

Evaluating the carbon-reducing impacts of ICT

October 2010

Objectives

Recap objectives of study

Provide an overview of the approach

Share path forward

Addendum :

Recommended assessment methodology

GeSI

The Global e-Sustainability Initiative (GeSI) is uniquely dedicated to information and communication technologies (ICT) sustainability through innovation.

In 2000, 189 countries signed up to the Millennium Development Goals. These goals outlined action on matters as diverse as climate change and poverty elevation. The rapidly converging Information and Communications Technology Sector (ICT) recognized that addressing these issues would need an effective, industry-wide response.

As part of this response, GeSI, the Global e-Sustainability Initiative, was born in 2001 to further sustainable development in the ICT sector. GeSI fosters global and open cooperation, informs the public of its members' voluntary actions to improve their sustainability performance, and promotes technologies that foster sustainable development.

The World Summit on the Information Society described information and communication technologies as "a powerful instrument, increasing productivity, generating economic growth, and improving the quality of life of all". GeSI considers this a crucial principle to extend the influence of ICT into all aspects of socio-economic development, applying these technologies to both rich and poor countries to achieve sustainable development across the globe.

GeSI brings together leading ICT companies – including telecommunications service providers and manufacturers as well as industry associations – and non-governmental organisations committed to achieving sustainability objectives through innovative technology.

UNEP www.unep.org

GeSI Membership

WWF

Study context and objectives

GeSI commitments

- 1. Develop an agreed ICT industry-wide methodology for the carbon footprinting of ICT products and services
- 2. Put more emphasis on climate change issues in our supply chain work so we influence the end-to-end manufacturing process for electronic equipment
- 3. Ensure that energy and climate change matters are fully considered by the organisations that set the technical standards for our industry
- 4. Work with organisations in the key opportunity areas travel/transport, buildings, grids and industry systems to help turn potential CO2 reductions into reality. This will include a strong emphasis on the significant opportunities offered by dematerialisation
- 5. Work with public policy makers to ensure that the right regulatory and fiscal frameworks are in place to move us all in the right direction.

GeSI's commitment

"... Evidence shows that the Information and Communication Technology (ICT) industry has tremendous potential to increase energy efficiency and curb carbon emissions. However, in order to realize this promise, merely implementing ICT solutions will not be sufficient—being able to assess their impact more precisely is also critical

Now, with the launch of this report— Evaluating the carbon-reducing impacts of ICT: An assessment methodology—GeSI has produced a powerful tool with which to mitigate the risks that lie ahead.

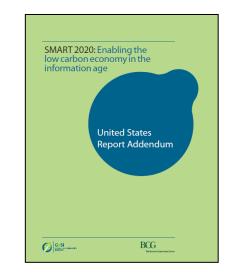
In addition to the direct carbon emissions associated with the development and use of ICT solutions, this methodology assesses what are known as the "enabling effects" of ICT—the extent to which ICT technologies and systems can reduce or avoid the carbon emissions associated with traditional manual, mechanical, or physical activities. The report supplements the evidence documented in the SMART 2020 report of the important role that ICT, through its enabling effect, can play in reducing global carbon emissions.

The report recognizes the response of GeSI's members to calls for action. Now is the time to build on this support and generate further momentum. GeSI members have understood the magnitude of both the challenges and the opportunities and, together, they will help speed up the process of moving to a low-carbon economy.

• • • • •

It is therefore our responsibility to promote the methodology, to engage others, and to ensure that the ICT industry as a whole adopts it and implements it fully. At the same time, we must cooperate with appropriate stakeholders worldwide to guarantee that the methodology is recognized and widely embraced so that the industry can move toward alignment in its assessment and communication of the positive benefits of ICT"

Luis Neves, GeSI Chairman Excerpt from forward


GeSI's SMART 2020 report series identified ICT as a major low carbon enablement opportunity

2008 SMART 2020 Report

 Globally, ICT solutions have the potential to reduce by 15% (7.8 Gt CO2e) of the remaining 98% CO2e emitted

- ICT enabled solutions could cut annual CO2e emissions in the U.S. by 13–22% from business as-usual projections in 2020
- This translates to a gross energy and fuel savings of \$140-240 billion dollars. These savings are equivalent to a reduction in total oil consumption by 11-21% and a reduction of oil imports into the U.S. by 20-36%

