

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T T.807
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Amendment 1
(03/2008)

SERIES T: TERMINALS FOR TELEMATIC SERVICES
Still-image compression – JPEG 2000

 Information technology – JPEG 2000 image coding
system: Secure JPEG 2000
Amendment 1: File format security

Recommendation ITU-T T.807 (2006) – Amendment 1

ITU-T T-SERIES RECOMMENDATIONS
TERMINALS FOR TELEMATIC SERVICES

Facsimile – Framework T.0–T.19
Still-image compression – Test charts T.20–T.29
Facsimile – Group 3 protocols T.30–T.39
Colour representation T.40–T.49
Character coding T.50–T.59
Facsimile – Group 4 protocols T.60–T.69
Telematic services – Framework T.70–T.79
Still-image compression – JPEG-1, Bi-level and JBIG T.80–T.89
Telematic services – ISDN Terminals and protocols T.90–T.99
Videotext – Framework T.100–T.109
Data protocols for multimedia conferencing T.120–T.149
Telewriting T.150–T.159
Multimedia and hypermedia framework T.170–T.189
Cooperative document handling T.190–T.199
Telematic services – Interworking T.300–T.399
Open document architecture T.400–T.429
Document transfer and manipulation T.430–T.449
Document application profile T.500–T.509
Communication application profile T.510–T.559
Telematic services – Equipment characteristics T.560–T.649
Still-image compression – JPEG 2000 T.800–T.849
Still-image compression – JPEG-1 extensions T.850–T.899

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008) i

INTERNATIONAL STANDARD ISO/IEC 15444-8
RECOMMENDATION ITU-T T.807

Information technology – JPEG 2000 image coding system:
Secure JPEG 2000

Amendment 1

File format security

Summary

Amendment 1 to Rec. ITU-T T.807 | ISO/IEC 15444-8 specifies JPSEC file format derived from the ISO base file format
and modifications to JPEG family file format (including JP2, JPX and JPM) for protection and secure adaptation of
scalable pictures, which is possibly encrypted and/or authenticated by the owner. The pictures could be either static
pictures or time-sequenced pictures. In particular, the amendment provides functionality to do the following:

– To store coded media data corresponding to different scalability levels. Elementary stream (ES) is used
for this purpose.

– To define tracks describing the characteristics of the coded media data stored in ES. For example, the
track should be able to indicate scalability level (resolution, layer, region, etc.) and the rate-distortion hints
of the coded media data in order to facilitate easy and secure adaptation.

– To define new file format boxes to signal protection tools and parameters applied to coded media data or
metadata. The protection tools can be applied to either static JPEG 2000 pictures or time-sequenced JPEG
2000 pictures.

– The protection tools defined in this amendment can be applied to JPEG family file formats including JP2,
JPX and JPM and ISO-derived file formats such as MJ2 for motion JPEG.

Source

Amendment 1 to Recommendation ITU-T T.807 (2006) was approved on 15 March 2008 by ITU-T Study Group 16
(2005-2008) under Recommendation ITU-T A.8 procedure. An identical text is also published as Amendment 1 to
ISO/IEC 15444-8.

ii Rec. ITU-T T.807 (2006)/Amd.1 (03/2008)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2009

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008) iii

CONTENTS

 Page
1) Clause 2: Normative references ... 1
2) Clause 3: Terms and definitions... 1
3) Annex E: File format security ... 3
Annex E – File Format Security .. 3

E.1 Scope.. 3
E.2 Introduction ... 3
E.3 Extension to ISO base media file format .. 5
E.4 Elementary stream and sample definitions.. 14
E.5 Protection at file format level .. 16
E.6 Examples (Informative).. 18
E.7 Boxes defined in ISO/IEC 15444-12 (informative) .. 28

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008) 1

INTERNATIONAL STANDARD ISO/IEC 15444-8
RECOMMENDATION ITU-T T.807

Information technology – JPEG 2000 image coding system:
Secure JPEG 2000

Amendment 1

File format security

1) Clause 2: Normative references
Add the following references:

– Recommendation ITU-T T.803 (2002) | ISO/IEC 15444-4:2004, Information technology – JPEG 2000
image coding system: Conformance testing.

– ISO/IEC 13818-11:2004, Information technology – Generic coding of moving pictures and associated
audio information – Part 11: IPMP on MPEG-2 systems.

– ISO/IEC 15444-6:2003, Information technology – JPEG 2000 image coding system – Part 6: Compound
image file format.

– ISO/IEC 15444-12:2005, Information technology – JPEG 2000 image coding system – Part 12: ISO
base media file format (technically identical to ISO/IEC 14496-12).

2) Clause 3: Terms and definitions
a) Rewrite the first paragraph as follows (with the changes underlined):

For the purposes of this Recommendation | International Standard, the following definitions apply. The definitions
defined in ITU-T Rec. T.800 | ISO/IEC 15444-1 clause 3 and ISO/IEC 15444-12:2005 clause 3 apply to this
Recommendation | International Standard.

b) Add the following terms and definitions:

Normal decoder

Standard decoder is a process to decode a codestream that is fully compliant with the normative part of coding standard.
Its behaviour is not defined if it tries to decode a non-compliant codestream.

Adaptive-format decoder

Adaptive-format decoder is a process to decode a codestream which is not fully compliant with the normative part of
the coding standard. It shall reconstruct the media (possibly with low quality or resolution) even if the codestream has
missing packets or inconsistent packet headers. For example, an adaptive-format decoder is able to understand a
simply-transcoded codestream, such as the one that has its highest resolution packets removed.

Elementary Stream (ES)

Elementary streaming contains a sequence of samples, where each sample could be a video frame or a contiguous
section of audio data. A sample in ES contains media data, ByteData structure, pointer structure, container structure, or
any mixture of the above.

Self-Contained ES

Self-contained ES contains only media data, whose format is not defined in this amendment. The self-contained ES
could be stored in MDAT box co-located with the file format specified in this amendment, or be stored in a separate file
whose format is not specified by this amendment.

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

2 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008)

Composed ES

Composed ES may contain a mixture of ByteData, pointer and container structures, that is, its samples are composed
with data from other elementary streams. A composed ES can either copy (using ByteData structure) or reference (using
pointer) data from other ESes.

Scalable Composed ES

Scalable composed ES is made up of samples that may not be decodable by themselves. It may need to be combined
with other scalable composed ESes to form a fully decodable codestream. Scalable composed ES is designed to support
scalability, i.e., to make media data "thinable". For example, for a motion JPEG 2000 codestream where each picture
has three layers, it can be divided into 3 scalable composed ESes: the first one consists of all layer 0 data, the second
one consists of all layer 1 data and the third one consists of all layer 2 data.

Decodable Composed ES

Decodable composed ES is made up of samples that are decodable by themselves. It is designed for simple adaptation
where the adaptor just needs to retrieve data pointed by pointer structure and remove the wrapper to form a fully
scalable codestream. For example, for a motion JPEG 2000 codestream where each picture has three layers, it can form
3 decodable composed ESes: the first one consists of layer 0 data, the second one consists of layer 0 and layer 1 data
and the third one consists of layer 0, 1 and 2 data.

Adaptor/transcoder

Adaptor/transcoder is a process to transform media data to lower scalability level, like lower resolution or lower quality
or bit-rate, by removing portions of the file. The adaptor/transcoder can transform media data based on the information
specified in this amendment. An adaptor/transcoder shall update byte offset values in file format parameters that are
impacted by the process.

Secure adaptor/transcoder

Secure adaptor/transcoder is a process to transform encrypted or authenticated media data without necessity to decrypt
or regenerate the MAC or signature. Thus, end-to-end security remains for the transcoded media data.

JPEG 2000-aware adaptor/transcoder

JPEG 2000-aware adaptor/transcoder combines one or more scalable composed ESes to form a fully decodable media
codestream. It should have the capability to generate the headers and markers of media codestream and modify the
packet index, such that the adapted codestream can be decoded by a normal decoder. It may also add empty packets to
replace the removed ones, or it may insert POC marker.

Simple adaptor/transcoder

Simple adaptor/transcoder is able to transform data based on information specified by this amendment. It may not be
capable of generating media headers or modifying packet indices. It simply retrieves data pointed by pointer structure
and removes the wrappers, and the resulting codestream can be decoded by adaptive-format decoder, which can cope
with missing packets and inconsistent headers.

