

INTERNATIONAL TELECOMMUNICATION UNION

CCITT Q.775
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

(11/1988)

SERIES Q: SWITCHING AND SIGNALLING
Specifications of Signalling System No. 7 –
Transaction Capabilities Application Part (TCAP)

GUIDELINES FOR USING TRANSACTION
CAPABILITIES

Reedition of CCITT Recommendation Q.775 published
in the Blue Book, Fascicle VI.9 (1988)

NOTES

1 CCITT Recommendation Q.775 was published in Fascicle VI.9 of the Blue Book. This file is an extract from
the Blue Book. While the presentation and layout of the text might be slightly different from the Blue Book version, the
contents of the file are identical to the Blue Book version and copyright conditions remain unchanged (see below).

2 In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

© ITU 1988, 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written
permission of ITU.

 Fascicle VI.9 – Rec. Q.775 1

Recommendation Q.775

GUIDELINES FOR USING TRANSACTION CAPABILITIES

(Melbourne, 1988)

1 Introduction

1.1 General

 The purpose of this Recommendation is to provide guidelines to potential users of Transaction Capabilities
(TC-users). The examples given are illustrations only; they indicate how an application may use TCAP, not how TCAP
must be used in all cases. The technical basis of this document are Recommendations Q.771 to Q.774; in case of
misalignment, these should be considered as the primary reference.

 The main purpose of TCAP is to provide support for interactive applications in a distributed environment.
TCAP is based on Recommendations X.219 and X.229 (ROSE) enhanced as necessary to provide the services needed by
TC-users. Interactions between distributed application entities are modelled by Operations. An operation is invoked by
an (originating) entity: the other (destination) entity attempts to execute the operation and possibly returns the outcome
of this attempt.

 The semantics of an operation (represented by its name and parameters) is not relevant to TCAP; TCAP
provides facilities which are independent of any particular operation. The TC-user, when defining an application, must:

1) select operations;

2) select TCAP facilities to support these operations. Such facilities include the handling of individual
operations, and the ability to have a number of related operations attached to an association between
TC-users, called a dialogue;

3) define the application script.

 This Recommendation describes the selection process of defining and using operations. The operations
appearing hereafter are fictitious, and are taken for illustration purposes only. Also described are the facilities offered
by TCAP for handling one or a sequence of operations in a dialogue. The definition of specific sequences of operations
belongs to the application protocol definition and is beyond the scope of this Recommendation; however, Chapter 4
gives a brief indication of what information an application specification should contain.

 TCAP services are made accessible to TC-users via primitives; these primitives model the interface between
TCAP and its users, but do not constrain any implementation of this interface.

1.2 Environment

 TCAP defines the end-to-end protocol between TC-users which may be located in a Signalling System No. 7
network, and/or another network supporting TCAP protocols.

 Two broad categories of users have been considered (see Recommendation Q.771, § 1.3.2). Only the first
category is considered here, i.e. those which are real-time sensitive users, and do not need to exchange large amounts of
data. It is considered that for these users, protocols defined for OSI layers 4 to 6 in the X series of Recommendations
would result in excessive overheads and hence are not used. A basic service has been specified, using a connectionless
network service approach. Other categories of users might require connection-oriented network and higher layer
services.

 As a result, TCAP cannot support all kinds of applications, and a number of applications will still require more
elaborate services such as specified in the X series of Recommendations. Besides indicating what TCAP can do, this
Recommendation indicates what the connectionless approach cannot do, in order to help the application designer choose
how to support an application.

2 Operations

2.1 Definition

 An operation is invoked by an originating TC-user to request a destination TC-user to perform a given action.

2 Fascicle VI.9 – Rec. Q.775

 A class is attached to an operation. This indicates whether either a successful outcome (result), or an
unsuccessful outcome (error), or both, or none have to be reported by the destination. The outcome is reported in a result.

 As well as the class, the definition of the operation includes a timer value indicating when the operation should
be completed. This value is not indicated to the remote TC-user; it is assumed that the application at both ends has a
common understanding of the operations in use.

 An operation is defined by:

 – its operation code and the type of any parameters associated with the operation request;

 – its class;

 – if the class requires report of success, the possible results corresponding to successful executions are
defined by a list of parameters;

 – if the class requires report of failure, the possible results corresponding to situations where the operation
could not be executed completely by the remote TC-user. Each such situation is identified by a specific
error cause; the list of these error causes is part of the operation definition. Diagnostic information can be
added to the error cause: if present, it is part of the definition;

 – the list of possible linked operations, if replies consisting of linked operations are allowed for this
operation. Linked operations have to be described separately;

 – a timer value indicating the interval by which the operation has to be completed. This timer value is used
to manage the component ID associated with the operation invocation.

2.2 Examples

2.2.1 Simple operations

 Note – The operation invocation should fit into one message, and so should a report of unsuccessful outcome.
Reports of success may be segmented using Return Result-Not last and Return Result-Last.

 Class 1 (both success and failure reported):

 Translate a freephone number into a called subscriber number; return the called number if the translation can
be performed, otherwise indicate why it cannot; time allocated: 2 seconds.

 No reply being received when the timer expires indicates an abnormal situation (e.g. the operation invocation
may have been lost): the local TC-user is informed (operation cancel by TCAP).

 Class 2 (only failure reported):

 Perform a routine test and send a reply only in case something went wrong; time allocated: 1 minute.

 In the case of a class 2 operation, the TC-user is informed if no result has been received when the timer
expires. This is interpreted as a successful outcome, even if the invocation was lost. This aspect should be considered
when selecting class 2.