Reducing ICT Sector emissions

PCs:

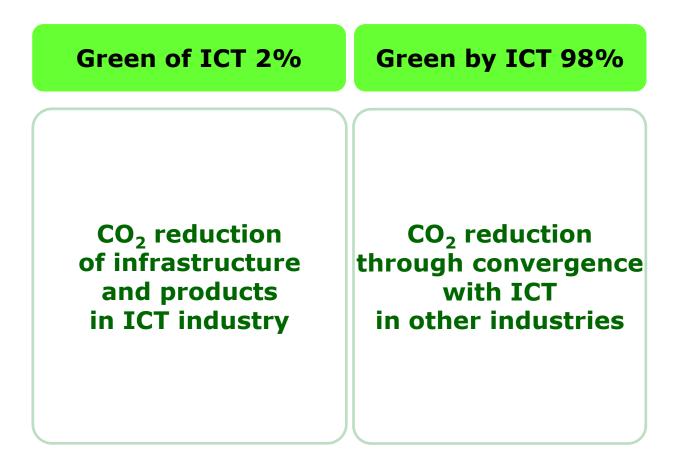
- > Efficiency gains and longer product life.
- > Shift from desktops to laptops
- > Shift from CRT to LCD screens
- > Potential breakthroughs solid state hard drives, new LCD screens, new battery technology, quantum and optical computing

Data Centres:

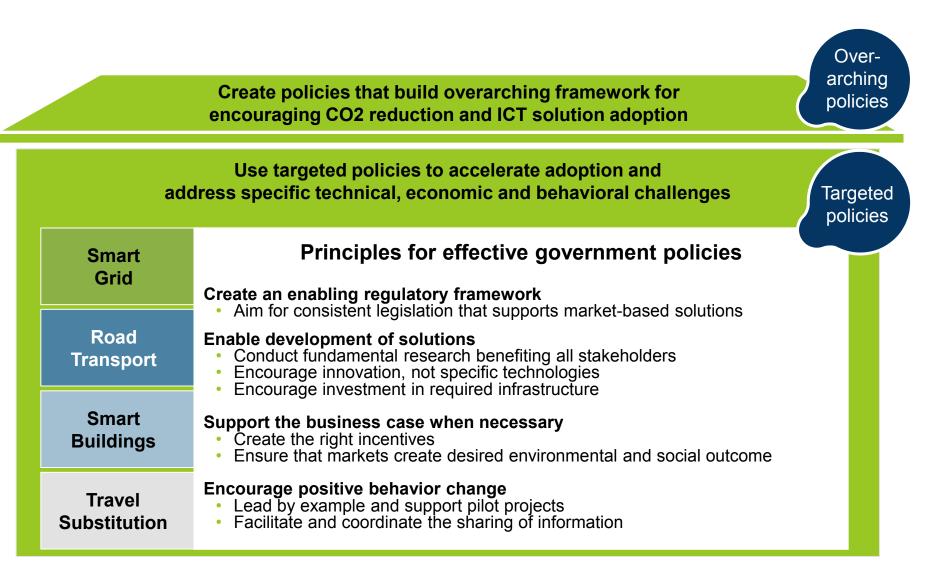
> Higher rates of virtualisation; more efficient virtualisation architectures

- > Low energy or free cooling
- > Renewable power sources (follow the wind follow the sun)
- > "Utility"/"cloud" computing, Software as a service

REDUCING ICT SECTOR EMISSIONS


Telecoms Infrastructure:

- > New network management tools
- > Network optimisation packages
- > Solar-powered base stations
- > Potential breakthroughs night battery operation, natural ventilation, "network sharing"
- > Spectrum optimization


Telecoms Devices :

- > "Smart" chargers
- > "no load" standby
- > Power and network efficiency

The reports identified government support needed to accelerate adoption

IORAL C-SUSTAINABILIT

Source: GeSI policy expert interviews; BCG analysis; SMART 2020 United States Addendum Report

