
INTERNATIONAL TELECOMMUNICATION UNION

)454 '������
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(11/96)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA,
DIGITAL SYSTEMS AND NETWORKS

Digital transmission systems – Digital networks –
Telecommunications management network

-ANAGEMENT�OF�THE�TRANSPORT�NETWORK�
!PPLICATION�OF�THE�2-/$0�FRAMEWORK

ITU-T Recommendation G.851.1
(Previously CCITT Recommendation)

ITU-T G-SERIES RECOMMENDATIONS

42!.3-)33)/.�3934%-3�!.$�-%$)!��$)')4!,�3934%-3�!.$�.%47/2+3

For further details, please refer to ITU-T List of Recommendations.

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS G.100–G.199

).4%2.!4)/.!,�!.!,/'5%�#!22)%2�3934%-

GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER-
TRANSMISSION SYSTEMS

G.200–G.299

INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE
SYSTEMS ON METALLIC LINES

G.300–G.399

GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE
SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION
WITH METALLIC LINES

G.400–G.449

COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY G.450–G.499

42!.3-)33)/.�-%$)!�#(!2!#4%2)34)#3 G.600–G.699

$)')4!,�42!.3-)33)/.�3934%-3

TERMINAL EQUIPMENTS G.700–G.799

General G.700–G.709

Coding of analogue signals by pulse code modulation G.710–G.719

Coding of analogue signals by methods other than PCM G.720–G.729

Principal characteristics of primary multiplex equipment G.730–G.739

Principal characteristics of second order multiplex equipment G.740–G.749

Principal characteristics of higher order multiplex equipment G.750–G.759

Principal characteristics of transcoder and digital multiplication equipment G.760–G.769

Operations, administration and maintenance features of transmission equipment G.770–G.779

Principal characteristics of multiplexing equipment for the synchronous digital
hierarchy

G.780–G.789

Other terminal equipment G.790–G.799

DIGITAL NETWORKS G.800–G.899

General aspects G.800–G.809

Design objectives for digital networks G.810–G.819

Quality and availability targets G.820–G.829

Network capabilities and functions G.830–G.839

SDH network characteristics G.840–G.849

4ELECOMMUNICATIONS�MANAGEMENT�NETWORK '���� '����

DIGITAL SECTIONS AND DIGITAL LINE SYSTEM G.900–G.999

General G.900–G.909

Parameters for optical fibre cable systems G.910–G.919

Digital sections at hierarchical bit rates based on a bit rate of 2048 kbit/s G.920–G.929

Digital line transmission systems on cable at non-hierarchical bit rates G.930–G.939

Digital line systems provided by FDM transmission bearers G.940–G.949

Digital line systems G.950–G.959

Digital section and digital transmission systems for customer access to ISDN G.960–G.969

Optical fibre submarine cable systems G.970–G.979

Optical line systems for local and access networks G.980–G.999

ITU-T RECOMMENDATION G.851.1

MANAGEMENT OF THE TRANSPORT NETWORK-APPLICATION
OF THE RM-ODP FRAMEWORK

Source

ITU-T Recommendation G.851.1 was prepared by ITU-T Study Group 15 (1993-1996) and was
approved under the WTSC Resolution No. 1 procedure on the 8th of November 1996.

ii Recommendation G.851.1 (11/96)

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
the ITU. The ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years,
establishes the topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations
on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in
WTSC Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, the ITU had/had not received notice of intellectual
property, protected by patents, which may be required to implement this Recommendation. However,
implementors are cautioned that this may not represent the latest information and are therefore strongly urged
to consult the TSB patent database.

 ITU 1997

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Recommendation G.851.1 (11/96) iii

CONTENTS

Page

1 Scope... 1

1.1 Objectives ... 1

1.2 Principles .. 1

1.3 Structure of this Recommendation ... 2

2 References... 2

3 Definitions .. 3

4 Abbreviations used in this Recommendation ... 3

5 Methodology overview... 4

5.1 Introduction... 4

5.1.1 RM-ODP viewpoint descriptions .. 5

5.2 Using RM-ODP viewpoints in a specification design methodology.......................... 5

5.3 Tracing between the viewpoints ... 6

5.3.1 Labelling.. 6

6 Enterprise viewpoint ... 6

6.1 Scope of the enterprise viewpoint... 7

6.2 Concepts.. 8

6.2.1 Community .. 8

6.2.2 Contract ... 8

6.2.3 Roles .. 9

6.2.4 Policies... 9

6.2.5 Actions... 9

6.2.6 Activities.. 9

6.2.7 Services.. 10

6.2.8 Service feature ... 10

6.2.9 Composition of services .. 10

6.3 Extension of communities .. 10

6.4 Domains .. 10

7 Information viewpoint .. 10

7.1 Information viewpoint .. 11

8 Computational viewpoint.. 12

8.1 Computational concepts.. 12

8.1.1 Communications domain-independent computational viewpoint 13

8.1.2 Mappings to the communications domain-dependent computational
viewpoint specification.. 13

iv Recommendation G.851.1 (11/96)

Page

9 Engineering viewpoint.. 14

9.1 Introduction... 14

9.2 Engineering concepts.. 14

9.3 OSI management based engineering viewpoint.. 14

9.3.1 Impact of protocols on information and computational viewpoints.............. 15

9.3.2 Enterprise viewpoint engineering constraints.. 16

9.3.3 The use of GDMO packages and managed objects....................................... 16

9.3.4 Support of multiple management services at an engineering interface 16

9.3.5 Identification.. 16

9.3.6 Relationship mapping .. 17

9.3.7 The use of actions versus attribute operations for relationships and state
modifications ... 17

9.4 The distributed processing environment... 17

9.4.1 Overview ... 17

10 The use of ensembles in the definition of network management applications 17

10.1 Scope... 17

Annex A – Template and guidelines for the enterprise viewpoint specification 19

A.1 Informal definition of the enterprise template .. 19

A.2 Formal definition of the enterprise template... 20

Annex B – Information viewpoint structure .. 21

B.1 Introduction... 21

B.2 Model descriptions.. 22

B.3 Structure of the specification .. 23

B.3.1 Information object classes ... 23

B.3.2 Information relationships... 25

B.3.3 Static schema definition... 26

B.3.4 Dynamic schemas.. 28

B.3.5 Attributes ... 28

Annex C – Computational viewpoint template description ... 29

C.1 Introduction... 29

C.2 Guidelines ... 30

C.2.1 Guidelines specific to the operation template.. 30

C.2.2 Client/server interface definitions.. 33

C.2.3 Considerations for mapping to different communications domains.............. 34

Recommendation G.851.1 (11/96) v

Page

C.3 Formal template definitions .. 34

C.3.1 Object class template ... 34

C.3.2 Interface template .. 35

C.3.3 Operation template .. 35

C.4 Example .. 37

Annex D – OSI management engineering viewpoint templates and guidelines...................... 39

D.1 Templates.. 39

D.2 Possible mappings to managed object definitions .. 40

Annex E – Label syntax ... 40

E.0 Introduction... 40

E.1 BNF definition of label syntax.. 40

E.2 Enterprise viewpoint label tree structure .. 42

E.2.1 Examples of use... 43

E.3 Information viewpoint label tree structure.. 43

E.3.1 Examples of use... 44

E.4 Computational viewpoint label tree structure... 44

E.4.1 Examples of use... 44

Annex F – Ensemble template ... 45

F.1 The ensemble technique.. 45

F.2 Ensemble template.. 45

F.2.1 Introduction.. 45

F.2.2 Management context.. 45

F.2.3 Management information model.. 45

F.2.4 Ensemble conformance requirements.. 46

Appendix I – Examples of templates and specifications guidelines.. 46

I.1 Enterprise services versus contracts.. 46

Appendix II Representation of combined states .. 47

Appendix III – Service realization description... 49

III.1 Scope... 49

III.2 Concepts.. 50

Appendix IV – Example of use of the ensemble concepts and format 52

Appendix V – Example specification development process.. 55

vi Recommendation G.851.1 (11/96)

Page

Appendix VI – Inter-viewpoint mapping... 55

VI.1 Approach... 55

VI.2 Information viewpoint mappings.. 56

VI.2.1 Information objects and relationships.. 57

VI.2.2 Static schema ... 57

VI.2.3 Dynamic schema.. 57

VI.3 Computational viewpoint mappings ... 57

VI.3.1 Computational operation ... 57

VI.3.2 Computational interface .. 57

VI.3.3 Computational object... 57

Appendix VII – Guidelines for the use of Z in the information viewpoint.............................. 58

VII.1 Introduction... 58

VII.2 Z notation review.. 58

VII.2.1 Schemas... 58

VII.2.2 Symbols ... 59

VII.2.3 Example... 59

VII.3 Specification conventions ... 60

VII.3.1 Attribute specification ... 60

VII.3.2 Object specification ... 60

VII.3.3 Relationship specification.. 61

Recommendation G.851.1 (11/96) 1

Recommendation G.851.1

MANAGEMENT OF THE TRANSPORT NETWORK – APPLICATION
OF THE RM-ODP FRAMEWORK

(Geneva, 1996)

1 Scope

This Recommendation provides a description of the modelling concepts upon which the ITU-T Study
Group 15 network level model is based. The model uses the Reference Model of Open Distributed
Processing (RM-ODP) framework [1], [2], [3] and [4] as a starting point to define a prescriptive
methodology for defining the network level model.

A process used to develop a complete set of specifications based on this methodology is described in
Appendix V.

1.1 Objectives

This Recommendation has the following objectives:

– to define a methodology for specifying a network management model to support interfaces to
a network operations system within the TMN architecture, initially using OSI management
with other infrastructures (e.g. CORBA IDL and ODP functions) to be used, as the standards
for them become available;

– to produce models that can be flexibly distributed amongst different management system
architectures (e.g. using OSI management, or distributed processing based systems);

– the work shall provide for maximum reusability of specifications and processing entities;

– this work shall retain maximum compatibility with existing OSI management based
Recommendations and should be seen as an extension to that installed base.

NOTE – Implementation independent enterprise, information and computational viewpoints are being
defined by this methodology. In this way the definitions which are used for the definition of OSI
management, for example, are equally applicable to subsequent definitions using other infrastructures.
Therefore, while the initial Recommendations which use this methodology will be targeted for the OSI
management infrastructure, the models defined in these Recommendations for the enterprise, information and
computational viewpoints will be independent of infrastructure.

1.2 Principles

The RM-ODP has been selected in order to provide a framework for a rigorous specification
technique which is traceable to requirements.

The selection of techniques is guided by the objective of retaining maximum compatibility with
OSI management.

Maintain compatibility with existing OSI management based Recommendations (e.g. M.3100,
G.774-X, X.700-Series on OSI Management, Q.821, Q.822, etc.).

Maintain a balance between the requirements for human readability, machine readability and
precision (e.g. use of formal notations).

This Recommendation should facilitate the interworking of applications based on implementations
using different infrastructures.

2 Recommendation G.851.1 (11/96)

1.3 Structure of this Recommendation

Clause 2 lists the references used by this Recommendation; clause 3 contains definitions which have
been introduced in this Recommendation; and clause 4 defines the abbreviations used. Clause 5
provides an overview of the methodology described in the remainder of this Recommendation.
Clauses 6, 7, 8 and 9 provide specific details of the RM-ODP viewpoints used in the methodology
which includes the enterprise, information, computational and engineering viewpoints respectively.
Clause 10 describes the use of ensembles in the definition of network management applications.

Annexes A, B, C and D contain descriptions of the templates used to define the enterprise,
information, computational and engineering viewpoints respectively. Annex E defines the labelling
syntax used within the methodology, and Annex F describes the template used for defining a
management ensemble.