 Class 3 (only success reported):

 Perform a test: this corresponds to a pessimistic view, where failure is considered as the default option, not
requiring any reply.

 Timer expiry is indicated to the TC-user: this should be interpreted by the TC-user as a failure of the operation
(but is considered normal by TC, which considers that the operation has terminated). This aspect should be considered
when selecting class 3.

 Class 4 (neither success, nor failure reported):

 Send a warning, without expecting a reply or acknowledgement of any kind.

 In this case, a result never arises from the invocation of the operation. The TC-user relies upon TCAP and the
network to deliver the invocation. Notification of the timer expiry is a local matter.

 The diagrams in Figure 1/Q.775 illustrate possible sequences of primitives as seen by the TC-user originating
an operation.

 Fascicle VI.9 – Rec. Q.775 3

4 Fascicle VI.9 – Rec. Q.775

 Comparison with ROSE (Recommendation X.219) operation classes:

 ROSE provides for five classes of operations: classes 2 to 5, called asynchronous classes, are identical to
classes 1 to 4 of TCAP. ROSE's class 1 is a synchronous class; it has no counterpart in TCAP, where full-duplex
exchanges of components are considered. However, a TC-user can decide to operate in a synchronous manner
(see § 3.2.1).

2.2.2 More sophisticated operations

 Operations with segmented results

 A successfull result may be divided into several segments, each of which is indicated to the originator of the
operation by one primitive. This facility, using the TC-RESULT-NL primitive, can be used by TC-users to overcome the
absence of segmentation in the underlying layers. The last segment is indicated by the TC-RESULT-L primitive.

 The report of an error cannot be segmented.

 Apart from abnormal situations, responses are delivered to the remote TC-user in the order in which they have
been passed to TCAP by the sending TC-user.

 TC cannot identify a specific segment in the case of a segmented result.

 Example E1: An operation requests the execution of a test. The result of a correct execution is segmented in
three parts P1, P2 and P3 to be returned to the originator.

 A possible primitive sequence for example E1 is given in Table 1/Q.775

 Fascicle VI.9 – Rec. Q.775 5

 The diagram in Figure 2/Q.775 illustrates possible sequences of primitives seen by the originator of an
operation (class 1) with segmented results.

 Linked operations

 Another extension to the basic operation scheme is the ability to link an operation invocation to another
operation invocation.

 Typically, this facility covers situations where the destination of the original (linked-to) operation requires
additional information in order to process this operation: this is the case where menu facilities are used (menu facilities
allow a user to make a sequence of choices, each being dependent on the previous ones).

 Example E2: The operation is the execution of a test with several options; before the test is executed, these
options are offered for selection to the test originator (TC-user A). Two operations are nested: operation 1 is the test;
operation 2 is the option selection. TC-user A first responds to operation 2 before TC-user B can perform the test with
the indicated option(s).

 A possible primitive sequence for example E2 is given in Table 2/Q.775.

6 Fascicle VI.9 – Rec. Q.775

 There is no limit to the number of operation invocations which may be linked to a given operation invocation.

 Note that when an operation B is linked to another operation A, they do not have to be nested. The only
condition is that the invocation of B should take place before the outcome of A is reported; however, operation B does
not have to terminate before operation A.

2.3 Component-related facilities offered to TC-users

2.3.1 Invocation

 So far, operations have been considered from the static point of view. Invocation introduces a dynamic aspect:
a specific invocation of an operation has to be differentiated from other possible concurrent invocations of the same or of
another operation.

 Each particular activation of an operation is identified by a component ID. This component ID must be non
ambiguous. It is selected by the TC-user which originates the operation invocation, and passed to the destination
TC-user, which will reflect it in its reply(ies): therefore it correlates the replies to an invocation, and the invocation itself.

 The TC-user is free to assign any value to the component ID (index, address, . . .).

 The component ID associated with an invocation becomes reusable when the last or only segment of a result is
received, or when certain abnormal situations are indicated by TCAP; however, the value should not be reallocated
immediately for another operation activation, as immediate reallocation would prevent the correct handling of some
situations (see below).

 The period during which a component ID is released, but cannot be reallocated, is called the freezing period.

 As component IDs receive their value dynamically at the time the operation is invoked, their value cannot
appear in the specification of the application protocols; rather, a “logical” value, to which a real value is substituted at
execution time, should be indicated in order to identify an operation in a single flow.

 Taking component IDs into consideration, the sequence of primitives for example E2 above becomes as shown
in Table 3/Q.775.

 Fascicle VI.9 – Rec. Q.775 7

where the first parameter of a primitive indicates an invoke ID. When both parameters have to be present, the second one
is the linked ID. This is a pure notational convention.

2.3.2 Cancel (by the TC-user)

 The TC-user requesting invocation of an operation may stop the activity associated with the corresponding
component ID, for any reason it finds appropriate. However, cancel should in principle be reserved for abnormal
situations: the normal method for terminating an operation is to receive a result or to terminate on timer expiry.

 Cancelling has local effect only: it does not prevent the remote TC-user from sending replies to a cancelled
operation. When received, these replies will be rejected by TCAP, as illustrated in the following, which represents a
sequence of primitives for the example E1 defined above, where TC-user A cancels the test after receiving the first
segment of the result.

 In Table 4/Q.775, part P2 is not received by TC-user A: TCAP detects a reject situation before delivering it,
and any attempt by TC-user B to send more replies is rejected at A's side.

8 Fascicle VI.9 – Rec. Q.775

2.3.3 Reject (by the TC-user)

 A TC-user may decide to reject a component for any reason it finds appropriate, e.g. application protocol error,
parameter missing in an operation or a reply, etc.

