

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.168
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(05/2012)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) – Testing and Test
Control Notation (TTCN)

 Testing and Test Control Notation version 3:

TTCN-3 mapping from CORBA IDL

Recommendation ITU-T Z.168

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
User Requirements Notation (URN) Z.150–Z.159
Testing and Test Control Notation (TTCN) Z.160–Z.179

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Z.168 (05/2012) i

Recommendation ITU-T Z.168

Testing and Test Control Notation version 3:
TTCN-3 mapping from CORBA IDL

Summary

Recommendation ITU-T Z.168 defines the mapping rules for CORBA IDL to TTCN-3 (as defined
in Recommendation ITU-T Z.161) to enable testing of CORBA-based systems. The principles of
mapping CORBA IDL to TTCN-3 can be also used for the mapping of interface specification
languages of other object-/component-based technologies.

The specification of other mappings is outside the scope of this Recommendation.

The first revision of the Recommendation contains amendments (i.e., mapping of CORBA system
exceptions), clarifications and editorial corrections.

This second revision of the Recommendation contains amendments, clarifications, corrigenda and
editorial corrections.

This Recommendation is technically aligned with ETSI ES 201 873-8 V4.4.1 (2012).

History

Edition Recommendation Approval Study Group

1.0 ITU-T Z.168 2007-11-13 17

2.0 ITU-T Z.168 2011-03-16 17

3.0 ITU-T Z.168 2012-05-29 17

ii Rec. ITU-T Z.168 (05/2012)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2012

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Z.168 (05/2012) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

2.1 Normative references .. 1

2.2 Informative references .. 1

3 Abbreviations and acronyms .. 2

4 Approach .. 3

5 Lexical conventions .. 3

5.1 Comments ... 3

5.2 Identifiers .. 3

5.3 Keywords .. 3

5.4 Literals .. 3

6 Pre-processing .. 4

7 Importing from IDL specifications ... 4

7.1 Importing module declaration .. 4

7.2 Importing interface declaration .. 5

7.3 Importing value declaration .. 5

7.4 Importing constant declaration ... 6

8 Importing type declaration .. 7

8.1 IDL basic types ... 7

8.2 Constructed types ... 8

8.3 Template types .. 10

8.4 Complex declarator .. 11

9 Importing exception declaration ... 11

10 Importing operation declaration ... 13

11 Importing attribute declaration ... 14

12 Names and scoping ... 14

Appendix I – Examples .. 16

I.1 Example .. 16

Appendix II – Mapping lists .. 22

II.1 IDL keyword and concept mapping list ... 22

II.2 Comparison of IDL, ASN.1, TTCN-2 and TTCN-3 data types 23

Bibliography... 24

iv Rec. ITU-T Z.168 (05/2012)

Introduction

Object-based technologies (such as CORBA, DCOM, DCE) and component-based technologies
(such as CCM, EJB, .NET) use interface specifications to describe the structure of
an object-/component-based system and its operations and capabilities to interact with the
environment. These interface specifications support interoperability and reusability of
objects/components.

The techniques used for interface specifications are often called interface definition language (IDL),
for example CORBA IDL, Microsoft IDL or DCE IDL. These languages are comparable in their
abilities to define system interfaces, operations at system interfaces and system structures to various
extends. They differ in details of the object/component model.

When considering the testing of object-/component-based systems with TTCN-3, one is faced with
the problem of accessing the systems to be tested via the system interfaces as described in an IDL
specification. In particular, for TTCN-3 based test systems a direct import of IDL specifications into
the test specifications for the use of, e.g., system's interface, operation and exception definitions is
prevalent to any manual transformation into TTCN-3.

The present document discusses the mapping of CORBA IDL specifications into TTCN-3. This
mapping rules out the principles not only for CORBA IDL, but also for other interface specification
languages. The mapping can be adapted to the details of other interface specification languages.

The Interface definition language (IDL) (chapter 3 in [3]) is a base of the whole Common Object
Request Broker Architecture (CORBA) [3] and an important point in developing distributed
systems with CORBA. It allows the reuse and interoperability of objects in a system. A mapping
between IDL and a programming language is defined in the CORBA standard. IDL is very similar
to C++ containing pre-processor directives (include, comments, etc.), grammar as well as constant,
type and operation declarations. There are no programming language features like,
e.g., if-statements.

The core language of TTCN-3 is defined in [1] and provides a full text-based syntax, static
semantics and operational semantics. The IDL mapping provides a definition for the use of the core
language with IDL (Figure 1).

TTCN-3
Core
Language

Presentation
format n

TTCN-3 User

ASN.1 types
and values

Other types
and values n

Graphical
format

IDL types
and values

The shaded boxes are not
defined in the present
document

Tabular
format

Figure 1 – User's view of the core language and the various presentation formats

It makes no difference for the mapping if requested or provided interfaces are required by the test
system and SUT. Hence, TTCN can be used on client and server side without modifications to the
mapping rules.

The present document is structured similar to the IDL specification document to provide easy
access to the mapping of each IDL element.

 Rec. ITU-T Z.168 (05/2012) 1

Recommendation ITU-T Z.168

Testing and Test Control Notation version 3:
TTCN-3 mapping from CORBA IDL

1 Scope

This Recommendation defines the mapping rules for CORBA IDL (as defined in chapter 3 in [3]) to
TTCN-3 (as defined in [1]) to enable testing of CORBA-based systems. The principles of mapping
CORBA IDL to TTCN-3 can be also used for the mapping of interface specification languages of
other object-/component-based technologies.

The specification of other mappings is outside the scope of the present document.

2 References

References are either specific (identified by date of publication and/or edition number or version
number) or non-specific. For specific references, only the cited version applies. For non-specific
references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might
be found at http://docbox.etsi.org/Reference.

NOTE – While any hyperlinks included in this clause were valid at the time of publication ITU cannot
guarantee their long-term validity.

2.1 Normative references

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[1] Recommendation ITU-T Z.161 (2012), Testing and Test Control Notation version 3:
TTCN-3 core language.

 ETSI ES 201 873-1 (2012), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language.

 <http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35092>

[2] Recommendation ITU-T T.50, International Reference Alphabet (IRA) (Formerly
International Alphabet No. 5 or IA5); Information technology – 7-Bit coded character set
for information interchange.

[3] ISO/IEC 10646:2011, Information technology – Universal Multiple-Octet Coded Character
Set (UCS).

 <http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51273>

[4] Object Management Group (OMG) (2002), The Common Object Request Broker:
Architecture and Specification, Version 3.0, formal/02-06-01.

