

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.1198
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(06/2013)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

Secure applications and services – IPTV security

 Virtual machine-based security platform for

renewable IPTV service and content protection

Recommendation ITU-T X.1198

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS X.1–X.199
OPEN SYSTEMS INTERCONNECTION X.200–X.299
INTERWORKING BETWEEN NETWORKS X.300–X.399
MESSAGE HANDLING SYSTEMS X.400–X.499
DIRECTORY X.500–X.599
OSI NETWORKING AND SYSTEM ASPECTS X.600–X.699
OSI MANAGEMENT X.700–X.799
SECURITY X.800–X.849
OSI APPLICATIONS X.850–X.899
OPEN DISTRIBUTED PROCESSING X.900–X.999
INFORMATION AND NETWORK SECURITY

General security aspects X.1000–X.1029
Network security X.1030–X.1049
Security management X.1050–X.1069
Telebiometrics X.1080–X.1099

SECURE APPLICATIONS AND SERVICES
Multicast security X.1100–X.1109
Home network security X.1110–X.1119
Mobile security X.1120–X.1139
Web security X.1140–X.1149
Security protocols X.1150–X.1159
Peer-to-peer security X.1160–X.1169
Networked ID security X.1170–X.1179
IPTV security X.1180–X.1199

CYBERSPACE SECURITY
Cybersecurity X.1200–X.1229
Countering spam X.1230–X.1249
Identity management X.1250–X.1279

SECURE APPLICATIONS AND SERVICES
Emergency communications X.1300–X.1309
Ubiquitous sensor network security X.1310–X.1339

CYBERSECURITY INFORMATION EXCHANGE
Overview of cybersecurity X.1500–X.1519
Vulnerability/state exchange X.1520–X.1539
Event/incident/heuristics exchange X.1540–X.1549
Exchange of policies X.1550–X.1559
Heuristics and information request X.1560–X.1569
Identification and discovery X.1570–X.1579
Assured exchange X.1580–X.1589

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T X.1198 (06/2013) i

Recommendation ITU-T X.1198

Virtual machine-based security platform for renewable IPTV
service and content protection

Summary

Recommendation ITU-T X.1198 specifies a virtual machine-based security platform for the
renewable service and content protection (SCP) system. The virtual machine supports an abstract
function of hardware devices. This Recommendation defines a common interface and functional
logic in the Internet protocol television (IPTV) terminal device and includes the data structure of
SCP client and system components for a terminal device such as an embedded SCP, media client and
control client.

History

Edition Recommendation Approval Study Group

1.0 ITU-T X.1198 2013-06-13 17

Keywords

Conditional access, downloadable security, exchangeable security, renewable security, service
protection, terminal device.

ii Rec. ITU-T X.1198 (06/2013)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2013

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T X.1198 (06/2013) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

3 Definitions .. 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Recommendation ... 2

4 Abbreviations and acronyms .. 2

5 Conventions .. 3

6 Overview of a virtual machine platform ... 4

6.1 General architecture of a virtual machine .. 4

6.2 Requirements for a virtual machine-based security system 5

6.3 Architecture of the SCP virtual machine .. 6

7 Virtual machine-based security platform for the SCP system 9

7.1 System architecture .. 11

7.2 SCP virtual machine ... 12

7.3 Service and content protection (SCP) client ... 13

7.4 Protection of the SCP client and SVM ... 13

7.5 Security policy .. 14

7.6 System call .. 15

7.7 Event ... 16

Annex A – Data structure of SCP client package .. 19

A.1 Header of SCP client .. 19

A.2 Policy data .. 20

A.3 Code data .. 21

A.4 Signature ... 21

Bibliography... 22

 Rec. ITU-T X.1198 (06/2013) 1

Recommendation ITU-T X.1198

Virtual machine-based security platform for renewable IPTV
service and content protection

1 Scope

This Recommendation develops a virtual machine-based security platform for renewable service
and content protection (SCP) under Internet protocol television (IPTV) services. This includes the
virtual machine architecture and the mechanism for organizing virtual machine-related components
such as SCP client, terminal client (embedded SCP) and media client. The following items are
addressed:

a) Behaviour of SCP client: An SCP client has its pre-determined legitimate behaviour of
execution. An SCP virtual machine (VM) should monitor the behaviour of an SCP client in
run-time. This allows the system to prevent malicious code or unintentional code.
Moreover, an SCP VM may support a reporting ability in case of illegal situations.

b) Protection of SCP client: An SCP client code should not be seen by any unauthorized
person or device during transmission. In addition, an SCP client code may be converted to
an unreadable form even while loading a process.

c) Integration with embedded SCP: An embedded SCP should obey the policy of the SCP
client, including storing and retransmission.

d) Integration with media client: A media client should deliver every event that has occurred
in the device to the SCP VM. Deleting or modifying an event or its parameter is not
allowed.

2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T X.1194] Recommendation ITU-T X.1194 (2012), Algorithm selection scheme for
service and content protection descrambling.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 access control [b-ITU-T X.800]: The prevention of unauthorized use of a resource,
including the prevention of use of a resource in an unauthorized manner.

3.1.2 (entity) authentication [b-ITU-T X.1252]: A process used to achieve sufficient confidence
in the binding between the entity and the presented identity.

3.1.3 authorization [b-ITU-T X.800]: The granting of rights, which includes the granting of
access based on access rights.

