; N = 1/(2*Frame_Distance) */
M =8 When Frame_Distance=1 %/
M =4 WhenFrame Distance=2 %/ ,
/* =3 WhenFrame_Distance=3 */

/* For first Field */
xorigin_IstFil = xorigin + (2 * FAMC MVx)/2
xorigin_IstFi2 = xorigin + (2 * FAMC MVx)//2
xorigin_2ndFil = xorigin + (2*FAMC MVx .+ (M*FAMC MVx)//18)/2
xorigin_2ndFi2 = xorigin + (2*FAMC_MVx_+ (M*FAMC MVx)//8)//2
. yorigin_IstFi = yorigin + Adjacent IstFi _Line_for_lst_Field for Backward (Frame Distance,
FAMC MVy)
yorigin_2ndFi = yorigin + Adjacent 2ndFi_Line_for_lst_Field for Backward (Frame_Distance,

FAMC_MVy)

. for (xI1=0; xI<16; ++xl) {

x_IstFil = xl + xorigin_IstFil /* Addressing X of pixel P %/
x_IstFi2 = xl + xorigin_1stFi2 /* Addressing X of pixel Q %/
x_2ndFil = xl + xorigin_2ndFil /* Addressing X of pixel R %/
x_2ndFi2 = xl + xorigin_2ndFi2 /* Addressing X of pixel S %/

/* In case that the required pixel is out of frame */
if (x_IstFil < LeftPel) x_IsiFil = LeftPel
if (x_IstFil > RightPel) x_IstFil = RightPel
if(x_2ndFil < LeftPel) x_2ndFil = LeftPel
if(x_2ndFil > RightPel) x_2ndFil = RightPel

Jor (yI=0; yl<16; yl=yl+2) {
y_IstFi =yl + yorigin_IstFi /* Addressing Y of P & Q pixels */
¥ _2ndFi = yl + yorigin_2ndFi I* Addressing Y of R & S pixels */

/* In case that the required pixel is out of frame */
if (y_IstFi < ToplstFiLine)y IstFi = ToplstFiLine
if (y_IstFi > BottomlstFiLine) y IsiFi = BottomlstFiLine
if (y_2ndFi < Top2ndFiLine) y 2ndFi = Top2ndFiLine
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if (y_2ndFi > Bottom2ndFiLine)y 2ndFi = Bottom2ndFiLine

| /* interpolation %/

ref 1stFi = ref frame(x_IstFil,y IstFi) + ref frame(x_IstFi2)y 1stFi)

ref 2ndFi = ref frame(x_2ndFil,y 2ndFi) + ref frame(x_2ndFi2)y 2ndFi)

FAMC MB(xlyl) = (a*ref IstFi + b*ref 2ndFi){l16

}
}

/* For Second Field */
xorigin_2ndFil = xorigin +(2 * FAMC MVx)/2
xorigin_2ndFi2 = xorigin +(2 * FAMC_MVx)//2
xorigin_1stFil = xorigin +(2 * FAMC_MVx_- (M*FAMC _MVx)!/8)/2
xorigin_IstFi2 = xorigin +(2 ¥ FAMC _MVx_- (M*FAMC MVx)//8)//12
yorigin_2ndFi = yorigin + Adjacent 2ndFi_Line for 2nd_Field for _Backward (Frame Distance,
FAMC MVy)
yorigin_IstFi = yorigin + Adjacent_IstFi_Line_for_2nd_Field_for Backward (Frame_Distance,
FAMC MVy)

Jor (x1=0; xI<16; ++xI) {

x_2ndFil = xl + xorigin_2ndFil /* Addressing X of pixelR ¥/
x_2ndFi2 = xl + xorigin_2ndFi2 /* Addressing X of pixel S ¥/
x_IstFil = xI + xorigin_IstFil /* Addressing X of pixel P ¥/
x_IstFi2 = xl + xorigin_1stFi2 /* Addressing X of pixel Q ¥/

| /* In case that the required pixel is out of frame */
if (x_2ndFil < LeftPel) x_2ndFil = LeftPel
if (x_2ndFil > RightPel) x_2ndFil = RightPel
if (x_IstFil < LeftPel) x_IstFil = LeftPel
if (x_IstFil > RightPel) x_1stFil = RightPel

Jor (yl=1; yI<16; yl=yl+2) {

y_2ndFi =yl + yorigin 2ndFi /* Addressing Y of R & S pixels */
y_IstFi = yl + yorigin_IstFi /* Addressing Y of P & Q pixels ¥/

l /* In case that the required pixel is out of frame */
if (y_IstFi < ToplstFiLine) y_IstFi = ToplstFiLine
if (y_IstFi > BottomlstFiLine) y_IstFi = BottomlstFiLine
if (y_2ndFi < Top2ndFiLine) y 2ndFi = Top2ndFiLine
if (y_2ndFi > Bottom2ndFiLine) y_2ndFi = Bottom2ndFiLine

| /* interpolation ¥/
ref 2ndFi = ref frame(x_2ndFil,y 2ndFi) + ref frame(x_2ndFi2,y 2ndFi)
ref 1stFi = ref frame(x_IstFily IstFi) + ref frame(x_IstFi2,y 1stFi)
FAMC MB(xlyl) = (a*ref 2ndFi + b*ref 1stFi)ll16
}
}
}

(Adjacent_XXX_Line_for XXX_Field_for XXX) functions are shown in Table 1.1 to 1.4, and the vertical
interpolation coefficients (a,b) are shown in Table 2.1 to 2.2.
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Prediction for Chrominance is calculated in the same manner of luminance with replacing the

FAMC_MYV to the vector which is derived by halving component value of the corresponding MB vector,
using the formula from DC 11172;

right_for = (recon_right_for/2)>>1;

down_for = (recon_down_for/2)>>1;

right_half for = recon_right _for/2 - 2*right_for;
down_half for = recon_down_for/2 - 2*down_for;

An example of FAMC for luminance and chrominance are depicted in Fig. 1. 7222?
2. Motion Vector Estimation for FAMC
For ME simplification, 2 Step MV search algorithm is used.

1) Step 1 ; Integer pel, 2 line accuracy

In step 1, frame-base ME is performed with 2(V) x 1(H) accuracy.
Min_AE = MAXINT :

Jor (j=(-YRange); j<(YRange+1); j+=2) {

Jor (i=(-XRange); i<(XRange+1); ++i) {
Get_Prediction_MB_by_Frame_Prediction (i, j, prediction_mb)
AE_mb = AE_macroblock (current_mb, prediction_mb)
if (AE_mb < Min_AE) {

Min_AE = AE_mb
FAMC MV = (i)
}
}
}

Note: YRange used here should be an even number.

2) Step 2 ; Half pel accuracy
In step 2, simplified FAMC based-ME is performed on the twenty neighboring positions which are
. evaluated the following order;
1 2 3
4 5 6
7 8 9
10 0 11
12 13 14
15 16 17
18 19 20

where O represents the evaluated position in step 1. Min_AE as a result of in Step 1 is used as an initial
value in Step 2.

Jor (j=-3; j<4; ++j) {
for (i=-1;i<2; ++i) {
Get_Simplified FAMC_MB_for_xxxx (Frame_Distance, Origin,
(FAMC_MVx_2int+0.5*%i, FAMC_MVy_2int+0.5%j), FAMC MB)
AE_famc = AE_macroblock (current_mb, FAMC _MB)
if (AE_famc < Min_AE) {
Min_AE = AE famc
FAMC_MV = (FAMC_MVx_2int+0.5*, FAMC_MVy 2int+0.5*j)
}
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}
}
where (FAMC_MV 2int) represents the motion vector which is detected in step 1 motion estimation
stage.
\
Table 1.1 Table 1.2
Adj._IstFi L. _for _Ist F. for Forward Adj._2ndFi L. for 1st F. for Forward
Adj. 2ndFi L._for 2nd_F._for_Backward Adj._IstFi L. for 2nd F. for Backward
Frame_Distance Frame_Distance
FAMC_ 1 2 3 FAMC_ 1 2 3
MVy MVy
0.0 0 0 0 0.0 1 1 1
0.5 0 0 0 0.5 1 1 1
1.0 0 0 0 1.0 1 1 1
15 0+0 0+2 0+2 1.5 0+1 0+1 0+1
20 2 2 2 2.0 1 1 1
2.5 4 2 2 2.5 1 3 3
3.0 4 2 2 3.0 1 3 3
35 4 2 2 35 1 3 3
4.0 4 4 4.0 3 3
4.5 6 4 45 3 5
5.0 6 4 5.0 3 5
5.5 4+ 6 4 5.5 2+ 3 5
6.0 6 6 6.0 5 5
6.5 6 8 6.5 5 5
7.0 8 8 7.0 5 5
7.5 8 8 7.5 5 5
8.0 8 8.0 7
8.5 10 8.5 7
2.0 10 9.0 7
9.5 8+ 8+ 10 9.5 4+ 6+ 7
10.0 10 10.0 9
10.5 10 10.5 9
11.0 12 11.0 9
11.5 12 11.5 9
12.0 12.0
12.5 12.5
13.0 13.0
13.5 12+ 12+ 13.5 6+ 10+
14.0 14.0
14.5 14.5
15.0 15.0
15.5 15.5
16.0 16.0
16.5 REPEATED 16.5 REPEATED
17.0 | | 17.0

154



19-Oct-92  Proposal for Test Model 2, Draft Revision 2

Table 1.3 Table 1.4
Adj._IstFi_L. for 2nd_F._for Forward
Adj._2ndFi L. for 2nd F. for Forward
Adj._2ndFi L. for Ist F. for Backward
Adj._IstFi L._for_Ist F. for Backward

Frame_Distance Frame_Distance
FAMC_ 1 2 3 FAMC_ 1 2 3

MVy MVy
0.0 1 1 1 0.0 0 0 0
0.5 1 1 1 0.5 0 0 0
1.0 1 1 1 1.0 2 2 2
1.5 0+1 0+1 0+1 1.5 0+2 0+2 0+2
20 3 3 3 2.0 2 2 2
25 5 3 3 2.5 2 4 2
3.0 5 3 3 3.0 2 4 4
35 5 3 3 35 4 4 4
4.0 5 5 4.0 4 4
4.5 7 5 4.5 4 6
50 7 5 5.0 4 6
5.5 6+ 7 5 55 4+ 4 6
6.0 7 7 6.0 6 6
6.5 9 9 6.5 6 6
7.0 9 9 7.0 6 6
7.5 9 9 75 8 6
8.0 9 8.0 0 8
8.5 11 8.5 0 8
9.0 11 9.0 2 8
9.5 12+ 10+ 11 9.5 8+ 8+2 10

. 10.0 11 10.0 2 10

10.5 13 10.5 4 10

11.0 13 11.0 4 10

11.5 13 11.5 4 12

12.0 12.0 4

12.5 12.5 4

13.0 13.0 4

13.5 18+ 14+ 13.5 12+ 41 12+

14.0 14.0 6

14.5 14.5 6

15.0 15.0 6

15.5 15.5 8

16.0 16.0

16.5 REPEATED 16.5 REPEATED

17.0 | | 17.0

*In case of FAMC_MVy <0, the sign of all figures in Table 1.1 - 1.4 should be
changed to minus.
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Table 2.1 (a,b) Table 2.2 (a,b)
(yl == IstFi) in forward prediction (yl == 2ndFi) in forward prediction
(yl == 2ndFi) in backward prediction (yl == IstFi) in backward prediction
Frame_Distance Frame_Distance .-
FAMC_ 1 2 3 FAMC_ 1 2 3
MVy a a a MVy a a a
-1.0 3 2 1 -1.0 3 2 1
-0.5 5 4 4 -0.5 3 3 4
0.0 8 8 8 0.0 8 8 8
0.5 5 4 4 0.5 3 3 4
1.0 3 2 1 1.0 3 2 1
1.5 1 2 3 1.5 6 5 5
20 8 8 8 2.0 8 8 8
2.5 1 6 5 2.5 6 1 1
3.0 3 3 3 3.0 3 3 3
35 5 2 0 35 3 6 5
4.0 8 8 4.0 8 8
4.5 REPEATED 2 6 45 REPEATED 6 1
5.0 3 4 5.0 3 4
5.5 6 2 55 | 6
6.0 8 8 6.0 8 8
6.5 2 2 6.5 5 6
7.0 2 4 7.0 2 4
7.5 4 6 7.5 3 1
8.0 8 8.0 8
8.5 REPEATED 0 8.5 REPEATED 5
9.0 3 9.0 3
9.5 5 9.5 1
10.0 8 10.0 8
10.5 3 10.5 5
11.0 1 11.0 1
11.5 4 11.5 4
12.0 12.0
12,5 12.5
13.0 13.0
135 13.5
14.0 140
14.5 14.5
15.0 15.0
15.5 15.5
16.0 16.0
16.5 REPEATED 16.5 REPEATED
17.0 | | 17.0 I
| Note: a+b =8
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| *In case of FAMC_MVy < 0, all coefficients (a,b) are cyclically repeated in Table 2.1 and 2.2.

157



19-Oct-92  Proposal for Test Model 2, Draft Revision 2

Appendix L: CORE EXPERIMENTS ON PREDICTION MODES

Nine core experiments on prediction modes are listed in this appendix:

1. Simplified FAMC (Matsushita, Philips)

2. SVYMC (KDD, TCE)

3. DUAL-PRIME (Dual®) (Toshiba, GCT, Mitsubishi)

4, Global Motion Compensation (Matsushita, KDD)

5. Leaky Prediction 1 (VC, AT&T)

6. Leaky Prediction 2 (CCITT, CCET)

7. Reverse Order Prediction (Columbia Univ., AT&T, Bellcore)

8. Simplification of Test Model (SONY, GCT, Mitsubishi)

9. 6x8 Macroblock (JVC, Columbia Univ., AT&T, Bellcore)

Core Experiment No.1 Simplified FAMC

The specification of simplified FAMC can be found in ANNEX B of MPEG 92/249.

1) The coefficient for interpolation is truncated to 3 bits, namely the multiplication of 1/8.
2) Simplified FAMC is not allowed in averaged MBs in B-pictures.

Simplified FAMC is applied to field structure same as frame structure. Attension should be paid
in "field FAMC" with M=1, because the relative parity of the two reference ficlds are inversed
for the first and second field, in the forward prediction direction.

Core Experiment No.2 SVMC (Single Vector Motion Compensation)

SVMC motion estimation is described in L.2.1. The sample program is shown in L.2.2. The
corresponding syntax for SVMC is described in L.2.3. The reference and performance of SVMC can be
found in MPEG 92/246. Since SVMC already includes frame type prediction as well as field type
prediction, such modes as frame and field prediction can be replaced or represented by SVMC which uses
only one MV per MB. Although SVMC has four modes in it, three modes except simplified FAMC use
the same fractional pel picture, and only the selection of prediction points differs as shown in L.2.1. As
for simplified FAMC, interpolation mode in B-picture is excluded and fast search method is used, where
" first stage of this search method is common for all the four modes.

SVMC is also applicable to field picture by considering only one field(instead of frame) to predict for
each time (Figure L2). Although the most part is the same, the complete description of SVMC for field
picture will be specified at a later time.

] NOTE: This has to be done at the Tarrytown meeting
| L.2.1 SVMC motion estimation for frame picture
SVMC motion estimation is performed in two steps.
Step 1 Frame vector search
In this case, frame block search using integer pel accuracy is performed. For vertical
direction, block matching is carried out for every other line(..-4,-2,0,+2,+4,..) which cnables motion
estimation of same parity field. By this line hopping, the amount of calculation is half of that of normal

frame block matching in integer pel accuracy.

| Step 2 SVMC search for 21 points for each mode
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By using the motion vector obtained in the above as an offset, SVMC search is performed for limited
search area. The area consists of +/-0.5 for horizontal direction and +/-1.5 for vertical direction which
makes total of 21[=3(H) x 7(V)} search points for each mode.

There are four prediction modes in SVMC for frame picture.

a) Simplified FAMC

b) Same parity field MC

¢) Near field MC

d) Modified dual field MC

The first one, simplified FAMC(Figure L1-(1)) is used where ME and MC are simplified according to
MPEG92/249 and an interpolation mode in B-picture is excluded in order to reduce the memory band
width (same condition as Core Experiment No.1 Simplified FAMC).

The second one, same parity field MC is performed by searching motion vector using the same parity
field data as shown in Figure L1-(2). In this case, each point in each field is predicted using a point in
the same parity field with 1/2 pel accuracy to the horizontal and 1/4 pel to the vertical direction.

The third one, near field MC is performed by searching motion vector using the nearest field in the time
domain to the input picture as shown in Figure L1-(3). In this case, each point in both fields is predicted
using a point in the nearest field in terms of time axis with 1/2 pel accuracy to the horizontal and 1/4 pel
to the vertical direction.

The fourth one, modified dual field MC is performed by using the average data of two fields as shown in
Figure L1-(4). In this case, each point in field is predicted using two points in two fields with 1/2 pel
accuracy to the horizontal and 1/4 pel to the vertical direction. In this fourth mode, an interpolation
mode in B-picture is excluded.

In each mode ) - d), 21 points are searched using above prediction data and best position is searched in
terms of MAD. Then mode decision is made by finding the smallest MSE among four modes. When
MSE is the same, the priority is given to b),c),a),d) order in the above modes.

Unlike FAMC, modes b) and ¢) do not require complicated weighting calculation by multiplier using two
points, since these two schemes only access fixed points no matter how frame distance value and motion
vector may change on condition that pixel data of 1/2 pel accuracy in the horizontal and 1/4 pel in the

- vertical direction is obtained. Although mode d) requires access of two pixels for simple averaging, there
is no need of multiplier.

As for chrominance, half value of motion vector is used in the same way as TM1.
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Reference Predicted Reference Predicted
Frame Frame Frame Frame
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Figure L1 SYMC(Single Vector Motion Compensation) for frame picture
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Reference Predicted Reference Predicted
Fields Field Ficlds Field
> 1 ; 0
ParityDiff. Parit Same ParityDiff. Parity
e Fied Field  Ficld
(1) FAMC (2) Same Parity Field MC
Reference Predicted
T Fields Field
/ \
Reference Predicted
Fields Field

Same ParityDiff. Parity Same Parity Diff. Parity
Field Field Field Field
(3) Diff. Parity Field MC (4) Modified Dual Field MC

| Figure L2 SVMC(Single Vector Motion Compensation) for field picture
| L.2.2 SVMC Program (Except FAMC) for frame picture

Get_SVMC_MB (mvx,mvy,XSRT,YSRT)

/* mvx ... -1.5,-1.0,-0.5,0,0.5,1.0,1.5 ...
mvy ... -1.5,-1.0,-0.5,0,0.5,1.0,1.5 ...
XSRT ... MB horizontal position
YSRT ... MB vertical position */

/* Same_Field_MB ... Same Parity Field Prediction MB
Diff_Field_MB ... Different Parity Field Prediction MB
Near_Field_MB ... Near Field Prediction MB
Dual_Field_MB ... Field Interpolation MB
EtoE ... Field Distance from Reference Field Even to Predicted Field Even
EtoO ... Field Distance from Reference Field Odd to Predicted Field Even
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0t00 ... Field Distance from Reference Field Odd to Predicted Field Odd
OtoE ... Field Distance from Reference Field Even to Predicted Field Odd*/

if (Forward Prediction) {
EtoE = Frame_Distance*2 ;
EtoO = Frame_Distance*2-1 ;
OtoO = Frame_Distance*2 ;
OtoE = Frame_Distance*2+1 ;

}

else {
EtoE = Frame_Distance*2 ;
EtoO = Frame_Distance*2+1 ;
OtoO = Frame_Distance*2 ;
OtoE = Frame_Distance*2-1 ;

)

/* Positioning (Predicted Field = Even) */
/* Halfpel horizontal position to Even Field */
xofs_evenl = (mvx*2)/2;
xofs_even2 = (mvx*2)//2;

/* Quarter pel vertical position to Even Field */
yofs_evenl = ((mvy*2)/4)*2 ;

if (mvy <0) yofs_even2 = (((mvy*2)-3)/4)*2;
else yofs_even2 = ((mvy*2)+3)/4)*2;

/* Halfpel horizontal position to Odd Field */
xofs_odd] = ((mvx*2*EtoO)//EtoE)/2 ;
xofs_odd2 = ((mvx*2*EtoO)//EtoE)/2 ;

/* Quarter pel vertical position to Odd Field */

if (mvy <0) {
yofs_odd1 = (((mvy*2*EtoO)/EtoE - 2)/4)*2 + 1 ;
yofs_odd2 = (((mvy*2*EtoO)/EtoE - 5¥/4)*2 + 1 ;

b
else {
yofs_oddl = (((mvy*2*EtoO)/EtoE + 2)/4)*2 - 1 ;
yofs_odd2 = (((mvy*2*EtoO)/EtoE + SY4)*2 - 1 ;
}

/* Weighting Parameter for Same Parity Field Prediction */
if (yofs_evenl == yofs_even2) {

same_wtl =4 ;

same_wt2=0;

)
else {
same_wtl = absolute (yofs_even2*2-(mvy*2)) ;
same_wt2 = absolute (yofs_evenl*2-(mvy*2)) ;
}

/* Weighting Parameter for Difference Parity Field Prediction */
if (yofs_odd] == yofs_odd2) {

diff wtl =4;

diff wt2=0;
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}
else {
diff_wtl = absolute (yofs_odd2*2 - (mvy*2*EtoO)//EtoE) ;
diff_wt2 = absolute (yofs_odd1*2 - (mvy*2*EtoO)//EtoE) ;
)

/* Prediction main (Predicted Field = Even) */
for (y =0}y < 165y +=2)
for (x =0;x < 16;x ++) {
/* Even Field to Even Field Prediction */
x_evenl = XSRT + x + xofs_evenl ;
x_even2 = XSRT + x + xofs_even2 ;
y_evenl = YSRT + y + yofs_evenl ;
y_even2 = YSRT + y + yofs_even2 ;
ref_evenxl =ref_frame[y_evenl]{x_evenl] + ref_frame[y_evenl][x_even2];
ref_evenx2 = ref_frame[y_even2][x_evenl] + ref_frame[y_even2][x_even2] ;
Same_Field_MB([y]([x] = (same_wt1*ref_evenx1 + same_wt2*ref_evenx2)//8 ;