Authentication adaptor/transcoder

An authentication adaptor/transcoder removes data that is not verifiable with the available media data and
authentication data. For example, in a streaming system, some media packets may be lost during transmission. A file
format receiver may reconstruct the received data to the best of its ability based on the available data. Then, an
authentication adaptor/transcoder can determine which data can be verified, and then remove the packets that are not
verified. The resulting file only contains the decodable, verified data.

Container

Container structure is used to wrap a sample in a composed ES. It might contain any number of ByteData or pointer
structures, but is not allowed to contain another container structure.

Pointer

Pointer structure is used to reference a data segment in another ES. It must be contained inside a container structure.

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008) 3

ByteData

ByteData structure is used to wrap a data segment which is physically located in a composed ES. It must be contained
inside a container structure.

4CC Code

4CC code is a 32-bit identifier, normally 4 printable characters. A 4CC code can be used to indicate the file type, the
type of file format box, type of a file format track, type of a file format sample description and type of file format track
reference. A 4CC code must be registered with a registration authority.

3) Annex E: File format security
Create a new annex and add the following text:

Annex E

File Format Security
(This annex forms an integral part of this Recommendation | International Standard)

E.1 Scope

This annex specifies JPSEC file format derived from the ISO base file format and modifications to JPEG family file
format (including JP2, JPX and JPM) for protection and secure adaptation of scalable pictures, which is possibly
encrypted and/or authenticated by the owner. The pictures could be either static pictures or time-sequenced pictures. In
particular, this annex provides functionality to do the following:

• To store coded media data corresponding to different scalability levels. Elementary stream (ES) is used
for this purpose. There are three types of ESes, self-contained ES, scalable composed ES and decodable
composed ES.

• To define tracks describing the characteristics of the coded media data stored in ES. For example, the
track should be able to indicate scalability level (resolution, layer, region, etc.) and the rate-distortion
hints of the coded media data in order to facilitate easy and secure adaptation.

• To define new file format boxes to signal protection tools and parameters applied to coded media data or
metadata. The protection tools can be applied to either static JPEG 2000 pictures or time-sequenced
JPEG 2000 pictures.

• The protection tools defined in this amendment can be applied to JPEG family file formats including
JP2, JPX and JPM and ISO-derived file formats such as MJ2 for motion JPEG.

E.2 Introduction

E.2.1 Security protection at file format level

This annex describes a JPSEC file format derived from the ISO base file format and modifications to JPEG family file
format, to add security protection to JPEG 2000 pictures at the file format level. The protection applied at the file
format level can be classified into two types: item-based protection and sample-based protection, both structures are
defined by the ISO base file format. The item-based protection is designed to protect any byte ranges (including coded
media data and metadata) while the sample-based protection is designed to protect time-sequenced media including
JPEG 2000 pictures.

When the security tools applied change the data length, it shall update all pointers and length fields in all boxes, to
ensure correct parsing by the reader.

E.2.2 Item-based protection

This annex describes two item-based protection schemes in the ISO base file format, by leveraging the syntax and
structures specified by the JPSEC standard. Specifically, it describes schemes for decryption and authentication. Each
item in the ItemLocationBox is protected by one or more protection schemes in the ItemProtectionBox. When multiple
schemes are used (or chained together), the order in which they are applied may be significant and thus must be
specified. This annex also specifies how such operations should be chained together. In addition, the

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

4 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008)

ItemDescriptionBox and ItemCorrespondingBox are added into the ISO base file format to allow the flexible processing
properties that are provided by JPSEC. Specifically, the ItemDescriptionBox allows media-dependent metadata (such as
resolution, quality layer, spatial region, and color space component) to be associated with different portions of the file.
These descriptions can be provided regardless of whether protection is applied. When used with scalable coded pictures,
this allows the file to be scaled down or transcoded without parsing or decoding the media data. In cases where
protection is applied, this provides the benefit of enabling transcoding without requiring decryption.

E.2.3 Sample-based protection of scalable media

For time-sequenced pictures, this annex adds syntaxes to facilitate scalability at the file format level, including scalable
composed elementary stream (ES), decodable composed ES, pointer structure, container structure and ByteData
structure. The scalable coded pictures can be divided (either physically or virtually) into elementary streams at different
scalability level, such that the adaptor/transcoder can "thin" media data with low complexity.

Figure E.1 gives an overview of the file format specified by this annex and also shows how the specified FF is used to
adapt the media data.

Given a sequence of JPEG 2000 pictures (also referred to as Self-contained ES), there are two approaches to construct
the file format. In the first approach, the MDAT box contains one or more Scalable Composed ESes, each of which
corresponds to one scalability level of the media data, e.g., a resolution or a layer. The scalable composed ES must be
stored in MDAT box that is co-located with the file format. The self-contained ES can be located in either MDAT box
in the same file, or a different file whose format is not specified in this amendment. The scalable composed ES may not
be decodable by itself, it may need to be combined with other scalable composed ESes to generate fully decodable
JPEG 2000 pictures. In the second approach, the MDAT box contains one or more Decodable Composed ESes, and
each ES constitutes fully decodable JPEG 2000 pictures by itself. Similarly, decodable composed ESes must be stored
in MDAT box co-located with the file format, and the self-contained ES can be stored in either MDAT box in the same
file, or a different file whose format is not specified by this annex.

Each scalable composed ES or decodable composed ES must be described by at least one track. The characteristics of
the ES (like resolution, layer, and region) are indicated in SampleEntryBox inside each track.

To generate a fully decodable JPEG 2000 codestream from scalable composed ESes, a JPEG 2000-aware adaptor
should have the capability to dynamically generate the image headers (based on the number of resolutions, layers and
region in the adapted codestream), to insert empty packets or to insert POC markers as needed to make the resulting
codestream decodable by any standard decoder. However, if a simple adaptor is used, the resulting codestream may
have an inconsistent image header and there may be a missing packet, which require a JPEG 2000 adaptive-format
decoder.

As a decodable composed ES is decodable by itself, a simple adaptor is sufficient to generate fully compliant
JPEG 2000 pictures.

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008) 5

Figure E.1 – System diagram for time-sequenced scalable media

Each elementary stream is described by at least one media track, and its characteristics are described in
SampleDescriptionEntry or SampleGroupEntryBox within the track. It is possible that a single elementary stream is
described by multiple tracks, each of which may describe different aspects of the elementary stream.

The sample-based protection can be applied to all samples or a group of samples in a scalable composed ES or
decodable composed ES. If protection is applied to all samples, a ProtectionSchemeInfoBox signalling the parameters
of the protection tool is added to the SampleDescriptionBox, which is then encapsulated as described in E.5.2. In
addition, if protection is applied to a group of samples, a ProtectionSchemeInfoBox is added to their
SampleGroupEntryBox, which is then encapsulated as described in E.5.4.

E.3 Extension to ISO base media file format

E.3.1 Overview

This subclause documents technical extensions (additional box types) to the ISO based media file format, which could
be used for protection, adaptation, or secure adaptation of scalable coded pictures. However, the added box types could
be used for other purposes as well. In particular, this subclause defines ProtectionSchemeInfoBox for the decryption
tool and authentication tool, ItemDescriptionBox, ScalableSampleDescriptionEntry, ScalableSampleGroupEntry, and
Generic Protected Box. All other boxes defined in ISO/IEC 15444-12 are still used as is.

E.3.2 Incorporate JPSEC codestream into ISO-driven file format

A JPSEC codestream can be placed as a payload in the 'mdat' box of the ISO base file format. In the Sample
Description Box ('stsd'), the 'codingname' of the corresponding Sample Entry is defined to be 'jpsc', which is a
registered identifier for JPSEC decoder. In this case, the security service is provided by JPSEC at codestream.

E.3.3 Protected file format brand

Files conforming to this Recommendation | International Standard may use 'ffsc' as the major brand in the File Type
Compatibility Box.

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

6 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008)

Files conforming to this Recommendation | International Standard, i.e., containing protection or authentication
information may use 'ffsc' as a compatible brand in the File Type Compatibility Box.

There are uses of this Recommendation | International Standard which are compatible with JP2, JPX, MJ2, and JPM
files. A typical use of this Recommendation | International Standard will leave the major brand of a file unchanged, but
add boxes and thus add 'ffsc' as a compatible brand.

Thus brands including 'isom' , 'iso2', 'jp2\040, 'jpx\040' and 'jpm\040' should be compatible.

The 'ffsc' compatible brand indicates the use of new boxes and new tools corresponding to the protection methods in
JPSEC.

A file that has been protected, to the extent that an application intending to process the JP2, JPX, JPM, or other file type
content will be unable to do so without using protection tools, may use the 'ffsc' major brand as the file type; such a
protected file must not use a major brand for which it is no longer conformant.