2 Rec. ITU-T X.1198 (06/2013)

3.1.4 confidentiality [b-ITU-T X.800]: The property that information is not made available or
disclosed to unauthorized individuals, entities, or processes.

3.1.5 digital signature [b-ITU-T X.800]: Data appended to, or a cryptographic transformation
(see cryptography in [b-ITU-T X.800]) of a data unit that allows a recipient of the data unit to prove
the source and integrity of the data unit and protect against forgery e.g. by the recipient.

3.1.6 integrity [b-ITU-T X.800]: The property that data has not been altered or destroyed in an
unauthorized manner.

3.1.7 key [b-ITU-T X.800]: A sequence of symbols that controls the operations of encipherment
and decipherment.

3.1.8 key management [b-ITU-T X.800]: The generation, storage, distribution, deletion,
archiving and application of keys in accordance with a security policy.

3.1.9 process [ITU-T X.1194]: Instance of a computer program that is being executed; contains
the program code and its current status.

3.1.10 scrambling algorithm [b-ITU-T X.1191]: Algorithm used in a scrambling or a
descrambling process.

3.1.11 service and content protection [b-ITU-T X.1191]: A combination of service protection
and content protection or the system or implementation thereof.

3.1.12 service protection [b-ITU-T X.1191]: Ensuring that an end user can only acquire a service
and the content hosted therein by extension as what he/she is entitled to receive; service protection
includes protecting service from unauthorized access as IPTV contents traverse through the IPTV
service connections.

3.1.13 virtual machine [ITU-T X.1194]: Software implementation of a machine that can execute
programs just like a physical machine; supports separated operating systems.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 conditional access: A function served by a conditional access system; often used as an
abbreviation for conditional access system.

3.2.2 conditional access system: A component of a service and content protection system the
purpose of which is to prevent unauthorized (unentitled) access to a service or to content.

3.2.3 trap: A code or signal function designed to capture errors and reveal where they have
occurred.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

AAA Authentication, Authorization and Accounting

API Application Programming Interface

CPU Central Processing Unit

ECM Entitlement Control Message

EMM Entitlement Management Message

EPG Electronic Programme Guide

HAL Hardware Abstraction Layer

H/W Hardware

 Rec. ITU-T X.1198 (06/2013) 3

ID Identity

IDE Integrated Drive Electronics

I/O Input/Output

IPTV Internet Protocol Television

OS Operating System

OTID One-Time Identifier

PC Program Counter

SCP Service and Content Protection

SCSI Small Computer System Interface

SIM Subscriber Identity Module

SSL Secure Socket Layer

SVM Secure Virtual Machine

S/W Software

TLS Transport Layer Security

UI User Interface

USB User Serial Bus

UX User experience

VM Virtual Machine

VoD Video on Demand

XML extensible Markup Language

5 Conventions

In this Recommendation:

The words "is required to" indicate a requirement which must be strictly followed and from which
no deviation is permitted if conformance to this Recommendation is to be claimed.

The words "is recommended" indicate a requirement which is recommended but which is not
absolutely required. Thus this requirement need not be present to claim conformance.

The words "is prohibited from" indicate a requirement which must be strictly followed and from
which no deviation is permitted if conformance to this Recommendation is to be claimed.

The words "can optionally" indicate an optional requirement which is permissible, without
implying any sense of being recommended. This term is not intended to imply that the vendor’s
implementation must provide the option, and the feature can be optionally enabled by the network
operator/service provider. Rather, it means the vendor may optionally provide the feature and still
claim conformance with this Recommendation.

In the body of this Recommendation and its annex, the words shall, shall not, should, and may
sometimes appear, in which case they are to be interpreted, respectively, as is required to, is
prohibited from, is recommended and can optionally. The appearance of such phrases or words in
an appendix or in material explicitly marked as informative are to be interpreted as having no
normative intent.

4 Rec. ITU-T X.1198 (06/2013)

6 Overview of a virtual machine platform

There are two ways to support a renewable client. The first way is a non-standardized method; just a
single mechanism is implemented such as a hardware chip (a security co-processor) or a physical
devices with an encapsulated or hardwired protection mechanism. The second way is through an
open and standard-based approach. This Recommendation develops open and common interfaces to
support an interoperable and renewable SCP client with a virtual machine. It is a
platform-independent run-time environment for the execution of an SCP client in the terminal
device, which provides a downloadable and renewable service protection mechanism. Because this
platform is a virtual environment, it enables the writing of a downloadable SCP code which has
instruction-level code compatibility. This platform can be implemented in software (S/W) or
hardware (H/W) environments.

6.1 General architecture of a virtual machine

Generally, a virtual machine provides functions of code mobility and hardware abstraction. As a
security feature, a virtual machine provides a safe termination and a controlled execution of a
mobile code. Figure 1 shows the concept of a virtual machine.

Hardware and
device driver

I/O SystemCPU scheduling Memory manage Network

SCSI/IDECPU Physical memory Network card

Host operating system

Virtualization layer
(Virtual machine monitor) Virtual I/O systemVirtual CPU Virtual Memory Virtual device

Mobile application Security applicationEmbedded application Java application

Guest operating
system

For mobile device

Guest operating
system

For embedded device

Guest operating
system

For Java machine

Guest operating
system

For security system

Virtual machine Virtual machine Virtual machine Secure virtual machine

[Host operating system] layer is optional
X.1198(13)_F01

Figure 1 − General architecture of a virtual machine

The system is divided into a host operating system and several virtual machines, including a secure
virtual machine, because it has a role of separating a host operating system (OS) and a guest OS. In
the secure application, accessing a host operating system is only allowed through the virtual
machine, which has the privilege to call the run-time library and system call from the policy
monitor.