 TCAP covers a number of cases, identified by the list of Problem Codes in Recommendation Q.773. In any of
these cases, which correspond to situations where an operation or a reply is not correctly formatted, the TC-user may use
the reject facility. Alternately, he may decide to return a failure indication (error component), which allows more detailed
error and diagnostic information.

 Reject of an operation invocation, or of a result, affect the whole operation: no more replies will be accepted
for this invocation. Reject of a linked operation does not affect the linked-to operation.

 This is illustrated in Table 5/Q.775 where, in example E2, TC-user A did not expect the option selection
process (it may be an optional feature), and rejects the operation with the Problem Code “Unexpected Linked
Operation”. TC-user B may then decide to execute the test assuming a default option.

 Fascicle VI.9 – Rec. Q.775 9

 When an operation invocation is rejected, the TC-user may decide to reinvoke it (e.g. the invoke component
was corrupted); this would be a new invocation (new Invoke ID). It may also decide to abort the dialogue. A very simple
dialogue (a question and a response) may not define any recovery mechanisms, except when the operation is of critical
importance (e.g. a database update).

2.4 Component-related abnormal situations

2.4.1 Component loss

 TCAP assumes a very low probability of message loss in the network; if this probability is too high for an
application, it should use the connection-oriented network service approach. If some protocol information needs an
upgraded quality of service (e.g. charging information), the application should introduce its own mechanisms to obtain
higher reliability for this information.

10 Fascicle VI.9 – Rec. Q.775

 Loss of an operation invocation

 The Table 6/Q.775 sequence illustrates the case, in example E1, where no response to the test is received
before the time limit expires.

 When a class 1 operation is lost, the TC-user is informed when the timer asociated with the operation expires.
When a class 1 operation with a single result is lost, TCAP cannot indicate whether either the operation invocation, or
the reply, was lost. If the application needs to discriminate between these two cases, it should do it in the application
protocol (e.g. using the time-stamping or acknowledging the operation invocation before replying to it).

 For a class 2 operation, loss will be considered as a success (whether the invocation, or the failure report, was
lost). This, considering the probability of loss, may be acceptable for non critical operations (e.g. statistical
measurements).

 For a class 3 operation, loss is treated in the same way as operation failure, whether the invocation, or the
success report, has been lost.

 For a class 4 operation, loss will not be visible to TCAP.

 Loss of a result

 – Loss of a non final result is never detected by TCAP.

 – Loss of a final result will eventually be indicated to the TC-user when the time limit is reached, but cannot
always be unambiguously interpreted as the loss of a reply; of no non final result has been received, it
may be that the invocation was lost.

 Loss of a linked operation

 The loss of a linked operation has the same effect as the loss of a non-linked operation. It has no effect on the
linked-to operation.

 Loss of a reject component

 This case should be extremely infrequent, and no application should try to recover from such a situation. If the
lost reject concerns an operation invocation, then when the operation timed out the TC-user which invoked the operation
will consider that the invocation (or the reply) was lost, and react accordingly; if it concerns a reply, the originator of the
reply will consider that it was correct: it will be up to the originator of the operation to detect the loss.

2.4.2 Component duplication

 As message duplication is very infrequent in the Signalling System No. 7 network, scripts for No. 7
applications need not define sophisticated scenarios in anticipation of such situations. However, any application in which
duplication would be unacceptable should either define its own duplication detection mechanism or use a
connection-oriented service.

 Duplicate operation invocation

 When an operation invocation is duplicated (by the service provider), the destination TC-user (B) may, or may
not, detect the duplication:

 Fascicle VI.9 – Rec. Q.775 11

 – TC-user B detects the duplication: the best it can do in this case is to ignore the duplicate; rejection could
be interpreted by the remote TC-user as rejection of the original invocation;

 – TC-user B does not detect the duplication: this may happen when there is a master-slave relationship
between A and B, and B executes the operation with no knowledge of the context.

 Assuming the second case in exaple E1, a possible sequence could be as given in Table 7/Q.775.

 In this sequence, TC-user B considers two independent test invocations, and responds to each of them. The first
result P1 is accepted; TC-user A detects that P1 is received a second time, and rejects it; this terminates the operation,
and causes result P2 to be rejected when received (reject by TCAP). Therefore, both activities at B's side will terminate
on receipt of rejects.

 Duplicate non-final result

 If a non-final result is duplicated, TCAP cannot detect it, and will deliver it twice to the TC-user. Detection of
this situation is left to the application.

 Duplicate final result

 If a final result is duplicated, TCAP can detect the situation: the second final result is considered as abnormal
(the operation has been terminated by the first “final” result), and TCAP rejects it.

12 Fascicle VI.9 – Rec. Q.775

 Table 8/Q.775 shows a sequence for example E1 where the third segment of the result is duplicated (by the
network).

 Comment: Discarding of duplicates in all cases by TCAP would probably appear as a nicer issue. However, it
should be noted that:

 1) it would require another degree of complexity in TCAP, which contradicts the basic characteristics of
TCAP in the connectionless approach;

 2) it corresponds to a situation which is extremely infrequent, at least in the No. 7 network.

 To cover these situations when required by an application, it would be better to use a connection-oriented
network service approach, since duplication could then be detected and handled at the lower layers.

2.4.3 Component missequencing

 For TCAP, the order of segmented results is not relevant: if the order is important to the TC-user, appropriate
mechanisms should be defined in the application protocol (e.g. by introducing a numbering scheme to identify
intermediate replies in a parameter of these replies, or by using a connection-oriented service).

 Due to missequencing, a non final result may arive after a final result: when this occurs the non final result is
rejected by TCAP.