/* Odd Field to Even Field Prediction */

x_odd1 = XSRT + x + xofs_oddl1 ;

x_0dd2 = XSRT + x + xofs_odd?2 ;

y_oddl = YSRT +y + yofs_odd1 ;

y_odd2 = YSRT + y + yofs_odd2 ;

ref_oddx1 = ref_frame[y_odd1][x_odd1] + ref_frame[y_odd1][x_odd2] ;
ref_oddx2 = ref_frame[y_odd2]{x_odd1] + ref_frame[y_odd2][x_odd2] ;
Diff_Field_MB[y][x] = (diff_wt1*ref_oddx1 + diff_wt2*ref_oddx2)//8 ;

if (Forward Prediction) Near_Field_MB[y][x] = Diff_Field_MBIy][x] ;
else Near_Field_MB[y][x] = Same_Field_MB([y][x] ;
}

/* Positioning (Predicted Field = Odd) */
/* Halfpel horizontal position to Odd Field */
xofs_odd1 = (mvx*2)/2 ;
xofs_odd2 = (mvx*2)//2 ;

/* Quarter pel vertical position to Odd Field */
yofs_odd1 = ((mvy*2)/4)*2 ;

if (mvy <0) yofs_odd2 = (((mvy*2)-3)/4)*2;
else yofs_odd2 = (((mvy*2)+3)/4)*2;

/* Halfpel horizontal position to Even Field */
xofs_evenl = ((mvx*2*OtoE)//OtoQ)2 ;
xofs_even2 = ((mvx*2*OtoE)//OtoQ)//2 ;

/* Quarter pel vertical position to Even Field */

if (mvy <0) { ‘
yofs_evenl = (((mvy*2*OtoE)/Ot00 - 2)/4)*2 + 1 ;
yofs_even2 = (((mvy*2*OtoE)Y/OtcO - 5)/4)*2 + 1 ;

}
else {
yofs_evenl = (((mvy*2*OtoE)/Oto0 + 2)/4)*2 - 1 ;
yofs_even2 = (((mvy*2*OtoE)/Oto0 + 5)/4)*2 - 1 ;
}
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/* Weighting Parameter for Same Parity Field Prediction */
if (yofs_oddl == yofs_odd2) {

same_wtl =4 ;
same_wt2=0;
}
else {
same_wtl = absolute (yofs_odd2*2-(mvy*2)) ;
same_wt2 = absolute (yofs_oddi*2-(mvy*2));
)

/* Weighting Parameter for Difference Parity Field Prediction */
if (yofs_evenl == yofs_even2) {

diff_wtl =4 ;
diff wi2=0;
}
else {
diff_wt1 = absolute (yofs_even2*2 - (mvy*2*OtoE)//OtoO) ;
diff_wt2 = absolute (yofs_evenl *2 - (mvy*2*OtoE)//Oto0) ;
)

/* Prediction main (Predicted Field = Odd)*/
for (y = Ly < 16y +=2)
for (x =0;x < 16;x ++) {
/* Odd Field to Odd Field Prediction */
x_oddl = XSRT + x + xofs_odd1 ;
x_0dd2 = XSRT + x + xofs_odd2 ;
y_oddl = YSRT +y + yofs_oddl ;
y_odd2=YSRT +y + yofs_odd2 ;
ref_oddx1 = ref_frame[y_odd1][x_odd1] + ref frame[y_odd1][x_odd2] ;
ref_oddx2 = ref_frame{y_odd2][x_odd1] + ref_frame[y_odd2](x_odd2] ;
Same_Field_MB[y][x] = (same_wt1*ref_oddx1 + same_wt2*ref_oddx2)/8 ;

/* Even Field to Odd Field Prediction */

x_evenl = XSRT + x + xofs_evenl ;

x_even2 = XSRT + x + xofs_even2 ;

y_evenl = YSRT + y + yofs_evenl ;

y_even2 = YSRT +y + yofs_even2 ;

ref_evenxl = ref_frame[y_evenl][x_evenl] + ref frame[y_evenl][x_even2];
ref_evenx2 = ref_frame[y_even2][x_even!] + ref_frame[y_even2][x_even2];
Diff_Field_MB[y][x] = (diff_wt1*ref_evenxl + diff_wt2*ref_evenx2)//8 ;

if (Forward Prediction)  Near_Field_MB[y][x] = Same_Field_MB([y][x] ;
else Near_Field_MB[y][x] = Diff_Field_MB{yl[x] ;
}

/* Dual Field Prediction */
for (y =0y < 16y ++)
for (x =0;x < 16;x ++)
Dual_Field_MB([y][x] = (Same_Field_MB[y][x]
+ Diff_Field_MB{y][x])//2 ;

164



19-Oct-92  Proposal for Test Model 2, Draft Revision 2

L.2.3 Syntax change corresponding to SVMC

Macroblock Layer

macroblock() {

if (interlaced) { /* not MPEG-1 syntax */
| if ( macroblock_motion_forward
macroblock_motion_backward ) {
I if ( picture_structure == "11") { /* Frame-Picture */
frame_motion_type 2 uimsbf
if ( frame_motion_type == "11") {

if ( macroblock_motion_forward &&

macroblock_motion_backward )

SVMC _typel 2 uimsbf
else
SVMC_type2 2 uimsbf
)
}else {
field_motion_type 2 uimsbf

h if ( field_motion_type == "11")
if ( macroblock_motion_forward &&
macroblock_motion_backward )

SYMC_type3 2 uimsbf
else
SVMC_typed 2 uimsbf

}
)
}
if (( picture_structure == "11") /* Frame-Picture */
&& (macroblock__intra Il macroblock_pattern ))
det_type 1 uimsbf

SVMC_typel - this is two-bit integer indicating the macroblock motion prediction when bidirectional
mode for frame-picture, defined in the following table:

binary value Motion Prediction

00 Forward = Same, Backward = Same Field Prediction
01 Forward = Same, Backward = Near Field Prediction
10 Forward = Near, Backward = Same Field Prediction
11 Forward = Near, Backward = Near Field Prediction
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SVMC_type2 - this is two-bit integer indicating the macroblock motion prediction when unidirectional
mode for frame-picture, defined in the following table:

binary value Motion Prediction

00 Same Parity Field Prediction
01 Near Field Prediction

10 Simplified FAMC

11 Madified Dual Field Prediction

SVMC_type3 - this is two-bit integer indicating the macroblock motion prediction when bidirectional
mode for field-picture, defined in the following table:

binary value Motion Prediction

00 Forward = Same, Backward = Same Field Prediction
01 Forward = Same, Backward = Diff. Field Prediction
10 Forward = Diff., Backward = Same Field Prediction
11 Forward = Diff., Backward = Diff. Field Prediction

SVMC_typed - this is two-bit integer indicating the macroblock motion prediction when unidirectional
mode for field-picture, defined in the following table:

. binary value Motion Prediction

' 00 Same Parity Field Prediction
01 Diff. Parity Field Prediction
10 Simplified FAMC

: 11 Modified Dual Field Prediction

field_motion_type- this is a 2-bit code indicating the macroblock motion prediction, defined in the
following table: !

code Aprcdiction type motion vector count mv format
11 CORE EXPERIMENTS(SVMCO) 1 frame

frame_motion_type- this is a 2-bit code indicating the macroblock motion prediction, defined in the
" following table: '

code prediction type motion vector count myv format
11 CORE EXPERIMENTS(SVMC) 1 frame

If you have any questions or request on MV, please contact to nakajima@spg.elb.kddlabs.co.jp or
Y .Nakajima, KDD R&D Labs., tel +81(492)66-7891, fax +81(492)66-7510

Core Experiment No.3 DUAL-PRIME (Dual’)

DUAL-PRIME prediction is an improved version of dual field prediction defined in TM1, reducing
overhead for transmitting motion vectors. It needs only one field motion vector and one additional very
small differential vector per macroblock. Its operation is considered to be both improvement of vertical
resolution and adaptive spatiotemporal loop filtering. No pel by pel basis multiplication is needed and its
decoder memory bandwidth is one-half that for original FAMC.

All the information for DUAL-PRIME is described in MPEG92/259, according to the syntax and the field
motion vector transmission method of TM1. This document is the revised version of the syntax, decoding
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process and motion vector estimation method for DUAL-PRIME, according to the syntax and the field
motion vector transmission method of TM2 with extension to the field-picture.

1. Syntax Extension for Dual' in TM2

forward motion vectors() {

forward field motion_vector 1()
forward field motion vector 2()

| I
| if (motion vector count == 1) { |
| if (mv_format == frame) { |
| forward motion vector() |
| } else { |
| forward field motion vector() [
I if (frame motion_ type == '11' I
I [l field motion type == ‘'11') I
I dmv () . I
| I
[ } else { |
I I
| |
| |
| |

backward motion vectors() {

backward_field_motion vector 1()
backward field motion vector 2()

I I
| if (motion vector count == 1) { |
| if (mv_format == frame) { |
i backward motion vector() |
] } else { I
[ backward field motion vector() |
I if (frame motion type == '11' I
I || field motion type == '11') I
1 dmv () I
| } [
| } else { I
I I
I I
I } |
I} !
I dnv() { I
I dmv_horizontal 1-2 vlclbf 1
I dmv_vertical 1-2 vliclbf I
I} I

forward field motion vector() {

I I
I if (forward reference fields == '11’' I
I && !(frame motion type == '11' || I
I field motion_ type == '11')) I
| motion vertical field select 1 uimsbf |
I ) I
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[ motion vectoxr() ce .. |

backward field motion_vector() {

motion_vector()

I I
I if (backward reference fields == '11' I
I && ! (frame_motion type == '11' || , I
I field motion type == '11')) I
| motion vertical field select 1 uimsbf |
| ) I
| |
| l

field_motion_type -- This is a 2-bit code indicating the macroblock motion prediction, defined in the
following table:

| code | prediction type | motion_vector count | mv_format |
------- R e e Rt
| 00 | Field-based prediction | 1 | field |
| 01 | Dual-field prediction | 2 | field |
| 10 | Simplified FAMC | 1 | frame |
I 11 | Core Experiments | 1 | field I
I | (Dual') | | hd

frame_motion_type -- This is a 2-bit code indicating the macroblock motion prediction, defined in the
following table: ’

| code | prediction type | motion vector count | mv_format |
------- B R e it
| oo | Field-based prediction | 2 | field |
] 01 | Frame-based prediction | 1 | frame |
| 10 | Simplified FAMC | 1 | frame |
I 11 | Core Experiments | 1 | field I
I | (Dual') | | I

2. Decoding process of motion vectors
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In dual' field based forward prediction, the following procedure is used to reconstruct the motion vectors.
In backward prediction, it is also valid except for replacing the term 'for' to 'back’. If field_motion_type is
dual' ("'11") or frame_motion_type is dual' (11", foward_field_motion_vector() and dmv() are transmitted.

Let recon_{right/down}_for means the horizontal/vertical component of MV _for, which is reconstructed
from foward_field_motion_vector(). Let dmv_ {horizontal/vertical }_for means the horizontal/vertical
component of DMV _for, which is reconstructed from dmv().

Let recon_{right/down}_for_OtoQ, recon_{right/down}_for_EtoO, recon_{right/down}_for EtoE and
recon_{right/down} for_OtoE mean the horizontal/vertical component of MV_for_OtoO, MV _for_Eto0,
MV_for_EtoE and MV _for_OtoE. .

Let dist_Oto0, dist_EtoO, dist_EtoE and dist_OtoE be the field distance between the {odd(#1)/even(#2)}
reference field and the {odd(#1)/even(#2)} field to be decoded. Note that dist_OtoO and dist_EtoE is
equal to the value 2*Frame_distance in FAMC description.

/* Substitute the decoded motion vector for the motion

vector of same parity */
recon_right for OtoO = recon_right_for EtoE = recon_right_ for;
recon_down_for_Oto0 = recon_down_for_EtoE = recon_down_for;

/* Derive the cross point of MV_for OtoO in the even reference field,
truncate it to the nearest one-half pixel unit point toward zero,
add DMV_for to get MV_for_ FEtoO
and express it in the opposite parity field coordinate */

recon_right for EtoO = ((recon_right_for OtoO * dist Eto0) / dist_Oto0)

+ dmv_horizontal forward;
recon_down_for_Eto0 = ((recon_down_for Oto0 * dist Eto0) / dist_oOto0)
+ dmv_vertical forward - 1;

/* Derive the cross point of MV_for EtoE in the odd reference field,
truncate it to the nearest one-half pixel unit point toward zero,
add DMV_for to get MV_for_ OtoE
and express it in the opposite parity field coordinate */

recon_right_for OtoE = ((recon_right_for EtoE * dist OtoE) / dist_EtoE)

+ dmv_horizontal_forward;
recon_gdown_for_ OtoE = ((recon_down_for EtoE * dist OtoE) / dist_EtoE)
+ dmv_vertical_ forward + 1;

For a Frame-Picture (picture_structure == '11"), all of the procedure mentioned above is executed to
reconstruct the motion vectors. For a Field-Picture (picture_structure == '10' or picture_structure == '01'),
part of the procedure mentioned above is executed to reconstruct the motion vectors. That is, if the parity
of the field to be decoded is odd (picture_structure == '10", the procedure related with * OtoO and
“*_EtoO should be executed, and if the parity of the field to be decoded is even (picture_structure == '01°),
the procedure related with *_EtoE and *OtoE should be executed.

3. Motion vector estimation process

At the first step, org_MV_for_{O/E }to{O/E}, which is the field motion vector from the odd/even field to
be referenced, to the odd/even field to be coded, is derived, according to the field motion vector estimation
process of this TM with half pel search using original pictures. The second step is as follows:

min_AE = MAXINT;
foreach i (0toO EtoO EtoE OtoE) {
/* $i may be 0toO, EtoO, EtoE or OtoE (4 candidates) *x/
if ($i == '0to0' || $i == 'EtoE') {
/* org_MV_$i is the motion vector for the field of same parity */
recon_right_for = recon_right for_ OtoO
= recon_right_for_ EtoE = org_recon_right_ for $i;
recon_down_for = recon_down_for_ OtoO
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= recon_down_for_EtoE = org_recon_down_for_$i;

/* org MV_$i is the motion vector for the field
of opposite parity */
recon_right for = recon_right_for_OtoO = recon_right for_ EtoE

/* If ($i
should
parity
If ($i
should
parity

= (org_recon_right_for_ $i * dist_Oto0) / dist $i;

== 'Eto0'), the vertical component of the motion wvector
be incremented by one to be expressed in the same

field coordinate.

== ‘OtoE'), the vertical component of the motion vector
be decremented by one to be expressed in the same

field coordinate. */

recon_down_for = recon_down_for_ 0to0 = recon_down_for_EtoE

}

= ((org_recon_down_for_$i + ($i == 'Eto0') * 1
+ ($1 == 'OtoE') * (-1)) * dist_OtoO) / dist $i;

/* Cut the local decoded reference fields of the same parity
according to the motion vectors. */
cut_ref(recon_right_ for_ OtoO, recon_down_for_ OtoO, 0dd_reference,
lines_of 0dd_field of_ MBl, MBadrs);
cut_ref(recon_right_for_EtoE, recon_down_for EtoE, Even_reference,
lines_of_ Even_field of MB1l, MBadrs);

for (dmv_vertical forward = -1;dmv_vertical forward<=l;

dmv_vertical forward++) {

for (dmv_horizontal forward = -1;dmv_horizontal_ forward<=1;

dmv_horizontal forward++) {

/* DMV's are prepared (9 candidates) */

/* Derive MV_for Eto0 from MV_for OtoO.
The vertical component should be decremented by one,
according to the TM2 motion vector definition. */
recon_right for Eto0 = ((recon_right for Oto0 * dist_ Eto0)

/ dist_Oto0) + dmv_horizontal_forward;

recon_down_for_Eto0 = ((recon_down_for_ OtoO * dist_EtoO0)

/ dist_0to0) + dmv_vertical forward - 1;

/* Derive MV_for_ OtoE from MV_for_ EtoE.
The vertical component should be incremented by one,
according to the TM2 motion vector definition. */
recon_right_for_ OtoE = ((recon_right for EtoE * dist_ OtoE)

/ dist_EtoE) + dmv_horizontal_forward;

recon_down_for_ OtoE = ((recon_down_for EtoE * dist_OtoE)

/ dist_EtoE) + dmv_vertical_forward + 1;

/* Cut the local decoded reference fields of the opposite
parity according to the motion vectors. */
cut_ref(recon_right_ for_ EtoO, recon_down_for_ EtoO,

Even_reference, lines_of 0dd field of MB2, MBadrs);

cut_ref(recon_right for_ OtoE, recon_down_for_ OtoE,

0dd_reference, lines_of Even_field of MB2, MBadrs);

/* Interpole the fields of both parity */
interpole(lines_of_ 0dd_field of MBI,

lines_of 0dd_field_of MB2,
lines_of_0dd_field of prediction_MB);

interpole(lines_of_ Even_field of MBI1,

lines_of_ Even_field of MB2,
lines_of Even_field of prediction_MB);

/* Calculate the absolute error */
AE_0dd = AE_Macroblock(lines_of 0Odd_field of prediction_MB,

lines_of_0dd_field of current MB);

AE_Even = AE Macroblock(lines of Even field of prediction_MB,
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lines_of Even_field_of_current MB);
AE = AE_0dd + AE Even;
if (AE < min_AE) {
min_AE = AE;
MV_for = (recon_right for, recon_down_for);
DMV_for = (dmv_horizontal forward, dmv_vertical forward);

}

cut_ref(recon_right, recon_down, Reference, Buf, MBadrs): The reference signals pointed by
recon_{right/down}_for and MBadrs in field buffer "Reference" are copied to macroblock buffer "Buf™.
interpole(Buf1, Buf2, Buf): Average signals of buffer "Buf1" and "Buf2" are stored in buffer "Buf".

For a Frame-Picture, all of the procedure mentioned above is executed to reconstruct the motion vectors
(number of candidates are 4*9 = 36). Note that MB1, MB2, prediction_MB and current_MB are frame
macroblocks, and odd/even lines in them are in the odd/even field.

For a Field-Picture, part of the procedure mentioned above is executed to reconstruct the motion vectors.
If the parity of the field to be coded is odd, the procedure related with *_OtoO and *_EtoO should be
executed (number of candidates are 2*9 = 18). Note that MB1, MB2, prediction_MB and current_MB are
field macroblocks, and all lines in them are in the odd field. If the parity of the field to be coded is even,
the procedure related with *_EtoE and *OtoE should be executed (number of candidates are 2*9 = 18).
Note that MBI, MB2, prediction_MB and current_MB are field macroblocks, and all lines in them are in
the even field.

Note:

1) In motion vector estimation process, if the motion vector, obtained by the extension of the vector and
summation of dmv, points out of the picture, the candidate is not used.

2) In both motion vector estimation process and decoding process of motion vectors, if the value of the
half pixel point located in the edge of the picture must be used, the value of the integer pixel point next to
it is used.

If you have some questions, please contact to: odaka@eel.rdc.toshiba.co.jp
or T.Odaka, Toshiba R&D center, fax +81(44)549-2276

4. Supplimentary explanation for Figure A-1 in MPEG92/259.

The notation '(TM1 def.) --> (TM2 def.)' means the replacement of motion vector expressed in TM1
.definition with motion vector expressed in this TM definition in half-pel unit.

-[Lower left figure of Figure A-1 in MPEG92/259]
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Reference Current
0odd Even odd
(#1) (#2)
[ | [
-2 <-- -4 O X -3 --> -3 (o]
[ I |
-1 <-- -1 X 0 -2 --> -2 |
I I I
0 <-- 0 O X 1-->-1 @ Motion estimation
| | | for this pixel
1<-- 3 X o 2 --> 0 |
| | |
2<-- 4 O X 5 --> 1 0
| [ ]
3 <-- 7 X O 6 --> 2 |
I I I
4 <-- 8 O X 9 --> 3 o]
| | [
5 <-- 11 X 010 --> 4 [
I | I
6 <-- 12 O X 13 --> 5 (0]
. I | [
7 <-- 15 X 014 --> 6 |
I | [
8 <-- 16 O X 17 --> 7 0
| | |
T™2 TM1 ™1 T™2
def. def. def. def .

[Lower right figure of Figure A-1 in MPEG92/259] ¢

Reference Current
odd Even Even
(#1) (#2)
| I |
-2 <-- -6 O X -5 --> -3 |
[ | I
-1 <-- -3 X O -4 --> -2 (o}
I | |
0 <-- -2 0 X -1 --> -1 |
I | I
1<- 1 X 0O 0 --> 0 @ Motion estimation
| | | for this pixel
2 <-- 2 0 X 3 --> 1 |
I | |
3 <-- 5 X O 4 --> 2 0]
I I I
4 <-- 6 O X 7 --> 3
I | I
5 <-- 9 X O 8 --> 4 0
| | [
6 <-- 10 O X 11 --> 5
I | I
7 <-- 13 X 0 12 --> 6 (¢}
[ | [
8 <-- 14 © X 15 --> 7 |
| | [
T™?2 T™1 ™1 T™M2
def. def. def. def.
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Core Experiment No.4 Global Motion Compensation

Global motion compensation is applied to I-pictures coded in frame mode. It is a kind of pre-processing
that shifts the relative position between the two fields in an I-picture based on a pair of global MV, After
reconstruction, the relative position between the two fields has to be shifted back to the original

position for display (at decoder side) or as the reference picture (at encoder side).

1. Global Motion Estimation

1) Global MV is determined from the luminance pixels only.

2) Fields 1 and 2 of an I-picture are splitted. Field 2 is fixed while field 1 becomes the reference field.

3) The motions between fields 1 and 2 of an I-picture is estimated in full pel precision horizontally and
half pel precision vertically.Thus, the reference field is composed of field 1 plus its vertical
interpolation.

4) A pair of motion vector is determined for each macroblock by full search block matching method
under the minimum absolute error criterion. The block size in each field is 16(H)x8(V). The
difference is always between fields 2 and 1, or between field 2 and the interpolated lines of the
reference field.

5) The search area is set to half of the search area for inter-frame motion vectors as the global motion
between two fields cannot be larger than one half of the motions between two frames. Thus, for an
inter-frame motion search range of +- 15 pels, the inter-field motion search range is +- 7 pels.

6) With the MV's obtained above, a pair of global MV is determined by taking the average of the
components which occupy more than a certain percentage (majority) of all the MV's. This is
calculated separately for the x and y components.