Components of virtual machine-based systems are illustrated below:

– Application (App): A program that executes a set of instructions and which is commonly
defined with single operations for the specified platform such as a mobile device, an
embedded device, a Java machine, or a security system.

– Security application (S-App): This application can access all security functions, which are
low level disk access and protected instructions such as policy monitor, access token and a
content encryption key. The platform should protect security applications from other
applications or other illegal processes.

 Rec. ITU-T X.1198 (06/2013) 5

– Guest operating system: This is an operating system with a virtual machine instead of a
native driver and a physical device such as a central processing unit (CPU), memory, an
input/output (I/O) system and a network card.

– Virtual machine: This is an abstraction platform to support multiple OS environments. It
includes a guest operating system and applications. Functionally, this includes application
provisioning, maintenance and interoperability functions between different operating
systems.

– Secure virtual machine: This is a virtual machine that additionally includes
security-enhanced features such as access control, memory protection, process isolation and
SCP client-related instructions.

– Virtualization layer: This is a hardware virtualization to support multiple operating systems,
which means that multiple instances of a variety of operating systems may share the
virtualized hardware resources such as the CPU, memory, I/O system and devices.

– Host operating system: This is a common instruction set to provide a native code. It is not
needed in a situation of hardware-level virtualization.

6.2 Requirements for a virtual machine-based security system

A virtual machine provides an abstraction of system functions with the common application
programming interface (API), but the open API has some vulnerability in the junction of the virtual
machines. This clause defines general security requirements for the virtual machine and virtual
machine-based renewable systems.

The following security requirements support a renewable system in IPTV service:

• R 6.3.3-04: IPTV architecture is required to support the capability to update and query the
SCP system concerning scrambling algorithms for IPTV and any other operator-selected
scrambling algorithm.

• R 6.3.3-13: IPTV architecture is required to support a mechanism to securely retrieve the
SCP parameters (e.g., configuration, status) from an IPTV terminal device.

• R 6.3.3-14: IPTV architecture is required to support a mechanism to securely update the
SCP parameters (e.g., configuration) of the IPTV terminal device.

• R 6.3.3-16: IPTV architecture is prohibited from precluding support for the installation and
operation of multiple service protection solutions without any hardware replacement except
removable devices such as a universal serial bus (USB) dongle and subscriber identity
module (SIM) cards.

• R 6.3.3-19: IPTV architecture is prohibited from precluding support for a mechanism for
the selection of an SCP system from the available SCP systems without any hardware
replacement except for removable devices.

• R 6.3.3-20: IPTV architecture is prohibited from precluding support for the secure
downloading of an SCP system. The specific downloading can optionally depend on
specific service protection requirements.

• RR 6.7.3-01: IPTV architecture is recommended to support a mechanism for end users to
select IPTV network providers, IPTV service providers and IPTV content providers
according to their preferences.

6.2.1 General security requirements for a virtual machine

A virtual machine has similar requirements to those of traditional operating systems such as the
prevention of illegal access of external codes and system memory protection from unauthorized
access. In the virtual machine, the external code, which is imported from outside the system, could

6 Rec. ITU-T X.1198 (06/2013)

be a malicious one. Hence, the system should prevent the illegal access of those codes that may
affect system memory; in many cases, the system is cracked by this kind of illegal access.

To protect the virtual machine, the SCP systems should satisfy the following general security
requirements to protect the system itself and applications from various attacks:

• Process isolation: The security process should be protected from other processes including
memory access. In addition, a multi-process system should control the intercommunication
channel and shared memory.

• Data protection: The security system should protect the data from other processes and host
machine access. The control logic is also managed by the security system instead of the
host operating system.

• Protection of system resources: The system resources include a physical CPU and memory
access rights, and they should be controlled for the protection of the security system.

• Availability: The security system should be available while the system is running and
should be responsible in situations of security event emergencies.

6.2.2 Security requirements for a virtual machine-based renewable system

A virtual machine-based renewable system provides a dynamic execution of the SCP client;
however, the machine that executes the SCP client could have control and access rights for the SCP
client. If the system or virtual machine is malicious, then the SCP system is not secure.
Furthermore, the virtual machine could become vulnerable if the SCP client tries to attack the
virtual machine with an unauthorized code execution.

Therefore, the virtual machine should satisfy the following security requirements to protect the
content and the service from various attacks:

• SCP client authenticity: The SCP client should contain a valid digital signature of a trusted
party.

• Behaviour of SCP client: The SCP client has its predetermined legitimate behaviour of
execution. The SCP VM should monitor the behaviour of the SCP client in run-time. This
will enable the system to prevent malicious code or unintentional code. Moreover, the SCP
VM may support a reporting capability in case of illegal situations.

• Protection of SCP client: The SCP client code should not be seen by any unauthorized
person or devices during transmission. In addition, the SCP client code may convert to an
unreadable form during a loading process.

• Key protection: Cryptographic keys for the SCP client and embedded SCP should not be
exported to an external system or SCP client in plaintext form.

• Security of system calls: System calls which are called by the SCP client should be secured
against buffer overflow attacks for pointer addresses.

• Integration with embedded SCP: The embedded SCP should obey the policy of the SCP
client including that for storing and retransmission.

