
Superseded by a more recent version

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.518
TELECOMMUNICATION (11/93)
STANDARDIZATION SECTOR
OF ITU

DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS

DIRECTORY

INFORMATION TECHNOLOGY –
OPEN SYSTEMS INTERCONNECTION –
THE DIRECTORY: PROCEDURES
FOR DISTRIBUTED OPERATION

ITU-T Recommendation X.518
Superseded by a more recent version

(Previously “CCITT Recommendation”)

Superseded by a more recent version

Foreword

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU.
Some 179 member countries, 84 telecom operating entities, 145 scientific and industrial organizations and
38 international organizations participate in ITU-T which is the body which sets world telecommunications standards
(Recommendations).

The approval of Recommendations by the Members of ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1 (Helsinki, 1993). In addition, the World Telecommunication Standardization Conference (WTSC),
which meets every four years, approves Recommendations submitted to it and establishes the study programme for the
following period.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC. The text of ITU-T Recommendation X.518 was approved on 16th of
November 1993. The identical text is also published as ISO/IEC International Standard 9594-4.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

 ITU 1995

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Superseded by a more recent version

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

(February 1994)

ORGANIZATION OF X-SERIES RECOMMENDATIONS

Subject area Recommendation
series

PUBLIC DATA NETWORKS

Services and Facilities X.1-X.19

Interfaces X.20-X.49

Transmission, Signalling and Switching X.50-X.89

Network Aspects X.90-X.149

Maintenance X.150-X.179

Administrative Arrangements X.180-X.199

OPEN SYSTEMS INTERCONNECTION

Model and Notation X.200-X.209

Service Definitions X.210-X.219

Connection-mode Protocol Specifications X.220-X.229

Connectionless-mode Protocol Specifications X.230-X.239

PICS Proformas X.240-X.259

Protocol Identification X.260-X.269

Security Protocols X.270-X.279

Layer Managed Objects X.280-X.289

Conformance Testing X.290-X.299

INTERWORKING BETWEEN NETWORKS

General X.300-X.349

Mobile Data Transmission Systems X.350-X.369

Management X.370-X.399

MESSAGE HANDLING SYSTEMS X.400-X.499

DIRECTORY X.500-X.599

OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600-X.649

Naming, Addressing and Registration X.650-X.679

Abstract Syntax Notation One (ASN.1) X.680-X.699

OSI MANAGEMENT X.700-X.799

SECURITY X.800-X.849

OSI APPLICATIONS

Commitment, Concurrency and Recovery X.850-X.859

Transaction Processing X.860-X.879

Remote Operations X.880-X.899

OPEN DISTRIBUTED PROCESSING X.900-X.999

Superseded by a more recent version

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version i

Contents
ITU-T Rec. X.518 (1993 E)

Page

SECTION 1 – GENERAL.. 1

1 Scope .. 1

2 Normative references.. 1
2.1 Identical Recommendations | International Standards...1
2.2 Paired Recommendations | International Standards equivalent in technical content........................... 2

3 Definitions .. 2
3.1 OSI Reference Model Definitions ... 2
3.2 Basic Directory Definitions... 2
3.3 Directory Model Definitions ... 2
3.4 DSA Information Model definitions ... 2
3.5 Directory replication definitions.. 3
3.6 Distributed operation definitions... 3

4 Abbreviations ... 4

5 Conventions.. 5

SECTION 2 – OVERVIEW ... 5

6 Overview .. 5

SECTION 3 – DISTRIBUTED DIRECTORY MODELS ... 6

7 Distributed Directory System Model.. 6

8 DSA Interactions Model ... 7
8.1 Decomposition of a request ... 7
8.2 Uni-chaining.. 7
8.3 Multi-chaining... 7
8.4 Referral.. 9
8.5 Mode Determination.. 9

SECTION 4 – DSA ABSTRACT SERVICE ... 11

9 Overview of DSA Abstract Service.. 11

10 Information types.. 11
10.1 Introduction ... 11
10.2 Information types defined elsewhere... 11
10.3 Chaining Arguments.. 12
10.4 Chaining Results.. 13
10.5 Operation Progress .. 14
10.6 Trace Information.. 14
10.7 Reference Type.. 15
10.8 Access point information... 15
10.9 Exclusions ... 15
10.10 Continuation Reference... 16

11 Bind and Unbind... 17
11.1 DSA Bind .. 17
11.2 DSA Unbind.. 18

12 Chained operations ... 18
12.1 Chained operations .. 18
12.2 ChainedAbandon operation... 19

Superseded by a more recent version

ii ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Page

13 Chained errors .. 19

13.1 Introduction ... 19

13.2 DSA Referral... 19

SECTION 5 – DISTRIBUTED PROCEDURES... 20

14 Introduction .. 20

14.1 Scope and Limits ... 20

14.2 Conformance ... 20

14.3 Conceptual model.. 20

14.4 Individual and cooperative operation of DSAs ... 20

14.5 Cooperative agreements between DSAs ... 21

15 Distributed Directory behavior ... 21

15.1 Cooperative fulfillment of operations ... 21

15.2 Phases of operation processing.. 21

15.3 Managing Distributed Operations ... 22

15.4 Loop handling ... 22

15.5 Other considerations for distributed operation .. 23

15.6 Authentication of Distributed Operations ... 24

16 The Operation Dispatcher... 24

16.1 General Concepts .. 25

16.2 Procedures of the operation dispatcher ... 28

16.3 Overview of procedures .. 29

17 Request Validation ... 30

17.1 Introduction ... 30

17.2 Procedure parameters .. 30

17.3 Procedure definition .. 32

18 Name Resolution .. 33

18.1 Introduction ... 33

18.2 Find DSE procedure parameters.. 33

18.3 Procedures ... 34

19 Operation evaluation... 43

19.1 Modification procedure ... 43

19.2 Single entry interrogation procedure ... 49

19.3 Multiple entry interrogation procedure ... 50

20 Continuation Reference procedures.. 59

20.2 Issuing chained sub-requests to a remote DSA ... 61

20.3 Procedures’ parameters ... 61

20.4 Definition of the Procedures.. 62

20.5 Abandon procedure ... 70

21 Results Merging procedure... 70

22 Procedures for distributed authentication ... 72

22.1 Originator authentication... 73

22.2 Results authentication.. 73

Superseded by a more recent version

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version iii

Page

SECTION 6 – KNOWLEDGE ADMINISTRATION .. 74

23 Knowledge administration overview.. 74

23.1 Maintenance of Knowledge References.. 74

23.2 Requesting cross reference.. 75

23.3 Knowledge inconsistencies ... 76

24 Hierarchical operational bindings... 77

24.1 Operational binding type characteristics ... 77

24.3 DSA procedures for hierarchical operational binding management.. 79

24.4 Procedures for operations.. 83

24.5 Use of application contexts ... 83

25 Non-specific hierarchical operational binding.. 84

25.1 Operational binding type characteristics ... 84

25.2 Operational binding information object class definition ... 85

25.3 DSA procedures for non-specific hierarchical operational binding management 85

25.4 Procedures for operations.. 87

25.5 Use of application contexts ... 87

Annex A – ASN.1 for Distributed Operations... 88

Annex B – Example of distributed name resolution .. 91

Annex C – Distributed use of authentication ... 93

C.1 Summary ... 93

C.2 Simple authentication .. 93

C.3 Distributed authentication model .. 93

C.4 DUA to DSA ... 94

C.5 Transference from the DAP to the DSP .. 94

C.6 Chaining through intermediate DSAs ... 94

C.7 Results authentication.. 94

Annex D – Specification of hierarchical and non-specific hierarchical operational binding types 97

Annex E – Knowledge maintenance example ... 99

Annex F – Amendments and corrigenda ... 102

Superseded by a more recent version

iv ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Summary

This Recommendation | International Standard specifies the procedures by which the distributed components of the
Directory interwork in order to provide a consistent service to its users.

Superseded by a more recent version

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version v

Introduction

This Recommendation | International Standard part together with other Recommendations | International Standards, has
been produced to facilitate the interconnection of information processing systems to provide directory services. A set of
such systems, together with the directory information which they hold, can be viewed as an integrated whole, called the
Directory. The information held by the Directory, collectively known as the Directory Information Base (DIB), is
typically used to facilitate communication between, with or about objects such as application entities, people, terminals
and distribution lists.

The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow, with a minimum of
technical agreement outside of the interconnection standards themselves, the interconnection of information processing
systems:

• from different manufacturers;

• under different managements;

• of different levels of complexity; and

• of different ages.

This Recommendation | International Standard specifies the procedures by which the distributed components of the
Directory interwork in order to provide a consistent service to its users.

This second edition technically revises and enhances, but does not replace, the first edition of this Recommendation |
International Standard. Implementations may still claim conformance to the first edition.

This second edition specifies version 1 of the Directory service and protocols. The first edition also specifies version 1.
Differences between the services and between the protocols defined in the two editions are accommodated using the
rules of extensibility defined in this edition of Rec. X.519 | ISO/IEC 9594-5.

Annex A, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for
directory distributed operations.

Annex B, which is not an integral part of this Recommendation | International Standard, describes an example of
distributed name resolution.

Annex C, which is not an integral part of this Recommendation | International Standard, describes authentication in the
distributed operations environment.

Annex D, which is an integral part of this Recommendation | International Standard, provides the definitions of the
ASN.1 information object classes introduced in this Directory Specification.

Annex E, which is not an integral part of this Recommendation | International Standard, illustrates knowledge
maintenance.

Annex F, which is not an integral part of this Recommendation | International Standard, lists the amendments and defect
reports that have been incorporated to form this edition of this Recommendation | International Standard.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 1

INTERNATIONAL STANDARD
Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY – OPEN SYSTEMS INTERCONNECTION –
THE DIRECTORY: PROCEDURES FOR DISTRIBUTED OPERATION

SECTION 1 – GENERAL

1 Scope

This Recommendation | International Standard specifies the behavior of DSAs taking part in the distributed Directory
application. The allowed behavior has been designed so as to ensure a consistent service given a wide distribution of the
DIB across many DSAs.

The Directory is not intended to be a general purpose database system, although it may be built on such systems. It is
assumed that there is a considerably higher frequency of queries than of updates.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard part. At the time of publication, the editions
indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on
this Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
editions of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

– ITU-T Recommendation X.500 (1993) | ISO/IEC 9594-1:1994, Information technology – Open Systems
Interconnection – The Directory: Overview of concepts, models and services.

– ITU-T Recommendation X.501 (1993) | ISO/IEC 9594-2:1994, Information technology – Open Systems
Interconnection –The Directory: Models.

– ITU-T Recommendation X.511 (1993) | ISO/IEC 9594-3:1994, Information technology – Open Systems
Interconnection –The Directory: Abstract service definition.

– ITU-T Recommendation X.519 (1993) | ISO/IEC 9594-5:1994, Information technology – Open Systems
Interconnection –The Directory: Protocol specifications.

– ITU-T Recommendation X.520 (1993) | ISO/IEC 9594-6:1994, Information technology – Open Systems
Interconnection –The Directory: Selected attribute types.

– ITU-T Recommendation X.521 (1993) | ISO/IEC 9594-7:1994, Information technology – Open Systems
Interconnection –The Directory: Selected object Classes.

– ITU-T Recommendation X.509 (1993) | ISO/IEC 9594-8:1994, Information technology – Open Systems
Interconnection –The Directory: Authentication framework.

– ITU-T Recommendation X.525 (1993) | ISO/IEC 9594-9:1994, Information technology – Open Systems
Interconnection – The Directory: Replication.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

2 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

– ITU-T Recommendation X.680 (1994) | ISO/IEC 8824-1:1994, Information technology – Abstract Syntax
Notation One (ASN.1): Specification of basic notation.

– ITU-T Recommendation X.681 (1994) | ISO/IEC 8824-2:1994, Information technology – Abstract Syntax
Notation One (ASN.1): Information object specification.

– ITU-T Recommendation X.682 (1994) | ISO/IEC 8824-3:1994, Information technology – Abstract Syntax
Notation One (ASN.1): Constraint specification.

– ITU-T Recommendation X.683 (1994) | ISO/IEC 8824-4:1994, Information technology – Abstract Syntax
Notation One (ASN.1): Parametrization of ASN.1 specifications.

– ITU-T Recommendation X.880 (1994) | ISO/IEC 13712-1:1994, Information technology – Remote
Operations: Concepts, model and notation.

– ITU-T Recommendation X.881 (1994) | ISO/IEC 13712-2:1994, Information technology – Remote
Operations: OSI realizations – Remote Operations Service Element (ROSE) service definition.

2.2 Paired Recommendations | International Standards equivalent in technical content

– CCITT Recommendation X.200 (1988) Reference Model of Open Systems Interconnection for CCITT
Applications.

ISO 7498:1984/Corr.1:1988, Information Processing Systems – Open Systems Interconnection – Basic
Reference Model.

3 Definitions

For the purpose of this Recommendation | International Standard the following definitions apply:

3.1 OSI Reference Model Definitions

The following terms are defined in CCITT Rec. X.200 and ISO 7498:

– application entity title.

3.2 Basic Directory Definitions

The following terms are defined in ITU-T Rec. X.500 and ISO/IEC 9594-1:

a) (the) Directory;

b) Directory Information Base.

3.3 Directory Model Definitions

The following terms are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:

a) access point;

b) alias;

c) distinguished name;

d) Directory Information Tree;

e) Directory System Agent;

f) Directory User Agent;

g) relative distinguished name.

3.4 DSA Information Model definitions

The following terms are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:

a) category;

b) commonly usable;

c) context prefix;

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 3

d) cross reference;

e) DIB fragment;

f) DSA information tree;

g) DSA Specific Entry (DSE);

h) DSE type;

i) immediate superior reference;

j) knowledge information;

k) knowledge reference category;

l) knowledge reference type;

m) naming context;

n) non-specific knowledge;

o) non-specific subordinate reference;

p) operational attribute;

q) reference path;

r) specific knowledge;

s) subordinate reference;

t) superior reference.

3.5 Directory replication definitions

The following terms are defined in ITU-T Rec. X.525 | ISO/IEC 9594-9:

a) attribute completeness;

b) shadowing operational binding;

c) subordinate completeness;

d) unit of replication.

3.6 Distributed operation definitions

The following terms are defined in this Recommendation | International Standard:

3.6.1 base object: The object or alias entry that is the target for an operation as issued by the originator.

3.6.2 chaining: The generic term for uni-chaining or multi-chaining.

3.6.3 context prefix information: Operational and user information supplied by the superior DSA to the
subordinate DSA in a RHOB regarding DIT vertices superior to the subordinate context prefix.

3.6.4 distributed name resolution: The process by which name resolution is performed in more than one DSA.

3.6.5 error: Information sent from the performer to the requester conveying a negative outcome of a previously
received request.

3.6.6 hard error: A definite error which indicates that the operation cannot currently be performed without external
intervention.

3.6.7 hierarchical operational binding (HOB): Relationship between two master DSAs holding naming contexts,
one of which is immediately subordinate to the other, in which the superior DSA holds a subordinate reference to the
subordinate DSA.

3.6.8 modification operations: These are the Directory Modify Operations, i.e. Modify Entry, Add Entry, Remove
Entry and ModifyDN.

3.6.9 multi-chaining: A mode of interaction in which a DSA processing a request itself sends multiple requests
either in parallel or sequentially to a set of other DSAs.

3.6.10 multiple entry interrogation operations: These are the Directory Search Operations, i.e. List and Search.

3.6.11 name resolution: The process of locating an entry by sequentially matching each RDN in a purported name to
a vertex of the DIT.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

4 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

3.6.12 non-specific hierarchical operational binding (NHOB): Relationship between two master DSAs holding
naming contexts, one of which is immediately subordinate to the other, in which the superior DSA holds a non-specific
subordinate reference to the subordinate DSA.

3.6.13 NSSR decomposition: Decomposition of non-specific knowledge references into subrequests for other DSAs
to pursue; these subrequests may be either chained to these DSAs by the DSA performing the decomposition, or a
continuation reference identifying the DSAs may be returned to the requester for it to pursue, or the decomposing DSA
may pursue some of the subrequests, leaving others unexplored for the requester to pursue.

3.6.14 operation progress: A set of values which denotes the extent to which name resolution has taken place.

3.6.15 originator: The DUA that has initiated a specific (distributed) operation.

3.6.16 performer: DSA receiving a request (i.e. to perform an operation).

3.6.17 procedure: An (informal) specification of how a DSA maps a given set of input arguments and its DSA
information tree into a result.

NOTE – Input arguments and results may correspond to information received in a requested operation and information sent
in a reply, or they may represent intermediate stages in the computation of a reply from a requested operation. In 14.2 the former
variety of input arguments and results are termed external.

3.6.18 relevant hierarchical operational binding (RHOB): Either a HOB or a NHOB, depending on the context.

3.6.19 referral: An outcome which can be returned by a DSA which cannot perform an operation itself, and which
identifies one or more other DSAs more able to perform the operation.

3.6.20 reply: A result or an error.

3.6.21 request: Information consisting of an operation code and associated arguments to convey a directory operation
from a requester to a performer.

3.6.22 request decomposition: Decomposition of a request into subrequests for other DSAs to pursue; these
subrequests may be either chained to these DSAs by the DSA performing the decomposition, or continuation references
identifying the DSAs may be returned to the requester for it to pursue, or the decomposing DSA may pursue some of the
subrequests, leaving others unexplored for the requester to pursue.

3.6.23 requester: A DUA or DSA sending a request to perform (i.e. invoke) an operation.

3.6.24 single entry interrogation operations: These are the Directory Read Operations, i.e. Read and Compare.

3.6.25 soft error: An error which may be transient, or which may indicate a localized problem, in which case the use
of a different knowledge reference or access point may enable a result or hard error to be obtained.

3.6.26 subordinate DSA: Of the two DSAs sharing a HOB or a NHOB, the DSA holding the subordinate naming
context.

3.6.27 subrequest: A request generated by request decomposition.

3.6.28 superior DSA: Of the two DSAs sharing a HOB or a NHOB, the DSA holding the superior naming context.

3.6.29 superior, subordinate DSA: Two master DSAs holding naming contexts, one of which is immediately
subordinate to the other; the relationship between the two DSAs is managed explicitly via a HOB (or NHOB), or exists
implicitly by virtue of the superior DSA holding a subordinate (or non-specific subordinate) reference to the subordinate
DSA.

3.6.30 target object name: The name of an entry either to which the operation is to be directed at a particular stage
of name resolution, or which is involved in the evaluation of the operation.

3.6.31 uni-chaining: A mode of interaction optionally used by a DSA which cannot perform an operation itself. The
DSA chains by invoking an operation of another DSA and then relaying the outcome to the original requester.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:

ASN.1 Abstract Syntax Notation One

DOP Directory Operational Binding Management Protocol

DISP Directory Information Shadowing Protocol

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 5

DMD Directory Management Domain

DSE DSA Specific Entry

HOB Hierarchical Operational Binding

NHOB Non-specific Hierarchical Operational Binding

NSSR Non-specific Subordinate Reference

RHOB Relevant Hierarchical Operational Binding

5 Conventions

With minor exceptions this Directory Specification has been prepared according to the “Presentation of ITU-
TS/ISO/IEC common text” guidelines in the Guide for ITU-TS and ISO/IEC JTC 1 Cooperation, March 1993.

The term “Directory Specification” (as in “this Directory Specification”) shall be taken to mean ITU-T Rec. X.518 |
ISO/IEC 9594-4. The term “Directory Specifications” shall be taken to mean the X.500-Series Recommendations and all
parts of ISO/IEC 9594.

This Directory Specification uses the term “1988 edition systems” to refer to systems conforming to the previous (1988)
edition of the Directory Specifications, i.e. the 1988 edition of CCITT X.500-Series Recommendations and the
ISO/IEC 9594:1990 edition. Systems conforming to the current Directory Specifications are referred to as “1993 edition
systems”.

If the items in a list are numbered (as opposed to using “–” or letters), then the items shall be considered steps in a
procedure.

This Directory Specification defines directory operations using the Remote Operation notation defined in ITU-T
Rec. X.880 | ISO/IEC 9072-1.

SECTION 2 – OVERVIEW

6 Overview

The Directory Abstract Service allows the interrogation, retrieval and modification of Directory information in the DIB.
This service is described in terms of the abstract Directory object as specified in ITU-T Rec. X.511 | ISO/IEC 9594-3.

Necessarily, the specification of the abstract Directory object does not in any way address the physical realization of the
Directory: in particular it does not address the specification of Directory System Agents (DSA) within which the DIB is
stored and managed, and through which the service is provided. Furthermore, it does not consider whether the DIB is
centralized, i.e. contained within a single DSA, or distributed over a number of DSAs. Consequently, the requirements
for DSAs to have knowledge of, navigate to, and cooperate with other DSAs, in order to support the abstract service in a
distributed environment is also not covered by the service description.

This Directory Specification specifies the refinement of the abstract Directory object, the refinement being expressed in
terms of a set of one or more DSA objects which collectively constitute the distributed directory service.

In addition this Directory Specification specifies the permissible ways in which the DIB may be distributed over one or
more DSAs. For the limiting case where the DIB is contained within a single DSA, the Directory is in fact centralized;
for the case where the DIB is distributed over two or more DSAs, knowledge and navigation mechanisms are specified
which ensure that the whole of the DIB is potentially accessible from all DSAs that hold constituent entries.

Portions of the DIB may also be replicated in multiple DSAs. The protocols described in this Directory Specification
allow the use of replicated information to improve the availability, performance and efficiency of the distributed
directory service. The use of replicated information is, to some extent, under the user’s control, through the use of
service control options. The procedures described in this Directory Specification also indicate some of the opportunities
for design optimizations when using the replicated information.

Additionally, request handling interactions are specified that enable particular operational characteristics of the Directory
to be controlled by its users. In particular, the user has control over whether a DSA, responding to a directory inquiry
pertaining to information held in other DSA(s), has the option of interrogating the other DSA(s) directly (chaining) or,
whether it should respond with information about other DSA(s) which could further progress the inquiry (referral).

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

6 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Generally, the decision by a DSA to chain or refer is determined by the service controls set by the user, and by the
DSA’s own administrative, operational or technical circumstances.

Recognizing that, in general, the Directory will be distributed, and that directory inquiries will be satisfied by an
arbitrary number of cooperating DSAs which may arbitrarily chain or refer according to the above criteria, this Directory
Specification specifies the appropriate procedures to be effected by DSAs in responding to distributed directory
inquiries. These procedures will ensure that users of the distributed Directory service perceive it to be both user-friendly
and consistent.

SECTION 3 – DISTRIBUTED DIRECTORY MODELS

7 Distributed Directory System Model

The Directory abstract service as defined in ITU-T Rec. X.511 | ISO/IEC 9594-3 models the Directory as an object
which provides a set of directory services to its users. Users of the Directory access its services through an access point.
The Directory may have one or more access points and each access point is characterized by the services it provides and
the mode of interaction used to provide these services.

Figure 1 illustrates the distributed directory model which will be used as the basis for specifying the distributed aspects
of the directory. It illustrates the Directory as comprising a set of one or more DSAs.

TISO3580-94/d01

access point

DUA

read

search

modify

chained
search DSADSA

The Directory

chainedRead

chainedModify

Figure 1 – Objects of the distributed Directory model

FIGURE 1/X.518...[D01] = 7.5 CM

DSAs are specified in detail in the subsequent clauses of this Directory Specification. This clause merely states a number
of their characteristics in order to serve as an introduction and to establish the relationship between this Directory
Specification and the other Directory Specifications.

DSAs are defined in order that distribution of the DIB can be accommodated and that a number of physically distributed
DSAs can interact in a prescribed, cooperative manner to provide directory services to the users of the directory (DUAs).

Figure 1 illustrates the relationship between the Directory abstract service and the DSA abstract service. The Directory
abstract service defined in ITU-T Rec. X.511 | ISO/IEC 9594-3 is provided through a number of Directory operations.
To realize this service, the DSAs that comprise the Directory interact with one another. The nature of this interaction is
defined in terms of the service that one DSA may provide to another DSA, the DSA abstract service. The DSA abstract
service is provided through a number of operations, termed chained operations, each having a counterpart in the
Directory abstract service. Thus a given operation in the Directory abstract service, e.g. Read, may require that the DSA
providing the service interact with one or more other DSAs using chained operations, e.g. Chained Read.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 7

8 DSA Interactions Model

A basic characteristic of the Directory is that, given a distributed DIB, a user should potentially be able to have any
service request satisfied (subject to security, access control, and administrative policies) irrespective of the access point
at which the request originates. In accommodating this requirement, it is necessary that any DSA involved in satisfying a
particular service request have some knowledge (as specified in ITU-T Rec. X.501 | ISO/IEC 9594-2) of where the
requested information is located and either return this knowledge to the requester or attempt to have the request satisfied
on its behalf. (The requester may either be a DUA or another DSA: in the latter case both DSAs shall support the DSP.)

Three modes of DSA interaction are defined to meet these requirements, namely “uni-chaining”, “multi-chaining”, and
“referral”. Throughout the remainder of this Directory Specification, the generic term chaining is used to refer to uni-
chaining and/or multi-chaining as appropriate to the context. “Chaining” refers to the attempt by a DSA to satisfy a
request by sending one or more chained operations to other DSAs; “referral”, to the return of knowledge information to
the requester, which may then itself interact with the DSA(s) identified in the knowledge information.

Uni-chaining or a referral interaction may result from a single request. Alternatively, the request may be decomposed
into several subrequests prior to the interaction. Multi-chaining or referral interactions, or a mixture of the two, may
result from a decomposed request. Two types of decomposition are defined; NSSR decomposition and request
decomposition.

8.1 Decomposition of a request

8.1.1 NSSR decomposition

NSSR decomposition is the process of preparing identical requests ready for transfer (either sequentially or in parallel) to
several subordinate DSAs as a result of encountering an NSSR during name resolution. Non-specific subordinate
references do not hold the RDNs of the referenced subordinate naming contexts, so the referencing DSA is unable to tell
which subordinate DSA holds which subordinate naming context(s). During name resolution a DSA encountering
NSSRs shall send an identical request to each subordinate DSA (in the absence of shadowing). This may be done
sequentially or in parallel Typically, only one DSA will be able to continue with name resolution; the others will return
the Service Error unableToProceed. In certain (rare) circumstances it is possible that more than one DSA will continue
with name resolution, giving rise to duplicate results.

8.1.2 Request decomposition

Request decomposition, the other form of decomposing a request, is a process performed internally by a DSA prior to
communication with one or more other DSAs. A request is decomposed into several, possibly different, sub-requests
such that each of the sub-requests accomplishes a part of the original task. Request decomposition can be used only
during operation evaluation of a List or Search. After request decomposition, each of the sub-requests may then be
chained to other DSAs to continue the task, or a partial result (an embedded referral) may be returned to the requester.
An example of the same sub-request being generated to different DSAs is when an entry has subordinate references
and/or NSSRs that together reference more than one DSA. An example of different sub-requests being generated to the
same or different DSAs is when two different entries are encountered during a Search (subtree), and each has a
subordinate reference.

8.2 Uni-chaining

This mode of interaction (depicted in Figure 2) may be used by one DSA to pass on a request to another DSA when the
former has knowledge about naming contexts held by the latter. Uni-chaining may be used to contact a single DSA
pointed to in a cross reference, a subordinate reference, a superior reference, a supplier reference, or a master reference.

NOTE – In Figure 2, the order of interactions is defined by the numbers associated with the interaction lines.

8.3 Multi-chaining

This mode of interaction is used by a DSA for transferring several outgoing requests which have resulted from one
incoming request, as a result of either request decomposition or NSSR decomposition.

8.3.1 Parallel multi-chaining

With parallel multi-chaining, the DSA transfers several outgoing requests simultaneously (see Figure 3a). Whilst parallel
multi-chaining may give improved performance, it may under certain circumstances, e.g. in the presence of shadowing,
cause duplicate results to be received.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

8 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

TISO3590-94/d02

1

8

2
7

3

6

5
4

DSA

DSA DSA

DSA

DUA

Request Response

Figure 2 – Uni-chaining mode

FIGURE 2/X.518...[D02] = 7.5 CM

8.3.2 Sequential multi-chaining

With sequential multi-chaining, the DSA transfers one outgoing request at a time and waits for the result or error of one
request before sending the next (see Figure 3b). Whilst sequential multi-chaining may not be the quickest mode of
interaction, it is unlikely that duplicate results will be received.

NOTE – A DSA may use a combination of parallel multi-chaining and sequential multi-chaining.

1

2

2 2

3 3′ 3

4

TISO3600-94/d03

²

DSA DSA DSA

DSA

DUA

Request Response

Figure 3a – Parallel Multi-chaining

FIGURE 3a/X.518...[D03] = 7.5 CM

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 9

1

2

6

3 5

4

TISO3610-94/d04

a)

a)

DSA DSA DSA

DSA

DUA

Request Response

Figure 3b – Sequential Multi-chaining
(as a result of NSSR decomposition)

Unable to proceed.

FIGURE 3b/X.518...[D04] = 8 CM

8.4 Referral

A referral (depicted in Figures 4a and 4b) is returned by a DSA in response to a request from either a DUA or another
DSA. The referral may constitute the whole response (in which case it is categorized as an error) or just part of the
response. The referral contains a knowledge reference, which may be either a superior, subordinate, cross, non-specific
subordinate, supplier, or master reference.

The DSA (Figure 4a) receiving the referral may use the knowledge reference contained therein, to subsequently chain or
multi-cast (depending upon the type of reference) the original request to other DSAs. Alternatively, a DSA receiving a
referral, may in turn pass the referral back in its response. A DUA (Figure 4b) receiving a referral may use it to contact
one or more other DSAs to progress the request.

NOTE – In Figures 4a and 4b, the order of interactions is defined by the numbers associated with the interaction lines.

8.5 Mode Determination

If a DSA cannot itself fully resolve a request, it shall chain the request (or a request formed by decomposing the original
one), to another DSA, unless:

a) chaining is prohibited by the user via the service controls, in which case the DSA shall return a referral or
a chainingRequired ServiceError; or

b) the DSA has administrative, operational, or technical reasons for preferring not to chain, in which case the
DSA shall return a referral.

NOTES

1 A “technical reason” for not chaining is that the DSA identified in the knowledge reference does not support the DSP.

2 If the localScope service control is set, then the DSA (or DMD) shall either resolve the request or return an error.

3 If the user prefers referrals, the user should set chainingProhibited.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

10 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

1

2

8

6

3 5 7

4

TISO3620-94/d05

a) b)

a)

b)

DSA A DSA C

DSA

DUA

Request Response

Figure 4a – Referral mode (DSA acts on referrals)

Referral to B

Referral to C

DSA B

FIGURE 4a/X.518...[D05] = 8.5 CM

1

62 4

TISO3630-94/d06

a)

a)

b)

3 5

b)

DSA D DSA E DSA F

DUA

Referral to E.

Referral to F.

Figure 4b – Referral mode (DUA acts on referrals)

Request Response

FIGURE 4b/X.518...[D06] = 6 CM

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 11

SECTION 4 – DSA ABSTRACT SERVICE

9 Overview of DSA Abstract Service

The service of the Directory is fully described in ITU-T Rec. X.511 | ISO/IEC 9594-3. When such a service is provided
in a distributed environment, as modeled in clause 7, it can be regarded as being provided by means of a set of DSAs.
This is illustrated in Figure 1.