 The sequence in Table 9/Q.775 illustrates what happens in example E1 when the last part of the result is
received before the second one: both TC-users are informed.

 Fascicle VI.9 – Rec. Q.775 13

 If a linked operation invocation is received after the final result of the linked-to operation (as a result of a
missequencing), the linked operation is rejected.

 TCAP assumes a very low probability of missequencing; if the supporting network is not satisfactory in this
respect, the connection-oriented network service approach should be considered.

2.4.4 Reject of a component by TCAP

 A general principle when TCAP receives a component (operation invocation or reply) which is either not
formatted correctly, or received out of context (e.g. a reply without a prior operation invocation), is to reject it, which
means that:

 1) the destination of the faulty component is first informed of the situation; TCAP provides whatever
information is available on the nature of the component being rejected

 2) in reaction to this, the TC-user may decide to abort, continue, or end the dialogue. In the last two cases,
when the TC-user notifies TCAP of its decision, the peer TC-user is informed of the reject.

 Possible cases of reject by TCAP have been encountered in the previous sections. Whenever the component ID
is recognised, rejection by TCAP causes the termination of the operation: a possible recovery is a new invocation of the
terminated operation. When the rejected component is not identifiable, only the local TC-user is informed, and abort of
the dialogue may be the appropriate reaction.

2.4.5 Operation timer expiry

 When TCAP informs the TC-user of timer expiry (TC-L-CANCEL indication), it indicates that no more
information related to the operation invocation (in particular, no reject) can be received. If the peer entity still sends
information in relation with this invocation, this information will be discarded when received, provided that the
component ID of the cancelled operation has not been reallocated. Premature reallocation of component ID values is
normally avoided by correctly setting timer values: in order to compensate for uncertainties in the amount of time
required to send information from TC-user to another without accounting for the absolute worst case (which is also in

14 Fascicle VI.9 – Rec. Q.775

general the most unlikely), an implementation-dependent mechanism avoiding premature reallocation of component IDs
is required.

 Timer expiry indication corresponds to an abnormal situation only in the case of a class 1 operation. The
TC-user is then aware that either the invocation, or the reply, was lost. If no undesirable side effects arise, another
invocation of the same operation can take place after timer expiry. This is illustrated by the sequence in Table 10/Q.775
for example E1.

 Timer expiry for a class 2 operation indicates that no failure was received nor will be accepted for this
invocation: it is a definite indication of success (for class 2). A parallel situation applied to class 3 in case of failure. The
indication of timer expiry for a class 4 operation is a local decision.

3 Dialogues

 Whenever one of the operation handling primitives considered in § 2 is issued, a request is passed to TCAP,
but nothing is sent to the remote TC-user until a primitive requesting transmission is issued. These primitives, and their
relation with operation handling primitives, are considered now.

3.1 Grouping of components in a message

 The effect of TC-user issuing a component handling primitive (unless this primitive has local effect only), is to
build a component to be included in a message. The message is not transmitted until the TC-user requests it.

 Note that a component may also be generated as a result of a TCAP reject: in this case this component is put in
the next message for the dialogue unless it is aborted.

 Provided that the maximum size of a message is not exceeded, several components can be grouped and sent to
the remote end as a single message, thereby saving transmission overhead. This is done under control of the TC-user,
which explicitly specifies when it wants (a) component(s) to be sent.

 Example E3, as given in Table 11/Q.775, shows the beginning of a dialogue with a network service centre
where a switch requests instructions (operation 1) and receives a request to connect the call to a given destination
address, and a request to send information (e.g. announcement or message to be displayed) to the calling party. Both
components are contained in a single message.

 Fascicle VI.9 – Rec. Q.775 15

 TC-BEGIN and TC-CONTINUE are transmission primitives described in § 3.2 below.

 There may be one transmission primitive for each component, but the separation of primitives allows the
grouping of components within a message. In addition, the information contained in the parameters of the transmission
primitives (e.g. addressing information) applies to all the components included in the message.

 At the originating side, the primitive requesting transmission appears after a component handling primitive;
this indicates that transmission of the preceeding components has to take place immediately; it avoids indicating specific
components to be transmitted with a given transmission primitive, and allows transmission primitives without any
associated component.

 At the destination side, the primitive requesting transmission appears first: it contains control information
which is necessary for TCAP to deliver each of the components (if any) in the message; the last component of the
message is indicated to the TC-user by the “Last Component” parameter. The components are delivered to the
destination TC-user in the same order as they were passed to TCAP by the originating TC-user.

3.2 Dialogue handling facilities

 When two TC-users co-operate in an application, more than one operation invocation is generally required.
The resulting flow of components has to be identified so that:

16 Fascicle VI.9 – Rec. Q.775

1) components of the same flow can be related

2) flows corresponding to several instances of the same application can be identified and allowed to run in
parallel.

 Each such flow is identified, for the TC-user, by a dialogue and a corresponding Dialogue ID parameter. The
dialogue handling facility provided for this purpose is the structured dialogue.

 When only a single message is required to complete a distributed application, the Unidirectional message of
the unstructured dialogue may be used. The originator does not expect a report of the outcome of the operation (i.e. may
only invoke class 4 operations), but may receive a report of a protocol error if one occurs.

3.2.1 Structured dialogue

3.2.1.1 General

 The use of dialogues allows several flows of components to co-exist between two TC-users. The Dialogue ID
parameter is used in both operation handling and transmission (dialogue) handling primitives to determine which
component(s) pertain(s) to which dialogue.

 The Dialogue ID parameter is represented (by convention) by the first parameter in these primitives, starting
with letter D. Each TC-user has its own reference for a given dialogue. Local references (those used on the interface) are
represented here; mapping of these local references onto protocol references included in messages is done by TCAP.