 <http://www.omg.org/cgi-bin/doc?formal/02-06-01>

2.2 Informative references

The following referenced documents are not necessary for the application of the present document
but they assist the user with regard to a particular subject area.

http://docbox.etsi.org/Reference
http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35092
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51273
http://www.omg.org/cgi-bin/doc?formal/02-06-01

2 Rec. ITU-T Z.168 (05/2012)

[i.1] Recommendation ITU-T Z.167 (2012), Testing and Test Control Notation version 3:
TTCN-3 mapping from ASN.1.

 ETSI ES 201 873-7 (2012), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 7: Using ASN.1 with TTCN-3.

 <http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35098>

[i.2] ISO/IEC 646:1991, Information technology – ISO 7-bit coded character set for information
interchange.

 <http://www.iso.org/iso/catalogue_detail.htm?csnumber=4777>

[i.3] IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic.
<http://standards.ieee.org/findstds/standard/754-2008.html>

[i.4] ISO/IEC 8859-1:1998, Information technology – 8-bit single-byte coded graphic character
sets – Part 1: Latin alphabet No.1.
<http://www.iso.org/iso/catalogue_detail.htm?csnumber=28245>

[i.5] ETSI ES 202 781 (2010), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; TTCN-3 Language Extensions: Configuration and
Deployment Support.

 <http://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.01.01_60/es_202781v010101p.pdf>

[i.6] ETSI ES 202 782 (2010), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; TTCN-3 Language Extensions: TTCN-3 Performance and
Real Time Testing.

 <http://www.etsi.org/deliver/etsi_es/202700_202799/202782/01.01.01_60/es_202782v010101p.pdf>

[i.7] ETSI ES 202 784 (2011), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; TTCN-3 Language Extensions: Advanced
Parameterization.

 <http://www.etsi.org/deliver/etsi_es/202700_202799/202784/01.02.01_60/es_202784v010201p.pdf>

[i.8] ETSI ES 202 785 (2010), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; TTCN-3 Language Extensions: Behaviour Types.

 <http://www.etsi.org/deliver/etsi_es/202700_202799/202785/01.01.01_60/es_202785v010101p.pdf>

3 Abbreviations and acronyms

For the purposes of the present document, the following abbreviations and acronyms apply:

ASN.1 Abstract Syntax Notation One

CCM CORBA Component Model

CORBA Common Object Request Broker Architecture

DCE Distributed Computing Environment

EJB Enterprise JavaBeans

IDL Interface Definition Language

.NET XML-based component technology

SUT System Under Test

TTCN Testing and Test Control Notation

XML eXtended Markup Language

http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35098
http://www.iso.org/iso/catalogue_detail.htm?csnumber=4777
http://standards.ieee.org/findstds/standard/754-2008.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=28245
http://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.01.01_60/es_202781v010101p.pdf
http://www.etsi.org/deliver/etsi_es/202700_202799/202782/01.01.01_60/es_202782v010101p.pdf
http://www.etsi.org/deliver/etsi_es/202700_202799/202784/01.02.01_60/es_202784v010201p.pdf
http://www.etsi.org/deliver/etsi_es/202700_202799/202785/01.01.01_60/es_202785v010101p.pdf

 Rec. ITU-T Z.168 (05/2012) 3

4 Approach

Two different approaches can be identified: the use of either implicit or explicit mapping. The
implicit mapping makes use of the import mechanism of TTCN-3, denoted by the keywords
language and import. It facilitates the immediate use of data specified in other languages. Therefore,
the definition of a specific data interface for each of these languages is required. Currently, ASN.1
data can be used besides the native TTCN-3 types (see [i.1]).

The present document follows the approach of explicit mapping, i.e., IDL data are translated into
appropriate TTCN-3 data. And only those TTCN-3 data are further used in the test specification.

5 Lexical conventions

The lexical conventions of IDL define the comments, identifiers, keywords and literals conventions
which are described below.

5.1 Comments

Comment definitions in TTCN-3 and IDL are the same and therefore, no conversion of comments is
necessary.

5.2 Identifiers

IDL identifier rules define a subset of the TTCN-3 rules in which no conversion is necessary.

5.3 Keywords

When IDL is used with TTCN-3 the keywords of TTCN-3 shall not be used as identifiers in an IDL
module.

5.4 Literals

The definition of literals differs slightly between IDL and TTCN-3 why some modifications have to
be made. Table 1 gives the mapping for each literal type.

Table 1 – Literal mapping

Literal IDL TTCN

Integer no "0" as first digit no "0" as first digit

Octet "0" as first digit 'FF96'O

Hex "0X" or "0x" as first
digits

'AB01D'H

Floating 1222.44E5 (Base 10) 1222.44E5 (Base 10)

Char 'A' "A"

Wide char L"A" "A"

Boolean TRUE, FALSE true, false

String "text" "text"

Wide string L"text" "text"

Fixed point 33.33D (see useful type
IDLfixed)

IDL uses the ISO Latin-1 character set for string and wide string literals and TTCN-3 uses
Recommendation ITU-T T.50 [2] for string literals and ISO/IEC 10646 [3] for wide string literals.

4 Rec. ITU-T Z.168 (05/2012)

6 Pre-processing

Pre-processor statements are not matched to TTCN-3 because the IDL specification must be used
after pre-processing it.

7 Importing from IDL specifications

The import of module, interface, value and constant declaration are described in this clause. The
type and exception declaration as well as the bodies of interfaces are described later.

All imported IDL declarations are in TTCN-3 public by default (see clause 8.2.5 of [1]).

7.1 Importing module declaration

IDL modules are mapped to TTCN-3 modules. Nested IDL modules must be flattened accordingly
to TTCN-3 modules.

As one IDL module can contain many nested IDL modules where several nested modules can have
equal names in different scopes, these names can clash. Hence, module names identifiers are to be
used which are composed of the identifiers of the upper level IDL modules (from hierarchical point
of view) and the nested IDL module name, separated one from each other by two underscores.

According to the IDL scoping rules nested modules have access to the scope of upper level
modules. As there are no nested modules in TTCN-3, TTCN-3 modules have to import upper level
modules. For avoiding name clashes, a prefix for the imported definitions composed of the
identifier of the module from which it is imported shall be used. The prefix and the identifier are
separated by a dot (.) as defined in TTCN-3.