Appendices I through V contain various examples of the application of the methodology to solving
network management problems and ways of using the methodology to develop standard
specifications. Appendix VI defines the mapping between the various RM-ODP viewpoints used in
the methodology. Appendix VII provides some guidelines for the use of Z in the information
viewpoint.

2 References

The following ITU-T Recommendations contain provisions which, through reference in this text,
constitute provisions of this Recommendation. At the time of publication, the editions indicated were
valid. All Recommendations are subject to revision; all users of this Recommendation are therefore
encouraged to investigate the possibility of applying the most recent edition of the
Recommendations. A list of the currently valid ITU-T Recommendations is regularly published.

[1] ITU-T Recommendation X.9011 | ISO/IEC 10746-11, Information technology – Basic
reference model of open distributed processing: Overview.

[2] ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1996, Information technology –
Open Distributed Processing – Reference Model: Foundations.

[3] ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1996, Information technology –
Open Distributed Processing – Reference Model: Architecture.

[4] ITU-T Recommendation X.9041 | ISO/IEC 10746-41, Information technology – Open
Distributed Processing – Reference Model: Archtiectural semantics.

[5] CCITT Recommendation X.722 (1992) | ISO/IEC 10165-4:1992, Information technology –
Open Systems Interconnection – Structure of Management Information: Guidelines for the
definition of managed objects.

[6] ITU-T Recommendation X.725 (1995) | ISO/IEC 10165-7:1996, Information technology –
Open Systems Interconnection – Structure of Management Information: General
Relationship Model.

[7] SPIVEY (J.M.): The Z Notation – A Reference Manual, 2nd Edition, Prentice Hall
International, ISBN 0-13-978529-9, 1992.

[8] NM Forum 025, OMNIPoint 1: The "Ensemble" Concepts and Format, August 1992.

[9] ITU-T Recommendation X.724 (1996) | ISO/IEC 10165-6:1997, Information technology –
Open Systems Interconnection – Structure of Management Information: Requirements and

1 Presently at the stage of draft.

Recommendation G.851.1 (11/96) 3

guidelines for implementation conformance statement proformas associated with OSI
management.

[10] ITU-T Recommendation G.852.1 (1996), Management of the transport network – Enterprise
viewpoint for simple subnetwork connection management.

[11] ITU-T Recommendation G.774 (1996), Synchronous Digital Hierarchy (SDH) management
information model for the network element view.

[12] CCITT Recommendation X.721 (1992) | ISO/IEC 10165-2:1996, Information technology –
Open Systems Interconnection – Structure of Management Information: Definition of
management information.

3 Definitions

This Recommendation defines the following terms.

3.1 contract type: An expression of all the contract features (i.e. required, subject to negotiation
or optional).

3.2 contract instance: The result of a negotiation between a provider and a given client.

4 Abbreviations used in this Recommendation

This Recommendation uses the following abbreviations.

ASN.1 Abstract Syntax Notation One

BEO Basic Engineering Object

BNF Backus-Naur Form

CMIP Common Management Information Protocol

CMISE Common Management Information Service Element

CORBA Common Object Request Broker Architecture

DCE Distributed Computing Environment

DPE Distributed Processing Environment

GDIO Guideline for the Definition of Information Objects

GDMO Guidelines for the Definition of Managed Objects

GRM General Relationship Model

IDL Interface Definition Language

ITU-T International Telecommunication Union – Telecommunication Standardization Sector

MOCS Managed Object Conformance Statement

ODL Object Definition Language

ODP Open Distributed Processing

OMG Object Management Group

OSI Open Systems Interconnection

PICS Protocol Implementation Conformance Statement

SDH Synchronous Digital Hierarchy

SMI Systems Management Information

SNC Subnetwork Connection

4 Recommendation G.851.1 (11/96)

SNMP Simple Network Management Protocol

TMN Telecommunications Management Network

5 Methodology overview

5.1 Introduction

From a network management point of view, the RM-ODP provides an object oriented framework
(for distributed management systems) that allows user requirements for each management
application (e.g. configuration management), the information (or data) related to the resources to be
managed and the way that the information may be accessed and manipulated to be defined in a way
that is essentially independent of the technology and distribution used in the implementation of a
management system.

The RM-ODP framework provides five viewpoints of the system and resources being managed. This
is illustrated in Figure 1.

T1521040-96

Information
Computational

Enterprise

Technology

What information exists,
what resources, their
relationships, static
and dynamic aspects
of data

Requirements
Communities of agents with common
objectives roles and policies are stated

Interactions between
computational objects,
including internal behaviour
of computational object,
interface definitions

How conformance to computational
 model is achieved, profiles of
objects based on distribution

Operating System choice,
platform, conformance

Open
System

Engineering

Figure 1/G.851.1 – RM-ODP viewpoints

The RM-ODP provides:

• a set of concepts to describe open distributed systems;

• independence with regard to any existing analysis and/or design and/or programming
method/language.

The initial network level modelling work uses only the enterprise, information, computational and
engineering viewpoints from RM-ODP. The technology viewpoint is not currently considered to be
within the scope of the Telecommunication Standardization Sector of the ITU.

Recommendation G.851.1 (11/96) 5

The information and computational viewpoints of the network level model focus on the semantics
rather than the syntax of the information that must be exchanged for each individual or set of
management applications. This level of definition is sufficient to allow more detailed specification of
the system in the engineering viewpoint where the interoperability of the system is defined by the
external interfaces. Conformance requirements will typically be defined in relation to these external
interfaces. The engineering viewpoint shall be defined for a specific communications technology,
such as OSI systems management.

This methodology document defines the viewpoints used to define the network level model.

5.1.1 RM-ODP viewpoint descriptions

Complete descriptions of the RM-ODP viewpoints can be found in the references listed in clause 2.
A brief description of RM-ODP viewpoints follows:

• Enterprise viewpoint: A viewpoint on an ODP system and its environment that focuses on
the purpose, scope and policies of that system. An enterprise specification enables the client
of an ODP system to express its requirements and policies thereby establishing a contract
between the client and the provider of the ODP system. Thus, an enterprise specification
must be expressed in terms that are understandable by both parties.

• Information viewpoint: A viewpoint on an ODP system and its environment that focuses on
the semantics of information and information processing activities in that system. An
information viewpoint focuses on the definition of information object types, together with
their relationships, their state values and permitted state changes.

• Computational viewpoint: A viewpoint on an ODP system and its environment that focuses
on functional decomposition into structures suitable for distribution. A computational
specification describes computational object types and their interface types. Instances of
these object types will cooperate with each other through interfaces. Operational interface
types are defined by specifying their operation signatures and associated behaviour. All
computational objects are potentially distributed into separate systems. In the context of this
methodology, any computational objects that are defined cannot be further distributed unless
further computational interfaces are defined.

• Engineering viewpoint: A viewpoint on an ODP system and its environment that focuses on
the functions required to support distribution in that system. An engineering specification is
used to make actual decisions regarding distribution of the computational objects and, in
addition, determine the infrastructure components required to support the distributed objects.

• Technology viewpoint: A viewpoint on an ODP system and its environment that focuses on
the choice of technology in that system.

5.2 Using RM-ODP viewpoints in a specification design methodology

Although the reference model for open distributed processing provides an approach to modelling
(i.e. the RM-ODP viewpoints), it does not provide a prescriptive methodology that can be followed
in developing a system. This subclause introduces the methodology, using the RM-ODP viewpoints,
for use in the standardization of transport network management models, whereby the application
components are viewed as objects communicating through well-defined interfaces, and for which
only the externally observable behaviour is described in an implementation-independent manner. The
methodology uses the following steps:

a) requirements are identified;

b) information to describe the system is defined;

6 Recommendation G.851.1 (11/96)

c) processes that manipulate the information and provide the services are described; and

d) distribution and implementation decisions are made.

Each of these design steps is associated with an RM-ODP viewpoint. In practice the temporal
ordering of the viewpoints is not required. What is more important is the separation of concerns
provided by the RM-ODP framework. An example of a specification process based on this
methodology is shown in Appendix VI and the relationship between the viewpoints is shown in
Appendix VII.

The set of resources that form a transport network architecture can be described using the RM-ODP
enterprise and information viewpoints only, whereas a network management service requires the
addition of the computational viewpoint. Both the transport network architecture and service
definition will be merged during the engineering process to develop management capabilities at, for
example, a Q3 interface.

5.3 Tracing between the viewpoints

This methodology allows tracing between requirements and the resulting engineering specifications.
This is achieved by structuring the document in a way that allows a direct relationship between
viewpoints for each enterprise community. For example, tracing from the engineering specification
back to the requirements is also assured by use of a labelling scheme described below.

5.3.1 Labelling

A label will be provided to specific elements of specification allowing it to be referenced from other
specifications. This reference may be made in the same viewpoint, across several viewpoints of the
same service specification or across several service specifications (e.g. when using an IMPORT
clause).

5.3.1.1 Label declaration structure

The structure of labels uses a BNF-based structure.

The label reference structure is organized as a tree. Each node in the tree will be either a pre-defined
keyword (as defined in this Recommendation, e.g. ATTRIBUTE, COMMUNITY, ROLE), or an
element label that is provided to identify the element of specification, e.g. networkTTP,
operational_state. When defined the element label must be unique within the context of its
immediately superior node. When used as a reference the label must be unique within the context.
The label reference must be provided to the level that provides a unique pointer to the section of the
specification that is being referenced. The element label is defined as a text string, the label reference
is enclosed by <>. For example, for label references within a single recommendation, the
recommendation element of the label reference need not be provided, or within a viewpoint
specification, reference to other entities within that viewpoint need not include the viewpoint
element label.

The BNF definition for the label structure is specified in Annex E.

6 Enterprise viewpoint

The enterprise viewpoint is defined in RM-ODP Part 3 (ITU-T Rec. X.903 | ISO/IEC 10746-3 [3]), it
defines the purpose, scope and policies of an ODP system. Its objective is to specify the requirements
of the system from the perspective of all participants. These requirements are expressed in terms of
the interactions between the system and the user environment. Any interaction between management
applications that impacts the way that the system behaves must be defined in the enterprise
viewpoint.

Recommendation G.851.1 (11/96) 7

The enterprise viewpoint is included in the network level model in order to:

– document the use of the various portions of the model based on communities of common
functions (applications); and

– provide a way of specifying the requirements upon which the model is defined.

The templates and the language used in this specification conform to the requirements defined in
Part 3 of the RM-ODP [3].

The templates are used to describe communities which represent a related set of functions to meet a
specific objective (management application) such as connection management. The enterprise
community specifies the scope of a specific problem being addressed. The community comprises a
set of roles, a set of actions and a set of policies to satisfy the cooperative objective, or contract, that
is shared between the roles. A community does not specify objects – only the roles they play. Hence
a given object may play a number of different roles in different communities. A community does not
specify transparencies. One community supports a number of different instances of the community
contract between roles. Each role (or set of roles) has an individual contract with another role (or set
of roles). This instance of the contract will be a particular selection of service features from the
available set.

Associated with each community description are the following:

• Contract.

• Community roles.

• Community policies.

• Community actions.

• Community activities.

• Service.

• Service feature.

The following subclauses describe these enterprise components in more detail. The templates and
language to define them are described in Annex A.

6.1 Scope of the enterprise viewpoint

The client/provider relationship is provided by a contract establishment. A given contract reflects a
service with an associated quality that is offered by the provider to its client and accepted by it.

A service contract will include all the features that enable the service type definition. It includes:

• a community definition;

• the list of roles involved in the community;

• the policies applicable to the community;

• each action and associated policies;

• each activity, if any.

8 Recommendation G.851.1 (11/96)

6.2 Concepts

6.2.1 Community

The requirements are captured by first identifying the communities in the ODP system where a
community is a group of roles that have come together for some objective. The objective of the
community needs to be expressly articulated. Typically, the objective of the community is the
provision of a particular service, e.g. subnetwork connection management community, resource
management community, etc.