 Three primitives have been defined for handling dialogues under normal circumstances; they indicate dialogue
begin (TC-BEGIN), continuation (TC-CONTINUE) or end (TC-END). Each of these primitives may be used to request
transmission of 0, 1 or several components; these components may contain information relating to one or several
operations.

 Table 12/Q.775 illustrates a possible sequence for example E2, where the test request starts the dialogue, which
ends when the test result has been sent.

 Fascicle VI.9 – Rec. Q.775 17

TABLE 12/Q.775

 Any grouping of components is allowed in the messages of a dialogue: TCAP does not check, for instance, that
a message terminating a dialogue does not include operation invocations of class 1. Full-duplex exchange of components
is assumed: if a TC-user wants to introduce some restrictions, e.g. working in a synchronous mode as defined in ROSE,
it would have to introduce the necessary procedures itself.

3.2.1.2 Exchange of messages

 Transmission of messages is accomplished with the quality of service of the underlying layer services: no flow
control or error recovery mechanisms are provided by TCAP.

18 Fascicle VI.9 – Rec. Q.775

 – The first dialogue handling primitive of a dialogue must indicate dialogue begin (TC-BEGIN). Further
messages must not be sent from the side originating the dialogue until a message is received in the
backward direction, indicating dialogue continuation.

 – If a TC-user tries to send a large number of messages in a short amount of time, no flow control
mechanism in TCAP will prevent it.

 – SCCP class 1 in-sequence delivery can be requested as an option, indicated by the Quality of Service
parameter. Note that this option may not be available end to end when interworking with a network which
does not provide it.

3.2.1.3 Dialogue end

 TCAP places no restriction on the ability for a TC-user to request dialogue end. It follows that messages may
be lost if no precautions are taken in the application on when the dialogue may end. In particular, if the application
protocol allows both TC-users to issue TC-END primitives at about the same time, and if these primitives trigger
transmission of components, it is likely that some (if not all) of these components will not be delivered to their respective
destination TC-users.

 It is up to the application to define, if necessary, its own rules concerning the right to end a dialogue: TCAP
will not check them. Any message received for a terminated dialogue is discarded if it requests dialogue end, and
otherwise causes the dialogue to be aborted at the remote entity.

 The differences between the three ways of ending a dialogue are as follows.

 Prearranged end

 A typical application is the access to a distributed database, where the requesting user (TC-user A) does not
know where the information it seeks is located. TC-user A broadcasts a request to each location which might have the
information required, and will eventually receive a response from the TC-user which holds this information. Prearranged
end avoids messages from the other destinations saying: “I do not have this information”. Only the responding
destination may continue the dialogue (if so wished); all other destination will, by convention, end the dialogue locally;
the originator of the requests will also end the dialogues with the non-responding destinations locally, when it receives
the response to its request. Note that the convention is between applications: TCAP does not check that it is respected,
nor is it indicated in the TCAP protocol.

 Example E4 in Table 13/Q.775 illustrates this situation, with two destinations B1 and B2; two dialogues
(D1, D2) and (D3, D4) are started; B1 happens to own the requested information, and decides to continue the dialogue.

 Fascicle VI.9 – Rec. Q.775 19

 Prearranged end may also be used when a TC-user wants to send information, and does not expect a reply of
any kind afterwards.

 Basic end

 When a TC-user issues the TC-END request primitive, it causes transmission of any pending components to
the remote end. TCAP does not check that all operation invocations have received a response when dialogue end is
requested: no notification is given to the TC-user that any pending operation invocations have not received a final result.

 At the receiving end, the dialogue is considered terminated when all the components received within the
message indicating the end have been delivered to the TC-user.

 Example: the dialogue ends when the test in example E1, Table 14/Q.775, receives a response.

20 Fascicle VI.9 – Rec. Q.775

 Abort by the TC-user

 The abort facility allows the TC-user to stop the dialogue at any time. A typical case is when the user abandons
the service. The main differences between this and normal ending are:

 – any components for which transmission is pending are not sent to the peer entity;

 – peer-to-peer information can be indicated at the time the abort is issued, and this is delivered to the remote
TC-user.

 The sequence given in Table 15/Q.775 shows a user abandonment in example E2.

3.2.1.4 Message-related abnormal situations

 These are considered independently from the effects of such events in the Component sub-layer.

 Message loss

 TCAP provides no protection against message loss. Three cases are identified:

1) the message begins a new dialogue: the dialogue will exist at the originating side only, and no message
will be allowed in either direction. Eventually, an implementation—dependent mechanism of TCAP ends
the dialogue at the originating end;

2) the message continues an existing dialogue: loss is not detected. TCAP will react (or not) to the loss of
included components as indicated in § 2.4.1 above;

3) the message ends a dialogue: TCAP will eventually react if this message contained a response to a class 1
operation: otherwise an implementation-dependent mechanism may end the dialogue at the destination
end.

 Fascicle VI.9 – Rec. Q.775 21

TABLE 15/Q.775

 Message duplication

 Duplication of a BEGIN message causes two transactions to be opened, as indicated below: each of these
transactions has its own local ID, and the same destination ID. The TC-user eventually detects that something is wrong,
and both dialogues are aborted.

 The sequence given in Table 16/Q.775 illustrates a duplication of the BEGIN message in Example E2.

22 Fascicle VI.9 – Rec. Q.775

TABLE 16/Q.775

 At that moment, there is still one dialogue (with local ID D2) at TC-user B's side, but no dialogue at A's side.
TC-user B will receive an indication from TCAP when operation 2 of dialogue D2 timeouts with no reply
(TC-L-CANCEL ind), and may then decide to abort D2. Note that the situation would be more difficult to detect, had
TC-user B not invoked a class 1 operation.