The enabling effect covers four primary areas

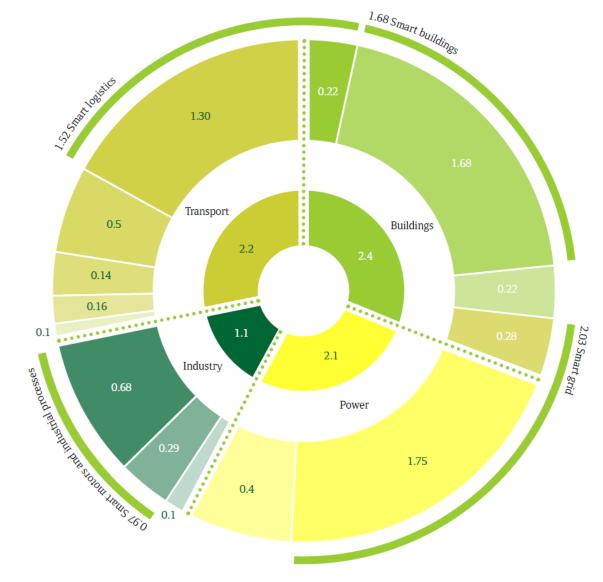
Industry

Smart motors

- Industrial process automation
- Dematerialisation* (reduce production of DVDs, paper)

Transport

Smart logistics


- Private transport optimisation
- Dematerialisation (e-commerce, videoconferencing, teleworking)
 Efficient vehicles (plug-ins and smart cars)
 Traffic flow monitoring, planning
- and simulation

Buildings

- Smart logistics†
- Smart buildings
- Dematerialisation (teleworking)
- Smart grid‡

Powe

Smart grid Efficient generation of power, combined heat and power (CHP)

ICT Enablement Methodology Study context and objectives

Context

Despite the positive reception of these reports, the lack of policy- and commercially-relevant assessments is preventing the full realization of benefits from smart use of ICT

- ICT industry unable to clearly define the specific benefits of different types of ICT investments
- Policy-makers unable to create appropriate incentives for the government, commercial and residential sectors

Project objectives

- Survey and evaluate existing methodologies relevant for assessing enabling impacts of ICT
- Highlight key characteristics of existing methodologies
- Develop an optimal "next step" methodology
- Apply methodology to selected case studies
- Identify issues for application and path forward for the ICT industry

Representatives from 18 international companies sponsored and provided input to the study

GeSI GLOBAL e-SUSTAINABILITY In addition to working team members, many industry and academic experts have provided input

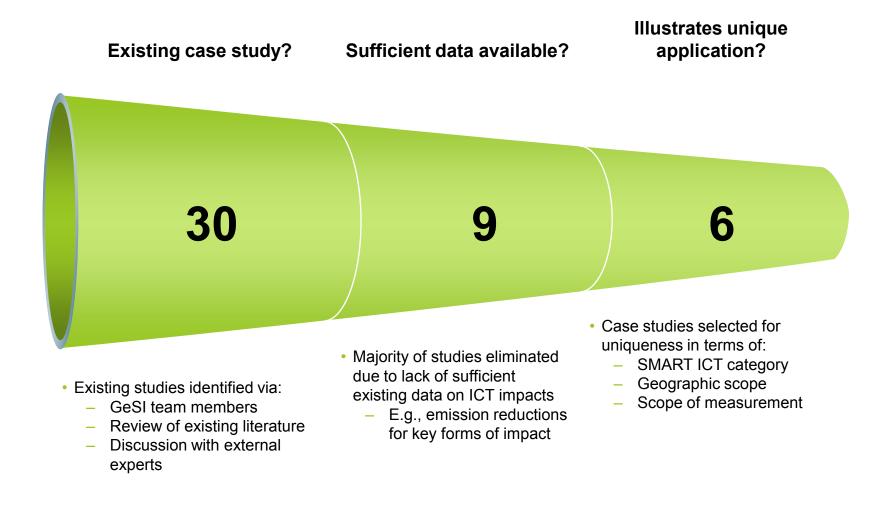
1	Ted Reichelt	Principal Environmental Engineer, Intel	11	Emma Fryer	Head of Climate Change Programs, Intellect UK
2	Kirsty MacDonald	Senior Manager, Global Public Policy, Intel	12	Anders Andrae	Senior Expert, Huawei Technologies Sweden
3	Marissa Yao	Analyst, Intel	13	Sarah Boyd	Researcher, Sustainability Consortium
4	Charlie Sheridan	Senior IT Consultant, Intel	14	Mattias Höijer	Head of Centre of Sustainable Communications, Royal Institute of Technology, Stockholm
5	John Malian	Manager, Global Supply Chain Management, Cisco	15	Cristina Bueti	Programme Coordinator, ITU
6	Jens Malmodin	Senior Research Engineer, Ericsson	16	Keith Dickerson	Climate Associates
7	Craig Donovan	Research Engineer, Ericsson	17	lan Mackenzie, Alex Velkov, Peter Thomond	Think, Play, Do, Imperial College London
8	Pernilla Bergmark	Researcher, Ericsson	18	Skip Laitner	Director of Economic and Social Analysis, American Council for an Energy-Efficient Economy
9	Fredrik Jonsson	Researcher, Ericsson	19	Simon Redding	Sustainable ICT Lead & Technology Innovation Consultant, Environment Agency of England & Wales
10	Hans Scheck-Otto	Researcher, Nokia Siemens Network	20	Fu Zhao	Assistant Professor of Mechanical Engineering, Purdue University