• Integration with media player: The media player should deliver every event that has
occurred in the device to the SCP VM. Deleting or modifying an event or its parameter is
not allowed.

• Access an access token: The system call can read the access token which is managed by the
embedded SCP. However, the system call cannot modify the access token in the device.

6.3 Architecture of the SCP virtual machine

The SCP virtual machine is a supporting logic for a renewable SCP client; generally, an SCP virtual
machine has the role of downloading and managing the SCP client. However, the IPTV system has
three components for renewable SCP clients. The first component is the media client, which

 Rec. ITU-T X.1198 (06/2013) 7

supports loading a media stream, extracting metadata and playing the contents. The second
component is the embedded SCP, which is a virtual machine manager to download an SCP client,
authenticate user identity and make a secure socket channel, etc. The third component is the SCP
virtual machine, which supports machine instructions such as event, system call and security policy.
Figure 2 shows the relationship between these components.

. . .

X.1198(13)_F02

Native application for generic IPTV

UI/UX presentation layer

Middleware Embedded
SCP

(SVM manager)Service logic function

Metadata
client

Delivery
system

SCP client
(application)

Secure virtual machine

Media
client

SCP
virtual machine

(guest OS)

Virtualization layer and HAL (hardware abstraction layer)

Host operating system

Resources (hardware device and software)

Figure 2 – Architecture of SCP virtual machine

Figure 2 has six layers as follows:

• Resource layer for hardware and driver software: It contains the primitive components of
the hardware device, which plays IPTV content with a privileged access. For example, the
resource layer includes a media processor, a central processor, a memory, a display
controller, a demuxer, a descrambler and a remote controller.

• Host operating system: The basic operating system for running and controlling the resource
layer. It could be removed if the virtualization layer supports these functions.

• Virtualization layer and hardware abstraction layer (HAL): A hardware virtualization or
hardware abstraction layer to support a common function of the operating systems such as a
virtual CPU, a virtual memory and a virtual I/O system.

• Service logic function layer: It includes a common library to support IPTV middleware
such as event handling, message filtering and message display.

• Middleware layer: Decodes IPTV content and displays messages such as an electronic
programme guide (EPG), data broadcasting content and SCP messages such as "access
denied".

• UI/UX (user interface or user experience) layer: It displays a user interface and receives an
input from the subscriber to act in the terminal device including the menu button, display
windows and service navigation (user interaction).

The SCP system has three parts: embedded SCP, SCP virtual machine and SCP client. The
embedded SCP has an interoperability role with the media client. It is an interoperability channel
between SCP and IPTV middleware, and a unique communication channel between SCP and IPTV
middleware.

• Embedded SCP: It is an extended VM manager or secure virtual machine (SVM) manager
to support a part of the SCP function, downloading the SCP client, installing the SCP client
and verification of the SCP client.

8 Rec. ITU-T X.1198 (06/2013)

• SCP virtual machine: It is a virtual machine that executes an SCP client. Further details are
given in clause 7. The SCP virtual machine just receives messages including entitlement
management messages (EMMs), entitlement control messages (ECMs) and descrambling
messages, and hands them over to the SCP client.

• SCP client: It decodes SCP messages, analyses the semantics of messages and generates the
encryption key. The details are shown in clause 7.3.

Figure 3 represents a detailed scenario of the SCP virtual machine.

X.1198(13)_F03

Head-end system

Subscriber and
payment server

Scrambler and
streaming server

1. Content request
2. Payment

8. ECM
9. Scrambled contents

6. EMM request
7. EMM

3. SCP client request
4. Verification
5. SCP client download

Descrambler SCP client
Key Key

Descrambler

Media client SCP virtual machine Embedded SCP

Terminal device

Authorization server
SCP client

download server

Figure 3 – Virtual machine-based SCP system

The SCP virtual machine is a platform-independent run-time environment for the execution of an
SCP client in the SCP system, which provides a downloadable and a renewable SCP client
mechanism. The system works according to the following sequence:

1. Content request: A subscriber selects content and media client request permission from the
subscriber server. The subscriber server requests a payment for the selected content.

2. Payment: Covers the physical payment by using a wire transfer, credit card, mobile phone,
etc.

3. SCP client request: The embedded SCP requests a proper SCP client.

4. Verification/Authentication: Verification of the SCP client and authentication of the
embedded SCP or terminal device with terminal device ID.

5. SCP client download: downloading of the SCP client.

6. EMM request: The SCP virtual machine requests an EMM message.

7. EMM: EMM is sent to the terminal device (SCP virtual machine).

8. ECM: ECM is sent to the terminal device (SCP client).

9. Scrambled contents: The SCP client descrambles the contents.

Figure 3 shows two descramblers in the terminal device. The first one is a hardware descrambler, or
an embedded descrambler, located in the media client. Generally, the descrambler is implemented
by the hardware logic because of performance issues; in this case, the media client controls the
hardware or embedded modules of descrambling and the SCP client just sends an encryption key in
a protected channel. The other descrambler is located in the SCP virtual machine; the descrambler is
implemented by software logic in the SVM or by a hardware-supported system call. This
descrambler is only implemented within the SCP virtual machine.

 Rec. ITU-T X.1198 (06/2013) 9

7 Virtual machine-based security platform for the SCP system

The virtual machine-based security platform, which is a secure virtual machine, is also a virtual
machine. It has a virtual machine and a virtual machine manager. The virtual machine manager
(embedded SCP, SVM manager) controls the status of the virtual machine with the event. Figure 4
depicts how the system works.