 Fascicle VI.9 – Rec. Q.775 23

 Duplication of a CONTINUE message is not detected by TCAP.

 When an END message is duplicated, the second message is received with an ID which does not correspond to
an active dialogue: TCAP reacts by discarding the duplicate message.

 Missequencing of messages

 When the missequenced messages involve neither the beginning, nor the end of a dialogue, missequencing is
not detected by TCAP, and may result in component missequencing, to which TCAP would react as indicated in § 2.5.3
above.

 When a message indicating dialogue continuation arrives after a message indicating the end of the same
dialogue, it is not delivered, and causes TCAP to abort the dialogue; the TC-user will probably detect the loss when
receiving a premature dialogue end indication. If the application needs to recover from this case, a new dialogue should
be started.

 Message corruption

 When receiving a corrupted message, TCAP reacts as indicated in Recommendation Q.774.

 Table 17/Q.775 shows the sequence of primitives when TCAP decides to abort the dialogue after receiving a
corrupted message in example E2.

TABLE 17/Q.775

3.2.1.5 Relations between dialogue handling and operation handling

 Depending on the moment when the dialogue end is requested, the TCAP facilities associated with an
operation will be available until the end of the dialogue, or not. The following gives some guidelines on when dialogue
end can be requested; if these are not respected, TCAP will not refuse the request for dialogue end.

 The problems that may result from the collision of messages requesting dialogue end have been considered
above.

24 Fascicle VI.9 – Rec. Q.775

 Normal end should not be requested when:

 – there are operation invocations pending for the dialogue;

 – the application protocol anticipates that replies being transmitted with the termination request could be
rejected.

 In addition, a request for dialogue end must not trigger transmission of operation invocations, since no reply
could be received for these operations.

 Many applications might not define recovery scenarios in response to a rejected reply. This legitimises the
transmission of replies or of class 4 operations in a message indicating dialogue end. The other applications should either
use the connection-oriented network service approach, or end the dialogue with a message containing no component, that
would be sent only when a reject indication can no longer be received.

3.2.2 Unstructured dialogue

 A Unidirectional message will contain either only class 4 operation invocations or reports of protocol errors in
such invocations. Multiple components can be transmitted in a Unidirectional message provided that the maximum size
of a message is not exceeded.

4 Application service elements and application entities

4.1 Introduction

 This material supplements preceding material providing guidelines on the usage of TC by describing what
needs to be included in an Application Entity (AE) specification. This material is based on CCITT
Recommendations X.219 and X.229 and requires further study.

 CCITT Recommendation Q.700, § 3.2.3.6, describes how Application Service Elements (ASEs) and
Application Entities (AEs) are structured and how an AE is addressed in Signalling System No. 7.

 This section illustrates that architecture, considering the functional decomposition of an application, and
describes how AEs, ASEs, operations and errors should be defined.

4.2 Decomposition of functionality

 Application process functions communicate through one or more Application Entities (AEs). The combination
of two peer AEs plus their interaction is called the Application Context. An AE consists of communications for one or
more functions of an application. Each communications function forms an ASE which is an integrated set of actions and
may be used in more than an AE. TCAP is itself an ASE which is used by other ASEs as well as being common to AEs
(see § 3.2.3.6/Q.700). An ASE identifies one or more operations and specifies how those operations are used; that is,
which peer entity may invoke which operations, and in what order. Operations may be selected from one or more
libraries.

 An ASE provides a service to the user of the ASE. An ASE is used by two complementary AEs: the consumer
of the service and the supplier of the service. The consumer of the service is the end that initiates the AE to AE
communication. An ASE user is thus generally asymmetric.

 Within an ASE, the mechanism for providing the ASE service is the invocation of operations by the service
requestor on the service provider. Each operation provides a part of the service in an inherently asymmetric manner since
it is invoked by one AE and executed by the peer AE. An ASE generally includes more than one operation. An ASE user
is, in general, not limited to either invoking or performing operations, but may both invoke or perform the same or
different operations. Also, an ASE user may exist at a pair of nodes such that either node may request the same service
from the other node. That is, the AEs at the nodes may be symmetric, both invoking and executing the same operations.

 Note – Primitives which provide a standard service interface for the access of ASEs within AEs are for further
study.

 Figure 3/Q.775 illustrates the decomposition of this functionality and provides examples.

 Fascicle VI.9 – Rec. Q.775 25

4.3 How to specify an AE

 CCITT Recommendation Q.700, § 3.2.3.6, describes how two Signalling System No. 7 Application Processes
communicate via Application Entities, and also the structure of an AE.

 The application designer should provide a definition for each type of AE. It should contain:

 – A general description of the services supported by the combination of the two peer AEs and
communicating by a dialogue. (In Recommendation X.229 terminology, this corresponds to the
“Application Context”).

 – A definition of the complete application protcol between the peer AEs by:

 – identifying each ASE constituting the AE, and

 – indicating which of the peer AEs initiates the service.

 – Any special constraints to ensure that peer AEs with different versions are compatible.

 A formal specification of the application context using the Recommendation X.229
APPLICATION-CONTEXT macro is for further study.

 Since each AE constitutes a single coding domain for operation and error code values (addressed by SCCP
subsystem number in a connectionless network service environment), each operation or error code value must be unique
within the AE (see § 4.5).

4.4 How to specify an ASE

 The definition of an ASE is part of the stage 3 of the service description methodology, as defined by
Recommendation I.220.

 The ASE description should provide:

 – A general description of the ASE and its procedures.