E.3.4 Summary of boxes used

The ISO base media file format defines two structures to describe a presentation: the logical structure and media
sequence structure. The logical structure uses the ItemLocationBox ('iloc') to describe an item which is the byte range or
a series of byte ranges for a particular file, either a local file or a remote file. The media sequence structure uses the
SampleGroupDescriptionBox ('spgd') or SampleDescriptionBox ('stsd') to describe the samples, which could be a frame
of video, a time-contiguous series of video frames, or a time-contiguous compressed section audio.

Accordingly, the protection in the ISO base media file format level is classified into item-based protection and sample-
based protection, as described in E.5.2 and E.5.4, respectively.

Several boxes are used from ISO/IEC 15444-12, these are marked as "Existing" in Table E.1. Boxes defined in this
Recommendation | International Standard are listed as "New" in Table E.1. The definitions for these boxes depend on
the definitions of Box and FullBox from ISO/IEC 15444-12, which are repeated for convenience in E.7.

Table E.1 – List of existing and new boxes

Box names Status Remarks

meta Existing Metadata
 iloc Existing Item location
 iproc Existing Item protection
 sinf Existing Protection scheme information box
 frma Existing Original format box
 schm Existing Scheme type box
 schi Existing Scheme information box
 gran New Granularity box
 vall New Value List box
 bcip New Block cipher box
 keyt New Key template box
 scip New Stream cipher box
 keyt New Key template box
 auth New Authentication box
 keyt New Key template box
 iinf Existing Item information box
 ides New Item description box
 dest New Description type box
 desd New Description data box
 vide New Visual item description entry
 j2ke New JPEG 2000 item description entry
 icor New Item correspondence box
… … … … … … … …
stbl Existing Sample table box
 stsd Existing Sample description box

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008) 7

Table E.1 – List of existing and new boxes

Box names Status Remarks

 ScalableSampleDescriptionEntry New Scalable sample description entry
 sbgp Existing Sample to group box
 sgpd Existing Sample group box
 ScalableSampleGroupEntry New Scalable sample group entry
gprt New Generic Protected box

E.3.5 Decryption scheme

The Decryption protection scheme is identified in SchemeTypeBox as follows:

scheme_type="decr"
scheme_version=0
scheme_uri=null

For the Decryption protection scheme, the structure of SchemeInfoBox is as follows:

aligned(8) class GranularityBox extends Box('gran') {
unsigned int(8) granularity;
}

Semantics:

granularity is used for item-based protection. For item-based protection, 0 indicates that the processing unit is the
entire item and 1 indicates that the processing unit is one extent within an item. For sample-based protection, 0 indicates
that the processing unit is all samples in the track or sample group and 1 indicates that the processing unit is one sample.

aligned(8) class ValueListBox extends Box('vall') {
 unsigned int(8) value_size;
 unsigned int(16) value_count;
 unsigned int(16) count [value_count];
 unsigned char (value_size) value[value_count];
}

Semantics:

value_size is the size in bytes of each value in the array.
value_count is the number of (count, value) pairs in the array. For item-based protection, the (count,
value) pairs are used to map each value to count processing units. For sample-based protection, the (count,
value) pairs are used to map each value to count samples. For instance, the value[0] corresponds to the first
count[0] sample or units, and the value[1] corresponds to the next count[1] samples or units, and so on.

aligned(8) class KeyTemplateBox extends Box('keyt') {
 unsigned int(16) key_size;
 unsigned int(8) key_info;
 GranularityBox GL; //optional
 ValueListBox VL;
}

Semantics:

key_size is the size of key in bits.

key_info indicates the meaning of the values in the ValueListBox. 1 means the values are X.509 certificate; 2 means
the values are URIs for certificate or secret keys.

GL is a GranularityBox.

VL is a ValueListBox, containing a list of values, whose meaning is defined by the key_info field.

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

8 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008)

aligned(8) class BlockCipherBox extends Box('bcip') {
unsigned int(16) cipher_id;
bit (6) cipher_mode;
bit (2) padding_mode;
unsigned int(8) block_size;
KeyTemplateBox KT;
}

Semantics:

cipher_id identifies which block cipher algorithm is used for protection. Values are defined in Table 25.

cipher_mode could be ECB, CBC, CFB, OFB or CTR. Values are defined in Table 29.

padding_mode is ciphertext stealing or PKCS#7-padding. Values are defined in Table 30.

block_size is size of block for block cipher.

KT is a KeyTemplateBox, holding all the key information used by the block cipher.

aligned(8) class StreamCipherBox extends Box('scip') {
unsigned int(8) cipher_type;
unsigned int(16) cipher_id;
KeyTemplateBox KT;
}

Semantics:

cipher_type indicates the type of cipher used. It has values cipher_type = STRE for stream cipher or
cipher_type = ASYM for asymmetric cipher.

cipher_id identifies the stream cipher algorithm used for the protection. If cipher_type = STRE, see Table 26; if
cipher_type = ASYM, see Table 27.

KT is a KeyTemplateBox, holding all the key information used by the stream cipher.

aligned(8) class SchemeInfomationBox extends Box('schi', cipher_id) {
unsigned int(8) MetaOrMedia;
unsigned int(8) HeaderProtected;
 BlockCipherBox(); or StreamCipherBox();
 GranularityBox GL;
 ValueListBox VL;
}

Semantics:

MetaOrMedia is to indicate whether the protected data segment corresponds to media data segment or meta data
boxes. (0 for media data and 1 for meta data boxes).

HeaderProtected is to indicate whether the protection is applied to the box content only (value 0) or applied to the
whole box including its header (value 1).

The SchemeInformationBox can contain a BlockCipherBox, or a StreamCipherBox, which are containers for the
parameters of the cipher algorithms. These boxes can only contain particular cipher_id values.

GL is a GranularityBox, holding information about the processing unit. This field is optional for sample-based
protection and required for item-based protection.

VL is a ValueListBox. For block cipher, this box may be empty. For stream cipher, this box contains all the initial
vectors.

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008) 9

E.3.6 Authentication scheme

The Authentication protection scheme is identified by SchemeTypeBox as follows:

scheme_type="auth"
scheme_version=0
scheme_uri=null

For Authentication protection scheme, the structure of SchemeInfoBox is defined as follows:

aligned(8) class AuthBox extends Box('Auth') {
 unsigned int(8) auth_type; //hash, cipher, or signature
 unsigned int(8) method_id;
 unsigned int(8) hash_id;
 unsigned int(16) MAC_size;
 KeyTemplateBox KT;
}

Semantics:

auth_type indicates authentication type, including hash-based (HASH), cipher-based (CIPH) and signature-based
(SIGN) authentication.

method_id identifies the authentication method. 1 indicates HMAC. If auth_type = HASH, see Table 36; if
auth_type = CIPH, see Table 39; if auth_type = SIGN, see Table 41.

hash_id identifies the hash function used. If auth_type = HASH or SIGN, see Table 37; if auth_type = CIPH,
see Table 25.

MAC_size is size of MAC (if auth_type = HASH or CIPH) or digital signature (if auth_type = SIGN) in bits.

KT is a KeyTemplateBox, holding all the key information for the authentication.

aligned(8) class SchemeInfoBox extends Box('schi', auth_method) {
 unsigned char (8) auth_method;
 AuthBox authBox;

GranularityBox GL; //optional
ValueListBox VL;

}

Semantics:

auth_method identifies the authentication method used. 0 is for hash-based MAC; 1 is for cipher-based MAC; 2 is
for digital signature. Depending on the auth_method, this box could contain either HashAuthBox, CipherAuthBox,
or SignatureAuthBox.

GL is a GranularityBox. The field is optional for sample-based protection and required for item-based protection.

VL is a ValueListBox, holding all the MACs or signatures.

E.3.7 ItemDescriptionBox

In the Item Location Box, all the items are specified as byte ranges (using the offset and length). The 'iloc' box does not
contain the content-related information about the specified byte ranges, which is required by some protection methods.
For instance, if secure transcoding method wants to discard the least important layer or resolution, it has to know which
byte ranges correspond to the to-be-discarded layer or resolution.

As such, this subclause defines two new boxes to enable the content-related processing at the file format level: Item
Description Box ('ides') and Item Correspondence Box ('icor'). The 'ides' box specifies the content-related information,
like layer, resolution (for visual content), period (audio content), and so on. The 'icor' box links the content-related
information to the items in 'iloc' box, in the same way as the 'iinf' box links 'iloc' box to 'ipro' box.