For each operation defined in the Directory service, a corresponding “chained” operation is defined in the DSA abstract
service for use between DSAs cooperating in the accomplishment of that Directory service operation. Thus, a DSA
receiving a Read operation from a DUA might require the assistance of another DSA (e.g. a DSA holding the target
entry or a copy of it) to satisfy it, and so send that DSA a Chained Read operation.

The information types exchanged in the DSA abstract service are defined in clause 10. The operations and errors of the
DSA abstract service are defined in clauses 11 through 13.

10 Information types

10.1 Introduction

This clause identifies, and in some cases defines, a number of information types which are subsequently used in the
definition of various of the operations of the DSA abstract service. The information types concerned are those which are
common to more than one operation, are likely to be in the future, or which are sufficiently complex or self-contained to
merit being defined separately from the operation which uses them.

Several of the information types used in the definition of the DSA abstract service are actually defined elsewhere.
Subclause 10.2 identifies these types and indicates the source of their definition. Subclauses 10.3 through 10.9 identifie
and define an information type.

10.2 Information types defined elsewhere

The following information types are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:

– aliasedEntryName;

– DistinguishedName;

– Name;

– RelativeDistinguishedName.

The following information types are defined in ITU-T Rec. X.511 | ISO/IEC 9594-3:

(Bind)

– DirectoryBind

(Operations)

– Abandon

(Errors)

– abandoned;

– attributeError;

– nameError;

– securityError;

– serviceError;

– updateError.

(Information Object Class)

– OPTIONALLY-SIGNED

(Data Type)

– SecurityParameters

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

12 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

The following information type is defined in ITU-T Rec. X.520 | ISO/IEC 9594-6:

– PresentationAddress.

10.3 Chaining Arguments

The ChainingArguments are present in each chained operation, to convey to a DSA the information needed to
successfully perform its part of the overall task:

ChainingArguments ::= SET {
originator [0] DistinguishedName OPTIONAL,
targetObject [1] DistinguishedName OPTIONAL,
operationProgress [2] OperationProgress

DEFAULT { nameResolutionPhase notStarted },
traceInformation [3] TraceInformation,
aliasDereferenced [4] BOOLEAN DEFAULT FALSE,
aliasedRDNs [5] INTEGER OPTIONAL,

-- absent unless aliasDereferenced is TRUE

returnCrossRefs [6] BOOLEAN DEFAULT FALSE,
referenceType [7] ReferenceType DEFAULT superior,
info [8] DomainInfo OPTIONAL,
timeLimit [9] UTCTime OPTIONAL,
securityParameters [10] SecurityParameters DEFAULT { },
entryOnly [11] BOOLEAN DEFAULT FALSE,
uniqueIdentifier [12] UniqueIdentifier OPTIONAL,
authenticationLevel [13] AuthenticationLevel OPTIONAL,
exclusions [14] Exclusions OPTIONAL,
excludeShadows [15] BOOLEAN DEFAULT FALSE,
nameResolveOnMaster [16] BOOLEAN DEFAULT FALSE }

The various components have the meanings as defined below:

a) The originator component conveys the name of the (ultimate) originator of the request unless already
specified in the security parameters. If requester is present in CommonArguments, this argument may
be omitted.

b) The targetObject component conveys the name of the object whose directory entry is being routed to.
The role of this object depends on the particular operation concerned: it may be the object whose entry is
to be operated on, or which is to be the base object for a request or sub request involving multiple objects
(e.g. ChainedList or ChainedSearch). This component can be omitted only if it has the same value as
the object or base object parameter in the chained operation, in which case its implied value is that value.

c) The operationProgress component is used to inform the DSA of the progress of the operation, and hence
of the role which it is expected to play in its overall performance. The information conveyed in this
component is specified in 10.5.

d) The traceInformation component is used to prevent looping among DSAs when chaining is in operation.
A DSA adds a new element to trace information prior to chaining an operation to another DSA. On being
requested to perform an operation, a DSA checks, by examination of the trace information, that the
operation has not formed a loop. The information conveyed in this component is specified in 10.6.

e) The aliasDereferenced component is a BOOLEAN value which is used to indicate whether or not one or
more alias entries have so far been encountered and dereferenced during the course of distributed name
resolution. The default value of FALSE indicates that no alias entry has been dereferenced.

f) The aliasedRDNs component indicates how many of the RDNs in the targetObject Name have been
generated from the aliasedEntryName attributes of one (or more) alias entries. The integer value is set
whenever an alias entry is encountered and dereferenced. This component shall be present if and only if
the aliasDereferenced component is TRUE.

g) The entryOnly component is set to TRUE if the original operation was a search, with the subset
argument set to oneLevel and an alias entry was encountered as an immediate subordinate of the
baseObject. The DSA which successfully performs name resolution on the targetObject name, shall
perform object evaluation on only the named entry.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 13

h) The returnCrossRefs component is a Boolean value which indicates whether or not knowledge
references, used during the course of performing a distributed operation, are requested to be passed back
to the initial DSA as cross references, along with a result or referral. The default value of FALSE
indicates that such knowledge references are not to be returned.

i) The referenceType component indicates, to the DSA being asked to perform the operation, what type of
knowledge was used to route the request to it. The DSA may therefore be able to detect errors in the
knowledge held by the invoker. If such an error is detected it shall be indicated by a ServiceError with
the invalidReference problem. ReferenceType is described fully in 10.7.

NOTE – If the referenceType is missing then the value superior shall be assumed.

j) The info component is used to convey DMD-specific information among DSAs which are involved in the
processing of a common request. This component is of type DomainInfo, which is of unrestricted type:

DomainInfo ::= ABSTRACT-SYNTAX.&Type

k) The timeLimit component, if present, indicates the time by which the operation is to be completed
(see 17.4.4b).

l) The SecurityParameters component is specified in ITU-T Rec. X.511 | ISO/IEC 9594-3. Its absence is
deemed equivalent to there being an empty set of security parameters.

m) AuthenticationLevel is optionally supplied when it is required to indicate the manner in which
authentication has been carried out. The AuthenticationLevel element is described in ITU-T Rec. X.501 |
ISO/IEC 9594-2.

n) UniqueIdentifier is optionally supplied when it is required to confirm the originator name. The
UniqueIdentifier element is described in ITU-T Rec. X.501 | ISO/IEC 9594-2.

o) The entryOnly component is set to TRUE if the original operation was a Search with the subset
argument set to oneLevel, and an alias entry was encountered as an immediate subordinate of the
baseObject. The DSA which successfully performs name resolution on the targetObject name shall
perform object evaluation on only the named entry.

p) The exclusions component has significance only for Search operations; it indicates, if present, which
subtrees of entries subordinate to the targetObject shall be excluded from the result of the Search
operation (see 10.9).

q) The excludeShadows component has significance only for Search and List operations; it indicates that the
search shall be applied to entries and not to entry copies. This optional component may be used by a DSA
as one way to avoid the receipt of duplicate results (see 20.1).

r) The nameResolveOnMaster component only has significance during name resolution, and is only set if
NSSRs have been encountered. If set to TRUE, it signals that subsequent name resolution, i.e. matching
the remaining RDNs from nextRDNToBeResolved, shall not employ entry copy information; subsequent
resolution of each remaining RDN shall be done in the master DSA for the entry identified by that RDN
(see 20.1).

10.4 Chaining Results

The ChainingResults are present in the result of each operation and provide feedback to the DSA which invoked the
operation.

ChainingResults ::= SET {
info [0] DomainInfo OPTIONAL,
crossReferences [1] SEQUENCE OF CrossReference OPTIONAL,
securityParameters [2] SecurityParameters DEFAULT { },
alreadySearched [3] Exclusions OPTIONAL }

The various components have the meanings as defined below:

a) The info component is used to convey DMD-specific information among DSAs which are involved in the
processing of a common request. This component is of type DomainInfo, which is of unrestricted type:

b) The crossReferences component is not present in the ChainingResults unless the returnCrossRefs
component of the corresponding request had the value TRUE. This component consists of a sequence of
CrossReference items, each of which contains a contextPrefix and an accessPoint descriptor (see 10.8).

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

14 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

CrossReference ::= SET {

contextPrefix [0] DistinguishedName,

accessPoint [1] AccessPointInformation }

A CrossReference may be added by a DSA when it matches part of the targetObject argument of an
operation with one of its context prefixes. The administrative authority of a DSA may have a policy not to
return such knowledge, and will in this case not add an item to the sequence.

c) The SecurityParameters component is specified in ITU-T Rec. X.511 | ISO/IEC 9594-3. Its absence is
deemed equivalent to there being an empty set of security parameters.

d) The alreadySearched component, if present, indicates which subordinate RDNs immediately subordinate
to the targetObject have been processed as a part of a chained Search operation and therefore shall be
excluded in a subsequent subrequest.

10.5 Operation Progress

An OperationProgress value describes the state of progress in the performance of an operation which several DSAs
shall participate in.

OperationProgress ::= SET {
nameResolutionPhase [0] ENUMERATED {

notStarted (1),
proceeding (2),
completed (3) },

nextRDNToBeResolved [1] INTEGER OPTIONAL }

The various components have the meanings as defined below:

a) The nameResolutionPhase component indicates what phase has been reached in handling the
targetObject name of an operation. Where this indicates that name resolution has notStarted, then a
DSA has not hitherto been reached with a naming context containing the initial RDN(s) of the name. If
name resolution is proceeding, then the initial part of the name has been recognized, although the DSA
holding the target object has not yet been reached. The nextRDNToBeResolved indicates how much of
the name has already been recognized (see 10.5.b). If name resolution is completed, then the DSA
holding the target object has been reached, and performance of the operation proper is proceeding.

b) The nextRDNToBeResolved indicates to the DSA which of the RDNs in the targetObject name is the
next to be resolved. It takes the form of an integer in the range one to the number of RDNs in the name.
This component is only present if the nameResolutionPhase component has the value proceeding.

10.6 Trace Information

A TraceInformation value carries forward a record of the DSAs which have been involved in the performance of an
operation. It is used to detect the existence of, or avoid, loops which might arise from inconsistent knowledge or from
the presence of alias loops in the DIT.

TraceInformation ::= SEQUENCE OF TraceItem

TraceItem ::= SET {
dsa [0] Name,
targetObject [1] Name OPTIONAL,
operationProgress [2] OperationProgress }

Each DSA which is propagating an operation to another adds a new item to the end of the sequence of TraceItem.
Each such TraceItem contains:

a) the Name of the dsa which is adding the item;

b) the targetObject name which the DSA adding the item received on the incoming request. This parameter
is omitted if the request being chained came from a DUA (in which case its implied value is the object or
baseObject in XOperation), or if its value is the same as the (actual or implied) targetObject in the
ChainingArgument of the outgoing request;

c) the operationProgress which the DSA adding the item received on the incoming request.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 15

10.7 Reference Type

A ReferenceType value indicates one of the various kinds of reference defined in ITU-T Rec. X.501 | ISO/IEC 9594-2.

ReferenceType ::= ENUMERATED {
superior (1),
subordinate (2),
cross (3),
nonSpecificSubordinate (4),
supplier (5),
master (6),
immediateSuperior (7),
self (8) }

10.8 Access point information

There are three types of access points:

a) An AccessPoint value identifies a particular point at which access to the Directory, specifically to a DSA,
can occur. The access point has a Name, that of the DSA concerned, and a PresentationAddress, to be
used in OSI communications to that DSA.

AccessPoint ::= SET {
ae-title [0] Name,
address [1] PresentationAddress,
protocolInformation [2] SET OF ProtocolInformation OPTIONAL }

b) A MasterOrShadowAccessPoint value identifies an access point to the Directory. The category, either
master or shadow, of the access point is dependent upon whether it points to a naming context or
commonly usable replicated area.

MasterOrShadowAccessPoint ::= SET {
COMPONENTS OF AccessPoint,
category [3] ENUMERATED {

master (0),
shadow (1) } DEFAULT master }}

c) A MasterAndShadowAccessPoints value identifies a set of access points to the Directory, i.e. a set of
related DSAs. These access points share the property that each refers to a DSA holding entry information
from a common naming context (or a common set of naming contexts mastered in one DSA when the
value is a value of the nonSpecificKnowledge attribute. A MasterAndShadowAccessPoints value
indicates the category of each AccessPoint value it contains. The access point of the master DSA of the
naming context need not be included in the set.

MasterAndShadowAccessPoints ::= SET OF MasterOrShadowAccessPoint

An AccessPointInformation value identifies one or more access points to the Directory.

AccessPointInformation ::= SET {
COMPONENTS OF MasterOrShadowAccessPoint ,
additionalPoints [4] SET OF MasterOrShadowAccessPoint OPTIONAL }

In the case of 1988 edition DSAs producing an AccessPointInformation value, the optional component of the set is
absent. In the case of 1988 edition DSAs interpreting an AccessPointInformation value, any MasterAndShadow-
Access Points values present are ignored.

In the case of 1993 edition DSAs, the MasterOrShadowAccessPoint value component produced for an
AccessPointInformation value may be of category master or shadow, as determined by the knowledge selection
procedure of the DSA producing the value. It may be viewed as a suggested access point provided by the DSA
generating the value to the DSA receiving it. A set of MasterAndShadowAccessPoints values may optionally also be
produced for an AccessPointInformation value. This constitutes additional information which may be employed by the
receiving DSA’s knowledge selection procedure to determine an alternative access point.

10.9 Exclusions

As defined in 10.3, the exclusions component of ChainingArguments is used to limit the scope of a Search operation
by identifying a number of entries subordinate to the target object which, together with all of their subordinates, shall not
be included in the processing of a Search operation. The exclusion component is defined as a value of the ASN.1 type
Exclusions.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

16 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Exclusions ::= SET OF RDNSequence

Each RDNSequence value in the Exclusions set should identify the context prefix of a naming context subordinate to
the target object. If a DSA receives a Search request with an RDNSequence value that does not conform to this
constraint, the DSA may ignore that value. The RDNSequence is relative to the target object, and is not the
distinguished name of the context prefix.

Exclusions can, besides being part of a user request, be used by DSAs to minimize duplicate information returned from
Search sub-requests performed in the presence of shadowed information.

Figure 5 illustrates an example of the use of Exclusions. In this example, a DSA holds two replicated areas, one beneath
the other. One starts with context prefix X, the other with context prefix C. An entry copy at Y has three subordinate
references to naming contexts, A, B and C.

If, as an example, a subtree Search is performed in this DSA, starting with a base object within naming context X, the
DSA can provide information from replicated areas X and C. The information from naming contexts A and B has to be
provided via the subordinate references. When performing request decomposition, ContinuationReferences, to be used
in either partialResults or chaining, will specify Y as the target object and C as a single element of an Exclusions set.

A B C

X

Y

TISO3640-94/d07

Figure 5 – Exclusions

FIGURE 5/X.518...[D07] = 8 CM

10.10 Continuation Reference

A ContinuationReference describes how the performance of all or part of an operation can be continued at a different
DSA or DSAs. It is typically returned as a referral when the DSA involved is unable or unwilling to propagate the
request itself.

ContinuationReference ::= SET {

targetObject [0] Name,

aliasedRDNs [1] INTEGER OPTIONAL,

operationProgress [2] OperationProgress,

rdnsResolved [3] INTEGER OPTIONAL,

referenceType [4] ReferenceType ,

accessPoints [5] SET OF AccessPointInformation,

entryOnly [6] BOOLEAN DEFAULT FALSE,

exclusions [7] Exclusions OPTIONAL,

returnToDUA [8] BOOLEAN DEFAULT FALSE,

nameResolveOnMaster [9] BOOLEAN DEFAULT FALSE}

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 17

The various components have the meanings as defined below:

a) The targetObject Name indicates the name which is proposed to be used in continuing the operation.
This might be different from the targetObject Name received on the incoming request if, for example, an
alias has been dereferenced, or the base object in a search has been located.

b) The aliasedRDNs component indicates how many (if any) of the RDNs in the target object name have
been produced by dereferencing an alias. The argument is only present if an alias has been dereferenced.

c) The operationProgress indicates the amount of name resolution which has been achieved, and which will
govern the further performance of the operation by the DSAs named, should the DSA or DUA receiving
the ContinuationReference wish to follow it up.

d) The rdnsResolved component value (which need only be present if some of the RDNs in the name have
not been the subject of full name resolution, but have been assumed to be correct from a cross reference)
indicates how many RDNs have actually been resolved, using internal references only.

e) The referenceType component indicates what type of knowledge was used in generating this
continuation.

f) The accessPoints component indicates the access points which are to be contacted to achieve this
continuation. Only where non-specific subordinate references are involved can there be more than one
AccessPointInformation item.

g) The entryOnly component is set to TRUE if the original operation was a search, with the subset
argument set to oneLevel, and an alias entry was encountered as an immediate subordinate of the
baseObject. The DSA which successfully performs name resolution on the targetObject name, shall
perform object evaluation on only the named entry.

h) The exclusions component identifies a set of subordinate naming contexts that should not be explored by
the receiving DSA.

i) The returnToDUA element is optionally supplied when the DSA creating the continuation reference
wishes to indicate that it is unwilling to return information via an intermediate DSA (e.g. for security
reasons), and wishes to indicate that information may be directly available via an operation over DAP
between the originating DUA and the DSA. When returnToDUA is set to TRUE, referenceType may
be set to self.

j) The nameResolveOnMaster element is optionally supplied when the DSA creating the continuation
reference has encountered NSSRs. If set to TRUE, it signals that subsequent name resolution,
i.e. matching the remaining RDNs from nextRDNToBeResolved, shall not employ entry copy
information; subsequent resolution of each remaining RDN shall be done in the master DSA for the entry
identified by that RDN (see 20.1).

11 Bind and Unbind

DSABind and DSAUnbind, respectively, are used by a DSA at the beginning and at the end of a period of accessing
another DSA.

11.1 DSA Bind

A DSABind operation is used to begin of a period of cooperation between two DSAs providing the Directory service.

DSABind ::= BIND
ARGUMENT DirectoryBindArgument
RESULT DirectoryBindResult
BIND-ERROR DirectoryBindError

The components of the DSABind are identical to their counterparts in the DirectoryBind (see ITU-T Rec. X.511 |
ISO/IEC 9594-3 with the following differences.

– The Credentials of the DirectoryBindArgument allows information identifying the AE-Title of the
initiating DSA to be sent to the responding DSA. The AE-Title shall be in the form of a Directory
Distinguished Name.

– The Credentials of the DirectoryBindResult allows information identifying the AE-Title of the
responding DSA to be sent to the initiating DSA. The AE-Title shall be in the form of a Distinguished
Name.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

18 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

11.2 DSA Unbind

A DSAUnbind is used to end a period of cooperation between two DSAs providing the Directory service.

DSAUnbind ::= UNBIND

There are no arguments, results or errors.

12 Chained operations

For each of the operations used to access the Directory abstract service, there is an operation used between cooperating
DSAs in an one-to-one correspondence. The names of the operations have been chosen to reflect that correspondence by
prefixing the names of operations used between cooperating DSAs with the term “Chained”.

The arguments, results, and errors of the chained operations are, with one exception, formed systematically from the
arguments, results, and errors of the corresponding operations in the Directory abstract service (as described in 14.3).
The one exception is the ChainedAbandon operation, which is syntactically equivalent to its Directory service
counterpart (described in 14.4).

12.1 Chained operations

A DSA, having received an operation from a DUA, may elect to construct a chained form of that operation to propagate
to another DSA. A DSA, having received a chained form of an operation may also elect to chain it to another DSA. The
DSA invoking a chained form of an operation may optionally sign the argument of the operation; the DSA performing
the operation, if so requested, may sign the result of the operation.

The chained form of an operation is specified using the parameterized type chained {}.

chained { OPERATION : operation } OPERATION ::= {
ARGUMENT OPTIONALLY-SIGNED { SET {

chainedArgument ChainingArguments,
argument [0] operation.&ArgumentType }}

RESULT OPTIONALLY-SIGNED { SET {
chainedResult ChainingResults,
result [0] operation.&ResultType }}

ERRORS { operation.&Errors EXCEPT (referral | dsaReferral) }
CODE operation.&operationCode }

NOTES

1 The operations of the Directory abstract service which may be used as the actual parameter of chained {} include the
abandoned error. The presence of this error among the set of possible errors of a chained operation reflects the possibility discussed
in 14.4, that a ChainedAbandon can be generated for a ChainedModify operation when a linked association fails.

2 The definitive specification of the DSA abstract service in Annex A applies this parameterized type to construct all
the chained operations of the abstract service.

The argument of the derived operation has the components:

a) chainedArgument – This is a value of ChainingArguments which contains that information, over and
above the original DUA-supplied argument, which is needed in order for the performing DSA to carry out
the operation. This information type is defined in 10.3.

b) argument – This is a value operation.&Argument and consists of the original DUA-supplied argument,
as specified in the appropriate clause of ITU-T Rec. X.511 | ISO/IEC 9594-3.

Should the request succeed, the result of the derived operation has the components:

a) chainedResult – This is a value of ChainingResults which contains that information, over and above
that to be supplied to the originating DUA, which may be needed by previous DSAs in a chain. This
information type is defined in 10.4.

b) result – This is a value operation.&Result and consists of the result which is being returned by the
performer of this operation, and which is intended to be passed back in the result to the originating DUA.
This information is as specified in the appropriate clause of ITU-T Rec. X.511 | ISO/IEC 9594-3.

Should the request fail, one of the errors of the set operation.&Errors will be returned, except that dsaReferral is
returned instead of referral. The set of errors which may be reported are as described for the corresponding operation in
ITU-T Rec. X.511 | ISO/IEC 9594-3. The error dsaReferral is described in 13.2

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 19

12.2 ChainedAbandon operation

A ChainedAbandon operation is used by one DSA to indicate to another that it is no longer interested in having a
previously invoked distributed operation performed. This may be for any of a number of reasons, of which the following
are examples:

– the operation which led to the DSA originally chaining has itself been abandoned, or has implicitly been
aborted by the breakdown of an association;

– the DSA has obtained the necessary information in another way, e.g. from a faster responding DSA
involved in the parallel multi-chaining.

A DSA is never obliged to issue a ChainedAbandon, or indeed to actually abandon an operation if requested do so.

If ChainedAbandon actually succeeds in stopping the performance of an operation, then a result will be returned, and
the subject operation will return an abandoned error. If the ChainedAbandon does not succeed in stopping the
operation, then it itself will return an abandonFailed error.

13 Chained errors

13.1 Introduction

For the most part, the same errors can be returned in the DSA abstract service which can be returned in the Directory
abstract service. The exceptions are that the dsaReferral ‘error’ is returned (see 13.2), instead of Referral, and the
following service problems have the same abstract syntax but different semantics:

a) invalidReference – The DSA returning this error detected an error in the calling DSA’s knowledge as
specified in the referenceType chaining argument;

b) loopDetected – The DSA returning this error detected a loop in the knowledge information in the
Directory.

The precedence of the errors which may occur is as for their precedence in the Directory abstract service, as specified in
ITU-T Rec. X.511 | ISO/IEC 9594-3.

13.2 DSA Referral

The dsaReferral error is generated by a DSA when, for whatever reason, it doesn’t wish to continue performing an
operation by chaining the operation to one or more other DSAs. The circumstances where it may return a referral are
described in 8.3.

dsaReferral ERROR ::= {

PARAMETER SET {

reference [0] ContinuationReference,

contextPrefix [1] DistinguishedName OPTIONAL }

CODE id-errcode-dsaReferral }

The various parameters have the meanings as described below:

a) The ContinuationReference contains the information needed by the invoker to propagate an appropriate
further request, perhaps to another DSA. This information type is specified in 10.9.

b) If the returnCrossRefs component of the ChainingArguments for this operation had the value TRUE,
and the referral is being based upon a subordinate or cross-reference, then the contextPrefix parameter
may optionally be included. The administrative authority of any DSA will decide which knowledge
references, if any, can be returned in this manner (the others, for example, may be confidential to
that DSA).

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

20 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

SECTION 5 – DISTRIBUTED PROCEDURES

14 Introduction

14.1 Scope and Limits

This clause specifies the procedures for distributed operation of the Directory which are performed by DSAs. Each DSA
individually performs the procedures described below; the collective action of all DSAs produces the full set of services
provided to users by the Directory.

14.2 Conformance

The description of DSA procedures in this section is based on the models in clauses 8 and 9 of ITU-T Rec. X.501 |
ISO/IEC 9594-2 and clauses 7 and 8. The flow charts and their corresponding textual descriptions are one means of
mapping a given set of external (DAP and/or DSP) inputs to a DSA into one or more external outputs (i.e. a result, error,
referral or chained requests) produced by that DSA, depending on the particular DSA information tree held by that DSA.

It is probable that the Directory will be distribute across DSAs implemented according to different editions of the
Directory Specifications, e.g. 1988 and 1993 editions. The DUA initiating the request will be unaware as to which
edition the DSA or DSAs satisfying the DUA’s request will have been implemented. Therefore to allow operation in
such a heterogeneous environment, a DSA shall be implemented according to the rules of extensibility defined in
clause 7 of ITU-T Rec. 519 | ISO/IEC 9594-5.

A DSA implementation shall be functionally equivalent to the external behavior specified by these procedures described
here. The algorithms used by a particular DSA implementation to derive the correct output(s) from the given inputs
and DSA information tree held are not standardized.

14.2.1 Interaction between 1988 edition and 1993 edition DSAs

If the modify operations evaluate across DSA boundaries (i.e. AddEntry with TargetSystem, Remove or Rename a
context prefix), then this directory Specification only specifies how two 1993 edition DSAs shall behave. The interaction
between two 1988 edition DSAs, or between a 1988 edition DSA and a 1993 edition DSA, is outside the scope of the
Directory Specifications. When mixed edition DSAs have a hierarchical operational binding, knowledge of each other’s
edition may allow a consistent error to be given to the user.

14.3 Conceptual model

The complexity of the Directory’s distributed operation gives rise to a need for conceptual modeling using both narrative
and pictorial descriptive techniques. However, neither the narrative nor graphic diagrams should be construed as a
formal description of distributed Directory operation.

14.4 Individual and cooperative operation of DSAs

The model views DSA operation from two separate perspectives, which, taken together, provide a complete, operational
picture of the Directory.

a) DSA-centered perspective – In this perspective the set of procedures that support the directory is
described from the viewpoint of a single DSA. This makes it possible to provide a definitive specification
of each procedure and to fully account for their interrelationships and overall control structure. Clauses 16
through 22 describe the DSA procedures from a DSA-centered perspective.

b) operation-centered perspective – The DSA-centered view provides complete detail but makes it difficult
to understand the structure of individual operations, which may undergo processing by multiple DSAs.
Consequently Clause 15 adopts a primarily operation-centered view to introduce the processing phases
applicable to each.

To support the distributed operation of the directory, each DSA shall perform actions needed to realize the intent of each
operation and additional actions needed to distribute that realization across multiple DSAs. Clause 15 explores the
distinction between these two kinds of actions. In clauses 16 through 22 both kinds of actions are specified in detail.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 21

14.5 Cooperative agreements between DSAs

All DSAs which are in a subordinate/superior relationship due to the naming contexts that they hold, have hierarchical
and/or non-specific hierarchical operational bindings between them, depending upon the types of knowledge reference
held by the subordinate DSA.

Hierarchical and non-specific hierarchical operational bindings between DSAs may be administered using the
procedures of clauses 24 and 25 of this specification, or by other means (e.g. telephone).

A DSA holding entries which are within the administrative area of its superior DSA shall administer the sub-schema and
shall control access to the entries as required by the administrative authority. The regulation of entries within an
administrative area may be performed as defined in ITU-T Recommendation X.501 | ISO/IEC 9594-2 or may be by local
mechanisms.

15 Distributed Directory behavior

15.1 Cooperative fulfillment of operations

Each DSA is equipped with procedures capable of completely fulfilling all Directory operations. In the case that a DSA
contains the entire DIB all operations are, in fact completely carried out within that DSA. In the case that the DIB is
distributed across multiple DSAs the completion of a typical operation is fragmented, with just a portion of that
operation carried out in each of potentially many cooperating DSAs.

In the distributed environment, the typical DSA sees each operation as a transitory event: the operation is invoked by a
DUA or some other DSA; the DSA carries out processing on the object and then directs it toward another DSA for
further processing.

An alternative view considers the total processing experienced by an operation during its fulfillment by multiple,
cooperating DSAs. This perspective reveals the common processing phases that apply to all operations.

15.2 Phases of operation processing

Every Directory operation may be thought of as comprising three distinct phases:

a) the Name Resolution phase in which the name of the object on whose entry a particular operation is to be
performed is used to locate the DSA which holds the entry;

b) the Evaluation phase in which the operation specified by a particular directory request (e.g. Read) is
actually performed;

c) the Results Merging phase in which the results of a specified operation are returned to the requesting
DUA. If a chaining mode of interaction was chosen, the Results Merging phase may involve several
DSAs, each of which chained the original request or sub request (as defined in 15.3.1 Request
Decomposition) to another DSA during either or both of the preceding phases.

In the case of the operations Read, Compare, List, Search, Modify Entry, ModifyDN and Remove Entry, name
resolution takes place on the object name provided in the argument of the operation. In the case of Add Entry name
resolution’s target entry is the immediately superior entry of that provided in the argument of the operation - it can be
easily derived by removing the final RDN from the name provided in the operation argument. (This is done via local
argument m in the FindDSE procedure of 18.2.5)

An operation on a particular entry may initially be directed at any DSA in the Directory. That DSA uses its knowledge,
possibly in conjunction with other DSAs, to process the operation through the three phases.

15.2.1 Name Resolution phase

Name Resolution is the process of sequentially matching each RDN in a purported Name to an arc (or vertex) of the
DIT, beginning logically at the Root and progressing downwards in the DIT. However, because the DIT is distributed
between arbitrarily many DSAs, each DSA may only be able to perform a fraction of the name resolution process. A
given DSA performs its part of the Name Resolution process by traversing its local DSA information tree. This process
is described in clause 18 and the accompanying diagrams (see Figures 9 through 12). Based on its local DSA
information tree, and the knowledge information contained therein, a DSA is able to infer whether the resolution can be
continued by one or more other DSAs, or whether the name is erroneous.

15.2.2 Evaluation phase

When the name resolution phase has completed, the actual operation required (e.g. Read or Search) is performed.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

22 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Operations that involve a single entry interrogation - Read and Compare - may be carried out entirely within the DSA in
which the entry is located.

Operations that involves multiple entries interrogation - List and Search - need to locate subordinates of the target, which
may or may not reside in the same DSA. If they do not all reside in the same DSA, operations need to be directed to the
DSAs specified in the subordinate, non-specific subordinate, supplier or master references (as appropriate) to complete
the evaluation process.

15.2.3 Results merging phase

The results merging phase is entered once some of the results of the evaluation phase are available.

In those cases where the operation affected only a single entry, the result of the operation can simply be returned to the
requesting DUA. In those cases where the operation has affected multiple entries on multiple DSAs, results need to be
combined.