7) For the y component, GlobalMV_y is modified as follows to avoid breaking down the interlaced
structure of the original picture.:

if (GlobalMV_y == negative odd number)
GlobalMV_y = GlobalMV_y + 1;

if (GlobalMV_y == positive odd number)
GlobalMV_y = GlobalMV_y - 1;

if (GlobalMV_y == even number)
GlobalMV_y = GlobalMV_y;

2 Global Motion Compensation

1) Global motion compensation is applied to the luminance of I-pictures only.

2) Based on the pair of global MV obtained, field 1 of an I-picture is shifted in full pel precision both
horizontally and vertically.

3) If meaningful pixels cover the whole 720 pels of the lines and the horizontal global motion
compensation is performed before the cropping. If meaningful pixels cover exactly the 704 pel area,
every other lines at one side of the borders will be left with no meaningful pixels after the
compensation. One can fill up the vacancies by repeating the nearest pixel in each line.

4) Every other lines at one side of the horizontal borders will be left with no meaningful lines after the
vertical global motion compensation.The values of the nearest line can be repeated to fill up the
vacancies.

5) The global-motion-compensated I-picture is then encoded as usual.

| 6) The pair of global MV is included in the bitstream as describe in the next section.

7) At the decoder side, the global MV is used to shift the field back to its original position after decoding
and reconstruction. The vertical and horizontal borders are dealt with one of the methods described in
3) and 4), respectively.

| 3. Modification of the Bitstream Syntax
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The global motion vector (GlobalMV_x, GlobalMV_y) is appended to the Picture Layer. These
parameters are integers, range from -7 through +7 or -15 through +15. They are offset by 15 to produce
unsigned integers. In the modified syntax, the global_motion_flag is a one bit integer. It is set to 1 when
there is global motion, and to O if (GlobalMV_x, GlobalMV_y) = (0, 0).

if (nextbits() == extension_start_code ) {
extension_start_code 32 bsibf
picture_structure 2 uimsbf
forward_reference_fields 2 uimsbf
backward_reference_fields 2 uimsbf
global_motion_flag 1 uimsbf
if (global_motion_flag=1){
GlobalMV x 5 uimsbf
GlobalMV _y 5 uimsbf
}
)

If you have some questions, please contact to :
toshi@drl.mei.co.jp
or Toshiya Takahashi, Matsushita,
FAX +81-6-949-2218,

Core Experiment No.5 Leaky Prediction 1
Purpose: To verify the coding efficiency , improvement of visual quality and accessibility
Definition ;
Prediction 1 (I.eaked MC filter
1. Rational leak prediction for high spatial frequency (stable loop filter ) is used.
2. Apply P-prediction and B-prediction with out FAMC
3. Modify the coefficients of half-pel filter in MC

" type 1 (non-DC leak)

b' =(a+l14b+c)/ 16 ax bx e+ c¢cx dx
e =(-a+9%+9c-d)/ 16 pel allocation (vertically or horizontally)
type 2 (DC leak)
b =(a+l2b+c)/ 16 a,b c,d=reference pels
i =(¢a+8b+8c-d)/16 b', e = predictive pels
Core Experiments

type 1 (non-DC leak) / type 2 (DC-leak)
Change Horizontal only / Horizontal and Vertical
Syntax
In the sequence layer, one bit flag may be defined to indicate as follow.
"0" : normal prediction
"1": leaked prediction

Reference
MPEG 92/ 261
If any question , contact ;
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Kenji Sugiyama  Digital Technologies Research Dept. Central R&D Center JVC
58-7, Shinmei-cho, Yokosuka, Kanagawa 239, JAPAN
e-mail : k-sgym@krhm.jvc-victor.co.jp Tel : +81-468-36-9275 Fax : +81-468-36-8540

Core Experiment No.6 Leaky Prediction 2
The syntax used for transmitting the leak_factor is described precisely in MPEG 92/340.

A 3-bit codeword is sent in the header of each P-picture. This codeword ranges from
"001"to "111" ("000" is prohibited). This codeword is mapped to an integer n by
natural binary mapping (uimsbf) except for "111" where n is infinite,

The leak_factor LF isobtainedas 1- 1/ 2**n. It is equal to 1 for infinite n (no
leaky prediction).

The leaky prediction is obtained as  LF * (pred_pixel - 128) + 128
where pred_pixel is the prediction pixel obtained by any prediction method.

As suggested by the CCITT Experts Group, the multiplication in the above equation
is implemented in ***floating point*** followed by ***truncation towards 128 ***
in 8 bits.

An algorithm for computing the leak_factor LF is given in MPEG 92/340.,

This method computes the correlation between the the current picture and the
(non-leaky) motion-compensated prediction from the previous I/P picture. This
correlation is quantized to the nearest allowed leak_factor.

EXPERIMENTS:

1. Compare the performance of M=3, N=12 with fixed LF=0.875 or variable LF , M=3, and no I-pictures
(after the first).

" 2. Simulate channel errors or cell losses and demonstrate resiliency.
3..Check the capability of channel tune-in for M=1 and M=3.

_In the above experiments, the quantizer matrices are the default matrices in the TM.
If the matrices are downloaded in the picture layer, this should be stated

Core Experiment No.7 Reverse Order Prediction
(Option to use reverse field order in field structure coding)

In field-structure syntax, each field is preceded by a picture header. The order of field processing
may be reversed using the two bits of picture-structure: ’

11 frame picture

10 field 1 picture

01 field 2 picture

00 reserved
Since "B" frame s are not affected, the improvement of reversing field order is more evident in low-delay
mode (M=1).
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This experiment compares (a) mormal field order coding and (b) reverse field order coding.
CCIR-601 fields are coded using MPEG2 field structure coding at 4 Mbit/s, using adaptive single/dual-
field predictions with M=1, N=15 (30Hz) or N=12 (25Hz). In (b), the I and P-picrures are reversed in
field processing using the above table, resulting in improved performance in sequences with uncovered
background.

(@) Io->Po->Po-> .
NN N NOTE ; UPWARD AND DOWNWARD ARROWS
Pe -> Pe -> Pe -> SHOULD BE WRITTEN 1!

) Po->Po->Po-> ‘ .
NN N NOTE ; UPWARD&&BACKWARD AND
Ie -> Pe -> Pe > DOWNWARD&&LOWSLOPE ARROWS
SHOULD BE WRITTEN !l

>
display time

Core Experiment No.8 Simplification of Test Model

+

Introduction

Test Model 1 (TM1) : Frame/Field Adaptive Coding has two problems. One is algorithm complexity,
because TM1 has adaptations of Frame MC/Field MC and Frame DCT/Field DCT. The other is the
amount of memories in hardware implementation. TM1 coding method needs more memories, e.g.
compared with Frame Base Field Structure Coding.To solve these problems, this document proposes the
simplification of Test Model 1 : Frame/Field Adaptive Coding.

Proposed Method

Proposed Method 1
Test Model 1 : Frame/Field Adaptive Coding has 4 modes. They are as follows :

1. Frame MC - Frame DCT
2. Frame MC - Field DCT
3. Field MC - Frame DCT
4. Field MC - Field DCT

In mode 2 and 3, macroblock reordering is needed between Motion Compensation and DCT, and this
increases hardware complexity of Frame/Field Adaptive Coding Method. To solve this problem, the
simplified method that inhibits mode 2 and 3, i.e. restricts mode 1 and 4 only is investigated. This
simplified method decides DCT mode by means of MC mode in non-intra MB. For example, if MC mode
is decided to Frame Mode by comparing prediction errors, DCT mode is decided Frame Mode
automatically. This simplified method saves not only Macroblock reordering after Motion Compensation
but also the process of DCT mode decision in the encoder. Moreover TM1 has two bits(flags) to inform
MC and DCT modes, but this simplified method needs only one bit(flag) to inform MC/DCT mode. In
intra MB the DCT mode is decided by the same method as TM1.

Another Reason for Proposed Method 1
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The combination of Field MC and Frame DCT mode shows poor performance at core experiments of
Scalability. Therefore the combination of Field MC and Frame DCT mode is not recommended by the
requirement of Scalability.

Proposed Method 2

The second proposed method fixes Picture Structure of B-Pictures to Frame Base Field Structure, By this
method, frame memory for the B-Pictures becomes needless because B-Pictures can be displayed as soon
as it is decoded.

The problem of this method is that the matching between the time the

decoder needs to decode 1 slice and the time the decoder needs to display

1 slice becomes critical. However, This problem is also occurred in the TM1 if TM1 has only 1 field
memory for B-Pictures.

Proposed Method 3

This method is a combination of Proposed Method 1 and Proposed Method 2.

In P-Pictures, Proposed Method 1 is used. In B-Pictures, Proposed Method 2 ;
is used. This method doesn't need Macroblock reordering, nor does it need ;
frame memory for the B-Pictures.

Simulation Conditions

Simulation conditions are as follows, and other conditions are the same as

Test Model 1.

GOP & Prediction : M=3, N=12 ,

Sequence : Flower Garden, Mobile & Calendar,
CheerLeaders, Bicycle, Football, Ftball,
TableTennis

Bitrate : 4Mbps

. Rate Control : Test Model 2

Core Experiment No.9 16x8 Sub-Macroblock MC

1. Purpose: To evaluate the coding efficiency and improvement of visual quality

2. Definition of sub-macroblock
In case of field coding, 16x16 macroblock may not be correct to apply the same MC
operation, then 16x16 macroblock may be coded as two 16x8 sub-macrobloks with

different MC operation,
16

3. Description of sub-MB motion compensation
(1) Different motion vector(s) for each 16x8 sub-MB while same MB-type
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- decision-criteria-1: whether one 16x16 or two 16x8
If(MV_of top sub-MB == MV_of bottom sub MB)
do ~ (16x16 MC)
else
do (two 16x8 MC)

- decision-criteria-2: whether one 16x16 or two 16x8
If((16x16 MC_MSE) < (16x8 MC_MSE sum x1.125))
do (16x16 MC)
else
do (two 16x8 MC)

where "16x8_MC_MSE_sum" refers to sum of 16x8_MC_MSE of "Top" and "Bottom" sub MB's,

(2) Different MC operation for each 16x8 sub-MB while MVs limited by 2 per this MB
- MVs is limited by two then in case of two 16x8 sub-MB, it can be MC operated
as follows.
- The meaning of "forward-MC-type" will be changed to
"forward-MC-type for top-sub-MB" and
"backward-MC-type for bottom-sub-MC"
- The meaning of "backward-MC-type" will be changed to
"backward-MC-type for top-sub-MB" and
"forward-MC-type for bottom-sub-MC"
- The meaning of "interpolated-MC-type" will be changed to
"both forward-MC-type" with different MV for each sub-MB.
- The decision criteria is the MSE criteria.

4. Syntax change
- In the picture layer, one bit flag will be added to indicate whether 3.(1) or 3.(2)
sub-MB scheme will be applied when indicated by "sub-MB-flag in MB layer.
- In the MB layer one bit flag of "sub-MB-flag" will be added just after MB-type
field to know whether normal MB or two sub-MBs.

If any question, contact;
Kenji Sugiyama / JVC
or
Atul Puri/ AT&T

Core Experiment No.10 Special Prediction Modes

L.10.1. Definitions

SVMC3 is SVMC without FAMC. The latest document is used (TM-2 Erratum), with the modifications
and corrections described in this document.

L.10.2. Temporal Scaling of the Motion Vector

Scaling of the motion vector is done in the same manner for all the special prediction modes (FAMC,
SVMC3 and DUAL-PRIME).

The transmitted motion vector (x, y) corresponds to a prediction from same-parity field.

The horizontal coordinate is in 1/2-pel units. The vertical coordinate is in 1/2-pel units or 1/4-pel units
(depending on the mode and of the experiment performed).

If the same parity reference frame is at a distance of 2*k ficlds from the predicted field, the coordinates
(x', y") of the "scaled-motion-vector" used for accessing the different-parity field is computed as follows :
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X'=(x*m*K)/32 (x and x' are integers)
V=((y*m*K)//32)+e (y and y' are integers)
K=16//k (kis integer)
m = field-distance between the predicted field and the different-parity-field (m is integer and can be
negative).
The "e" is an adjustment necessary to reflect the vertical shift between the lines of field 1 and field 2. To
give an example, line 1 of field 2 is in fact located 1/2 line under line 1 of field 1.
If vertical unit is 1/4-pel, "'e" is defined as follows :
= -2 if the reference field corresponding to the scaled vector is field 2
¢ = +2 if the reference field corresponding to the scaled vector is field 1
If vertical unit is 1/2-pel, "e" is defined as follows :
e = -1 if the reference field corresponding to the scaled vector is field 2
e = +1 if the reference field corresponding to the scaled vector is field 1

L.10.3. Reference Fields for SYMC3 and DUAL-PRIME

The reference fields used for SVMC3 and DUAL-PRIME are not always contiguous in time. Those
maodes can now be used in all cases of Field-structure P-Pictures.

When SVMC3 or DUAL-PRIME is used in the second P-Field of a P-Picture, the first P-Field is used as a
reference (different-parity) field.

SVMC3 and DUAL-PRIME can be used with reversed order prediction of P-Fields (in this case, m = -1).

L.10.4. Decision for Field-based Prediction

In order to take advantage of the various special prediction modes, the decision rule must be modified for
Field-based prediction.

It has been noted by various members that quality is improved by choosing Field-based prediction less
often, to the benefit of another special prediction mode, particularly in B-Pictures.

For example, even in cases where Field-based prediction has an MSE slightly better than any of the other
prediction modes, it may cost a significant overhead to transmit two field-vectors (four in B-Frames).
Until further improvement, we propose to use the following decision rule in core experiments involving
one of the special prediction modes :

- Field-based chosen

if MSE _field + 8 < MSE_best_of_other_modes in B-pictures
if MSE_field < MSE_best_of_other_modes in P-pictures
where MSE = Mean Square Error PER PEL of predicted MB

L.10.5. Concise Specification of SVMC3

The transmitted motion vector is scaled with the specified rule to obtain motion vectors origination from
each of the reference field, and pointing to the predicted field. When the reference field and the predicted
field are of same parity, the motion vector is used directly (no scaling is necessary).

| L.10.5.1 Forward Prediction

l

1..10.5.1.1 Forward Prediction of the pels of Field 1 (16Hx8V)

The coordinates (x'l , y'1) of the scaled motion vector are computed as specified, with m = m1.

A 16Hx8V prediction block is obtained from reference field ! with the vector originating from this field
Vertical interpolation is 1/4-pel linear interpolation. Horizontal interpolation is 1/2-pel as usual. Like in
the "usual" case, horizontal and vertical interpolation are done in a single step, involving only one
division (in this case by 8). An example is given in Figure 1 and Figure 2.
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A 16Hx8V prediction block is obtained from reference field 2 with the vector originating from this field.
Vertical interpolation is 1/4-pel linear interpolation. Horizontal interpolation is 1/2-pel as usual.

The selection of the prediction is done according to the SVMCS3 type:

- Near-field: The prediction block used is the one corresponding to the reference field closest to the
predicted field (in time axis).

- Same-parity: The prediction block used is the one corresponding to the reference field of same parity as
the predicted field. 7

- Dual: The prediction block used is obtained by averaging the two prediction blocks from field 1 and field
2. The averaging is done like in "Interpolation-mode" in B-Pictures.

L.10.5.1.2 Prediction of the pels of Field 2 (16Hx8V)

The coordinates (x'2 , y'2) of the scaled motion vector are computed as specified, with m = m2.
For the rest, the prediction is done like in 5.1.1.

L.10.5.2 Backward Prediction

The forward rule is simply transposed.

L.10.5.3 Averaged Prediction in B-Pictures
L.10.5.3.1 Averaged Prediction of the pels of Field 1 (16Hx8V)

The predictor blocks for forward prediction are computed as in sections 5.1.1 and 5.1.2.

The predictor blocks for backward prediction are computed as in 5.2.

The selection of the prediction is done according to the SVMCS3 type:

- Near-near: The prediction block used is obtained by averaging the prediction blocks from the closest
forward and backward reference fields (in time axis). \

- Same-near: The prediction block used is obtained by averaging the prediction block from the same
parity forward reference field and the prediction block from the closest backward reference field (in time
axis).

- Near-same: The prediction block used is obtained by averaging the prediction block from the same
parity backward reference field and the prediction block from the closest forward reference field (in time

. axis).

- Same-same: The prediction block used is obtained by averaging the prediction block from the same
parity forward reference field and the prediction block from the same parity backward reference field.
Note that the four SVMC3 averaged modes and the SVMC3 dual mode are extremely similar. Only the
choice of the two reference fields differs. The averaging is always done like in "Interpolation-mode" in B-
Pictures.

The other SVMC3 modes are equivalent to field-based prediction with 1/4 vertical accuracy.

L.10.5.4. Chrominance
The motion vector used for chrominance is obtained from the luminance SVMC3 motion vector with

precisely the same rule as in the case of field-based prediction (for 4:2:0 : divide each coordinate by 2 as
described section 5.2.2.1. of TM-2). The rules of prediction are same as for luminance.

L.10.5.5. Motion estimation of SVMC3
Search is done by a local refinement around several candidate motion vectors resulting of a first search.

The candidate motion vector can be the result of a full-pel accuracy search. The local search covers
5Vx5SH = 25 motion vectors and is done on reconstructed. For each of those, all the candidate SYMC3
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prediction blocks must be evaluated. For local search, the vertical step is 1/4-pel, and the horizontal step
is 1/2-pel.

In the case of Frame-Pictures, the candidate motion vectors used as starting point of local search are;

- The Frame motion (result of Frame-based search).

- The Field motion vector (result of Field-based search) from the closest reference field to the predicted
field of same parity. In this case, the vertical coordinate must be multiplied by two to have 1/4-pel vertical
field accuracy.

If forward: from field2 to field2

If backward: from field1 to fieldl

- Optionally, the other field motion vectors (scaled appropriately) could be used as candidate motion
vectors.

In the case of Field-Pictures, the candidate motion vectors used as starting point of local search are the
field motion vectors (result of Field-based search), scaled to the field-distance carresponding to same-
parity. In this case, the vertical coordinate of the field vectors must be multiplied by two to have a
candidate motion vector with 1/4-pel vertical field accuracy.

L.10.6. Concise Specification of DUAL-PRIME

In DUAL-PRIME prediction, single motion vector like that of SVMC3 with 1/2 pixel precision and one
very small differential motion vector called DMV is transmitted per macroblock. To obtain motion
vectors originating from each of the reference field, and pointing to the predicted field of the different
parity, the transmitted motion vector is scaled and DMV is added as follows:

x'=((x * m * K) // 32) + dmv_horizontal (x and x' are integers)

y'=((y *m *K)// 32) + dmv_vertical + e (y and y' are integers)

The variables (x, y), (', y), K, m, and e have been already defined above, and vertical unit is 1/2-pel.
dmv_horizontal and dmv_vertical are horizontal and vertical components of DMV with 1/2 pixel
precision. These values are restricted within the range from -1 to +1. Note that the same DMV is used
for the two scaled motion vectors in the frame picture as illustrated in Figure 3.

When the reference field and the predicted field are of same parity, the motion vector is used directly (no
scaling is necessary, and the addition of DMV is not necessary.).

L.10.6.1 Forward Prediction

- 1.10.6.1.1 Forward Prediction of the pels of Field 1 (16Hx8V):

The coordinates (x'1 , y'1) of the scaled motion vector are computed as specified, with m = ml.

A 16Hx8YV prediction block is obtained from reference field 1 with the vector originating from this field.
Both horizontal and vertical interpolation is 1/2-pel linear interpolation as usual in the field motion
vector. Like in the "usual" case, horizontal and vertical interpolation is done in a single step.

A 16Hx8V prediction block is obtained from reference field 2 with the vector originating from this field.
Both vertical and horizontal interpolation is 1/2-pel linear interpolation as usual.

The prediction block used is obtained by averaging the two prediction blocks from field 1 and field 2. The
averaging is done like in "Interpolation-mode" in B-Pictures.

L.10.6.1.2 Prediction of the pels of Field 2 (16Hx8V):

The coordinates (x'2, y'2) of the scaled motion vector are computed as specified, with m = m2.
For the rest, the prediction is done like in 6.1.1.

L.10.6.2 Backward Prediction

The forward rule is simply transposed.
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L.10.6.3 Prediction mode in B-Pictures

The averaging mode is inhibited in DUAL-PRIME. Only the forward/backward prediction is used in B-
pictures.

L.10.6.4. Chrominance

From DUAL-PRIME motion vector, four field motion vectors for luminance from the reference field
1/field 2 to the predicted field 1/field 2 can be obtained. Corresponding four chrominance vectors are
obtained with precisely the same rule as in the case of field-base prediction (for 4:2:0 : divide each
coordinate by 2 as described section 5.2.2.1. of TM-2). The rules of prediction are same as for luminance.

L.10.6.5. Motion estimation of DUAL-PRIME

The motion estimation of DUAL-PRIME is carried out by the following two steps.

The first step is to obtain four candidate mation vectors as follows. First, four field motion vectors with
half-pel accuracy from the reference field 1/field 2 to the predicted field 1/field 2 are searched by the
normal field motion vector search method defined in TM2, except that original pictures are used in half-
pel refinement. Then, these vectors are appropriately scaled, if the parity of the predicted field is opposite
to that of the reference field.

The second step is to evaluate prediction errors using possible combinations of four candidate motion
vectors obtained by the first step, and 3Vx3H = 9 candidates for DMV using local decoded pictures, and to
select the best combination of the motion vector and DMV.

L.10.7. Core Experiment L-10

L-10.1. Frame + Field + DUAL-PRIME
L-10.2. Frame + Field + SVMC3
L-10.3. Frame + Field + SVMC3-1/2-pel

Same as L-10.2, except that all motion vectors involved are only 1/2-pel vertical accuracy. The motion
vector transmitted is field-type, as in DUAL-PRIME. However the rule for selecting the PMV's is same as
for SVMC3, i.e., the same as for Frame-prediction. Scaling of the PMV vertical coordinate is done like

_ for field vectors.