The Item Description box ('ides') is defined as follows:

aligned(8) class ItemDescriptionBox extends Box('ides') {
 unsigned int(32) entry_count;
 for(i=0; i < entry_count; i++) {
 DescriptionTypeBox desType;

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

10 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008)

 unsigned int(32) item_ID;
 DescriptionDataBox desData;
 }
}

Semantics:

entry_count is the number of entries in the ItemDescriptionBox.

item_ID references an Item in ItemLocationBox. If this field is 0, then item_ID will be specified by
ItemCorrespondenceBox.

Aligned(8) class DescriptionTypeBox extends Box('dest') {
 Unsigned int(32) description_type;
 Unsigned int(32) description_version;
 Unsigned int(8) description_uri[];
}

Semantics:

description_type is the 4CC code defining the description scheme.

description_version is the version of the description.

description_uri allows for the options of directing the user to a webpage if they do not have the description
definition installed on their system. It is an absolute URI formed as a null-terminated string in UTF-8 characters.

Aligned(8) class DescriptionDataBox extends Box('desd') {
 Box description_specific_data [];
}

Semantics:

If description_type = 'vide', this is a VisualItemDescriptionEntry; if description_type = 'j2ke', this is a
J2KItemDescriptionEntry; for any other value of description_type, the syntax of the description can be found at
description_uri.

The VisualItemDescriptionEntry is defined as follows:

aligned(8) Class VisualItemDescriptionEntry extends Box('vide') {
 unsigned int(16) layer_start;
 unsigned int(16) layer_count;
 unsigned int(16) res_start;
 unsigned int(16) res_count;
 unsigned int(16) horizontal_offset;
 unsigned int(16) horizontal_length;
 unsigned int(16) vertical_offset;
 unsigned int(16) vertical_length;
 unsigned int(16) color_space;
 unsigned int(16) time_start;
 unsigned int(16) time_length;
}

Semantics:

The layer_start and layer_count together specify the range of layers. When layer_start equals to 216–1,
the layer range will start from layer 0; when layer_count equals to 216–1, the layer range will end at the last layer.
When both layer_start and layer_count equal to 216–1, the layer range will include all layers.

The res_start and res_count together specify the range of resolutions. The semantics is the same as
layer_start and layer_count when their value equals to 216–1.

The horizontal_offset, horizontal_length, vertical_offset and vertical_length together
specify the spatial area. The semantics is the same as layer_start and layer_count when their value equals to
216–1.

The color_space specifies the color space. 0: red color space; 1: green color space; 2: blue color space.

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008) 11

The intersection is applied to the layer ranges, resolution ranges, areas and color space to get the portion of the
image/video specified by the VisualItemDescriptionEntry.

The J2KItemDescriptionEntry is defined as follows:

aligned(8) class J2KItemDescriptionEntry extends Box('j2ke') {
 VisualItemDescriptionEntry visualDesEntry; //optional
 unsigned int(16) tile_start;
 unsigned int(16) tile_count;
 unsigned int(16) precinct_start;
 unsigned int(16) precinct_count;
 unsigned int(16) j2k_packet_start;
 unsigned int(16) j2k_packet_count;
}

Semantics:

visualDesEntry specifies image/video-specific attributes. It is optional.

tile_start and tile_count specify the tiles.

precinct_start and precinct_count specify the precincts.

j2k_packet_start and j2k_packet_count specify the JPEG 2000 defined packets.

Similar to VisualItemDescriptionEntry, the intersection is applied to tiles, precincts and JPEG 2000 packets to get the
portion of the JPEG 2000 codestream specified by J2KItemDescriptionEntry.

The ItemCorrespondenceBox ('icor') is defined as follows:

aligned(8) class ItemCorrespondenceEntry extends Box('icor') {
 unsigned int(16) item_ID;
 unsigned int(16) desc_ID;
}

Semantics:

item_ID is pointing to one item in the ItemLocationBox.

desc_ID is pointing to one description entry in the ItemDescriptionBox.

E.3.8 ScalableSampleDescriptionEntry Box

The ScalableSampleDescriptionEntry is used to describe characteristics associated with scalable composed ES or
decodable composed ES, like resolution levels, quality layers, cropped region. For scalable composed ES, res and
layer indicate the media data of that particular resolution and layer, while for decodable composed ES, they indicate
the highest resolution and highest quality layer.

When the media samples are protected by a protection tool, the ScalableSampleDescriptionEntry is encapsulated as
follows:

The four-character-code of the ScalableSampleDescriptionEntry is replaced with another four-character-code indicating
protection encapsulation, which varies only by media type, as defined below:

• Encv: to indicate that video samples are encrypted and thereby un-protection must be applied to get
meaningful media data.

• Autv: to indicate that video samples are authenticated and the media data can still be meaningful before
un-protection.

• Enct: to indicate that text samples are encrypted.
• Autt: to indicate that text samples are authenticated.
• Encs: to indicate that system samples are encrypted.
• Auts: to indicate that system samples are authenticated.

A ProtectionSchemeInfoBox is added to the ScalableSampleDescriptionEntry, leaving all other boxes unmodified.

The original sample entry type is stored in the OriginalFormatBox within the ProtectionSchemeInfoBox.

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

12 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008)

Class ScalableSampleDescriptionEntry(codingname)extends
 VisualSampleEntry(codingname) {
 Unsigned int(8) res;
 Unsigned int(8) layer;
 Unsigned int(32) cropped_width, cropped_height;
 If(cropped_width > 0 && cropped_height > 0) {
 Unsigned int(32) startx;
 Unsigned int(32) starty;
 }
 ProtectionSchemeInfoBox protectionSchemes[]; //optional
}

Semantics:

codingname is "sces" if the track is referring to a scalable composed ES and "dces" if the track is referring to a
decodable composed ES.

res is the resolution of the described samples. A value of –1 indicates all resolution levels.

layer is the quality layer of the described samples. A value of –1 indicates all quality layers.

cropped_width is the width of the cropped region.

cropped_height is the height of the cropped region.

startx & starty indicate the position of the top-left corner of the cropped region. If either cropped_width or
cropped_height is zero, the startx and starty will not be present.

protectionSchemes is a list of ProtectionSchemeInfoBoxes to indicate the protection tools applied to the
described samples. The un-protection process has to follow the order in which it appears in the list.

E.3.9 ScalableSampleGroupEntry Box

A track may be made up of samples with different characteristics and protected by different protection tools or with
different parameters. The ScalableSampleGroupEntry box is used to signal the grouping of samples based. For example,
if a track has 1000 samples where the first 500 samples are encrypted with Key 1 and the second 500 samples are
encrypted with Key 2, the SampleGroupDescription Box contains two ScalableSampleGroupEntry boxes: the first box
describes the first 500 samples while the second box describes the second 500 samples.

When the media samples are protected by a protection tool, the ScalableSampleGroupEntry is encapsulated in the same
way as ScalableSampleDescriptionEntry in E.3.8.

Class ScalableSampleGroupEntry(type) extends VisualSampleGroupEntry(type) {
 unsigned int(8) res;
 unsigned int(8) layer;
 unsigned int(32) cropped_width, cropped_height;
 If(cropped_width > 0 && cropped_height > 0) {
 unsigned int(32) startx;
 unsigned int(32) starty;
 }
 ProtectionSchemeInfoBox protectionSchemes[]; //optional
}

Semantics:

type indicates the grouping type. If the grouping is based on different protection tools applied to the samples, the type
is "prot"; if the grouping is based on different media characteristics (like resolution or layers), the type is "attr".

res is the resolution of the described samples. A value of –1 indicates all resolution levels.

layer is the quality layer of the described samples. A value of –1 indicates all quality layers.

cropped_width is the width of the cropped region.

cropped_height is the height of the cropped region.

startx & starty indicate the position of the top-left corner of the cropped region. If either cropped_width or
cropped_height is zero, the startx and starty will not be present.

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008) 13

protectionSchemes is a list of ProtectionSchemeInfoBoxes to indicate the protection tools applied to the
described samples. The un-protection process has to follow the order in which it appears in the list.

E.3.10 Generic Protected Box

E.3.10.1 Definition

Box Types: 'gprt'

Container: File or any container box

Mandatory: Yes, when failure to use would prevent parsing file

Quantity: Any number

The JProtected Box is used when a protection scheme is applied to a box, and use of the protection scheme prevents
parsing of the box. For example, if the contents of a superbox are encrypted, including the box lengths and types, that
box is no longer parsable, and thus fails to meet the original definition for the box. In this case, a JProtected Box may be
placed in the file in the place of the box that no longer parses correctly, and the encrypted data placed in the JProtected
Box.