Developed methodology meets specific needs

Comprehensive	Captures all major impacts, both positive and negative (i.e., direct ICT emissions, enabling effects, and rebound effects)
Burden-limiting	Limits burden of assessment: Minimizes time and resources required by facilitating exclusion of negligible components of net effect
Communication- friendly	Supports clear, transparent communication of methodological approach and findings to broad stakeholder audience
Applicable for varying scope	Widely applicable for assessing impact of ICT products and services and ICT category levels
Applicable across geographies	Effective when applied in both developed and developing world settings
	Effective when applied in both developed and developing world settings General and flexible enough for large-scale adoption – will meet current and future stakeholder needs as sector innovation occurs
geographies	General and flexible enough for large-scale adoption – will meet current and

Case studies utilized to test the relevance and effectiveness of methodology in real-world setting

Diverse set of case studies developed to illustrate applicability across:

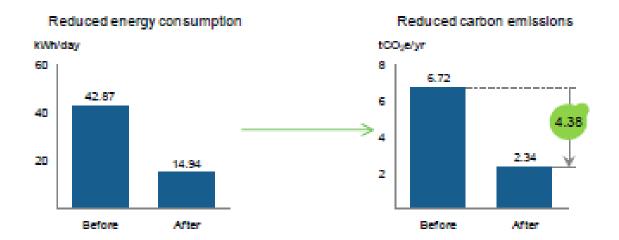

- ICT solution areas (dematerialization, SMART logistics, SMART grids, SMART transportation)
- Unique audiences: end-consumers, business customers, policymakers
- Diverse geographies: developed and developing world

Existing case studies and research data used as starting point

- Studies identified and aggregated from GeSI team members as well as external resources
- Key criteria for inclusion: existing robust quantification of key impacts

6 case studies selected from 30 identified and evaluated

Six case studies included in report


	SMART area	Location	Assessor	Description
Home energy monitoring kit	SMART grids	United Kingdom	AlertMe	Energy savings in household before and after installation of AlertMe home energy monitoring system
2 HVAC automation system	SMART buildings	United States	Cypress	Energy savings in building complex after installation of HVAC automation system
3 Eco driving software solution	SMART logistics	United Kingdom	Microlise	Fuel efficiency gains across 350+ vehicle fleet after software implementation
4 Telecommuting	Dematerialization	United Kingdom	BT	Assessment of whether telecommuting has positive net enabling effect despite rebound effect of increased home energy use
5 E-health delivery system	Dematerialization	Croatia	Ericsson	Emission-reducing impact of e-referral and e- prescription services in Croatia
6 Telepresence system	Dematerialization	Multinational company	Cisco	Assessment of net enabling effect from company- wide adoption of telepresence

Source: BCG analysis

Case Study Summary Results

AlertMe provides residential clients with home energy monitoring kits to increase user information about energy consumption. By observing their consumption patterns, homeowners are able to modify their behaviors to optimize energy use. The solution includes a meter reader that clips to the home's electric meter, a wireless hub that compiles usage data to be viewed online and smart plugs that allow remote control of individual appliances.