The permissible responses returned to a requester after results merging include:

a) a complete result of the operation;

b) a result which is not complete because some parts of the DIT remain unexplored (applies to List and
Search only). Such a partial result may include continuation references for those parts of the DIT not
explored;

c) an error (a referral being a special case);

d) and if the requester was a DSA, a ChainingResult.

15.3 Managing Distributed Operations

Information is included in the argument of each operation which a DSA may be asked to perform indicating the progress
of each operation as it traverses various of the DSAs of the Directory. This makes it possible for each DSA to perform
the appropriate aspect of the processing required, and to record the completion of that aspect before directing the
operation outward toward further DSAs.

Additional procedures are included in the DSA to physically distribute the operations and support other needs arising
from their distribution.

15.3.1 Request Decomposition

Request decomposition is a process performed internally by a DSA prior to communication with one or more other
DSAs. A request is decomposed into several subrequests such that each of the latter accomplishes a part of the original
task. Request decomposition can be used, for example, in the search operation, after the base object has been found.
After decomposition, each of the subrequests may then be uni-chained or multi-chained to other DSAs, to continue the
task.

15.3.2 DSA as Request Responder

A DSA that receives a request can check the progress of that request using the operationProgress parameter. This will
determine whether the operation is still in the name resolution phase or has reached the evaluation phase, and what
portion of the operation the DSA should attempt to satisfy. If the DSA cannot fully satisfy the request it shall either pass
(by uni-chaining or multi-chaining) the operation on to one or more DSAs which can help to fulfill the request, or return
a referral to another DSA, or terminate the request with an error.

15.3.3 Completion of Operations

Each DSA that has initiated an operation or propagated an operation to one or more other DSAs shall keep track of that
operation’s existence until each of the other DSAs has returned a result or error, or the operation’s maximum time limit
has expired. This requirement applies to all operations, propagation modes and processing phases. It ensures the orderly
closing down of distributed operations that have propagated out into the Directory.

15.4 Loop handling

The DIT may be in a state that can cause looping. As an example, looping can occur during name resolution where
dereferencing one or more aliases brings the resolution back to the same branch of the DIT. Another potential cause of
looping is through misconfigured knowledge references.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 23

Within the context of a particular directory operation, a loop occurs if at any time the operation returns to a previous
state, where state is defined by the following components:

– the name of the DSA currently processing the operation;

– the name of the targetObject as contained within the argument of the operation;

– the operationProgress as contained within the argument of the operation and as defined in 10.5.

This does not mean that an operation cannot be processed multiple times by a particular DSA. However, it does mean
that the DSA will not process the same operation in the same state multiple times.

Looping is controlled using the traceInformation argument as defined in 10.6, which records the sequence of states a
particular operation has gone through. Two strategies are defined to determine whether looping has occurred, or is about
to occur. These are loop detection and loop avoidance, and they are described in 15.4.1 and 15.4.2 respectively.

Loop detection is mandatory and loop avoidance is optional.

15.4.1 Loop detection

On receipt of a directory operation a DSA shall initially validate the operation to ensure that it can be progressed. An
important task of validation is to check for loops, by determining whether the current state of the operation appears in the
sequence of previous states recorded in the traceInformation argument for that operation. This step of loop checking is
loop detection.

15.4.2 Loop avoidance

Loop avoidance requires that a DSA, immediately prior to forwarding an operation to another DSA as part of a chaining
procedure, determines whether the consequential state of the operation (which is the traceItem that the receiving DSA
will add to traceInformation when it receives it) appears on the sequence of previous states recorded in the
traceInformation argument for the original incoming operation.

In the case where referrals are received or acted upon, loop avoidance and loop detection cannot be achieved purely by
examining traceInformation. In this case, each time a DSA acts on a referral, it needs to store the consequential state of
the operation (i.e. the traceItem that the receiving DSA is going to add when it receives the request) along with a record
of the incoming request. Before acting on or returning a referral, a DSA needs to check through this list, in order to
check that an identical request has not been previously sent whilst trying to service the incoming operation.

15.5 Other considerations for distributed operation

15.5.1 Service controls

Some service controls need special consideration in the distributed environment in order that the operation is processed
the way that was requested.

a) chainingProhibited – A DSA consults this service control when determining the mode of propagation of
an operation. If it is set then the DSA always uses referral mode. If, however, it is not set, the DSA can
choose whether to use chaining or referral depending on its capabilities.

b) timeLimit – A DSA needs to take account of this service control to ensure that the time limit is not
exceeded in that DSA. A DSA requested to perform an operation by a DUA, initially heeds the timeLimit
expressed by the DUA as the available elapsed time in seconds for completion of the operation. If
chaining is required, the timeLimit is included in the chaining argument to be passed to the next DSA(s).
In this case the same value of the limit is used for each chained request, and is the (UTC) time by which
the operation shall complete to meet the originally specified constraint. On receiving
ChainingArguments with a timeLimit specified, the receiving DSA respects this limit.

c) sizeLimit – A DSA needs to take account of this service control to ensure that the list of results does not
exceed the size specified. The limit, as included in the common argument of the original request, is
conveyed unchanged as the request is chained. If request decomposition is required, the same value is
included in the argument to be passed to the next DSA, the full limit is used for each subrequest. When
the results are returned the requester DSA resolves the multiple results and applies the limit to the total to
ensure that only the requested number are returned. If the limit had been exceeded, this is indicated in the
reply.

d) priority – In all modes of propagation, each DSA is responsible for ensuring that the processing of
operations is ordered so as to support this service control if present.

e) localScope – The operation is limited to a locally defined scope and each DSA shall not propagate the
request outside of this.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

24 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

f) scopeOfReferral – If the DSA returns a referral or partial result to a List or Search operation, then the
embedded ContinuationReferences shall be within the requested scope.

All other service controls need to be respected, but their use does not require any special consideration in the distributed
environment.

15.5.2 Extensions

If a DSA encounters an extended operation in the name resolution phase of processing and determines that the operation
should be chained to one or more DSAs, it shall include unchanged in the chained operation any extensions present.

NOTE – An Administrative Authority may determine that it is appropriate to return a serviceError with problem
unwillingToPerform if it does not wish to propagate an extension.

If a DSA encounters an extension in the execution phase of processing, two possibilities may arise. If the extension
is not critical, the DSA shall ignore the extension. If the extension is critical, the DSA shall return a serviceError
with problem unavailableCriticalExtension. A critical extension to a multiple object operation may result in both
results and service errors of this variety. A DSA merging such results and errors shall discard these service errors and
employ the unavailableCriticalExtension component of PartialOutcomeQualifier as described in ITU-T Rec. X.511 |
ISO/IEC 9594–3.

15.5.3 Alias dereferencing

Alias dereferencing is the process of creating a new target object name, by replacing the alias entry distinguished name
part of the original target object name with the AliasedEntryName attribute value from the alias entry. The object name
in the operation is not affected by alias dereferencing.

15.6 Authentication of Distributed Operations

Users of the Directory together with administrative authorities that provide directory services may, at their discretion,
require that directory operations be authenticated. For any particular directory operation the nature of the authentication
process will depend upon the security policy in force.

Two sets of authentication procedures are available which collectively enable a range of authentication requirements to
be met. One set of procedures are those provided by Bind: these facilitate authentication between two directory
application-entities for the purposes of establishing an association. The Bind procedures accommodate a range of
authentication exchanges from a simple exchange of identities to strong authentication.

In addition to the peer entity authentication of an association as provided by Bind, additional procedures are defined
within the directory to enable individual operations to be authenticated. Two distinct sets of directory authentication
procedures are defined. One facilitates originator authentication services, which address the authentication, by a DSA, of
the initiator of the original service request. The second set facilitate results authentication services which address the
authentication, by an initiator, of any results that are returned.

For originator authentication two procedures are defined, one based upon a simple exchange of identities, termed
identity based authentication, and one based upon digital signature techniques, termed signature based
authentication. The former of these procedures is rudimentary in nature since the identity exchange is based upon the
exchange of distinguished names which are transmitted in the clear.

For authentication of results a single results authentication procedure is defined, based upon digital signature
techniques; due to the generally complex nature of results collation a simpler, identity-based procedure is not defined.

Authentication of error responses is not supported by these procedures.

The services described below are to be considered as augmenting those provided by the Bind service; Bind procedures
are assumed to have been effected successfully prior to authentication of directory operations.

The procedures to be effected by a DSA in providing originator and results authentication are specified in clause 22.

16 The Operation Dispatcher

The Operation Dispatcher is the main controlling procedure in a DSA. It guides each operation through the three phases
of processing a request. The Operation Dispatcher therefore makes use of a set of procedures to fully process the request
as shown in Figure 6.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 25

16.1 General Concepts

16.1.1 Procedures

Each of the procedures employed by the operation dispatcher consists of a definition of its conceptual interface in terms
of its parameters i.e. arguments, results and errors, and a description of the procedure steps itself. The behavior of the
procedures is described by flowcharts and text. Within a flow chart the used symbols have the following semantics
(see Figure 7):

TISO3650-94/d08

Local
Request

DAP/DSP
Request

DSP
Request

DSP
Reply

Local
Reply

DAP/DSP
Reply

Request
Validation
Procedure

Abandon
Procedure

Result Merging

Result
Merging

Procedure

Abandon

Error

Find DSE
Procedure Name Resolution

Continuation Reference
Procedure

Name ResolutionReturn
with error

Return with
entry unsuitable

Error Result

Return with
entry suitable

Evaluation

Modification Single object
interrogation

Multiple object
interrogation

Modification
Evaluation
Procedures

Single Object
Interrogation
Procedures

name-
ResolutionPhase

= completed

No

Yes

Yes

No

reference-
Type is supplier

or master?

List (II)
Procedure

List (I)
Procedure

Search (II)
Procedure

Search (I)
Procedure

Error or result Error Result

DOP/
DISP

Request

DOP/
DISP
Reply

Local
Reply

DAP/DSP
Reply

DSP
Request

DSP
Reply

DSP
Request

DSP
Reply

List Continuation
Reference Procedure

Search Continuation
Reference Procedure

Figure 6 – Operation Dispatcher

FIGURE 6/X.518...[D08] = 20 CM

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

26 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

TISO3660-94/d09

Enter Return X

Loop
detected?

Set exclusions
to empty

Call
procedure

Process each X contained in...

next X

Process a set of steps for each value X
until all values X have been processed

Continuation of
procedures that span
multiple flow charts

Continue with the execution of the steps
of the called sub-procedure. After completion
of the sub-procedure, continue with the
outgoing arrow of this box.

An Action to be performed

Branch based on a condition
(2 or more outcomes)

The entry point of the procedure

Yes
All X’s

processed

Return to the calling procedure with X.
X may be a result, null, an error, a string,
or a referral, or it may be absent.

Figure 7 – Symbols Used in Flow Charts

No

FIGURE 7/X.518...[D09] = 8.5 CM

16.1.2 Use of common data structures

All procedures make use of some data structures that are available during the processing of an operation within
the operation dispatcher. These data structures serve to coordinate the data flow within the operation dispatcher. Most
of these structures are directly associated with the argument of the operation and the result to be created for
the operation. Components of the argument and result are referred to using their names within the associated
ASN.1 definition (e.g. the operationProgress component of the chaining arguments). If any of these structures is
a compound structure, a component of this structure may be referred to as compound.component
(e.g. operationProgress.nameResolutionPhase).

The following data structures are defined within the operation dispatcher:

– NRcontinuationList – A list of continuation references created for use in the Name Resolution
Continuation Reference procedure.

– SRcontinuationList – A list of continuation references created for use in the List or Search
Continuation Reference procedure.

– admPoints – A list of references to DSEs of type administrative point that is collected during Name
Resolution.

Further, a procedure may use a set of locally defined variables.

16.1.3 Errors

At each stage of the processing an error may be detected during the execution of any sub-procedure. The error identified
within this sub-procedure is normally returned to the requester as a corresponding protocol error. In this case, the
operation dispatcher is terminated immediately. In the case that multiple errors are received, local procedures may select
one of them to be returned.

Alternatively, a procedure may choose to process errors (e.g. if ServiceError busy is returned to a chained search sub-
request) at certain points of operation processing. In this case the procedure continues with its execution and no error is
returned to the requester.

16.1.4 Asynchronous events

During the processing of an operation request within the Operation Dispatcher several asynchronous events may occur.
The following paragraphs specify how to handle an exceeded time limit or size limit or administrative limit, a loss of
association and an Abandon request for an operation that is being processed. The handling of all other asynchronous
events, e.g. local policy decisions etc., is outside the scope of this specification.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 27

16.1.4.1 Time limit

A timeLimit as specified in the commonArguments can expire at any point in time during the operation. In this case,
normally a ServiceError with problem timeLimitExceeded is returned to the requesting DUA or DSA and the
operation dispatcher is terminated. Alternatively, a procedure may choose to handle this event in a different way
(e.g. during processing of a search request).

If a DSA receives a request from another DSA with the time limit exceeded, it shall send a ServiceError with a
timeLimitExceeded error value without any further processing of the request.

If a DSA has outstanding (sub)requests, when the timeLimit expires, and there are no results available, it shall return a
ServiceError with a timeLimitExceeded error value to the requester.

If a DSA has outstanding sub-requests, when the timeLimit expires, and there are results available, it shall return a
result to the requester with the following contents:

a) all the collected results, up to the timeLimit expiring;

b) the limitProblem component of the partialOutcomeQualifier result-parameter shall be set to
timeLimitExceeded;

c) the unexplored component of the partialOutcomeQualifier result-parameter shall contain a
Continuation Reference value for each set of DSAs to which sub-requests were sent but the result of
which are not included in the result to the requester, in addition to Continuation References to DSAs to
which this DSA did not attempt to send sub-requests.

16.1.4.2 Loss of an association

If the association to the requester is lost, the DSA may optionally for each outstanding interrogation (sub)request, send
an Abandon request, unless the association to the DSA in question has also been lost. All replies to such Abandon
requests and all replies to outstanding (sub)requests shall be discarded.

If the association to one of the outstanding chained sub-requests is lost and the association with the requester is not lost,
the DSA may, for interrogation operations only, optionally try any alternative reference to another DSA that is able to
process the chained request (e.g. a reference to a shadow DSA, after loss of the association to the master DSA). If this
does not succeed, the DSA shall act as follows:

1) if operationProgress.nameResolution is set to notStarted or proceeding, return either a ServiceError
with problem unavailable to the requester or a referral error whose continuation reference contains the set
of DSAs that are able to continue the operation If non-specific subordinate references are used during the
Name Resolution phase and not all the associations in question are lost, optionally attempt to do the name
resolution without the DSAs to which the associations are lost. If this fails, return either a ServiceError
with problem unavailable, or a referral error containing the complete set of NSSRs.

NOTE – It is a local choice which type of error is returned.

2) if operationProgress.nameResolution is set to completed and the request is a single object operation
return a ServiceError with an unavailable error-parameter to the requester.

3) if operationProgress.nameResolution is set to completed and the request is a multiple entry
interrogation operation, the DSA shall add a continuation reference to
partialOutcomeQualifier.unexplored of the operation result, with AccessPointInformation identifying
the set of DSAs that are able to continue the operation, including any DSAs to which associations have
been lost.

16.1.4.3 Abandoning the operation

During the processing of an operation, an Abandon request can be received for this operation. In this case, during the
processing of the Abandon request, the Abandon procedure is called for the operation to be abandoned.

16.1.4.3 Administrative Limits

There may be limits imposed by the local DSA administrator e.g., the amount of time to spend on processing a request,
or the maximum size of data to be returned. If any of these limits are exceeded the DSA shall return ServiceError with
problem administrativeLimitExceeded.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

28 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

16.1.4.4 Size Limit

A size limit, as specified in Common Arguments, can be exceeded at any point in time during processing of a List or
Search operation. In this case, a partial result (taken from the set of already collected results) shall be returned to the
requester with limitProblem set to sizeLimitExceeded. In addition, the unexplored component may be used for
returning Continuation References of unaccessed DSAs. Operation Dispatcher is then terminated.

16.2 Procedures of the operation dispatcher

The procedure that is performed by the operation dispatcher for processing each received request (either over DAP or
DSP) is defined by the following steps. Due to alias dereferencing, this procedure may also call itself (a local request), in
which case a local reply (rather than a DAP or DSP reply) is returned.

1) Validate several aspects of the operation arguments (Request Validation procedure). If an error is
encountered during validation, return this error locally or over DAP/DSP.

2) If the operation received was an Abandon operation, call the Abandon procedure and return a reply
afterwards.

3) Resolve the name of the target object by executing the Find DSE procedure (which includes the Target
Found and Target Not Found sub-procedures). If the requested entry was found and is suitable
(according to the setting of the service controls, chaining arguments and local policy decisions), continue
with the Evaluation Phase at step 6). If during Name Resolution an error was encountered, it is
returned. If the entry was found not to be suitable, continue at step 4).

4) The Name Resolution Continuation Reference Procedure is called to process the list of Continuation
References as stored in the NRcontinuationList. In order to process these Continuation References,
chained requests may be issued to other DSAs (if service controls and local policy decision allows it).

In case of an error, this error is directly returned either locally or via DAP/DSP. If the chained request
generated a result, then continue with step 5).

5) The Result Merging Procedure is called to merge the local results with the received Chained Results. If
the Chained Results contain embedded Continuation References, these may first be resolved if the service
controls and local policy allow or require it.

This may cause additional Chained Requests to be issued (whose Chained Results may also contain
embedded Continuation References).

The merged results are returned to the caller, and processing of the request ceases.

6) If the operation is a modification operation continue at step 7.

If the operation is a single entry interrogation operation continue at step 8.

If the operation is a multiple entry interrogation operation continue at step 9.

7) When carrying out a modification procedure, Operational Bindings may need to be established,
modified or terminated, or shadows may need to be updated as a consequence of performing the
operation. Whether these are done synchronously or asynchronously with the performance of the original
operation depends on the respective modification operations (and on local policy). A local or a DAP/DSP
result or error is returned to the caller.

8) The result of a single entry interrogation operation is directly returned to the caller as a local or a
DAP/DSP result.

9) If the operation is a multiple entry interrogation operation then check the nameResolutionPhase of
the operation. If it is not completed then call the List(I) or Search(I) procedure, otherwise call the
List(II) or Search(II) procedure, respectively.

10) The outcome of a call to the List(II) procedure (result or error) and the outcome of a call to the List(I)
procedure (in case that the outcome is an error) can directly be returned to the caller (as a local or a
DAP/DSP result).

If the procedure called was the List(I) procedure, the result might contain Continuation References that
have to be dereferenced (depending on service controls and local policy). This may result in chained List
Operations being sent off to the respective DSAs. To merge the results continue at step 5 with the call to
the Result Merging Procedure.

11) If the operation was a Search operation, any Continuation References are resolved by the Search
Continuation Reference Procedure (if required and allowed). This may cause chained Search requests
to be sent off to the respective DSAs. The Result Merging Procedure (see step 5) is called to merge the
search results and to possibly dereference contained Continuation Reference, if any.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 29

16.3 Overview of procedures

This clause gives an overview of the basic functionality of the procedures employed by the operation dispatcher which
are defined in clauses 17 through 22.

16.3.1 Request Validation procedure

This procedure, described in clause 17, is called to perform loop checking, limit checking and security checking prior to
performing local name resolution. This procedure also provides default settings for those parameters of the
chainingArgument that are not provided by the DAP in the case that the request came from a DUA. Further, this
procedure singles out any Abandon request and notify this to Operation Dispatcher.

16.3.2 Abandon procedure

This procedure, described in 20.5, tries to find the operation that is to be abandoned and terminate it. If there are any
outstanding sub-requests, Chained Abandon operations may be sent after them. The procedure either returns a Null
Result to the caller, or an error indication (e.g. AbandonError with problem tooLate).

16.3.3 Find DSE procedure

This procedure, described in 18.2 and 18.3, matches the components of the name of the target object against the locally
held DSEs to resolve the target object name. If an alias DSE is encountered, the alias is dereferenced (if permitted) and
the procedure is restarted to resolve the new name.

If the target was not found, the procedure is continued at the Target Not Found sub-procedure. If the target was found,
the procedure is continued at the Target Found sub-procedure.

NOTE – Target Not Found and Target Found are continuations of the Find DSE procedure.

The procedure may result in various errors, in which case the associated protocol error is returned to the requester and
the operation dispatcher is terminated.

16.3.3.1 Target Not Found sub-procedure

This procedure, described in 18.3.2, performs an evaluation of the located intermediate DSEs and creates a set of
continuationReferences in NRcontinuationList, based on the set of knowledge references that have been detected
during the Find DSE procedure. This set of references is then further processed within the Name Resolution
Continuation Reference procedure.

The procedure may result in various errors, in which case the associated error is returned to the requester and the
operation dispatcher is terminated.

16.3.3.2 Target Found sub-procedure

This procedure, defined in 18.3.3, checks if the found DSE is suitable for the requested operation, i.e. in the case where
it is shadowed information. This may include checking the suitability of the whole subtree of shadowed information
below the target object in the case of a multiple object operation (e.g. subtree search).

If the located entry is suitable, the appropriate operation evaluation procedure is invoked. Otherwise a
continuationReference pointing to the supplier (or master) of the information is created in NRcontinuationList and the
Name Resolution Continuation Reference procedure is invoked.

16.3.4 Single entry interrogation procedure

This procedure, described in 19.2, is invoked to actually execute those operations that only affect a single entry,
i.e. Read and Compare. After completion, a reply (result or error) created by the procedure is returned to the requesting
DSA/DUA.

16.3.5 Modification procedures

These procedures, described in 19.1, are executed to process the modification operations i.e. AddEntry, RemoveEntry,
ModifyEntry and ModifyDN. This is done by executing a specific sub-procedure defined for each of these operations.
During (or after) these sub-procedures, DOP and DISP requests may be issued to other DSAs. After successful
completion, a result (created by the sub-procedures) is returned to the requesting DSA/DUA.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

30 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

16.3.6 Multiple entry interrogation procedures

These procedures, described in 19.3, are executed to process operations that affect multiple entries which may or may
not be located in the same DSA. This is done by executing specific sub-procedures defined for each of the Search and
List operations to accomplish request decomposition. These procedures create a local result of the operation evaluation
and optionally a set of continuation references in SRcontinuationList. If SRcontinuationList is empty at the end of this
procedure, the created result is directly returned to the requesting DSA/DUA. Otherwise, these continuation references
are processed by invoking List or Search Continuation Reference procedure, according to the operation type.

16.3.7 Name resolution Continuation Reference procedure

This procedure, described in 20.4.1, processes the continuation references in NRcontinuationList created during the
Name Resolution phase. These continuation references are either used to issue chained sub-requests or returned in a
referral error. In the case of chaining, the results or errors returned from the chained request are returned for further
processing by the Result Merging Procedure.

16.3.8 List and Search Continuation Reference procedure

These procedures, described in 20.4.3 and 20.4.4, process the continuation references in SRcontinuationList created by
the Multiple entry interrogation Procedures and either resolve them by issuing a chained sub-requests or by creating
continuation reference(s) within the partialOutcomeQualifier.unexplored. When results or errors for all outstanding
sub-requests have been received, they are returned for further processing by the Result Merging Procedure.

16.3.9 Result Merging procedure

This procedure, described in clause 22, either examines the result from a chained request or combines the local operation
results with the results received from the chained sub-requests. If a sub-request had returned an error, this procedure
determines how this error has to be handled.

If there are any continuation references left in the result, they will (if local policy allows so and service controls require
it) be dereferenced by the Name Resolution, List, or Search Continuation Reference procedures, accordingly.
Duplicates are removed from the result if it is unsigned.

The merged result (with all merged results and unresolved continuation references) is returned to the requesting
DUA/DSA.

17 Request Validation

17.1 Introduction

The Request Validation procedure is the entry point of the Operation Dispatcher for inputs from DUAs and DSAs,
preparing such inputs for Name Resolution processing. The function of this procedure is to detect abandon operations, to
perform security checks, to adjust input received from DUAs so that it may be processed in the same way as input
received from DSAs, to check the arguments of the request for valid syntax and semantics, to perform loop detection,
and to perform other miscellaneous checks. The flow of Request Validation is depicted in Figure 8.

17.2 Procedure parameters

17.2.1 Arguments

The input argument to Request Validation consists of ChainingArguments (except in the case of ChainedAbandon
operations), if the request is received from a DSA, and the argument issued by the originator of the request.

17.2.2 Results

The output result of Request Validation consists of five possibilities.

a) If the security check fails, an error is returned to the requester.

b) If the input is an Abandon or ChainedAbandon operation, the output is the argument of the operation.

c) If the arguments of the request are invalid, then an error is returned to the requester. Depending on local
policy, the DSA may choose whether to return a ServiceError or a SecurityError.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 31

d) If a loop is detected, a ServiceError with problem loopDetected is returned to the requester.

e) If, based on resource problems or policy considerations, the DSA is unable or unwilling to perform the
operation, a ServiceError (with problem busy, unavailable, or unwillingToPerform) is returned to the
requester.

f) In all other cases, the validated input, transformed by addition of ChainingArguments if received from a
DUA or the update of ChainingArguments.traceInformation if received from a DSA, is the output of
the procedure and subsequently the input to Name Resolution.

TISO3670-94/d10

Enter

Security
check

Abandon or
ChainedAbandon

Return
Abandon

Return
Error

Fail

Yes

Update or Create
ChainingArguments

Request
Parameters

Valid?

Return
Error

Return
ServiceError
loopDetected

Loop
detected?

Return
ServiceError busy,

unavailable or
unwilling ToPerform

Unwilling
or unable?

Return

Figure 8 – Request Validation procedure

No

No

Yes

Yes

No

Yes

Pass

No

FIGURE 8/X.518...[D10] = 17.5 CM

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

32 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

17.3 Procedure definition

The security check described in 17.3.2 is performed. This may result in the return of an error and the termination of the
Operation Dispatcher.

If the input is an Abandon or ChainedAbandon operation, only the steps in 17.3.1 are subsequently performed,
otherwise the steps in 17.3.3-17.3.5 are performed. 17.3.5 describes the loop detection procedure which may result in the
return of an error and the termination of the Operation Dispatcher.

Next the checks in 17.3.6 are performed. They may result in the return of an error and the termination of the Operation
Dispatcher.

If the checks in 17.3.2-17.3.6 do not result in the termination of the Operation Dispatcher, the steps in 17.3.7 are
performed and the procedure terminates with the transfer of its output to the Name Resolution procedure.

17.3.1 Abandon processing

The argument of an Abandon or ChainedAbandon is passed to the Abandon procedure, (see 20.5), to process the
abandon request.

17.3.2 Security checks

If the argument to the operation is signed, the signature may be checked. Should the signature be invalid, or absent in a
case when it should be present, an error may be returned to the requester. Alternatively, a DSA may perform any other
locally defined action.

17.3.3 Input preparation

17.3.3.1 DUA request

If the operation is received from a DUA, a ChainingArguments value is created as follows.

a) ChainingArguments.originator is set as described in 10.3.

b) ChainingArguments.traceInformation is set to a sequence containing a single TraceItem value. This
value is constructed as follows. TraceItem.dsa is set to the name of the DSA executing Request
Validation. TraceItem.targetObject shall be omitted. TraceItem.operationProgress is set to the
incoming value.

c) If the service control of the operation specifies a time limit (the available elapsed time in seconds for com-
pletion of the operation), ChainingArguments.timeLimit is set to the (UTC) time by which the
operation shall complete to meet the user’s specified time limit.

d) ChainingArguments.AuthenticationLevel and ChainginArgument.UniqueID are set according to the
local security policy.

e) The remaining optional elements of ChainingArguments are omitted, with default values being assumed
where specified.

17.3.3.2 DSA request

If the operation is received from a DSA, ChainingArguments.traceInformation is updated by appending a value at the
end of sequence TraceItem. This value is constructed as follows.

a) TraceItem.dsa is set to the name of the DSA executing Request Validation.

b) TraceItem.targetObject is set to the value of ChainingArguments.targetObject unless the
object (or baseObject in the case of search) of the request argument is identical to
ChainingArguments.targetObject, in which case TraceItem.targetObject shall be omitted.

c) TraceItem.operationProgress is set to the value of ChainingArguments.operationProgress.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 33

17.3.4 Validity assertion

The operation shall be checked for valid syntax and semantics of its arguments according to the rules contained in the
clauses defining each operation (e.g. it should be checked that the nextRDNToBeResolved does not provide a number
exceeding the number of RDNs in the targetObject). If the request is detected to contain invalid arguments, the
operation is terminated and an error is returned to the user, depending on the kind of invalidity detected.

17.3.5 Loop detection

If any two TraceItem values of ChainingArguments.traceInformation (as prepared in 17.3.3) are identical,
processing of the operation has returned to a previous state, i.e. a loop has been detected. In this case a ServiceError
(with problem loopDetected) shall be returned to the requester and the Operation Dispatcher terminates.

17.3.6 Unable or unwilling to perform

Request Validation may assess available resources and determine that the operation cannot be performed. It may also
determine, based on policy considerations, that the operation should not be performed. In these cases a ServiceError
(with problem busy, unavailable, or unwillingToPerform) may be returned to the requester and the Operation
Dispatcher terminates.

17.3.7 Output processing

In the final phase of Request Validation the validated input, transformed by addition of ChainingArguments if received
from a DUA or the update of ChainingArguments.traceInformation if received from a DSA, is returned and employed
as input to the Name Resolution procedure.

18 Name Resolution

18.1 Introduction

This clause describes the Name Resolution procedure, its Arguments, Results, and its possible Error conditions. As
shown in Figure 16.1(Operation Dispatcher), the Name Resolution procedure consists of two procedures:

– Find DSE procedure;

– Name resolution Continuation Reference procedure.

The FindDSE procedure is described in three flow charts, namely Find DSE, Target Found, and Target Not Found.
The Find DSE procedure matches the target entry name to locally stored DSEs, component by component. If the target
entry is found locally, then Find DSE continues with the Target Found sub-procedure, which then calls the Check
Suitability procedure to check the suitability of the found DSE for evaluation. If the target entry is not found locally,
then Find DSE continues with the Target Not Found sub-procedure prepares Continuation Reference(s) to be added to
the NRcontinuationList for the Name Resolution Continuation Reference procedure to dispatch it.

18.2 Find DSE procedure parameters

18.2.1 Arguments

The procedure uses the following arguments:

a) chainingArguments.aliasDereferenced;

b) chainingArguments.aliasedRDNs;

c) chainingArguments.excludeShadows;

d) chainingArguments.nameResolveOnMaster;

e) chainingArguments.operationProgress (nameResolutionPhase, nextRDNToBeResolved);

f) chainingArguments.referenceType;

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

34 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

g) chainingArguments.targetObject;

h) commonArguments.serviceControls.copyShallDo;

i) commonArguments.serviceControls.dontDereferenceAliases;

j) commonArguments.serviceControls.dontUseCopy.

NOTE – Where no actual values exist, default or implied values are used, as specified in 10.3.

18.2.2 Results

There are two cases of successful outcome from Find DSE (indicated by entry suitable or entry unsuitable):

The first successful case returns (from the Target Not Found sub-procedure) Continuation Reference(s) in
NRcontinuationList which is then passed on to the Name Resolution Continuation Reference procedure to continue
the Name Resolution phase.

The second successful case returns (from the Target Found sub-procedure) a (reference to a) DSE, which is passed to
one of the Evaluation procedures.