Interpreting the content of the data[] portion of this box shall be done using the ItemLocationBox.

Once all of the protection methods have been operated on from the ItemInformationBox, the contents may be
reorganized into original boxes. The first size[0] bytes of the unprotected data[] array are placed in a box of type[0], and
the next size[i] bytes are placed in a box of type[i], and so on. Note that when size_flag is 0, the size of the original
box is not disclosed and when type_flag is 0, the type of the original box is not disclosed. This is to prevent known-
plaintext attacks. When both the size_flag and type_flag are 0, total_size provides the total size of the
protected content.

If the entry count is 0, or if there is data left over, then that data shall be in the format of legal boxes with type and size
codes, i.e., the unprotected data contains the types and sizes.

If any part-1 mandatory box is encrypted, the "jp2" brand should be removed from the compatible list in file type box.

E.3.10.2 Syntax

aligned(8) class JProtectedBox extends Box('gprt') {
 bit(1) type_flag;
 bit(1) size_flag;
 bit(1) location_flag;
 unsigned int(5) reserved; // for ISO use
 if(size_flag == 1 || type_flag == 1 || location_flag == 1) {
 unsigned int(32) entry_count;
 if(location_flag == 1)
 unsigned int(8) offset_size;
 for(i=0; i<entry_count; i++) {
 if(size_flag == 1)
 unsigned int(32) size;
 if(type_flag == 1)
 unsigned int(32) type = boxtype;
 if(size_flag == 1 && size == 1)
 unsigned int(64) large_size;
 if(location_flag == 1)
 unsigned int(offset_size*8) offset;
 }
 }
 else {
 Unsigned int(32) total_size;
 if(total_size == 1)
 unsigned int(64) large_total_size;
}
 unsigned int(8) data[];
}

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

14 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008)

E.3.10.3 Semantics

size_flag indicates whether or not size value is present. A value of 1 means the size of each entry in Generic
Protected Box is present; 0 means the size is not present.

type_flag indicates whether or not the box type is present. A value of 1 means the original type of each entry in
Generic Protected Box is present; 0 means the type is not present.

location_flag indicates whether or not the location is present. A value of 1 means the original location of each
entry in Generic Protected Box is present; 0 means the original location is not present.

entry_count is the number of entries in the Generic Protected Box.

offset_size is the length of the offset in bytes.

Each size entry is the size of a box that has been replaced by the Generic Protected Box.

Each type entry is the original type of a box that has been replaced by the Generic Protected Box.

Each offset entry is the offset of a box that has been replaced by the Generic Protected Box.

total_size is the total size of the entries in the Generic Protected Box.

data[] is an array of bytes to the end of the box that may be referenced by the ItemLocationBox and thus protected
with a method defined in the ItemProtectionBox.

E.4 Elementary stream and sample definitions

E.4.1 Overview

This subclause defines the structure of an elementary stream (ES).

An elementary stream contains media data, ByteData structure, container structure, pointer structure, or any mixture of
the above. There are two types of ES: One type is called self-contained ES, which does not contain any container,
pointer or ByteData structure. The format of self-contained ES is not defined in this Recommendation | International
Standard, and it can be any media format like motion JPEG 2000 sequence. The other type is referred to as composed
ES, where the media data is composed from other elementary streams. A composed ES can either copy data from other
tracks or reference data in other tracks. When a media data segment is copied from other tracks, the segment must be
wrapped in ByteData structure; the pointer structure is used to reference media data segments in other ESs. When a
sample in composed ES consists of more than one structure, a container structure must be used to wrap all structures
belonging to that sample.

The composed ES can be classified into Scalable Composed ES and Decodable Composed ES. The former is designed
to support scalability, i.e., to make the codestream "thinable", the adaptor can make a codestream by combining
multiple such ESs. However, it is assumed that the adaptor should be able to generate new headers and modify the
index number within each packet. The decodable composed ES is designed for simple adaptor that has no capability to
generate headers or modify packet index numbers. The adaptor simply follows the instructions in a decodable composed
ES to generate a complete decodable codestream.

Figure E.2 illustrates the relationship between self-contained ES and scalable composed ES. In scalable composed ES,
each sample is wrapped by a container structure, where a pointer is referring to the desired data segment(s) in the
self-contained ES. Note that a scalable composed ES does not contain any headers, the adapter has to dynamically
generate the header to make a codestream that is decodable by normal decoder. In addition, each scalable composed ES
may not constitute a complete decodable codestream by itself, and multiple scalable composed ESes may be required to
make a complete codestream. For example, in Figure E.2, the adaptor has to combine the scalable composed ES 0 and 1
to make a resolution-1 JPEG 2000 frame.

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008) 15

Figure E.2 – Self-contained ES and scalable composed ES

Figure E.3 illustrates the relationship between self-contained ES and decodable composed ESs. In decodable
composed ES, a sample is wrapped by a container, which includes the Data structure (with header information), and
one or more pointer structures referring to data segments in the self-contained ES.

Figure E.3 – Self-contained ES and decodable composed ES

E.4.2 In-stream structures

This subclause defines the in-stream structures used in scalable composed ES and decodable composed ES. A
composed ES can include media from other elementary streams either by copy or by reference. The ByteData structure
is used to include media data by copy while the pointer structure is used to include media data by reference. In addition,
each sample is wrapped by a container structure, which may contain one or more ByteData or pointer structures.

class aligned(8) DataUnit(type) {
 unsigned int(32) type;
 unsigned int(32) size;
 unsigned int(32) RDHints;
}
class ByteData (type='bdat') extends DataUnit {
 unsigned int(8) data[];
}
class Container (type='cont') extends DataUnit {
 DataUnit(type) units[];
}
class Pointer(type='poin') extends DataUnit {
 unsigned int(8) track_ref_index;
 unsigned int(8) segment_count;
 for(int i=0; i<segment_count; i++) {
 unsigned int(32) offset;

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

16 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008)

 unsigned int(32) length;
 }
}

Semantics:

type indicates the type of the data structure, like "ByteData", "Container" and "Pointer".

size is the size of this structure, including itself and subsequent data in this structure.

RDHints indicates the relative or absolute importance of media data contained or referenced by this object. For
instance, RDHints could be an associated distortion increment value, the amount by which the media distortion will
increase if the media data is lost, or it could be importance ranking.

data[] is a byte array containing media data in its original format. This amendment does not specify the format of the
media data.

units[] is a list of objects contained by container object. The object can be either "ByteData" or "Pointer", but cannot
be another "Container" object.

track_ref_index specifies the index of the track to which this "pointer" is pointing.

segment_count is the number of "offset" and "length" pair.

offset is the offset of the first byte within the referred sample to copy.

length is the number of bytes of the data segment.

E.5 Protection at file format level

E.5.1 Overview

This subclause describes how media data is protected using the protection schemes (i.e., authentication or description)
and how the protection is signalled using the boxes defined in E.3.4 and E.3.5.

When the security tools applied change the data length, it shall update all pointers and length fields in all boxes, to
ensure correct parsing by the reader.

E.5.2 Item-based protection for ISO base file format and JPEG family file formats

This annex defines two types of ProtectionSchemeInfoBox: authentication and decryption. The two protection schemes
protect the scalable media without loss of scalability.

Each instance of a protection scheme and used parameters (like MAC, IV, keys, etc.) are described by a
ProtectionSchemeInfoBox located inside ItemProtectionBox. On the other hand, the ItemLocationBox contains a list of
items and each item points to one or more contiguous segments of media data. The ItemInformationBox maintains a
mapping table between the items in ItemLocationBox and the protection schemes in ItemProtectionBox. Figure E.4
gives an example with two items and three protection schemes: item 0 is protected with Scheme 0 and Scheme 2, while
Item 1 is protected with Scheme 1.

As illustrated in Figure E.4, the same item can be applied with multiple protection schemes, e.g., item 0. In addition, the
items can overlap with each other and the overlapped region may be applied with multiple protection schemes.
Therefore, it is important to specify the processing order among the protection schemes. The 'ffsc' file format mandates
that the file MUST be un-protected in the same order as the schemes appear in 'iinf' box. For instance, for un-protection,
the first scheme appearing in 'iinf' box is applied first and the last scheme appearing in 'iinf' box is applied last. In this
example, the file is first un-protected with Scheme 2 on Item 0, followed by Scheme 1 on Item 1 and scheme 0 on
Item 0.
NOTE – The protection order (with multiple protection tools) must be exactly the reverse of the un-protection order, that is, the first
scheme appearing in "iinf" box is the last tool to be applied, and the last scheme appearing in "iinf" box is the first tool to be applied.