Path forward

20

Path forward

Development of additional case studies

• Additional real-world case studies to demonstrate successful application of methodology

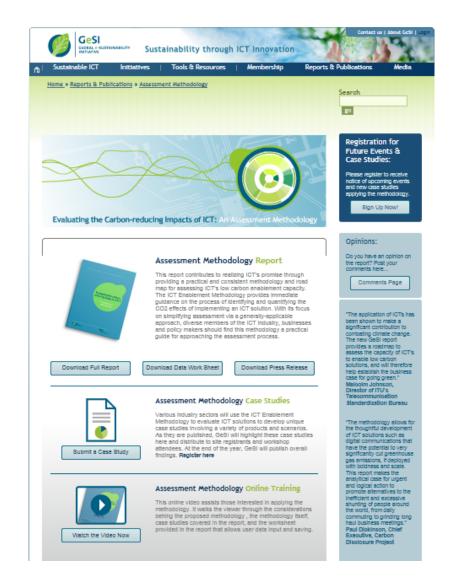
Expansion of shared data

 Increased volume of, access to primary data to more accurately capture real-world impacts (especially those driven by adoption rates and behavioral changes)

Development of assessment tools and databases

- Continued development of tools to support application of methodology
- Integration of tools and aggregation of underlying data

Standardization of impacts and life cycle processes included in assessment


 Establishment of agreed-upon approaches for assessing effects of specific ICT product or service categories

The launch website at GeSI.org is the starting point

There, you can:

- Download the Report
- Download methodology worksheets you can use to guide your own assessment and track your data
- Review the latest case studies
- Watch a video explaining the study
- Register your interest in future workshops and published case studies

Addendum - Recommended assessment methodology

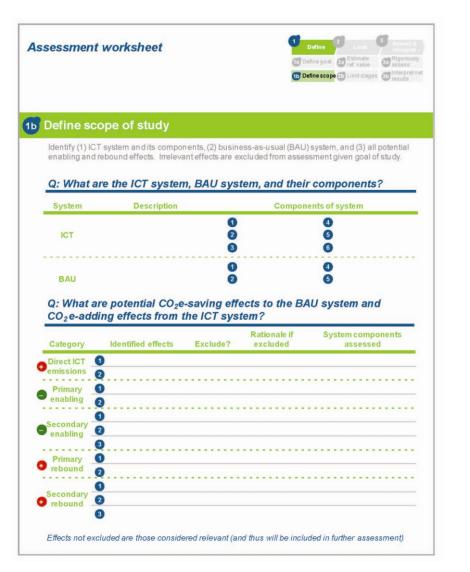
ICT enablement methodology

1	Define goal and scope	2	Limit assessment	3	Assess and interpret
1a Def	ine goal of study	2 a	Estimate BAU reference value	3 a	Rigorously assess significant life cycle processes
1b Def	ine scope of study	2 b	Limit life cycle processes require rigorous	3b	Interpret net results

Methodology uses a Life Cycle Assessment (LCA) approach to guide the assessment of changes to an existing system resulting from the adoption of an ICT solution

1a: Define goal of study

ssessment worksheet	Illustrative output
D 1: Define goal and scope ne goal of study e the purpose of the study and the intended audience for the study. These attributes will guide on-making on the set of effects to include in further assessment.	1 Define goal of study
Define goal of study Define the purpose of the study and the intended audience for the study. These attributes will guide decision -making on the set of effects to include in further assessment.	Illustrative example used throughout worksheets Purpose of study Quantify carbon abatements from use of logistics optimization software Intended audience Business customers
Q: What is the purpose of the study and the intended audience?	Scale of adoption Use to manage operations of a single organization's 500-truck fleet
Purpose of study	Relevant effects to include in calculation of net impact are limited to near-term effects such as primary enabling and rebound effects, or secondary effects that occur over a shorter period of time
Intended audience	For further reference–additional examples
Scale of adoption	Purpose of study Assessment of emission reductions from home energy monitoring system Intended audience Business-to-business customers (marketing communication)
Implications for assessment	Scale of adoption <u>Single-business in United Kingdom</u> Implications for assessment
	Relevant effects from adopting home energy monitoring system likely to be limited to activities and operations of individual businesses; broader secondary effects such as reduced energy plant construction and operation not relevant
	Purpose of study Communication of macro-scale benefits of telepresence
	Intended audience National policy makers
	Scale of adoption Adoption and use by all businesses in United States
	Implications for assessment
	Relevant effects for ICT solution with broad adoption and targeted at policymakers would be more inclusive of enabling and rebound effects which often will only occur with sufficient time or adoption, such as the ability to reduce the need for travel infrastructure