18.2.3 Errors

The following errors may be returned:

a) ServiceError: unableToProceed, invalidReference, unavailableCriticalExtension;

b) NameError: noSuchObject, aliasDereferencingProblem.

18.2.4 Global Variables

The procedure uses the following global variables:

– NRcontinuationList list to store the Continuation Reference(s) needed to continue name resolution in the
Name Resolution Continuation Reference procedure.

18.2.5 Local and Shared Variables

The procedure uses the following local variables:

a) i Index used to identify the component of the target name being worked on.

b) m The length of the target object name to be used in name resolution. For operations
that name resolve to the parent entry, i.e. Add Entry, m is set to (the number of RDNs
in the target object) – 1. For all other operations m is set to the number of RDNs in
the target object.

c) lastEntryFound Index, so that DSE(lastEntryFound) is the last matched DSE that is of type entry.

d) lastCP Index, so that DSE(lastCP) is the last shadowed context prefix encountered.

e) candidateRefs A set of continuation references.

The shared variable admPoints (defined in Operation Dispatcher) is also used. For convenience, component i of the
target object name is denoted as N(i).

18.3 Procedures

18.3.1 Find DSE procedure

See Figure 9.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 35

TISO3680-94/d11

Enter

lastEntryFound = 0
LastCP = 0
admPoints = { }
candidateRefs = { }
i = 0

Match subordinates of
DSE(i) to RDN N (i + 1)

i = i + 1
DSE(i) = matched DSE

i = nextRDNToBe
Resolved?

Continue at
Target Not

Found

nameResolveOnMaster
Is TRUE and DSE(i) is not

master

nameResolution-
Phase = completed?

Reference
Type is supplier

or master?

Subordinate of
DSE(i) is of

type cp?

Return
entry suitable

Return serviceError
unableToProceed

Check next unprocessed type of DSE(i)?

Make a continuation
reference using
SpecificKnowledge
and add to candidateRefs

All types
processed

alias subentry entry xr immSupr admPoint cp and other
shadow

subr

i = m?

i = m?

Return
NameError
noSuchObject

don’tDereference-
Aliases set?

i = m?
i = m?

Return
NameError
aliasDereferencingProblem

lastCP = i

Add DSE(i) to the
list of admPoints

lastEntryFound = i

nameResolution-
Phase = completed?

Continue at
TargetFound Reference

Type is supplier
or master?

Any subordinate
of DSE(i) is of

type cp?

Return
ServiceError
invalidReference

Return
Entry suitable

aliasDereferenced = true
nameResolutionPhase = notStarted
N = aliasedObjectName + RDNs
N(i + 1) to N(m)
aliaseRDNs = 1 (for 92 systems)

No

No

Yes

Yes

Yes

No

Yes

Yes

No

No

Yes

No

No

Yes

No

Yes

No

Yes

YesYes

Yes

No

No

Yes

No match

No

Match

NOTE – There are some tests in the flow chart that are only relevant to specific operations.
This is not shown in the flow charts, but is described in the accompanying text.

Figure 9 – Find DSE procedure

No

FIGURE 9/X.518...[D11] = 22.5 CM

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

36 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

This procedure attempts to resolve the target object name locally.

1) Initialize the local variables lastEntryFound and lastCP to 0; admPoints and candidateRefs to an
empty set, and initialize i to 0.

2) Compare i and m. If they are not equal, then continue with step 7).

3) If they are equal, check if nameResolutionPhase is completed. If not completed, continue at Target Not
Found sub-procedure.

4) If the Name Resolution Phase is already completed, then check if any subordinate of DSE(i) is a context
prefix (of type cp).

If one (or more) subordinate DSE(s) is of type cp, then return with entry suitable;

NOTE 1 – This case is for List (II) and Search (II) sub-requests.

If no subordinates of DSE(i) is of type cp, then continue at Target Not Found sub-procedure.

5) Try to find a match for the (i + 1)-th component of the target object name with the name of a subordinate
of the last matched DSE. In the case of i = 0, try to match one of the DSEs immediately subordinate to the
root DSE. If no match can be found, continue at Target Not Found sub-procedure. If a match is found,
increment i, and store the matched DSE as the i-th element in the vector of found DSEs.

6) If i equals nextRDNToBeResolved, then check if the following two conditions are both met:

– the chainingArgument nameResolveOnMaster is True;

– DSE(i) is not a master entry (i.e. is of type shadow).

If both conditions are met, then return service error unableToProceed.

NOTE 2 – This indicates the use of nameResolveOnMaster to avoid multiple paths to the same target object.

7) Check all the DSE type bits of DSE(i). For each type bit, some processing is potentially required. The
action to take for each type found is given below:

– If both the cp and shadow bits are set, then remember the index i in lastCP.

– If the admPoint bit is set, check the administrativeRole operational attribute. If this is the start of
an autonomous administrative area then empty the admPoints list. If this is the start of one or more
specific administrative areas, then check the admPoints list and remove any existing points that are
no longer relevant (i.e. their roles have been superseded by the new administrative point). Store
DSE (i) in the list.

– If one of the subr, xr or immSupr bits is set, then generate a continuation reference using the
SpecificKnowledge attribute with operationProgress.nameResolutionPhase set to proceeding,
nextRDNToBeResolved set to i, and accessPoints and referenceType set as appropriate. Add the
continuation reference to the list of continuation references in candidateRefs.

– If the entry bit is set, then test for i equal to m (and therefore the target object name being
completely matched). If i does not equal m, then remember the found entry by setting
lastEntryFound to i and continue processing the type bits of DSE(i). If i and m are equal, continue
at step 10).

– If the subentry bit is set, then test for i equal to m (and therefore the target object name being
completely matched). If they are equal then continue at Target Found procedure; if they are not
equal, then return an NameError with problem noSuchObject.

– If the alias bit is set, test if dontDereferenceAliases is set.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 37

If dontDereferenceAliases is not set, the alias can be dereferenced. Therefore, set
chainingArguments.aliasDereferenced to TRUE, nameResolutionPhase to notStarted, the
name of the target object to the aliasedEntryName as supplied in the alias entry concatenated
with the remaining unmatched components of the previous target object name (i.e. concatenate with
the (i + 1)-th to m-th component of the previous target object name). 1993 edition DSAs set
aliasedRDNs to 1, whereas 1988 edition DSAs set aliasedRDNs to i. Start Name Resolution again
by continuing at step 9).

If dontDereferenceAliases is set, then the alias cannot be dereferenced. Check if the target object
name has been processed completely by comparing i and m for equality. If they are equal (and the
name therefore fully matched), then continue at Target Found sub-procedure. If they are not equal
(and the name therefore not fully matched), then return NameError with problem
aliasDereferencingProblem.

– For all other possible DSE types, no action is needed. Internally mark that DSE type as processed
and continue processing the still unprocessed DSE type bits of the DSE(i).

– If all type bits of DSE(i) are processed, then continue at step 2).

8) Check if the Name Resolution Phase is already completed. If it is not, then continue at Target Found
sub-procedure.

9) If the Name Resolution Phase is completed, then check if the referenceType used is supplier or master;
if so, continue at the Target Found sub-procedure.

NOTE 3 – This is for the chain-to-supplier subrequests.

10) Otherwise, check if any of the DSEs subordinate to DSE(i) is a Context Prefix (and therefore of type cp).
If there is (one or more), return entry suitable. If none of the subordinate entries is of type Context
Prefix, then return a ServiceError with problem invalidReference.

NOTE 4 – This case is for List (II) and Search (II) subrequests.

18.3.2 Target Not Found sub-procedure

See Figure 10.

This subprocedure is called when the target object name is not found in the local DSA, This subprocedure determines the
best type of knowledge reference to use to continue name resolution, unless an error is detected in which case the error is
returned.

1) When continuing from Find DSE procedure, distinguish between the three possible phases of the Name
Resolution Phase.

If nameResolutionPhase is notStarted, continue at step 2).

If nameResolutionPhase is proceeding, continue at step 8).

If nameResolutionPhase is completed, continue at step 12).

2) If an entry was found (lastEntryFound not equal to 0), set nameResolutionPhase to proceeding and
continue at step 9).

3) If no entry was found (lastEntryFound=0), then check if the DSA is a First Level DSA.

If it is a First Level DSA, then the root DSE does not contain a Superior Reference and therefore is not of
type supr. In this case, continue at step 4).

If the DSA is not a First Level DSA, then the root DSE contains a Superior Reference and therefore is of
type supr. In this case, generate a Continuation Reference using the superior knowledge as found in the
root DSE. Set

– targetObject to the name of the target object;

– operationProgress.nameResolutionPhase to notStarted;

– referenceType to superior; and

– accessPoints as appropriate.

Add the Continuation Reference to the list of Continuation References in candidateRefs. Continue at
step 6).

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

38 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

4) Check if the operation was directed to the root entry (m = 0?). If it was, continue at step 5). If it was not,
generate a Continuation Reference using any NSSR knowledge found in the root DSE. Set:

– targetObject to the name of the target object;

– operationProgress.nameResolutionPhase to proceeding;

– operationProgress.nextRDNToBeResolved to 1;

– referenceType to nonSpecificSubordinate; and

– accessPoints as appropriate.

Add the Continuation Reference to the list of Continuation References in candidateRefs. Continue at
step 6).

5) At a First Level DSA, only List or Search operations may be performed with the root entry as base object.
Therefore, if the operation was not a List or Search operation, return NameError with problem
noSuchObject. If it was a List or Search operation, set nameResolutionPhase to completed and return
with entry suitable.

6) Check if there are any Continuation References in candidateRefs. If candidateRefs is empty, return
NameError with problem noSuchObject. Otherwise continue at step 7).

7) Use a local selection function to choose a Continuation Reference from the list of Continuation
References in candidateRefs, add it to the list of Continuation References in NRcontinuationList and
return with entry unsuitable.

8) If the DSA was unable to proceed with Name Resolution (in which case lastEntryFound is less than
nextRDNToBeResolved), continue at step 11). Otherwise continue with next step.

9) If DSE(i) is a shadow DSE with incomplete subordinate knowledge (subordinateCompletenessFlag is
FALSE), then generate a Continuation Reference from the supplierKnowledge attribute found in
DSE(lastCP). Set:

– targetObject to the name of the target object;

– operationProgress.nameResolutionPhase to proceeding;

– operationProgress.nextRDNToBeResolved to lastEntryFound;

– referenceType to supplier; and

– accessPoints as appropriate.

Add the Continuation Reference to the list of Continuation References in NRcontinuationList, and return
with entry unsuitable.

10) If the last entry found contains a NSSR (DSE(lastEntryFound) is of type nssr), then generate a
Continuation Reference from the NSSR knowledge found in DSE(lastEntryFound). Set:

– targetObject to the name of the target object;

– operationProgress.nameResolutionPhase to proceeding;

– operationProgress.nextRDNToBeResolved to lastEntryFound+1;

– referenceType to nonSpecificSubordinate; and

– accessPoints as appropriate.

Add the Continuation Reference to the list of Continuation References in candidateRefs. Continue at
step 7).

If DSE(lastEntryFound) is not of type nssr, then continue at step 6).

11) If chainingArguments.referenceType is of type nssr, then continue at step 13), otherwise at step 12).

12) Return ServiceError with problem invalidReference.

13) If i + 1 is equal to nextRDNToBeResolved, then the request was routed here due to an NSSR and the
DSA is unable to proceed with name resolution; in this case, return ServiceError with problem
unableToProceed; otherwise continue at step 12).

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 39

TISO3690-94/d12

candidateRef
empty?

Continue
from

Find DSE

notStarted name
ResolutionPhase?

Completed Return
ServiceError

invalidReference

No

Reference Type
= nssr?

YeslastEntryFound
< nextRDNToBeResolved?

lastEntryFound
= 0?

Yes

No

Yes

No

Root DSE
of type supr?

No

Yes
m = 0?

No

nameResolutionPhase =
proceeding

Yes
Make continuation
reference using the superior
knowledge found in the root
DSE; and include it in
candidateRef

i + m =
nextRDNToBeResolved?

Yes
Return

ServiceError
unableToProceed

Yes
Is DSE(i) shadow

and with subordinate
completeness flag FALSE?

Make continuation
reference using the nssr
knowledge found in the root
DSE; and include it in
candidateRef

No
Make a continuation reference
using the supplierKnowledge
attribute found in DSE (lastCP);
and add it to NRcontinuation List

Is DSE
(lastEntryFound)

of type nssr?

Yes

candidateRef
empty?

Return
NameError

noSuchObject

nextRDNToBeResolved
= i

Make an’nssr
continuation reference
and add it to the
candidateRefs

Yes
No

No
Yes

Yes

NoList or
Search?

No Use local Selection Function
to choose a continuation
reference from candidateRefs
and add to NRcontinuation List

Return
entry suitable

nameResolution-
Phase = completed

Return
NameError

noSuchObject

Figure 10 – Target Not Found sub-procedure

Return
entry unsuitable

Proceeding

FIGURE 10/X.518...[D12] = 23 CM

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

40 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

18.3.3 Target Found sub-procedure

This sub-procedure is entered when the target object name matches with an entry DSEs locally. This sub-procedure
checks if the found entry is suitable for processing the request locally (it is shown in Figure 11):

1) Call the Check Suitability procedure.

2) If the entry is suitable (entry suitable), then set nameResolutionPhase to completed and return entry
suitable.

3) If the entry is not suitable (entry unsuitable), then generate a Continuation Reference using the
supplierKnowledge attribute found in DSE(lastCP). Set:

– targetObject to the name of the target object;

– operationProgress.nameResolutionPhase to proceeding;

– operationProgress.nextRDNToBeResolved to i;

– referenceType to supplier; and

– accessPoints as appropriate.

Add the Continuation Reference to the list of Continuation References in NRcontinuationList. Return
entry unsuitable.

NOTE – If the serviceControl localScope is TRUE, however, the DSA could, based on local policies, decide to
consider this entry as suitable and proceed as in step 2).

4) If a critical extension is not supported (unsupported critical extension), then return ServiceError with
problem unavailableCriticalExtension.

TISO3700-94/d13

Continue
from

Find DSE

Call Check Suitability
Procedure

nameResolutionPhase =
completed

Return
entry suitable

nameResolutionPhase =
proceeding, and
nextRDNToBeResolved = i

Make a continuation reference
using the supplierKnowledge
attribute found in DSE(lastCP);
and add it to NRcontinuation List

Return
entry unsuitable

entry
suitable

entry
unsuitable

Figure 11 – Target Found sub-procedure

FIGURE 11/X.518...[D13] = 10 CM

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 41

18.3.4 Check Suitability procedure

This procedure is called to decide whether a found DSE is suitable for performing the requested operation. It takes into
account the chainingArguments, the serviceControls, the arguments as supplied by the user, the operation type and the
characteristics of the DSE (shadow, subordinate knowledge, attributes present, etc.).

18.3.4.1 Procedure parameters

The input argument to this procedure is:

– a reference to a DSE;

– the operation type for which the suitability of the DSE is to be checked;

– the chainingArguments; and

– the serviceControls.

The output is either entry suitable, entry unsuitable, or unsupported critical extension.

1) If the DSE is not of type shadow, then check if all criticalExtensions are supported. If they are, then
return entry suitable, else return unsupported critical extension.

2) The DSE is of type shadow. Return entry unsuitable, if any of the following is true:

– The requested operation type is a Modification Operation.

– The service control dontUseCopy is set.

Otherwise, continue with the next step.

3) If the service control copyShallDo is set, then check if all criticalExtensions are supported. If they are,
then return entry suitable, else return unsupported critical extension.

4) If the service control copyShallDo is not set, then check if all criticalExtensions are supported. If they
are, then got step 5) else return entry unsuitable.

5) Distinguish between operation types:

If List operation, continue at step 6).

If Read operation, continue at step 7).

If Search or Compare operation, continue at step 8).

6) If the entry has full subordinate knowledge, the List operation can be performed. In this case, return entry
suitable, otherwise return entry unsuitable.

7) If all the requested attributes are present in the DSE, then return entry suitable. If some attributes are
missing, then determine by local means whether the shadow copy holds all the attributes held by the
master (e.g. by reference to the shadowing agreement). If they are the entry is suitable (return entry
suitable). Otherwise, the supplier may hold the requested attributes which are not present at the shadow;
in this case, the request has to be chained (return entry unsuitable).

8) If the DSA supports the matching rule for comparing or searching as requested and the operation is
Compare or Search operation with subset of baseObject, then continue at step 7). If the DSA supports
the matching rule and the operation is Search with subset oneLevel or subtree, then continue at step 9).
Otherwise return entry unsuitable.

9) If chainingArguments.excludeShadows is True, then return entry unsuitable. Otherwise check the local
understanding of the shadowed information specification against the operation filter and selection. If all
necessary entries and attributes are present, then return entry suitable. If any entry or attribute is missing,
then return entry unsuitable.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

42 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

TISO3710-94/d14

Enter

Return
entry unsuitable

Return
entry suitable

Return
entry suitable

Return
entry unsuitable

DSE of type
shadow?

Modify
operation?

dontUseCopy
set?

copyShallDo
Set?

Operation
type?

Full subordinate
knowledge and
ACI for each?

All necessary
attributes present

in DSE?

Is operation
matching rule
supported by

the DSA?

Requested
attributes not held
by the supplier?

Check current shadowing
agreement unit of replication
against operation filter and

selection

excludeShadows
= TRUE?

Yes
(Search oneLevel

or subtree)

Yes
(compare, search

baseObject)

All necessary entries,
attributes are present

Entries or attributes
absent

Yes

Yes

Yes

Yes

No

No

No

Yes

List

No

Yes

Yes

No

NoYes

Read

No

Search.

Compare

No

No

Figure 12 – Check Suitability procedure

FIGURE 12/X.518...[D14] = 20.5 CM

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 43

19 Operation evaluation

This clause defines the procedure that a DSA shall follow if the target entry of an operation has been found locally
(during Name Resolution). According to the type of operation, one of the following procedures are invoked:

– For an AddEntry, ChainedAddEntry, RemoveEntry, ChainedRemoveEntry, ModifyEntry,
ChainedModifyEntry, ModifyDN or ChainedModifyDN operation the procedures in 19.1 shall be
followed.

– For a Read, ChainedRead, Compare or ChainedCompare operation the procedures in 19.2 shall be
followed.

– For a Search, ChainedSearch, List and ChainedList operation the procedures in 19.3 shall be followed.

19.1 Modification procedure

According to the type of modification operation the corresponding procedures defined in 19.1.1 through 19.1.4 shall be
followed.

19.1.1 Add Entry Operation

1) The DSA shall check that the initiator has sufficient access rights, e.g. as defined, in 11.1.5 of ITU-T
Rec. X.511 | ISO/IEC 9594-3. If not, an appropriate error is returned.

2) The DSA shall assure that an entry with the name of the entry to be added does not already exist,
otherwise it shall return an UpdateError with problem entryAlreadyExists. If the superior DSE is of
additional type nssr, the DSA shall follow the procedure defined in 19.1.5 (Modify Operations
and NSSRs) to ensure that the name of the new entry is unambiguous.

3) If targetSystem is present, and the AccessPoint is not that of the current DSA, go to step 4). If
targetSystem is not present, or is present and the AccessPoint is that of the current DSA, go to step 5).

4) If the entry is a subentry, the DSA shall return UpdateError with problem affectsMultipleDSAs. If the
entry is not a subentry, the DSA has a local choice as to whether or not it wishes to establish a HOB with
the specified DSA. If it does not, the DSA shall return ServiceError with problem unwillingToPerform,
otherwise the DSA shall establish a hierarchical operational binding with the specified subordinate DSA.
If the DOP is supported, the procedure in 24.3.1.1 shall be followed, otherwise local means are used to
establish the HOB. If the subordinate DSA is unwilling to establish the operational binding,
a ServiceError with problem unwillingToPerform is returned for the AddEntry operation. If the HOB
is successfully established, continue at step 7).

NOTE 1 – This step of the procedure does not apply to the creation of autonomous administrative areas in a
subordinate DSA.

5) The DSA shall ensure that the new entry or subentry to be added conforms to the sub-schema or system
schema [e.g. that the immediate superior DSE is of type admPoint) respectively. If not, it shall return an
appropriate UpdateError or AttributeError, else it shall add the new entry or subentry. If entry,
continue at step 7)], if subentry continue at step 6).

6) The DSA shall forward, at an appropriate time, a modify operational binding to all relevant subordinate
DSAs with which it has hierarchical or non-specific hierarchical operational bindings. The relevant
bindings are those which are associated with naming contexts that are subordinate to the superior DSE.
Naming contexts whose context prefixes correspond to autonomous administrative points are not relevant.
If the DOP is supported, the procedures in 24.3.2.1 and 25.3.2 shall be followed. If the DOP is not
supported, local means shall be used to modify the RHOBs.

NOTE 2 – An appropriate time is specified by the DSA administrator, and might range from immediately after
(or even before) the operation result is returned to a periodic strategy (e.g. at an appointed hour). The time may vary
depending upon the reason for the modification, e.g. updates to ACI taking immediate effect and changes to schema
being done periodically.

7) If the added entry or subentry is within the UnitOfReplication of one or more shadowing agreements,
then the shadow consumers shall be updated using the procedures of the Directory information shadow
service specified in ITU-T Rec. X.525 | ISO/IEC 9594-9.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

44 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

TISO3720-94/d15

Enter

Return
Error

Return
Error

Return
UpdateError

entryAlreadyExists

Return
ServiceError

unwillingToPerform

Return UpdateError
or AttributeError

Return

Schedule modification
of RHOBs with

subordinate DSAs
Add the new

Subentry

Check
System-schema

Type of entry
to be added?

targetSystem
present?

Check name
is unique

targetSystem is
this DSA?

Local
policy?

subentry
service control

set?

Establish hierarchical
operational binding with

subordinate DSA

Successful?
Add the new

entry
Check

Sub-schema

entry

Fail

Fails

Fails

Yes No

Yes

OK

Yes

No

Not OK

OK

Note
shadows(s)
will need to
be updated

OK

Subentry

No

OK

OK

Check
ACI

Figure 13 – Add Entry procedure

Yes

No

Fail

FIGURE 13/X.518...[D15] = 18.5 CM

19.1.2 Remove Entry Operation

1) The DSA shall check that the initiator has sufficient access rights, e.g. as defined, in 11.2.5 of ITU-T
Rec. X.511 | ISO/IEC 9594-3. If not, an appropriate error is returned.

2) The DSA shall ensure that the entry to be removed is a leaf entry. Otherwise the DSA shall return an
UpdateError with problem notAllowedOnNonLeaf.

3) The DSE type of the entry to be removed is checked. If subentry, continue at step 5). If cp, continue at
step 6). If entry or alias, continue at step 4).

4) Remove the entry or alias entry and continue at step 7).

5) Remove the subentry. At an appropriate time, modify the operational bindings of all relevant subordinate
DSAs with which the current DSA has hierarchical or non-specific hierarchical operational bindings. The
relevant bindings are those which are associated with naming contexts subordinate to the superior DSE.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 45

Naming contexts whose context prefixes correspond to autonomous administrative points are not relevant.
If the DOP is supported, the procedures in 24.3.2.1 and 25.3.2 shall be followed, otherwise local means
shall be used. Continue at step 7).

6) Remove the naming context. If the DSA has a hierarchical operational binding for this naming context, it
shall terminate the hierarchical operational binding with its immediately superior DSA. If the DSA has a
non-specific hierarchical operational binding for this naming context, and this is the last naming context
of the non-specific hierarchical operational binding, then it shall terminate the non-specific hierarchical
operational binding with its immediately superior DSA. If the DOP is supported, the procedures in
24.3.3.2 and 25.3.3.2 shall be followed, otherwise local means are used to terminate the RHOB.

7) If the removed naming context, entry, alias entry or subentry was within the UnitOfReplication of one or
more shadowing agreements, then the shadow consumers shall be updated using the procedures of the
Directory information shadow service specified in ITU-T Rec. X.525 | ISO/IEC 9594-9.

If the removed subordinate or non-specific subordinate reference in the immediately superior DSA
(whose RHOB was terminated), was within the UnitOfReplication of one or more shadowing
agreements, then the shadow consumers shall be updated using the procedures of the Directory
information shadow service specified in ITU-T Rec. X.525 | ISO/IEC 9594-9.

TISO3730-94/d16

Enter

Check ACI

Is target a leaf
entry?

Type of DSE to
be removed?

Return
Error Return

Return
UpdateError

notAllowedOnNonLeaf

Note
shadow(s)
will need to
be updated

Remove the
entry

Remove the
subentry

Schedule modification
of RHOBs with
subordinate DSAs

Remove naming
context

Last Naming
Context?

Non-specific
hierarchical binding

exists?

Terminate NHOB
with superior DSA

Terminate HOB
with superior DSA

entry/alias

subEntry

Fails

OK

No

cp

No

Yes

Yes

No

Figure 14 – Remove entry procedure

Yes

FIGURE 14/X.518...[D16] = 16 CM

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

46 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

19.1.3 Modify Entry Operation

1) The DSA shall check that the initiator has access rights, e.g. as defined, in 11.3.5 of ITU-T Rec. X.511 |
ISO/IEC 9594-3. If not, an appropriate error is returned.

2) The modifications to the entry, alias entry or subentry shall conform to the sub-schema or system schema
respectively, otherwise, the DSA shall return an appropriate UpdateError or AttributeError. After
performing the modifications, if the target DSE is of type subentry, continue at step 3), otherwise
continue at step 4).

3) The DSA shall, at an appropriate time, modify the operational bindings with all relevant subordinate
DSAs with which it has hierarchical or non-specific hierarchical operational bindings. The relevant
bindings are those which are associated with naming contexts that are subordinate to the administrative
point that the modified subentry is located below. Naming contexts whose context prefixes correspond to
autonomous administrative points are not relevant. If the DOP is supported, the procedure in 24.3.2.1 and
25.3.2 shall be followed, otherwise local means are used.

4) If the modified entry, alias entry or subentry was within the UnitOfReplication of one or more
shadowing agreements, then the shadow consumers shall be updated using the procedures of the
Directory information shadow service specified in ITU-T Rec. X.525 | ISO/IEC 9594-9.

TISO3740-94/d17

Enter

Return
Error

Return

Return UpdateError
or AttributeError

Check
ACI

Type of DSE to
be modified?

Check
System-schema

Update
Subentry

Schedule modification
of RHOBS with

subordinate DSAs

Check
Sub-schema

Update entry

Note
shadow(s)
will need to
be updated

Fails

entry/alias

Fail

OK

OK

OK

Figure 15 – Modify Entry procedure

FailSubentry

FIGURE 15/X.518...[D17] = 11 CM

19.1.4 Modify DN operation

1) The DSA shall check that the initiator has sufficient access rights, e.g. as defined in 11.4.5 of ITU-T
Rec. X.511 | ISO/IEC 9594-3. If not, an appropriate error is returned.

2) If the operation is to move an entry to a new superior within the same DSA, go to step 3). If the operation
is to change the Relative Distinguished Name of an entry, go to step 4).

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 47

3) The operation shall be performed according to the definition in 11.4.1 of ITU-T Rec. 511 | ISO/IEC
9594-3. If either the old superior, the new superior, the entry or any of its subordinates are in another
DSA, or if the new superior has NSSRs, then the operation shall be rejected with UpdateError
affectsMultipleDSAs. Otherwise move the entries within the DSA and go to step 9).

4) The following text is applicable to changing the relative distinguished name of an entry, which may or
may not be a leaf entry, and which may or may not have one or more subordinates in one or more DSAs.
The DSE type of the entry to be renamed is checked. If subentry, continue at step 7). If cp, continue at
step 6). If entry or alias, continue at step 5).

5) The DSA shall ensure that no other entry with the new name already exists, otherwise it shall return an
UpdateError with problem entryAlreadyExists. If the superior DSE of the entry to be renamed is of
additional type nssr, the DSA shall follow the procedure defined in 19.1.5 (Modify Operations and
NSSRs) to ensure that the new name of the entry is unambiguous. The DSA shall ensure that the new
name of the entry conforms to the sub-schema, otherwise it shall return an appropriate AttributeError or
UpdateError. Rename the entry or alias entry. If the entry is a non-leaf entry and has subordinates in
other DSAs, continue at step 8), otherwise continue at step 9).

6) The DSA shall ensure that the new name of the naming context conforms to the sub-schema, otherwise it
shall return an appropriate AttributeError or UpdateError.

If the DSA has a HOB with the superior DSA, then the subordinate DSA shall attempt to modify the HOB
before responding to the Modify DN operation. The superior DSA shall ensure that no other entry with
the new name already exists, before accepting the modification. If the DOP is supported, the procedure
in 24.3.2.2 shall be followed. If the DOP is not supported, it is a local matter how the HOB is modified
and the new name is checked for uniqueness. If the HOB is successfully modified, and the naming context
has subordinate naming contexts in other DSAs, go to step 8), otherwise go to step 9). If the HOB cannot
be modified return UpdateError with problem affectsMultipleDSAs.

If the DSA has a NHOB for this naming context with the superior DSA, then how duplicate entries are
detected is outside the scope of this Directory Specification. Rename the entry. If the naming context has
subordinate naming contexts in other DSAs, go to step 8), otherwise go to step 9).

7) The DSA shall ensure that the new name of the subentry conforms to the system schema, otherwise it
shall return an appropriate AttributeError or UpdateError. The DSA shall ensure that no other subentry
with the new name already exists, otherwise it shall return an UpdateError with problem
entryAlreadyExists.

8) The DSA shall, at an appropriate time, modify the operational bindings of all relevant subordinate DSAs
with which it has hierarchical or non-specific hierarchical operational bindings. The relevant bindings are
those which are associated with all naming contexts that are subordinate to the entry being renamed, or
relevant naming contexts that are subordinate to the administrative point whose subentry was renamed.
Naming contexts whose context prefixes correspond to autonomous administrative points are not relevant.
If the DOP is supported, the procedures in 24.3.2.1 and 25.3.2 shall be followed, otherwise local means
shall be used to update the RHOBs.

9) If the renamed naming context, entry or any of its subordinates, alias entry or subentry is within the
UnitOfReplication of one or more shadowing agreements held by the DSA, then the shadow consumers
shall be updated using the procedures of the Directory information shadow service specified in ITU-T
Rec. X.525 | ISO 9594-9.

If the renamed subordinate reference in the immediately superior DSA [whose HOB was modified in
step 6) above], is within the UnitOfReplication of one or more of its shadowing agreements, then the
shadow consumers shall be updated using the procedures of the Directory information shadow service
specified in ITU-T Rec. X.525 | ISO/IEC 9594-9.

If components of a RHOB with a subordinate DSA [as modified in step 8) above] are within the
UnitOfReplication of one or more shadowing agreements held by the subordinate DSA, then the shadow
consumers shall be updated using the procedures of the Directory information shadow service specified in
ITU-T Rec. X.525 | ISO/IEC 9594-9.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

48 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

TISO3750-94/d18

Enter
Return
Error

Return
Error

Schedule modification
of RHOBs with

subordinate DSAs

Check
Sub-schema

OK

OK

OK

Yes

No

Modify RDN?

Check new
name doesn’t

exist

Check
ACI

Type of DSE to
be renamed?