IDL EXAMPLE:
module identifier1 {
 typedef long mylong1;

module identifier2 {
typedef string mystring2;
typedef mylong1 mylong2;

module identifier3 {

typedef mylong1 long_from_module_1;
typedef mystring2 string_from_module_2;
typedef mylong2 long_from_module_1_2;

};
};

};

TTCN EXAMPLE:
module identifier1 {
 type long mylong1;
}

module identifier1__identifier2 {
 import from identifier1 all;
 type iso8859string mystring2;
 type identifier1.mylong1 mylong2;
}

module identifier1__identifier2__identifier3 {
 import from identifier1 all;
 import from identifier1__identifier2 all;

 type identifier1.mylong1 long_from_module_1;
 type identifier1__identifier2.mystring2 string_from_module_2;
 type identifier1__identifier2.mylong2 long_from_module_1_2;
};

 Rec. ITU-T Z.168 (05/2012) 5

7.2 Importing interface declaration

Interfaces are flattened and all interface definitions are stored in one group. In contrast to interfaces
in IDL, groups in TTCN-3 do not create a scope. Therefore, prefixes for all identifiers of type
definitions inside of the interface shall be used, which are a combination of the interface name and
two underscores as the prefix.

Import of single interface definitions from other modules via the importing group statement is
possible. This can be used if inheritance is used in the IDL specification.

For each interface, a procedure-based port type is defined for the test specification. It is associated
with signatures translated from attributes and operations of the interface.

An IDL attribute is mapped to two signatures: one for the setting of a value and one for getting it.
These signatures have names composed of the prefix (interface name and two underscores),
attribute name and the word "Set" (except for "readonly") or "Get" correspondingly.

Since an interface can be used in operation parameters to pass object references, an address type is
also declared in the data part – the concrete implementation is left to the user. Components are used
as collection of interfaces or objects.

IDL EXAMPLE:
interface identifier {
 attribute long attributeId ;
 void operationname (in string param_value) raises (ExceptionType) ;
... other body definitions ...
};

TTCN EXAMPLE:
group identifierInterface {
 signature identifier__attributeIdGet () return long
 exception (... /* and all system exceptions defined in clause 9 */);
 signature identifier__attributeIdSet (in long identifier__attributeId)
 exception (... /* and all system exceptions defined in clause 9 */);

 signature identifier__operationname (in iso8859string identifier__param_value)
 exception (ExceptionType, ... /* and all system exceptions defined in clause 9 */) ;

 ...other body definitions ...

 type port identifier procedure { ... }
 type charstring identifierObject; /* a possible definition for the address type */
 type identifierObject address;
}

Interface inheritance is executed by rolling out all inherited elements. Thus, they have to be handled
as defined in the interface itself. Multiple inheritance elements have to be inherited only once! As
normally an inherited IDL interface uses types defined in the module, usually it is essential to
import the complete mapped TTCN-3 module. All inherited elements have to be rolled out directly
in the TTCN-3 group for the interface, even if the inheritance is multiple.

Forward references of interfaces are provided by forward referencing the according port of the
interface. Local interfaces are treated as normal interfaces. However it is recommend not to use
forward references and to move a TTCN-3 definition of the interface (group) to a place where a
forward definition is used first time.

7.3 Importing value declaration

In contrast to type interface, the IDL type value has local operations that are not used outside the
object, and are therefore not relevant from the functional testing point of view. However, since the
public attributes of value instances are used to communicate object states, the IDL value type is
mapped to the record type in TTCN-3.

The example below shows how to map valuetype and was used from clause 5.2.5 in [4].

6 Rec. ITU-T Z.168 (05/2012)

IDL EXAMPLE:
valuetype EmployeeRecord {
 // note this is not a CORBA::Object
 // state definition
 private string name;
 private string email;
 private string SSN;

 // initializer
 factory init(
 in string name, in string SSN);
};

TTCN EXAMPLE:
type record EmployeeRecord {
 iso8859string name,
 iso8859string email,
 iso8859string SSN
}

7.4 Importing constant declaration

Constant declarations can be transformed by use of literal (see Table 1) and operator mapping for
floating-point and integer values (see Table 2).

Table 2 – Operators for constant expressions

Operator IDL TTCN

Unary floating-point

Positive + +

Negative – –

Binary floating-point

Addition + +

Subtraction - -

Multiplication * *

Division / /

Unary integer

Positive + +

Negative - -

Bit-complement ~ not4b

Binary integer

Addition + +

Subtraction - -

Multiplication * *

Division / /

Modulo % mod

Shift left << <<

Shift right >> >>

Bitwise and & and4b

Bitwise or | or4b

Bitwise xor ^ xor4b

 Rec. ITU-T Z.168 (05/2012) 7

IDL EXAMPLE:
const long number = 017; // 017 == 0xF == 15
const long size = ((number << 3) % 0x1F) & 0123;

TTCN EXAMPLE:
const long number := "17"O;
const long size := ((number << 3) mod '1F'H) and4b '0123'O;

8 Importing type declaration

Type declaration mapping will be shown in the following clauses.

A construct for naming data types and defining new types by using the keyword typedef is
provided by IDL. This can be done under TTCN-3 via the keyword type, too.

To enhance readability and to provide a clear distinction, mapped IDL data types get the prefix IDL
and the extension attribute "variant" as done in TTCN-3 for type IDLfixed (see clause D.2.3.0
in [1]).

8.1 IDL basic types

IDL basic data types are mapped to predefined or useful types in TTCN-3.

8.1.1 Integer and floating-point types

Integer and floating-point types are mapped onto the corresponding useful types short,
unsignedshort, long, unsignedlong, longlong, unsignedlonglong, IEEE754float,
IEEE754double, and IEEE754extdouble.

IDL EXAMPLE:
const long size = ((number << 3) % 0x1F) & 0123;
const float decimal = 15.7;

TTCN EXAMPLE:
const long size := ((number << 3) mod '1F'H) and4b '0123'O;
const IEEE754float decimal := 15.7;

8.1.2 Char and wide char type

The IDL char and wide char type represent a single and wide character. They are mapped to the
self-defined type iso8859char and type uchar.

IDL EXAMPLE:
const char letter = 'ABCD';
const wchar wideLetter = L'ABCD';

TTCN EXAMPLE:
type universal charstring uchar length(1);
type uchar iso8859char (char (0,0,0,0) .. char (0,0,0,255)) with { variant "8 bit" };

const iso8859char letter := char (65, 66, 67, 68);
const uchar wideLetter := char (65, 66, 67, 68);

8.1.3 Boolean type

The IDL boolean type is equivalent to the TTCN-3 boolean type.