Illustrative scale considerations by audience

1b: Define scope of study

	output			Define goal 2 Estimate Define goal 2 Estimate Define scope 2 Limit ste	ie asse
	scope of study tem, BAU system	n, and thei	ir components		
System	Descriptio	n	Com	oonents of system	
ІСТ	Delivery optimization optimize the distributio		 Software PCs Servers 	4 Data central	nters
	Trucking operations p introduction of optimiz		1 Trucks		
BAU	software				
	software al effects	Exclude?	Rationale if excluded	System com assess	
Potentia	software al effects Identified effects () ICT emissions	Exclude?			sed
Potentia Category Direct ICT	software al effects Identified effects () ICT emissions	Exclude?		assess	sed
Potentia Category Direct ICT emissions Primary	software al effects Identified effects 1 /CT emissions Reduced travel 1 Reduced vehicle	Exclude? Yes	excluded	assess Saftware, PCs, server	sed
Potentia Category Direct ICT emissions Primary	software al effects Identified effects 1/CT emissions Reduced travel Reduced vehicle production		excluded	assess Software, PCs, server Trucks	sed
Potentia Category Direct ICT emissions Primary enabling	software al effects Identified effects 1/CT emissions Reduced travel Reduced vehicle production		excluded Relevant for large scale of adoption only Relevant for large scale	assess Software, PCs, server Trucks	sed
Potentia Category Direct ICT emissions Primary enabling Secondary	software al effects Identified effects () ICT emissions () Reduced travel () Reduced vehicle production ()	Yøs	excluded Relevant for large scale of adoption only	assess Software, PCs, server Trucks Not applicable	sed
Potentia Category Direct ICT emissions Primary enabling Secondary enabling Primary	software al effects Identified effects () /CT emissions () Reduced travel () Reduced vehicle production () Reduced road	Yøs	excluded Relevant for large scale of adoption only Relevant for large scale	assess Software, PCs, server Trucks Not applicable	sed
Potentia Category Direct ICT emissions Primary enabling Secondary	software al effects Identified effects Identified effects Iterations Reduced travel Reduced travel Reduced read construction None identified Purchase and use of Purchase and use of	Yøs	excluded Relevant for large scale of adoption only Relevant for large scale	assess Software, PCs, server Trucks Not applicable Not applicable	sed

Types of potential effects of ICT introduction

Enabling Decrease emissions	<u>Primary enabling</u> Immediate reduction of BAU system emissions occurring as result of ICT system implementation	<u>Secondary enabling</u> Non-immediate reduction of BAU system emissions occurring as result of ICT system implementation; occur over time as either duration or scale of implementation increases
Direct ICT emissions Increase emissions	Primary. direct ICT emissions Emissions generated over life cycle of the implemented ICT system	No secondary direct ICT emissions
+ Rebound Increase emissions	<u>Primary rebound</u> Immediate increase in BAU or ICT system emissions occurring as result of ICT system implementation, often driven by behavioral changes in demand for carbon-intensive goods or activities	<u>Secondary rebound</u> Non-immediate increase in BAU or ICT system emissions occurring as result of ICT system implementation, often driven by behavioral changes in demand for carbon-intensive goods or activities
	Primary	Secondary

Expected primary enabling effects of ICT opportunity levers

SMART opportunity	Sub- opportunity	Reduced energy consumption	2 Reduced or eliminated travel/shipment	3 Reduced or eliminated materials
SMART Motors	Smart Motor	Optimization of variable speed motor systems ICT driven automation in key industrial processes		
	Air transportation	Reduction in ground fuel In-flight fuel efficiency consumption	 Reduction in unnecessary flight time 	
SMART logistics	Road transportation	Eco-driving	 Optimization of logistics network Intermodal shift (to other transports) Optimization of truck itinerary planning Optimization of truck route planning Flexible home delivery methods Intelligent traffic management 	Minimization of packaging
	Ship / Rail / Other	Optimization of ship operations	 Optimization of train operations Maximization of ship load factor 	
	Warehouse	Centralized distribution centres Reduction in inventory		 Reduction of damaged goods Recycling and remanufacturing
	Building design	 Improved building design for energy efficiency Reduced building space through design 		
SMART buildings	Building technology	 Building management systems HVAC automation Lighting automation Ventilation on demand Intelligent commissioning Benchmarking and building recommissioning Voltage optimization 		
	Consumption efficiency	Reduce consumption through user information Demand management Intelligent load dispatch		
SMART grids	Renewable Energy	Integration of renewables		
	T&D Loss	 Reduce transmission and distribution losses 		
Dematerial- ization	Physical material			Online media E-commerce E-paper
ization	Travel substitution		Video-conferencingTelecommuting	