RM-ODP Part 3 [3] gives the following definition:

"Community: A composition of objects formed to meet an objective. The objective is expressed as a
contract which specifies how the objective can be met."

The community is defined by its purpose (i.e. the common objective of the roles involved in the
community), the definition of each role implied in the community and the policy applicable to the
entire community.

6.2.2 Contract

The result of the negotiation of a service is a contract instance which reflects the agreed selection
from the feature set of the supplier. These service features can be captured as a set of supported
actions, activities and where applicable supported policies.

RM-ODP Part 2 [2] gives the following definition for a contract:

"Contract: An agreement governing part of the collective behaviour of a set of objects. A contract
specifies obligations, permissions and prohibitions for the objects involved. The specification of a
contract may include:

a) a specification of the different roles that objects involved in the contract may assume, and
the interfaces associated with the roles;

b) quality of service attributes;

c) indications of duration or periods of validity;

d) indications of behaviour which invalidates the contract;

e) liveness and safety conditions."

Some contract features will be required for all the clients of a given provider (constraining the
provider and/or the clients behaviour), others will be negotiated between the provider and each client
before contract establishment, leading to supported or non-supported features as a result of this
negotiation process. In addition, some contract features may stay optional after the contract
establishment and be used by clients and/or the provider on a negotiated or local policy basis (such as
"best effort").

To reflect this policy, an enterprise specification will have two parts. The first will reflect the
expression of all the contract features (i.e. required, subject to negotiation or optional). This first part
will then be used by a provider to establish the second part as the result of a negotiation between the
provider and a given client. In this sense, the first part can be considered as a "service contract type"
while the second part can be considered as a "service contract instance".

The contract negotiation process is beyond the scope of the methodology.

NOTE – This methodology does not distinguish between interfaces and roles in the enterprise viewpoint.

Recommendation G.851.1 (11/96) 9

6.2.3 Roles

This methodology uses the enterprise role concept as is defined in Part 2 of RM-ODP [2]. For each
service all the roles will be defined.

A caller role represents the behaviour of an enterprise object that defines the service requests of a
given service.

A provider role represents the behaviour of an enterprise object that performs the service requests of
a given service.

The other roles of a service represent the behaviour of enterprise objects reflecting the involvement
of the resources in the context of this service.

6.2.4 Policies

The community policy is specified as a set of permissions, obligations, prohibitions and exceptions
applicable for either the client or the provider with regard to the community RM-ODP Part 2 [2]
provides the following definitions:

"Policy: A set of rules related to a particular purpose. A rule can be expressed as an obligation, a
permission or a prohibition.

NOTE – Not every policy is a constraint. Some policies represent an empowerment."

"Obligation: A prescription that a particular behaviour is required. An obligation is fulfilled by the
occurrence of the prescribed behaviour."

"Permission: A prescription that a particular behaviour is allowed to occur. A permission is
equivalent to there being no obligation for the behaviour not to occur."

"Prohibition: A prescription that a particular behaviour must not occur. A prohibition is equivalent to
there being an obligation for the behaviour not to occur."

6.2.5 Actions

According to RM-ODP Part 2 [2], an action is defined by:

Action: Something which happens.

Each community has a set of actions which support the community purpose. The actions will be used
to express the service requests and associated responses that are exchanged between the client and
the provider. Typical actions include: connection setup, connection release, and modify connection.
These actions can be grouped into activities which specify the order in which actions can occur.

Each action is defined by the action-name and the specification of the action policy.

Associated with each action are a set of action policies which are described as either an obligation,
permission, or prohibition applicable for either the client or the provider with regard to the
community. These policies state the role and information involved in each policy. However, it is not
the intent of the enterprise viewpoint to be prescriptive about the information.

6.2.6 Activities

Within a community a set of activities can be defined which include descriptions of the activities and
an activity name. Associated with each activity, an action graph can be defined which includes a list
of atomic actions associated with the activity. Also, associated with each activity is a set of activity
policies which, along with the action graph, assure that dependencies such as the ordering of actions
within an activity is clearly stipulated as a policy.

10 Recommendation G.851.1 (11/96)

According to the RM-ODP definition, activities are generally part of a service realization and the
only exchange between a client and a provider that is part of the contract specification is the heading
action of a provider activity. In fact, it is on a service realization basis to fix whether the heading
action is followed or not followed by subsequent actions. However, for some cases, the client has to
address several related actions to the provider as part of a service feature; in this case, these related
actions are part of an activity.

RM-ODP Part 2 [2] provides the following definition:

"Activity: A single-headed acyclic graph of actions, where occurrence of each action in the graph is
made possible by the occurrence of all immediately preceding actions (i.e. by all adjacent actions that
are closer to the head)."

6.2.7 Services

A service is a negotiation of a particular set of service features between the service provider and the
service user, depending on the requirements of the user and the abilities of the provider. A service is
NOT service management in the TMN sense. A service is a set of operations to accomplish a
particular objective and may exist at any level of the logical layered architecture.

6.2.8 Service feature

A service feature is a set of community policies, activities and/or actions and their associated
policies.

6.2.9 Composition of services

The definition of contracts based on existing contracts is for further study.

6.3 Extension of communities

The method of extending communities is for further study.

6.4 Domains

The RM-ODP concept of domains, as defined in 10.3 of RM-ODP Part 2 [2], is related to the
establishment of communities. It is intended that domains be a part of the methodology; however, the
concept needs to be refined in terms of the network level model. Therefore, the application of this
concept in this methodology is for further study.

7 Information viewpoint

The information viewpoint is defined in RM-ODP Part 3 [3], it defines the information types within
a distributed system. From the point of view of the network level modelling work the information
viewpoint reflects the information aspects (including states and significant transitions) of the
managed resources and management applications.

The information viewpoint defines information object types, the relationships between these object
types their attributes and states along with their permitted state transitions. From the point of view of
the network level model, the information viewpoint defines static and invariant information sets
(schema) related to the managed resources (e.g. connections, links, network termination points, etc.)
represented by the model. It also defines the dynamic schema for the resources. The dynamic schema
define the allowable state changes of one or more information objects.

Recommendation G.851.1 (11/96) 11

The information viewpoint is specified in three parts:

– an informal description which is specified in natural language with appropriate label
keywords (e.g. DEFINITION, INVARIANTS, etc.);

– a semi-formal description which is specified using a subset of the guidelines for the
definition of managed objects (GDMO) [5] and the general relationship model (GRM) [6] as
used in OSI management; and

– formal definitions provided using the Z notation [7].

In addition, in the common information viewpoint the potential relationships are listed to enhance
readability.

A complete description of the information viewpoint templates is provided in Annex B.

The method of expression in the information viewpoint does not constrain the access provided in the
computational viewpoint or the representation in the engineering viewpoint

7.1 Information viewpoint

Recommendation G.853.1, Common Elements of the Information Viewpoint for the Management of
a Transport Network, or common information viewpoint contains the definition of the information
objects and relationships that represent the G.805 resources, independent of any particular
management service. Common information attributes and states are also specified.

The common information viewpoint provides the basis for the development of management specific
application information viewpoints.

When requirements are identified for a specific management application (e.g. Connection
management) they are defined in an enterprise community, the corresponding management
application specific information viewpoint is then developed. Recommendation G.853.1 provides the
base from which such a management application specific viewpoint is developed.

Management application specific information objects may be created by subclassing from the objects
in the common information viewpoint, and extending them for that application. In this case the new
management application specific subclass may include other attributes from the common information
viewpoint, in addition to those defined in its superclass. Additional relationships and attributes may
also be created as needed for that management application. New objects, inherited from
networkInfomationTop, can also be added.

If attribute definitions are compatible with attributes from existing GDMO managed object models
(e.g. in Recommendation G.774 [11]), then reference to these attributes shall be informally provided.
In this case the information viewpoint specification imports the semantics of the attribute but not its
syntax (which can be imported into the corresponding computational viewpoint).

Modified General Relationship Model (GRM) templates have been included in this Recommendation
to indicate how objects relate to each other. Each GRM template identifies roles in the relationship,
and identifies information objects that may play each of these roles. In the common information
viewpoint specification, the initially defined relationships that an information object may take part in
are listed in the potential relationships part of the object description. When a common information
viewpoint object is subclassed for a management application-specific information viewpoint, the
relationships that are considered to be required for that application are declared to be mandatory.

Recommendation G.853.1 also contains common attributes that may be included when the
management application specific subclasses are created; examples of these attributes include
operationalState and userLabel.

12 Recommendation G.851.1 (11/96)

8 Computational viewpoint

The computational viewpoint is defined in RM-ODP Part 3 [3], it defines the functional
decomposition of the system into objects which interact with each other at specified interfaces in
order to facilitate distribution. In the computational viewpoint, applications consist of configurations
of interacting objects. The interfaces defined by the computational viewpoint define the maximum
level of object distribution that may be supported. The final decision on the actual level of
distribution supported in an "open" system is defined in the engineering viewpoint. In addition, the
computational specification of object interactions is specified in terms of the detailed interfaces
provided by each object, their operational signatures and their behaviour specifications. These
interface specifications refer, through the utilization of parameter matching, to the state transitions of
the information objects.

A complete computational viewpoint design requires the definition of computational objects as well
as interfaces and operations. The definition of objects (as opposed to only interfaces) allows for the
interaction between interfaces to be defined as well as the explicit definition of the number and types
(client/server) of interfaces to be supported by a single object. This provides for a complete
definition of the application related to the object. The definition of a single object with multiple
interfaces precludes the need to deal with the replication of the state of a specific resource or other
managed entity in multiple objects. If an object’s interfaces need to be distributed then that object
may be decomposed into multiple computational objects.

The computational viewpoint specifies computational objects, interfaces and operations which are
defined as follows:

• Computational objects are defined as a specific view of information defined in information
objects for a specific application purpose. A computational object specifies the server
interfaces and client interfaces associated with the object and the behaviour (i.e. constraints
between the interfaces) of the object. The behaviour clause describes the relationship
between the object's interfaces. It may also describe the role of this object in providing
service via each of its interfaces as well as any specific initial states within the object.

• Interfaces define a set of operations which may be invoked at the interface and the
behaviour of the interface. The behaviour clause describes the service provided by the
interface. It may also specify the ordering (or sequencing) constraints on the operations
defined by the interface.

• Operations are defined as operational signatures. The operational signature includes input
and output parameters, pre- and post-conditions, raised exceptions and operation behaviour
which defines the semantics of the operation. Operations may reference data which has been
defined in information objects.

8.1 Computational concepts

• Computational objects interact via interfaces.

• A given computational object may have multiple interfaces and multiple instances of the
same interface type.

• Changes in the state of a system occurring as the result of operations at one interface may be
viewed at other interfaces of the same object or interfaces to other objects.

• Computational objects are only defined for an application if the required interactions
between the interfaces need to be standardized.

Recommendation G.851.1 (11/96) 13

• A computational interface may allow operations which provide for the observation and
manipulation of information about the resources being managed. This information may have
been defined in the information viewpoint and is referenced by parameters of the operation.
The data types involved are the information objects defined in the information viewpoint.
These data types are grouped as decided by the particular applications, instantiated and made
accessible through operation interfaces in the computational viewpoint.

8.1.1 Communications domain-independent computational viewpoint

From the point of view of this methodology the computational viewpoint can be divided into two
parts: a part which is independent of the underlying engineering environment or communications
domain, and that part which is closely linked to the communications domain used in the engineering
viewpoint, as shown in Figure 2. The method of specifying the communications-independent
computational viewpoint is defined in Annex C. This Recommendation is as far as possible
independent of the communications domain (e.g. CMIP/OSI, CORBA, etc.) chosen for the
underlying engineering viewpoint realization.