IDL EXAMPLE:
const boolean isValid = TRUE;

TTCN EXAMPLE:
const boolean isValid = true;

8 Rec. ITU-T Z.168 (05/2012)

8.1.4 Octet type

Octet cannot be mapped onto an integer type because it has the special feature that it will not
change its internal ordering if transferred between different system architectures. To represent it
octet is mapped to octetstring.

IDL EXAMPLE:
const octet data = 0x55;

TTCN EXAMPLE:
const octetstring data = '55'H

8.1.5 Any type

The IDL any type is mapped onto anytype in TTCN-3 which was especially introduced for this
mapping.

IDL EXAMPLE:
typedef any AllTypes;

TTCN EXAMPLE:
type anytype AllTypes;

8.2 Constructed types

IDL provides the three constructed types struct, union, and enum. Recursive construction of types
is only permitted with the sequence template.

8.2.1 Struct

struct is used to collect ordered data in one place where it is mapped onto record in TTCN-3.

IDL EXAMPLE:
typedef struct NC {
 string id;
 string kind;
} NameComponent;

TTCN EXAMPLE:
type record NameComponent {
 iso8859string id,
 iso8859string kind
}

8.2.2 Discriminated unions

In IDL, unions are discriminated to determine the actual type. Therefore, a record type is used,
which contains two members. The first one stores the discriminator information using an
enumeration type. The second member is a TTCN-3 union type which members are defined
according to the specified IDL union members.

In addition, two types are defined to express the link between discriminator's type and union's type:
a type to reflect the discriminating type of a union and an enumeration to distinguish the
discriminated cases. Using the information provided by these type definitions, the
marshalling/unmarshalling for discriminated unions is possible in an unambiguous manner: to
encode or decode a union value, we use the value of the kind field to resolve the corresponding
chosen option and calculate then the real value for the discriminator by resolving this value in the
discriminator enumeration.

 Rec. ITU-T Z.168 (05/2012) 9

IDL EXAMPLE 1:
union MyUnion switch(long) {
 case 0 : boolean b;
 case 1 : char c;
 case 2 : octet o;
 case 3 : short s; };

TTCN EXAMPLE 1:
type long MyUnion__Switch;
type union MyUnionType {
 boolean b,
 iso8859string c,
 octetstring o,
 short s }

type enumerated MyUnionEnumType {
 boolean_b, iso8859string_c, octetstring_o, short_s
}

type record MyUnion {
 MyUnionEnumType kind,
 MyUnionType value
}

IDL EXAMPLE 2:
Enum MyDiscr {
 BOOLEAN_DISCR,
 CHAR_DISCR,
 OCTET_DISCR,
 SEQ_DISCR,
 SHORT_DISCR
};

union MyUnion switch(MyDiscr) {
 case BOOLEAN_DISCR : boolean b;
 case SHORT_DISCR : short s;
};

TTCN EXAMPLE 2:
type enumerated MyDiscr {
 BOOLEAN_DISCR, CHAR_DISCR, OCTET_DISCR, SEQ_DISCR, SHORT_DISCR
}

type MyDiscr MyUnion__Switch;

type enumerated MyUnion__CasesType {
 case_BOOLEAN_DISCR,
 case_SHORT_DISCR
}

type union MyUnionType {
 boolean b,
 short s
}

type enumerated MyUnionEnumType {
 boolean_b,
 short_s
}

type record MyUnion {
 MyUnionEnumType kind_,
 MyUnionType value_
}

10 Rec. ITU-T Z.168 (05/2012)

8.2.3 Enumerations

Enumerations are equally defined in IDL and TTCN-3.

IDL EXAMPLE:
enum NotFoundReason {
 missing_node,
 not_context,
 not_object };

TTCN EXAMPLE:
type enumerated NotFoundReason {
 missing_node,
 not_context,
 not_object }

8.3 Template types

IDL supports the template types sequence, string, wide string and fixed type.

8.3.1 Sequence

IDL sequence is mapped to record of in TTCN-3 to maintain order and to allow unbounded
sequences.

IDL EXAMPLE 1:
typedef sequence<NameComponent> Name;

TTCN EXAMPLE 1:
type record of NameComponent Name;

IDL sequences with a specified maximum size are mapped to record of with limited number of
elements to maintain order and restrict the maximum number of elements.

IDL EXAMPLE 2:
typedef sequence<NameComponent, maximum_size> Name;

TTCN EXAMPLE 2:
type record length (0, maximum_size-1) of NameComponent Name;

8.3.2 String and wstring

string and wstring types are sequences of char and wchar. Therefore, string and wstring are
mapped to the useful type iso8859string and universal charstring.

IDL EXAMPLE:
const string name = "My String";
const wstring wideName = L"My String";

TTCN EXAMPLE:
const iso8859string name := "My String";
const universal charstring wideName := "My String";

8.3.3 Fixed types

The fixed type represents a fixed-point decimal number. It is mapped to the corresponding useful
type IDLfixed in TTCN-3 (see clause D.2.3.0 in [1]).

IDL EXAMPLE:
typedef fixed<12,7> myFix;

 Rec. ITU-T Z.168 (05/2012) 11

TTCN EXAMPLE:
template IDLfixed myFixTemplate := { 12, 7, ? }; // e.g., in module definition part
var IDLfixed myFix := { 12, 7, "12345.1234567" }; // e.g., in module control part

8.4 Complex declarator

The last kind of type declarators are the complex array and native types.

8.4.1 Arrays

IDL array is equal to the TTCN-3 array type.

IDL EXAMPLE:
typedef long NumberList[100];

TTCN EXAMPLE:
type long NumberList[100];

8.4.2 Native types

Native types are used to allow implementation of dependent types. TTCN-3 provides the type
address to address entities inside a SUT. Hence, address can be used for mapping of type native
and concrete implementation is left to the user.

IDL EXAMPLE:
typedef native MyNativeVariable;

TTCN EXAMPLE:
type MyNativeVariable address;

9 Importing exception declaration

In IDL, exceptions are used in conjunction with operations to handle exceptional conditions during
an operation call. Thus, a special struct-like exception type is provided which has to be associated
with each operation that can trigger this exception. TTCN-3 also supports the use of exceptions with
procedure calls by binding it to signature definitions. However, it provides no special exception
type. Hence, exceptions are defined by using type record.

A definition of an exception is shown in the following example. The use of exception binding in
signature definitions and exception catching is shown in the context of operation declaration.