 – The information flows between the entities which are communicating to support the service, based on
stage 2, with additions and enhancements that are needed as part of the protocol design.

26 Fascicle VI.9 – Rec. Q.775

 – A detailed description of the ASE protocol. This includes the sequence in which operations may be
invoked, and the reaction to abnormal situations. The definition should include how protocol version
interwork. Dialogue begin, continuation and end should be specified. This section should describe the
interaction between the ASE and the TCAP component sub—layer expressed in terms of the primitive
interface.

 – SDL diagrams.

 Recommendation X.229 (ROSE) defines an APPLICATION—SERVICE—ELEMENT macro which may be
used to specify an ASE formally. It identifies which operations are contained in the AE and how they are invoked. The
use of this macro in Signalling System No. 7 is for further study.

4.5 How to specify operations and errors

4.5.1 Information needed to specify operations and errors

 To specify an operation, the following items must be defined:

 – The operation name.

 – The operation code. This may be local or global. See § 4.5.2.

 – The operation class. A value in the range 1 to 4 as defined in § 2.2.1.

 – The parameters accompanying the operation invocation (input parameters). Further essential information
to supplement that provided in the parameters with the original invocation may be requested using linked
operations.

 – The parameters that may be returned as the result of a successful outcome (Return Result), whenever the
operation reports success (possitive output parameters). The way these parameters are actually passed (in
a single component or several) is no part of the operation description.

 – The error codes and associated parameters that may be returned as the result of an unsuccessful outcome
(Return Error) of the operation execution, whenever this operation reports failure (negative output
parameters). An error code must be present when reporting failure, and all the possible values be defined
as part of the operation description.

 – The allowed linked operations (see § 2.2.2).

 – The timer value for completion of the operation.

 The operation description consists of a Table indicating the eight items above, together with a short prose
description of what the operation does. A formal definition using Annex A/Q.773 OPERATION and ERROR macros
should also be included to unambiguously indicate which parameters are mandatory, which are optional with default
values as applicable, and which individual, sets or sequences of parameters are legal as input, positive output, and
negative output. The OPERATION and ERROR type (macro) definitions are exported from the TCAP definitions
(Annex A/Q.773) and need to be imported into the ASE being defined in order to define operations and errors.

 The syntax of the OPERATION MACRO (reproduced from Annex A/Q.773) is as follows:

OPERATION MACRO ::=

BEGIN

TYPE NOTATION ::= Parameter Result Errors Linked Operations

VALUE NOTATION ::= value{VALUE CHOICE{

 localValue INTEGER,

 globalValue OBJECT IDENTIFIER }}

Parameter ::= “PARAMETER” Named Type | empty

Result ::= “RESULT” ResultType | empty

ResultType ::= NamedType | empty

Errors ::= “ERRORS” “{”ErrorNames“}” | empty

LinkedOperations ::= “LINKED” “{”LinkedOperationNames“}” | empty

ErrorNames ::= ErrorList | empty

 Fascicle VI.9 – Rec. Q.775 27

ErrorList ::= Error | ErrorList “,” Error

Error ::= value (ERROR) – – shall reference an error value
 | type – – shall reference an error type if no error value
 – – is specified

LinkedOperationNames ::= OperationList | empty

OperationList ::= Operation | OperationList “,” Operation

Operation ::= value (OPERATION) – – shall reference an operation value
 | type – – shall reference an operation type if no error value
 – – is specified

NamedType ::= identifier type | type

END

ERROR MACRO ::=

BEGIN

TYPE NOTATION ::= Parameter

VALUE NOTATION ::= value (VALUE CHOICE{

 localValue INTEGER,
 globalValue OBJECT IDENTIFIER })

Parameter ::= “PARAMETER” NamedType | empty

NamedType ::= identifier type | type

END

 The use of local and global values is explained in § 4.5.2.

 As an example, the CUGCheck2 operation, which is used to check whether an incoming call is compatible
with the CUG characteristics of the called party, is described here in both (abbreviated) formal notation, and in the form
of a table.

4.5.2 Example of operation description

 (Note – Arbitrary section numbers are used in this example.)

3.4.3.1 Description of operations

3.4.3.1.1 CUG check 1

 This operation is used between the originating exchange of a call and a dedicated point for CUG validation
check of the calling user.

3.4.3.1.2 CUG check 2

 This operation is used between the terminating exchange of a call and a dedicated point for CUG validation
check of the called user.

3.4.3.2 Parameters of operations and outcomes

3.4.3.2.1 CUG Check 1

28 Fascicle VI.9 – Rec. Q.775

cUGCheck1 OPERATION

 PARAMETER SEQUENCE{ callingUserIndex OPTIONAL, cUGCallIndicator,
 callingPartyNumber }
 RESULT SEQUENCE{ cUGInterlockCode OPTIONAL, cUGCallIndicator }
 ERRORS SEQUENCE{ unsuccessfulCheck }
 ::= 1

 Fascicle VI.9 – Rec. Q.775 29

3.4.3.2.2 CUG check 2

cUGCheck 2 OPERATION

 PARAMETER SEQUENCE{ cUGInterlockCode, cUGCallIndicator,
 calledPartyNumber }
 RESULT SEQUENCE{ calledUserIndex OPTIONAL, cUGCallIndicator }
 ERRORS { unsuccessfulCheck }
 ::= 2

3.4.3.3 Parameter coding

3.4.3.3.1 The CallingUserIndex is the local index at the calling user to identify a particular CUG he belongs to.

callingUserIndex ::= [1] IMPLICIT LocalIndex
LocalIndex ::= IA5 STRING
– – The maximum number of digits is four.