L-10.4 Frame + Field + DUAL-PRIME + SVMC3

L-10.5 Frame + Field + DUAL-PRIME + (SVMC3 - dual)

The dual mode of SVMC3 is not used, since DUAL-PRIME may replace it advantageously. However, no
significant hardware simplification is expected by implementation of 1-10.5 vs. L-10.4. Among the modes
.in the above core experiment, mode selection is decided by MSE.
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Figure L.10.2 Interpolation at 172 H, 1/4 V
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Figure L10.3 DUAL-PRIME

L.11 8x8 Motion Vectors

Test Model 2 is modified to use 8x8 motion vectors. The method will be evaluated by simulating an
optimal method of selecting the motion vector block size.1. Macroblock motion vectors are determined for
. each macroblock which uses forward and/or backwards prediction.2. 8x8 motion vectors are determined
for each 8x8 block which uses forward and/or backwards prediction.3. Each macroblock is compressed in
the normal mode which does not use 8x8 motion vectors. The number of bits required to encode the 4
luminance blocks are summed. The number of bits required to specify 'macroblock_type' is added to this
result. The new total bit count is referred to as N_16x16.4. The same macroblocks are compressed using
adaptive 8x8 motion vector encoding (P-frames and B-frames). This mode will use the same field/frame
mode as in step 3. For this experiment, the forward interpolation and/or backward interpolation mode will
also be the same as in step 3. Each of the 4 luminance blocks are compressed using first the macroblock
motion vector and then the 8x8 motion vector and the bit counts are observed in each case. In the second
case, the overhead required to specify the 8x8 motion vector(s) is added to the 8x8 bit count. This
overhead is the combined length of the horizontal and vertical components of the forward and/or
backwards motion vector codewords. Only the difference between the macroblock motion vector and the
8x8 motion vector is coded. If field mode is used then there will be two macroblock motion vectors
corresponding to blocks of 8x16 pixels. In this case the overhead for selecting 8x8 motion vector mode is
determined by counting the number of bits required to code the difference between the 8x8 motion vector
and the corresponding 8x16 motion vector. In this way, the mode requiring the least number of bits is
determined for each of the 4 luminance blocks. The resulting total number of bits is then calculated by
summing the bit counts corresponding to the more efficient mode for each of the 4 luminance blocks. The
number of bits required to specify 'macroblock_type' is then added to this result. The new total bit count is
referred to as N_8x8. The 8x8 motion vector codeword table is the same as the one used for encoding
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macroblock motion vectors.S. Adaptive 8x8 mode is selected only if N_8x8 is less than N_16x16. If 8x8
mode is selected, then the individual block decisions determined in step 4 are retained.Simple changes to
the syntax of the decoder macroblock and block layers are proposed.The following lines are added to the

macroblock layer:------ if(macroblock_block_motion) coded_block_motion 3-5
viclbf------The following lines are added to the block layer:------ if(macroblock_block_motion) {
for(i=0; i<4; ++i) if(coded_block_motion & (1 <<i)) { ~ if(macroblock_motion_forward)
motion_vector() if(macroblock_motion_backward) motion_vector() }-}-----The

variable ‘macroblock_block_motion' is determined by macroblock_type. The macroblock_type tables are
adjusted to accomodate macroblock_block_motion and as a result, the maximum length of the
macroblock_type codeword increases from 7 bits to 11 bits. Tables B.2a, B.2b, and B.2¢ are changed to
the following:------ Table B.2a: Variable length codes for macroblock_type in intra coded pictures (I-

pictures).VLC  macroblock macroblock macroblock macroblock macroblock

macroblockcode _quant _motion _motion _pattern _intra _block

_forward _backward _motion] 0

0 0 0 l 001 1

0 0 0 1 0001 O

0 0 0 0 L Table B.2b:
Variable length codes for macroblock_type in predictive-coded pictures (P-pictures). VLC

macroblock macroblock macroblock macroblock ‘macroblock

macroblockcode _quant _motion motion _pattern _intra _block

_forward _backward _motionl0

0 1 0 1 0 011

0 1 0 1 0 1010

0 0 0 1 0 0011

0 1 0 0 0 00010

0 1 0 0 0 10011

0 0 0 0 1 000011

1 1 0 1 0 000010

1 1 0 1 0 1000011

1 0 0 1 0" 0000010

1 0 0 0 1 0000001

0 0 0 0 0 0---------
---Table B.2c: Variable length codes for macroblock_type in bidirectionallypredictive-coded pictures (B-

. pictures).VLC macroblock macroblock macroblock macroblock

macroblock macroblockcode _quant _motion _motion _pattern _intra

_block _forward _backward

_motionl0 0 1 1 0

0 011 0 1 1 0

0 1010 0 | 1 1

0 0011 0 1 1 1

0 10010 0 0 1 0

0 00011 0 0 1 0

0 100011 0 0 1 1

0 000010 0 0 1 1

0 10000110 1 0 0

0 00000100 1 0 0

0 10000010 0 1 0 1

0 00000011 0 1 0 1

0 100000010 0 0 0 0

1 000000011 1 1 1 1

0 0000000010 1 1 1 1

0 1000000011 1 1 0 1

0 00000000010 1 1 0 1

0 10000000011 1 0 1 1
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0 000000000010 1 0 1 1
0 100000000011 1 0 0 0
1 000000000001 0 0 0 0
0 A —

The variable-lengih codeword for 'coded_block_motion' is sent if macroblock_block_motion is true. It is
used to identify the luminance blocks using 8x8 motion vectors. The variable length codes for
coded_block_motion are shown below.------ Variable length codes for coded_block_motion VLC code

coded_block_motion100 1101 2110 4111 80000
150100 30101 50110 100111 1200100 700101
1100110 1300111 1400010 600011 9

L.12 Intra/Inter Mode Decisions for 8x8 Blocks

Test Model 2 is modified to allow adaptive intra/inter decisions for each 8x8 block of P-frames and B-
frames. The method will evaluated by simulating an optimal mode selection method.1. Each macroblock
is first compressed using intra mode for each block. The number of bits required to encode each 8x8
block (luminance and chrominance) is summed. The number of bits required to specify
‘macroblock_type' (macroblock_intra = 1) is added to this result and the new total bit count is referred to
as N_INTRA.2. The macroblock is again compressed, this time using inter mode for each block. The bit
counts for each block is summed with the length of the motion vector codewords and the length of the
‘macroblock_type' codeword. The resulting total bit count is referred to as N_INTER.3. The macroblock
is again compressed, this time using adaptive intra/inter mode. In this case, each 8x8 luminance and
chrominance block i$ compressed in both intra and inter modes and the mode producing the least number
of bits is selected. The total bit count for the macroblock is obtained by summing the bit counts
corresponding to the more efficient mode for each of the 8x8 luminance and chrominance blocks. This
result is then summed with the length of the motion vector codewords, the length of the
‘intra_block_pattern' codeword (described below) and the length of the 'macroblock_type' codeword.
The resulting total bit count is referred to as N_ADAP.4, The mode is determined by selecting the
minimum of N_INTRA, N_INTER, and N_ADAP. If N_ADAP is the minimum, then the individual
intra/inter decisions determined in step 3 are retained.Simple changes to the syntax of the decoder
macroblock and block layers are proposed.The following lines are added to the macroblock layer:------

if('macroblock_intra) intra_block_pattern 1-10  viclbf------ The block layer now

* becomes;------ block(i) { if(pattern_code[i]) {  if(macroblock_intra Il (intra_block_pattern & (1 << 1)))
{ fi<4){ dct_dc_size_luminance 2-7 viclbf
if(dct_dc_size_luminance != 0) dct_dc_differential 1-8 uimsbf } else
{ dct_dc_size_chrominance 2-8 viclbf if(dct_dc_size_chrominance != 0)
dct_dc_differential 1-8 uimsbf } } else { dct_coeff_first

2-28 vlclbf  }  if(picture_coding_type !=4) { while(nextbits() !='10")

dct_coeff_next 3-28  viclbf end_of_block 2 "10" }

}}------The luminance and chrominance blocks which are intra coded are identified by
intra_block_pattern. The variable length codes for intra_block_pattern are shown below.------ Variable

length codes for intra_block_pattern (4:2:0)VLC code intra_block_patternO Ol111
6011101 411100 811011 1611010 32110011

12110010 48110001 20110000 40101111 28101110

44101101 52101100 56101011 1101010 61101001

2101000 621001111 241001110 361001101 310010111
510010110 910010101 1710010100 3310010011 610010010
1010010001 1810010000 34100011111 7100011110 11100011101
19100011100 35100011011 13100011010 49100011001 21100011000
41100010111 14100010110 50100010101 22100010100 42100010011
15100010010 51100010001 23100010000 43100001111 25100001110
37100001101 26100001100 38100001011 29100001010 45100001001
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53100001000 57100000111 30100000110 46100000101 54100000100
581000000111 311000000110 471000000101 551000000100 591000000011
2710000000010 39------
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APPENDIX Q: QUANTISATION EXPERIMENTS

Source:  Ad-hoc group on quantisation Angra dos Reis July 1992

Q.1 SCANNING
Q.1.1 DEPENDENT SCANNING

This experiment is to determine the effectiveness of adapting the scan pattern according to the DCT mode
decision (Frame/Field) with the following scans: '

Scan Patterns: Frame DCT Zigzag as in Test Model
Field DCT Scana,b,cord

with:  scana: As given in CCIR Rec. 723
scan b: As given for field blocks in MPEG 92/261
scan c: As described in MPEG 92/144
scand: An optimum scan to be determined and communicated
within the ad hoc group.

Test Conditions: Bit rate 4 and 9 Mbit/s
Prediction modes must be clearly stated as these may
effect the efficiency of adaptive scanning
Criteria for assessment:
i) SNR averaged over sequence and given for I,P and B frames
ii) Bits/frame for the first I,P and B frames in sequence

iii) Bits/frame using MQUANT equal to 5,10 and 15 for the first 3 I, P and
B frames and the average over the sequence for I, P and B frames.

Q.1.2 INDEPENDENT SCANNING
_This involves adaptation of the scanning pattern independant of the mode selected for the DCT.

Scan 1: Zigzag
Scan 2: Vertical (as in MPEG 92/241)

Decision Criteria:  Either "a posteriori" or “a priori" . An a posteriori selection choses the scan pattern
which gives the lowest number of bits after the VLC. An a priori decision is made before variable-length
coding. A suitable a priori criterion will be circulated within the ad-hoc group.
Syntax for independent scanning: Insert the following after interlaced_macroblock_type
if (macroblock_intra Il macroblock_pattern) {
vertical_zigzag scanning 1 uimsbf

)

Test Conditions: 4 and 9 Mbit/s
Prediction modes must be clearly stated

Criteria for assessment:
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SNR averaged over sequence (figures given separately for I, P and B frames)

. Bits/frame for the first I, P and B frames of the sequence.

3. Bits/frame using MQUANT equal to 5 and 10 and 15 for the first I and P and B frame and also the
average over the sequence separately for I, P and B frames.

N -

Additional statistics: Percentage usage of each scan in separately for I, P and B frames.

Q.2 EXPERIMENTS ON MATRIX ADAPTATION
Q.2.1 MATRIX ADAPTATION WITH MACROBLOCK TYPE

It is proposed to download 4 matrices at the picture layer. The syntax for this as follows:

Before "picture_extension-data" insert the following:

load_quantiser_matrices 1 uimsbf
if (load_quantiser_matrices) {
quantiser_matrix_one 8*64 uimsbf
quantiser_matrix_two 8*64 uimsbf
quantiser_matrix_three 8*64 uimsbf
quantiser_matrix_four 8*64 uimsbf
matrix_assignment_table 16 uimsbf

}

where the matrix assignment table, which assigns one of the four matrices to the different macroblock
types, is constructed as follows:

Macroblock type Matrix Selection
(bits)
Intra Frame Y 2
Intra Frame Cc 2
Intra Field Y 2
Intra Field C 2
Non_intra  Frame Y 2
Non_intra  Frame c 2
Non_intra  Field Y 2
Non_intra Field c 2

SPECIFICATION OF MATRICES: To be optimised and distributed within ad-hoc group for both 4:2:0
and 4:2:2 cases -

Initial comparison: For macroblock types Intra/*/* and Non_intra/*/* use matrices as defined in TM
together with those defined in MPEG 92/261 for the 4:2:0 case.

SPECIFICATION OF ASSIGNMENT TABLE: To be optimised and distributed within ad-hoc group

"ASSESSMENT CRITERIA: Picture quality !

Q.2.2 EXPERIMENT OF ADAPTIVE CONTROL OF MATRIX SELECTION AT
MB LEVEL

Four matrices are transmitted at the picture layer as described in previous experiment. Transmission of
the assignment table is not necessary.
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At the MB layer, after "coded_block_pattern()", insert:
mb_quantiser_matrix_select 2 uimsbf
This variable identifies which of the four matrices is to be used for coding all the blocks in this MB,

CRITERIA FOR MATRIX DEFINITION AND SELECTION: To be determined and distributed in
quantisation ad-hoc group.

An initial experiment would be to adapt the weighting matrix according to the criticality of the
macroblock; i.e. a macroblock can have one of four possible values of criticality which selects one of the 4
matrices. The meaning of criticality is specified in the following table:

Criticality Weighting Matrix Adjustment
0 Lower precision of all but lower frequency terms
1 Nochange
2 Increase precision of frequency terms representing interlace
3 Increase precision of low frequency terms

ASSESSMENT CRITERIA: i) Picture Quality
Q.2.3 Quantizer Weighting Matrices

At the sequence layer four matrices wdeltaO[64] , wdeltal[64], wdelta2[64] and wdelta3[64] containing 8-
bit signed integers are transmitted, these are relative weighting matrices which when added to Intra or
Nonlntra matrices yield actual weighting matrices used for quantization.

Chrominance Weighting

At the sequence layer, appropriate wdelta matrix to be used for determining the chrominance matrix (by
summing it to corresponding Intra or NonIntra matrix) is identified. Thus this matrix is global for all
_ chrominance weighting in the sequence.

Local Weighting Adaptation

The weighting matrix used for a macroblock depends on the “criticality" of the macroblock. A macroblock
_can have one of the four possible values of criticality and each criticality value corresponds to a specific
wdelta matrix. The following table clarifies the meaning of macroblock criticality.

Criticality Weighting Matrix Adjustment

0 Lower precision of all but low frequency terms

1 no change in any term

2 increase precision of frequency terms representing interlace
3 increase precision of low frequency terms

A fixed 2-bit code per macroblock (this can be made VLC later) identifies the criticality.

The exact wdelta [] matrices will be specified with in the ad hoc group.

Syntax
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sequence_header() {

load_delta_matrices 1
if (load_delta_matrices) {
wdelta0[64] 8*64
wdeltal{64] 8*64
wdelta2{64] 8*64
wdelta3[64] 8*64
}
chroma_matrix_enable 1
wdelta_select 2
}
macroblock()
wdelta_select 2
)

- Q.3 EXPERIMENTS ON QUANTISER RANGE, PRECISION, AND CONTROL
Q.3.1 EXPERIMENT EXTENDING RANGE OF TRANSMITTED COEFFICIENT

This experiment is to test the effectiveness and necessity of increasing the maximum range of the
transmitted coefficients from +/- 255 to +/- 2047

One bit is added at the Picture Layer, to indicate that a single 12-bit level tcoef escape is used, rather that
the mechanism of escape/double-escape, as in MPEG-1.

tcoef escape format
0 Compatible MPEG-1
1 12-bit Escape

When 12-bit Escape is selected, the syntax of the escape changes. The escape code "000001" is followed
by the run (6-bit VLC), followed by the level (12-bit VLC).

The table for the escaped level becomes :

FLC level
100000000001 -2047
100000000010 -2046
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ISR RRERRN -1

forbidden
000000000001 +1
011111111111 +2047

The mechanism of double-escape (28 bits) is not used is this case, making the maximum length of an
encoded run-level equal to 24 bits.

As a side effect, this proposal may simplify the implementation of encoders and decoders, as it is no more
necessary to check whether MQUANT need to be changed to avoid coefficient clamping at 255, and the
maximum number of bits per transmitted coefficient is reduced from 28 to 24 bits

ASSESSMENT CRITERION: Picture quality on pictures which generate large coefficients with low
MQuant values (e.g. still pictures)

Q.3.2 EXPERIMENT TO INCREASE PRECISION OF INTRA DC
COEFFICIENTS

One bit is added at the Picture Layer, to indicate that Intra DC coefficients are transmitted with a 9-bit
precision rather than 8-bit.

intra dc.format
0 Compatible MPEG-1 (8-bit Precision)
1 9-bit Precision

When 9-bit Precision is selected, the intra DC coefficients are quantized (resp. dequantized) with no-
dead-zone and a step-size equal to 4, rather than 8, and transmitted with 9-bit precision rather than 8-bits.
When 9-bit Precision is selected, the value 256 is used, rather than 128, to initialize or reset the intra DC
predictors.

The tables B5a and B5b used to decoding bit Precision intra DC coefficients are extended in a natural
way :

Luminance Size Chrominance Size
100 0 00 0
00 1 01 1
01 2 10 2
101 3 110 3
110 4 1110 4
1110 5 11110 5
11110 6 111110 6
111110 7 1111110 7
1111110 8 11111110 8
11111110 9 111111110 9

ASSESSMENT CRITERION: Picture quality on appropriate pictures
Q.3.3 EXPERIMENT TO EXTEND RANGE OF MQUANT
A) INREASING MQUANT TO 6-BIT

The MQUANT range of 1 to 31 is insufficient for very high resolution video and also the precision of
MQUANT is not sufficient at low values for high quality coding.
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In addition to default table of values for MQUANT from 1 to 31, an mquant_extend table is proposed.
This table covers a range of 1 to 63 and is nonlinear in nature, providing higher precision for smaller
values of MQUANT and coarser precision for finer values. An example of the MQUANT values allowed
for this mquant_extend table are the following:

1 1.5 2 2.5 3 L. 14 14.5 15 15.5
16 17 18 29 30 31
33 35 37 59 61 63

The mquant_extend table is downloaded at the sequence layer with the following syntax in the Sequence
Header:

sequence_header(){

mquant_extend 1
if(mquant_extend)
mquant_extend[64] 8*64 uimsbf

}

If necessary, this table could be loaded at the picture layer

It is recognised that many ways of enabling a larger range of MQUANT are possible and optimisations in
spacing of MQUANT values is dependent on bit rate and picture complexity. It is therefore important that
any experiments are performed on material containing high resolution details as well as at higher

bit rates (above 10 Mbit/s)

" B) S5-BIT MQUANT WITH ADAPTIVE ASSIGNMENT OF VALUE

In this experiment the syntax and objectives are similar to the last experiment except that the number of
levels assigned to MQUANT remains at 32 and an mquant_assign table ( 8%32 bits) is downloaded at the
picture layer.

Q.3.4 EXPERIMENT ON BLOCK ADAPTIVE QUANTISATION

To improve picture quality locally in a scene, refinement of MQUANT may be necessary on a block basis.
A 1-bit code decides whether such a refinement is necessary; if so, 2-bits are sent for every coded
luminance block within that macrblock. The mechanism for refinement is via use of BQSCALE, which
can have one of four possible values such as {0.5, 0.75, 1.0, 1.5}. The MQUANT value for the
macroblock is multiplied by the chosen BQSCALE and used as the block quantiser value. For
macroblocks not requiring refinement, no BQSCALE bits are necessary.

The choice of BQSCALE for a block depends on the following:
e The variance of a block

»  The variances of its three causal neighbours. These are used to detect the presence of an edge. If
such an edge is detected, BQSCALE of 0.5 or 0.75 is selected.
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It is noted that the decision criteria, concerning whether or not a macroblock needs to be refined with
respect to MQUANT, depends on the bit rate available and picture quality desirable.

The syntax is:
Macroblock Layer

macroblock(){

if(macroblock_quant){
quantiser_scale 5 (/6)
b

quantizer_scale_refine 1

Block Layer
block(i){
if(pattern_code[i]){

if(i<4){
if(quantiser_scale_refine){
bgscale 2
}
)
}
}

Q.4 Alternate DCT (DCT/NTC)
Q.4.1 INTRODUCTION

‘In this proposal of core experiment, algorithm enhancement to the current TM to improve coding
efficiency of edge information which based on the concept of adaptive DCT/Non-DCT is to be examined.
The basic coding process additions to the current TM are Edge Block Detection Process, Prediction
Process, and Quantization Process. They are described in detail in the following sections.

Q.4.2 CORE EXPERIMENT REFERENCE MODEL

Reference Model : TM2 Frame structure, with Frame/Field Adaptive Modes only
Data Rate : 4 Mbits/s

Test Sequences : Mobile & Calendar, or similar

Algorithms : NTCI1 (Section 3), and NTC2 (Sectiond)

Bitstream Syntax :
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adaptive_coded_type -- This is a 1-bit flag to indicate whether or not the Macroblock is coded adaptivel y by the
DCT/DPCM coder. If this is set to "0", all blocks in the Macroblock are DCT coded.
adaptive_coded_block_pattern -- If the adaptive_coded_type code is "1", the 6-bits
adaptive_coded_block_pattern is followed with each bit indicating the block position of the NTC (method 1 or

2) coded blocks in the Macroblock. (eg. first received bit is "1", the first block in the Macroblock is non-DCT
coded, and so on.)

Macroblock Layer :

if ((core_experiment==NTC]1) Il (core_experiment==NTC2)) {

adaptive_coded_type 1
if (adaptive_coded_type ==1)
adaptive_coded_block_pattern 6
)
if ( macroblock_quant )
quantizer_scale 5 uimsbf
Block Layer :

data_scan_path_flag--- This is a 2bits FLC to indicate which data scan path is selected . Table are
shown in the document MPEG92/275.

differential_flag--- This is a 1bit to indicate differential on or off. If it is 1, the differential is on, if it is
0, the differential is off,

© block_quantizer_scale --- An unsigned integer in the range 1 to 31(Sbits) used to scale the
reconstruction level of the retreived NTC quantized levels..

In NTC1 coding, the base value is treated the same as DCT dc coefficients. So the DCT dc coefficients
and NTC base are coded by the Z-differential technique same as TMO.

block (i) {
if ( pattern_code[i] ) {

if ((core_experiment==NTC1)&&(adaptive_coded_block_pattern[i}==1)) {

data_scan_path_type 2
differential_flag 1
block_quantizer_scale 5
}
if ( macroblock_intra ) {
if (i<4)
dct_dc_size luminance 2-7 viclbf

if (dct_dc_size_luminance!=0)
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dct_dc_differential 1-8 uimsbf
}
else {
dct_dc_size_chrominance 2-8 viclbf
if (dct_dc_size_chrominance!=0)
dct_dc_differential 1-8 uimsbf
}
)
else {
dct_coeff first 2-28  vlclbf
}

if ( picture_coding_type '=4) {
while ( nextbitsQ != ‘10’ )
coded_coeff_next 3-28  viclbf
end_of block 2
}

Q.4.3 DESCRIPTION OF NTC1 METHOD
1) METHOD OVERVIEW

NTCl is a predictive coding method in the block layer. Examples of NTC1 are shown in Figure 1 and 2
in the document MPEG92/275. The following 4 techniques are applied in NTC.