T1521050-96

Information
specification

Enterprise
specification

Communications
Domain

Independent
Computational
specification

Computational VP
Engineering VP Specification on an

OSI Management
communications

 domain

Specification on
a CORBA IDL

and ODP Function
communications

 domain

Specification on
other distributed

processing
communications

 domain

Figure 2/G.851.1 – Alternative communications domains specifications

8.1.2 Mappings to the communications domain-dependent computational viewpoint
specification

The templates defined in Annex C must be mapped to the templates for the communication domain
used in the engineering realization. A subset of ASN.1 abstract syntax is used to define the syntax of

14 Recommendation G.851.1 (11/96)

the computational operation parameters. This abstract syntax representation and the computational
operations must be mapped to the particular syntax and protocol for the communication domain used
in the engineering realization. This process results in a computational specification that is specific for
each intended communication domain.

9 Engineering viewpoint

9.1 Introduction

In RM-ODP, an engineering specification defines the infrastructure to support the functional
distribution of an ODP system. This is based on the assumption that distribution transparency is
achieved by assembling ODP transparency functions and objects. This methodology initially
specifies engineering processes to achieve the implementation of the functional distribution for two
communications domains. They include: use of OSI management, and use of CORBA IDL and ODP
functions. In the future other communications domains (infrastructures) may be considered.

These alternatives are illustrated in Figure 2.

9.2 Engineering concepts

The RM-ODP engineering viewpoint provides the mechanisms by which the transparencies of the
computational viewpoint are supported. Where the computational specification is protocol and
infrastructure independent, the engineering viewpoint is infrastructure specific and satisfies scenarios
where interfaces have been selected and transparency demands are met.

If, during the definition of the engineering viewpoint, additional requirements are discovered which
affect the other viewpoints, the enterprise, information and computational viewpoints have to be
updated accordingly.

The engineering viewpoint must state what scenarios are to be supported. A scenario first reflects the
enterprise requirements which are to be met, and, the considerations which result in interface
choices. The decision to combine computational objects may be a result of environment constraints
such as real-time requirements (e.g. a maximum time period for an interaction between objects).

The ensemble technique discussed in clause 10 can be used as the basis to specify engineering
objects which meet enterprise requirements and environmental constraints of a given scenario. The
ensemble technique is appropriate for defining a scenario which meets enterprise requirements.

The run-time versions (Basic Engineering Object – BEO) of computational objects may be grouped
into clusters which satisfy the ensemble requirements. A cluster can be viewed as a basic building
block which migrates, recovers and initializes, and is replicated, as a single entity. An ODP cluster
executes on one physical system. A cluster offers both client and server interfaces, which are
supported by protocol specific stubs and binders. While a BEO is not necessarily equivalent to a
managed object, a mapping does exist.

Relationship mapping templates: The complete specification of a relationship is only given when the
GRM relationship mapping templates are defined. Because these bindings are infrastructure specific,
they are found in the engineering viewpoint.

9.3 OSI management based engineering viewpoint

This subclause considers only OSI management based implementations and clusters. The OSI
management information model defines a manager-agent relationship between the manager and the
agent located in two different OSI systems. The computational specification makes no assumption on
the physical distribution of objects; however, this engineering specification must be considered in the

Recommendation G.851.1 (11/96) 15

TMN context. The implication of this is that the defined set of computational objects must be
partitioned in two parts, each part being located on its own OSI system. In this case, the
computational objects can be grouped into two clusters with only those computational interfaces
which need to be exposed made externally visible to the associated cluster as OSI systems
management interfaces, as shown in Figure 3.

Q1

Q2

Q3

Q5

G6

Q4

Q1 Q3

G6

Q4

T1521060-96

Computational
specification

Mapping

Inter OSI systems
management
model

System S1 System S2

Figure 3/G.851.1 – Grouping of computational objects to define OSI
management system interfaces

9.3.1 Impact of protocols on information and computational viewpoints

The engineering and computational models must be as independent as possible. However, the
computational level will be influenced by engineering constraints (e.g. use of SMI). As a
consequence, the information viewpoint may also need to take into account the use of SMI (e.g. with
the production of GRM relationships mapping to pointers in managed objects). This will allow a
mapping from computational operations to CMISE actions or attribute operations. This information
expansion is part of the engineering process and leads to the production of an information model at
engineering interfaces developed from the knowledge of:

16 Recommendation G.851.1 (11/96)

– the specification of independent computational interfaces;

– distribution requirements;

– communication capabilities (e.g. CMISE).

9.3.2 Enterprise viewpoint engineering constraints

Distribution of management services across several systems may be expressed as an enterprise
concern which imposes engineering constraints (e.g. definition of a management interface to a
standardized network element that constitutes an abstraction of distributed resources). For an
enterprise specification of engineering constraints, different scenarios may be described, resulting in
different profiles and ensembles.

9.3.3 The use of GDMO packages and managed objects

Prescriptions are required to choose between ways to express information at the engineering level
using GDMO.

Resources (transport or managed resources) can be modelled as managed objects, since they
represent entities that may be manipulated by all management services.

There are two ways to model management services:

1) A given management service may be modelled as a managed object and the composition
with the associated managed resource can be made by inheritance in a managed object
deriving from both the managed resource and the management service object classes; this
solution leads to a great number of managed object classes. In addition, it is different from
the composition of interfaces defined in RM-ODP (particularly in the case of dynamic
binding). Use of combined pointers between the managed resource and the management
service is consistent with the notion of composition of interfaces; however, this solution
results in a large number of pointers.

2) A given management service may be modelled as a package and the composition with the
associated managed resource can be made by inclusion of these packages as conditional
packages in the managed object class reflecting the resource. This solution is consistent with
the use of a pre-defined engineering library. This library will contain managed objects
representing transport resources (that is, corresponding to common information viewpoint
information objects), and for each one, a package per potential supported service. This will
avoid rewriting and provide a more homogeneous view of a system.

Note that multiple instances of the same type may be defined in the computational viewpoint. The
use of GDMO packages in this case is not appropriate.

9.3.4 Support of multiple management services at an engineering interface

Packages may be fully independent of each other and in this case they can be independently included
in the managed object when specifying the corresponding services at the engineering interface.
However, some packages may express dependencies. In this case the best way is to define a
compound package, but in this case the corresponding compound service must be defined (with the
dependencies expressed in enterprise, information and computational viewpoints). In addition, some
packages may have to be mutually exclusive in a managed object. This must be expressed in the
managed object behaviour statement.

9.3.5 Identification

In accordance with the RM-ODP, computational interfaces must be identified to be referenced (for
example for binding). Computational interfaces may be mapped onto packages. The desired packages
will be instantiated at the same time as the managed objects that support them. A unique

Recommendation G.851.1 (11/96) 17

engineering reference will be made to the managed object. This engineering reference may be
independent of any information concern, and then produced on a policy basis only known by the
engineering system that supports it; or an attribute will be defined which carries the identification:
instanceId.

9.3.6 Relationship mapping

GRM relationships will map to ROLE BINDING templates in the engineering viewpoint. The
representation may be in terms of pointers, name bindings, operations, or inheritance, for example.

9.3.7 The use of actions versus attribute operations for relationships and state modifications

CMISE allows two ways to modify the state of a system:

• REPLACE operations on attributes;

• actions.

Actions will be used when multiple attributes are involved and the operation is considered to be
atomic or if significant behaviour is required. If only one attribute is modified and there is a need to
provide read access to the attribute, then a REPLACE operation may be prescribed.

9.4 The distributed processing environment

9.4.1 Overview

The use of a Distributed Processing Environment (DPE) is for further study. Some considerations
are:

– Since many implementation choices exist (e.g. OSI, CORBA, DCE based DPEs), the set of
engineering models must use a common DPE which allows these domains to interact.

– Local forms of naming, protocols and reliability schemes may be used within each domain;
however, a set of common support services are required for inter-working. For example, only
one trader should be endorsed by Study Group 15.

– Basic engineering objects may be supported by stub and protocol objects, to facilitate
inter-working of selected objects by various protocols.

There is also a need to define transparency requirements for the DPE which is used by transport
network management applications.

10 The use of ensembles in the definition of network management applications

10.1 Scope

The methodology in this Recommendation produces application specific specifications for the
enterprise, information and computational viewpoints which are, in the main, distribution
infrastructure dependent. The ensemble technique is used to allow definition of an engineering
solution that satisfies a specific application scenario. This is illustrated in Figure 4.

18 Recommendation G.851.1 (11/96)

T1521070-96

MIB

Enterprise

Information

Computation

Engineering

Atomic Communities

Composite Community

Generic Library

CIV

Computational Interfaces

Ensemble

Figure 4/G.851.1 – Use of an ensemble to produce an application specific interface

The ensemble identifies the specific set of management applications to be supported (in terms of the
enterprise communities) together with other implementation constraints such as the degree of
distribution to be provided, the level of visibility and the interface protocol.

The ensemble is not part of any RM-ODP viewpoint, but references the enterprise, information,
computational, and engineering viewpoints to allow the development of a solution that satisfies the
requirements of a set of enterprise communities. The ensemble is a guide for using the material in the
RM-ODP viewpoints to solve a particular management problem. This means that the ensemble
provides a particular solution in terms of an engineering interface specification dictating a particular
distribution of management functionality. Conformance will be tested at the engineering viewpoint.

The ensemble template is defined in Annex F.

Recommendation G.851.1 (11/96) 19

ANNEX A

Template and guidelines for the enterprise viewpoint specification

This Annex provides an explanation of an enterprise viewpoint specification.

T1521080-96

Pre-action
resource
roles

Post action
resource
roles

Community 1

Actions

Client
role

Server
role

Figure A.1/G.851.1 – Members of a community have roles in regard to actions

A.1 Informal definition of the enterprise template

X COMMUNITY <community_label> "Name"

X.1 PURPOSE

community_definition -- This clause introduces the purpose of the community.

X.2 ROLE

<community label><Role Label>

role_definition -- The list of member roles that are involved in the community are
provided with a brief description.

X.3 POLICY

PERMISSION <label_string>|OBLIGATION <label_string>|PROHIBITION
<label_string>|EXCEPTION <label_string>

policy_definition -- Policies applicable to the entire community are provided.

X.4 ACTION

X.4.1 <action label> "Action Name"

action_definition -- This provides the list of actions which support the community
purpose.

ACTION POLICY: -- A short clear concise description of the policy as either an
OBLIGATION, PERMISSION, PROHIBITION or EXCEPTION is provided here.

PERMISSION <label_string>|OBLIGATION <label_string>|PROHIBITION
<label_string>|EXCEPTION <label_string>

20 Recommendation G.851.1 (11/96)

policy_definition -- These policies should each state the role and information
involved. It is the intent of the enterprise viewpoint not to be prescriptive about the
information.

X.5 ACTIVITY

Each activity is defined in a subsection titled by the activity name and introduced by
a definition of the activity.

Activity Name <activity label>
activity_definition

WITH ACTION GRAPH -- A list of atomic actions.

Start
<action label>
<nth action label>

End

ACTIVITY POLICY -- The action graph needs to assure that dependencies such as
the ordering of actions is clearly stipulated as a policy.

PERMISSION <label_string>|OBLIGATION <label_string>|PROHIBITION
<label_string>|EXCEPTION <label_string>

policy_definition

X.6 CONTRACT

A service is a negotiation of a particular set of service features between the service
provider and the service user, depending on the requirements of the user and the
abilities of the provider. The result of the negotiation is a contract which reflects the
agreed selection from the feature set of the supplier. This contract establishment
phase is for further study; however, these service features can be captured as a set of
supported actions and, where applicable, supported policies.

A.2 Formal definition of the enterprise template

This subclause provides a formal description of the enterprise description in BNF.

NOTE – Extensions to BNF for this specification.