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008) 17

Figure E.4 – Relationship between iloc, iinf and ipro

E.5.3 Additional requirements for item-based protection for JPEG family file formats

JP2, JPX and JPM files are not based on the ISO base file format but have some common boxes, e.g., the File Type Box
('ftyp'). In order to use the Item-based protection in this Recommendation | International Standard, these file formats
shall incorporate protection by adding the 'meta', 'hdlr', 'ipro', 'iloc', and 'iinf' from ISO/IEC 15444-12:2005, in addition
to the new boxes defined by this amendment.

Operation of protection is the same as for the ISO base file format. However, codestreams in JPEG family file formats
may appear in contiguous codestream boxes in addition to Media Data ('mdat') boxes.

E.5.4 Sample-based protection

When a protection scheme is applied on a sample basis, it is signalled by a ProtectionSchemeInfoBox located in either
the ScalableSampleDescriptionEntry or the ScalableSampleGroupEntry. When the ProtectionSchemeInfoBox is located
in the ScalableSampleDescriptionEntry, the protection is applied to all samples in the track; when the
ProtectionSchemeInfoBox is located in the ScalableSampleGroupEntry, the protection is applied only to the samples in
the sample group.

When samples are applied with multiple protection schemes, the ScalableSampleDescriptionEntry or
ScalableSampleGroupEntry contains multiple ProtectionSchemeInfoBoxes. Under the major brand of 'ffsc', the samples
must be un-protected in the order that the corresponding ProtectionSchemeInfoBoxes were defined.

Figure E.5 gives an example of "mp4v" sample description entry that is protected with an authentication followed by an
encryption. Note that there are two ProtectionSchemeInfoBoxes in this entry: the first one is for the decryption scheme
while the second one is for the authentication scheme. To un-protect the sample, the file reader has to apply the
decryption scheme followed by the authentication scheme, which is the order in which it appears in the sample entry.

When sample-based protection is applied to composed ES, the protection is actually applied to the media data which is
contained or pointed by the container, ByteData or pointers object. For instance, to encrypt a sample in a composed ES,
which is wrapped by a container object, the protection process shall encrypt its media data only, retaining the structure
of the container.

The sample-based protection can be applied to all samples in a track or sample group as a whole (when GL = 0 in
SchemeInformationBox) or separately to each sample (when GL = 1 in SchemeInformationBox). In the former case, the
ValueList has only one MAC or IV, and in the latter case, the ValueList has one MAC or IV for each sample.

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

18 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008)

Sample description entry (4CC code = encv)

 ProtectionSchemeInfoBox 1

 OriginalFormatBox (data_format=autv)

 SchemeTypeBox (scheme_type = decr)

 SchemeInformationBox for decryption scheme

 ProtectionSchemeInfoBox 2

 OriginalFormatBox (data_format=mp4v)

 SchemeTypeBox (scheme_type=auth)

 SchemeInformationBox for authentication scheme

Figure E.5 – An example sample description entry protected by authentication scheme
followed by description scheme

E.6 Examples (Informative)

E.6.1 Example 1

This example shows a very simple JPEG file (using JP2 file format) using only authentication. As shown in Figure E.6,
authentication is applied to the coded media data stored in the "Contiguous codestream box", authentication algorithm is
HMAC with SHA-1 hashing.

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008) 19

Figure E.6 – Example 1: Item-based protection of JP2 file (authentication)

E.6.2 Example 2

This example corresponds to the example given in 6.3.1. An image is coded with JPEG 2000 and has three resolutions.
The first resolution is not encrypted in order to provide preview capability, and the second and third resolutions are
encrypted with keys k1 and k2, respectively. The input image is coded in RLCP progression order and has 1 tile and 3
resolutions. (The number of layers, components and precincts are not important in this specific example.) Encryption is
performed using AES in CBC mode without padding (using cipher-text stealing), using k1 to encrypt resolution 1 and
using k2 to encrypt resolution 2, and resolution 0 is left unencrypted.

First of all, the ItemLocationBox contains two Items: one item points to the byte range from 0x31CC to 0xA3E8 and the
other one points to the byte range from 0xA3E9 to 0x31101. The ItemProtectionBox contains two
DecryptionSchemeInformationBoxes: the first one uses AES in CBC mode and k1, the other uses AES in CBC mode
and k2. The ItemInformationBox links the DecryptionSchemeInformationBoxes in ItemProtectionBox to the Items in
ItemLocationBox. In ItemDescriptionBox, ItemDescription 1 describes Item 1 as resolution 1 of the image, while
ItemDescription 2 describes Item 2 as resolution 2 of the image.

Note that JPEG 2000 image can be located in either MDAT box in the sample file as the META box, or in a different
file whose format is described by the ISO base file format.

JP2 file

JPEG 2000 signature box

File Type box (BR='p2\040' CL='fsc'

JP2 Header box
Image Header box

Bits Per Component box

Colour Specification box

Contiguous codestream box (byte range : 0x0100 – 0x34567)

Meta box

Item Location box
 Item 1: 0x0100 – 0x34567 //pointing to contiguous codestream box

Item Protection Box

ProtectionSchemeInfoBox 1

AuthenticationSchemeInfoBox (Algo = HMAC with SHA-1, Key=k0)

Item Information Box
 Entry 1: item_ID = item 1; scheme_ID = scheme 1;

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

20 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008)

Figure E.7 – Example 2: Item-based protection of a JPEG 2000 images (encryption)

E.6.2.1 Transcoding to resolution 1

To securely transcode the above example to lower resolution by discarding resolution 2, the transcoder needs to do the
following:

• Discard the trunk of media data corresponding to resolution 2, i.e., byte range 0xA3E9 – 0x31101.
• Remove Item 2 from ItemLocationBox.
• Remove ItemInfoBox 2 from ItemInformationBox.
• Remove ItemDescription 2 from ItemDescriptionBox.
• Remove ProtectionSchemeInfoBox 2 from ItemProtectionBox.

After transcoding, the resulting File format is shown in Figure E.8. Note that the transcoder does not have to decrypt the
media data, and thereby achieve end-to-end security.

Item 1
Byte range: 0x31CC - 0xA3E8

ItemLocationBox

DecryptionSchemeInformationBox
(AES CBC mode; Key: k1)

ItmProtectionBox

ProtectionSchemeInfoBox 1ItemInfoBox 1

ItemInformationBox

ItemDescription 1
Res 1

ItemDescriptionBox

META Box

MDAT box or external file

Res 0 (0 - 0x31CB) Res 1 (0x31CC - 0xA3E8)

Figure E.8 – Example 2: Secure transcoding to lower resolution (discarding resolution 2)

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008) 21

E.6.3 Example 3

This example corresponds to the example given in 6.3.2. In this case, authentication is applied to the same JPEG 2000
coded image as in Example 1. In this example all three resolutions are authenticated, where the authentication for each
resolution uses a different key. Each resolution is authenticated using different keys, and each layer within a resolution
has its own MAC value. In summary, there will be a total of three keys and nine MAC values for the entire image.
Specifically

• Resolution 0 has three MAC values M0, M1 and M2 (one for each layer) using K0
• Resolution 1 has three MAC values M3, M4 and M5 (one for each layer) using K1
• Resolution 2 has three MAC values M6, M7 and M8 (one for each layer) using K2

The authentication is performed using HMAC with SHA-1 hash. As shown in Figure E.9, the ItemLocationBox has
three items corresponding to three resolutions, and each item has three extents corresponding to three layers within a
resolution. The ItemProtectionBox contains three ProtectionSchemeInformationBoxes, the first one signals the applied
authentication tool using K0 and three MAC values M0, M1 and M2, and so forth. The ItemInformationBox and
ItemDescriptionBox are used in the same way as the previous example.

Note that "granularity" field in the AuthenticationSchemeInformationBox is used to indicate the smaller protection unit
of the authentication tool. When "granularity" is "extent", the authentication tool will generate one MAC for each extent
(i.e., three MAC values for the entire Item in this example); when it is set to "item", it will generate only one MAC
value for the entire item.