Check
System-schema

Is
entry

in this DSA?

Subentry

Yes

Return
Error

Fail

Return UpdateError
or AttributeError

Rename the
Subentry

Modify hierarchical
operational binding

with subordinate DSA

Check
ACI

New superior and
the whole subtree

are in the same DSA?

Return
UpdateError

affectsMultipleDSAs

No

No

entry or alias

OK

Yes

OK

Yes

Fail

Rename
the DSE

Referenced
by NSSR?

No
Success?

Rename/Move entries
within subtree

Note
shadow(s)
will need to
be updated

No

Fail

Yes

Figure 16 – Modify DN procedure

Already exists

Fail

FIGURE 16/X.518...[D18] = 20.5 CM

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 49

19.1.5 Modify operations and Non-Specific Subordinate References

If a DSA has NSSRs and does not know the complete set of names of the subordinates of an entry, to which either

a) an AddEntry operation has been directed; or

b) a ModifyDN operation has been directed;

then the DSA may perform the following set of procedures prior to performing the operation.

1) If the chainingProhibited ServiceControl is set on the AddEntry or ModifyDN operation, return
UpdateError with problem affectsMultipleDSAs.

2) If the DSA is unwilling or unable to multi-chain outgoing requests, return ServiceError with problem
unwillingToPerform or unavailable, respectively.

3) The DSA shall multi-chain a ChainedReadEntry operation to each master DSA in the set of
accessPointInformation of the NSSR (The DSA shall only use the master DSA from each
MasterAndShadowAccessPoints due to transient inconsistency caused by shadowing). The parameters
of the ReadArgument shall be set as follows:

object to either the name of the entry to be added (in the case of AddEntry), or to the proposed
name of an existing entry (in the case of ModifyDN).

selection the object class attribute.

The parameters of CommonArguments shall be set as follows:

– ServiceControls.options set to dontDereferenceAliases;

– OperationProgress.nameResolutionPhase set to completed.

The parameters of ChainingArguments shall be set as follows:

– originator set to the name of the originator;

– targetObject is omitted;

– OperationProgress.nameResolutionPhase set to proceeding and nextRDNToBeResolved to
(number of RDNs in the object name) – 1;

– traceInformation set to an empty sequence;

– referenceType set to nonSpecificSubordinate.

Other parameters, e.g. SecurityParameters, may be set as appropriate e.g. by local policy.

4) The DSA waits for the complete set of responses. If any of the response is a ReadResult, then an error
shall be returned as in 6) below.

5) If all responses are ServiceError with problem unableToProceed, operation evaluation may proceed.

6) If a ReadResult is returned, an UpdateError with problem entryAlreadyExists shall be returned for the
original operation;

7) If any other error is returned to the ReadEntry request, a ServiceError with problem
unwillingToPerform shall be returned.

The DSA receiving the ChainedReadRequest shall give a response according to the presence or not of the entry, and its
access control policy.

19.2 Single entry interrogation procedure

The operations Read, ChainedRead, Compare, and ChainedCompare fall into the group of single entry interrogation
procedures. These procedures contain only the following three steps:

1) Check access control, as described in clause 10 of ITU-T Rec. X.511 | ISO/IEC 9594-3. If the operation is
disallowed, return the appropriate security error.

2) Perform the operation on the found DSE as described in clause 9 of ITU-T Rec. X.511 | ISO/IEC 9594-3.

3) Prepare the reply, and return.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

50 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

19.3 Multiple entry interrogation procedure

According to the type of interrogation operation (List or Search), the corresponding procedures defined in 19.3.1
and 19.3.2 shall be followed.

19.3.1 List Procedure

This subclause specifies the evaluation procedure specific to List and ChainedList operations.

The List Procedure (I) procedure shall be followed when the List request’s operationProgress nameResolutionPhase
component is set to notStarted or proceeding and when the DSA, after performing Name Resolution, finds that it holds
the base object. The List Procedure (II) procedure shall be followed when the List request’s nameResolutionPhase
component is set to completed.

19.3.1.1 Procedure parameters

19.3.1.1.1 Arguments

The arguments that are used by this procedure are:

– the Argument;

– the target DSE e;

– operationProgress of the chainingArgument.

19.3.1.1.2 Results

If this procedure is successfully executed, it returns:

– a set of subordinates of e in listInfo.subordinates;

– limitProblem indicated in partialOutcomeQualifier;

– a set of continuation references in SRcontinuationList.

19.3.1.1.3 Errors

The procedure can result in one of the following errors returned to the requesting DUA/DSA:

– an accessControlError or nameProblem;

– any error defined for the find DSE procedure, when an alias has been dereferenced.

19.3.1.2 Procedure definition

The sub-procedures as defined in 19.3.2.2.1 and 19.3.2.2.2 shall be invoked according to the following rules.

19.3.1.2.1 List procedure (I)

The List procedure (I) consists of the following steps as depicted in Figure 17:

1) If the service control subentry is set, then for each subentry for which access is permitted, add the RDNs
of the immediate subordinate DSEs (of type subentry) of e’ to listResult.subordinates. If access is not
permitted to any one subentry, then ignore that subentry.

2) If DSE e is of type nssr, then add a continuationReference to SRcontinuationList with the following
components:

– targetObject set to the name of DSE e;

– aliasedRDNs absent;

– operationProgress with nameResolutionPhase set to completed and nextRDNtoBe Resolved
absent;

– rdnsResolved absent;

– referenceType set to nonSpecificSubordinate;

– accessPoints set to a set of accessPointInformation each derived from a value of the nonSpecific-
Knowledge attribute of DSE e.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 51

3) For each DSE e’ immediately subordinate to DSE e execute the following steps:

a) Check the ACI in e’ if available. If the ACI disallows listing the RDN of e’, then skip this DSE. If
the ACI is not available (for example in the case of subordinate references and glue), then it is a local
policy whether to proceed.

b) Check all the DSE types of e’.

i) If e’ is of type subr, then there are two cases. In the first case, the subordinate entry’s ACI and
object class is available locally, in which case, based on local policy and the ACI’s permission,
add the RDN of e’ to listResult.subordinates with aliasEntry set to True if e’ is of type sa,
and fromEntry set False. The other case is when the ACI of the entry is not available in e’, in
which case add a continuationReference to SRcontinuationList with the following
components:

– targetObject set to the name of DSE e;

– aliasedRDNs absent;

– operationProgress with nameResolutionPhase set to completed and
nextRDNtoBeResolved absent;

– rdnsResolved absent;

– referenceType set to subordinate;

– accessPoints set to the value contained in the specificKnowledge attribute of DSE e’.

ii) If the DSE e’ is of type entry or glue, then add the RDN of e’ to listResult.subordinates with
aliasEntry set to False and fromEntry set according to whether e’ is a copy.

NOTE – In the case that e’ is glue, it must have one or more subordinates which implies it cannot be an
alias in the master DSA. Also, any ACI relevant to List is stored in this DSE, supplied via the shadowing
protocol.

iii) If the DSE e’ is of type alias, then add the RDN of e’ to listResult.subordinates with
aliasEntry set to True, and fromEntry set according to whether e’ is a copy.

c) Check if time, size or administrative is exceeded. If so, set limitProblem accordingly in
partialOutcomeQualifier and return.

d) continue from step 3), a) until all subordinate DSEs have been processed.

4) if all subordinates DSEs have been processed, return to the operation dispatcher.

19.3.1.2.2 List procedure (II)

The List procedure (II) consists of the following steps as depicted in Figure 18:

1) For each DSEs e’ immediately subordinate to DSE e, execute steps 1), a) to 1), d):

a) Check ACI in e’. If the operation is disallowed by the ACI, continue with the next immediate
subordinate of e.

b) Add the RDN of DSE e’ to listResult.subordinates, with the aliasEntry component of
listResult.subordinates to according to whether e’ is an alias, and the fromEntry component set
depending on whether e’ is a copy or not. Ignore those DSEs of type shadow, if excludeShadows is
TRUE.

c) Check if time, size or administrative limit is exceeded. If so, set the limitProblem of
partialOutcomeQualifier accordingly and return.

d) continue from step 1), a) until all subordinate DSEs have been processed.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

52 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

2) if all subordinate DSEs have been processed, check if this subrequest came from DAP or DSP. In case
this subrequest is submitted via DAP, and the listResult is empty, then return a serviceError
invalidReference to the Operation Dispatcher. Otherwise, the listResult is returned.

NOTE – invalidReference is used as a security precaution in case the user does not have access to the superior
entry. If the superior’s entry ACI is available (provided by the RMOB), then a null result may be returned if allowed.

TISO3760-94/d19

Enter Return
error

Return
ListResult

Include all
subentry

RDNs in result

Check
ACI

Subentries
set?

DSE type
of target =

nssr?

Add a continuation reference
with all APls contained in

nonSpecificKnowledge attribute
to SRcontinuationList

Yes

Yes

OK

No

No

Process each DSE e′ immediately subordinate to DSE e
All e’s

processed

No

Yes

setlimitProblem of
partialOutcomeQualifier

Time,
size, administrative

limit exceeded?

Add RDN of e′ to listinfo. Set
aliasEntry and fromEntry

according to dse type

Check
ACI

dse type

Availability of ACI
and local policy

Add RDN of e′ to listinfo. Set
aliasEntry and fromEntry

according to dse type

Add a continuation reference from
access point information in
specificKnowledge attribute

to SRcontinuationList

OK

Not OK

Other

OK

subr

entry,
alias,
glue

Fails

next e’

Fail

Figure 17 – List procedure (I)

FIGURE 17/X.518...[D19] = 19 CM

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 53

TISO3770-94/d20

Enter
IistResult

Return
ServiceError

invalid reference

Null
result? DAP?

No No

Yes Yes

Process each DSE e′ immediately subordinate to DSE e

Check
ACI

Fails

Add RDN of e′ to listinfo. Set aliasEntry
and fromEntry according to dse type

Time,
size, administrative

limit exceeded?

Yes

set limitProblem of
partialOutcomeQualifier

No

Next e′

All e’s
processed

Figure 18 – List procedure (II)

OK

FIGURE 18/X.518...[D20] = 12.5 CM

19.3.2 Search procedure

This subclause specifies the evaluation procedure specific to Search and ChainedSearch operations.

Search procedure (I) shall be followed when the search request’s operationProgress.nameResolutionPhase component
is set to notStarted or proceeding and when the DSA, after performing Name Resolution, finds that it holds the base
object. The Search Procedure (II) procedure shall be followed when the search request’s nameResolutionPhase
component is set to completed.

NOTE – When nameResolutionPhase is completed, the target object is expected to be the immediate superior of a
context prefix.

19.3.2.1 Procedure parameters

19.3.2.1.1 Arguments

The arguments that are used by this procedure are:

– the searchArgument;

– the target DSE e;

– operationProgress of the chainingArgument;

– exclusions of the chainingArgument (a list of RDNs to exclude from search).

19.3.2.1.2 Results

If this procedure is successfully executed, it returns:

– a set of matched Entries in searchResult.entryInformation;

– alreadySearched in chainingResults;

– a set of continuation references in SRcontinuationList.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

54 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

19.3.2.1.3 Errors

The procedure can result in one of the following errors returned to the requesting DUA/DSA:

– an accessControlError;

– any error defined for the find DSE procedure, when an alias has been dereferenced.

19.3.2.2 Procedure definition

19.3.2.2.1 Search procedure (I)

This is a recursive procedure that applies to a search request that starts at a given target entry e. It searches the target
entry e and then processes the DSEs immediately subordinate to e. The procedure is invoked by itself recursively in the
case that a whole subtree is to be searched. The procedure consists of the following steps as shown in Figure 19:

1) If the type of DSE e is of type cp (a DSE at a context prefix), check if any element of the exclusions
argument is a prefix of e’s DN.

a) If so, return.

b) Else, call Check Suitability.

i) If e is unsuitable, make a continuationReference as follows and add it to SRcontinuationList:

– targetObject set to the DN of the immediate superior of DSE e;

– aliasedRDNs absent;

– operationProgress with nameResolutionPhase set to completed and
nextRDNtoBeResolved absent;

– rdnsResolved absent;

– referenceType set to supplier;

– accessPoints set to accessPointInformation derived from the value(s) found in the
supplierKnowledge attribute in e.

Then return.

NOTE – This is the only place when a search subrequest (nameResolutionPhase is completed)
is chained to a shadow’s supplier. In other words, the target object for such a chained subrequest is
always a context prefix.

ii) Else, add the DistinguishedName of e to alreadySearched in ChainingResults,

NOTE 1 – alreadySearched only contains context prefixes.

2) If e is of type alias and searchAliases in searchArguement is True then call Search Alias procedure
and then return.

3) If subset is oneLevel, then proceed to step 6).

NOTE 2 – The e cannot be subordinate incomplete at this point since the Check Suitability at the context prefix
should have ascertained that this cannot happen.

4) If subset is baseObject, or if entryOnly is TRUE, and in addition, one of the following is TRUE:

a) e is of type subentry and the service control subentry is set; or

b) e is not of type subentry and the service control subentry is not set,

then do the following steps:

i) Check ACI. If the operation is disallowed, go to step 6).

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 55

ii) Apply the filter argument specified in the searchArgument.filter to the DSE e. Ensure that
access to all attributes used in the filter is permitted as defined in ITU-T Rec. X.501 | ISO/IEC
9594-2. If the filter matches, add the attributes selected by the searchArgument.selection to the
list of matched entries in searchResult.entryInformation. Only add attributes that are not
greater than the attrributeSizeLimit. It is a local matter how the appropriate collective
attributes are handled once an entry, whose attributes are to be included in a result, is found.

iii) Return.

If a) and b) are not true, then proceed to step 6).

5) If subset is subtree (and entryOnly is not True), and in addition one of the following is True:

a) e is of type subentry and the service control subentry is set; or

b) e is not of type subentry and the service control subentry is not set,

then do the following steps:

i) Check ACI. If the operation is disallowed, go to step 6).

ii) Apply the filter argument specified in the searchArgument.filter to the DSE e. Ensure that
access to all attributes used in the filter is permitted as defined in ITU-T Rec. X.501 | ISO/IEC
9594-2. If the filter matches, add the attributes selected by the searchArgument.selection to the
list of matched entries in searchResult.entryInformation. It is a local matter how the
appropriate collective attributes are handled once an entry, whose attributes are to be included in
a result, is found.

iii) Proceed to step 6).

6) If e is of type nssr, then add a continuationReference to SRcontinuationList with the following
components:

– targetObject set to the DN of DSE e;

– aliasedRDNs absent;

– operationProgress with nameResolutionPhase set to completed and nextRDNtoBeResolved
absent;

– rdnsResolved absent;

– referenceType set to nssr;

– accessPoints set to accessPointInformation derived from the value(s) found in the
nonSpecificKnowledge attribute.

7) Process all DSEs e’ that are located immediately subordinate to the target DSE e until all subordinate
DSEs have been processed. During this loop, if the list of matched entries in
searchResult.entryInformation exceeds the size limit, or time or administrative limit is exceeded then
set limitProblem accordingly in partialOutcomeQualifier and return.
NOTE 3 – The check for size limit is also implicitly applied every time searchResult is updated.

a) If the DSE e’ is of type subr, and not of type cp, then add a continuationReference to
SRcontinuationList with the following components:

– targetObject set to the name of DSE e;

– aliasedRDNs absent;

– operationProgress with nameResolutionPhase set to completed and nextRDNtoBeResolved
absent;

– rdnsResolved absent;

– referenceType set to subr;

– accessPoints set to the access point information contained in the specificKnowledge attribute
of DSE e’.

NOTE 4 – If e’ is of both type cp and subr, a search subrequest can be generated potentially from
either the subordinate reference or the supplier knowledge, but not both. This procedure uses the latter
(supplier references found in cp).

b) For all other cases, if the value of the subset parameter is oneLevel, set entryOnly to True and
recursively execute the Search Procedure(I) for target DSE e’.

8) If all subordinates have been processed, return to the operation dispatcher for further processing.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

56 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

TISO3780-94/d21

Enter Return

DSE e
of type cp?

Is e in
exclusions?

Add continuation reference
SRcontinuationList which
points to supplier
(including master)

Add DN of e to
alreadySearched

e of type
alias and

searchAliases =
TRUE?

Call Search
Alias Procedure

Call Check Suitability
Procedure for DSE e

Entry suitable

Yes

Yes

Yes

No

No

No

No

Yes

No match
Match e against

filter

e of type
subentry and

subentries set?

Yes

No No

Yes

OK

Match

Add selected
attributes of DSE

to searchinfo subset =
baseObject or entry

Only = TRUE?

Check
ACI

Fail

Yes

No

No

Yes
Add a continuation reference with

all access points contained in
attribute nonSpecificKnowledge to

SRcontinuationList

DSE e is of
type nssr?

Set targetObject to DN of e
All e’s

processed

No

Yes

Time,
size, administrative

limit exceeded?

Set limitProblem of
partialOutcomeQualifier

Add a continuation reference
for access point information
in specificKnowledge attribute
to SRcontinuationList

e′ of type
subr

e′ of type
cp

Yes

NoYes

No

Next e′

Process each DSE e′ immediately subordinate to DSE e

Call Search Procedure(l) with e′
If subset = oneLevel, set

entryOnly to TRUE

Figure 19 – Search procedure (I)

Entry unsuitable

Subset =
oneLevel?

e is not
subentry and
subentries
not set?

FIGURE 19/X.518...[D21] = 23 CM

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 57

19.3.2.2.2 Search procedure (II)

This procedure applies if a search request is processed that originated from a request decomposition at the DSA from
which the request was received. The procedure processes the DSEs below the target DSE e and calls the Search
procedure (I) for each object entry:

1) Process all DSEs e’ that are located immediately subordinate to the target DSE e until all subordinate
DSEs have been processed. When all subordinates have been processed, return to the operation dispatcher
for further processing.

2) If the DSE is not of type cp and entry, ignore it. Return to step 1).

3) If the DSE is of type cp and entry, call Check Suitability. If suitable go to step 4), otherwise ignore it
and return to step 1).

4) Execute the Search Procedure (I) for the DSE e’ as described in 19.3.2.2. If the DSE is of type alias and
the value of the subset parameter is set to oneLevel, set chainingArguments.entryOnly to True when
calling Search Procedure(I). Return to step 1).

TISO3790-94/d22

Enter

Return

Process each DSEs e′ of type cp immediately subordinate to DSE e

Call Check Suitability Procedure

Call SearchProcedure(l) with DSE e′

One level
search?

dse type
= alias

Yes

No

Yes

No

entryOnly =
TRUE

entry
unsuitable

All e’s
processed

entry suitable

Figure 20 – Search procedure (II)

Next e′

FIGURE 20/X.518...[D22] = 11.5 CM

19.3.2.2.3 Search Alias procedure

This procedure is executed if a DSE of type alias has been encountered during the processing of a search request:

1) If subset is baseObject or oneLevel, go to step 4).

2) If aliasedEntryName is a prefix of targetObject or baseObject, then the alias is excluded from the
search because this would cause a recursive search with duplicate results.

3) If targetObject or baseObject is a prefix of aliasedEntryName, then no specific processing of the alias
is required because the aliased subtree will be searched anyway.

NOTE – For both of the above cases, baseObject may not be prefix of targetObject, due to alias dereferencing.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

58 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

4) Build a DSP request with the target object set to the aliasedEntryName. If subset is oneLevel, set
entryOnly to True. Call the Operation Dispatcher for the request to be locally continued.

5) If the operation dispatcher returns a referral error, or busy, or unavailable errors then add (or make and
add) the continuation reference to partialOutcomeQualifier of searchResult, and return.

6) If the operation dispatcher returns other errors, discard it and return.

7) If the operation dispatcher returns a searchResult, then:

i) If the result is signed, add it to uncorrelatedSearchInfo in searchResult.

ii) If the result is not signed, add it to searchInfo in searchResult.

and return.

TISO3800-94/d23

Enter

Return

aliasedObjectName is
prefix of baseObject or

targetObject?

baseObject or
targetObject is prefix

of aliasedObjectName?

Build a local DSP request

Call operation Dispatcher

Signed?

Yes

No

Add to uncorrelatedSearchinfo

Add to searchinfo

Discard

Add continuationReference
to partialOutcomeQualifier

Yes

Yes

No

Error

Referral

Result

Figure 21 – Search alias procedure

No

FIGURE 21/X.518...[D23] = 17.5 CM

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 59

20 Continuation Reference procedures

The procedures in this clause are called to process the list of continuation references (NRcontinuationList or
SRcontinuationList) created by other procedures.

The Continuation Reference procedures consist of the steps shown in Figures 24, 25, and 26. The first stage is to identify
sets of continuation references from the continuation list that have a common target object component. These have been
created from a set of subordinate or non-specific subordinate references associated with the same entry in the DIT.

These sets (each with a different target object component) may be processed independently, either sequentially or in
parallel by the DSA, since there is no risk that the same results will be returned from any two sets. However, the
processing of each continuation reference within one set, and of each access point information within one continuation
reference, and of each access point within one access point information, has to be controlled, or duplicate results may
occur, as described in 20.1.

The procedure adopted in the APInfo procedure, is to process one by one the set of access points contained in a single
access point information. These all point to (copies of) the same naming context (or possibly a set of naming contexts
held in one DSA in the case of NSSRs). If the first access point produces a result or a hard error, further access points do
not need to be processed. However, if the error is a soft error, i.e. a Service Error (busy, unavailable,
unwillingToPerform, invalidReference or administrativeLimitExceeded), then the DSA may choose, as a local
option, to process another access point from the set.

Processing of the access point information values within one set of continuation references, is handled in a uniform way,
irrespective of which continuation reference they originated from. (This is because two DSEs of type subr below a
single entry would produce two continuation references, each containing one accessPointInformation value, whereas
one DSE of type nssr to the same two subordinates (assuming that they are held in different DSAs), would produce one
continuation reference containing a set of two accessPointInformation values.)

The accessPointInformation values may be processed either sequentially or in parallel, as described in 20.1. The
parallel strategy is more likely to produce duplicate results. Duplicates shall always be discarded.

20.1 Chaining strategy in the presence of shadowing

In the presence of shadowing, a DSA may choose between different strategies when it has to multi-chain request to more
than one DSA. This choice always occurs if the DSA has to process more than one continuation reference with the same
targetObject. This situation can occur from multi-chaining caused by NSSR decomposition during Name Resolution (as
shown in Figure 22) or from request decomposition during the evaluation of a multiple object operation (see Figure 23).

The goal of these strategies is to deal with the problem of duplicate results and duplicate processing when shadowed
information is used in multi-chaining of requests (caused by either NSSR or request decomposition). For example, in
Figure 22, DSA 1 multi-chains a request to both DSAs 2 and 3 because of the NSSR held in DSE B. If the use of
shadowed information is allowed, both DSAs 2 and 3 may apply the chained operation to both subtrees starting at X
and Y.

Similarly, in Figure 23, DSA 1 multi-chains (as a result of request decomposition) to the two subordinate references held
in DSEs X and Y. Again, if the use of shadowed information is allowed, both DSAs 2 and 3 may apply the chained
operation to both subtrees starting at X and Y.

To deal with this problem of duplication, a DSA may choose one of the following strategies when multi-chaining to
multiple DSA requests with the same targetObject.

20.1.1 Master only strategy

A DSA may choose this strategy to prevent the usage of shadowed information when performing a parallel or sequential
multi-chaining caused by nssr decomposition, or request decomposition during a Search or List evaluation. For this
strategy, during a Search or List operation evaluation the excludeShadows component of the chainingArgument is set
to TRUE. If NSSRs are encountered during Name Resolution, a DSA may set nameResolveOnMaster to TRUE to
ensure that only a single path is followed. nameResolveOnMaster shall be set to TRUE if NSSR are encountered and
the operation is one of the Directory modification operations. In either case, only the DSA(s) that hold the master entry
(or entries) relevant to the operation shall perform the operation. This master only strategy can be used during both
parallel as well as sequential multi-chaining.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

60 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

B

X

A

B

A

X Y

B

A

Y

TISO3810-94/d24

DSA 1

DSA 2 DSA 3

nssr to DSA 2
arfd DSA 3Chained

Request with
targeObject B

Chained
Request with
targeObject B

ShadowShadow

Figure 22 – Multi-chaining caused by NSSR during Name Resolution

FIGURE 22/X.518...[D24] = 13 CM

20.1.2 Parallel strategy

Using this strategy, a DSA sends out all chained requests by parallel multi-chaining. This strategy may be used during
Search or List evaluation, and name resolution of the NSSRs. This will allow the use of shadowed information for
processing of the chained-requests, but may result in duplicate executions and duplicate results for the operation. If a
DSA selects this strategy, it shall remove duplicate results from the operation result that it returns.

Because the removal of duplicate results is not possible if a signed result has been requested, a DSA shall not choose this
strategy if signed results are requested during Search evaluation, unless excludeShadows is also set.

20.1.3 Sequential strategy

This strategy avoids duplicate results by using sequential multi-chaining to process the chained (sub-)requests of a
Search decomposition or of a NSSR decomposition. Each chained request is processed one after the other.

In the case of NSSR decomposition, if a result or a hard error is returned to a request, further requests do not need to be
chained. If a soft error is returned, a further request may be chained, or the soft error returned to the requester, depending
upon local policy.

In the case of Search evaluation, the exclusions component of the chainingArguments is set to the set of RDNs that
have already been processed. This is done by incorporating the elements in chainingResult.alreadySearched to the
exclusions argument of the next chained request. This is the only strategy that completely avoids duplication during
Search evaluation.

A sequential strategy is not defined for List evaluation (although sequential multi-chaining may be used), since a
superior DSA has no way of excluding specific subordinates from being returned in further List sub-requests (note that
excludeShadows does not exclude specific subordinates, but rather is a coarse way of excluding all shadows).

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 61

B

X

A

B

A

X Y

B

A

Y

TISO3820-94/d25

X Y

DSA 1

subr to
DSA 2

subr to
DSA 3 Chained

Sub-Request
with

targeObject B

Chained
Sub-Request

with
targeObject B

DSA 2 DSA 3

Shadow Shadow

Figure 23 – Multi-chaining Request Decomposition using Subordinate References

FIGURE 23/X.518...[D25] = 13.5 CM

20.2 Issuing chained sub-requests to a remote DSA

Prior to issuing a sub-request, a DSA has to execute a BIND operation when the DSA has to establish an association to
the remote DSA. Management of associations is outside the scope of the Directory Specifications. An association to
another DSA is considered unavailable if the association cannot be established or the DSA for local reasons decides not
to establish one. In this case the BIND has failed. It is a local decision when to stop trying establishing an association
and declare an association as unavailable.

When a DSA tries BIND to another DSA and receives a BindError, the issuing of the sub-request failed.

20.3 Procedures’ parameters

20.3.1 Arguments

These procedures make use of the following arguments:

– the list of continuation references to process in NRcontinuationList (for the Name Resolution
Continuation Reference Procedure), and SRcontinuationList (for the List and Search Continuation
Reference Procedures respectively);

– the commonArguments of the operation argument;

– the chainingArgument.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

62 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

20.3.2 Results

These procedures create the following results:

– a list of received results/errors of issued chained requests if chaining has been selected;

– an updated list of unprocessed continuation references in continuationList.

20.3.3 Errors

These procedures can return one of the following errors:

– a serviceError outOfScope in the case that a referral would have been created which is not within
scopeOfReferral;

– a serviceError DITerror in the case that an invalid knowledge reference has been detected;

– a nameError noSuchObject in the case that all sub-requests from NSSR decomposition returned
unableToProceed;

– any other error that is returned by a chained sub-request;

– a referralError in the case that chaining was not selected and operationProgress.nameResolution is set
to notStarted or proceeding.

20.4 Definition of the Procedures

If operationProgress.nameResolutionPhase is set to notStarted or proceeding, the procedure in 20.4.1 (Name
Resolution Continuation Reference procedure) shall be followed. The multiple entry interrogation operations List and
Search respectively call the procedures in 20.4.2 and 20.4.3.

20.4.1 Name Resolution Continuation Reference procedure

The Name Resolution Continuation Reference procedure consists of the steps as shown in Figure 24. The basic principle
of this procedure is to sequentially process the set of continuation references created during Name Resolution.
The following steps shall be executed for each continuation reference C contained in NRcontinuationList in a selected
order until all references have been processed or an error or result has been returned. If all references have been
processed, return to the Operation Dispatcher to continue with the Result Merging procedure to process the received
result or referral.

1) Check whether chainingProhibited is set. If it is set, then the DSA is not allowed to chain. According to
local policy, either a ServiceError with problem chainingRequired or a Referral is returned to the
Operation Dispatcher.

2) If ChainingProhibited is not set, then check if local policy allows chaining. If chaining is not allowed,
then return a Referral. If local policy allows chaining, then continue with the next step.

3) Process each of the Continuation References of the list of Continuation References found in
NRcontinuationList. If there are no more unprocessed Continuation References then return with
ServiceError.

4) Process the next Continuation Referenced C from NRcontinuationList. If it is a NSSR, then continue at
step 5). If it is not a NSSR, then call the APInfo procedure to process it. Distinguish between the
possible returns of the APInfo procedure:

– If the APInfo procedure returns a null result, continue at step 3) with processing the next
Continuation Reference.

– If the APInfo procedure returns an error, Referral or result, then return it.

5) In this case, the Continuation Reference is of type NSSR and the DSA has the choice of doing sequential
or parallel chaining, depending on the local choice of strategy. If the NSSR is to be processed
sequentially, then continue at step 6). If it is to be processed in parallel, then for each of the
accessPointInformation (API) in the NSSR the APInfo procedure is called so that they are processed in
parallel. Wait for all the API to be processed, i.e. wait for all the calls to the APInfo procedure to return.
Check all the results received from the call to the APInfo procedure in the following order:

– If all the call return a ServiceError with problem unableToProceed, then return NameError.

– If one or more results are received, then discard possible duplicates and return the result.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 63

– If an error is received that is not a ServiceError (e.g. a NameError), then return an error.

– Otherwise return a Referral or ServiceError to the Operation Dispatcher, according to local
choice.

6) Choose the next unprocessed API from the set of APIs in the NSSR and continue at step 7). If all the
API’s have been processed, then check if all the calls to the APInfo procedure returned a ServiceError
with problem unableToProceed. If they did, then the entry cannot be found and a NameError is
returned; if they did not, then, according to local choice, a Referral or ServiceError is returned.

7) Call the APInfo procedure. Distinguish between the possible results from the call to APInfo procedure:

– If a ServiceError with problem unableToProceed is received, try another Access Point. Continue at
step 6).

– If a ServiceError with problem busy, unavailable, unwillingToPerform or invalidReference is
received, then the indicated problem may of transient nature and it is a local choice to try and chain
the request on to another DSA. If it is chosen to try another DSA, then continue at step 6); otherwise
return a Referral or ServiceError, according to local choice.

– If an error other than ServiceError with problem busy, unavailable, unwillingToPerform,
invalidReference or unableToProceed is received, that error should be returned to the Operation
Dispatcher. If the ServiceError is invalidReference, this shall be converted into DITError before
being returned to the requester.

– If a result or Referral is received, return it to the Operation Dispatcher.