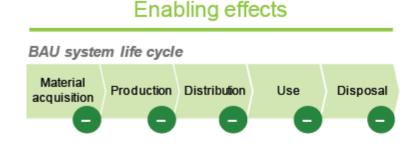
Illustrative secondary enabling effects

		Pr	imary enabling effects	
		Reduced energy consumption	Reduced travel/shipment	Reduced materials
	Reduced use of goods/vehicles	 Monitoring of home energy use leads individual to avoid consumption more generally (e.g., via vehicle/office) 	 Individuals telecommuting may use public transportation in lieu of cars on more regular basis 	
Associated secondary	Eliminated production of goods/vehicles		Fewer cars manufactured	 Individuals using online media may not purchase new CD or DVD player in future
enabling effects	Reduced use of infrastructure		 Fewer individuals using office space leads to reduced use of buildings 	 Less storage of materials lead to reduced use of buildings
	Eliminated development of infrastructure	 Lower energy need results in construction of fewer power plants 	 Lower energy need results in construction of fewer power plants Over long-term, smaller or fewer buildings and roads may be built 	

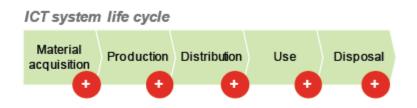
Illustrative rebound effects

		Pr	imary enabling effects	
		Reduced energy consumption	Reduced travel/shipment	Reduced materials
Associated rebound	Primary rebound	Home energy monitoring: Increased energy use during non-peak periods in- lieu of use during peak periods	• Telecommuting: Increased home energy use (e.g., heating and lighting on at home)	Online media: Increased computer use to browse and sample music
effects	Secondary rebound	Home energy monitoring: Increased consumption of goods using savings from lower energy bill	Telecommuting: Increased urban sprawl (and associated inefficiencies) from employees' ability to live further from office	Online media: Increased computer and server manufacturing

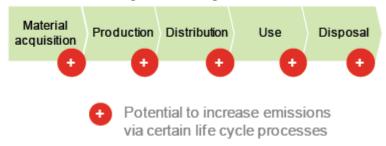
Define goal 2 Limit


2a: Estimate BAU reference value

	et	Define got Define got Define sco	Limit Estimate ref, value Pe Limit stages Cresults	ty net	llustrative o
Step 2: Limit as	sessment			2	Estimate E
Estimate BAU refere	ence value				BAU refere
Estimate the life cycle process secondary data where possibl			ssions, using		
Q: Which BAU system driver in reduced (o be the major		Primary ena Reduced travel
Primary enabling effect	System component	Life cycle process	Estimate (unit CO2e)		
Primary enabling effect	Optional – another System component		Estimate (unit CO ₂ e)	.	
Primary enabling effect			Estimate (unit CO ₂ e)		
Primary enabling effect BAU reference value intended system life cycle processes by	System component	Life cycle process			
BAU reference value intended	System component	Life cycle process ermining significance of rison condary data if possible	all BAU and ICT		
BAU reference value intended system life cycle processes by Establish reference value estir	System component	Life cycle process ermining significance of rison condary data if possible	all BAU and ICT		