[...] – optional item, 0 or 1 occurrences

* list item 1 or more occurrences

-- remainder of line is a comment as per ASN.1

<community_template> ::=
"COMMUNITY" <label> <name>

<doc_heading> "PURPOSE" <community_definition>

<doc_heading> "ROLE"
<role_definition>*

<doc_heading> "POLICY"
<policy_definition>*

<doc_heading> "ACTION"
<action_description>*

Recommendation G.851.1 (11/96) 21

<doc_heading> "ACTIVITY"
<activity_definitions>*

["WITH ACTION GRAPH"
"Start"
<action_label>*
"End"]

"CONTRACTS" <label_string>

<action_description> ::= <doc_heading> <label> <label_string>
"ACTION POLICY" ":"

<policy_definitions>

<action_label> ::= <label>

<activity_definition> ::= <doc_heading> <label>
<label_string>
"ACTIVITY POLICY"

<policy_definitions>

<activity_definitions> ::= "None"
| <activity_definition>*

<community_definition> ::= <label_string>

<doc_heading> ::= <text>
-- doc_heading represents a heading when the template
-- is printed. It is publishing system specific and would
-- be considered White space in an implementation

<label> ::= "[A-Za-z][-A-Za-z0-9.]*"

<label_string> ::= -- quoted string | label

<name> ::= <label>

<policy_definitions> ::= "None"
| <policy_definition>*

<policy_definition> ::= { "PERMISSION" | "OBLIGATION" | "PROHIBITION" |
"EXCEPTION" } <label> <label_string>

<role_definition> ::= <role_label> <label_string>

<role_label> ::= <label>

ANNEX B

Information viewpoint structure

B.1 Introduction

The information viewpoint section is structured into the following subsections:

• A list of information entities which have been defined in other specifications and are
referenced by the corresponding enterprise community, including other information entities
from other specifications for inheritance purposes. When information entities are imported
into an information specification in this way, all other related specifications relevant to this

22 Recommendation G.851.1 (11/96)

entity are also imported (e.g. informal, semi-formal and formal specifications are imported
when one of these specifications is listed).

• Diagrams of information object and relationship types as required to provide readability:

– contains role2-relationship diagrams and class-role diagrams. The separation between
roles and classes is based on the use of GDMO and GRM notations where relationships
are defined between roles that can be played by instances of object classes;

– inheritance diagrams;

– relationship diagrams;

– entity-relationship diagrams.

• Information object classes:

– defines the object classes. The semi-formal description uses an INFORMATION
OBJECT CLASS template which is similar in structure and syntax to the GDMO
MANAGED OBJECT CLASS template, defined in CCITT Rec.
X.722 | ISO/IEC 10165-4 (GDMO) [5]. The formal definitions are in the Z notation [7].

• Information relationships:

– defines the relations in which the information objects may participate. Uses the
RELATIONSHIP CLASS template defined in ITU-T Rec. X.725 | ISO/IEC 10165-7
(GRM) [6] for the semi-formal part and Z notation for the formal part.

• Static schema definitions:

– defines the global and generic system states, described in schemas. This subsection has
informal, semi-formal, and formal parts.

• Schema transition definitions (dynamic schemas):

– labels particular transitions between compound states, described by static schema, so
that these transitions can be referenced as triggers of notifications. This subsection has
informal, semi-formal, and formal parts.

• Attribute type definitions:

– definition of the attributes for the concerned service. Uses the ATTRIBUTE template
defined in GDMO for the semi-formal part and Z notation for the formal part.

B.2 Model descriptions

For any information definition in the information viewpoint section, three specifications are
provided:

• An informal (natural language) description which is intended to be human readable. In order
to be as concise as possible, this specification is structured, using labels to introduce each
clause (e.g. <definition>, <invariants>, ...) and its sub-clauses (<inv_1>,
<operationalState>, ...). These labels are used to provide cross-references within a particular
service, across several viewpoints of the same service or between several services.

• A semi-formal description using a notation derived from GDMO for object classes and
attributes. This notation, GDIO (Guideline for the Definition of Information Objects), is
based on the use of the GDMO managed object class and attribute template structures. In
this formal specification, all natural language (normally used in the BEHAVIOUR clause)
will be replaced by reference to the equivalent content of the informal description. For the

2 In the GRM sense.

Recommendation G.851.1 (11/96) 23

relationship templates, this specification uses the GRM notation. Again, the BEHAVIOUR
clause refers to the informal part.

• A formal description using the Z notation.

B.3 Structure of the specification

B.3.1 Information object classes

B.3.1.1 Informal description

The informal part of the object class specification is structured into four parts:

• The first one, introduced by the keyword <definition> contains a definition of the
information object class.

• The second one, introduced by the keyword <attributes> lists the attributes of the
information object class by inclusion of a reference, which can be local if the attribute is
locally defined or global if the attribute is imported from another service.

• The third one, introduced by the keyword <invariants>, describes the permitted states for an
instance of the information object class. These may be expressed in terms of individual
attribute values, or the combination of attribute values if they are interdependent. Attribute
value dependencies may also be described in static schema (see B.3.3). If the state of an
attribute is independent of the states of the others, its permitted values can be described
independently. If the specification of permitted values is missing, by default, all possible
attribute values are permitted.

• The fourth part, introduced by the keyword <transitions> expresses the state transitions of
the information object. This clause defines the relevant, valid transitions between all
combined states of the information object. The state transitions are required to be specified
in this part may be influenced by the specification of invariants as specified in the
<invariants> part. For example, an invariant may restrict the visibility of need for some
possible state transitions.

If an attribute is independent of the others, i.e. its value does not influence the state transition
of the other attributes, its transitions can be described independently. If this description is
missing, by default, all state transitions are permitted for that attribute.

B.3.1.2 Semi-formal description

This description uses the GDMO notation with the "MANAGED OBJECT CLASS" keyword
changed to "INFORMATION OBJECT CLASS" and the following restrictions:

• no access-specifier can be assigned to attributes;

• the REGISTERED AS clause is not required;

• no ACTIONS or NOTIFICATIONS can be specified;

• the WITH ATTRIBUTE SYNTAX clause shall not be used in the ATTRIBUTE template;

• the GDMO "BEHAVIOUR" construct shall be structured, following the subsections of the
informal description, as follows:

– the definition part is referenced by including the <definition> keyword;

– the <invariants> and the <transitions> parts are copied into the BEHAVIOUR clause;

– in application-specific subclasses the actual relationships which are used shall be listed.

The <attributes> part of the informal description is converted to an ATTRIBUTES construct of the
information object template, without any access-specifier.

24 Recommendation G.851.1 (11/96)

B.3.1.3 Formal description

The formal description uses the Z notation. See Appendix VII for an example of how Z can be
applied to this description.

B.3.1.4 Potential relationships

This part of the information object definition is required for the common information viewpoint
specification only. It defines the possible relationships in which the information object or subclasses
can participate in. It is included in the common information viewpoint specification to enhance the
clarity of the specification only and is not a list of relationships which the object or its subclasses
must support, nor is it necessarily an exclusive list.

When the common information viewpoint object is subclassed for a management application-specific
information viewpoint, the relationships that are necessary for that application and which affect the
behaviour of the object are listed in the BEHAVIOUR clause of the semi-formal description of the
new subclass and in the relationship part of the informal description. These relationships may be a
subset of those listed for the common information viewpoint superclass as well as any additional
required relationships.

B.3.1.5 Example

networkCTP

Informal description

DEFINITION

"The networkCTP information object represents an extremity of a linkConnection."

Semi-formal description

networkCTP INFORMATION OBJECT CLASS
DERIVED FROM networkInformationTop;
CHARACTERIZED BY

networkCTPPacakage PACKAGE
BEHAVIOUR
networkCTPPackageBehaviour BEHAVIOUR
DEFINED AS
"<DEFINITION>";;;;

Formal description

________ networkCTP_Static ___
networkCTP : F OBJECT
networkInformationTop_Static

networkCTP ⊆ networkInformationTop

________ networkCTP_Dynamic ___
∆ networkCTP_Static
networkInformationTop_Dynamic

Potential relationships

<clientServer>
<extremitiesTerminateTransportEntity>
<networkTTPAdaptsNetworkCTP>
<subnetworkTPIsRelatedToExtremity>

Recommendation G.851.1 (11/96) 25

B.3.2 Information relationships

B.3.2.1 Informal description

The informal part of the relationship class specification is structured into four parts:

• The first one, introduced by the keyword DEFINITION contains a definition of the
relationship class.

• The second one, introduced by the keyword ROLE describes the roles of the relationship
class.

• The third one, introduced by the keyword INVARIANT gives the invariants applicable to the
information objects playing the roles of the relationship during the lifetime of this
relationship. These invariants can be expressed using an informal language, e.g. inv_2: "The
container and the elements must have the same directionality."

• The last part, introduced by the keyword TRANSITION, expresses the restriction on the
state transitions of the information object playing the roles of the relationship.

B.3.2.2 Semi-formal description

The semi-formal part of the information relationship specification is written using extended GRM.
The extension to GRM is in the "COMPATIBLE WITH" clause which has been modified to accept
more than one class label3. The restriction of referencing at most one object type in the clause
"COMPATIBLE WITH" leads to duplicate the relationships. This extension of the GRM notation
helps to provide a document which is easier to read.

The GRM "BEHAVIOUR" construct shall be structured, following the parts of the informal
description, as follows:

• the definition part is referenced by including the keyword DEFINITION;

• the INVARIANT part is copied into the BEHAVIOUR construct, except for those invariants
concerning cardinalities which are translated into the "PERMITTED-ROLE-
CARDINALITY-CONSTRAINT" construct;

• the TRANSITION part is copied into the BEHAVIOUR construct, except for the invariants
concerning dynamic evolution of a relationship regarding the departure and arrival of object
instances which have been translated using the construct BIND-SUPPORT and
UNBIND-SUPPORT.

In addition, the ROLE part of the informal specification is translated into the ROLE construct,
including the COMPATIBLE WITH construct.

B.3.2.3 Formal description

The formal description uses the Z notation. See Appendix VII for an example of how Z can be
applied to this description.

B.3.2.4 Example

linkHasLinkConnections

3 It is possible to define a managed object class derived from a common supertype of the list of object

classes, with its behaviour class stating that its instances are compatible with the object classes in the list.
This can be used in the actual GRM in the engineering viewpoint.

26 Recommendation G.851.1 (11/96)

Informal description

DEFINITION
"The linkHasLinkConnections relationship class describes the relationship that exists between a link and
the linkConnections that are part of it.
This relationship type is a subtype of setOf."

ROLE
container

"Played by an instance of the link information object type or subtype."
element

"Played by an instance of the linkConnection information object type or subtype."

Semi-formal description

linkHasLinkConnections RELATIONSHIP CLASS
DERIVED FROM setOf;

BEHAVIOUR
linkHasLinkConnectionsBehaviour BEHAVIOUR
DEFINED AS
"<DEFINITION>";;

ROLE container
COMPATIBLE WITH link AND SUBCLASSES;

ROLE element
COMPATIBLE WITH linkConnection AND SUBCLASSES;

Formal description

________ linkHasLinkConnections_Static __
linkHasLinkConnections : F RELATIONSHIP
setOf_Static
link_Static
linkConnection_Static

linkHasLinkConnections ⊆ setOf

∀ R : linkHasLinkConnections •container(R) ∈ link /\ elementSet(R) ∈ linkConnection

________ linkHasLinkConnections_Dynamic ______________________________________
∆ linkHasLinkConnections_Static
setOf_Dynamic
link_Dynamic
linkConnection_Dynamic

B.3.3 Static schema definition

The static schema is used to define a set of states for a system at an instant in time. It defines global
and generic states for a system, i.e. states that involve one or more attributes that are in one or more
information objects. This is needed to describe the system state before a global system transition
(pre-conditions of a computational operation) and the system state after this transition
(post-conditions)4.