1.1) Prediction of block representative value

In NTC1 the block representative value is called “base”. NTC1 module predicts the base value and
encodes the differential values between the base and each pixel in the block.

C12) Adaptive Quantization

The Quantization is applied to the differential values between the base and each pixel in the block. The
values are quantized with a flat weighting and with a deadzone equal to the stepsize. So the quantizer is
the same as for non intra macroblocks in the TMO.

13)  Adaptive Data Scan

For each block the NTC1 module selects one scan path which gives the fewest number of run/level
events. Then for each block the NTC1 module selects either “differential on” or “differential off”
depending on the number of VLC events. If the differential is on, 1 dimensional differential coding is
applied for the scanned data..

2) Algorithm for NTC!

The algorithm is described in the document MPEG92/275. Please refer to the document.

Q.4.4 DESCRIPTION OF NTC2 METHOD

1) METHOD OVERVIEW
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A simplified block diagram of the TMO is described in figure 1 with extensions to Adaptive DCT/DPCM
method as shaded boxes. The Macroblock Type Decision Module in figure 1 performs the decision of Motion
Prediction Mode (Intra, Forward, Backward, Frame, Field, etc), the Motion Compensate Process, and the
Frame/Field DCT Decision.

(1)

Edge Block %)

Detection 1
DPCM 3

¢ Coder v )
Motion Macroblock Type Zig/Zag
° Estimaton |~|  Decision Comparator [+ 5)"" [+o
DCT 4
Coder
Figure 1

The Edge Block Detection (1) process is performed on original input blocks. Decision on Edge/Non-Edge
Block is done based on Block signal energy and the neighboring Block signal energy. If the Block is detected as
Edge Block, it will also be coded with the DPCM Coder (2). The reconstructed blocks (after coding and
decoding) from the DCT Coder and the DPCM Coder are then compared based on Mean-Square Error (MSE)
with reference to the original input Block at the Comparator (3) module, and the coder with best result (lower
MSE) will be selected, and output coded Block to the Zig/Zag Scanner and VLC. This module may be omitted
for the core experiment to simplify implementation, and selection is then based on Edge Detection result only.

2) EDGE DETECTION

In the Edge Detection process, the amount of activity in each input Luminance 8x8 block is calculated and
compared to a pre-defined threshold value 7Z. The sum of the square deviation of the block pixel intensity
values from the mean block intensity value is used as representation of the block activity. If the calculated
. activity is greater than T1, then the activities of the surrounding blocks are compared to another threshold value
T2. 1f any one of the activities of the surrounding block is lower than 72, the input block is considered as a
boundary block between an object in the video sequence and a smooth background or region. In such a case, the
input block is classified as an Edge Block.

. For the Chrominance block, if any one of the Luminance block in the same Macroblock is detected as an
Edge Block, and the calculated activity of the chrominance block is greater then a third threshold value
T3, the chrominance block is considered as an Edge Block. The threshold values 77, 72 and 73 are set at
5300, 1000, and 8500 respectively for the simulation (they may be optimized for special sequences -
encoder issue).
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IEi—l,j-l Ei-l,j Ei-1,j+1 ,
Activity :
Eij = (Blockgy- Blockpeap)?
. E.. E. . Luma Edge Block Condition :
i,j-1 i,j il if (Eij > T1) & (any Eqrounding < T2)
Chroma Edge Block Condition :
E E E if(any Luma Edge in Macroblock) & (Ejj > T3)
i+1,j-1 i+1,j i+1,j+]

Figure 2

Due to the fact that all surrounding blocks will be examined, an input block will not be considered for
edge condition if it is at the picture boundary (first row, last row, first column,, last column). In case of a
Field DCT Macroblock in an adaptive Frame/Field system, luminance block 1 & 3 (similarly block 2 &
4) of the macroblock must satisfy the edge block condition together in order to be considered as edge
blocks since the edge conditions are checked on frame based block only; hence, corresponding to the
Frame/Field DCT, Frame/Field DPCM is applied to the edge blocks.

3) DPCM CODER

Input e q . ZiglZag
Block - Q ; » \VLC

Q—1

e!
Intra N
D —_
\ p Decoded
P Frame Buffer
Figure 3

The DPCM Coder is illustrated in figure 3. A pel is scanned left-to-right and top-to-bottom from the
input edge block to be coded. For an Intra Coded Block, the input block is coded as following :

1) The first pel (top-left corner of the block) is not coded in the DPCM coder. It is sent to the VLC
for transmission as "DC" of the block.
2) The quantization parameter b is calculated from the reference quantization parameter Q (with no

adaptive quantization applied for macroblock containing at least one edge block) of the
macroblock (j) as :
b=Q;x0.1875 + 0.625

3) For each of all other pels, a predicted value p is made based on the average of passed coded top
and left pels (if available), and the prediction error e is quantized as :
q = (int)(Error!) x Sign (e)
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The Dequantization is :
e’ = (int)((¢?+\g!) x b2) X Sign (q)

4) All quantized coefficients are output to the TMO Zig/Zag and VLC for transmission as "AC" of
the block.

For a non-intra Coded Block, the input block is coded as following :

1) The quantization parameter b is calculated from the reference quantization parameter Q (with no
adaptive quantization applied for macroblock containing at least one edge block) of the
macroblock (j) as :
b=0;jx0.1875 + 1.125

2) Each pel e in the block is quantized as :

g = (int)(Error! - 0.5) x Sign (e)

The Dequantization is :

e’ = (int)((g?+gl+Error!) x b2) x Sign (q)
where k = Error!)

3) All quantized coefficients are output to the TMO Zig/Zag and VLC for transmission as "AC" of
the block. ”

An example "C" implementation of the DPCM Coder is as follow :

DpcmBlock (block, gBlock, Q, mbType)

int block(8]1(8];
int gBlock[8](8];
int Q;

int mbType; {

int X, ¥;

int pel, p, e, dec;
int qa, k;

double b;

if (mbType==Intra) b = (double)Q * 0.1875 + 0.625;
else b = (double)Q * 0.1875 + 1.125;
if (b<1.7) b = 1.7;

for (y=0; y<8; yt++) {
for (x=0; x<8; xt++) (

pel = block(y] (x]:

if (mbType==Intra) (

if ((x==0)&&(y==0)) { // Transmit not Quantized
q = block([0]([0]:;
dec = pel;]}

else
if (x==0) p = block(y-1]1[0];
else if (y==0) p = block[0]([x-1];
else p = (block[y][x-1] + block([y-11[x]) / 2;

e = pel - p;
q = (int)(sqrt((double)(abs(e)))/b) * Sign(e);
dec = p + (int)((g*qt+abs(q))*b*b) * Sign(q);
]
)
else |
e = pel;

q = (int)(sqrt(4.0*abs(e)+b*b)/(2.0%*b) - 0.5) * sign(e);
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if (g==0) k = 0; else k = 1;
dec = (int)((g*qt+abs(q)+(abs(q)+k)/2)*b*b) * Sign(q);

}
gBlock [yl [x] = q;
block(y] [x] = dec; // Local Decoded Value
} .

}
for (y=0; y<8; y++)

for (x=0; x<8; x++) block([y][x] = ClampInteger (&block(y][x], 0, 255);
}

For real-time implementation consideration, the Quantization and dequantization process can be
implemented by table-look-up method.

4) COMPARATOR

The local decoded block from the DCT Coder and the DPCM Coder can be compared to the original
(uncoded) block in this module based on the Mean-square-Error measure MSE (other measuring criteria
is possible). Final selection of output quantized coefficients of the block from one of the two coders is
made based on lowest MSE. This module only maximizes signal/noise ratio of the decoded pictures.
Again, this is done only for SNR optimization (not necessary picture quality improvement).

5) REFERENCE

All figures in section 4 (figure 1,2,..) can be refered to in document MPEG 92/368. For further questions,
please feel free to contact :

Lucas Hui

AV/Information Research Center
Asia Matsushita Electric (S) Ptd Ltd
Email : lucas@avirc.ams.mei.co.jp
Tel : +65 381-5460

Fax : +65 285-7237

Q.5 NON-8 x 8 DCT

Purpose : To belify the coding efficiency and improvement of visual quality

Definition ;

8x1DCT .

1. Horizontally one dimensional 8 DCT that described in MPEG1 CD is used.

2. Block size is same as normal 8 x 8 DCT , then 8 sets of horizontal DCT coeff. exist in each block

independently.

R e T T TR +
I e I
[===mmmmmmmmmmm e |
[z e |
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|mmmmmmm e I

rmmee e +

block

3.8 x 1 DCT is applied to Non-Intra MB only

4. Each coefficient is multiplied by 2 instead of 4 that is in case of 8 x 8 DCT.

5. VLC(AC coeff.) is same as 8 x 8 DCT (TM)

6. Q-Matrix and Scanning for 8 x1 DCT block are basically one dimensional as below;
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0 8 16 24 32 40 48 56 22 23 24 26 27 28 30 31
I 9 17 25 33 41 49 57 22 23 24 26 27 28 30 31
2 10 18 26 34 42 50 58 22 23 24 26 27 28 30 31
3 11 19 27 35 43 51 59 22 23 24 26 27 28 30 31
4 12 20 28 36 44 52 60 22 23 24 26 27 28 30 31
S 13 21 29 37 45 53 61 22 23 24 26 27 28 30 31
6 14 22 30 38 46 54 62 22 23 24 26 27 28 30 31
7 15 23 31 39 47 55 63 22 23 24 26 27 28 30 3I
Scan order for 8 x | DCT Q-Mat, for 8 x 1 DCT
8 x 4 DCT

1. Use 8 x 4 DCT intead of 8 x 8 DCT.
2. Block size is same as normal 8 x 8 DCT, then 2 sets of DCT coeff. exist in each block independently.

R e pp—— +
| I
| |
[ [
[m=mmmmmm e - |
[ |
[ |
[ |
R R +
block

3. 8 x 4 DCT is applied to only non-intra MB

4. Each coefficient is multiplied by suare root 8 instead of 4 that is in case of 8 x 8 DCT.
5. VLC(AC coeft.) is same as 8 x 8 DCT (TM)

6. Q-Matrix and Scanning for 8 x4 DCT block are as below;

0 2 10 12 26 28 42 44 18 19 20 21 22 23 24 25
4 8 14 24 30 40 46 56 19 20 21 22 23 24 25 26
6 16 22 32 38 48 54 58 20 21 22 23 24 25 26 27
18 20 34 36 50 52 60 62 21 22 23 24 25 26 27 28
1 3 11 13 27 29 43 45 18 19 20 21 22 23 24 25
59 15 25 31 41 47 57 19 20 21 22 23 24 25 26
7 17 23 32 39 49 55 59 20 21 22 23 24 25 26 27
19 21 36 37 51 53 61 63 21 22 23 24 25 26 27 28
Scan order for 8 x 4 DCT Q-Mat, for 8 x 4 DCT

A i 8x8/8x10or8x8/8x4DCT
: Switching unit : Macro Block
Decision 1 (post)
1. Calculate amount of data in each MB
2. Select smaller one
Decision 2 (pri)
pri-decision method will be added by JVC

Core experiments
1.8x1DCT/8x4DCT

2. All non-intra are 8 x 1 (8 x 4) / adaptive
3. Field-structure / Frame-structure
4. Decision 1./ Decision 2

Syntax
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if (macroblock_pattern)
coded_block_pattern 3--9  viclbf
non_dct will be signalled in the sequence_layer
in macroblock layer will be changed
if (macroblock_pattern) {
coded_block_pattern 3--9  vlclbf

if (non_dct)
non_8x8dct flag 1 uimsbf

Reference
MPEG 92 /093, MPEG 92/ 261

If any question, contact ;

Kenji Sugiyama  Digital Technologies Research Dept. Central R&D Center JVC
58-7, Shinmei-cho, Yokosuka, Kanagawa 239, JAPAN
e-mail : k-sgym@krhm.jvc-victor.co.jp Tel : +81-468-36-9275 Fax : +81-468-36-8540

Q.6 Adaptive VLC's

In this Section, three alternative VLC proposals are discussed. These are:
Section Q6.1 MUVLC and frequency scanning proposal
Section Q6.2  Macroblock switchable VLC
Section Q6.3 Alternative VLC

In order to be able to compare the effectiveness of the different proposals, it is suggested that results are
quoted for the following two cases:

. a) Fixed quantiser (MQUANT = 10), giving number of bits.

b) Fixed bitrate of 4 Mbit/s, comparing S/N and subjective quality.

Other cases are also of interest, such as, other values of MQUANT, other bit rates and the performance for
all-intra coding. Suggested parameters are:

Standard I/P/B frames All Intra
Bitrate 4/9 Mbit/s 12/20/25 Mbit/s
Fixed MQUANT 5/10 for I and P frames 3/5/8

1.4 times for B frames

(Note: For the experiment on vector quantisation in Section 7 additional constraints arc introduced into
the comparison criteria.)

Q.6.1 Frequency scanning
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Frequency scanning combined with an entropy coding technique, called MUVLC (Modified Universal
Variable Length Coding) has been proposed to increase the coding efficiency of the test model and to
improve the performance of scalable systems both in terms of coding efficiency and functionality [4-8].

The purpose of this experiment is to evaluate the coding efficiency of the proposed method compared to
the present VLC used in TM2.

In the following the principle of the algorithm and its adaptation to the TM2 syntax are described. A C-
program of the MUVLC algorithm will be distributed to interested parties by e-mail (send requests to B.
Hammer (Siemens), ha@bvax4.zfe.siemens.de, or J. De Lameillieure (HHI), grunaaie@w204zrz.zrz.tu-
berlin.de).

.6.1.1 Global parameters of the experimen

The experiment relies on the basic TM2 mode. The following specific parameters are required :

chroma format : 4:2:0

picture structure : frame picture

bit rate : 4 Mbit/s

group of pictures structure : N=12 (15), M=3

prediction : frame/field adaptive

DCT: frame/field adaptive

sequences : Flower, Mobile, Football, Table Tennis, Bicycle
number of frames : 50 (60) frames, the first two seconds of a sequence

Q.6.1.2 Principle of MUVLC

In contrast to entropy coding using block scanning, as described in the sections 8.5 - 8.7, the proposed
frequency scanning method applies run length coding to coefficients of different blocks which have the
same scanning number respectively represent the same frequency band. :

The code for a slice is generated in six basic steps :

- 1) arrange the coefficients of all coded blocks (indicated by the CBP), which belong to a macroblock
slice, according their scanning number in 64 stripes. This is illustrated in the following figure :

amplitude
resolution

ﬂ LSB

MSB ' ’

DC blocks from
100110010101010101

AC1 1 to 6x44
111000110001100000

AG2 190000010000011000

AC3 030000100000100000

AC4

AC5

spatial AC62 03
resolution AC63
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| Figure Q.6.1: MUVLC scanning
The horizontal planes of the cube in the figure above are the stripes, used in the MUVLC coding.
g

2) for encoding a stripe, select from the table given below the mangitude class of the coefficient with
highest amplitude, and transmit the 3 bit class prefix code PC ;

I magnitude range class C prefix class code (PC)
0 .. 1 0 000
2 .. 3 1 001
4 .. 7 2 010
8 .. 15 3 011
16 .. 31 4 100
32 .. 63 5 101
64 .. 127 6 110
128 .. 255 7 111

3) transmit the 3 bit line prefix code PL, which determines the Adaptive Truncated Run Length (ATRL)
code [2] used in step 4) for this class ;

4) encode each non zero coefficient of class C using a code of the form

(RL NCB)
where RL gives the position of the coefficient in the class relative to its previous nonzero coefficient.
NCB gives the exact value of the coefficient by transmitting the C least significant bits of its magnitude
plus one sign bit. Each class code string is terminated by an End of Class (EOC) code word ;

5) repeat step 3) to 4) for all remaining magnitude classes. Coefficients which have been already
encoded in the previous classes are ignored for calculating the run-length code RL.

| 6) repeat step 2) to 5) for all stripes of the slice.

| Thus, the code for a slice gets the following structure :

PC PL (RL NCB) (RL NCB) (RL NCB) ... EOC stripe 1, class C
PL (RL NCB) (RL NCB) (RL NCB) ... EOC stripe 1, class C-1

PL (RL NCB) (RL NCB) (RL NCB) ... EOC stripe 1, class 0

PC PL (RL NCB) (RL NCB) (RL NCB) ... EOC stripe 2, class C
PL (RL NCB) (RL NCB) (RL NCB) ... EOC stripe 2, class C-1

| PL (RL NCB) (RL NCB) (RL NCB) ... EOC stripe 64, class 0

| Q.6.1.2.1 Principle of ATRL
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The table below shows the basic code structure of an ATRL-code with line prefix code length PL=3. A
"0" in the source pattern denotes a coefficient of a lower class while "1" indicates the occurence of a
coefficient within the current magnitude class.

TABLE : Truncated run-length code for PL=3 and M=8

Source pattern Run length (RL) RL-code

00000000 8 0
1 0 1000
01 1 1001
001 2 1010
0001 3 1011
00001 4 1100
000001 5 1101
0000001 6 1110

7 1111

00000001

The maximal zero run length, which can be encoded by ATRL with a single codeword is truncated to a
length of M=(2**PL)-1. To cope with runs having more than M preceeding "O"s, the first codeword is
used for extension by runs of M+1 "0"s,

The extension code word is coded by a single bit set to "0", while run length codewords consist of a
prefix set to "1" followed by PL bits which give the number of preceeding "0"s.

To indicate the End of Class (EOC), a position at the border or outside the stripe is addressed by sending
extension codewords "0" from the RL-codebook.

As the receiver knows the length of a stripe, no EOC should be sent when the end of a class is reached
after coding the last coefficient of the considered class. Sending no EOC means an EOC with length 0.

This is also the case when after the end of a class is reached after transmitting one or more "0"s. Then
. also, no further run lengts codewords should be transmitted.

The optimal line prefix code length PL, i.e., the one that delivers the shortest code length, is selected for
each magnitude class. The class code length that has to be minimized with respect to PL is calculated by
the program code below :

/* run_length{i] RL-code of the run length preceding the non
zero coefficient i in a class

number of non zero coefficients in a class
number of zero coefficients following

coefficient k

k
zero_run_length

]

*/
code_length = 0 ;
/* how many times has the RL-codeword "0" been transmitted */

for (i=1; i<=k; i++)
code length += run length[i] / (M+1) ;

/* bit rate for transmission of RL-codeword "lxx...x" (with x=0 or
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x=1) for each non zero coefficient in a class */
code length += k*(1+PL) ;
/% bit rate for EOC */

code_length += (zero_run_length==0) ? 0 :
((zero_run length-1) / (M+1l)) + 1 ;

It should be repeated that the "/"-operation is the integer division, as defined in section 2.1 on arithmetic
precision.

.6.1.3 Arrangement of luminance and chrominan efficients

Q.6.1.3.1 Arrangement of luminance and chrominance coefficients within a stripe

||Y—coefﬁcients (max. 176)  Cb-coefficients (max. 44)  Cr-coefficients (max. 44) |

Q.6.1.3.2 Scanning order of blocks within a macroblock

Blocks are scanned according the numbering as described for block_count in 9.3.7

Q.6.1.3.3 Scanning order of coefficients within a block

Zig-zag scanning as usual. The scanning of DCT coefficient has no impact on coding efficiency.

Q.6.1.4 Syntax modifications

For purpose of the frequency scanning experiments, the slice layer, the macro block layer and the b]ock
layer must be changed as indicated below :

Q.6.1.4.1 Slice layer

Islice() {

slice start_code
quantizer scale

(no change)

extra bit slice
slice control()
slice data()
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| Q.6.1.4.2 Slice control layer

slice control() {
for (mb)0; mb<44; mb++) {
while (nextbits()=='0000 0001 111')
macroblock stuffing

(same syntax as in macroblock() of TM2)

if (macroblock_pattern)
coded _block pattern()

}

Q.6.1.4.3 Slice data layer

slice data() {
slave slice start code 32
for (coef i=1; coef_ i<65; coef i++) {
buf size=0
for (mb=0; mb<44; mb++) /* Y */
for (block i=1; block_i<=4; block i++)
if (pattern_code[mb] [block_i]) {
c_buf[buf size] = dct_coef[mb][block_i][coef_i]
buf_size++
1
for (mb=0; mb<44; mb++) /* U %/
if (pattern code[mb] [5]) (
c_buf[buf_size] = dct_coef[mb][S][coef_i]
buf size++
}
for (mb=0; mb<44; mb++) VAR ARV4
if (pattern code[mb][6]) {
c_buf[buf size] = dct_coef[mb][G][coef_i]
buf size++
}
muvle(c_buf, buf size)
}
while (nextbits()!='0000 0000 0000 0000 0000 0001')
next_start code()
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muvle(c_buf, buf_size) {

pc = pc_code(c_buf, buf size) 3
for (class=pc; class>=0; class--) {
Pl = pl code(c _buf, buf size) 3
run = 0

for (buf_i=0; buf_i<buf size; buf i++)
if (lc_coded[buf_i]) {
if (((c_buf[buf il>>class) & 0xl) == 1) ({
rl = rl code (run,pl)
ncb = ncb code(c_buf[buf i],pc) 1 -8
c_coded[buf i] = 1
run = 0
}
else
runt+
eoc = eoc_code(run,pl)
}
1

rl code(run,pl) {
while (run>=(1<<pl)) {

max run 1 ngw
run -= 1<<pl
)}
prefix 1
" lll
run l1 -8

}

eoc_code(run,pl) {
while (run > 0) {
max run ) 1 "o"
run -= 1<<pl

}

b
| Q.6.1.5 Supplementary experiments

* Removal of Coded Block Pattern (CBP) and macroblock_address_increment (MAI) in
the Slice Control Layer

The use of CBP and MAI (i.c., macroblock skiping) as proposed in the core experiments implies, that the
length of each stripe can differ. Having in mind that CBP might give no significant gain for intra pictures
at low bit rates, and for all kinds of pictures at higher bit rate, it seems obvious to skip CBP, and use the
run length coding ability of MUVLC instead.

| Q.6.1.6 References

[1] B. Macq, "A universal entropy coder for transform or hybrid coding," Picture Coding Symposium,
session 11, Mar. 26-28, 1990, Cambridge, Mass., USA.