X.1198(13)_F04

SCP client

Access token
EMM, ECM

Data manager

Event manager

SCP managerSCP client
program code

Policy monitor

Permit table

SCP client: ''PermitTable''

System call handler

SCP client: ''InstructionSet''

Instruction set

Event handler

Interpreter

P
ro

vi
de

r
D

es
cr

am
bl

erSCP virtual machine

System call library Provider interface

Virtual device

NetworkI/O system

Virtual I/O systemVirtual memory

Memory manage

Secure virtual machine

Virtual CPU

CPU scheduling

CPU Physical memory SCSI/IDE Network card

System componentsBobData (within memory)Alice

M
ed

ia
 c

li
en

t

Embedded SCP
(SVM manager)

Figure 4 – A virtual machine-based security platform

There are three supporting components in the SVM:

• Media client: This provides an interface for the terminal device middleware. It displays the
message of the SCP function and generates system events such as channel change, and
system error messages.

• Provider: These are external security providers, the private and security enhanced functions
are implemented here.

• Descrambler: This is an external descrambler, which is a hardware-based descrambler.
Therefore, the system call library should include the hardware control and secure
communication mechanism.

There are three components in the embedded SCP:

• Data manager: Receives an access token such as EMM or ECM, and monitors the IPTV
content to check if there is any new data or not.

• Event manager: Generates system events in order to control the SVM status; the SVM is
working based on the system event. In other words, it generates system events of the data
manager and SCP manager.

• SCP manager: Downloads and installs the SCP client into the virtual memory of the SCP
virtual machine. The SCP client is divided into the permit table and instruction set in the
virtual memory.

10 Rec. ITU-T X.1198 (06/2013)

There are two memory data spaces ("PermitTable" and "InstructionSet") and six components in the
SCP virtual machine:

• Memory: In the SCP virtual machine, every instance of the SCP client has two memory
spaces: the first one is the "Permit Table" which defines the policy of the SCP client in the
instruction level. The second one is the "Instruction Set" which stores a set of instructions
for the SCP client; each instruction is executed by the interpreter in the virtual machine.
The SCP client has four data parts (Header, Policy, Code and Sign) as illustrated in
Figure 7: one of them is policy and code. The policy is loaded into the memory (permit
table), and the code is also loaded into the memory (instruction set).

• Event handler: Takes and analyses the event when an event has occurred. Regarding the
event, the event handler changes the status of the SCP client. Detailed events are shown in
Figure 6.

• Interpreter: Executes an instruction in the SCP client; each instruction is defined by
individual functions, which are system calls in the virtual machine. Hence, a set of system
calls is implemented in the virtual machine (referred to as 'system call library' in Figure 4).

• Policy monitor: Gives a decision to the system call handler; the requested system call is
either permitted or not permitted by the permit table in the SCP client. Therefore, the policy
is defined in the system call level and not in the instruction level.

• System call handler: Requests a permit from the policy monitor and calls a set of
corresponding system calls, when the interpreter requests a system call.

• System call library: Implements a native function for each system call. This could be
coupled with hardware functions such as direct memory access, direct I/O system and
hardware descrambler.

• Provider API: Provides a private function for a third-party SCP provider; it is not included
in the standardization part. However, the interface for the private function could be located
in this logic.

In Figure 4, the system works as follows:

• The end user requests a program channel (or change): The media client checks which SCP
client is needed for the requested channel. If it is different from the current SCP client, the
media client sends an SCP client change message to the SCP manager.

• The media client sends information about the new SCP client to the SCP manager.

• The SCP manager downloads the requested SCP client and stores it in the memory, the
instruction set is stored in the InstructionSet memory and the permit table is stored in the
PermitTable memory.

• The SCP manager sends a start message to the event manager.

• The event manager generates a start event to the event handler: EVENT_Initialize.

The interpreter fetches the next instruction in the memory (SCP client image) and generates
corresponding events such as:

EVENT_Player, EVENT_Timer, EVENT_Terminate, EVENT_Descramble

• Before the execution of the instruction, the policy monitor checks the PermitTable so as to
allow or not allow the requested instruction.

• If the instruction needs an additional function such as a system library or an external
function, then the interpreter passes the function call to the system call handler.

• Access Token (EMM, ECM) eventually occurs and it also generates events such as:
EVENT_ChangeKey, EVENT_Entitlement, EVENT_Descramble and
EVENT_SelectContent.

 Rec. ITU-T X.1198 (06/2013) 11

7.1 System architecture

The SCP virtual machine includes the following generic components: interpreter, registers,
memory, system calls, event handler, descrambler, policy monitor, content buffer, event generator,
SCP client image, access token and provider. The generic system architecture is depicted in
Figure 5 as follows:

X.1198(13)_F05

Event manager

SCP manager

SCP client
SCP client image

Event Event handler Policy monitor

Interpreter

Memory Registers

SCP virtual machine

System call handler

System calls

Descramble key

Descrambler

Content buffer

Play/Stop/Channel change/etc.

User

Terminal device

Alice System components Bob Memory data Control flow Data flow

Embedded SCP

Internal event

Provider Access token

Data manager

External event

Event generator

Figure 5 – SCP virtual machine architectures

• Interpreter: It executes the instruction code iteratively.