Contract BAU reference value Contract BAU reference value

BAU and ICT life cycle processes evaluated via screening assessment

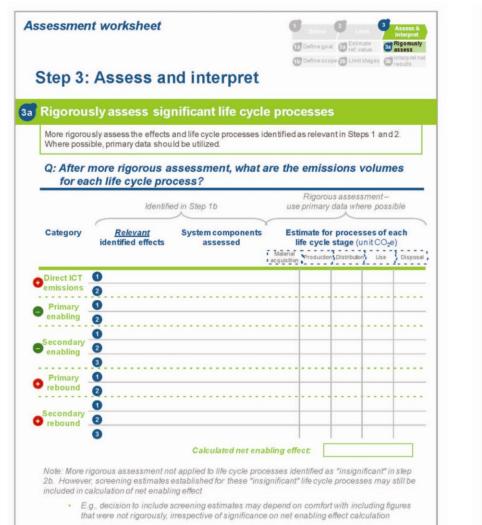


Direct ICT emissions

Rebound effects

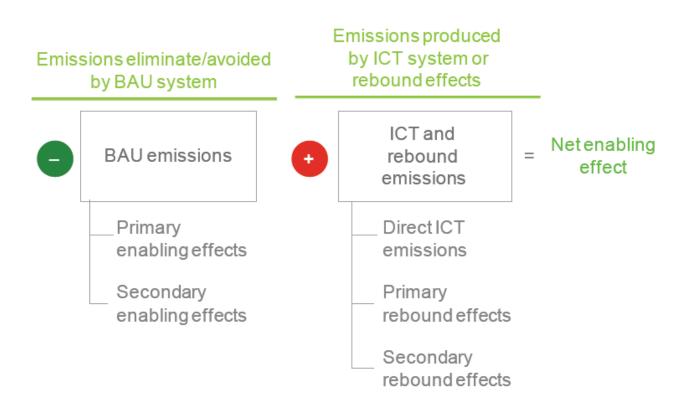
BAU and/or ICT system life cycles

Potential to reduce emissions via certain life cycle processes



2b: Limit life cycle processes requiring rigorous assessment

3a: Rigorously assess significant life cycle processes



Choice to include or exclude screening estimate values should be documented

istrative o	output			inegoal 20 ;	Estimate ef, value	Assess & interpret Rigorously assess interpret n results
	sly assess sign assessed emis	sions volume fo	or significar		/cle proc	esse
Category	<u>Relevant</u> identified effects	Figures illustrat System compone assessed	nts Estin Material Pro	mate (tCO;	e per ann u Ibuloni Use	m) Dispos
-	1 ICT emissions	Software (physical medi				
Direct ICT		PC			1.22	
emissions		Servers				
Primary enabling Secondary rebound	 Reduced travel Purchase and use of new trucks 	Data centers Trucks Trucks	4.92 13.	72 1.83	542.64 56.21	4.43
	Calculated	net enabling effect		CO2e per a		vsis
			+/- 20 tCO ₂ e b	ased on si	cenario anal	ysis

Calculation of net enabling effect

Source: BCG analysis

3b: Interpret net Results

Soment wor	ksheet	-	offine goal 20 Estimate ref. value offine scope 20 Limit stages	Assess & interpret
terpret net re	esults			
ocument how meth		discussion of assumptions	s, limitations,	
		sample set? Is secondary behavior change, scale of Potential assump		by
: Which effec	ts and which life c	vcle processes we	re excluded f	from
: Which effect rigorous ass		ycle processes we Excluded life cycle processes	re excluded f	
	essment?	Excluded		
rigorous ass	essment?	Excluded life cycle processes • All • All		
Entire effect excluded Life cycle processes excluded	Identified effect	Excluded life cycle processes • All • All	Rational	

lustrative output		Define 2 Limit Define goal Define goal Define scope 2 Limit stages Define scope 2 Limit stages
Interpret net res	ults	
Assumptions and	I uncertainty	Potential assumptions / uncertainty
 Data source Published academic study on PC LCA from 2003 	Secondary data	 LCA from 2003 may be dated if manufacturing processes have changed
 Published academic study on PC LCA from 2003 		 LCA from 2003 may be dated if manufacturing processes have

	Identified effect	Excluded life cycle processes	Rationale
Entire effect	Reduced vehicle production	All for trucks	Exclude, large scale of adoption
excluded	Reduced road construction	All for trucks	Exclude, large scale of adoption
Life cycle processes	ICT emissions	 All for software, servers, data centers All non-use for PC 	Screening assessment used to determine insigificance
excluded	Reduced travel	None	

Conclusions

The results of the study show that adoption of the delivery optimization software will create a significant net enabling effect. While variation across different makes and models of vehicles may exist, the company has utilized primary data to the extent possible to add legitimacy to its reported results. Remaining uncertainty related to secondary rebound effects suggest this would be an important area for future research.