30 Fascicle VI.9 – Rec. Q.775

3.4.3.3.2 The CUGCallIndicator indicates whether the call is requested or designated as a CUG call and whether
outgoing access is requested or allowed.

cUGCallIndicator ::= [2] IMPLICIT CallIndicator
CallIndicator ::= INTEGER{
 nonCUGCall (0),
 nonCUGCall (1),
 outgoingAccessAllowedCUGCall (2),
 outgoingAccessNotAllowedCUGCall (3) }

3.4.3.3.3 The CallingPartyNumber is the network (e.g. E.164) number of the calling party. It is expressed in the
same manner as the ISUP Calling party number in § 3.7 of Recommendation Q.763. The code of this parameter is
“10000011”.

callingPartyNumber ::= [3] IMPLICIT OCTET STRING
– – contents encoded per § 3.7/Q.793

3.4.3.3.4 The CalledPartyNumber is the network (e.g. E.164) number of the called party. It is expressed in the same
manner as the ISUP Called party number in § 3.6 of Recommendation Q.763. The code of this parameter is “10000100”.

calledPartyNumber ::= [4] IMPLICIT OCTET STRING
– – contents encoded per § 3.6/Q.793

3.4.3.3.5 The CUGInterlockCode is the code to uniquely identify a CUG inside the network. It is expressed in the same
manner as the ISUP CUG interlock code in § 3.13 of Recommendation Q.763. The code of this parameter
is “10000101”.

 Fascicle VI.9 – Rec. Q.775 31

CUGInterlockCode ::= [5] IMPLICIT OCTET STRING
– – contents encoded per § 3.13/Q.793

3.4.3.3.6 The CalledUserIndex is the local index at the called user to identify a particular CUG he belongs to.
Refer to § 3.4.3.3.1. The code of this parameter is “10000110”.

CalledUserIndex ::= [6] IMPLICIT LocalIndex

3.4.3.3.7 Errors

UnsuccessfulCheck Code = 00000001

Parameters

Cause 3.4.3.3.8

unsuccessfulCheck ERROR
 PARAMETER { Cause }
 ::= 1

32 Fascicle VI.9 – Rec. Q.775

3.4.3.3.8 The Cause indicates the reason why the CUG check is unsuccessful.

cause ::= [7] IMPLICIT CauseCode
CauseCode ::=INTEGER{
 reques tedFacilityNotSubscribed (50),
 outgoingCallsBarredWithinCUG(53),
 incomingCallsBarredWithinCUG(55),
 inconsistencyInDesignatedOutgoingAccessInformationAndsubscriberClass(62),
 nonExistentCUG(90),
 calledUserNotMemberOfCUG(87),
 incompatibleDestination(88),
 inconsistencyInData(110) }

4.5.3 Allocation and management of operation and error codes

 The simple approach is to provide one module containing the definition of the operations and errors it uses as a
self-contained local domain.

 Before defining a new operation, the application designer should check all modules to see whether a similar
operation already exists. To avoid redefining the operation in a number of modules, methods are required which allow a
module to import the definition of the operations it uses from other modules. If the opertion does not exist, the designer
should specify it locally.

 Example: Operation code 00000010 has one meaning for ASE1, and probably a completely different meaning
for ASE2; two domains are involved.

 Note that many domains may be used by one ASE; however, for simplicity, it is assumed in the following that
an ASE uses only one domain.

 In addition to its local operation, an ASE may need to make use of operations which are already defined in
another domain. There are two methods for doing so:

 – import operation and error types from other modules;

 – import operation and error values from other modules.

4.5.3.1 Import of types

 The definition of an operation type includes the notational aspects (see the OPERATION MACRO above),
without allocating the code values.

 It may be desirable to import the type of an already existing operation, however the importing module may
want to allocate its own local codepoint to the imported operation or error. The imported operation or error becomes a
member of the local domain of that module.

 If two different modules import a given operation by type, its codepoint in each of the importing local domains
is generally different.

 Importing by type allows a common description of operations. A module importing by types only uses a single
domain (its local domain), as represented in Figure 4/Q.775.

 Fascicle VI.9 – Rec. Q.775 33

4.5.3.2 Import of values

 When operation values are imported, the type and the coding are the same in the exporting and importing
ASEs.

 A module importing operations or errors by value makes use of:

 – a local domain for its local operations and

 – the exporting domains for its imported operations.

 A global value is required in the second case to avoid ambiguity between local codepoints and imported
codepoints, as represented in Figure 5/Q.77.

4.6 Applying the concept to service protocols

 The first step, before assigning operation codes, is to examine the service ASEs (each an integrated set of
actions) and assign them to AEs. The extremes are, on one hand, that all service ASEs are assigned to one AE and, on the
other hand, that each AE is composed of only one service ASE. The likely case is several groupings of service ASEs.

 Each AE should be identified by a SSN, but not necessarily a fixed SSN specified in Recommendation Q.713.
Within an AE, an operation code assignment scheme is used, so that no two operations can have the same operation
code.

Printed in Switzerland

Geneva, 2008

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Q.775 (1988)
	1 Introduction
	1.1 General
	1.2 Environment

	2 Operations
	2.1 Definition
	2.2 Examples
	2.3 Component-related facilities offered to TC-users
	2.4 Component-related abnormal situations

	3 Dialogues
	3.1 Grouping of components in a message
	3.2 Dialogue handling facilities

	4 Application service elements and application entities
	4.1 Introduction
	4.2 Decomposition of functionality
	4.3 How to specify an AE
	4.4 How to specify an ASE
	4.5 How to specify operations and errors
	4.6 Applying the concept to service protocols