• Registers: All registers have a 32-bit length. There are 32 registers for general purposes and
a program counter (PC).

• Memory: It is part of the SCP VM and stores instruction codes and stacks, etc.

• System calls: Are functions provided by the SCP VM. A system call is used as an interface
to the outside of the SCP VM or to support a complex operation.

• Event handler: The media client may generate various events for the SCP VM. The event
handler is a part of the SCP client that processes each event.

• Descrambler: It is a descrambling algorithm which is defined in the SCP client. The
descrambler may be hardware implemented as part of the media client.

• Policy monitor: This module continuously monitors that the SCP client does not violate the
attached policy.

• Content buffer: The descrambler accesses this buffer, and the buffer may be located just
before the decoder in the data path.

• Event generator: It generates events for the SCP VM to control. Different kinds of
parameters are included in the event.

• SCP client image: It contains the storage for the SCP client, which belongs to the embedded
SCP. The image of the SCP client will be loaded into the SCP VM before initialization.

12 Rec. ITU-T X.1198 (06/2013)

• Access token: It contains the storage for the access token, which belongs to the embedded
SCP. The SCP VM accesses the access token data when the SCP client requests the access
token.

• Provider: Holds the storage for the provider, which belongs to the embedded SCP. When
the SCP client is loaded to the SCP VM, the VM manager requests a globally identifiable
SCP identity (ID) from the provider.

7.2 SCP virtual machine

The SCP virtual machine is a simple event-driven system which runs the media client initiated
event. Therefore, to save CPU power the virtual machine becomes idle if there is no input event.

Figure 6 represents all machine states from the SCP client loading to termination.

X.1198(13)_F06

Idle

ChangeKey

DescrambleSelectContent Terminate

Initialize

Player

Timer

Entitlement

Loaded

Start

End

SCP client code loaded,
execute the entry point

EVENT_Initialize

EVENT_SelectContent
EVENT_Descramble EVENT_Terminate

EVENT_Timer

EVENT_Entitlement

EVENT_Player

EVENT_ChangeKey

Figure 6 – SCP virtual machine running states

• Start: When the SCP manager downloads an SCP client, the system sets the status of the
SCP client to "Start". Another SCP client does not load until the SCP client is terminated.

• Loaded: When an SCP client finishes loading program codes, the SCP virtual machine sets
the status of SCP client to "Initialize".

• Initialize: When an SCP client finishes the initialization of a program code, the SCP virtual
machine sets the status of the SCP client to "Idle".

• Idle: When an SCP client finishes requested events such as EVENT_ChangeKey,
EVENT_Player, EVENT_Entitlement, EVENT_Timer, EVENT_Terminate,
EVENT_Descramble and EVENT_SelectContent, the SCP virtual machine returns the
status of SCP client to "Idle", which is the waiting status for a new request.

• ChangeKey: When an SCP client receives EVENT_ChangeKey, the SCP virtual machine
launches a ChangeKey function and the state is changed during the execution of the
function.

• Player: When an SCP client receives EVENT_Player, the SCP virtual machine launches a
player function and the state is changed during the execution of the player function
including contents decoding.

 Rec. ITU-T X.1198 (06/2013) 13

• Entitlement: When an SCP client receives an EVENT_Entitlement request for a new
entitlement, the SCP virtual machine runs the entitlement function of the SCP client.

• Timer: When an SCP client receives a time event EVENT_Timer, the SCP virtual machine
launches the timer function, which is waiting for a requested time period.

• Terminate: When an SCP client receives a terminate event request EVENT_Terminate, the
SCP virtual machine deletes the SCP client and returns memory to the virtual machine.

• End: Final state of the SCP client. The SCP virtual machines are set; the system does not
run an SCP client in this state.

• Descramble: When an SCP client receives the descrambling request EVENT_Descramble,
the SCP virtual machine launches a descramble function, which is defined in the SCP
client.

• SelectContent: When an SCP client receives the channel change request
EVENT_SelectContent, the SCP virtual machine launches a program change process.

7.3 Service and content protection (SCP) client

The SCP client and the policy are distributed in an SCP client package form. The policy defines the
SCP client permission to protect a system from illegal attacks and unexpected defects. Before
launching the SCP client, the SCP virtual machine scans the SCP client instruction codes. After
launching, the SCP virtual machine gives permissions to the SCP client with this policy, which is a
policy monitor. The SCP client is composed of the following items (see Figure 7):

X.1198(13)_F07

Header

Policy

Code

Signature

SCP client image

Figure 7 – SCP client image

• Header: This contains the metadata which defines the version of the SCP client, the SCP
client ID and length of other sections.

• Policy: The policy data can define the security policy for the SCP client. This policy is
loaded into the policy monitor.

• Code: The executable instruction code will be loaded into the virtual machine code area.
The instruction format is not defined in this Recommendation.

• Signature: The digital signature of all the above items is generated by a certificate authority
to prevent forgery or modification.

7.4 Protection of the SCP client and SVM

The SCP client is protected with secure socket layer/transport layer security (SSL/TLS) during
distribution, but strong authentication mechanisms are required for the protection of the SCP client
and SVM which are part of the embedded SCP.

To prevent or detect a duplicated or clone SCP client, the terminal device or SCP virtual machine
should provide a one-time identifier (OTID) based authentication mechanism, which is defined in
[ITU-T X.1194]. In the virtual machine, the authentication process is required in the SCP client
download and entitlement phase. Figure 8 shows the details of device authentication.