Figure E.9 – Example 3: Item-based protection of a JPEG 2000 image (Authentication)

E.6.3.1 Transcoding to resolution 1

To securely transcode the above example to resolution 1, the transcoding has to do the following:

Discard trunk of media data corresponding to resolution 1, i.e., byte range 0xA3E9 – 0x31101.
• Remove Item 3 from ItemLocationBox
• Remove ItemInfoBox 3 from ItemInformationBox
• Remove ItemDescription 3 from ItemDescriptionBox
• Remove ProtectionSchemeInfoBox 3 from ItemProtectionBox

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

22 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008)

The resulting file format of the transcoded codestream is shown in Figure E.10.

Figure E.10 – Example 3: Transcoding to resolution 1

E.6.4 Example 4

This example illustrates sample-based protection for a time-sequenced JPEG 2000 coded pictures. Each picture has
three layers (L0, L1 and L2), and all three layers are authenticated using a unique key (AK0, AK1 and AK2). After that,
the L1 and L2 are encrypted using a unique key (CK0 and CK1). That is, L0 is authenticated with AK0 producing one
MAC value M0. L1 and L2 are first authenticated with AK1 and AK2 (producing M1 and M2) and then encrypted
using CK0 and CK1 respectively. Authentication is applied using HMAC with SHA-1 and encryption is achieved using
AES in CBC mode.

To preserve scalability at the file format level, three scalable composed ESes are generated, ES0, ES1, and ES2, one for
each layer. Each ES is described by one media track, for instance, ES0 is described by Trak0, ES1 is described by
Trak1, and so on.

The format of the three tracks (Trak 0, Trak 1 and Trak 2) is illustrated in Figure E.11. Trak 0 has one
ProtectionSchemeInfoBox as L0 is protected by authentication tool only. Trak 1 and Trak 2 have two
ProtectionSchemeInfoBox as L1 and L2 are protected by both authentication and encryption tool. Note that the
decryption tool appears in the first ProtectionSchemeInfoBox and the authentication tool appears in the second
ProtectionSchemeInfoBox. The un-protection process has to follow the same order to get decodable JPEG 2000
codestream.

Note that for decodable composed ES and self-contained ES, sample-based protection is applied in the same way as for
scalable composed ES.

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008) 23

Trak 0

...

...

Sample description entry (4CC code = encv)

ProtectionSchemeInfoBox 1

OriginalFormatBox (data_format = SCAL)

SchemeTypeBox (Scheme_type = auth)

SchemeInformationBox for Auth (Algo = HMAC with SHA-1; Key = AK0; ValueList = {M0}

Trak 1

...

...

Sample description entry (4CC code = encv)

ProtectionSchemeInfoBox 1

OriginalFormatBox (data_format = SCAL)

SchemeTypeBox (Scheme_type = Decr)

SchemeInformationBox for Decryption (Algo = AES in CBC mode; Key = CK0;)

ProtectionSchemeInfoBox 2

OriginalFormatBox (data_format = SCAL)

SchemeTypeBox (Scheme_type = auth)

SchemeInformationBox for Auth (Algo = HMAC with SHA-1; Key = AK1; ValueList = {M1}

Trak 2

...

...

Sample description entry (4CC code = encv)

ProtectionSchemeInfoBox 1

OriginalFormatBox (data_format = SCAL)

SchemeTypeBox (Scheme_type = Decr)

SchemeInformationBox for Decryption (Algo = AES in CBC mode; Key = CK1;)

ProtectionSchemeInfoBox 2

OriginalFormatBox (data_format = SCAL)

SchemeTypeBox (Scheme_type = auth)

SchemeInformationBox for Auth (Algo = HMAC with SHA-1; Key = AK2; ValueList = {M2}

MOOV Box

Figure E.11 – Example 4: Sample-based protection of a time-sequenced JPEG 2000 pictures

E.6.4.1 Transcoding to layer 1

To securely transcode the sequence of JPEG 2000 picture to layer 1, the transcoder needs to do the following:
• Discard the scalable composed ES 2 corresponding to layer 2, and discard the trunk of media data in self-

contained ES.
• If necessary, the transcoder also needs to update the byte range values of Pointer objects in the remaining

two scalable composed ESs.
• Discard Trak 2 that describes scalable composed ES 2.

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

24 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008)

The resulting file format is shown in Figure E.12.

Figure E.12 – Example 4: Secure transcoding to lower SNR quality (layer 1)

E.6.5 Example 5

This example illustrates how sample-based protection is applied for video browsing and video summarization. In this
example, a sequence of 10000 frames is summarized into 10 scenes. For instance, the first 1000 frames constitute the
first scene; the second 1000 frames constitute the second scene, and so on. For each scene, the first 50 frames (5-second
video at 10 fps) are left unencrypted for preview purposes, the rest of the frames are encrypted using AES in CBC mode
with key K0. In this example, the 10000 pictures are stored in a self-contained ES, which can be located in MDAT box
or external file whose format is not specified by the ISO base file format.

Figure E.13 illustrates the file format when the above protection is applied to a self-contained ES, which is described by
Track 0. The SampleToGroupBox has 20 entries, the first 50 pictures of every scene are mapped to no descriptor and
the next 950 pictures of each scene are mapped to the first ScalableSampleGroupEntry in SampleGroupDescriptionBox.
The grouping_type is "prot", for protection purposes.

The ScalableSampleGroupEntry has handler_type of "encv" and the protection is to applied all resolutions (res = –1),
all layers (layer = –1) and all regions of each sample (cropped_width=cropped_height=0). As only one
protection is applied to this sample group, the ScalableSampleGroupEntry contains only one ProtectionSchemeInfoBox,
which in turn contains the OriginalFormatBox, the SchemeTypeBox and the SchemeInformationBox.

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008) 25

...

Figure E.13 – Example 5: Sample-based protection for video browsing or video summarization

E.6.5.1 Example 5: Transcoding to shorter time length

This example illustrates how to securely transcode the above codestream to shorter the time length, i.e., discarding the
last 5000 pictures. The transcoder has to do the following things:

• Discard the trunk of media data corresponding to the last 5000 pictures.
• Remove the entries corresponding to the last 5000 pictures in SampleToGroupBox.

The resulting codestream is shown in Figure E.14.

...

Figure E.14 – Example 5: Transcoding to shorter time length (discarding the last 5000 pictures)

E.6.6 Example 6

This example demonstrates how the structures defined in this annex can be used to perform authentication and decoding
of verified data.

An authentication adaptor/transcoder removes data that is not verifiable with the available media data and
authentication data. For example, in a streaming system, some media packets may be lost during transmission. A file
format receiver may reconstruct the received data to the best of its ability based on the available data. Then, an

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

26 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008)

authentication adaptor/transcoder can determine which data can be verified, and then remove the packets that are not
verifiable. The resulting file only contains the decodable, verified data.

Figure E.15 – Example 6: Authentication transcoding, discarding received but unverifiable packets

E.6.7 Example 7

This example shows the effect of length changes on the contents of a file due to protection coding.

The 'moov' box expanded in Figure E.16 below contains boxes that reference samples in the 'mdat' box. In this case the
'mdat' box contains six samples, labelled D1 to D6.

Figure E.16 – Motion JPEG 2000 file with detailed box structure

Figure E.17 – Simplified motion JPEG 2000 box structure showing references

Without any protection, some of the boxes and the references to those boxes appear as shown in Figure E.17.

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008) 27

Figure E.18 – Simplified motion JPEG 2000 box structure showing references after
length changing protection operations

Figure E.18 shows boxes or samples in pink that have been protected and may have had their length changed. The
pointers in the 'moov' box have been adjusted to point to the correct location of the protected samples.
NOTE – In order to function as shown in those figures, the protection tool must understand all pointers present in the file. Thus a
protected motion JPEG 2000 file requires a protection tool capable of adjusting motion JPEG 2000 references. The alternative is for
the file with portions that have been changed to be marked as unreadable by a motion JPEG 2000 reader until all length changing
operations have been undone.

E.6.8 Example 8

This example shows the effect of length changes on the contents of a JPM file due to protection coding.

Figure E.19 – JPM file with detailed box structure

Figure E.20 – Simplified JPM box structure showing references

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

28 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008)

Figure E.21 – JPM box structure showing references after length changing protection operations

E.7 Boxes defined in ISO/IEC 15444-12 (informative)

This subclause is not a normative part of this amendment. The definitions listed here are repeated from ISO/IEC
15444-12 for convenience.

Box

Files are formed as a series of objects, called boxes in this Recommendation | International Standard. All data are
contained in boxes; there are no other data within the file.