4 The transitions between these states will be described in the computational viewpoint, although they are

part of the information viewpoint.

Recommendation G.851.1 (11/96) 27

A system state is expressed with the following rules:

• attribute value constraints (within an object or between objects through the relationship
constraints);

• object existence5.

It is only necessary to specify those static schema which are of interest.

B.3.3.1 Informal description

The informal description of a state definition schema is structured in three parts:

• The first, introduced by the keyword DEFINITION, gives the semantic of the global state.

• The second, introduced by the keyword ROLE, lists all the roles onto which a constraint or
invariant is defined.

• The third, introduced by the keyword INVARIANT, lists the rules that define the state.

B.3.3.2 Semi-formal description

The definition of the specification method for the semi-formal description is for further study. The
use of the RELATIONSHIP CLASS from the GRM has been proposed as one method of
specification.

B.3.3.3 Formal description

The definition of the specification method for the formal description is for further study. A formal
description in Z has been proposed.

B.3.3.4 Example

ssccNotConnected

This information concept is related to the following enterprise entities:

<"Rec. G.852.1",COMMUNITY:sscc,ACTION:sscc1,OBLIGATION:OBLG_2>,
<"Rec. G.852.1",COMMUNITY:sscc,ACTION:sscc1,OBLIGATION:PROH_1>,
<"Rec. G.852.1",COMMUNITY:sscc,ACTION:sscc2,OBLIGATION:OBLG_2>.

Informal description

DEFINITION
"The ssccNotConnected schema defines a schema type with two non-connected
subnetworkTPinformation objects subtypes candidates to the point-to-point connection
management service."

ROLE
involvedSubnetwork

"Played by an instance of the ssccSubnetwork information object type or subtype."
potentialAEnd

"Played by an instance of the ssccSubnetworkTPSink, ssccSubnetworkTPSource or
ssccSubnetworkTTPBidirectional object types or subtypes."

potentialZEnd
"Played by an instance of the ssccSubnetworkTPSink, ssccSubnetworkTPSource or
ssccSubnetworkTTPBidirectional object types or subtypes."

INVARIANT

5 Note that this clause may be expressed with the previous rule taken into account that an object exists if

and only if its object_id attribute value is different from null.

28 Recommendation G.851.1 (11/96)

inv_1
"The objects playing the potentialAEnd and potentialZEnd roles are involved in an instance of the
subnetworkIsDelimitedBy relationship type with the object playing the role involvedSubnetwork."

inv_2
"The object playing the potentialAEnd role is not involved in any instance of the
subnetworkConnectionIsTerminatedByPointToPoint relationship type and subtypes."

inv_3
"The object playing the potentialZEnd role is not involved in any instance of the
subnetworkConnectionIsTerminatedByPointToPoint relationship type and subtypes."

B.3.4 Dynamic schemas

A dynamic schema is used to express the valid transitions among two or more static schema.

B.3.4.1 Informal description

A set of static schema definitions can be provided as pre-conditions to a specification of a transition
to a set of static schema as post-conditions. The informal specification will have the following
format:

Label DEFINITION "text"

PRE_CONDITION <static_schema_label> or "text string"

POST_CONDITION <static_schema_label> or "text string"

Where "text string" shall only be used to express constraints on attribute values of a single object.

B.3.4.2 Semi-formal description

For further study.

B.3.4.3 Formal description

For further study.

B.3.5 Attributes

B.3.5.1 Informal description

The informal part of the attribute definition is structured in four parts:

• The first one, introduced by the keyword DEFINITION, contains a definition of the attribute.

• The second one, introduced by the keyword STATE, lists all the values that an attribute can
have, with associated semantics.

• The third one, introduced by the keyword INVARIANT, lists the invariants valid for that
attribute, if any.

• The fourth one, introduced by the keyword TRANSITION, lists all the possible transitions
between the states of the attribute. This can be done by defining a transition table.

Attribute definitions only provide the semantics of their values, not their syntax. If attribute
definitions are compatible with attributes from existing GDMO Managed Object models (e.g. in
Recommendation G.774) then reference to these attributes should be provided. In this case the
information viewpoint specification imports the semantics of the attribute but not its syntax (which
can be imported into the corresponding computational viewpoint).

B.3.5.2 Semi-formal description

The semi-formal description uses the ATTRIBUTE template from GDMO excluding the WITH
ATTRIBUTE SYNTAX clause.

Recommendation G.851.1 (11/96) 29

B.3.5.3 Formal description

The formal description uses the Z notation. See Appendix VII for an example of how Z can be
applied to this description.

B.3.5.4 Example

userLabel

Informal description

DEFINITION
"The userLabel attribute type assigns a user friendly name to the associated resource. The semantic of this
attribute is imported from M:3100: 1994 userLabel attribute."

Semi-formal description

userLabel ATTRIBUTE
BEHAVIOUR
DEFINED AS
"DEFINITION";

Formal description

[UserLabel]
________ userLabel_Static ___

userLabel: OBJECT F UserLabel

________ userLabel_Dynamic ___
∆userLabel _Static

∀ object : OBJECT | object ∈ dom userLabel ∪ dom userLabel' •
userLabel'(object) =userLabel(object)

ANNEX C

Computational viewpoint template description

C.1 Introduction

The templates defined in this Annex must be mapped to the templates for the communication domain
used in the engineering realization. A subset of ASN.1 abstract syntax is used to define the syntax of
the computational operation parameters. This abstract syntax representation and the computational
operations must be mapped to the particular syntax and protocol for the communication domain used
in the engineering realization. This process results in a computational specification that is specific for
each intended communication domain.

An interface may have many operations. Each operation is defined using the operation templates.

The object template is for the computational object class. Each instance of the class may have
multiple instances of any given interface.

ASN.1 is used as the data definition language. The following restrictions are recommended for ease
of translation to IDL/ODL type definitions:

– use SEQUENCE OF instead of SET OF

– avoid use of ANY or ANY DEFINED BY

30 Recommendation G.851.1 (11/96)

– limit use of recursive type definitions to:

• name1 ::= SEQUENCE {

.

.

.

SEQUENCE OF name1}

• where name1 = name1

NOTE – This construct supports the CMIS_Filter.

C.2 Guidelines

This subclause provides guidelines on how to complete the templates which are formally defined in
C.3. It provides information on the mapping to information entities in the information viewpoint.

In the description of an operation in the computational viewpoint, pre- and post-conditions on the
invocation of the operation can be specified as invariants directly in the behaviour clause of the
operation template or they can be specified by references to the schemas defined in the information
viewpoint.

These schemas can be referenced to define the pre-conditions that the system must verify so that this
operation can be performed, and the post-conditions that the system must verify after this operation.
The static schema specifies a set of systems by providing:

• objects involved in all the instances of the systems class (through the use of the <role>
clause in the information_relationship clause in the information viewpoint);

• constraints on their states (through the use of <invariant> clause);

• relationships involved in the systems class (through the use of <invariant> clause);

• constraints on combined states described in relationships (through the use of <invariant>
clause).

The operation parameter will select which system instance will be addressed by the operation in the
pre-condition and which system instance will be provided as the result of the operation in the
post-condition. Therefore the behaviour may include:

• a pre-condition clause which may reference a template in the information viewpoint
specification;

• a post-condition clause which may reference a template in the information viewpoint
specification;

• a parameter matching rule clause or text to give information about this selection.

A single instance of a computational interface type cannot support both client and server interfaces.
Therefore, it likewise cannot support both PRE/POST-CONDITIONS and the TRIGGERING
CONDITION.

C.2.1 Guidelines specific to the operation template

This subclause provides guidelines on the content of the entities in the OPERATION template.

C.2.1.1 Parameter template

A computational operation parameter is associated with an information object. It has a type
associated with it. A parameter cannot be declared without an associated parameter matching clause.

Recommendation G.851.1 (11/96) 31

C.2.1.1.1 Operation parameters used to identify objects

In the computational viewpoint, interfaces are defined to allow access to the (computational
viewpoint) abstraction of a resource that is identified in an enterprise viewpoint. Each computational
interface provides access for a different management purpose. Within the computational viewpoint,
the enterprise resource that is being addressed may be identified by referencing any one of its
interfaces. The only restriction is that the computational interface used to identify a resource must
always be present on the resource. For example, a port in the sscc enterprise community can be
referenced by the use of reference to its associated ssccSnTpIfce in the corresponding computational
viewpoint.

Computational interface types, that are communication domain independent, are mapped to
communication domain dependent interface types (or "objects") in the engineering viewpoint. For
example, when mapping to the OSI Management communication domain, each interface may be
mapped onto a managed object class or package in an object class.

RM-ODP Part 3 states the following: "A formal parameter that is an identifier for a computational
interface is qualified by a computational interface signature type. The corresponding actual parameter
must reference an interface with that interface signature type (or one of its subtypes). The actual
parameter can only be used as if it referenced a computational interface with the same signature type
as the formal parameter (or one of the formal parameter’s supertypes)."

Therefore, when passing a parameter in an operation, the type of that parameter must be the same as
the type of the computational interface referenced in the definition of the operation. In the
communication domain independent templates, a typed interface reference is used to indicate an
interface reference parameter in computational operation signatures. The notation:

"<param_label> : <type> ::= (<interface_type_name>)"

is used to specify a parameter that is a reference to an instance of an interface conforming to the
interface type named <interface_type_name>.

For example in the following:

INPUT_PARAMETERS
snpa : SnTPID ::= (ssccSnTpIfce);

where:
snpa -- defines the input parameter name as snpa
: SnTPID -- defines the parameter type name to be SnTPID
::= (ssccSnTpIfce) -- defines an SnTPId to be of type ssccSnTpIfce, which may be satisfied by a
ssccSnTpIfce interface or one of its subtypes.

When a reference to an interface is used as a parameter in a computational operation, the signature of
that computational operation must indicate the type of interface that is passed as the actual parameter
at run time. Therefore, the actual parameter being passed must contain the identity of an object
instance that represents the defined interface type (or one of its subtypes), in the run time invocation,
in an engineering realisation of the operation.

At specification time, a reference to an interface as a parameter must, by convention, unambiguously
define the type for the (formal) parameter in question.

NOTE – The value of such an interface reference parameter may be subsequently used to bind to the
associated interface instance to invoke operations to manipulate or query the state of a resource.

The mapping of the identifier for an interface, in specific communication domains, can be done in a
manner most appropriate for the mapping of each interface type to the underlying type associated

32 Recommendation G.851.1 (11/96)

with the engineering access mechanism (e.g. Managed Object instance name, or CORBA Object
Reference).

C.2.1.1.2 Computational parameter types

The BNF definition of the operation template in C.3 defines the syntax specification for a
computational parameter as either a single ASN.1 type specification, or an interface reference
specification.

The ASN.1 type specification uses either an ASN.1 in-line type production, or an ASN.1 type
production reference.

An interface reference specification uses the keyword "REF" [e.g. REF (<commonNTPIfce>)].

The interface type at the highest level of the interface hierarchy is generally used as the named
interface type in the REF specification, and it implies a reference to an interface instance of that type
or any of its compatible subtypes derived from inheritance. The interface name inside the REF
specification could be replaced, at run time, with any interface instance of a type derived from the
named interface in the reference.

T1521090-96

commonNTPIfce

nTTPQueryIfcenCTPQueryIfce

Figure C.1/G.851.1 – Example interface hierarchy

For example, the simplified inheritance hierarchy in Figure C.1 shows an interface type
"commonNTPIfce", which is a common supertype of two derived interface types, "nCTPQueryIfce",
and "nTTPQueryIfce". The operations of the supertype are included, through inheritance, in the
derived interfaces. Thus a reference to an instance of either of the two derived interfaces can serve as
a satisfactory substitute for a reference to an instance of the supertype interface. However, holding a
reference to the supertype interface (commonNTPIfce) will not necessarily work as a reference to an
instance of one of the derived interface types.