14 Rec. ITU-T X.1198 (06/2013)

Figure 8 – OTID generation for the detection of a clone client

OTID in [ITU-T X.1194] uses a private key encryption instead of a password. This
Recommendation uses iterated hash functions to detect a replay attack and an SCP clone client. If
an SCP clone client uses the same values for the authentication, the OTID authentication server
could deny access.

7.5 Security policy

The SCP client on the virtual machine runs as an SCP application, which may make the entire SCP
system vulnerable if the SCP client has a security weakness. Because of this, a digital signature is
attached to every SCP client to prevent illegal modification. However, if the SCP client contains an
unintentional bug, the digital signature is not a sufficiently preventive method against any potential
vulnerability.

Therefore, every SCP client has its own policy which defines the lifetime and the allowed
operations of the SCP client. The policy is loaded into the policy monitor that observes the
behaviour of the SCP client. If an SCP client conducts operations that contradict this policy, the
SCP VM should stop the execution and report the event to the media client appropriately, for
example, by providing a return error code to the media player or by invoking an error event.

The observation of the SCP client execution may be implemented by the policy monitor. Figure 9
demonstrates the policy monitor implementation.

 Rec. ITU-T X.1198 (06/2013) 15

X.1198(13)_F09

Event handler

Interpreter

System call handler

System call functions Provided functions

Policy monitor

Permit table

V
M

 m
an

ag
er

Virtual machine

Event

Policy

Provider

Permission ask Permit Deny/

Figure 9 – Policy monitor implementation

In this example, the policy monitor examines the policy data and retrieves the system call that can
be accessible for each event. It may be implemented as a permit table. When an event has occurred,
the SCP client is invoked and the virtual machine checks if the system call is allowed through the
policy monitor.

7.6 System call

The SCP client can invoke a system call by executing a trap instruction after the SCP client pushes
parameters into the stack as in the following sequence:

• [Interpreter] Store the current PC to register 31.

• [Interpreter] Push parameters of the "Trap" function into the stack in order.

• [Interpreter] Fetch and decode 'TRAP [system call ID]' instruction.

• [Interpreter] Call the system call handler with a system call ID and a stack address.

• [System Call Handler] Pop parameters of the system call from stack.

• [System Call Handler] Check if the system call is permitted by the policy monitor.

• [System Call Handler] Retrieve the pointer of the provided system call function from the
provider. If a certain pointer is returned, perform the system call by the returned pointer, or
perform a native system call function.

• [Interpreter] Restore PC with register 31 after the system call has finished.

Figure 10 illustrates the calling sequence and an implementation example of the SVM system call
handler.

16 Rec. ITU-T X.1198 (06/2013)

X.1198(13)_F10

SCP client

...
TRAP_FuncA(int a, int b);

...

Initialize

R[31] PC←

PC ←
TRAP_FuncA

Stack a, b←

Trap #0 0101×

PC R[31]←

Termination

Main loop (interpreter)

Virtual machine

Interpreter start

Inst M[PC]←

PC = PC + 4

Inst == TRAP
Y

N

Execute Inst SysCallID Inst[imm]←

SysCallID ==
EPComplete

Y

N

SysCallHandler(
SysCallID, Stack)

Interpreter end

System call handler

SystemCallHandler
start

popArguments(Stack)

DenyPolicyCheck
(SysCallID)

R[1] = policy_limitedPermit

GetProviderFunc
(SysCallID)

FuncPtr

Null R[1] = FuncPtr(a, b)

N

Y

Y

trapID == 0 0101×

R[1] =
SYSCALL_FuncA(a, b)

R[1] = not_support

SystemCallHandler
end

...

...

Y

N

N

Figure 10 – Call sequence of system call

7.7 Event

An event causes a meaningful action of the media client for the virtual machine. The transition of
the execution state is triggered by events, and how the event is handled in each state is defined in
the SCP client.

 Rec. ITU-T X.1198 (06/2013) 17

An event of the virtual machine is similar to an external interruption of a generic computer. The
SCP client registers the event handler in its loading and initialization phase through
SYSCALL_SetEventHandler. When the player delivers an event to the virtual machine, it invokes the
event handler of the SCP client.

Event parameters are stored in the virtual machine memory which is registered as an event message
buffer by SYSCALL_SetEventParamBuffer. Event parameters include an event ID for identifying each
event, a return value for the result and various input values. When the event handling has finished,
the event handler writes back the return value on the event parameter buffer.

The virtual machine cannot process two or more events simultaneously; any new incoming event
will not be processed before the end of the current event handling. The event waiting mechanism is
first-in-first-served.

Because only one event can be processed at a time, the event handler can use a semaphore or a
mutex to prevent processing a new event during event handling.

An event can be handled according to the sequence shown in Figure 11:

1. Media client: The media client recognizes that the event has occurred.

2. Media client: The media client delivers the event notice and the parameters to the virtual
machine.

3. Virtual machine manager: When the event signal is received, the virtual machine manager
passes the event and its parameters to the event handler.

4. Event handler: Checks that the previous event is still running. If the previous event has not
ended yet, it waits for the end of the previous event processing.

5. Event handler: Assigns the event ID of the given event as the 1st element of the event
parameter buffer.

6. Event handler: Fills the event parameter buffer with the parameters of the given event. The
third and latter elements are reserved for event parameters. The second element of the event
parameter buffer is reserved for the return value.