20.4.3 List Continuation Reference procedure

The List Continuation Reference procedure consists of the steps shown in Figure 25. This procedure is invoked when a
List request cannot be satisfied in the local DSA and a set of continuation references have been added to
SRcontinuationList for chaining or referral. All these continuation references (CR) have the same targetObject. Those
CRs with referenceType nssr have one or more accessPointInformation values (APIs), whereas other type CRs have
only one API in them. Each of these API is extracted and considered for chaining or referral.

The following steps shall be executed:

1) If any of the limit problem has been exceeded thus far, then return to the Operation Dispatcher to
continue with the Result Merging procedure.

2) If the chainingProhibited flag in commonArguments.serviceControls is set or the DSA decides not to
do any chaining because of its local operational, then the DSA shall directly return to the Operation
Dispatcher to continue with the Result Merging procedure.

3) Create a set of AccessPointInformation values from the accessPoints component of every continuation
references in the SRcontinuationList.

Use either parallel or sequential strategy to process each API as follows:

i) Call the APInfo procedure with the next API in the set.

ii) If a result is returned then add it to listInfo if it is not signed, or add it to uncorrelatedListInof if it
is signed.

iii) If the return is an error or null, it means that APInfo has already tried all access points in the API
without success. Based on local operational and security policy, either ignore and proceed to the next
API, or add a continuation reference based on this API to the partialOutcomeQualifier.

NOTE – It is not plausible to get a referral back from APInfo. Any “referral” should come in the form of
unexplored in partialOutcomeQualifier.

4) When all APIs are processed, return to the Operation Dispatcher.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

64 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

TISO3830-94/d26

Enter Return
ServiceError

chainingRequired

chainingProhibited
set?

Local
policy?

Return
Referral

Error

Return
ServiceError

Local DSA
policy allows

chaining?

Process each continuation reference C from NRcontinuationList

NSSR? Call APInfo Procedure

Return
Error

Return
result

Return
Error

Return
Referral

Return
result

Return
NameError

Process each accessPointInformation API

Call APInfo Procedure

Call APInfo Procedure for
each AccessPointInformation

Next API

Unable
to
proceed

Yes

Yes

Yes

Yes

No

No

No

No
No

Yes

Try
another?

referral

result

error

All
unable ToProceed

Service Errors?
Return

NameError

Local
choice:
Return
Referral

or Service
Error

A
non-service

error?

One or
more

results

All
unable ToProceed

Service Errors?

All API’s
processed

sequential

Strategy?

Next C

No

Parallel

null
error

referral

result

busy,
unavailable,
unwilling,
invalid ref

Discard
duplicates

refer

No

No

Yes

Yes

Yes

Figure 24 – Name Resolution Continuation Reference procedure

All C’s
processed

FIGURE 24/X.518...[D26] = 22.5 CM

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 65

TISO3840-94/d27

Enter

Limit
exceeded?

chainingProhibited

Local policy Return

Yes

Yes

No

No

Chain

Do not
chain

Extract all APIs from the continuation references, and process each using either
parallel or sequential strategy

All API’s processed

Next API

Call APInfo Procedure

referral

Implausible

Result
signed

Add a continuation
reference based on
this API, and add it to
partialOutcomeQualifier.
unexplored

Add result to listInfo

Add result to
uncorrelatedListInfo

Yes

No

error or
null

result

Figure 25 – List Continuation Reference procedure

FIGURE 25/X.518...[D27] = 16.5 CM

20.4.4 Search Continuation Reference procedure

The Search Continuation Reference procedure consists of the steps shown in Figure 26. This procedure is invoked when
a Search request cannot be satisfied in the local DSA and a set of continuation references have been added to
SRcontinuationList for chaining or referral. The procedure is very similar to the List Continuation Reference
procedure. The difference is that in this case the continuation references in SRcontinuationList may have different
targetObject values. Thus the continuation references are sorted into sets of continuation references with the same
targetObject Also, the use of exclusions and alreadySearched chaining arguments and reply is defined, as this is an
important strategy for search. The use of exclusions and alreadySearched is applied to processing each set of
continuation references with the same targetObject.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

66 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

TISO3850-94/d28

Enter

Limit
exceeded?

chainingProhibited
set?

Local policy? Return
Do not chain

Yes

Yes

No

No

Chain

All sets
processed

Sort continuation references into
sets that have the same target object

Process each target objet set (either sequentially or in parallel)

Compare each element of alreadySearched with target object, and add matched elements to exclusions

Extract all APIs from the set of continuation references

Process each accessPointInformation API

Add to partial
Outcome
Qualifier.
unexplored

All API’s
processed

Call APinfo Procedure

Implausible

Strategy

Add to searchInfo

Add to uncorrelated-
SearchInfo

Signed?

Merge alreadySearched
of incoming result into
ChainingResults.already
Searched

Update exclusions for
next API, using incoming
alreadySearched

parallelresulterror
null

Next API

referral

sequential

No

Yes

Figure 26 – Search Continuation Reference procedure

Next set

FIGURE 26/X.518...[D28] = 20.5 CM

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 67

The following steps shall be executed:

1) If any of the limit problem has been exceeded thus far, then return to the Operation Dispatcher to
continue with the Result Merging procedure.

2) If the chainingProhibited flag in commonArguments.serviceControls is set or the DSA decides not to
do any chaining because of its local operational, then the DSA shall directly return to the Operation
Dispatcher to continue with the Result Merging procedure.

3) Sort the continuations references in SRcontinuationList into sets that have the same targetObject.

4) For each subset of continuation references create a set of AccessPointInformation values from the
accessPoints component of every continuation references in the subset, and choose either sequential or
parallel strategy for further processing. If the parallel strategy is chosen, then skip the steps below that are
indicated only applicable to the sequential strategy.

a) If the sequential strategy is chosen, maintain a local variable localExclusions.for each set of
continuation references that have the same targetObject. Initially localExclusions is set to the
exclusions of the incoming chaining request (if it exists). and all locally searched subtrees directly
under targetObject.

b) If the sequential strategy is used, compare the targetObject to all the elements of localExclusions,
and remove those elements which does not contain targetObject as a prefix. These are the relevant
exclusions for the current target object.

c) Extract all the APIs from all the continuation references the current target object’s set.

d) Loop through each API. For each API:

i) Call APInfo.

ii) If a result is returned, then add the result to searchInfo if it is not signed, or add it to
uncorrelatedSearchInfo if it is signed. If the sequential strategy is used, update
localExclusions using alreadySearched in the incoming reply, and also merge the
alreadySearched in the incoming reply to this DSA’s chainingResult.alreadySearched. Then
proceed to the next API.

iii) If an error or null is returned, it means that APInfo has already tried all access points in the API
without success. Based on local operational and security policy, either ignore and proceed to the
next API, or add a continuation reference based on this API to the partialOutcomeQualifier.

NOTE – It is not plausible to get a referral back from APInfo. Any “referral” should come in the
form of unexplored in partialOutcomeQualifier.

e) When all APIs are processed, proceed to the next set of continuation references with the same
targetObject.

5) When all the continuation references are processed, return to the Operation Dispatcher.

20.4.5 APInfo procedure

This procedure is called to process an accessPointInformation, which contains one or more access points. They are
processed one by one until either a result or error is returned. If the error is a service error such that trying another access
point may succeed, then additional access points are tried as long as local operational policy permits:

1) Perform loop detection. If a loop is detected, return ServiceError with problem loopDetected. Otherwise
continue at step 2).

2) Process each of the access points from the access point information. If all have been processed, return a
null result. If there is any access point to process, continue at step 3).

3) Check whether local policy allows chaining to this access point. This check should take into account the
settings of the service controls and chaining arguments (e.g. chainingProhibited, preferChaining,
whether the access point is within the localScope or not, excludeShadows). If the local policy or the
setting of the respective service controls do not allow to use this particular access point, then ignore the
access point and continue at step 2). If the access point can be used, continue at step 4).

4) If local policy selected the master only strategy, then set the chaining argument excludeShadows to True.

If nameResolutionPhase is not completed and the strategy is to continue name resolution on master
entries, then set nameResolveOnMaster to True.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

68 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

The chaining argument nameResolveOnMaster shall be set to True if either of the following is true:

– in the incoming chaining argument nameResolutionPhase is proceeding and
nameResolveOnMaster is True; or

– the operation is one of the modification operations, the referenceType of the chaining request to be
issued is NSSR, and a parallel strategy is used.

NOTE – This method of using nameResolveOnMaster is to prevent modification operations be applied
multiple times due to the presence of NSSR.

5) Build a chained request and try to issue it:

a) Perform loop avoidance by checking if an item with the same targetObject and operationProgress
occurs in traceInformation of the received chainingArgument. If the resulting request
(as described in step 5), b) would result in a loop, then the DSA shall either return a ServiceError
with problem loopDetected to the requesting DUA/DSA or ignore the access point and try the next
access point by continuing at step 2).

b) After a successful Bind, the DSA shall issue a chained operation of the same operation type as the
operation that is processed with the following parameters:

– the operation argument within the chained operation is set as for the operation argument
received;

– chainingArguments.originator set as received;

– chainingArguments.targetObject set to the targetObject of the continuation reference;

– chainingArguments.operationProgress set to the value of operationProgress of the
continuation reference;

– chainingArguments.traceInformation set to trace information as updated by the Request
Validation procedure;

– chainingArguments.aliasDereferenced to the updated value of the locally updated alias-
Dereferenced;

– chainingArguments.returnCrossRefs to a local choice;

– chainingArguments.referenceType to the value of referenceType of the continuation
reference;

– chainingArguments.timeLimit to the value of the received timeLimit;

– chainingArguments.exclusions absent;

– SecurityParameters set to the value of the received SecurityParameters.

6) If the request could not be issued successfully, then continue at step 7), if it could be issued successfully
continue at step 8).

7) It is a local choice whether or not to continue. If the DSA chooses to continue, then the error is ignored
and the next access point will be tried. Continue at step 2). If the DSA decides to not try another access
point, then it is a choice of local policy whether to return a respective Referral or a ServiceError to the
caller of the procedure.

8) If the request could be issued successfully, then the DSA shall wait for the reply and process it:

a) If a result is received, the result is returned to the caller of the procedure.

b) If a ServiceError with problem busy, unavailable, unwillingToPerform or invalidReference is
received, continue at step 7).

c) If Referral is received and returnToDUA is set to TRUE, then the receiving DSA shall not act on
the Referral, but shall return the Referral to the requester.

d) If a Referral is received and returnToDUA is set to FALSE, then the same local policy
considerations apply as in step 3) (taking into account service controls, chaining arguments, chaining
strategy, etc.). If it is decided to not dereference the Referral, then return the Referral to the caller. If
it is decided to dereference the Referral, then empty the NRcontinuationList, place the Continuation
Reference as received in the Referral in NRcontinuationList and call the Name Resolution
Continuation Reference procedure. This may produce a result, Referral, ServiceError or other
error. Whatever is received from the call of the Name Resolution Continuation Reference procedure
shall be given back to the caller.

e) If any other error occurs, it shall be given back to the caller.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 69

TISO3860-94/d29

Enter

Return
null

Perform loop
avoidance

Return
ServiceError
loopDetected

Process each access point AP from AccessPointInformation
All AP’s
processed

Local
policy?

Next AP

Do not
use AP

Use AP

Set exclude Shadows or
nameResolveOnMaster
as appropriate

Issue DSP
chained request

Successfully
issued?

Try
another?

Yes

No

Local
policy?

No

Yes

Wait
for reply

result referral
returnToDUA

true?

Local
policy?

Return
referral

Return
result

Return
error

Call Name Resolution Continuation Reference Procedure

Empty NRcontinuationList. Replace
with continuation reference from referral

error

result

referral

referral

error

Return
ServiceErrorUse referral

Yes

No

Other
error

busy, unavailable,
unwilling, invalid ref

Service
error

Figure 27 – APInfo procedure

Do not use
referral

FIGURE 27/X.518...[D29] = 21 CM

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

70 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

20.5 Abandon procedure

This procedure is invoked if an abandon request is received. It consists of the following steps as shown in Figure 28:

1) When an Abandon request is received, which references an unknown operation, an AbandonError with
a noSuchOperation error value shall be returned to the requester.

2) If the request to be abandoned already has been replied to, and the DSA has retained information to know
so, an AbandonError with a tooLate error value may be returned to the requester.

3) If the Abandon request is not valid, i.e. asks to abandon a request that is not an interrogation request, an
AbandonError with a cannotAbandon error value shall be returned to the requester.

4) If a DSA has outstanding chained (sub)requests when receiving a valid Abandon request for the original
request, and the DSA decides to attempt abandoning, it may send Abandon requests for none, some, or all
outstanding (sub)requests for the operation in question, and then wait for the replies to Abandon request
and the outstanding (sub)requests. At any time during this operation the DSA may send an Abandon
result and an AbandonError to the requester and then discard replies to the issued Abandon requests and
the outstanding (sub)requests as they arrive.

If the DSA decides not to send replies to the requester until there are no more outstanding (sub)requests, it
may optionally send an AbandonedFailed error to the requester if all the issued Abandon requests were
replied to with AbandonedFailed errors and if no local abandon operation has been performed.

If an AbandonedFailed error is returned to the requester, the original request shall be treated as had the
Abandon request never been received.

21 Results Merging procedure

The Result Merging procedure in Figure 29 is called following one of the Continuation Reference procedures. This
procedure removes duplicates, if the result is not signed; and if there are additional continuation references in
partialOutcomeQualifier.unexplored, then the relevant Continuation Reference procedure(s) is called if local
operational policy permits:

1) If the operation is a List operation, continue at step 2); if the operation is a Search operation, then
continue at step 3); otherwise return the result that was supplied as input parameter to the Result Merging
procedure.

2) The operation is a List operation. Remove all duplicates.

If the operation result was generated locally and it contains Continuation References then these will not
be used for chaining but returned to the user. In this case, continue at step 6).

If the operation result was received as the result of a chained List operation, then the result might contain
Continuation References. In this case, check if the preferChaining service control was set. If TRUE, the
Continuation References should be used for chaining by the DSA. Continue at step 4).

3) The operation is a Search operation. Remove all duplicates. If there is a limit problem then return the
result. Otherwise continue at step 4).

4) Process each Continuation References that is in the partialOutcomeQualifier.unexplored of the result of
any chained operation. If the local policy decides not to use it for chaining, then ignore it and choose
another Continuation Reference. If the local policy allows to use the Continuation Reference for chaining,
then perform the following:

Check nameResolutionPhase that is supplied in the Continuation Reference. If it is notStarted or
proceeding, then add it to the list of Continuation References that will be supplied to the Name
Resolution Continuation procedure (NRcontinuationList). If nameResolutionPhase is completed then
add the Continuation Reference to the list of Continuation References that is supplied to the sub-request
Continuation procedure (SRcontinuationList).

Proceed until all Continuation References have been processed.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 71

5) If there are Continuation References to be processed in SRcontinuationList, check the operation type. If
the operation is a List operation, call the List Continuation Reference Procedure and continue at step 2). If
the operation is a Search operation, call the Search Continuation Reference Procedure and continue at
step 3).

If SRcontinuationList is empty, then check if there are Continuation References in NRcontinuationList.
If so, call the Name Resolution Continuation Reference Procedure and continue at step 3).

If both continuation lists are empty, continue at step 6).

6) Check whether the result is empty. If it is not empty then return it. If it is empty, either return a null result
if the access control and local policy allows, or return an appropriate error.

TISO3870-94/d30

Enter

AbandonError
“noSuchOperation”

Find Request
with invokelD

Reply already
sent?

AbandonError
“tooLate”

AbandonError
“cannotAbandon”

Abandon
valid?

Send an Abandon
request for each

oustanding sub-request
Discard any local result

Terminate further processing of
this request within operation

dispatcher

serviceError
“abandoned”

No

No

Yes

Not

Found

found

Yes

Figure 28 – Abandon procedure

FIGURE 28/X.518...[D30] = 14.5 CM

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

72 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

TISO3880-94/d31

Enter

List
Search

Operation?

Other operations

Remove duplicates
from listInfo

Remove duplicates
from searchInfo

Return result

Local
evaluation?

Limit
problem? Return result Call Search

Continuation
Reference Procedure

Call List
Continuation
Reference Procedure

Operation?

Is SRcontinuation-
List empty?

Add to
SRcontinuationList

Add to
SRcontinuationList

Process each continuation reference CR
in partialOutcomeQualifier.unexplored

All CR’s
processed

Ignore Local
policy?

Name
resolution

phase

completednotStarted
proceeding

Return Error check ACI
null

result?

fail Yes

OK No

Yes Is NRcontinuation-
List empty?

No

List
No No

Yes Yes

Next CR

Return result

Call Name Resolution
Continuation
Reference Procedure

Figure 29 – Results Merging procedure

search

Yes

No

process

FIGURE 29/X.518...[D31] = 18.5 CM

22 Procedures for distributed authentication

This clause specifies the procedures necessary to support the directory distributed authentication services. These
services, and hence the procedures, are categorized as:

– originator authentication, which is supported in either an unprotected (simple identity based) or secure
(based upon digital signatures) form; and

– results authentication which is similarly protected (again based upon digital signatures).

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 73

22.1 Originator authentication

22.1.1 Identity based authentication

The identity based authentication service enables DSAs to authenticate the original requester of information for the
purpose of effecting local access controls. DSAs wishing to exploit this service shall adopt the following procedure:

– For a DSA requiring to authenticate a DAP request, the DSA acquires the distinguished name of the
requester through the Bind procedures at the time a DUA association (DUA to DSA) is established.
Successful conclusion of these procedures does not in any way prejudice the level of authentication that
may subsequently be required for processing operations using that association.

– The DSA with which the DUA association exists shall insert the requester’s distinguished name in the
initiator field of the ChainingArgument for all subsequent chained operations to other DSAs.

– A DSA, on receiving a chained operation, may satisfy that operation, or not, depending upon the
determination of access rights (a locally defined mechanism). If the outcome is not satisfactory a
SecurityError may be returned with SecurityProblem set to insufficientAccessRights.

22.1.2 Signature-based originator authentication

This signature-based originator authentication service enables a DSA to authenticate (in a secure manner) the originator
of a particular service request. The procedures to be effected by a DSA in realizing this service are described in this
clause.

The signature-based authentication service is invoked by a DUA using the SIGNED variant of an optionally-signed
service request.

A DSA, on receiving a signed request from another DSA, shall remove that DSA’s signature prior to processing the
operation. Assuming the result of any signature verification proves to be satisfactory, the DSA will continue to progress
the operation. If, during processing, the DSA needs to perform chaining, the argument set for each associated chained
operation shall be constructed as follows:

– the DSA forms an argument set which may be optionally signed; the argument set comprises the incoming
signed argument set together with a modified ChainingArguments.

In the event that the DSA is able to contribute information to the response, originator authentication, based upon the
signed service request, may be used for the determination of access rights to that information.

If a DSA receives an unsigned service request for information which will only be released subject to originator
authentication, a SecurityError will be returned with SecurityProblem set to protectionRequired.

22.2 Results authentication

This service is provided to enable requesters of directory operations (either DUAs or DSAs) to verify (in a secure
manner using digital signature techniques) the source of results. The results authentication service may be requested
irrespective of whether originator authentication is to be used.

The results authentication service is initiated using the signed value of the protectionRequest component as contained
within the argument set of directory operations; a DSA receiving an operation with this option selected may then
optionally sign any subsequent results. The signed option in the protection request serves as an indication, to the DSA, of
the requesters preference; the DSA may, or may not, actually sign any subsequent results.

In the case where a DSA performs chaining, the DSA has a number of options in terms of the form of results sent back
to the requester, namely:

a) return a composite response (signed or unsigned) to the requester;

b) return a set of two or more uncollated partial responses (signed or unsigned) to the requester; within this
set zero or more members may be signed and zero or one unsigned. In the event that an unsigned partial
result is present, this member may in fact be a collation of one or more unsigned partial responses which
have been received from other DSAs, contributed by this DSA, or both.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

74 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

SECTION 6 – KNOWLEDGE ADMINISTRATION

23 Knowledge administration overview

To operate a widely distributed Directory with an acceptable degree of consistency and performance, procedures are
required to create, maintain and extend the knowledge held by each DSA. The following mechanisms together are used
to administer a DSA’s knowledge.

a) Hierarchical and non-specific hierarchical operational bindings – These procedures and protocols are
defined in clauses 24 and 25. They are used to create and maintain subordinate references, non-specific
subordinate references, and immediate superior references, as well as the context prefix information for
naming contexts. These operational bindings are established between master DSAs holding naming
contexts that are hierarchically related to each other as immediate subordinate to immediate superior. The
procedures may be triggered as a side effect of modifying the RDN of, or adding or removing an entry
whose immediate superior is not held in the same DSA that holds the entry.

b) Shadowing operational bindings – These procedures and protocols are defined in ITU-T Rec. X.525 |
ISO/IEC 9594-9. They are used to create and maintain knowledge references in two ways. First, as a side
effect of establishing (or terminating) shadowing agreements, access points are added (or removed) from
the consumerKnowledge and optionally the secondaryShadow operational attributes. This information
may then be used by the procedures and protocols discussed above to update the subordinate reference in
the superior master DSA and the immediate superior reference in the subordinate master DSA. Second,
the DISP propagates the knowledge references held by master DSAs to shadow consumer DSAs.

c) Cross references – Cross reference distribution is a feature of the DSP. Its use to create and maintain
cross references is summarized in 23.2.

NOTE – Mechanisms for initializing and maintaining the superior reference and myAccessPoint are outside the
scope of this Directory Specification.

23.1 Maintenance of Knowledge References

This subclause describes how the DOP is used to maintain DSA operational attributes that express knowledge. A simple
example of the relationship between knowledge attributes and the protocols employed to maintain them is described in
Annex E.

23.1.1 Maintenance of consumer knowledge by supplier and master DSAs

A consumer reference is expressed through a value of the consumerKnowledge attribute, held by a shadow supplier
DSA and associated with the context prefix for a naming context; a supplier reference, through a value of the
supplierKnowledge attribute, held by a shadow consumer DSA and also associated with the context prefix for a naming
context. Both attributes are held in DSEs of type cp. A value of each one of these attributes is created on establishment
of the Shadow Operational Binding, and updated on modification of the Shadow Operational Binding.

A supplier DSA may obtain the information to construct values of the secondaryShadows attribute if the optional
secondaryShadows component of its ShadowingAgreement with a consumer is TRUE. In this case, whenever the
consumer DSA detects that the set of DSAs holding copies of the commonly usable replicated area (its consumers, or, in
turn, consumers of its consumers, etc., to whatever depth secondary shadowing might be carried) has changed (by
addition, modification or deletion of access points), it communicates this new information (a set of
SuppliersAndConsumers) by means of a modifyOperationalBinding operation, as described in ITU-T Rec. X.525 |
ISO/IEC 9594-9.

A supplier DSA maintains its own secondaryShadows attribute associated with the context prefix as follows:

a) The set of SuppliersAndConsumers received from a consumer by means of a
modifyOperationalBinding operation may be used to create, or replace values of the attribute. The
supplier component of SuppliersAndConsumers represents the access point of a consumer DSA (or of
its consumers, etc. depending upon the depth of secondary shadowing); the consumers component, the set
of the consumer’s consumers (or of their consumers, etc. depending upon the depth of secondary
shadowing).

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 75

b) Every consumer providing its supplier with a modifyOperationalBinding operation containing a set of
SuppliersAndConsumers, includes the following values: the values of its secondaryShadows attribute,
and a newly constructed value. This value is constructed using its own access point, myAccessPoint, (as
the supplier component), and the values of the consumers’ access points, contained within the
consumerKnowledge attribute, that represent consumers holding commonly usable shadows (as the
consumers component).

Recursive use of this procedure permits a master DSA for a naming context to know about all of its secondary shadow
consumer DSAs holding commonly usable replicated areas derived from the naming context. This information is then
available for the maintenance of subordinate, non-specific subordinate, and immediate superior references.

23.1.2 Maintenance of subordinate and immediate superior knowledge in master DSAs

A subordinate reference is expressed through a value of the specificKnowledge attribute, held in a DSE of type subr by
the DSA holding the immediately superior naming context to that referenced; an immediate superior reference, through a
value of the specificKnowledge attribute, held in a DSE of type immSupr by the DSA holding the immediately
subordinate naming context to that referenced. A value of each one of these attributes is created in the superior and
subordinate master DSAs on establishment of the HOB, and updated on modification of the HOB.

A subordinate master DSA provides a superior master DSA the information to construct its subordinate reference via the
accessPoints component of the SubordinateToSuperior parameter it transfers to the superior in the DOP. The
information included in accessPoints is determined by values of attributes held by the subordinate DSA as follows:

a) The value of the myAccessPoint attribute (held in the root DSE) is used to form the element in
accessPoints with category having the value master.

b) The values of the consumerKnowledge and secondaryShadows (both held in the subordinate context
prefix DSE) are used to form additional elements in accessPoints with category having the value
shadow.

A superior master DSA provides a subordinate master DSA the information to construct its immediate superior reference
via the contextPrefixInfo component of the SuperiorToSubordinate parameter it transfers to the subordinate in the
DOP. This component is a value of type SEQUENCE OF Vertex, containing sequence of elements corresponding to
the path from the root of the DIT to the subordinate context prefix. For one of these elements, corresponding to the
context prefix of the immediately superior naming context, the optional component accessPoints will be present. The
subordinate DSA holds this information as a specificKnowledge attribute in the DSE, of type immSupr, corresponding
to this element of contextPrefixInfo. The information included in accessPoints by the superior DSA is determined by
values of attributes held by the superior DSA as follows:

a) The value of the myAccessPoint attribute (held in the root DSE) is used to form the element in
accessPoints with category having the value master.

b) The values of the consumerKnowledge and secondaryShadows (both held in the superior context prefix
DSE) are used to form additional elements in accessPoints with category having the value shadow.

NOTE – Only those access points corresponding to consumer DSAs receiving commonly usable replicated areas
should be selected by the superior and subordinate DSAs from their consumerKnowledge attributes for inclusion in
accessPoints. The procedures for the construction of secondaryShadows guarantee that these access points will
identify shadow DSAs holding commonly usable replicated areas.

23.1.3 Maintenance of subordinate and immediate superior knowledge in consumer DSAs

A shadow consumer DSA contracting with its supplier to receive the immediate superior and subordinate knowledge
associated with a unit of replication, in effect contracts to have its immediate superior and subordinate references
maintained by its shadow supplier DSA via the DISP.

NOTE – For certain unit of replication specifications, it may be necessary for the consumer DSA to contract to receive
extendedKnowledge in order that subordinate knowledge may be provided to it by its supplier.

23.2 Requesting cross reference

To improve the performance of the Directory System, the local set of cross references can be expanded using ordinary
Directory operations. If a DSA supports the DSP, it may request another DSA (which must also support the DSP) to
return those knowledge references which contain information about the location of naming contexts related to the target
object name of an ordinary Directory operation.

If the returnCrossRefs component of the ChainedOperationsArgument is set to TRUE, the crossReference
component of the ChainedOperationsResult may be present, consisting of a sequence of cross reference items.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

76 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

If a DSA is not able to chain a request to the next DSA a referral is returned to the originating DSA. If the
returnCrossRefs component of ChainingArguments was TRUE, the referral may contain additionally the context
prefix of the naming context which the referral refers to. The contextPrefix component is absent if the referral is based
on a non-specific subordinate reference. The cross reference returned by a referral is based on knowledge held by the
DSA which generated the referral.

In both cases (chaining result and referral) an administrative authority through its DSA may elect to ignore the request
for returning cross references.

23.3 Knowledge inconsistencies

The Directory has to support consistency-checking mechanisms to guarantee a certain degree of knowledge consistency.

NOTE – In certain circumstances a knowledge reference will be accurate (not invalid in the senses described below) but
not valid for use by a DSA because the DMD of the referenced DSA does not wish it to be contacted at all by the referencing DSA
(e.g. a DSA which has somehow acquired a cross reference to the referenced DSA) or does not wish it to be contacted in a particular
role (e.g. as the master DSA for a naming context).

23.3.1 Detection of knowledge inconsistencies

The kind of inconsistency and its detection varies for the different types of knowledge references:

a) Cross and Subordinate references – This type of reference is invalid if the referenced DSA does not hold
a naming context or a replicated area derived from the naming context with the context prefix contained
in the reference. This inconsistency will be detected during the Name Resolution process by inspection of
the operationProgress and referenceType components of ChainingArgument.

b) Non-specific Subordinate references – This type of reference is invalid if the referenced DSA does not
hold a local naming context with the context prefix contained in the reference minus the last RDN. The
consistency check is applied as above.

c) Superior References – An invalid superior reference is one which does not form part of a reference path to
the root. The maintenance of superior references shall be done by external means and is outside the scope
of this Directory Specification.

NOTE – It is not always possible to detect an invalid superior reference.

d) Immediate Superior References – This type of reference is invalid if the referenced DSA does not hold a
naming context or a replicated area derived from the naming context with context prefix contained in the
reference. Furthermore, usage of this type of reference is only valid when the operationProgress
component of ChainingArguments has the value notStarted or proceeding. This inconsistency will be
detected during the Name Resolution process by inspection of the operationProgress and referenceType
components of ChainingArguments.

e) Supplier References – This type of reference, which identifies the supplier of a replicated area and
optionally the master for the naming context from which the replicated area is derived, is invalid if the
referenced DSA is not the shadow supplier for the DSA using the reference (when the referenceType
component of ChainingArguments has the value supplier), or if the referenced DSA is not the master
for the naming context (when referenceType has the value master). This inconsistency will be detected
during the Name Resolution and operation evaluation phases of operation processing by inspection of the
referenceType component of ChainingArguments.

23.3.2 Reporting of knowledge inconsistencies

If chaining is used in performing a Directory request, all knowledge inconsistencies will be detected by the DSA which
holds the invalid knowledge reference, through receiving a serviceError with problem of invalidReference.

If a DSA returns a referral which is based on an invalid knowledge reference, the requester will be returned a
serviceError with problem of invalidReference if it uses the referral. How the error condition will be propagated to the
DSA which stores the invalid reference is not within the scope of this Directory Specification.

23.3.3 Treatment of inconsistent knowledge references

After a DSA has detected an invalid reference it should try to re-establish knowledge consistency. For example, this can
be done by simply deleting an invalid cross reference or by replacing it with a correct one which can be obtained using
the returnCrossRefs mechanisms.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 77

The way in which a DSA actually handles invalid references is a local matter, and outside the scope of this Directory
Specification.

24 Hierarchical operational bindings

A hierarchical operational binding is used to represent the relationship between two DSA holding two naming contexts,
one immediately subordinate to the other. In the case of a HOB, the superior DSA holds a subordinate reference to the
naming context held by the subordinate DSA; the subordinate DSA holds an immediate superior reference to the naming
context held by the superior DSA. The operational binding ensures that the appropriate knowledge information is
exchanged and maintained between the two DSAs so that both DSAs are able to behave during the process of name
resolution and operation evaluation as defined in clauses 18 and 19.

24.1 Operational binding type characteristics

24.1.1 Symmetry and roles

The hierarchical operational binding type is an asymmetrical type of operational binding. The two roles in a binding of
this type are:

a) the role of the master DSA for the superior naming context, the superior DSA (associated with abstract
role “A”; and

b) the role of the master DSA for the subordinate naming context, the subordinate DSA (associated with
abstract role “B”).