Boxes start with a header which gives both size and type. The header permits compact or extended size (32 or 64 bits)
and compact or extended types (32 bits or full UUIDs). The standard boxes all use compact types (32-bit) and most
boxes will use the compact (32-bit) size. Typically only the Media Data Box(es) need the 64-bit size.

The size is the entire size of the box, including the size and type header, fields, and all contained boxes. This facilitates
general parsing of the file. The definitions of boxes are given in the syntax description language (SDL) defined in
MPEG-4 (see reference in clause 2). Comments in the code fragments in this Recommendation | International Standard
indicate informative material. The fields in the objects are stored with the most significant byte first, commonly known
as network byte order or big-endian format.

aligned(8) class Box (unsigned int(32) boxtype,
optional unsigned int(8)[16] extended_type) {
unsigned int(32) size;
unsigned int(32) type = boxtype;
if (size==1) {
unsigned int(64) largesize;
} else if (size==0) {
// box extends to end of file
}
if (boxtype=='uuid') {
unsigned int(8)[16] usertype = extended_type;
}
}

The semantics of these two fields are:

size is an integer that specifies the number of bytes in this box, including all its fields and contained boxes; if size is 1
then the actual size is in the field large size; if size is 0, then this box is the last one in the file, and its contents extend to
the end of the file (normally only used for a Media Data Box).

type identifies the box type; standard boxes use a compact type, which is normally four printable characters, to permit
ease of identification, as reflected below. User extensions use an extended type; in this case, the type field is set to
'uuid'.

Boxes with an unrecognized type shall be ignored and skipped.

Many objects also contain a version number and a flag field:

aligned(8) class FullBox(unsigned int(32) boxtype, unsigned int(8) v, bit(24) f)
extends Box(boxtype) {
unsigned int(8) version = v;
bit(24) flags = f;
}

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008) 29

The semantics of these two fields are:

version is an integer that specifies the version of this format of the box.

flags is a map of flags.

Boxes with an unrecognized version shall be ignored and skipped.

Item Location Box

Definition

Box Type: 'iloc'

Container: Meta box ('meta')

Mandatory: No

Quantity: Zero or one

The item location box provides a directory of resources in this or other files, by locating their containing file, their
offset within that file, and their length. Placing this in binary format enables common handling of this data, even by
systems which do not understand the particular metadata system (handler) used. For example, a system might integrate
all the externally referenced metadata resources into one file, re-adjusting file offsets and file references accordingly.

The box starts with three values, specifying the size in bytes of the offset field, length field, and base_offset field,
respectively. These values must be from the set {0, 4, 8}.

Items may be stored fragmented into extents, e.g., to enable interleaving. An extent is a contiguous subset of the bytes
of the resource; the resource is formed by concatenating the extents. If only one extent is used
(extent_count = 1), then either or both of the offset and length may be implied:

• If the offset is not identified (the field has a length of zero), then the beginning of the file (offset 0) is
implied.

• If the length is not specified, or specified as zero, then the entire file length is implied. References into
the same file as this metadata, or items divided into more than one extent, should have an explicit offset
and length, or use a MIME type requiring a different interpretation of the file, to avoid infinite recursion.

The size of the item is the sum of the extent_length(s).
NOTE – Extents may be interleaved with the chunks defined by the sample tables of tracks.

The data-reference index may take the value 0, indicating a reference into the same file as this metadata, or an index
into the data-reference table.

Some referenced data may itself use offset/length techniques to address resources within it (e.g., an MP4 file might be
'included' in this way). Normally such offsets are relative to the beginning of the containing file. The field 'base offset'
provides an additional offset for offset calculations within that contained data. For example, if an MP4 file is included
within a file formatted to this Recommendation | International Standard, then normally data-offsets within that MP4
section are relative to the beginning of file; base_offset adds to those offsets.

Syntax

aligned(8) class ItemLocationBox extends FullBox('iloc', version = 0, 0) {
unsigned int(4) offset_size;
unsigned int(4) length_size;
unsigned int(4) base_offset_size;
unsigned int(4) reserved;
unsigned int(16) item_count;
for (i=0; i<item_count; i++) {
unsigned int(16) item_ID;
unsigned int(16) data_reference_index;
unsigned int(base_offset_size*8) base_offset;
unsigned int(16) extent_count;
for (j=0; j<extent_count; j++) {
unsigned int(offset_size*8) extent_offset;
unsigned int(length_size*8) extent_length;
}
}

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

30 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008)

}

Semantics

offset_size is taken from the set {0, 4, 8} and indicates the length in bytes of the offset field.

length_size is taken from the set {0, 4, 8} and indicates the length in bytes of the length field.

base_offset_size is taken from the set {0, 4, 8} and indicates the length in bytes of the base_offset field.

item_count counts the number of resources in the following array.

item_ID is an arbitrary integer 'name' for this resource which can be used to refer to it (e.g., in a URL).

data-reference-index is either zero ('this file') or a 1-based index into the data references in the data
information box.

base_offset provides a base value for offset calculations within the referenced data. If base_offset_size is 0,
base_offset takes the value 0, i.e., it is unused.

extent_count provides the count of the number of extents into which the resource is fragmented; it must have the
value 1 or greater.

extent_offset provides the absolute offset in bytes from the beginning of the containing file, of this item. If
offset_size is 0, offset takes the value 0.

extent_length provides the absolute length in bytes of this metadata item. If length_size is 0, length takes the
value 0. If the value is 0, then length of the item is the length of the entire referenced file.

Item Information Box

Definition

Box Type: 'iinf'

Container: Meta Box ('meta')

Mandatory: No

Quantity: Zero or one

The Item information box provides extra information about selected items, including symbolic ('file') names. It may
optionally occur, but if it does, it must be interpreted, as item protection or content encoding may have changed the
format of the data in the item. If both content encoding and protection are indicated for an item, a reader should first un-
protect the item, and then decode the item's content encoding. If more control is needed, an IPMP sequence code may
be used.

This box contains an array of entries, and each entry is formatted as a box. This array is sorted by increasing item_ID
in the entry records.

Syntax

aligned(8) class ItemInfoEntry
extends FullBox('infe', version = 0, 0) {
unsigned int(16) item_ID;
unsigned int(16) item_protection_index
string item_name;
string content_type;
string content_encoding; //optional
}
aligned(8) class ItemInfoBox
extends FullBox('iinf', version = 0, 0) {
unsigned int(16) entry_count;
ItemInfoEntry[entry_count] item_infos;
}

ISO/IEC 15444-8:2007/Amd.1:2009 (E)

 Rec. ITU-T T.807 (2006)/Amd.1 (03/2008) 31

Semantics

item_id contains either 0 for the primary resource (e.g., the XML contained in an 'xml' box) or the ID of the item for
which the following information is defined.

item_protection_index contains either 0 for an unprotected item, or the one-based index into the item
protection box defining the protection applied to this item (the first box in the item protection box has the index 1).

item_name is a null-terminated string in UTF-8 characters containing a symbolic name of the item.

content_type is the MIME type for the item.

content_encoding is an optional null-terminated string in UTF-8 characters used to indicate that the binary file is
encoded and needs to be decoded before being interpreted. The values are as defined for Content-Encoding for
HTTP/1.1. Some possible values are "gzip", "compress" and "deflate". An empty string indicates no content encoding.

entry_count provides a count of the number of entries in the following array.

Item Protection Box

Definition

Box Type: 'ipro'

Container: Meta box ('meta')

Mandatory: No

Quantity: Zero or one

The item protection box provides an array of item protection information, for use by the Item Information Box.

Syntax

aligned(8) class ItemProtectionBox
extends FullBox('ipro', version = 0, 0) {
unsigned int(16) protection_count;
for (i=1; i<=protection_count; i++) {
ProtectionSchemeInfoBox protection_information;
}
}

Semantics

protection_count is the number of protection tools applied.

protection_information contains the information for each protection tool applied.

Printed in Switzerland
Geneva, 2009

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. T.807 Amendment 1 (03/2008) – Information technology - JPEG 2000 image coding system: Secure JPEG 2000 Amendment 1: File format security
	Summary
	Source
	FOREWORD
	CONTENTS
	1) Clause 2: Normative references
	2) Clause 3: Terms and definitions
	3) Annex E: File format security
	Annex E – File Format Security
	E.1 Scope
	E.2 Introduction
	E.3 Extension to ISO base media file format
	E.4 Elementary stream and sample definitions
	E.5 Protection at file format level
	E.6 Examples (Informative)
	E.7 Boxes defined in ISO/IEC 15444-12 (informative)