7. Event handler: Sets the program counter to the event handler function which is assigned by
SYSCALL_SetEventHandler of the SCP client.

8. Event handler: The event handler calls the interpreter.

9. Interpreter (SCP client): The interpreter runs the PC.

10. Event handler: After the interpreter has finished, the event handler extracts the return value
of the event from the event parameter buffer, and returns it to the virtual machine manager.

11. Virtual machine manager: Returns the return value to the media client.

12. Media client: Obtains the result of the event process.

18 Rec. ITU-T X.1198 (06/2013)

X.1198(13)_F11

Media client

Event with parameters

VM manager Event handler

Event ID, parameters

Check event flag

Put event ID

Put parameters

Set PC

Interpreter()

Interpreter finished

Extract return value

Run

Return value

Return value

Interpreter

Figure 11 – Event handling sequence

 Rec. ITU-T X.1198 (06/2013) 19

Annex A

Data structure of SCP client package

(This annex forms an integral part of this Recommendation.)

The SCP client includes in this order a package header, a policy, a code and a signature. The header
of the SCP client has 48 octets to indicate the type, version, data length (policy, code, signature,
etc.) and the entry point of the attached code.

A.1 Header of SCP client

Table A.1 –Header of SCP client

 (msb) (lsb)

bit 7 6 5 4 3 2 1 0

0

Prefix (8 octets) …

7

8
Version (2 octets)

9

10
Type (2 octets)

11

12

SCP Client ID (4 octets)
13

14

15

16

Super SCP ID (4 octets)
17

18

19

20

Policy Length (4 octets)
21

22

23

24

Code Length (4 octets)
25

26

27

28 Signature Type (1 octet)

29

Signature Length (3 octets) 30

31

32

Object Code Offset (4 octets)
33

34

35

36

Load Offset (4 octets)
37

38

39

40

Entry Point (4 octets)
41

42

43

44

Reserved (4 octets)
45

46

47

20 Rec. ITU-T X.1198 (06/2013)

• Prefix (8 octets): This represents the system type. For example, SCP_VM_K type can be
represented as '0x5343505F635F4B52', which is 'SCP_VM_K' in ASCII text.

• Version (2 octets): The version of the SCP client.

• SCP client ID (4 octets): The identifier of the SCP client which is issued by the SCP client
supplier.

• Type (2 octets): The type of the SCP client package:

– 0x00: The SCP client contains uncompressed data.

– 0x01: The SCP client contains compressed code and policy.

• Super SCP ID (4 octets): The identifier of the SCP client supplier.

• Policy length (4 octets): The length of the policy data. This is an unsigned integer value, for
example, 0x1F4 or 500 octets of policy.

• Code length (4 octets): The length of the code data, unsigned integer value.

• Signature type (1 octet): The type of signature. The following values are defined:

– 0x00: PKCS#1 RSASSA-PSS signature scheme with 1024-bit key and SHA-1,
0x01: reserved.

• Signature length (3 octets): The length of the signature. This is an unsigned integer value.

• Object code offset (4 octets): Offset of the start point of the code in the SCP client package.
This value is the addition of the header length and policy length.

• Load offset (4 octets): Offset of the loading point of the SVM memory. Normally 0.

• Entry point (4 octets): Offset of the initialization code which performs the registration of
the event handler and the event parameter buffer.

• Reserved (4 octets): This should be 0x00000000.

A.2 Policy data

Policy data contains XML data, which defines the security policy of each instruction. The length of
this field is defined in the header.

 Rec. ITU-T X.1198 (06/2013) 21

1..∞

attributes

1..∞

1..∞ 1..∞

attributes

X.1198(13)_FA.1

SystemCall

PermitSystemCall

DenySystemCall

VM_Version

After

Exactly

Permanent

Once

DeleteAfter

SystemCallDefault

VM_Policy

Policy

Event_Policy

name

Time

Count

SoftwareLifeTime

Event
IP

Port

Figure A.1 – XML structure of policy

A.3 Code data

Code data contains the SCP client code. This is the series of instructions. The length of this field is
defined in the header.

A.4 Signature

Signature contains the digital signature data. The length of this field and the digital signature
algorithm are defined in the header.

22 Rec. ITU-T X.1198 (06/2013)

Bibliography

[b-ITU-T X.800] Recommendation ITU-T X.800 (1991), Security architecture for Open Systems
Interconnection for CCITT applications.

[b-ITU-T X.1191] Recommendation ITU-T X.1191 (2009), Functional requirements and
architecture for IPTV security aspects.

[b-ITU-T X.1252] Recommendation ITU-T X.1252 (2010), Baseline identity management terms
and definitions.

Printed in Switzerland
Geneva, 2013

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	Rec. ITU-T X.1198 (06/2013) – Virtual machine-based security platform for renewable IPTV service and content protection
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Overview of a virtual machine platform
	6.1 General architecture of a virtual machine
	6.2 Requirements for a virtual machine-based security system
	6.3 Architecture of the SCP virtual machine

	7 Virtual machine-based security platform for the SCP system
	7.1 System architecture
	7.2 SCP virtual machine
	7.3 Service and content protection (SCP) client
	7.4 Protection of the SCP client and SVM
	7.5 Security policy
	7.6 System call
	7.7 Event

	Annex A – Data structure of SCP client package
	A.1 Header of SCP client
	A.2 Policy data
	A.3 Code data
	A.4 Signature

	Bibliography