IDL EXAMPLE:
exception NotFoundException {
 NotFoundReason why;
 Name rest_of_name; };

TTCN EXAMPLE:
// definition of an exception type
type record NotFoundException {
 NotFoundReason why,
 Name rest_of_name }

// definition of a template for the
// defined exception type
template NotFoundException
 NotFoundExceptionTemplate (NotFoundReason reason, Name name) := {
 why := reason,
 rest_of_name := name }

12 Rec. ITU-T Z.168 (05/2012)

In addition to user defined exceptions, there are CORBA system exceptions defined in chapter 4
in [4]. In order to make them available for use in TTCN-3, the following definitions are to be used:

 // CORBA system exceptions
 type record UNKNOWN{} // the unknown type record
 type record BAD_PARAM{} // an invalid parameter was passed
 type record NO_MEMORY{} // dynamic memory allocation failure
 type record IMP_LIMIT{} // violated implementation limit
 type record COMM_FAILURE{} // communication failure
 type record INV_OBJREF{} // invalid object reference
 type record NO_PERMISSION{} // no permission for attempted op.
 type record INTERNAL{} // ORB internal error
 type record MARSHAL{} // error marshalling param/result
 type record INITIALIZE{} // ORB initialization failure
 type record NO_IMPLEMENT{} // operation implementation unavailable
 type record BAD_TYPECODE{} // bad typecode
 type record BAD_OPERATION{} // invalid operation
 type record NO_RESOURCES{} // insufficient resources for req.
 type record NO_RESPONSE{} // response to req. not yet available
 type record PERSIST_STORE{} // persistent storage failure
 type record BAD_INV_ORDER{} // routine invocations out of order
 type record TRANSIENT{} // transient failure - reissue request
 type record FREE_MEM{} // cannot free memory
 type record INV_IDENT{} // invalid identifier syntax
 type record INV_FLAG{} // invalid flag was specified
 type record INTF_REPOS{} // error accessing interface repository
 type record BAD_CONTEXT{} // error processing context object
 type record OBJ_ADAPTER{} // failure detected by object adapter
 type record DATA_CONVERSION{} // data conversion error
 type record OBJECT_NOT_EXIST{} // non-existent object, delete reference
 type record TRANSACTION_REQUIRED{} // transaction required
 type record TRANSACTION_ROLLEDBACK{}// transaction rolled back
 type record INVALID_TRANSACTION{} // invalid transaction
 type record INV_POLICY{} // invalid policy
 type record CODESET_INCOMPATIBLE{} // incompatible code set
 type record REBIND{} // rebind needed
 type record TIMEOUT{} // operation timed out
 type record TRANSACTION_UNAVAILABLE{} // no transaction
 type record TRANSACTION_MODE{} // invalid transaction mode
 type record BAD_QOS{} // bad quality of service
 type record INVALID_ACTIVITY{} // bad quality of service
 type record ACTIVITY_COMPLETED{} // bad quality of service
 type record ACTIVITY_REQUIRED{} // bad quality of service

 type union SYSTEM_EXCEPTION {
 UNKNOWN uNKNOWN,
 BAD_PARAM bAD_PARAM,
 NO_MEMORY nO_MEMORY,
 IMP_LIMIT iMP_LIMIT,
 COMM_FAILURE cOMM_FAILURE,
 INV_OBJREF iNV_OBJREF,
 NO_PERMISSION nO_PERMISSION,
 INTERNAL iNTERNAL,
 MARSHAL mARSHAL,
 INITIALIZE iNITIALIZE,
 NO_IMPLEMENT nO_IMPLEMENT,
 BAD_TYPECODE bAD_TYPECODE,
 BAD_OPERATION bAD_OPERATION,
 NO_RESOURCES nO_RESOURCES,
 NO_RESPONSE nO_RESPONSE,
 PERSIST_STORE pERSIST_STORE,
 BAD_INV_ORDER bAD_INV_ORDER,
 TRANSIENT tRANSIENT,
 FREE_MEM fREE_MEM,
 INV_IDENT iNV_IDENT,
 INV_FLAG iNV_FLAG,
 INTF_REPOS iNTF_REPOS,
 BAD_CONTEXT bAD_CONTEXT,
 OBJ_ADAPTER oBJ_ADAPTER,
 DATA_CONVERSION dATA_CONVERSION,
 OBJECT_NOT_EXIST oBJECT_NOT_EXIST,
 TRANSACTION_REQUIRED tRANSACTION_REQUIRED,
 TRANSACTION_ROLLEDBACK tRANSACTION_ROLLEDBACK,
 INVALID_TRANSACTION iNVALID_TRANSACTION,
 INV_POLICY iNV_POLICY,
 CODESET_INCOMPATIBLE cODESET_INCOMPATIBLE,
 REBIND rEBIND,
 TIMEOUT tIMEOUT,
 TRANSACTION_UNAVAILABLE tRANSACTION_UNAVAILABLE,

 Rec. ITU-T Z.168 (05/2012) 13

 TRANSACTION_MODE tRANSACTION_MODE,
 BAD_QOS bAD_QOS,
 INVALID_ACTIVITY iNVALID_ACTIVITY,
 ACTIVITY_COMPLETED aCTIVITY_COMPLETED,
 ACTIVITY_REQUIRED aCTIVITY_REQUIRED
 }

10 Importing operation declaration

Apart from attributes, operations are the main part of interface definitions in IDL and are used, for
instance, in the CORBA scheme as procedures which can be called by clients. Procedure calls in
general are supported by TTCN-3 by means of synchronous communication operations which are
used in combination with ports.

IDL supports an optional oneway attribute for operations which implies best-effort invocation
semantics without a guarantee of delivery but with a most-once invocation semantics. Message or
procedure-based ports can be used for oneway procedures because both would be a valid mapping
based upon IDL. However, the use of procedure-based ports for oneway procedures is
recommended because the IDL specification does not guarantee that oneway calls are non-blocking
or asynchronous. Furthermore, CORBA implements oneway procedures by synchronous
communication, too. Use of non-blocking or blocking procedures for oneway operations is left to
the user. Mapped oneway operations acquire an additional variant attribute (see example).

The parameter attributes in, inout and out describe the transmission direction of parameters and
can be mapped directly to the communication parameter attributes in TTCN-3 because they have
the exact same semantics.

A raise expression specifies all user-defined exceptions which can be thrown by an operation. In
addition, all CORBA system exceptions as defined in clause 9 can be raised. The raise expression
can be mapped directly to TTCN-3 because it can be indicated by the procedure signature definition
by specifying the list of exceptions.

A context expression provides access to local properties of the called operation. These properties
consist of a name and a string value. The context expression can be matched by redefining the
operation with the context parameters included in the operation parameters (see clause 4.6 in [4]).
The additional parameter must be of type array containing a type record for each context
parameter. The record itself contains two variables of type string for the context name and value.