[2] H. Tanaka and A. Leon-Garcie, "Efficient run-length encoding," IEEE Trgnsactions on Information
Theory, vol. IT-28, no. 6, pp. 880-890, Nov. 1982,
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| [3] CCIR Study Group - Document MTT-2/31, Mar. 1990, RTT Belgium.
{4] G. Schamel et al., "Experiments with UVLC coding,” doc. MPEG 92/289.
[5] Th. Selinger, "Implementation study of a MUVLD," doc. MPEG 92/388.
| (6] A. Knoll, "Experiments with UVLC coding," doc. MPEG 92/391.
| [7] O. Poncin, B. Maison, "Core experiment 1.8 results," doc. MPEG 92/503.
| [8] G. Schamel and H. Li, "Some results on frequency scanning using MUVLC", doc. MPEG 92/504.
| Q.6.2 Macroblock Switable VLG (AT&T)

In this experiment, the VLC for all coefficients except the Intra-DC coefficient is selected at the
macroblock level. The Intra-DC coefficients are encoded as in TM2. For initial experiments the selection
is between two VLC tables. The VLC tables are too long to be included in this document but will be
supplied on request by:

Barry Haskell

AT&T Bell Laboratories
Room BO 4C-538

101 Crawford Comers Road
Holmdel, NJ

Fax: +1 908 949 3697
Email: bgh@vax135.att.com

| Syntax:

| Picture Layer

picture()
{

| vic_select_enable 1 ulmsbf

| Macrobick Layer

l macroblock()

{

ac_table_select 1 uimsbf
}
)

’ if (vlc_select_cnable) {
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Decision Criterion: A posteriori

Assessment Criteria: As described in introduction to Section Q6.

Q.6.3 Alternative VLC (Sony)

In this core-experiment, every Intra MB is coded with a second VLC table designed for Intra coding, and
every Inter MB is coded with MPEG1 compatible VLC table as defined in TM2. No syntax modification
is required.

The second VLC table designed for Intra coding is follows.

VLC Run Level

lm"

l!010||

ll011"

"10%"

"l(x)ln

"lolw"
"10101"
"10110"
"10111"
Nllom'l
"110010"
"110011"
"110100"
"110101"
"1101100"
"1101101"
"1101110"
"1101111"
"1110000"
~ "1110001"
"1110010"
"1110011"
"1110100"
"11101010"
"11101011"
"11101100"
"11101101"
"11101110"
"11101111"
"11110000"
"11110001"
"11110010" 12 1
"1110011" 13 1

1

-0
-

OB

Pt et ek b et D) LD \D OO0 M= = w3 O\ = = BN N W

CAPE

“111101000" O 14
"111101001" O 15
"111101010" 0 16
"111101011" O 17
"111101100" 1 5
"111101101" 2 3
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"111101110" 4
"111101111" 1
"1111100000" 0
"1111100001" O
"1111100010" ©
"1111100011" O
"1111100100" 0O
"1111100101" 1
"1111100110" 1
"1111100111" 3
"1111101000" 5
"1111101001" 6
"1111101010" 7
"1111101011" 1
"11111011000" O
"11111011001" 0
"11111011010" 0O
"[1111011011" O
"11111011100" O
"11111011101" O
"11111011110" 1
“11111011111" 2
"11111100000" 4
"11111100001" 8
"11111100010" 9.
"11111100011" 10
"11111100100" 16
"11111100101" 17
"11111100110" 24
"11111100111" 25
"111111010000" 0
"111111010001" O
"111111010010" 0
. "111111010011" 0
"111111010100" 0
"111111010101" 1
"111111010110" 1
"111111010111" 1
M111111011000" 2
"111111011001" 3
"111111011010" 5
“111111011011" 11
"111111011100" 12
"111111011101" 13
"111111011110" 18
"111111011111*" 19
"111111100000" 20
"111111100001" 21
"111111100010" 22
"111111100011" 23
"111111100100" 26
“111111100101" 29
"111111100110" 30
"111111100111" 32

27

b—)—’—-'—‘[\)t\)l\)w#wg
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"1111111010000"
"1111111010001"
"1111111010010"
"1111111010011"
"1111111010100"
"1111111010101"
"1111111010110"
"1111111010111"
"1111111011000"
"1111111011001"
"1111111011010"
"1111111011011"
"1111111011100"
"1111111011101"
“1111111011110"
"1111111011111"
"1111111100000"
"1111111100001"
"1111111100010"
“1111111100011"
"1111111100100"
"1111111100101"
"1111111100110"
"11111111001110"
"11111111001111"
"11111111010000"
*11111111010001"
“11111111010010"
*11111111010011"
"11111111010100"
"11111111010101"
"11111111010110"
"11111111010111"
"11111111011000"
" "1111111011001"
"11111111011010"
"11111111011011"
"11111111011100"
"11111111011101"
11111111011110"
"11111111011111"
"11111111100000"
"11111111100001"
"11111111100010"
"111111111000110"
"111111111000111"
"111111111001000"
"111111111001001"
"111111111001010"
“111111111001011"
"111111111001100"
"111111111001101"
"111111111001110"
"111111111001111°"

n—-n—-—-gmuuwuw
H LN AT=2Ne BN B QR V . N

o = D WLW W WA N

7
8
49
50
51
18
19
20
21
22
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"111111111010000"

"111111111010001"

"111111111010010"

“111111111010011"

"111111111010100"

"111111111010101"

"111111111010110"

"l11111111010111"

"111111111011000"

"111111111011001"

"111111111011010"

“111111111011011"

"1111111110111000"
"1111111110111001 "
"l111111110111010"
"l111111110111011"
"1111111110111100"
"1111111110111101"
"1111111110111110"
"1111111110111111"
"1111111111000000"
"1111111111000001"
"1111111111000010"
"1111111111000011"
"1111111111000100"
"1111111111000101"
“1111111111000110"
"1111111111000111"
"1111111111001000"
"1111111111001001"
"1111111111001010"
"1111111111001011"
"1111111111001100"
MI111111111001101"
"1111111111001110"
"1111111111001111"
"1111111111010000"
"1111111111010001"
"1111111111010010"
"1111111111010011"
“1111111111010100"
"1111111111010101"
"1111111111010110"
"1111111111010111"
"1111111111011000"
"1111111111011001"
"I111111111011010"
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For any further information on experiment Q6.3 contact:

YAGASAKI yoichi

(Phone: +81 (03) 3448-5605) (Fax:

Junet: yagasaki@av.crl.sony.co.jp
+81 (03) 3448-5611)
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Q.7 Vector Quantisation

Q.7.1 Desciption of Method

1 Definitions

A selection vector is defined as a 64 bit number that indicates which of the 64
quantized coefficients are transmitted to the receiver. A codebook is defined as
a set of selection vectors. A selection vector index is defined as an address of
a selection vector within the codebook.

2 Introduction

It is proposed that the encoding of the positions and amplitudes of the non-zero
DCT coefficients can be efficiently achieved by vector quantization of the
coefficient patterns together with variable length coding (VLC) the

amplitudes of the coefficients.

In this scheme, either one or four selection vectors are transmitted to
represent the selection patterns of the four luma blocks within a macroblock,
while one selection vector is transmitted for each of the chroma channels
(cb and cr).

Separate variable length code tables are used to encode the amplitudes of the
selected DC coefficients and the AC coefficients.

3 Vector Quantization Process
Figure 1 gives an example of the vector quantization process. First a selection
vector is chosen that best fits the quantized coefficients by choosing the
one with the least error and the lowest encoded bit rate (i.e. lowest "cost",
see section 4).

Next, the selection vector is applied to the data. Finally, the selection
vector index and the vector quantized coefficients are variable length coded
and transmitted to the receiver.

Figure 1: Example of Vector Quantization.
(** see MPEG 92/525, distributed at Tarrytown)

The receiver decodes the selection vector index and applies it to the address
the vector codebook to obtain the 64 bit selection vector. The selection vector
is then used to place the decoded coefficients in an 8x8 block.

4 Choosing selection vectors.

The selection vectors are picked by applying the selection vectors in the
reference codebook to the data to be vector quantized and calculating a cost for
each. The selection vector with the minimum cost is chosen.

The cost of a selection vector is defined as follows: (EQ 1)
(** see MPEG 92/525, distributed at Tarrytown)

where the droperror of a selection vector is defined as the sum of the absolute
quantized coefficients that are not selected, coefficientBitRate is defined as
the number of bits needed to transmit the quantized coefficients that are
selected and selectionBitRate is the number of bits to send the selection vector
index itself.

Generally values of around 16 for have been found to give good results.
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5 Luma Vector Quantization.

A luma macroblock may be encoded using either one luma macroblock selection
vector or four luma block selection vectors. A luma macroblock selection vector
is a selection vector that is applied to each of the four blocks in a luma
macroblock. A luma block selection vector is a selection vector that is applied
to only one block of the four luma blocks.

Figure 2: Applying luma macroblock selection vector.
(** see MPEG 92/525, distributed at Tarrytown)

Figure 3: Applying luma block selection vectors.
(** see MPEG 92/525, distributed at Tarrytown)

The cost function given above is used to determine whether one or four selection
vectors should be sent for every macroblock by minimizing the cost over a
macroblock.

Hence, the cost of sending four selection vectors is defined as: (EQ 2)
(** see MPEG 92/525, distributed at Tarrytown)

while the cost of sending only one selection vector is: (EQ 3)
(** see MPEG 92/525, distributed at Tarrytown)

Generally, sending four selection vectors improves the matching of the vector
patterns to the data while sending one vector reduces the selection overhead.

6 Chroma Vector Quantization

There is one selection vector in each macroblock for each of the two chroma
channels and adaptive division into chroma block selection vectors is not
permitted. In this case, the cost function is calculated over the one (4:2:0)

or two (4:2:2) blocks that form the chroma macroblock. Again, intra macroblocks
are restricted to the codebook entries that always select the DC coefficient.

. 7 Coding of selection vector indices.
Four variable length codes are used to encode the selection vector indexes as
summarized in the table below:

Table 1: Coding of selection vector indexes.

1 Inter luma index

2 Intra luma index

3 Inter chroma index
4 Intra chroma index
(see appendices)

8 Coding of vector quantized coefficients.

Intra DC coefficients are differentially encoded, as in TM-2.

A 1-d VLC table is provided to code the intra-AC and inter-DC-AC coefficients
that arc indicated by the selection vector:

Table 2: Coding of coefficients.
(see appendices)

215




19-Oct-92  Proposal for Test Model 2, Draft Revision 2

| 9 Syntax:

Macroblock Layer:
Instead of the coded_block_pattern, insert the following:

if (macroblock_intra Il macroblock_coded) {
luma_selection_escape 1 uimsbf
if (luma_selection_escape)
for (i=0; i < 4; i++)
luma_selection_vector 1-19  viclbf
else ‘
luma_selection_vector 1-19  vlclbf

Cb_selection_vector 1-19  vlclbf
Cr_selection_vector _1-19  viclbf

b
| Block Layer:

| block()
{
| if (macroblock_intra) {

else {
if (codebook([selection_vector][0])
dc_coeff_nonintra 1-16 viclbf

}

for (k=1; k < 64; k++) {
if (codebook[selection_vector][k])
ac_coefflk] I-16  viclbf

}

Further, all the selected coefficients are transmitted in raster-scan,
(left to right and top to bottom), NOT according to the zigzag scan of TM-2.
“The selection vectors also follow the raster scan.

| 10 Selection Codebooks and Variable Length Tables

| The selection vectors and the associated VLCs are appended below, and they are
also available (by e-mail) from Barry Haskell bgh@vax135.att.com.

| (the 1-d table for the VLC coefficients is located at the very end)

| INTER-LUMA SELECTION VECTORS and VLC TABLE:

Vector VLC
0 0000000000000000000000000000000000000000000000000000000000000000 O
11111110011111100111111001111110011111100111111001111110011111100 10100
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2 110000001 10000001 10000001 10000001 10000001 10000001 10000001 1000000 111101
31111000011110000111100001111000011110000111100001111000011110000 110110

4 000011000000110000001 10000001 10000001 10000001 10000001 10000001100 101110

5 100000000000000000001 110000011 1000001 110000000000000000000000000 100100
61111100011111000111110001111100011111000111110001111100011111000 100001

7 10000000000000000000000000001 11000001 11000001 1100000000000000000 1111000
8 0000000000000000000000000000000000000000000000000000000010000000 1110011

9 100000000000000000000000000001 10000001 10000000000000000000000000 1100101
10 111111101111110011111000111100001 11000001 10000001000000000000000 110001 1
11 10000000000G0000000000000000000000000000000000000000000000000000 1100010
12 06000000000000000000000000000000000000000100000000000000000000000 1011011
13 0000000000000000000000000000000000000000000000001000000000000000 1010101
14 100000000000000000000000000000001 11100001 11100001 111000011110000 1001111
15 06000000000000000000000000000000010000000000000000000000000000000 1001101
16 0000000000000000000000001000000000000000000000000000000000000000 1001010
17 1000000000001000000111000111111101111111000111000000100000000000 1000110
18 1000000000000000000000000000000000000000111100001111000011110000 1000001
19 1000000010000000100000001000000010000000100000001000000010000000 11111101
20 1000000000000000000000000000000000001 111000011110000111100001111 11110011
21 0000000010000000000000000000000000000000000000000000000000000000 11110010
22 0000000000000000100000000000000000000000000000000000000000000000 11101110
23 10000000000000000000000000001 10000001 100000000000000000000000000 11101100
24 10000000100000001000000010000000100000001 00000001 000000000000000 11101011
25 1000000000000000100000001 00000001 00000001 00000001 000000010000000 11101001
26 110000001 1000000000000000000000000000000000000001 10000001 1000000 11101000
27 1000000000000000000000000000000010000000100000001000000010000000 11100100
28 001100000011000000110000001 10000001 10000001 10000001 10000001 10000 11100000
29 11100000111000001 11000000000000000000000111000001110000011100000 11011110
30 1000000000000000000000000000000000000000000000001 11100001 1110000 11010001
31 1000000001000000100000000100000010000000010000001000000001 000000 11001101
32 100000000000000000000000000000000001 1 1000001 11000001 110000000000 11000011
33 10110110001101 10000000000000000000000000000000000000000000000000 11000001
34 1000000000000000000000000000000000000000000011110000111100001111 10111111

.35 10000000000011100000111000001 11000000000000000000000000000000000 10110100

36 100000001110000011100000111000001 11000001 11000001 110000000000000 10110010

37 100011110000111100001 11100001 11100000000000000000000000000000000 10110001

38 0000001100000011000000110000001 10000001 1000000110000001 100000011 10110000
39 1100000000000000000000000000000000000000000000000000000000000000 10101111

.40 1000000000000000001111000011110000111 100001111000000000000000000 10101110
41 100000000000000000000000000000000000000000000000000000001 1110000 10011101
42 1000000010000000000000001000000000000000100000000000000010000000 10011001

43 10000000000000000000000000000000000000001 00000001 000000010000000 10011000
44 10000000000000000000000000000000000000001 1 0000001 100000000000000 10001110
45 1000111000001 11000001 1100000000000000000000000000000000000000000 10001000
46 1000000000000000000000001000000010000000100000001000000010000000 111111111
47 10000000000000000000000000000000001 10000001 10000001 1000000110000 111111101
48 1110000001100000000000000000000000000000000000000000000000000000 111111000
49 1111000011100000110000001000000010000000100000001000000010000000 111110110
50 100111000001 11000001 11000000000000000000000000000000000000000000 111110100
51 1110000011000000100000001000000010000000100000001000000010000000 111110010
52 1000000000000000000000000000000000000000000000001 00000001 0000000 111110000
53 1111111011111100100000001000000000000000000000000000000000000000 111010100
54 1000000000000000000000000000000000000000000000000001 100000011000 111000111
35 1100000010000000010000001000000001000000100000000100000010000000 111000101
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56 1111000001 11000001 11000006000000000000000000000000000000000000000 111000100
57 10000000000000000000000011100000111000001 11000001 110000000000000 111000010
58 10110000001 10000000000000000000000000000000000000000000000000000 110111111
59 1011100000111000001 1100006000000000000000000000000000000000000000 110111010
60 100000000000000000000000000000001 10000001 10000001 100000000000000 110111001
61 1100000011000000000000000000000000000000000000000000000000000000 110101111
62 111000001 1000000100000001000000000000000000000000000000000000000 110101101
63 1111100011000000100000001000000000000000000000000000000000000000 110101011
64 1000000000000000000000000001 11000001 11000001 1 1000000000000000000 110101001 -
65 100000000000000001100110011001 10011001 10011001 100000000000000000 110100111
66 1000000000000000000000000000000000001 1 10000011 1000001 11000000000 110100110
67 1000000000000000001 11000001 11000001 11000000000000000000000000000 110100001
68 11000000110000001 10000001 100000010000000010000001000000001000000 110011110
69 100110000001 100060060000000000000000000000000000000000000000000000 110011101
70 10000000000000001 11000001 11000001 1 1000001 110000011 10000000000000 110011001
71 100001 10000001 10000000000000000000000000000000000000000000000000 110011000
72 100000000000000001 11000001 11000001 1106000000000000000000000000000 110010011
73 1111110011111000100000001000000000000000000000000000000000000000 110010001
74 10001 11100000000000000000000000000000000000000000000000000000000 110010000
75 110000001 10000001 10000001 1000000010000001 000000001 0000001 0000000 110000000
76 1000000000000000000000000000000000000000000000000000000001100110 101111101
77 1111110011111000111100001110000011000000100000000000000000000000 101111011
78 10000000000000000000000000000000000001 10000001100000000000000000 101111010
79 10000000000000000000000000000000000000000000000000001 10000001100 101101011
80 1111000011000000100000001000000000000000000000000000000000000000 101100111
81 1000111100001 11100600000600000000000000000000000000000000000000000 101011011
82 10000000111000001 11000001 1100000111000001 11000000000000000000000 101011010
83 100000000000000000001 10000001 10000000000000000000000000000000000 101010011
84 100000001 10000001 10000000000000000000000000000000000000000000000 100111001
85 10000000000000000000000000000000000000001 00000001 000000000000000 100101111
86 10000000000000000000000001 1 1000001 11000001 1100000000000000000000 100101101
87 10000000100000001000000010000000100000000000000000000600000000000 100101100
88 10000000000000001 10000001 10000001 10000001 10000001 1 6G0G00000000000 100011110
89 10000000000000000000000000000000001 11000001 11000001 1 100000000000 100010110
" 90 1000000010000000100000001000000000000000000000000000000000000000 100010101
91 100000000000000000000000000000001 10000001 10000000000000000000000 100010100
92 10000600000000000100000001000000010000000100000000000000000000000 100010010
93 1000000000000000000000001 10000001 10000001 10000001 100000000000000 100000011
94 100000000000000001 10011001 1001 10000000000110011001 1001 1000000000 100000010
" 95 1000000000000000000000000000000000001 10000001 1000000000000000000 100000001
96 10000000000000000000000010000000100000001 00000001 000000000000000 1111111101
97 1000000000000000000000000000000001 10000001 1000000000000000000000 1111111100
98 10000000110000001 100600001 10000001 10000001 106000000000000000000000 1111110011
99 100000000000000000000000000000000000000001 10000001 10000000000000 1111110010
100 1000000000000000000000000000000000000000000000000000111100001111 1111101111
101 1000000010000000000000000000000000000000000000000000000000000000 1111101011
102 100000000000000000000000000000000000000000000000001 1000000110000 1111101010
103 100000000000000000000000001 10000001 100000000000000600000000000000 1111100111
104 1111110011000000100000001 000000000000000000000000000000000000000 1111100011
105 1000000000000000000000001 10000001 1000000000000000000000000000000 1111100010
106 10000000100000001 00000000000000000000000000000000000000000000000 1110111111
107 1000000000000000000000000000000001 11000001 110000011 1000000000000 1110111101
108 100000000000000000000000000000001 0000000000000001000000000000000 1110111100
109 1000000000000000000000001 00000001 00000001 00000000000000000000000 1110110111
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110 1111111011111100111100001000000000000000000000000000000000000000 1110110101

111 10000000111000001 11000001 11000001 1100000000000000000000000000000 1110110100
112 11100000111000001 1 1000000000000000000000000000000000000000000000 111010101 1

113 10000000000000001 11000001 11000001 11000001 11000000000000000000000 11100101 10

114 1000000000000000000001100000011000000000000000000000000000000000 1110010100
115 1000110000001 100000000000000000000000000000000000000000000000000 1110001100
116 111110001 1110000100000001000000000000000000000000000000000000000 1110000110
117 1000000000111000001 11000001 1100000000000000000000000000000000000 1101111100
118 10000000000001 10000001 100000000000000000000000000000000000000000 1101110110
119111111101 1000000100000001000000000000000000000000000000000000000 1101110001
120 100011110000111100001 1110000000000000000000000000000000000000000 1101011101
121 100000000000000000000000000000001 00000001 00000000000000000000000 1101011100
122 1000000000000000110000001 10000001 10000001 10000000000000000000000 1101011001
123 1000000000000000000000000000000000000000111000001110000000000000 1101010101
124 1000000000000000000000001 10000001 10000001 10000000000000000000000 1101010100
125 1010000000000000000000000000000000000000000000000000000000000000 1101010001
126 1000000000011 1000001 11000001 110000000000000000000000000000000000 110100101 1
127 10000000000000000000000000000000000001 00000000000000000000000000 1101001010
128 100000000000000000000000000000001 1 1000001 1 1000001 1 10000000000000 1101001001
129 100000001 10000001 10000001 10000001 1000000000000000000000000000000 1101001000
130 10000000000000001 10000001 100000000000000000000000000000000000000 1101000000
131 1100000010000000100000001 00000001 00000001 00000001000000010000000 1100111111
132 1000000000000000000000000001 10000001 1000000000000000000000000000 1100111000
133 111000001 1100000111000001 10000001 10000001 00000001 000000000000000 1100100101
134 1000000000000000001 10000001 1000000000000000000000000000000000000 1100001011
135 10000000000000000001 10000001 1000000000000001 10000001 100000000000 1100001010
136 1000000000000000000111000001110000011100000000000000000%0000000 1100001001
137 10000000110000001 10000001 1060000000000000000000000000000000000000 1100001000
138 11111100111000001 1 1000001 1100000100000001 00000000000000000000000 1100000010
139 1000000001 10000001 1 000000000000000000000000000000000000000000000 1011111001
140 10600000000000000000000001 000000010000000000000000000000000000000 1011111000
141 100000000111000001 11000001 11000000000000000000000000000000000000 1011110010
142 1000000000000000000000000011100000111000001110000000000000000000 1011110001
. 143 111111101110000011 1000001 11000001 11000001 10000001000000000000000 1011110000
144 1000000000000000000000001 11000001 11000001 1 1000000000000000000000 1011010100
145 1000000000000000100000001 000000000000000000000000000000000000000 1011001100
146 1111111011000000100000001 00000001 00000001 00000001000000000000000 1010110011
147 111111101110000011 1000001 11000001 1 1000001 00000001000000000000000 1010110000
. 148 10000000000000001 11000001 1 1000001 1 100000000000000000000000000000 101010001 1
149 100110000001 1000000000000000000000000000000000000001 10000001 1000 1010100010
150 1110011001 1001 10000000000000000000000000000000000000000000000000 1010100000
151 1000000000000000100000000000000010000000000000000000000000000000 1001 110000
152 1000000000000000000000000000000000000000000001 10000001 1000000000 1001011101
153 111000001 10000001 10000001 10000001 0000000000000000000000000000000 1000111111
154 111000001 10000001 10000001 000000000000000000000000000000000000000 1000111110
155 10000000000000000000000001 10000001 100000000000000000000000000000 1000101110
156 1001000000000000000000000000000000000000000000000000000000000000 1000100111
157 106000000000000000000000000000000001 1 0000001 100000000000000000000 1000000000
158 10000000000000000000000000000000000000000001 10000001 100000000000 11111110011
159 100000001 11000001 11000001 110000000000000000000000000000000000000 11111110001
160 100000000000000000000000000001 06000000000000000000000000000000000 11111001101