24.1.2 Agreement

The agreement information exchanged during the establishment of the hierarchical operational binding is a value of
HierarchicalAgreement. This contains the relative distinguished name of the new context prefix (the rdn component)
and the distinguished name of the entry immediately superior to the new naming context (the immediateSuperior
component). This information shall be provided by the DSA that initiates the HOB.

HierarchicalAgreement ::= SEQUENCE {
rdn [0] RelativeDistinguishedName,
immediateSuperior [1] DistinguishedName }

24.1.3 Initiator

24.1.3.1 Establishment

The establishment of a hierarchical operational binding can be initiated by either role. Initiation by the superior DSA can
be caused by an Add Entry operation with the subordinate DSA specified in the targetSystem extension, or by
administrative intervention. Initiation by the subordinate DSA (which connects a locally existing entry or subtree to the
global DIT) is caused by administrative intervention.

24.1.3.2 Modification

The modification of a hierarchical operational binding can be initiated by either role. The superior DSA may issue the
modification as a result of a modification of the superior context prefix information. This can be as a result of any of the
modification operations, or by administrator intervention.

Either DSA may modify the agreement as a result of a modification of the RDN of the context prefix entry of the
subordinate naming context. The superior DSA initiates this modification because of a relative distinguished name being
modified higher up the DIT, or because of administrative intervention. The subordinate DSA initiates modification
because of a ModifyDN of a context prefix, or because of administrative intervention.

Either DSA may also modify the HOB if the access point information for its naming context changes.

24.1.3.3 Termination

The termination of a hierarchical operational binding can be initiated by either role. Initiation by the superior DSA can
be caused by administrative intervention. Initiation by the subordinate DSA can be caused either by a Remove Entry
operation that removes the context prefix entry of the subordinate naming context or by administrative intervention.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

78 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

24.1.4 Establishment parameters

The establishment parameters for the two roles of a HOB, superior DSA and subordinate DSA, differ. The establishment
parameter for the superior DSA role is a value of SuperiorToSubordinate, the parameter for the subordinate role, a
value of SubordinateToSuperior.

24.1.4.1 Superior DSA establishment parameter

The establishment parameter issued by the superior DSA, a value of SuperiorToSubordinate, provides the subordinate
DSA with information regarding DIT vertices superior to the context prefix of the new naming context (which includes
the immediate superior reference) and optionally user and operational attributes for the subordinate context prefix entry
and copies of user and operational attributes from the entry immediately superior to the new context prefix.

SuperiorToSubordinate ::= SEQUENCE {
contextPrefixInfo [0] DITcontext,
entryInfo [1] SET OF Attribute OPTIONAL,
immediateSuperiorInfo [2] SET OF Attribute OPTIONAL }

24.1.4.1.1 Context prefix information

The contextPrefixInfo component of SuperiorToSubordinate is a value of type DITcontext, this being a sequence of
Vertex values.

DITcontext ::= SEQUENCE OF Vertex

Vertex ::= SEQUENCE {
rdn [0] RelativeDistinguishedName,
admPointInfo [1] SET OF Attribute OPTIONAL,
subentries [2] SET OF SubentryInfo OPTIONAL,
accessPoints [3] MasterAndShadowAccessPoints OPTIONAL }

The contextPrefixInfo component is essentially the sequence of RDNs that form the distinguished name of the new
context prefix, each RDN (given by the rdn component) optionally accompanied by additional information.

The optional admPointInfo component of a Vertex signals that the DIT vertex is an administrative point and provides,
at least, its administrative-role operational attribute.

The subentry information associated with an administrative point is provided by the subentries component of a Vertex,
which is a set of one or more SubentryInfo values. Each SubentryInfo value is composed of the RDN of the subentry
(the rdn component) and the attributes of the subentry (the info component).

SubentryInfo ::= SEQUENCE {
rdn [0] RelativeDistinguishedName,
info [1] SET OF Attribute }

The optional accessPoints component of a Vertex signals that the vertex corresponds to the context prefix of the
immediately superior naming context. The superior uses this component to provide the subordinate the information
required for its immediate superior reference.

24.1.4.1.2 Entry information

The optional entryInfo component of SuperiorToSubordinate is a set of attributes establishing the content of the new
context prefix entry.

24.1.4.1.3 Immediate superior entry information

The optional immediateSuperiorInfo component of SuperiorToSubordinate is a copy of a set of attributes, in
particular objectClass and entryACI, from the entry immediately superior to the new context prefix.

NOTE – This component may be used by the subordinate for optimizing the evaluation of a List request which generates
an empty ListResult for a base object which is the immediate superior of the subordinate context prefix [see Note of 19.3.1.2.2,
item 2)].

24.1.4.2 Subordinate DSA establishment parameter

The establishment parameter issued by the subordinate DSA, a value of SubordinateToSuperior, provides the superior
DSA with information regarding the subordinate naming context.

SubordinateToSuperior ::= SEQUENCE {
accessPoints [0] MasterAndShadowAccessPoints OPTIONAL,
alias [1] BOOLEAN DEFAULT FALSE,
entryInfo [2] SET OF Attribute OPTIONAL }

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 79

The accessPoints component of SubordinateToSuperior is used by the subordinate to provide the superior the
information required for its subordinate reference.

The alias component of SubordinateToSuperior is used to signal to the superior that the subordinate naming context
consists of a single alias entry.

The entryInfo component of SubordinateToSuperior consists of a copy of a set of attributes, in particular objectClass
and entryACI, from the new context prefix entry.

NOTE – The latter two components may be used by the superior for optimizing the evaluation of a List request whose base
object is the entry immediately superior to the subordinate context prefix.

24.1.5 Modification parameters

For modifications of a HOB, the modification parameter of the superior role, SuperiorToSubordinateModification, is
SuperiorToSubordinate, with the restriction that the entryInfo component may not be present; that of the subordinate
role is SubordinateToSuperior.

SuperiorToSubordinateModification ::= SuperiorToSubordinate (
WITH COMPONENTS { ..., entryInfo ABSENT})

These parameters are identical (with the restriction noted above) to the corresponding establishment parameters and are
used to signal changes occurring to information provided in the establishment parameters subsequent to the
establishment of the HOB.

If any component of SuperiorToSubordinate (or subsequently SuperiorToSubordinateModification) or
SubordinateToSuperior experiences a change(e.g. the contextPrefixInfo component of SuperiorToSubordinate), the
corresponding component of the modification parameter (e.g. the contextPrefixInfo component of
SuperiorToSubordinateModification) shall be provided in its entirety in the Modify Operational Binding.

24.1.6 Termination parameters

Neither role provides a termination parameter when terminating a HOB.

24.1.7 Type identification

The hierarchical operational binding is identified by the object identifier assigned when defining the hier-
archicalOperationalBinding OPERATIONAL-BINDING information object in 24.2.

24.2 Operational binding information object Class definition

This subclause defines the hierarchical operational binding type using the OPERATIONAL-BINDING information object
class template defined in ITU-T Rec. X.501 | ISO/IEC 9594-2.

hierarchicalOperationalBinding OPERATIONAL-BINDING ::= {
AGREEMENT HierarchicalAgreement
APPLICATION CONTEXTS {

{directorySystemAC}}
ASYMMETRIC

ROLE-A { -- superior DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER SuperiorToSubordinate
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER SuperiorToSubordinateModification
TERMINATION-INITIATOR TRUE}

ROLE-B { -- subordinate DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER SubordinateToSuperior
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER SubordinateToSuperior
TERMINATION-INITIATOR TRUE }

ID hierarchicalOperationalBindingID }

24.3 DSA procedures for hierarchical operational binding management

In the following procedures, a new DSE or a mark (i.e. a state indication associated with some item of information)
created by a DSA shall be stored in stable storage. By doing so, it is possible for the two DSAs following the procedures
below to maintain a consistent understanding of the parameters of the HOB in the presence of communication and end
system failures.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

80 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

In both the establishment and modification procedure described below, the DSA playing the responding role (i.e. not
initiating the establishment or modification) may provide the DSA playing the initiating role with information
(e.g. operational attributes) that are not acceptable for one reason or another. The initiating DSA may terminate the
operational binding in such cases.

24.3.1 Establishment procedure

24.3.1.1 Establishment initiated by superior DSA

If a DSA evaluates an Add Entry operation with a different DSA specified in the targetSystem extension, it shall
establish a hierarchical operational binding according to the following procedure. If a DSA, for administrative reasons,
wishes to establish a HOB with a subordinate DSA, and it supports the DOP HOB protocol, then the following
procedure shall be followed:

1) The superior DSA creates a new DSE of type subr, with the name of the new entry, and marks this new
DSE as being added. The superior DSA generates a unique bindingID and stores it with the new DSE.

2) The superior DSA shall send an Establish Operational Binding operation to the subordinate DSA
containing the following parameters:

a) bindingType set to hierarchicalOperationalBindingID ;

b) SuperiorToSubordinate establishment parameter with contextPrefixInfo and entryInfo
components present; all other parameters are optional ;

c) HierarchicalAgreement with the immediateSuperior component set to the distinguished name of
the immediate superior of the new entry and the rdn component set to the RDN of the new entry ;

d) the bindingID, myAccessPoint and valid parameters, as appropriate.

3) If the subordinate DSA accepts the operation, it creates the required DSEs of types glue, subentry,
admPoint, rhob and immSupr, as appropriate, to represent the contextPrefixInfo; a DSE of type cp and
entry or alias to represent the new context prefix object or alias entry; and, as appropriate, a DSE of type
rhob and entry to represent the immediateSuperiorInfo. It stores the bindingID with the DSE of the
new context prefix entry and returns a SubordinateToSuperior parameter to the superior DSA.

If the subordinate DSA refuses the operation it returns an Operational Binding Error with the appropriate
problem value set.

If the naming context already exists and the bindingID values for the existing and the new context are the
same, the subordinate DSA has already created the requested naming context, in which case the
subordinate DSA returns a result to the superior. If the values are not equal, an Operational Binding Error
with problem invalidAgreement is sent; this means the superior DSA has a permanent knowledge
inconsistency that requires correction by an administrator.

4) If the superior DSA receives an error, it deletes the marked DSE of type subr and returns an error for the
Add Entry operation.

If the superior DSA receives a result, it removes the mark from the DSE that represents the subr and
returns a result for the Add Entry operation.

If any failure occurs (e.g. communication or end system), the superior DSA shall repeat the steps starting
at step 2 until a result or error has been received for each pending establishment of a hierarchical
operational binding for which it is the initiator. If the establishment is as a result of an Add Entry
operation, and the requester aborts the operation (e.g. by releasing or aborting the application association)
before the establishment is complete, the superior DSA shall ignore this event and complete the
establishment (which may or may not be successful). In this case the user will not be informed of the
outcome of the Add Entry operation.

NOTES

1 Marking the subordinate aids recovery and concurrency control. Another user cannot add an entry that is
already marked, and the DSA repeats the establish operational binding for all marked subordinates after a failure.

2 With the above procedure, knowledge has only transient inconsistency. It is a local matter how the
superior DSA treats unrelated operations that read the subordinate reference while it is marked.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 81

24.3.1.2 Establishment initiated by subordinate DSA

The subordinate DSA may initiate a hierarchical operational binding. This might result from the wish of an administrator
to connect a subtree of entries held in the DSA to a certain point in the global DIT. In this case, the subordinate DSA
shall establish a HOB according to the following procedure:

1) The subordinate DSA either has a DSE of type cp as a part of an existing naming context or it creates a
new one. It marks the DSE being added, and generates a unique bindingID and stores it with the context
prefix DSE.

2) The subordinate DSA sends an Establish Operational Binding operation to the superior DSA containing
the following parameters:

a) bindingType set to hierarchicalOperationalBindingID;

b) SubordinateToSuperior establishment parameter, as appropriate ;

c) HierarchicalAgreement with the immediateSuperior component set to the distinguished name of
the immediate superior of the new entry and the rdn component set to the RDN of the new entry ;

d) the bindingID, myAccessPoint and valid parameters, as appropriate.

If the superior DSA refuses the operation it returns an Operational Binding Error with the
appropriate problem value set.

3) The superior DSA checks that it is master for the immediate superior of the new context prefix entry or
returns an Operational Binding Error with problem roleAssignment.

4) The superior DSA checks that the requested RDN for the new context prefix is not already in use. If no
matching RDN is found using locally held information, but the immediately superior DSE is of type nssr,
the procedure in 15.7 is followed. If no matching RDN is discovered using this procedure, the superior
DSA creates a DSE of type subr, stores the bindingID with it, and returns a result.

If a subordinate reference is found with this RDN, the two values of bindingID are compared. If they are
equal, a result is returned. The SuperiorToSubordinate parameter returned by the superior DSA shall
not contain the entry component. If the two values of bindingID are not equal, an Operational Binding
Error with problem invalidAgreement is sent; this means the superior DSA has a permanent knowledge
inconsistency that requires correction by an administrator.

If a matching RDN is found by exploring an NSSR, an Operational Binding Error with problem
invalidAgreement is sent; this also means the superior DSA has a permanent knowledge inconsistency
that requires correction by an administrator.

5) If the subordinate DSA receives an error, it deletes the new context prefix DSE and its mark. It is a local
matter to determine the fate of the entry information from which the context prefix DSE was derived.

If the subordinate DSA receives a result, it adds the necessary DSEs of types glue, subentry, admPoint,
rhob and immSupr, as appropriate, to represent the contextPrefixInfo; and, as appropriate, a DSE of
type rhob and entry to represent the immediateSuperiorInfo. The mark of the context prefix DSE is
removed.

If any failure occurs (e.g. communication of end system), the subordinate DSA shall repeat the steps
starting at step 2 until a result or error has been received for each pending establishment of a hierarchical
operational binding for which it is the initiator.

24.3.2 Modification procedure

The following procedures are defined for modification of a HOB which has been initiated by the procedure detailed
in 24.3.1.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

82 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

24.3.2.1 Modification procedure initiated by superior

This procedure may be invoked as a result of modification operations, as described in 19.1, or as a result of
administrative intervention (e.g. to convey changes to the myAccessPoint, agreement or valid parameters of the HOB).
Also if a superior DSA detects changes to the contextPrefixInfo or immediateSuperiorInfo components of the
SuperiorToSubordinate value that it supplied to the subordinate DSA, it shall propagate the new information to the
subordinate DSA employing the following procedure:

1) Mark the DSE of type subr as being modified, and if this modification is as a result of a modification to
the RDN of the subordinate context prefix entry, a new DSE of type subr is added and marked as being
added

2) The superior DSA produces a new bindingID value from the existing value by incrementing its version
component. Using this new bindingID, it sends a Modify Operational Binding operation to the
subordinate DSA with the modification parameter SuperiorToSubordinateModification.

3) The subordinate DSA checks the identifier component of the bindingID. If it has no such agreement with
the superior, or if the version component is less than the version of the HOB, it shall return an
Operational Binding Error with problem invalidAgreement.

4) The subordinate DSA may accept the modification to the HOB, modify or rebuild the DSEs representing
the context prefix information, update the version component of its bindingID and return a result.
Alternatively, it may return an error and then terminate the agreement.

5) If the superior DSA receives a result, the modification is completed. If this modification is as a result of a
modification to the RDN of the subordinate context prefix entry, the new DSE having type subr and
marked as being added has its mark removed, and the old DSE marked as being modified is deleted. If
not, the mark being modified is simply removed.

If the superior DSA receives an error, the modification has failed. The mark being modified is removed. If
this modification is as a result of a modification to the RDN of the subordinate context prefix entry, the
new DSE having type subr and marked as being added is removed. If not, the measures taken are outside
the scope of this Directory Specification.

If any failure occurs (e.g. communication or end system), the superior DSA shall repeat the steps starting
at step 2 until a result or error has been received for each pending modify of a hierarchical operational
binding for which it is the initiator. If the modification is as a result of a ModifyDN operation modifying
the RDN of the subordinate context prefix entry, and the requester aborts the operation (e.g. by releasing
or aborting the application association) before the modification is complete, the superior DSA shall ignore
this event and complete the modification (which may or may not be successful). In this case the user will
not be informed of the outcome of the ModifyDN operation.

24.3.2.2 Modification procedure initiated by subordinate

This procedure may be invoked as a result of administrative intervention (e.g. to convey changes to the myAccessPoint,
agreement or valid parameters of the HOB). Also if a subordinate DSA detects changes to the SubordinateToSuperior
value that it supplied to the superior DSA, it shall propagate the new information to the superior DSA employing the
following procedure:

1) Mark the DSE of type cp as being modified.

2) The subordinate DSA produces a new bindingID value from the existing value by incrementing its
version component. Using this new bindingID, it sends an Modify Operational Binding operation to the
superior DSA with the modification parameter SubordinateToSuperior.

3) The superior DSA checks the identifier component of the bindingID. If it has no such agreement with
the subordinate, or if the version component is less than the version of the HOB, it shall return an
Operational Binding Error with problem invalidAgreement.

4) The superior DSA may accept the modification to the HOB, modify the DSE representing the subordinate
reference and return a result. Alternatively, it may return an error and then terminate the agreement.

In addition, if the superior DSE of the DSE (of type subr) to be renamed is of type nssr, the DSA shall
follow the procedure defined in 19.1.5 (Modify Operations and NSSRs) to ensure that the new name of
the entry is unambiguous, before responding to the HOB modification request.

5) If the subordinate DSA receives a result, the modification is completed and it removes the mark. If it
receives an error, the measures taken are outside the scope of this Directory Specification.

If any failure occurs (e.g. communication or end system), the subordinate DSA shall repeat the steps
starting at step 2 until a result or error has been received for each pending modify of a hierarchical
operational binding for which it is the initiator.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 83

24.3.3 Termination procedure

The following procedures are defined for termination of a HOB which has been initiated by the procedure detailed
in 24.3.1.

24.3.3.1 Termination initiated by superior DSA

The termination of a hierarchical operational binding is initiated by the superior DSA only as a result of administrative
intervention. The following procedure shall be followed:

1) The superior DSA marks the DSE representing the subordinate reference being deleted, so that the
subordinate reference is no longer used during Name Resolution.

2) The superior DSA sends a Terminate Operational Binding operation for the hierarchical operational
binding to the subordinate DSA. The version component of the bindingID is omitted by the superior.

3) When the subordinate DSA receives the Terminate Operational Binding, it deletes any information about
the hierarchical operational binding and sends a result, unless the identifier component of the bindingID
is unknown, in which case an Operational Binding Error with problem invalidID, is returned. It is a local
matter to determine the fate of any entry information associated with the subordinate naming context.

4) If the superior DSA receives a result or an Operational Binding Error with problem invalidID, it shall
delete the DSE marked being deleted that represents the subordinate reference associated with the
hierarchical operational binding and deletes any information about the operational binding.

If any failure occurs (e.g. communication of end system), the superior DSA shall repeat the steps starting
at step 2 until a result or error has been received for each pending termination of a hierarchical operational
binding for which it is the initiator.

24.3.3.2 Termination initiated by subordinate DSA

Termination initiated by the subordinate DSA can be caused by a Remove Entry operation that removes the last entry
within the subordinate naming context, the context prefix entry, or as a result of administrative intervention. The
following procedure shall be followed:

1) The subordinate DSA marks the context prefix DSE of the naming context being deleted.

2) The subordinate DSA sends a Terminate Operational Binding operation for the hierarchical operational
binding to the superior DSA. The version component of the bindingID is omitted by the subordinate.

3) When the superior DSA receives the Terminate Operational Binding, it deletes the DSE that represents
the subordinate reference associated with the hierarchical operational binding, deletes any information
about the operational binding and sends a result., unless the identifier component of the bindingID is
unknown, in which case an Operational Binding Error with problem invalidID, is returned.

4) If the subordinate DSA receives a result or an Operational Binding Error with problem invalidID, it shall
delete any information about the operational binding.

NOTE – The fate of the entry information of naming context is a matter local to the subordinate DSA. Since
renaming (i.e. moving) a naming context is not allowed by the ModifyDN operation, an administrator might, for
example, terminate the HOB, select another context prefix for the naming context and reconnect it to another part of
the DIT (i.e. establish a new HOB).

If any failure occurs (e.g. communication of end system), the subordinate DSA shall repeat the steps
starting at step 2 until a result or error has been received for each pending termination of a hierarchical
operational binding for which it is the initiator.

24.4 Procedures for operations

The operations that can be executed in the cooperative state of a hierarchical operational binding are those defined
within the directorySystemAC application context.

The procedures that the DSA involved in a hierarchical operational binding shall follow are defined in clauses 16 to 22.

24.5 Use of application contexts

To establish, modify or terminate a hierarchical operational binding using the protocol and procedures of this Directory
Standard, a DSA shall use the operationalBindingManagementAC application context.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

84 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

25 Non-specific hierarchical operational binding

A non-specific hierarchical operational binding is used to represent the relationship between two DSA holding two
naming contexts, one immediately subordinate to the other. In the case of a NHOB, the superior DSA holds a
non-specific subordinate reference to the naming context held by the subordinate DSA; the subordinate DSA holds an
immediate superior reference to the naming context held by the superior DSA. The operational binding ensures that the
appropriate knowledge information is exchanged and maintained between the two DSAs so that both DSAs are able to
behave during the process of name resolution and operation evaluation as defined in clauses 18 and 19.

25.1 Operational binding type characteristics

25.1.1 Symmetry and roles

The hierarchical operational binding type is an asymmetrical type of operational binding. The two roles in a binding of
this type are:

a) the role of the master DSA for the superior naming context, the superior DSA (associated with abstract
role “A”; and

b) the role of the master DSA for the subordinate naming context, the subordinate DSA (associated with
abstract role “B”).

25.1.2 Agreement

The agreement information exchanged during the establishment of the non-specific hierarchical operational binding a
value of NonSpecificHierarchicalAgreement, contains only the distinguished name of the entry immediately superior
to the new naming context (the immediateSuperior component). This information shall be provided by the DSA that
initiates the NHOB.

NonSpecificHierarchicalAgreement ::= SEQUENCE {
immediateSuperior [1] DistinguishedName }

NOTE – How the subordinate DSA determines that the name of the new naming context is unambiguous is outside the
scope of this Recommendation | International Standard. The name will be unambiguous if correctly assigned by the relevant naming
authority and if no other DSA holds the same name as a master entry.

25.1.3 Initiator

25.1.3.1 Establishment

The establishment of a non-specific hierarchical operational binding can be initiated only by the subordinate DSA role.
Initiation by the subordinate DSA (which connects one or more locally existing entries or subtrees to the global DIT) is
caused by administrative intervention.

25.1.3.2 Modification

The modification of a non-specific hierarchical operational binding can be initiated by either role. The superior DSA
may issue the modification as a result of a modification of the superior context prefix information. This can be as a result
of any of the modification operations, or by administrator intervention.

Either DSA may also modify the NHOB if the access point information for its naming context (or one of its immediately
subordinate naming contexts in the case of the subordinate role) changes.

25.1.3.3 Termination

The termination of a hierarchical operational binding can be initiated by either role. Initiation by the superior DSA can
be caused by administrative intervention. Initiation by the subordinate DSA can be caused either by a Remove Entry
operation that removes the final context prefix entry held by the subordinate immediately subordinate to the
immediateSuperior component of the agreement or by administrative intervention.

25.1.4 Establishment parameters

The establishment parameter issued by the superior DSA, a value of NHOBSuperiorToSubordinate,is equivalent to the
corresponding HOB establishment parameter, except that the entryInfo component is absent.

NHOBSuperiorToSubordinate ::= SuperiorToSubordinate (
WITH COMPONENTS { ..., entryInfo ABSENT})

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 85

The establishment parameter issued by the subordinate DSA, a value of NHOBSubordinateToSuperior,is equivalent to
the corresponding HOB establishment parameter, except that the alias and entryInfo components are absent.

NHOBSubordinateToSuperior ::= SubordinateToSuperior (
WITH COMPONENTS { ..., alias ABSENT, entryInfo ABSENT})

25.1.5 Modification parameters

These parameters are identical to the corresponding establishment parameters and are used to signal changes occurring to
information provided in the establishment parameters subsequent to the establishment of the NHOB.

If any component of NHOBSuperiorToSubordinate or NHOBSubordinateToSuperior experiences a change
(e.g. the contextPrefixInfo component of NHOBSuperiorToSubordinate), the corresponding component of the
modification parameter (e.g. the contextPrefixInfo component of NHOBSuperiorToSubordinate) shall be provided
in its entirety in the Modify Operational Binding.

25.1.6 Termination parameters

Neither role provides a termination parameter when terminating a NHOB.

25.1.7 Type identification

The non-specific hierarchical operational binding is identified by the object identifier assigned when defining the
nonSpecificHierarchicalOperationalBinding OPERATIONAL-BINDING information object in 25.2.

25.2 Operational binding information object class definition

This subclause defines the non-specific hierarchical operational binding type using the OPERATIONAL-BINDING
information object class template defined in ITU-T Rec. X.501 | ISO/IEC 9594-2.

nonSpecificHierarchicalOperationalBinding OPERATIONAL-BINDING ::= {
AGREEMENT NonSpecificHierarchicalAgreement
APPLICATION CONTEXTS {

{ directorySystemAC }}
ASYMMETRIC

ROLE-A { -- superior DSA
ESTABLISHMENT-PARAMETER NHOBSuperiorToSubordinate
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER NHOBSuperiorToSubordinate
TERMINATION-INITIATOR TRUE }

ROLE-B { -- subordinate DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER NHOBSubordinateToSuperior
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER NHOBSubordinateToSuperior
TERMINATION-INITIATOR TRUE }

ID id-op-binding-non-specific-hierarchical }

25.3 DSA procedures for non-specific hierarchical operational binding management

In the following procedures, as in the procedures described in 24.3, a new DSE or a mark created by a DSA shall be
stored in stable storage.

In both the establishment and modification procedure described below, the DSA playing the responding role (i.e. not
initiating the establishment or modification) may provide the DSA playing the initiating role with information
(e.g. operational attributes) that are not acceptable for one reason or another. The initiating DSA may terminate the
operational binding in such cases.

25.3.1 Establishment procedure

Only the subordinate DSA may initiate a hierarchical operational binding. This might result from the wish of an
administrator to connect one or more subtrees of entries held in the DSA to a certain point in the global DIT. In this case,
the subordinate DSA shall establish a NHOB according to the following procedure:

1) The subordinate DSA either has a DSE of type cp as a part of an existing naming context or it creates a
new one. It marks the DSE being added, and generates a unique bindingID and stores it with the context
prefix DSE.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

86 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

2) The subordinate DSA sends an Establish Operational Binding operation to the superior DSA containing
the following parameters:

a) bindingType set to nonSpecificHierarchicalOperationalBindingID ;

b) NHOBSubordinateToSuperior establishment parameter, as appropriate ;

c) NonSpecificHierarchicalAgreement with the immediateSuperior component set to the
distinguished name of the immediate superior of the new entry ;

d) the bindingID, myAccessPoint and valid parameters, as appropriate.

3) The superior DSA checks that it is master for the immediate superior of the new context prefix entry or
returns an Operational Binding Error with problem roleAssignment.

4) The superior DSA adds the DSE type nssr (and nonSpecificKnowledge attribute information) to the DSE
of the immediate superior of the new entry, stores the bindingID with it, and returns a result.

5) If the subordinate DSA receives an error, it deletes the new context prefix DSE and its mark. It is a local
matter to determine the fate of the entry information from which the context prefix DSE was derived.

If the subordinate DSA receives a result, it adds the necessary DSEs of types glue, subentry, admPoint,
rhob and immSupr, as appropriate, to represent the contextPrefixInfo; and, as appropriate, a DSE of
type rhob and entry to represent the immediateSuperiorInfo. The mark of the context prefix DSE is
removed.

If any failure occurs (e.g. communication of end system), the subordinate DSA shall repeat the steps
starting at step 2 until a result or error has been received for each pending establishment of a hierarchical
operational binding for which it is the initiator.

25.3.2 Modification procedure

If the superior DSA detects any changes in the NHOBSuperiorToSubordinate information that it supplied to a
subordinate DSA within a non-specific hierarchical operational binding, it shall propagate the changed information to
the subordinate DSA. If the NHOB was established using the procedures of 25.3.1, then it shall be modified according to
the procedures defined for modifying the hierarchical operational binding in 24.3.2.1 (with
NHOBSuperiorToSubordinate substituted for SuperiorToSubordinateModification).

Similarly, if the subordinate DSA detects any changes in the NHOBSubordinateToSuperior information that it
supplied to a superior DSA, it shall propagate the changes to the superior DSA. If the NHOB was established using the
procedures of 25.3.1, then if shall be modified according to the procedures defined for modifying the hierarchical
operational binding in 24.3.2.2 (with NHOBSubordinateToSuperior substituted for SubordinateToSuperior).

25.3.3 Termination procedure

The following procedures are defined for termination of a NHOB which was established using the procedures of 25.3.1.

25.3.3.1 Termination initiated by superior DSA

The termination of a hierarchical operational binding is initiated by the superior DSA only as a result of administrative
intervention. The following procedure shall be followed:

1) The superior DSA marks the value corresponding to the subordinate DSA in the nonSpecificKnowledge
attribute held in the DSE of the immediately superior entry, as being deleted.

2) The superior DSA sends a Terminate Operational Binding operation for the NHOB with the subordinate
DSA. The version component of the bindingID is omitted by the superior.

3) When the subordinate DSA receives the Terminate Operational Binding, it deletes any information about
the NHOB and sends a result, unless the identifier component of the bindingID is unknown, in which
case an Operational Binding Error with problem invalidID, is returned. It is a local matter to determine
the fate of any entry information associated with the subordinate naming context.

4) If the superior DSA receives a result or an Operational Binding Error with problem invalidID, it shall
delete the value of the nonSpecificKnowledge attribute marked being deleted that represents the access
point information associated with the NHOB and deletes any information about the operational binding. If
this was the last value of the nonSpecificKnowledge attribute, it removes the nonSpecificKnowledge
attribute and the DSE type nssr from the DSE.

If any failure occurs (e.g. communication of end system), the superior DSA shall repeat the steps starting
at step 2 until a result or error has been received for each pending termination of a NHOB for which it is
the initiator.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 87

25.3.3.2 Termination initiated by subordinate DSA

Termination initiated by the subordinate DSA can be caused by a Remove Entry operation that removes the last entry
within the subordinate naming context, the context prefix entry, of the last subordinate naming context held by the
subordinate DSA, or as a result of administrative intervention. The following procedure shall be followed:

1) The subordinate DSA marks the context prefix DSE of the naming context being deleted.

2) The subordinate DSA sends a Terminate Operational Binding operation for the hierarchical operational
binding to the superior DSA. The version component of the bindingID is omitted by the subordinate.

3) When the superior DSA receives the Terminate Operational Binding, it deletes the value of the
nonSpecificKnowledge attribute that represents the access point information associated with the NHOB,
deletes any information about the operational binding, removes the nonSpecificKnowledge attribute and
the DSE type nssr from the DSE immediately superior to the subordinate naming context (if the deleted
value was the last value of the nonSpecificKnowledge attribute) and sends a result., unless the identifier
component of the bindingID is unknown, in which case an Operational Binding Error with problem
invalidID, is returned.