IDL EXAMPLE:
// NotFoundException is defined clause "Exception declaration"

string remoteProc1(in long Par11, out long Par12, inout string name1)
 raises(NotFoundException)
 context("MyContext1");

// oneway procedure: no return value and no inout or out allowed!!!
oneway void remoteProc2(in long Par21, in long Par22, in string name2);

TTCN EXAMPLE:
// only operation definition

type record IDLContextElement {
 iso8859string name,
 iso8859string value_
}

type record of IDLContextElement IDLContext;

signature RemoteProcSignature1(
 in long Par11, out long Par12,
 inout charstring name1, in IDLContext context)
 return iso8859string
 exception(// user-defined exception
 NotFoundException,
 SYSTEM_EXCEPTION

14 Rec. ITU-T Z.168 (05/2012)

);

signature RemoteProcSignature2(
 in long Par21, in long Par22,
 in iso8859string name2)
 exception (SYSTEM_EXCEPTION)
 with { variant "IDL:oneway FORMAL/01-12-01 v.2.6" };

type port RemoteProcPort procedure {
 out RemoteProcSignature1;
 out RemoteProcSignature2
}

type component CorbaSystem {
 port RemoteProcPort PCO
}

11 Importing attribute declaration

An attribute is like a set- and get-operation pair to access a value. If an attribute is marked as
readonly, only the get-operation is used. Therefore, attribute mapping can be done by the operation
mapping.

12 Names and scoping

The name definition scheme of IDL does not collide with the name definition in TTCN-3. Scoping
is more restrictive in IDL than in TTCN-3, where the IDL scoping rules have to be mapped
appropriately to allow seamless mapping. IDL uses nested scopes for modules, interfaces,
structures, unions, operations and exceptions and identifiers are scoped in types, constants,
enumeration values, exceptions, interfaces, attributes and operations. The hierarchical scopes in
TTCN-3 are module, control part of module, function, testcase and statement blocks within
control part of module, function and testcase.

Furthermore, TTCN-3 supports no overloading of identifiers so that no identifier name can be used
more than once in a scope hierarchy. However, IDL allows redefinition of self defined types if
defined inside a module, interface or valuetype. Hence, identifiers have to be mapped by using
their path name including all interface and valuetype names as designated in IDL and TTCN-3.
The use of module names is not necessary because they are reflected by the TTCN-3 module
structure. An underscore is used as a separator and existing underscores are doubled.

Several new identifiers are generated during transformation of IDL types by adding to the original
IDL type identifier suffixes like: "Type", "Enum", "Object", "Interface", etc. This approach and the
use of TTCN-3 keywords in IDL modules can cause name clashes, which are to be resolved by a
suffix "_":

NOTE – [1] clause A.1.5 Table A.2 defines the keywords of the core language. However, TTCN-3 language
extensions (see [i.5] to [i.8], but other extensions may also be published after the publication of the present
document) may define additional keywords and rules for handling those keywords in TTCN-3 modules
requiring the given extension.

IDL EXAMPLE:
interface identifier {
... body definitions ...
};

//an example of the identifier, which can cause a name clash
typedef long identifierObject;

TTCN EXAMPLE:
group identifierInterface {
... body definitions ...

 type port identifier procedure { ... }

 Rec. ITU-T Z.168 (05/2012) 15

 //the suffix '_' is used only where necessary
 //to resolve the name clash
 type charstring identifierObject_;
 type identifierObject_ address;
}

type long identifierObject;

To indicate the special treatment of TTCN-3 statements derived from IDL, TTCN-3 provides a new
mechanism to attach attributes to language elements. The use of attributes makes code more
readable and requires no special naming scheme. Therefore, the variant attribute can be used to
indicate the derivation of types from IDL and the special treatment for encoding by the test system.
This is used in TTCN-3 for the IDLfixed useful type:

type record IDLfixed {
 unsignedshort digits,
 short scale,
 charstring value_
 }
 with { variant "IDL:fixed FORMAL/01-12-01 v.2.6" };

Names of new types which are specially defined for the IDL mapping and their use in conjunction
with IDL shall always begin with the word IDL to provide better distinction.

16 Rec. ITU-T Z.168 (05/2012)

Appendix I

Examples

(This appendix does not form an integral part of this Recommendation.)

I.1 Example

The following example shows how a mapping would look like if a complete IDL and TTCN-3
specification, including a test case, is used. It is only intended to give an impression of how the
different elements have to be mapped and used in TTCN-3.

Some parts are used from the CORBA standard like the Naming Service with slight modifications
to cover more IDL elements.

I.1.1 IDL specification

module ttcnExample
{
 // ***********
 // Basic Types
 // ***********
 const long number = 017; // 017 == 0xF == 15
 const long size = ((number << 3) % 0x1F) & 0123;
 const float decimal = 15.7;

 const char letter = 'A';
 const wchar wideLetter = L'A';

 const boolean isValid = TRUE;
 const octet anOctet = 0x55; // limited to 8 bit

 const string myName = "my name";
 const wstring wideMyName = L"my name";

 typedef string MyString;

 // *****************
 // Constructed Types
 // *****************
 typedef struct NC {
 MyString id;
 MyString kind;
 } NameComponent;

 union MyUnion switch(long) {
 case 0 : boolean b;
 case 1 : char c;
 case 2 : octet o;
 case 3 : short s;
 };

 enum NotFoundReason { missing_node,
 not_context,
 not_object };

 // **************
 // Template Types
 // **************
 typedef sequence <NameComponent> Name;

 typedef sequence <NameComponent> Key;

 typedef fixed<12,7> Fix;

 // ******************
 // Complex Declarator
 // ******************
 typedef long NumberList[100];

 native MyNativeVariable;

 // ********************

 Rec. ITU-T Z.168 (05/2012) 17

 // Valuetype Definition
 // ********************

 valuetype StringValue string;

 valuetype EmployeeRecord {
 // note this is not a CORBA::Object
 // state definition
 private string name;
 private string email;
 private string SSN;

 // initializer
 factory init(in string name, in string SSN);
 };

 // ********************
 // Interface Definition
 // ********************
 interface NamingContext {
 attribute string object_type;
 readonly attribute Key external_form_id;

 exception NotFoundException {
 NotFoundReason why;
 Name rest_of_name;
 };

 MyString bind(in Name n, inout Object obj, out Object myObj)
 raises(NotFoundException) context ("Hostname");

 oneway void rebind(in Name n, in Object obj);