161 100000001 11000001 11000000000000000000000000000000000000000000000 11111001100
162 100000000000000000000000000000000001 10000001 10000000000000000000 11101101101
163 1000100000000000000000000000000000000000000000000000000000000000 11101010100
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164 1000000000000000100000000000000000000000000000000000000000000000 11100101110
165 10000000001 10000001 100000000000000000000000000000000000000000000 11100101010
166 100000000000000001 10000001 10000000000000000000000000000000000000 11100011011
167 11111100111000001 11000001 11000001 10000001 00000000000000000000000 11100001111
168 1000000001000000000000000000000000000000000000000000000000000000 11100001110
169 1000000000000000100000000000000000000000000000001000000000000000 11011111011
170 111000001 10000001 00000001 000000010000000000000000000000000000000 11011111010
171 10000000100000001 00000001 00000001 00000001 00000000000000000000000 11011101111
172 111111001100000010000000100000001 00000001 00000000000000000000000 11011100001
173 1000010000000000000000000000000000000000000000000000000000000000 11011100000
174 10000000000000001 11000001 1100600000000000000000000000000000000000 11010110001
175 111000001 10000001 00000001 00000001 00000001 00000000000000000000000 11010100001
176 111000001 11000001 10000001 10000001 0000000000000000000000000000000 11010000011
177 11111000111000001 11000001000000010000000000000000000000000000000 11010000010
178 1000000000000000000000000000000000000000001 10000001 1000000000000 11001111101
179 100000000001 10000001 100000000000000000000000000000000600000000000 11001111100
180 10600000000000000000000001 11000001 1100000000000000000000000000000 11001110010
181 11111000111000001 11000001 100600001 0000000000000000000000000000000 11001001000
182 100000000000000000000000000000001 1 1000001 110000000000600000000000 10111100110
183 10600000000000000000000000100000000000000000000000000000000000000 10110101011
184 10000000000000000001 106000001 100000000000000000000000000000000000 10110011010
185 10000000000000000000000000000000000000000000000001 00000000000000 10101100101
186 111111101111110011 1100001 100000000000000000000000000000000000000 10101100010
187 1000000000000000010000000000000000000000000000000000000000000000 10101001011
188 111000001 1100000110000001 10000001 10000001 00000001000000000000000 10101001010
189 1000000000000000000000000000000000000000010000000000000000000000 10101001000
190 1000000000000000000000001 000000000000000000000000000000000000000 1010100001 1
191 111000001 1000000110000001 10000001 10000001 00000001000000000000000 10011100010
192 1000000000000000000000000000000000000000000000000000000000001111 10001001101
193 1111110011111000110000001000000000000000000000000000000000000000 10001001100
194 1000000000000000000000000000000001 000000000000000100000000000000 10000000011
195 11111100111110001 110600001 000000000000000000000000000000000000000 111111100101
196 1000000000000000100000001 00000001 00000001 00000001000000000000000 111111100100-
197 1060000000000000000000000000000000000000000001 10000001 106000000000 111111100001
* 198 110000000000000011000000000000001 1000000000000001 100000000000000 111111100000
199 1000000000000000000000000000000000000010000000000000000000000000 111110111011
200 10000000000000001 10000001 10000001 10000000000600000000000000000000 111110111001
201 1000000000001 10000001 1000000000000000000000000000000000000000000 111110111000
202 1000000000000000000000000000000000000000011001100110011000000000 111011111010
‘203 1100000000000000010000000000000000000000000000000000000000000000 111011111001
204 1000000000000000000000000000000001 000000000000000000000000000000 111011111000
205 1111111011111100110000001000000000000000000000000000000000000000 111011011001
206 100000000001 10000001 100000000000000000000001 10000001 100000000000 111011011000
207 110000000000000011000000000000001 1000000000000001000000000000000 111010101010
208 1111100011000000100000001 00000001 0000000000000000000000000000000 111001011111
209 1000000000100000000000000000000000000000000000000000000000000000 111001011110
210 1000001000000000000000000000000000000000000000000000000000000000 111001010110
211 1000000000000100000000000000000000000000000000000000000000000000 111000110100
212 1000000000000000000000000000000000000000000000000000000011000011 110111011101
213 10000000000000000000000000000000000000000000000001 1001 1000000000 110101100001
214 110000000000000000000000000000001 0000000000000001000000000000000 110101000001
215 1111110011111000111000001 100000000000000000000000000000000000000 110101000000
216 100000000000000001 06000000000000001000000000000000000000000000000 110011100111
217 100000000000000000000000000000001 00000001 00000001000000000000000 110010010011
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227 1100001 11100001 1000000000000000000000000000000000000000000000000 101011000111

228 1000000000010000000000000000000000000000000000000000000000000000 101011000110
229 11111110111000001 11000001 100000010000000100000001000000000000000 101010010010

230 1000000000000000011000110110001101 1000110110001 10000000000000000 101010000101
231 11111110111000001 11000001 110000010000000100000001000000000000000 101010000100
232 1000000000000010000000000000000000000000000000000000000000000000 100111000111
233 1000000000000000000000000000000000000000000000000010000000000000 100111000110
234 1000000000000000000000000000000000000000001 000000000000000000000 100101110010
235 10000000000000000000000001 10001 101 10001 1000000000000000000000000 100101110001
236 1111100011110000111000001000000000000000000000000000000000000000 100101110000
237 110000000000000001000000000000001 0000000000000001000000000000000 100010111111
238 1000000000000000000000000000000000000000000000000000001 100000011 100010111110
239 10000000000000000000001 10000001 100000000000000000000000000000000 100000000101
240 111000001 100000010000000100000001 00000001 00000001000000000000000 1111101110101
241 1100000000000000010000000000000000000000000000000100000000000000 1110111110111
242 1100000000000000000000000000000001000000000000000100000000000000 1110111110110
243 110000000000000001000000000000001 1000000000000001 100000000000000 1110101010111
244 1000000000001000000000000000000000000000000000000000000000000000 1110101010110
245 1000000000000000000000000001000000000000000000000000000000000000 1110010101111
246 111111101110000010000000100000001 00000001 00000001000000000000000 1110001101010
247 1111100011110000110000001000000000000000000000000000000000000000 1101110111001
248 111111001110000011100000100000001 00000001 00000000000000000000000 110101 1000000
249 1111111011111000100000001000000000000000000000000000000000000000 110000001101 1
250 111000001 1 100000110000001 10000001 00000001 00000000000000000000000 1100000011010
. 251 1100000000000000000000000000000000000000000000000100000000000000 1011110011100
252 1000000000000000000000000000000000001 000000000000000000000000000 1011001101100
253 111111101110000011100000100000001 00000001 00000001000000000000000 1010110010011
254 110000000000000001 0000000000000001000000000000001000000000000000 1010110010010
255 1111111011111100111000001000000000000000000000000000000000000000 1010100100111
256 1000000000000000100000001000000010000000000000000000000000000000 1010100100110
257 100000001 1000000110000001 10000001 10000001 10000001 100000000000000 1001011100111
258 1100000000000000110000000000000010000000000000001000000000000000 1000101111011
259 1000000000000000000000100000000000000000000000000000000000000000 1000101111010
260 110000000000000010000000000000001 0000000000000001000000000000000 1000101111000
261 1000000000000000000000000000000000000000000001000000000000000000 1000000001001
262 1111110011100000100000001000000010000000100000000000000000000000 1000000001000
263 1110000011000000110000001100000010000000100000000000000000000000 11111011101001
264 1000000000000000010000000000000001 000000000000000100000000000000 11100101011100
265 111000001100000011000000100000001 00000001 00000000000000000000000 11100011010111
266 1000000000000000000001000000000000000000000000000000000000000000 11100011010110
267 10000000000000000000000000000000000000001 100001 10000000000000000 11011101110000

270 1000000000000000000000000000000000000000000000100000000000000000 11001110011010
271 11100000110000001 10000001000000010000000100000001000000000000000 11001110011001
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272 1111111011100000110000001000000010000000100000001000000000000000 11001110011000

273 1111111011100000100000001000000000000000000000000000000000000000 10111100111011

274 11100000110000001 10000001 10000001 0000000100000001000000000000000 10111100111010

275 100000000000000010000000000000001 0000000000000001000000000000000 1011001101101 1
276.1111110011100000100000001000000000000000000000000000000000000000 10010111001101

277 1111111011110000100000001 000000000000000000000000000000000000000 10001011110011

278 100000000000000000000000000000000000001 1000000110000000000000000 10001011110010

279 1111000011100000100000001000000000000000000000000000000000000000 111110111010000
280 1060000000000000000000000000000000001 0000000000000000000000000000 111001010111011
281 10000000000000000000000000000000000000000001 00000000000000000000 110111011100011
282 1111111011100000111000001 11000001 10000001 00000001000000000000000 110101100000101
283 1000000000000000000000000000000000000000000000000000010000000000 110101100000100
284 1100000000000000010000000000000001 000000000000000000000000000000 101100110110100
285 1111100011100000100000001000000000000000000000000000000000000000 100101110011001
286 1000000000000000000000000000000000000000000010000000000000000000 100101110011000
287 1111100011100000100000001000000010000000000000000000000000000000 1111101110100010
288 110000000000000001000000000000001 1000000000000001000000000000000 1110010101110101
289 1111110011100000110000001 00000001 00000001 00000000000000000000000 1110010101110100
290 1111100011100000110000001000000010000000000000000000000000000000 1101110111000101
291 1100000000000000010000000000000001 0600000000000001 100000000000000 1101110111000100
292 10000000000000000000000000001 00000000000000000000000000000000000 1011001101101011
293 1000000000000000000000000000000010000000000000000000000000000000 1011001101101010
294 1100000000000000010000000000000001000000000000000100000000000000 11111011101000111
295 1000000000000000000000000000000000000000000000000001 000000000000 111110111010001100
296 1000000000000000000010000000000000000000000000000000000000000000 1111101110100011011
297 1000000000000000000000000000000000000000000000000000100000000000 1111101110100011010

INTRA-LUMA SELECTION VECTORS and VLC TABLE:

Vector VLC

0 1000000000000000000000000000000000000000000000000000000000000000 101

1 110000001 10000001 1000000110000001 10000001 10000001 100000011000000 10010

2 100000001 0000000000000000000000000000000000000000000000000000000 01001
3 10000000100000001000000010000000100000001 00000001 000000010000000 00011

4 111000001 1000000000000000000000000000000000000000000000000000000 00001

5 110000001 11000001110000011100000111000001 11000001 11000001 1100000 00000
6 111100001110000011 1000001 11000001 11000001 10000001100000011000000 111100
©71111111011111110111111101111111011111110111111101111110000000000 110001
8 1000000010000000100000001000000010000000000000000000000000000000 110000
9 11100000110000001 10000001 100000010000000000000000000000000000000 100110
101111000011110000111100001111000011110000111100001111000011110000 100011
111111110011111100111111001111110011111100111110000000000001000000 100010
121111100011110000111100001111000011110000111100001110000011100000 100000
13 110000001 1000000100000001 00000001 0000000000000000000000000000000 011101
141111110011111100111111001111110011111100111111001111110011111100011011
15 111100001 1100000111000001 11000001 11000001 11000001110000011100000 011001
16 110000001 1000000100000001 00000001 00000001 00000001 00000001 0000000 010110
171111111011111110111111101111111011111100111111001 1 11000000000000 010101
181111100011111000111110001111100011111000111110001111000011100000 010000
191111100011111000111110001111100011111000111110001111100011111000 001111
201110000011100000111000001]10000011000000100000001000000000000000001110
21 1111100011110000111000001 11000001 11000001 11000001 1 10000011100000 001000
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2211111110111110001110000011100000110000001 10000001 1 0000001 1000000 000101

23 111000001110000011000000110000001 10000001 10000001 10000001 1000000 000100

241111100011110000111100001111000011110000111000001100000010000000 1111111
25 111110001 11000001100000010000000100000001 00000001 000000010000000 1111110
26 111100001 11000001 11000001000000000000000000000000000000000000000 1111100
27 111000001 10000001 100000011000000100000001 00000001 000000010000000 1111010
28 1111111111111110111111101111111011111110111111101111111010000000 1110111
29 1100000000000000000000000000000000000000000000000000000000000000 1110101
3011111100111110001111100011111000111100001 11100001 11000001 1000000 1110100
31 1111100011110000111100001 110000010000000000000000000000000000000 111001 1
32 111100001 11000001110000011000000110100001 10000001 10000001 1000000 1110010
33 111110001111000011010000110000001 10000001 1000000110000001 1000000 1110000
341111111011111100111110001111100011110000111000001100000010000000 1101111
35 1111100011000000000000000000000000000000000000000000000000000000 1101110
36 11111111111111111021311121 1111111111 11111111211111111111011111110 1101100
37 1111111011111110111111101111110011111100111111001111000011000000 1101011
38 1110000011100000111100001111000011100000111100001110000011110000 1101001
3911111100111100001111000011110000111000001 1100000111000001 1000000 1100111
40 111000001 1100000110000001100000010000000100000000000000000000000 1100110
41 1111111011111100111100001100000000000000000000000000000000000000 1100100
42 1111111011110000100000000000000000000000000000000000000000000000 1001111
43 1111100011111000111110001111100011111000000000000000000000000000 1000011
44111111101111110011111100111111001111100011110000111100001 1100000 0111001
451111110011111100111111001111110011111100111111000000100000000000 0111000
46 11111111111111111111111 1110111110202 0211111111211111111111111111 0110100
47 111100001110000011100000111000001 11000001 11000001 10000001 1000000 0110000
48 1111111011111100111110001111100011111000111100001110000011100000 0100011
49 11010000000010000100000010001 10000001 100000000000000000000000000 0011010
50 111111111111111111111111111111111101111010001 1100000010000000000 0011001
51 1111110011111000111100001 11000001 10000001 00000000000000000000000 001 1000
521111110011111100111111001111100011111000111000000000000000000000 0010111
53 1111111111111111111111111111111011111100111000000000000000000000 0010101
54 1111100011111000111110001111000011100000000000000000000000000000 0010100

. 55 111000001100000011000000110000001 10000001 10000001 000000010000000 0010011

56 1111111100000000000000000000000000000000000000000000000000000000 0010010
57 11111000111000001 11100001 11100001 10000001 10000001 10000001 1000000 11111011
58 1111111011111100111110001111100011111100111110001111110011111000 11110111
59 1111110011111000111110001111100011111000111100001111000011110000 11110110
- 60 1111111111111111111111111000010000000000100010000000000000000000 11101101
61 111000001 100000010000000100000001000000010000000100000001 1000000 11100011
621111111111111111111111111111111011111100111110001111110011110000 11011011
63 1000000000011100000000000011110000000000001111100011111011111111 11011010
641111111011111100111111001111110011111000111111001111100011111000 11010100
651111000011110000111100001111000011110000111100001111100011111000 11010001
66 1111110011111100111111001111110011111000111110001111000011110000 11010000
67 1111111111111111000000100000101000000100000000000000000000000000 11001010
68 1111110011010000111000001100100010000000101000001000000010000000 10011101
691111111011111100111111001111110011111100111111001000000000011000 10011100
70 1111111011111100111111001111100011111100111111001111000011100000 10000101
71 1111110011111000111100001111000011110000111100001111100011100000 01111111
72 1111111111111110111110101000000000000000000000000000000000000000 01111110
73 1111111111111110111111011111110011110100111000001100000010010000 01111101
74 1111110011100000111000001 11000001 10000001 060000000000000000000000 01111100
75 1110000011110000111100001111000001 100000010000000000000000000000 01111010
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76 1111111011111100111110001111000011100000110000001000000000010000 01111001

77 1111111111111111111111101111111011111110111111101111111011000000 01111000
78111111101111111011111110111111001111110011111100111111001111110001101011

79 1111110011111000100000001000000000000000000000000000000000000000 01100011
80111111001110000011100100111110001110100011010000110000001 1000000 01100010
811111111011111110111111101111111111111110111111101111111000111100 01011111

82 1100000011 100000110000001100000001000000100000000100000010000000 01011110

83 1100000011100000111000001110000011110000111000001111000011100000 01011101
8411111111111110101111000011111110110110001000100110010600010000000 01010011
851111111111111110110010000001110000101000001000001000000010000000 01010001
861ll111111111111111111110111011111111‘110000000000100010001101000001000100
871111111111111111111111111111111111111110111111001111100011110000 00110111

88 1111111111111110111110001111000011100000110000001100000011100000 060110110

89 1000000011100000111000001110000011100000111100001110000000000000 00101101
901111110011101000111010001110000011100000111000001110000011110000 111110100
91 11111111111111111111111111011111000001110000001 106000000100000000 111011001
921111111111111100111010001111000010010100100000001000000010000000 111000101

93 1110000011000000111000001111000011110000111101001111000011110000 111000100
941111111111111111111111101111111011110000000100000001000000010000 110101011
951111111011111110811111011111110011111100111111001111100011110000 110010111
96 1111111011101000110100001000101010000000100100001001000010000000 110010110
971111111111111111110001001100100011111100000000000000000000000000 100001001
981111111111111000100000101010101010010100001010100000000010000000 011110111
991111111111111111000111111111111101111111000011110100011100000011 011010101
100 1111111011100000111000011110000011110010100000001000000010000000 011010100
101 1111101111100000111000001 100000011101100010100000100000010000000 010111001
102 10001 100000011000000110000001 10000001 1000000110000001 10000001100 010111000
103 1111111111111111111111101111101011101000001000001000001000000000 010100101
1041111111111111100111101001110111011100001111010001110100011100000 010100001
1051111111111110000110101001011010010000100111000001000000011010000 010100000
106 111111111111111111111110111111001111000011110000111000001 1001100 010001011
107 1111111011001000111100001100010011000100110010001100000011011000 010001010
108 1111110111110101111010111111100010101110100111011001000010010010 001011001
109 1111111111110100111111101110010011100000111000001111000011110000 001011000

" 110 100000000000000000001 11000001 11000001 110000011100000010000000000 1111101011
111 1111111111111111111111111111111011110110111000101000100011110000 1111101010
1121111111011111110111111001111110011111000111100001111100011100100 1110110001
113 1111111111111000111100101111010010101 100100000011001000010001100 1101010101
114 11110000100100001000000001000000100001 1001010100000100001 1100000 1101010100
‘115 1111111111111110111110001110000000000000101000000000000001000000 1000010001
116 1111100011010000110101001101110011001000110100001110000011010001 0111101101
117 1011000000011000001111001111111101111111001111000000100000000000 0111101100
118 1111111111111111111111101011111001101111100111100100110010001110 0101001000
1191111111111111111111000001100010011100100111100100100010010100000 11101100000
120 11110000110000001 10100001 100000011010000110000001100100011100000 10000100001
121 1111111111111110111111001111110111110110111101100111010000100000 01010010011
122 1111110011001110111001101110100011000101110111011111000011110000 01010010010
123 1111111011111000110010101101110011100000110100001111110011110000 111011000011
124 1111101111101100111011011110100011101111111011001010001010111111 111011000010
1251111111111111101111110001111100011111000111111001111000011110100 100001000000
126 1110000111110000111100001000001100101000111010001110000011100000 1000010000011
127 1111111111111111111100001111010110001101111000001001000111101001 1000010000010
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| INTER-CHROMA SELECTION VECTORS and VLC TABLE:

12 1000000010000000000000000000000000000000000000000000000000000000 0101100
13 1110000001 100000000000000000000000000000000000000000000000000000 0101000

17 1110000011000000100000001000000000000000000000000000000000000000 0011010
18 0000000000000000000000000000000000000000100000000000000000000000 0011000
19 1111100011000000100000001000000000000000000000000000000000000000 0001110
20 1111110011111000100000001000000000000000000000000000000000000000 0001101
21 1111111011111100111110001111000011100000110000001 000000000000000 0000111
22 111100001 1000000100000001000000000000000000000000000000000000000 0000100
23 111000001 11000001 11000000000000000000000000000000000000000000000 0000001
24 111111001 1000000100000001000000000000000000000000000000000000000 01111100
25 1011100000111000001 110000000000000000000000000000000000000000000 01110110
26 1111100011110000100000001000000000000000000000000000000000000000 01110101
27 1000000010000000100000000000000000000000000000000000000000000000 01110100
28 1011011000110110000000000000000000000000000000000000000000000000 01110010
29 1111111011111100111100001000000000000000000000000000000000000000 01001001
. 30 1111111011111100100000001000000000000000000000000000000000000000 01001000
31 100000001 10000001 10000000000000000000000000000000000000000000000 01000111
32 100000001 0000000100000001000000010000000000000000000000000000000 01000101
33 100110000001100000000w000000000000000000000000000000000000000w 00110110
34 1000000010000000100000001000000000000000000000000000000000000000 00110010
. 35 1000000000000000001000000000000000000000000000000000000000000000 00100111
36 1011000000110000000000000000000000000000000000000000000000000000 00100101
37 1100000000000000100000000000000010000000000000001 000000000000000 0010001 1
38 1000000000000000110000001 100000000000000000000000000000000000000 00100001
39 1000000000000000100000000000000000000000000000000000000000000000 00011111