C.2.1.2 Parameter matching template

A parameter matching clause specifies the set of information objects or attributes that are intended to
be bound to the parameter. It specifies an information object, either directly or as a ROLE played in
an information relationship, or an attribute value of an information object. The parameter matching
clause constrains the acceptable parameter more than the type declaration of the parameter
declaration. The optional term "ELEMENTS" is used to indicate that the matching expression is
applied to each element of a composite parameter.

C.2.1.3 Pre- and post- conditions

Pre- and post- conditions on the invocation of the operation are specified as invariants directly in the
behaviour clause of the operation template, or they can be specified by references to a schema
defined in the information viewpoint. These invariants define the conditions the system must verify

Recommendation G.851.1 (11/96) 33

so that this operation can be performed, and the post-conditions are asserted to ensure that the
operation is completed successfully.

C.2.1.4 Exceptions

Exceptions are raised against the invariants of the pre- and post-conditions, and specify what is to
happen if an invariant evaluates to "false". As there is no implied execution environment, all
exceptions must be specified explicitly. To raise an exception on a parameter matching failure, an
invariant referencing the parameter matching rule should be provided.

C.2.2 Client/server interface definitions

Computational objects can interact through a connection established between a client interface and a
server interface. A computational interface can be an operational interface or a notification interface.
The roles of these interfaces relative to the interface types are:

– An operational client role: which can invoke operations on operational server interfaces.

– An operational server role: which receives operations from operational client interfaces.

– A notification client role: which invokes notifications on notification server interfaces.

– A notification server role: which receives notifications from notification client interfaces.

Operations are emitted by an operational client interface and received by an operational server
interface. Notifications are emitted by a notification client interface and received by a notification
server interface.

For an operational server interface the input parameters contain the request information from the
operational client interface. See Figure C.2.

For a notification client interface the input parameters contain the actual content of the notification.
See Figure C.3. For this reason the actual contents of the notification are specified as the input
parameters of the operation which defines the notification.

S

T1521100-96

Computational object

Server

Operation output
parameters

Operation input
parameters

Figure C.2/G.851.1 – Server operational interface on computational objects

34 Recommendation G.851.1 (11/96)

C

T1521110-96

Client

Notification output
parameters

Notification input
parameters

Computational
object

Figure C.3/G.851.1 – Client notification interface on computational objects

C.2.3 Considerations for mapping to different communications domains

The domain independent computational interfaces are not all derived from a common "top" object.
Thus, in mapping the domain independent computational templates to GDMO, underived interface
definitions must be replaced with a managed object definition derived from the GDMO "top"
managed object class. Each REF specification can be translated to an ASN.1 type derived from
"ObjectInstance", since CMIP engineering solutions use managed object names as references to
managed object server interfaces.

In general, the mapping from the communication domain independent computational interface
templates to communication domain specific interface definitions (e.g. CORBA IDL or
GDMO/CMISE) for particular engineering realizations, an appropriate "top" object is inserted at the
top of the interface hierarchy. In addition, the REF type is mapped to an appropriate type suitable for
interface referencing.

The attributes of the GDMO "top" managed object class allow a client to determine the actual class
which the managed object was instantiated as. In particular, a client may invoke a CMIP M-get on
the managedObjectClass attribute, with the managed object instance CMIP parameter set to the
reference value, and the managed object class CMIP parameter set to
"Recommendation X.721"::actualClass value [12].

Likewise, CORBA IDL has a common supertype interface called "Object" which has an operations
(called narrow) allowing a client to determine what derived interface types the actual instantiated
reference is compatible with. Since CORBA IDL has an interface reference type, the REF
specification can map directly onto the CORBA interface reference in mappings to CORBA domain
specific interface templates.

C.3 Formal template definitions

This subclause defines the computational templates using BNF.

C.3.1 Object class template

<computational_object_template> ::= <computational_object_header>
"{"<computational_object_body> "}"

<computational_object_header> ::= "COMPUTATIONAL_OBJECT_CLASS
<object_name>

<object_name> ::= <identifier>

Recommendation G.851.1 (11/96) 35

<computational_object_body> ::= [<server_interface_definitions>]
[<client_interface_definitions>]
[<behaviour_definition>]

<server interface_definitions> ::= "SERVER_INTERFACES"
{<server_interface_label> ";" }*

<server_interface label> ::= <label_reference>

<client interface_definitions> ::= "CLIENT_INTERFACES"
{<client_interface_label> ";" }*

<client_interface label> ::= <label_reference>

<behaviour_definition> ::= "BEHAVIOUR" {<text_delimiter> <string_literal>
<text_delimiter>
 <string_literal> }";"

<identifier>::= [a-zA-Z][-a-zA-Z0-9_:.]*

-- This accepts identifiers as starting with a letter and containing
-- letters, digits, underscores, hyphens, colons and points.

<text_delimiter> ::= ! | " | # | $ | % | ^ | & | * | ’ | ‘ | ~ | ? | @ | \

NOTE – If a text delimiter is used, the same character shall be used at the start and end of the string, and
whenever that text_delimiter character appears in the body of the text string, it shall be replaced by two
occurrences of that character. If a text_delimiter character is not used, then the text string shall not contain
any punctuation character that is a valid successor to the text string in the BEHAVIOUR template (i.e. ";").

C.3.2 Interface template

<computational_interface_template> ::= <computational_interface_header>
"{" <computational_interface_body> "}"

<computational_inteface_header> ::= "COMPUTATIONAL_INTERFACE"
<interface_name>

<interface_name> ::= <identifier>

<computational_interface_body> ::= ["DERIVED FROM" <interface_label>]
<operation_definitions>
[<behaviour_definition>]

<interface_label> ::= <server_interface_label> | <client_interface_label>

<operation_definitions> ::= "OPERATION"
{<operation_label> ";"}*

<operation_label> ::= <label_reference>

C.3.3 Operation template

<operation_template> ::= <operation_header> "{" <operation_body> "}"

<operation_header> ::= "OPERATION" <operation_name>

<operation_name> ::= <identifier>

<operation_body> ::=
{INPUT_PARAMETERS" [{<param_label> ":" <syntax_label> ";"}*]}]

36 Recommendation G.851.1 (11/96)

[{OUTPUT_PARAMETERS" [{<param_label> ":" <syntax_label>";"}*]}]

[{RAISED_EXCEPTIONS" [{<exception_label>":" <syntax_label>";"}*]}]
<opn_behaviour_definition> ";"]

<param_label> ::= <identifier>

<exeption_label> ::= <identifier>

<syntax_label> ::= <primitive_asn1_type_name> | <module_name> "::" <production_name>
<type_production> | <production_name>

<production_name ::= <identifier>
<module_name>::= <identifier>

<primitive_asn1_type_name>::= <identifier>

<asn1_production> ::= <type> "::=" <comp_type_def>

<comp_type_def> ::= <interface_reference> | <sinagleASN1typedef>
-- Imported from Recommendation X.208

<ref_spec> ::= <identifier>

<opn_behaviour_definition> ::= "BEHAVIOUR"
["INFORMAL" [{<text_delimiter> <string_literal> <text_delimiter>

|<string_literal> ";"}]]
"SEMI-FORMAL"
{"PARAMETER_MATCHING"
{<param_label> ["ELEMENTS"] ":" <parameter_matching_expression> ";"}*}
{[{"PRE_CONDITIONS" [{<schema_label> | {<text_delimiter>

<string_literal> <text_delimiter>}";"}]}]
[{"POST_CONDITIONS" [{<schema_label> | {<text_delimiter>

<string_literal> <text_delimiter>}";"}]}]} |
{TRIGGERING_CONDITIONS

[{<transition_label> | <text_string> |
<state_label> TRANSITION_TO <state_label> ";" }]}]

[{EXCEPTIONS
[{"IF <exception_invariant_label> "NOT_VERIFIED"

"RAISE_EXCEPTION" <exception_label> ";"}*]}]

<schema_label> ::= <label_reference>

<invariant_label> ::= <label_reference>

<exception_invariant_label> ::= {"PRE_CONDITION" <label_reference>}
| {"POST_CONDITION" <label_reference>}

<transition_label> ::= <label_reference>

<text_string> ::= <string_literal>

<type>::= <identifier>

<string_literal>::= [a-zA-Z] [-a-zA-Z0-9_:.]*

<state_label> ::= <label_reference>

Recommendation G.851.1 (11/96) 37

parameter_matching_expression::=
<label_reference>
|<parameter_matching_expression> "AND" <parameter_matching_expression>
|<parameter_matching_expression> "OR" <parameter_matching_expression>
|"NOT" <parameter_matching_expression>
|"{" <parameter_matching_expression>"}"

<param_reference> ::= <label_reference> | "NOT {" <label_reference> "}"

C.4 Example

This example shows the computational interface and an operation template which provides the setup
of a subnetwork connection in the subnetwork connection management community.

simple SNC performer interface

The simple Sub-network performer manages the setup and release of Sub-network Connections

The simple SNC performer interface is required to satisfy the enterprise requirements stated in:

<"Rec. G.852.1", COMMUNITY:sscc, ACTION:sccc1 > ,

<"Rec. G.852.1", COMMUNITY:sscc, ACTION:sccc2 > .

The simple subnetwork connection performer interface provides basic connection setup functionality.
The operation ssccSetupSubnetworkConnection sets up a subnetwork connection, and the operation
ssccReleaseSubnetworkConnection removes the subnetwork connection.

COMPUTATIONAL_INTERFACE simpleSncPerformerIfce {
OPERATION <setupSubnetworkConnection>;

<ssccReleaseSubnetworkConnection>;
}

sscc set up SNC

This operation sets up a simple subnetwork connection between a single A-End snTP or nTP, and a
single Z-end snTP or nTP.

OPERATION ssccSetupSubnetworkConnection {

INPUT_PARAMETERS
subnetwork : SubnetworkId ::= (ssccSnIfce);

-- The subnetwork parameter is used to indicate the subnetwork across which the performer is
-- setting up the SNCs. This parameter is used, for example, when a given performer can set
-- up SNCs in many subnetworks. If the performer is associated with a single subnetwork, the
-- subnetwork parameter of this operation is redundant and may be removed as an
-- engineering optimization.

snpa : SnTPId ::= (snTPIfce);
snpz : SnTPId ::= (snTPIfce);
dir : Directionality;
suppliedUserLabel : UserLabel;

-- zero length string implies none supplied
serviceCharacteristics: CharacteristicsId ::= (serviceCharacteristicsIfce);

-- reference can be used to determine any QOS or routing characteristics);

OUTPUT_PARAMETERS
newSNC : SNCId ::= (sncIfce);
agreedUserLabel : UserLabel;

RAISED_EXCEPTIONS
invalidTransportServiceCharacteristics: NULL;

38 Recommendation G.851.1 (11/96)

incorrectSubnetworkTerminationPoints : SEQUENCE OF SnTPId;
-- the list contains one element when only point is incorrect.

subnetworkTerminationPointsConnected : SEQUENCE OF SnTPId;
-- the list contains one element when only one subnetworkTerminationPoint
-- remains connected.

failure : Failed;
wrongDirectionality : Directionality;
userLabelInUse : UserLabel;

BEHAVIOUR
INFORMAL

!

This operation sets up a subnetwork connection between a given A-End snTP or nTP and a given
Z-End snTP. The subnetwork termination points or network termination points to be connected are
specified by explicitly identifying the subnetwork network termination points or network termination
points.

The client may supply a unique user label. If not supplied (i.e. string length zero) the provider assigns
a user label for the connection.

A subnetwork connection may only be established in the state ’connected’.