4) If the subordinate DSA receives a result or an Operational Binding Error with problem invalidID, it shall
delete any information about the operational binding. It is a local matter to determine the fate of any entry
information associated with the subordinate naming context.

If any failure occurs (e.g. communication of end system), the subordinate DSA shall repeat the steps
starting at step 2 until a result or error has been received for each pending termination of a NHOB for
which it is the initiator.

25.4 Procedures for operations

The operations that can be executed in the cooperative state of a non-specific hierarchical operational binding are those
defined within the directorySystemAC application context.

The procedures that the DSA involved in a non-specific hierarchical operational binding shall follow are defined in
clauses 16 through 22.

25.5 Use of application contexts

To establish, modify or terminate a non-specific hierarchical operational binding using the protocol and procedures of
this Directory Standard, a DSA shall use the operationalBindingManagementAC application context.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

88 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Annex A

ASN.1 for Distributed Operations
(This annex forms an integral part of this Recommendation | International Standard)

This annex includes all of the ASN.1 type, value and macro definitions contained in this Directory Specification in the
form of the ASN.1 module DistributedOperations.

DistributedOperations {joint-iso-ccitt ds(5) module(1) distributedOperations(3) 2}
DEFINITIONS ::=
BEGIN

-- EXPORTS All --

-- The types and values defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but this will not constrain
-- extensions and modifications needed to maintain or improve the Directory service.

IMPORTS
informationFramework, directoryAbstractService, distributedOperations,
selectedAttributeTypes, directoryOperationalBindingTypes, basicAccessControl, dap

FROM UsefulDefinitions {joint-iso-ccitt ds(5) module(1) usefulDefinitions(0) 2}

DistinguishedName, Name, RDNSequence
FROM InformationFramework informationFramework

PresentationAddress, ProtocolInformation, UniqueIdentifier
FROM SelectedAttributeTypes selectedAttributeTypes

AuthenticationLevel
FROM BasicAccessControl basicAccessControl

OPERATION, ERROR
FROM Remote-Operations-Information-Objects

{joint-iso-ccitt remote-operations(4) informationObjects(5) version1(0) }

directoryBind, directoryUnbind, read, compare, abandon, list, search, addEntry, removeEntry,
modifyEntry, modifyDN, referral, OPTIONALLY-SIGNED {}, SecurityParameters

FROM DirectoryAbstractService directoryAbstractService

id-errcode-dsaReferral
FROM DirectoryAccessProtocol dap

id-op-binding-hierarchical, id-op-binding-non-specific-hierarchical
FROM DirectoryOperationalBindingTypes directoryOperationalBindingTypes ;

-- parameterized type for deriving chained operations --

chained { OPERATION : operation } OPERATION ::= {
ARGUMENT OPTIONALLY-SIGNED { SET {

chainedArgument ChainingArguments,
argument [0] operation.&ArgumentType }}

RESULT OPTIONALLY-SIGNED { SET {
chainedResult ChainingResults,
result [0] operation.&ResultType }}

ERRORS { operation.&Errors EXCEPT (referral | dsaReferral) }
CODE operation.&operationCode }

-- bind and unbind operations --

dSABind OPERATION ::= directoryBind

dSAUnbind OPERATION ::= directoryUnbind

-- chained operations --

chainedRead OPERATION ::= chained { read }

chainedCompare OPERATION ::= chained { compare }

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 89

chainedAbandon OPERATION ::= abandon

chainedList OPERATION ::= chained { list }

chainedSearch OPERATION ::= chained { search }

chainedAddEntry OPERATION ::= chained { addEntry }

chainedRemoveEntry OPERATION ::= chained { removeEntry }

chainedModifyEntry OPERATION ::= chained { modifyEntry }

chainedModifyDN OPERATION ::= chained { modifyDN }

-- errors and parameters --

dsaReferral ERROR ::= {
PARAMETER SET {

reference [0] ContinuationReference,
contextPrefix [1] DistinguishedName OPTIONAL }

CODE id-errcode-dsaReferral }

-- common arguments and results --

ChainingArguments ::= SET {
originator [0] DistinguishedName OPTIONAL,
targetObject [1] DistinguishedName OPTIONAL,
operationProgress [2] OperationProgress

DEFAULT { nameResolutionPhase notStarted },
traceInformation [3] TraceInformation,
aliasDereferenced [4] BOOLEAN DEFAULT FALSE,
aliasedRDNs [5] INTEGER OPTIONAL,

-- absent unless aliasDereferenced is TRUE
returnCrossRefs [6] BOOLEAN DEFAULT FALSE,,
referenceType [7] ReferenceType DEFAULT superior,
info [8] DomainInfo OPTIONAL,
timeLimit [9] UTCTime OPTIONAL,
securityParameters [10] SecurityParameters DEFAULT { },
entryOnly [11] BOOLEAN DEFAULT FALSE,
uniqueIdentifier [12] UniqueIdentifier OPTIONAL,
authenticationLevel [13] AuthenticationLevel OPTIONAL,
exclusions [14] Exclusions OPTIONAL,
excludeShadows [15] BOOLEAN DEFAULT FALSE,
nameResolveOnMaster [16] BOOLEAN DEFAULT FALSE }

ChainingResults ::= SET {
info [0] DomainInfo OPTIONAL,
crossReferences [1] SEQUENCE OF CrossReference OPTIONAL,
securityParameters [2] SecurityParameters DEFAULT { },
alreadySearched [3] Exclusions OPTIONAL }

CrossReference ::= SET{
contextPrefix [0] DistinguishedName,
accessPoint [1] AccessPointInformation }

ReferenceType ::= ENUMERATED {
superior (1),
subordinate (2),
cross (3),
nonSpecificSubordinate (4),
supplier (5),
master (6),
immediateSuperior (7),
self (8) }

TraceInformation ::= SEQUENCE OF TraceItem

TraceItem ::= SET {
dsa [0] Name,
targetObject [1] Name OPTIONAL,
operationProgress [2] OperationProgress }

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

90 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

OperationProgress ::= SET {
nameResolutionPhase [0] ENUMERATED {

notStarted (1),
proceeding (2),
completed (3) },

nextRDNToBeResolved [1] INTEGER OPTIONAL }

DomainInfo ::= ABSTRACT-SYNTAX.&Type

ContinuationReference ::= SET {
targetObject [0] Name,
aliasedRDNs [1] INTEGER OPTIONAL,
operationProgress [2] OperationProgress,
rdnsResolved [3] INTEGER OPTIONAL,
referenceType [4] ReferenceType ,
accessPoints [5] SET OF AccessPointInformation,
entryOnly [6] BOOLEAN DEFAULT FALSE,
exclusions [7] Exclusions OPTIONAL,
returnToDUA [8] BOOLEAN DEFAULT FALSE,
nameResolveOnMaster [9] BOOLEAN DEFAULT FALSE}

AccessPoint ::= SET {
ae-title [0] Name,
address [1] PresentationAddress,
protocolInformation [2] SET OF ProtocolInformation OPTIONAL }

AccessPointInformation ::= SET {
COMPONENTS OF MasterOrShadowAccessPoint ,
additionalPoints [4] SET OF MasterOrShadowAccessPoint OPTIONAL }

MasterOrShadowAccessPoint ::= SET {
COMPONENTS OF AccessPoint,
category [3] ENUMERATED {

master (0),
shadow (1) } DEFAULT master }

MasterAndShadowAccessPoints ::= SET OF MasterOrShadowAccessPoint

Exclusions ::= SET OF RDNSequence

END

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 91

Annex B

Example of distributed name resolution

(This annex does not form an integral part of this Recommendation | International Standard)

Figure B.1 is an example of how distributed name resolution is used to process different directory requests. The example
is based on the hypothetical DIT and the corresponding DSA configuration (s) described in Annex M (Modeling of
Knowledge) of ITU-T Rec. X.501 | ISO/IEC 9594-2, and reproduced here for convenience.

TISO3890-94/d32

Context A Context B

Root

O = WW O = VV

Context C

O = ABC

OU = G

CN = l CN = m CN = n

CN = o CN = p CN = q

CN = AA

Context E

Autonomous
Administrative

Area AA

OU = U OU = K

CN = BB

O = DEF

Context D

Autonomous
Administrative

Area BB

DSA 1 DSA 2 DSA 3

Figure B.1 – Hypothetical DIT Mapped onto three DSAs

OU = H

OU = I

FIGURE B.1/X.518...[D32] = 12 CM

Assuming a chaining mode of propagating, the following requests addressed to DSA 1 would be processed as follows:

1) A request with distinguished name {C = WW, O = ABC, OU = G, CN = l}

– Name resolution will successfully match each RDN in the target name with DSEs held by DSA 1,
until the target DSE is located.

2) A request with distinguished name {C = WW, O = JPR}

– The Name Resolution procedure in DSA 1 will match the DSE C = WW, and will be unable to match
further. At this point, DSA 1 finds potentially two references to help it proceed: one is the immSupr
reference in DSE C = WW, and the other is the supr reference in the root DSE. In this hypothetical
example, both would be pointing to DSA 2. Therefore the request is chained to DSA 2.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

92 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

– In DSA 2, the Name Resolution procedure will match the DSE C = WW, and will be unable to match
further. In this case, since the DSE C = WW is a cp and entry, and DSA 2 is the master DSA for this
entry, and further there are no nssr at C = WW, DSA 2 is therefore able to determine that there is no
such name in the directory. An name error noSuchObject is returned.

3) A request with distinguished name {C = VV, O = DEF, OU = K}

– The Name Resolution procedure in DSA 1 will match not be able to match any DSE. The only
reference available is the supr reference in the root DSE, which points to DSA 2. So the request is
chained to DSA 2.

– In DSA 2, the Name Resolution procedure will match the DSE C = VV, and then DSE O = DEF, and
will be unable to match further. Since DSE O = DEF is found to be of type subr, the specific
knowledge reference, which points to DSA 3, is used, and the request is chained to DSA 3.

– In DSA 3, the Name Resolution procedure will match the entire target object name, and find that the
located DSE is of type alias. Assuming aliases are to be dereferenced in this case, a new name will
be constructed using the aliasedEntryName contained in the matched DSE. DSA 3 will then
re-enter the Name Resolution procedure to continue.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 93

Annex C

Distributed use of authentication

(This annex does not form an integral part of this Recommendation | International Standard)

C.1 Summary

The security model is defined in clause 10 of ITU-T Rec. X.501 | ISO/IEC 9594-2. The following is a summary of the
main points of the model:

a) Simple Authentication of the operation initiator is not supported in the DSP;

b) Strong Authentication, by the signing of the request and of the result, is supported in the DSP;

c) Encryption of the request, or of the result, is not supported in the DSP;

d) Authentication of errors, including referrals, is not supported in the DSP.

This annex describes how item b) above is realize in the distributed Directory. It makes use of terminology and notation
defined in ITU-T Rec. X.509 | ISO/IEC 9594-8.

C.2 Simple authentication

The DUA will be authenticated as part of the Bind Operation of the DAP. Thereafter, only the name of the DUA will be
carried in the DSP, in the originator field of the Chaining Argument.

C.3 Distributed authentication model

Figure C.1 illustrates the model to be used to specify the distributed authentication procedures. The model identifies the
sequence of information flows for the general case of a list or search operation. The operation is considered as
originating from DUA ‘a’, citing a target object which resides in DSA ‘c’ in performing the operation, DSAs ‘b’, ‘c’, ‘d’
and ‘e’ are to be involved.

DUA ‘a’ initially contacts any DSA (DSA ‘b’) which does not hold the target object, but which is able to navigate, via
chaining, to the DSA (DSA ‘c’) holding the target object. If all the DSAs were operating in referral mode, then the
model would be significantly simplified, and each DUA/DSA exchange would equate, in authentication terms, to the
interaction between DUA ‘a’ and DSA ‘b’.

1

TISO3900-94/d33

2

6 5

3

4

3

4

DUA
’a’

DSA
’b’

DSA
’c’

DSA
’d’

DSA
’e’

Operation Results

Figure C.1 – Distributed Authentication Model

1 2 3

4 5 6

Operation Requests

FIGURE C.1/X.518...[D33] = 6 CM

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

94 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

C.4 DUA to DSA

Originator authentication is realized as a consequence of exchange (1) in Figure C.1; the authentication procedure is as
follows:

let

OA = the Operation Argument, i.e. Search, Read, Compare, etc. Argument as defined in ITU-T Rec. X.511 |
ISO/IEC 9594-3.

and

a{OA} = the Operation Argument signed by DUA ‘a’.

Authentication will be determined by verification of the signature.

C.5 Transference from the DAP to the DSP

This procedure is effected by DSA ‘b’ in Figure C.1, and represents the transference of the signed identity of the initiator
from the DAP to the DSP.

DSA ‘b’ formulates the appropriate Chaining Argument as described in 12.3 of this Directory Specification and
combines it with the Operation Argument from the DAP thus forming a Chained Operation, i.e. Chained Read, Search,
List, etc. of the DSP. The Chained Operation so formed will be signed prior to passing it to other DSAs (DSA ‘c’ in
Figure C.1). The data structure can be represented as:

b{ChA,a{OA}} = the Chained Operation signed by DSA ‘b’

where

ChA = Chaining Argument

Authentication information carried in the DSP between two DSAs (labeled exchange ¡ in Figure C.1) therefore
comprises two parts:

a) the Operation argument, signed by the initiator, which allows authentication of the initiator;

b) the Chained Operation, signed by the sending DSA, which allows authentication of the sending DSA.

C.6 Chaining through intermediate DSAs

This procedure would be effected by DSA ‘c’ in the model depicted in Figure C.1. DSA ‘c’ will discard the signature
provided by the sending DSA (DSA ‘b’ in Figure C.1), and will modify the Chaining Argument, as described in 10.3.
DSA ‘c’ shall then combine the modified Chaining Argument with the signed Operation Argument, and sign the result to
create a modified signed Chained Operation. This can be represented by:

c{ChA’, a{OA}} = the Chained Operation signed by DSA ‘c’

where

ChA’ = modified Chaining Argument

The modified Chained Operation is represented in Figure C.1 by exchange ¬. Depending upon the nature of the
operation, and upon the type of knowledge held, DSA ‘c’ may perform request decomposition prior to chaining any
resultant operation(s). This has been represented in Figure C.1 by DSA ‘c’ sending operations to DSA ‘d’ and DSA ‘e’;
in each case the authentication procedure is identical.

C.7 Results authentication

The results authentication service is requested by an initiator of a directory operation using the signed option within the
protectionRequest Security Parameter. In providing a response to such a request a DSA may optionally decide
whether or not to sign any or all of the result: the results authentication service does not provide for the authentication of
error responses.

Within the context of a particular DSA processing results from an arbitrary number of DSAs (each of which are
associated with a particular service request) the following distinct cases are possible:

a) the DSA provides a complete set of results for an operation without the need to perform any collating
function (represented by DSA ‘d’ and DSA ‘e’ in Figure C.1);

b) the DSA collates local results (sourced by this DSA) with the results from one or more other DSAs
(represented by DSA ‘c’ in Figure C.1);

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 95

c) the DSA chains a result from a DSA to either another DSA or a DUA and does not contribute to the result
set as it does so (represented by DSA ‘b’ in Figure C.1);

C.7.1 DSA results – No collation

This subclause addresses the role of a DSA in being the sole source of results to a particular operation request, i.e. the
DSA has no collation function to perform. The subclause considers the case for both the DSP and the DAP.

C.7.1.1 DSP

The DSA can choose to perform one of the following procedures:

a) return the results unsigned, this can be represented by:

ChR,OR = Chained Operation Result (unsigned)

where

ChR = Chaining Results

OR = Operation Results

b) sign only the Operation Result, this can be represented by:

ChR, d{OR} = Operation Results signed by DSA ‘d’

c) sign only the Chained Operation Result, which can be represented as:

d{ChR, OR} = Chained Operation Result signed by DSA ‘d’

d) sign both the Operation Result and the Chained Operation Result, which can be represented by:

d{ChR, d{OR}} = Operation Result and Chained Operation Result signed by DSA ‘d’.
NOTE – For the case where the operation result is signed, the signed result will be carried back by the initiator;

for the case where the Chained operation result has been signed, the receiving DSA will have to discard the signature
in order to modify the chaining results argument prior to forwarding the Chained Operation Result.

C.7.1.2 DAP

This is fully described in ITU-T Rec. X.511 | ISO/IEC 9594-3; a summary is reproduced here for completeness.

The DSA can choose to either return the results unsigned, which can be represented by:

OR = Operation Result

or, signed, which can be represented by:

d{OR} = Operation Result signed by DSA ‘d’.

C.7.2 DSA results – Collation included

This subclause addresses the role of a DSA in returning the result of particular service request where collation and
integration of results from other DSAs is a necessary prerequisite. This is considered for both the DSP and the DAP.

C.7.2.1 DSP

Recognizing the zero or more results received from other DSAs may be signed, this procedure enables a DSA to collate
and integrate the results and sign zero or more constituent parts of the composite result and optionally, sign the
composite result as a whole.

C.7.2.1.1 Production of the chaining results argument

This procedure requires that a DSA (represented by DSA ‘c’ in Figure C.1) remove all of the Chained Operation Result
signatures from the results received from external DSAs (DSA ‘d’ and DSA ‘e’ in Figure C.1). DSA ‘c’ then possesses a
set of unsigned Chaining results, a set of signed Operation Results, and a set of unsigned Operation Results.

All the Chaining Results are manipulated as described in this Directory Specification, to create a single modified
Chaining Result, denoted by:

i) ChR’ = modified Chaining Results.

C.7.2.1.2 Unsigned locally derived result

If the DSA does not wish to sign the locally generated results, the set of unsigned Operation Results are merged with the
local result to form a modified set of Operation Results, denoted by:

OR’ = Merged Operation Result.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

96 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

The complete set of Operation Results is then the union of the set of externally signed Operation Results denoted by:

d{OR}, e{OR} ...

and the Merged Operation Result, collectively denoted by:

ii) OR’, d{OR}, e{OR} ... = Operation Result.

C.7.2.1.3 Signed locally derived result

If the DSA does wish to sign the locally generated result, then the externally generated set of unsigned Operation Results
are first merged together. The complete set of Operation Results is then the union of the locally signed set of Operation
Results denoted by, OR”, and the set of externally signed Operation Results denoted by:

d{OR}, e{OR},, which are collectively denoted as:

iii) c{OR}, OR”, d{OR}, e{OR}, = Operation Result

C.7.2.1.4 Unsigned chained operation result

If the DSA does not wish to sign the Chained Operation Result, then the latter will comprise the Chaining Results
[identified in i) above] added to the Operation Result identified in either ii) or iii) above, collectively, these are denoted
by:

either:

ChR’, OR’, d{OR}, e{OR}, = Chained Operation Result (unsigned)

or

ChR’, c{OR}, OR”, d{OR}, e{OR}, ... = Chained Operation Result (unsigned) and Operation Result signed
by DSA ‘c’.

C.7.2.1.5 Signed chained operation result

If the DSA does wish to sign the Chained Operation Result, then the result will comprise the Chaining Results
(identified in (i) above) added to the Operation Result (identified in either (ii) or (iii) above), collectively denoted as:

either:

c{ChR’, OR’, d{OR}, e{OR}, ...} = Chained Operation Result signed by DSA ‘c’

or

c{ChR’, c{OR}, OR:, d{OR}, e{OR},} = Chained Operation Result and Operation Result signed by
DSA ‘c’.

C.7.2.2 DAP

The procedure is very similar to that described in C.7.2.1, with the exception that the Chaining Results argument is not
passed in the DAP.

C.7.3 DSA chained results

This subclause addresses the procedures to be effected by a DSA in chaining an operation result back to the requester,
DSA or DUA, within the DSP and DAP respectively.

C.7.3.1 DSP

The DSA initially removes the signature (if one exists) from the Chained Operation Result. It then manipulates the
Chaining Results argument as described in this Directory Specification, to produce a modified Chaining Results
argument. The latter is then merged back with the Operation Result argument to produce a modified Chained Operation
Result. Finally, the DSA may optionally sign the Chained Operation Result before passing it to the next DSA in the
chain.

C.7.3.2 DAP

A DSA (represented by DSA ‘b’ in Figure C.1) first removes the signature (if one exists) from the Chained Operation
Result. It then analyses and discards the Chaining Results argument and, finally, it optionally signs the remaining
Operation Result argument before passing the result to the DUA.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 97

Annex D

Specification of hierarchical and non-specific hierarchical operational binding types
(This annex forms an integral part of this Recommendation | International Standard)

This annex includes the definitions of the ASN.1 information object classes introduced in this Directory Specification in
the form of the ASN.1 module HierarchicalOperationalBindings.

HierarchicalOperationalBindings
{joint-iso-ccitt ds(5) module(1) hierarchicalOperationalBindings(20) 2}

DEFINITIONS ::=
BEGIN

-- EXPORTS All --

-- The types and values defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but this will not constrain
-- extensions and modifications needed to maintain or improve the Directory service.

IMPORTS
informationFramework, distributedOperations, directoryOperationalBindingTypes,
opBindingManagement, dsp

FROM UsefulDefinitions {joint-iso-ccitt ds(5) module(1) usefulDefinitions(0) 2}

Attribute, RelativeDistinguishedName, DistinguishedName
FROM InformationFramework informationFramework

MasterAndShadowAccessPoints
FROM DistributedOperations distributedOperations

directorySystemAC
FROM DirectorySystemProtocol dsp

OPERATIONAL-BINDING
FROM OperationalBindingManagement opBindingManagement

id-op-binding-hierarchical, id-op-binding-non-specific-hierarchical
FROM DirectoryOperationalBindingTypes directoryOperationalBindingTypes ;

-- types --

HierarchicalAgreement ::= SEQUENCE {
rdn [0] RelativeDistinguishedName,
immediateSuperior [1] DistinguishedName }

NonSpecificHierarchicalAgreement ::= SEQUENCE {
immediateSuperior [1] DistinguishedName }

SuperiorToSubordinate ::= SEQUENCE {
contextPrefixInfo [0] DITcontext,
entryInfo [1] SET OF Attribute OPTIONAL,
immediateSuperiorInfo [2] SET OF Attribute OPTIONAL }

DITcontext ::= SEQUENCE OF Vertex

Vertex ::= SEQUENCE {
rdn [0] RelativeDistinguishedName,
admPointInfo [1] SET OF Attribute OPTIONAL,
subentries [2] SET OF SubentryInfo OPTIONAL,
accessPoints [3] MasterAndShadowAccessPoints OPTIONAL }

SubentryInfo ::= SEQUENCE {
rdn [0] RelativeDistinguishedName,
info [1] SET OF Attribute }

SubordinateToSuperior ::= SEQUENCE {
accessPoints [0] MasterAndShadowAccessPoints OPTIONAL,
alias [1] BOOLEAN DEFAULT FALSE,
entryInfo [2] SET OF Attribute OPTIONAL }

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

98 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

SuperiorToSubordinateModification ::= SuperiorToSubordinate (
WITH COMPONENTS { ..., entryInfo ABSENT})

NHOBSuperiorToSubordinate ::= SuperiorToSubordinate (
WITH COMPONENTS { ..., entryInfo ABSENT })

NHOBSubordinateToSuperior ::= SubordinateToSuperior (
WITH COMPONENTS { ..., alias ABSENT, entryInfo ABSENT })

-- operational binding information objects--

hierarchicalOperationalBinding OPERATIONAL-BINDING ::= {
AGREEMENT HierarchicalAgreement
APPLICATION CONTEXTS {

{ directorySystemAC }}
ASYMMETRIC

ROLE-A { -- superior DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER SuperiorToSubordinate
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER SuperiorToSubordinateModification
TERMINATION-INITIATOR TRUE}

ROLE-B { -- subordinate DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER SubordinateToSuperior
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER SubordinateToSuperior
TERMINATION-INITIATOR TRUE}

ID id-op-binding-hierarchical }

nonSpecificHierarchicalOperationalBinding OPERATIONAL-BINDING ::= {
AGREEMENT NonSpecificHierarchicalAgreement
APPLICATION CONTEXTS {

{ directorySystemAC }}
ASYMMETRIC

ROLE-A { -- superior DSA
ESTABLISHMENT-PARAMETER NHOBSuperiorToSubordinate
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER NHOBSuperiorToSubordinate
TERMINATION-INITIATOR TRUE }

ROLE-B { -- subordinate DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER NHOBSubordinateToSuperior
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER NHOBSubordinateToSuperior
TERMINATION-INITIATOR TRUE }

ID id-op-binding-non-specific-hierarchical }

END

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 99

Annex E

Knowledge maintenance example

(This annex does not form an integral part of this Recommendation | International Standard)

This annex illustrates knowledge maintenance, as defined in clause 23, with a simple example. In Figure E.1, the
following symbols are used to depict the DSA information trees of five DSAs.

TISO3910-94/d34

root DSE

entry

shadowed entry

shadowed subr DSE

glue DSE

Subr DSE

shadowing

“reverse” shadowing

shadowed immSupr DSE

shadowed context prefix entry

immSupr DSE

context prefix entry

Figure E.1 – Symbols used to depict DSA information trees

HOB

FIGURE E.1/X.518...[D34] = 7 CM

In Figure E.2, DSA 1 is the master for naming context {A}, consisting of the two entries {A} and {A, B}. DSA 1 holds
a subordinate reference for naming context {A, B, C} which is maintained via an HOB with DSA 3. DSA 1 is a shadow
supplier to DSA 2, supplying it with copies of the user information of naming context {A} and the subordinate reference
to naming context {A, B, C} which identifies the access points of DSA 3, DSA 4 and DSA 5, the former being the
master for the subordinate naming context.

DSA 3 is the master for naming context {A, B, C}. In addition to holding the single entry {A, B, C} of the naming
context, DSA 3 holds an immediate superior reference for naming context {A}which is maintained via an HOB with
DSA 1. DSA 3 is a shadow supplier to DSA 4, supplying it with copies of the user information of naming context
{A, B, C} and the immediate superior reference to naming context {A} which identifies the access points of DSA 1 and
DSA 2, the former being the master for the superior naming context. DSA 4 is a (secondary) shadow supplier to DSA 5,
providing it with a copy of the information it receives from DSA 3.

Figure E.2 illustrates the DSA operational attributes employed to represent and maintain knowledge.

DSA 1 uses the value of its myAccessPoint attribute (associated with its root DSE) and the commonly usable values of
its consumerKnowledge (associated with context prefix {A}) attribute to form a value of the type MasterAnd-
ShadowAccessPoints for use in its HOB interactions with DSA 3. DSA 3, in turn, uses the value of its myAccessPoint
attribute (associated with its root DSE) and the commonly usable values of its consumerKnowledge attribute and its
secondaryShadows (both associated with context prefix {A, B, C}) attribute to form a value of the type
MasterAndShadowAccessPoints for use in its HOB interactions with DSA 1. Together, the two DSAs, using the DOP,
maintain a subordinate reference held by DSA 1 and an immediate superior reference held by DSA 3. DSA 1’s
subordinate reference, expressed by a specificKnowledge attribute associated with a DSE at {A, B, C}, is based on the
MasterAndShadowAccessPoints value it receives from DSA 3; DSA 3’s immediate superior reference, expressed by a
specificKnowledge attribute associated with a DSE at {A}, is similarly based on the MasterAndShadowAccessPoints
value it receives from DSA 1.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

100 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

 C

 B

 A

 C

 B

 A

 C

 B

 A

 C

 B

 A

 C

 B

 A

TISO3920-94/d35

myAccessPoint = DSA 1

consumerKnowledge = DSA 2

specificKnowledge =
DSA 3, DSA 4, DSA 5

myAccessPoint = DSA 3

specificKnowledge = DSA 1, DSA 2

secondaryShadows =
DSA 4, {DSA 5}

consumerKnowledge = DSA 4

myAccessPoint = DSA 2

myAccessPoint = DSA 4

specificKnowldege =
DSA 3, DSA 4, DSA 5

supplierKnowledge = DSA 1

specificKnowledge = DSA 1, DSA 2

consumerKnowledge = DSA 5

supplierKnowledge = DSA 4

myAccessPoint = DSA 5

specificKnowledge = DSA 1, DSA 2

supplierKnowledge = DSA 4

Figure E.2 – Knowledge maintenance example

DSA 1

DSA 3 DSA 4

DSA 2

DSA 5

FIGURE E.2/X.518...[D35] = 18 CM

DSA 1 and DSA 2 use their values of myAccessPoint in Shadowing Operational Binding interactions to maintain a
value of consumerKnowledge in DSA 1 (identifying the access point of DSA 2) and supplierKnowledge in DSA 2
(identifying the access point of DSA 1), both attributes associated with the context prefix {A}. Together, the two DSAs,
using the DOP, maintain the consumer reference held by DSA 1 and the supplier reference held by DSA 2.

DSA 2 receives a copy of the specificKnowledge attribute associated with context prefix {A, B, C} from DSA 1 in
DISP interactions with DSA 1. This interaction serves to maintain DSA 2’s subordinate reference to the context prefix
{A, B, C}.

DSA 3 and DSA 4 (and similarly DSA 4 and DSA 5} maintain consumer and supplier references, respectively, in a
fashion analogous to the interaction between DSA 1 and DSA 2.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 101

DSA 4 receives a copy of the specificKnowledge attribute associated with context prefix {A4} from DSA 3 in DISP
interactions with DSA 3. This interaction serves to maintain DSA 4’s immediate superior reference to the context
prefix {A}.

DSA 4 communicates to DSA 3 any changes in its myAccessPoint and consumerKnowledge attribute (and
secondaryShadows attribute, which is null in this example) using the modify operational binding operation of the DOP.
DSA 4 supplies DSA 3 with a value of SupplierAndConsumers, containing only those values of the
consumerKnowledge attribute that identify the access points of DSAs that have commonly usable shadows; the values
of the secondaryShadows attribute supplied by DSA 4, had there been any, would all, by design, be commonly usable.
(In this example, DSA 5 is presumed to hold a commonly usable copy of the naming context at {A, B, C}.) DSA 3 uses
this information to maintain a value of its secondaryShadows attribute associated with context prefix {A, B, C}. This
attribute, as described above, is used in DOP interactions with DSA 1 to maintain DSA 1’s subordinate reference to the
context prefix {A, B, C}.

DSA 5 maintains its immediate superior reference to context prefix {A} using DISP interactions with DSA 4 in a fashion
analogous to the interactions between DSA 3 and DSA 4.

Superseded by a more recent version ISO/IEC 9594-4 : 1995 (E)

102 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Annex F

Amendments and corrigenda
(This annex does not form an integral part of this Recommendation | International Standard)

This edition of this Directory Specification includes the following amendments:

– Amendment 1 for Access Control;

– Amendment 2 for Replication, Schema, and Enhanced Search.

This edition of this Directory Specification includes the following technical corrigenda correcting the defects in the
following defect reports (some parts of some of the following Technical Corrigenda may have been subsumed by the
amendments that formed this edition of this Directory Specification):

– Technical Corrigendum 1 (covering Defect Reports 004, 010-013, 022, 023, 025-027, 029).

– Technical Corrigendum 2 (covering Defect Reports 002, 034, 048, 050, 059).

– Technical Corrigendum 3 (covering Defect Reports 024, 062, 065, 066).