47 100000000110000001 1000000000000000000000000000000000000000000000 011101110
48 1000000000000000100000001000000000000000000000000000000000000000 010110101
49 1000000000000000000000000010000000000000000000000000000000000000 010100111
50 100000001 10000001 10000001 100000000000000000000000000000000000000 010100100
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51 1000000001 11000001 11000001 11000000000000000000000000000000000000 001101111
521111100011111000111110001111100011111000111110001111100011111000 001100111
53 11100000110000001 10000001100000010000000000000000000000000000000 001001100
54 1000000000000000000000001000000000000000000000000000000000000000 001001000
55 10000000110000001 10000001 10000001 1000000000000000000000000000000 001000001
56 1111000011110000111100001111000011110000111100001111000011110000 000110000
57 100000000000000001 10000001 106000000000000000000000000000000000000 00000001 1
58 1111100011100000111000001000000010000000000000000000000000000000 000000010
59 10000000000000000000000001 10000001 100000000000000000000000000000 000000001
60 11111100111000001 11000001000000010000000100000000000000000000000 0111110110
61 HNlNHIOHHHOHHOHHHHNNHHHOOHH‘HOHHl 0111110101
62 1000000011 1000001 11000001110000011100000000000000000000000000000 0111110100
63 1100000000000000010000000000000000000000000000000000000000000000 0111100101
64 1110000011000000100000001000000010000000000000000000000000000000 0111011110
65 1000000000000000000000001000000010000000000000000000000000000000 0111001101
66 1000000000000000000000001 10000001 1000000000000000000000000000000 0101101101
67 1111100011110000110000001000000000000000000000000000000000000000 0101101100
68 1000000000000000100000000000000010000000000000000000000000000000 0101101001
69 1111110011100000111000001110000010000000100000000000000000000000 0101001101
70 100111000001 11000001 11000000000000000000000000000000000000000000 0101001100
‘71 111111001100000010000000100000001 00000001 00000000000000000000000 0100011000
72 100000001000000010000000100000001 00000001 00000000000000000000000 0100010011
73 100000000000000000000000000000001 0000000000000000000000000000000 0100010010
74 100000000001 10000001 10000000000000000000000000000000000000000000 0100010001
75 10000000000000001 110000011 1000001 1100000000000000000000000000000 0011011101
76 1000000000000000100000001000000010000000100000000000000000000000 0011011100
77 100000001 11000001 11000001 110000000000000000000000000000000000000 0011001100
78 1111110011111000111000001000000000000000000000000000000000000000 0010011010
79 1110011001100110000000000000000000000000000000000000000000000000 0010001011
80 10000000001 10000001 100000000000000000000000000000000000000000000 0010001001
81 1000000010000000000000001000000000000000100000000000000010000000 0010001000
82 100000001 110000011100000111000001 11000001 11000000000000000000000 0010000000
83 1111111011110000100000001000000000000000000000000000000000000000 0001111011
84 1000000000000000001 10000001 10600000000000000000000000000000000000 0001111010
* 85 100000000000000000111000001 11000001 11000000000000000000000000000 0001100011
86 11100000110000001000000010000600010000000100000000000000000000000 0001100010
87 1000000000000000000000001000000010000000100000000000000000000000 0000101111
88 1000000010000000100000001000000010000000100000001000000000000000 0000101101
89 100000000000000011 10600001 1100000000000006000000000000000000000000 01111101111
* 90 1000000000000000000300000000000010000000100000000000000000000000 01111001001
91 111110001 11100001 11000001000000000000000000000000000000000000000 01111001000
92 10000000000000001 10000001 10000001 1000000000000000000000000000000 01110111111
93111111001111110011111100111111001111110011111100111111001111110001110011111
94 100000000000000000000000000000001 10000001 10000000000000000000000 01110011110
95 10000000000000001 11000001 11000001 11000001 1 1000000000000000000000 01110011100
96 00110000001 1000000110000001 10000001 10000001 10000001 1000000110000 01110011000
97 11100000111000001 10000001 100000010000000000000000000000000000000 01011011111
98 10000000001 1100000111000001 1100000000000000000000000000000000000 01011011110
99 1100000000000000010000000000000010000000000000001000000000000000 01011011101
100 100000001 1000000110000001 10000001 10000001 10000000000000000000000 01011011100
101 1111100011000000100000001000000010000000000000000000000000000000 01011010001
102 110000001000000001 0000001 000000001 0000001 00000000100000010000000 01011010000
103 110000001 1000000110000001 1000000010000001 00000000100000010000000 01010010110
104 1111110011100000111000001 11000001 10000001 00000000000000000000000 01010010100
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105 1000110000001100000000000000000000000000000000000000003000000000 010001 10111
106 10000000000000000000000001 11000001 11000001 1100000000000000000000 01000110110

107 11000000000000001 1000000000000001 1000000000000001000000000000000 01000110101
108 1111111011111100111100001100000000000000000000000000000000000000 01000110010

113 1111100011100000111000001 106000001 0000000000000000000000000000000 001001001 11
114 1000000000000000000000000000000000000000100000001000000000000000 001001001 10
115 1000010000000000000000000000000000000000000000000000000000000000 00100100101
116 1111000011100000110000001000000010000000100000001000000010000000 00100010101
117 11111110111000001 11000001 11000001 11000001 00000001000000000000000 0010000001 1
118 10000000000000001 10000001 10000001 10000001 10000000000000000000000 00100000010
119 1000000000000000000000001 10000001 10000001 10000000000000000000000 0001111001 1
120 11100000110000001 1000000110000001 1000000100000001000000000000000 00011110001
121 1000000000000000000000000000000001 10000001 1000000000000000000000 0001 1110000
122 10000000000000000111000001 11000001 1 10000000000000000000000000000 00001011001
123 11111000111100001 11000001 10000001 0000000000000000000000000000000 0000101 1000
124 1000000000000000010000000000000001 000000000000000000000000000000 0000000001 1
125 1111110011111000110000001000000000000000000000000000000000000000 00000000010
126 1000000000000000000100000000000000000000000000000000000000000000 00000000001
127 11111100111110001 11000001 100000000000000000000000000000000000000 011111011101
128 100000000000000000000000001 10000001 10000000000000000000000000000 011101111100
129 100000000100000010000000010000001 000000001 0000001000000001000000 011100111010
130 1100000011000000110000001 10000001 10000001 10000001 10000001 1000000 011100110010
131 1000000000000000000000001 10000001 10000001 10000001 100000000000000 010100101110
132 110000001 10000001 10000001 10000001 000000001 0000001000000001000000 010001101001
133 10000000000000000000000000000000000000001 10000001 100000000000000 010001101000
134 100000000000000010000000100000001 00000001 00000001 00000001 0000000 010001100111
135 10000000000000000001 10000001 100000000000000000000000000000000000 010001100110
136 1111111011100000111000001 1000001 11000001 10000001000000000000000 010001000000
137 100000000000000000000000000000000000000000000000100000001 0000000 001001101111
. 138 1000000000000000000000001 11000001 11000001 11000000000000000000000 001001001001
139 10000000000000000000000000000000001 10000001 100000000000000000000 001001001000
140 1000000000000000000000000000000001 1 1000001 11000001 11000000000000 001000101001
141 1000000000000000000000001 11000001 1100000000000000000000000000000 001000101000
142 111000001 1100000110000001 10000001 00000001 00000000000000000000000 000010111011
143 1000111100001111000000000000000000000000000000000000000000000000 000010111010
144 1000000000000000000000001 00000001 00000001 00000001 000000000000000 000010111001
145 111000001 11000001 110000000000000000000001 11000001 11000001 1 100000 000010111000
146 10000000000000001 11000001 11000001 11000001 11000001 110000000000000 000000000001
147 100000000000000000000000000000000000000001 0000000000000000000000 000000000000
148 11111000111100001 11000001100000000000000000000000000000000000000 0111110111000
149 100000001110000011100000111000001 11000001 11000001 110000000000000 0111001110110
150 11100000110000001 10000001 00000001 00000001 00000000000000000000000 01 11001100110
151 1111111011100000111000001 1 1000001 00000001 00000001000000000000000 0101001011110
152 11100000111000001 110600001 10000001 10000001 00000001000000000000000 0101001010101
153 11100000111000001 10000001 10000001 1000000100000001000000000000000 0101001010100
154 1111100011100000100000001000000010000000000000000000000000000000 0101001010111




19-Oct-92  Proposal for Test Model 2, Draft Revision 2

159 1000000000000000000000000000000000100000000000000000000000000000 0001111001010

160 10000000110000001 10000001 10000001 10000001 10000001 100000000000000 01111101110011
161 110000001 1000000000000000000000000000000000000001100000011000000 01111101110010
162 100000000000000000000000000000001 11000001 11000000000000000000000 01110111110111
163 1111111011100000111000001000000010000000100000001000000000000000 01110111110110
-164 10000000000000001 10000001 10000001 106000001 10000001 100000000000000 01110111110101
165 1000000000000000000000000000000010000000100000001000000010000000 01110011001110
166 1100000000000000010000000000000001000000000000000000000000000000 01010010111111
167 1000001000000000000000000000000000000000000000000000000000000000 01010010111110
168 111000001 1000000100000001 00000001 0000000100000001000000000000000 00100110111010
169 11100000111000001 10000001000000000000000000000000000000000000000 00100110111001
170 10000000000000000000000000000000001 10000001 10000001 1000000110000 00100110111000
171 1000000000000000000000001 11000001 11000001 11000001 110000000000000 0001111001001 1
172 10000000000000000001 11000001 11000001 1100000000000000000000000000 00011110010010
173 1100001 11100001 1000000000000000000000000000000000000000000000000 00011110010001
174 111111101110000010000000100000001 00000001 00000001000000000000000 011100111011101
175 1000111100001111000011110000000000000000000000000000000000000000 011100111011100
176 100000000000000000000000000000001 11000001 11000001110000000000000 011100111011111
177 10000000000000000001 10000001 100000000000000110000001 100000000000 011100111011110
178 11000000100000001000000010000000100000001 00000001000000010000000 011101111101001
179 100000000000000000000000000000000000000001 10000001 0000000000000 011101111101000
180 1000000000000000000000000000000000000000001000000000000000000000 011100110011111
181 11100000110000001 10000001 00000001 00000001 00000001000000000000000 001001101110111
182 100000000000000000000000001 11000001 11000001 110000000000000000000 001001101110110
183 100000000000000000001 10000001 10000000000000000000000000000000000 000111100100001
184 10000000000000000000000000000000000000001 11000001 110000000000000 000111100100000
185 11000000000000001 1000000000000001 1000000000000001 100000000000000 01110011001111001
186 10000000000001 10000001 100000000000000000000000000000000000000000 01110011001111000
187 1000000000000000000000000001000000000000000000000000000000000000 01110011001111011
188 0000000000000000000000000000000000000000000000001000000000000000 01110011001111010

INTRA-CHROMA SELECTION VECTORS and VLC TABLE:

Vector VLC
0 1000000000000000000000000000000000000000000000000000000000000000 1
1 100000001 0000000000000000000000000000000000000000000000000000000 0110
2 1000000010000000100000000000000000000000000000000000000000000000 0000
_ 3 1100000000000000000000000000000000000000000000000000000000000000 00111
4 1000000010000000100000001000000000000000000000000000000000000000 00110
5 1000000010000000100000001000000010000000000000000000000000000000 011110
6 111000001 11000001 10000000000000000000000000000000000000000000000 010110
7 110000001 10000001 00000000000000000000000000000000000000000000000 010101
8 110000001 1000000000000000000000000000000000000000000000000000000 010011
9 110000001 1000000100000001000000010000000000000000000000000000000 000110
10 1100000010000000000000000000000000000000000000000000000000000000 000101
11 11100000110000001 10000001 100000000000000000000000000000000000000 000100
12 111000001 1000000000000000000000000000000000000000000000000000000 0111010
13 110000001 1000000100000001000000000000000000000000000000000000000 0101111
14 110000001 1000000110000001000000010000000000000000000000000000000 0101001
15 10000000100000001000000010000000100000001 00000000000000000000000 0100010
16 111000001 11000001 10000001 100000010000000000000000000000000000000 0010101
17 111100001 1600000000000000000000000000000000000000000000000000000 0010100
18 111000001 10000001 10000001 10000001 0000000000000000000000000000000 0010010
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19 11100000110000001 10000001 10000001 10000001 00000001 000000000000000 01 1 11111
20 1010000000000000000000000000000000000000000000000000000000000000 011101 11
21 1000000001000000000000000000000000000000000000000000000000000000 01110010
22 1111000011110000111000001 100000000000000000000000000000000000000 01110000
23 1111100011110000100000001000000000000000000000000000000000000000 01011101
24 11111100111000001 11000001 110000010000000100000000000000000000000 01000011
25 111100001111000011110000111000000000000000000000000000000000000001000010
26 1110000011100000110000001000000000000000000000000000000000000000 01000001
27 1110000011000000100000000000000000000000000000000000000000000000 00101111
23 1000000011000000110000001100000000000000000000000000000000000000 00101101
29 11000000110000001000000010000000100000001 00000000000000000000000 00100010

30 1111100011110000110000001 100000010000000000000000000000000000000 00100000

31 10000000100000001000000010000000100000001 00000001 000000000000000 00011111

32 1111100011000000000000000000000000000000000000000000000000000000 00011110

33 100000001 10000001 10000000000000000000000000000000000000000000000 0001 1100

34 111000001 10000001 11100001 110000001000000010000000000000000000000 011111101
35 1110000011110000111100001 111000001 100000000000000000000000000000 011111011
36 11100000110000001100000010000000100000001 00000000000000000000000 011111010
37 1111110011000000000000000000000000000000000000000000000000000000 011111000
38 1111111011100000111000001 11000001 11000001 00000001 000000000000000 011101100
39 1110000011100000110000001 10000001 10000001 00000001 000000000000000 011100111
40 1111110011111100111110001 11000001 11000001 10000001000000000000000 0111001 10
41 11111000111100001 11100001 111000010000000000000000000000000000000 010111001
42 111000001110000011 1000001 10000001 10000001 00000001 000000000000000 010111000
43 111000001 1000000110000001 10000001 00000001 00000000000000000000000 01010001 1
44 111110001 1100000100000000000000000000000000000000000000000000000 010100010
451111110011111000111110001 11100001 11100001 11000001 100000010000000 010100001
46 1110000011100000111000000000000000000000000000000000000000000000 010100000

49 1111100011110000111100001 11100001 11100001 11100001 11000001 1 100000 010010100
50 1111000011100000111000001 11000001 11000001 10000001 10000001 1000000 010010011
51 1111111011111100100000001000000000000000000000000000000000000000 010010001
.52 110000001 1100000110000001100000001000000000000000100000000000000 010010000
53 111111001111100011111000111110001 11110600100000000000000000000000 010001110
54 111110001111100011111000111100001 1100000000000000000000000000000 010001 101
55 11111111111111001110100010010000100000001 00000001 000000010000000 010000000
56 11100000111000001 10000001 10000001 00000001 00000000000000000000000 001011101
. 57 111100001 1100000110000001000000000000000000000000000000000000000 00101 1100
58 1111110011100000111000001 11000001 1000000100000000000000000000000 00101 1001
59 1100000010000000000000001000000000000000000000000000000000000000 00101 1000
60 11000000110000001000000010000000100000001 060000001 000000000000000 001001111
61 1010000010000000000000000000000000000000000000000000000000000000 001001101
62 111110001111000011110000111100001 11100001 11000001 100000010000000 001001 100
63 1111100011111000111110001 11110001 1110000000000000000000000000000 001000111
64 1111100011100000111000001000000010000000000000000000000000000000 0010001 10

66 11110000111000001 11000001000000000000000000000000000000000000000 011111001 1

67 1111100011111000111100001 11100001 1000000000000000000000000000000 0111011011
68 1111110011111000111000001 10000001 10000001 00000000000000000000000 0111011010

69 1111000011000000100000000000000000000000000000000000000000000000 01 11000101
70 1111111111110000111100001 1000000100000001 00000001 0000000 10000000 0100101 100
71 1111110011111000111100001 11000001 10000001 00000000000000000000000 0100100101
72 1111110011100000100000000000000000000000000000000000000000000000 0100100100
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73 1111111011111100111100001000000000000000000000000000000000000000 0100011111

74 1111000011100000111000001 10000001 1010000110000001 100000011000000 0100011000

75 1111110011000000100000001000000010000000100000000000000000000000 010000001 1

76 1111110011110000111000001100000010000000100000000000000000000000 0100000010

77 111110001 11000001 10000001000000010000000000000000000000000000000 0010011101

78 1111111011110000100000000000000000000000000000000000000000000000 0010000111

79 1111100011010000110000001 10000001000000010000000100000001 0000000 0010000100

80 100000001 10000001 10000001 10000001 1000000000000000000000000000000 0001110111

81 1100000011000000101000001000000000000000000000000000000000000000 0001110110

82 1111100011100000100000001000000010000000000000000000000000000000 0001110101

83 111110001110000011110000111100001100000011000000110000001 1000000 0001110100

84 111000001 10000001 10000001 10000001 10000001 10000001000000010000000 01111110010

85 111000001 10000001 10000001 100000010000000100000001000000010000000 01111100101

86 1000000010000000100000001000000010000000100000001000000010000000 01111100100

87 100000001 11000001 11000001 110000000000000000000000000000000000000 01110001111

88 10000000111000001 11000001 11000001 1100000000000000000000000000000 01110001110

89 1000000011000000000000001 100000000000000000000000000000000000000 01110001100

90 111100001110000011100000111000001110000011100000110000001 1000000 01110001001

91 1111110011111000110000001000000000000000000000000000000000000000 01001011011

92 1111100011110000111000001100000010000000000000000000000000000000 01000110011

93 1111110011100000100000001000000010000000100000000000000000000000 01000110010

94 110000001 10000001 10000001 10000001000000001 6000001000000001000000 01000111101

95 1111111011000000000000000000000000000000000000000000000000000000 01000111100

96 1111110011110000111000001 11000001 1000000110000001100000011000000 00100111001

97 111000001 1100000110000001 10000001 10000001 10000001 10000001 1000000 00100111000

98 1111110011110000111000001110000011100000111000001 100000010000000 00100001011

99 111000001 10000001 10000001 10000001 1000000110000001 100000010000000 00100001010
100 100000001 11000001 11000001 11000001 11000001 11000000000000000000000 00100001101
101 1111110011111000111000001000000000000000000000000000000000000000 00100001100
102 1111100011110000110000001 10000001 10000001 10000001 100000011000000 011111100110

103 111116001110000011 1000001 100000010000000000000000000000000000000 011100011010

104 1100000010000000110000001 11000001 10000001 00000001000000000000000 011100010001

105 110000001000000001 0000001 010000000000000100000000000000000000000 011100010000

106 100000001 10000001 10000001 10000001 10000001 10000000000000000000000 010010110100

" 107 11111100111110001 11000001 100000000000000000000000000000000000000 0111111001110
108 111110001 1100000100000001000000010000000100000001000000010000000 0111000110111
109 111100000111000001 1100000000000000000000000000000000000000000000 0111000110110
110 1111000011000000110000001 10000001 10000001 10000001100000011000000 0100101101010
111 1111110011110000111100001 11000001 1100000111000001100000010000000 01111110011111

"112 1111111011000000111000001000000001000000010000000000000000000000 01111110011110
113 1111100011000000100000000010000000000000000000000000000000000000 01001011010110
114 1111111011000000100000001000000000000000000000000000000000000000 010010110101111
115 1111000010000000000000000100000010000010010000000000000000000000 010010110101110

1-D COEFFICIENT VLC TABLE (for INTRA AC, and INTER DC and AC):

-255to

-11 0000001 xxxxxxxx1
-10  000000001111101
-9 00000000111101
-8 0000000011101

-7 000000001101
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00000000101
000000011
0000011

000011

00011

001

1

01

00010

000010

0000010
000000010
00000000100
000000001100
0000000011100
00000000111100
10  000000001111100
11 0000001xxxxxxxx0
to 255

The magnitude of the coefficient is coded in 8 bits where the "x"s appear.
Larger ranges can be accommodated by increasing the "x" field to 9 bits etc.
The last bit is always the sign bit except for -1, 0 and +1.

Q.7.2 Assessment Criteria
Comparsions proposed to be done as discussed in Tarrytown

1) Fixed Quantizer MQUANT=10), compare # of bits:
Also repeat for other MQUANT values of interest.

- TM2 + Coefficient_drop_with_VQ_rule + Zigzag_runlength_coding
Vs,
- - TM2 + Coefficient_drop_with_VQ_rule + VQ_coding
vS.
- TM2 (no coefficient dropping)

This compares the coding efficiency of VQ_coding
‘(used in an optimum way, i.e., with VQ coefficient dropping),
with Zigzag runlength_coding of the same coefficients.

The last comparison provides a measure of the "inefficiency" of TM2.

2) Fixed Bitrate (4 Mb/s), compare subjective quality:
Also repeat for other bitrates of interest.

- TM2 + Coefficient_drop_with_VQ_rule + VQ_coding

Vvs.

- TM2 + Coefficient_drop_with_VQ_rule + Zigzag_runlength_coding
VS.

- TM2 + Zigzag_runlength_coding (normal TM-2)

This will compare the subjective quality that can be achieve with
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VQ with the best subjective quality that can be achieve with the
current TM-2 syntax (with and without Coefficient_drop_with_VQ_rule).

If (TM2 + Coefficient_drop_with_VQ_rule + VQ_coding) is significantly better
than the two other, this would indicate that VQ_coding is efficient.

If (TM2 + Coefficient_drop_with_VQ_rule + Zigzag_runlength_coding) is
better than (normal TM-2), this shows that Coefficient_drop_with_VQ_rule
is a good encoder idea to eliminate some DCT cocfficients.

If (TM2 + Coefficient_drop_with_VQ_rule + Zigzag_runlength_coding) is

NOT better than (normal TM-2), this shows that Coefficient_drop_with_VQ_rule
only works well with VQ because it is dropping coefficient that make VQ coding
more efficient.
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