 }; // end of interface NamingContext

}; // end of module ttcnExample

I.1.2 Derived TTCN-3 specification

module ttcnExample {
 import from IDLaux all;
 // ********************************
 // Mapping of the IDL Specification
 // ********************************

 // **********************
 // Mapping of Basic Types
 // **********************
 const long number := oct2int('17'O) ;
 const long size := oct2int(int2oct(oct2int(int2oct(number,4)<<3) mod
hex2int('1F'H),4) and4b '0123'O);
 const IEEE754float decimal := 15.7;

 type universal charstring uchar length(1);
 type uchar iso8859char (char (0,0,0,0) .. char (0,0,0,255))
 with { variant "8 bit" };

 const iso8859char letter := "A";
 const uchar wideLetter := "A";

 const boolean isValid := true;
 const octetstring anOctet := hex2oct('55'H);

 const iso8859string myName := "my name";
 const universal charstring wideMyName := "my name";

 type iso8859string MyString;

 // *****************
 // Constructed Types
 // *****************

 // ******
 // Struct
 // ******

 type record NameComponent {
 MyString id,

18 Rec. ITU-T Z.168 (05/2012)

 MyString kind
 };

 // *****
 // Union
 // *****
 type union MyUnion {
 boolean b,
 iso8859char c,
 octetstring o,
 short s
 };

 // ***********
 // Enumeration
 // ***********
 type enumerated NotFoundReason {
 missing_node,
 not_context,
 not_object
 }

 // ********
 // Sequence
 // ********
 type record of NameComponent Name;
 type record of NameComponent Key;

 //******
 // Fixed
 // *****
 // see also using of fixed in testcase below
 template IDLfixed fixTemplate := { 12, 7, ? };

 // ******************
 // Complex Declarator
 // ******************

 type long numberList[100];

 // see using of native in testcase below

 // ********************
 // Valuetype Definition
 // ********************
 type iso8859string StringValue;

 type record EmployeeRecord {
 iso8859string name,
 iso8859string email,
 iso8859string SSN
 };

 // ********************
 // Interface Definition
 // ********************
 type record IDLContextElement {
 iso8859string name,
 iso8859string value_
 }

 type record of IDLContextElement IDLContext;

 group NamingContextInterface {

 type charstring NamingContextObject;
 type NamingContextObject address;

 // attribute object_type
 signature NamingContext__object_typeGet () return iso8859string
 exception (SYSTEM_EXCEPTION);
 signature NamingContext__object_typeSet (in iso8859string NamingContext__object_type)
 exception (SYSTEM_EXCEPTION);

 template NamingContext__object_typeSet ObjectTypeSetSignatureTemplate := {
 object_type := "my object type"
 }

 Rec. ITU-T Z.168 (05/2012) 19

 //
 // attribute external_from_id
 //
 signature NamingContext__external_form_idGet() return Key
 exception (SYSTEM_EXCEPTION);

 // exception notFoundException
 type record NamingContext__NotFoundException {
 NotFoundReason why,
 Name rest_of_name
 }

 template NamingContext__NotFoundException
 NamingContext__NotFoundExceptionTemplate (NotFoundReason reason, Name name) := {
 why := reason,
 rest_of_name := name
 }

 //
 // bind procedure
 //
 signature NamingContext__BindSignature
 (in Name n, inout address obj, inout address myObj,
 in IDLContext context) return MyString
 exception(NamingContext__NotFoundException,
 SYSTEM_EXCEPTION);

 template NamingContext__BindSignature
 NamingContext__BindTemplate (charstring object, IDLContext con) := {
 n := { {"name", ""} },
 obj := object,
 myObj := ?,
 context := con
 }

 //
 // rebind procedure
 //
 signature NamingContext__RebindSignature(in Name n, in address obj)
 exception (SYSTEM_EXCEPTION)
 with { variant "IDL:oneway FORMAL/01-12-01 v.2.6" };

 template NamingContext__RebindSignature
 NamingContext__RebindTemplate (address object) := {
 n := { {"name", ""} },
 obj := object
 }

 type port NamingContext procedure {
 out NamingContext__object_typeGet;
 out NamingContext__object_typeSet;
 out NamingContext__external_form_idGet;
 out NamingContext__BindSignature;
 }
 }

 // component is necessary for test case
 type component CorbaSystemInterface {
 port NamingContext PCO;
 }

 // somewhere has main test component MyMTC to be defined
 type component MyMTC {
 port NamingContext NamingContextPCO;
 }

 // *******************
 // Testcase Definition
 // *******************
 testcase MyNamingServiceTestCase() runs on MyMTC system CorbaSystemInterface {

 // examples to show how above definitions can be used inside a
 // testcase definition

 var CorbaSystemInterface myCorbaSystem := CorbaSystemInterface.create;
 connect(self:NamingContextPCO, myCorbaSystem:PCO);
 myCorbaSystem.start;

20 Rec. ITU-T Z.168 (05/2012)

 //
 // Fixed Type
 //
 var IDLfixed fix := { 12, 7, "12345.1234567" };

 //
 // Native
 //
 var address MyNativeVariable;

 //
 // Procedure Calls
 //
 var MyString myResult1;
 var Key myResult2;
 var MyString myResult3;
 var address object, myObject, resultObject, resultMyObject;

 var IDLContextElement contextElement := {
 name := "Hostname",
 value_ := "disen"
 }

 var IDLContext contextParameter := { contextElement };

 //
 // procedure get object_type
 //
 NamingContextPCO.call(ObjectTypeGetSignature)
 {
 [] NamingContextPCO.getreply(ObjectTypeGetSignature value *)
 -> value myResult1 {}
 }

 //
 // procedure set object_type
 //
 NamingContextPCO.call(ObjectTypeSetSignatureTemplate);

 //
 // procedure get external_from_id
 //
 NamingContextPCO.call(ExternalFormIdGetSignature)
 {
 [] NamingContextPCO.getreply(ExternalFormIdGetSignature value *)
 -> value MyResult2 {}
 }

 //
 // procedure bind (with template)
 //
 NamingContextPCO.call(BindTemplate(object, contextParameter))
 {
 [] NamingContextPCO.getreply(BindTemplate(*) value *)
 -> value myResult3
 param(resultObject, resultMYObject) sender mySender {}

 [] NamingContextPCO.catch(BindSignature,
 NamingContext__NotFoundExceptionTemplate)
 {
 setverdict(fail);
 stop;
 }

 }

 //
 // procedure bind (without template)
 //
 NamingContextPCO.call(
 BindSignature:{ myName, object, myObject, contextParameter })
 {
 [] NamingContextPCO.getreply(BindSignature:{ -, *, myObject }
 value *) -> value myResult3 param(resultObject, resultMYObject) sender mySender
{}
 }

 Rec. ITU-T Z.168 (05/2012) 21

 //
 // procedure rebind
 //
 NamingContextPCO.call(RebindSignature:{ myName, object}); // or use a template

 //
 // raising an exception
 //

 // this would be used to raise an exception inside of procedure bind
 // if defined by TTCN-3 (if used on server side).
 var NamingContext__NotFoundException myNotFoundException := {
 why := missing_node,
 rest_of_name := "noname"
 }

 NamingContextPCO.raise(BindSignature, myNotFoundException);

 } // end of testcase MyNamingServiceTestCase

}

22 Rec. ITU-T Z.168 (05/2012)

Appendix II

Mapping lists

(This appendix does not form an integral part of this Recommendation.)

II.1 IDL keyword and concept mapping list

Table II.1 lists the mapping of keywords and concepts of IDL to TTCN-3 keywords or concepts.
Literal and operator mapping can be seen in Tables II.1 and II.2.

Table II.1 – Conceptual list of IDL mapping

IDL TTCN-3 IDL TTCN-3

FALSE false module module
Object address native address
TRUE true octet octetstring
abstract has to be rolled

out

 oneway operation with
variant attribute

any anytype
 operation signature for

procedure

array array out out
attribute get (and set)

operation

 raises exception

boolean boolean readonly only a get-
operation for the
attribute

char iso8859char
(self defined
type)

 sequence record of

const const short short

context additional
procedure
parameter of type
record

 string iso8859string

enum enumerated struct record

exception record typedef type

fixed IDLfixed union record,
enumerated, union

float IEEE754float unsigned long unsignedlong

double IEEE754double unsigned long
long

unsignedlonglong

long double IEEE754extdouble unsigned short unsignedshort

in in valuetype record
inout inout wchar universal

charstring
interface group, port wstring universal

charstring
local ---
long long
long long longlong

 Rec. ITU-T Z.168 (05/2012) 23

II.2 Comparison of IDL, ASN.1, TTCN-2 and TTCN-3 data types

Table II.2

IDL ASN.1 TTCN-2 TTCN-3

Object ObjectInstance (X.500
Distinguished name)

IA5String address

any SEQUENCE {typecode,
anyValue}

CHOICE anytype

array SEQUENCE OF (with
sizeConstraint subtype)

SEQUENCE SIZE(n) OF array

boolean BOOLEAN BOOLEAN boolean
char GraphicString GraphicString or

IA5String(SIZE(1))

iso8859char
(self-defined
type)

enum ENUMERATED ENUMERATED enumerated
exception SPECIFIC ERRORS SEQUENCE record
fixed See note See note IDLfixed

float REAL See note IEEE754float

double REAL See note IEEE754double

long double REAL See note IEEE754extdoub
le

long INTEGER INTEGER long
long long INTEGER INTEGER longlong
native See note See note address

octet OCTET STRING OCTET STRING
(SIZE(1))

octetstring

sequence SEQUENCE OF (with
optional sizeConstraint
subtype for IDL bounds)

SEQUENCE OF record of

short INTEGER INTEGER short
string GraphicString GraphicString iso8859string
struct SEQUENCE SEQUENCE record
union, switch,
case

CHOICE (with ASN.1
TAGS)

SEQUENCE record,
enumerated,
union

unsigned long INTEGER INTEGER unsignedlong
unsigned long
long

INTEGER INTEGER unsignedlonglo
ng

unsigned short INTEGER INTEGER unsignedshort
valuetype See note See note record

wchar See note GraphicString or
BMPString(SIZE(1))

universal
charstring

wstring See note GraphicString universal
charstring

NOTE – Mapping of this type was not considered.

24 Rec. ITU-T Z.168 (05/2012)

Bibliography

[b-ISO/IEC 9646-3] ISO/IEC 9646-3:1998, Information technology – Open Systems
Interconnection – Conformance testing methodology and framework –
Part 3: The Tree and Tabular Combined Notation (TTCN).

[b-Ebner 1] Ebner, M., Yin, A., Li, M. (2002), Definition and Utilization of OMG IDL to
TTCN-3 Mappings. In: Schieferdecker, I., König, H., Wolisz, A., eds. Testing
of Communicating Systems XIV – Application to Internet Technologies and
Services. Norwell, Massachusetts, IFIP/Kluwer Academic Publishers,
pp. 443-458.

[b-Ebner 2] Ebner, M. (2001), A Mapping of OMG IDL to TTCN-3. SIIM Technical Report
SIIM-TR-A- 01-11, Lübeck, Institute for Telematics, Medical University of
Lübeck.

[b-Ebner 3] Ebner, M. (2001), Mapping CORBA IDL to TTCN-3 based on IDL to TTCN-2
mappings. In: Proceedings of the 11th GI/ITG Technical Meeting on Formal
Description Techniques for Distributed Systems, 21-22 June 2001, Bruchsal,
International University in Germany.

[b-Yin 1] Yin, A. (2001) Testing Operation-Based Interfaces Exemplified for CORBA
with ADL and TTCN-3. [Diplomarbeit] Technical University Berlin,
Telecommunication Network Group, Faculty of Electrical Engineering and
Computer Science.

[b-Yin 2] Yin, A., Schieferdecker, I., Li, M. (2001), Mapping of IDL to TTCN-3.
Technical Report, Berlin, Fraunhofer Institute for Open Communication
Systems (FOKUS).

Printed in Switzerland
Geneva, 2012

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.168 (05/2012) – Testing and Test Control Notation version 3: TTCN-3 mapping from CORBA IDL
	Summary
	History
	FOREWORD
	Table of Contents
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Abbreviations and acronyms
	4 Approach
	5 Lexical conventions
	5.1 Comments
	5.2 Identifiers
	5.3 Keywords
	5.4 Literals

	6 Pre-processing
	7 Importing from IDL specifications
	7.1 Importing module declaration
	7.2 Importing interface declaration
	7.3 Importing value declaration
	7.4 Importing constant declaration

	8 Importing type declaration
	8.1 IDL basic types
	8.2 Constructed types
	8.3 Template types
	8.4 Complex declarator

	9 Importing exception declaration
	10 Importing operation declaration
	11 Importing attribute declaration
	12 Names and scoping
	Appendix I –Examples
	I.1 Example
	Appendix II –Mapping lists
	II.1 IDL keyword and concept mapping list
	II.2 Comparison of IDL, ASN.1, TTCN-2 and TTCN-3 data types
	Bibliography