A single point to point unidirectional, or point to point bidirectional, unpartitioned subnetwork
connection object will be created. The subnetwork connection object will have one A-End and one
Z-end.

The subnetwork connection will have a directionality (unidirectional or bi-directional) as specified in
the operation parameters.

If used, the service characteristics specify one pre-determined set of transport parameters which the
server may offer.

The operation replies for set-up includes full information about the reasons in case the request could
not be satisfied.

PRE_CONDITIONS

The snTP or nTPs must be in existence before a subnetwork connection can be made within any
given subnetwork.

This operation will fail if any of the subnetwork termination points or network termination points
specified is already involved in a subnetwork connection. The exception
’subnetworkTerminationPointsConnected’ will be generated.

This operation will fail if the subnetwork termination points or network termination points are not
contained within the domain of the subnetwork. The exception
’incorrectSubnetworkTerminationPoints’ will be generated.

This operation will fail if the serviceCharacteristics requested is not supported by the computational
object which executes the operation. The exception ’invalidTransportServiceCharacteristics’ will be
generated.

POST_CONDITIONS

If any subnetwork connection input parameters cannot be met by the server, the operation will fail.

This operation will fail if the value of the userLabel of the SubnetworkConnection is zero or is not
unique within the domain of the containing subnetwork. The exception ’userLabelInUse’ will be
generated.
!

SEMI_FORMAL

Recommendation G.851.1 (11/96) 39

PARAMETER_MATCHING
subnetwork: < ssccNotConnected, ROLE:involvedSubnetwork > AND

< ssccConnected, ROLE:involvedSubnetwork >;
snpa : < ssccNotConnected, ROLE:potentialAEnd > AND

< ssccConnected , ROLE:connectedAEnd >;
snpz : < ssccNotConnected , ROLE: potentialZEnd > AND

< ssccConnected , ROLE:connectedZEnd >;
dir : < ssccConnected, ROLE: involvedSubnetwork ,ATTRIBUTE:

directionality >;
newSNC : <ssccConnected, ROLE: involvedSubnetwork>;
suppliedUserLabel : <ssccConnected, ROLE:involvedSubnetwork, ATTRIBUTE: userLabel >

OR <> ; -- The user does not have to supply a user label value
agreedUserLabel : <ssccConnected, ROLE:involvedSubnetwork, ATTRIBUTE: userLabel >;
serviceCharacteristics : < ssccConnected , ROLE:involvedServiceCharacteristics >;

PRE_CONDITIONS < ssccNotConnected> ;
-- The ssccNotConnected schema defines a schema type with two non-connected
-- networkTP information objects subtypes candidates to the point-to-point connection
-- management service.

POST_CONDITIONS < ssccConnected> ;
-- The ssccConnected schema defines the schema type of two connected networkTP
-- information objects candidates to the point-to-point connection management service.

EXCEPTIONS

IF PRE_CONDITION <inv_1> NOT_VERIFIED RAISE_EXCEPTION
incorrectSubnetworkTerminationPoints;

IF PRE_CONDITION <inv_2> NOT_VERIFIED RAISE_EXCEPTION
subnetworkTerminationPointsConnected ;

IF PRE_CONDITION <inv_3> NOT_VERIFIED RAISE_EXCEPTION
subnetworkTerminationPointsConnected ;

IF POST_CONDITION <inv_1> NOT_VERIFIED RAISE_EXCEPTION
failure;

IF POST_CONDITION <inv_2> NOT_VERIFIED RAISE_EXCEPTION
failure;

IF POST_CONDITION <inv_3> NOT_VERIFIED RAISE_EXCEPTION
failure;

IF POST_CONDITION <inv_4> NOT_VERIFIED RAISE_EXCEPTION
userLabelInUse;

;
}

ANNEX D

OSI management engineering viewpoint templates and guidelines

This Annex includes the templates used in the engineering viewpoint, and also provides a set of
guidelines for transforming computational and information objects into engineering GDMO objects
that are members of a specific scenario.

Completion of this Annex is for further study.

D.1 Templates

The ensemble template is used to define the scenario objectives that the engineering objects must
meet.

The GDMO template is used for the definition of engineering objects.

40 Recommendation G.851.1 (11/96)

D.2 Possible mappings to managed object definitions

A managed object in the engineering viewpoint represents a mapping of information and
computational objects into GDMO, that can facilitate an implementation using OSI management and
CMISE/CMIP.

The guidelines for creating managed object definitions are as follows:

1) Target managed objects are constructed from information and computational objects such
that:

a) attributes come from the information objects in the information viewpoint;

b) computational server interfaces may be defined as:

– separate packages in the engineering viewpoint;

– separate GDMO object altogether (if the server interface is instantiated);

c) operations within a server interface may be defined as:

– GET, GET-REPLACE, REPLACE operations on attributes;

– separately defined actions.

2) Some client interfaces could be realized as X.500 directory service queries
(e.g. computational operations that are performing name/address resolution).

3) It is possible to define a managed object class derived from a common supertype of the list
of object classes, with its behaviour class stating that its instances are compatible with the
object classes in the list. This can be used in the actual GRM in the domain-specific
computational specification and in the engineering viewpoint.

ANNEX E

Label syntax

E.0 Introduction

The label reference is provided as a string. A "," in the string indicates that the label entity to the left
must be evaluated before the remainder of the string is processed. For example in the string:

<INFORMATION_RELATIONSHIP:compoundLinkHasLinks,ROLE:container,ATTRIBUTE:
directionality> is a pointer to the ATTRIBUTE directionality in the INFORMATION_OBJECT that
is playing the ROLE container in the compoundLinkHasLinks relationship.

E.1 BNF definition of label syntax

<label_reference> ::= "<"<label_string>">"

<label_string> ::= <element_label>
| <label_list>
| <element_label>","<label_list>

<label_list> ::= <label_entity>
| <label_entity> ","<label_list>

<label_entitiy> ::= <clause_label>":"<element_label>

<element_label> ::= <label_text> -- a quoted text string, or a text string
-- without spaces or colons or slashes
-- or open_angle_brackets .

| -- null choice used when there is no label for the keyword

Recommendation G.851.1 (11/96) 41

<clause_label> ::= <enterprise_clause_label>
| <information_clause_label>
| <computation_clause_label>
| <engineering_clause_label>

-- extend as necessary

<enterprise_clause_label> ::=
| "COMMUNITY"
| "PURPOSE"
| "ROLE"
| "POLICY"
| "ACTION"
| "ACTION_POLICY"
| "ACTIVITY"
| "ACTIVITY_POLICY"
| "WITH_ACTION_GRAPH"
| "PERMISSION"
| "PROHIBITION"
| "OBLIGATION"
| "EXCEPTION"
| "CONTRACT"

-- See E.2 for the complete label tree for the enterprise viewpoint

<information_clause_label> ::=
| "INFORMATION_OBJECT"
| "INFORMATION_RELATIONSHIP"
| "STATIC_SCHEMA"
| "DYNAMIC_SCHEMA"
| "ATTRIBUTE"
| "STATE"
| "DEFINITION"
| "INVARIANT"
| "TRANSITION"
| "POTENTIAL_RELATIONSHIP"
| "ROLE"
| "PRE_CONDITION"
| "POST_CONDITION"
| "RELATIONSHIP"

-- See E.3 for the complete label tree for the information viewpoint
<computational_clause_label> ::=

| "COMPUTATIONAL_OBJECT_CLASS"
| "SERVER_INTERFACES"
| "CLIENT_INTERFACES"
| "BEHAVIOUR"
| "COMPUTATIONAL_INTERFACE"
| "DERIVED_FROM"
| "OPERATIONS"
| "OPERATION"
| "INPUT_PARAMETERS"
| "OUTPUT_PARAMETERS"
| "RAISED_EXCEPTIONS"
| "PARAMETER_MATCHING"
| "PRE_CONDITIONS"
| "POST_CONDITIONS"
| "TRIGGERING_CONDITIONS"
| "TRANSITION_TO"
| "EXCEPTIONS"
| "NOT_VERIFIED"

42 Recommendation G.851.1 (11/96)

| "RAISE_EXCEPTION"
| "PRE_CONDITION"
| "POST_CONDITION"
| "AND"
| "OR"
| "NOT"
| "INFORMAL"

-- See E.4 for the complete label tree for the computational viewpoint

<engineering_clause_label>

-- For Further Study – Dependent on communications domain selected

E.2 Enterprise viewpoint label tree structure

"Rec. G.852.xx"
COMMUNITY

<label>
PURPOSE
ROLE

<label>
PERMISSION

<label>
OBLIGATION

<label>
PROHIBITION

<label>
EXCEPTION

<label>
ACTION

<label>
PERMISSION

<label>
OBLIGATION

<label>
PROHIBITION

<label>
EXCEPTION

<label>
ACTIVITY

<label>
PERMISSION

<label>
OBLIGATION

<label>
PROHIBITION

<label>
EXCEPTION

<label>
EXCEPTION

<label>
WITH_ACTION_GRAPH

<label>
CONTRACT

<label>

Recommendation G.851.1 (11/96) 43

E.2.1 Examples of use

<"Rec. G.852.1",COMMUNITY:sscc,ROLE:caller>
<"Rec. G.852.1",COMMUNITY:sfm,ACTION:sfm3,OBLIGATION:OBLG_1>

E.3 Information viewpoint label tree structure

"Rec. G.853.xx"
INFORMATION_OBJECT

<label>
DEFINITION
ATTRIBUTE

<label>
STATE

<label>
INVARIANT

<label>
TRANSITION

<label>
INVARIANT

<label>
TRANSITION

<label>
RELATIONSHIP

<label>
POTENTIAL_RELATIONSHIP

<label>
INFORMATION_RELATIONSHIP

<label>
DEFINITION

<label>
ROLE

<label>
INVARIANT

<label>
TRANSITION

<label>
STATIC SCHEMA

<label>
DEFINITION

<label>
ROLE

<label>
INVARIANT

<label>
DYNAMIC_SCHEMA

<label>
DEFINITION

<label>
PRE_CONDITION

<label>
POST_CONDITION

<label>
ATTRIBUTE

<label>
DEFINITION

<label>
STATE

<label>

44 Recommendation G.851.1 (11/96)

INVARIANT
<label>

TRANSITION
<label>

E.3.1 Examples of use

<"Rec. G.853.1",INFORMATION_OBJECT:networkConnectivity,ATTRIBUTE:signalIdentification>

<"Rec. G.853.2",INFORMATION_OBJECT:monitoredEntity,ATTRIBUTE:operationalStateSTATE: enabled>

<"Rec. G.853.1",INFORMATION_RELATIONSHIP:clientServer,ROLE:client>

<"Rec. G.853.1",INFORMATION_RELATIONSHIP:clientServer,INVARIANT:inv_1>

<"Rec. G.853.2",STATIC_SCHEMA:enabledAndReportOn,INVARIANT:enabled>

<"Rec. G.853.2",DYNAMIC_SCHEMA:reportFailureOnEnabledToDisabled,
PRE_CONDITION:EnabledAndReportOn>

<"Rec. G.853.1",ATTRIBUTE:directionality,STATE:unidirectional>

E.4 Computational viewpoint label tree structure

"Rec. G.854.xx"
COMPUTATIONAL_OBJECT_CLASS

<label>
SERVER_INTERFACES

<label>
CLIENT_INTERFACES

<label>
COMPUTATIONAL_INTERFACE

<label>
OPERATIONS

<label>
OPERATION

INPUT_PARAMETERS
<label>

OUTPUT_PARAMETERS
<label>

RAISED_EXEPTIONS
<label>

PARAMETER_MATCHING
<label>

PRE_CONDITIONS
<label>

POST_CONDITIONS
<label>

TRIGGERING_CONDITIONS
<label>

EXCEPTIONS
<label>

E.4.1 Examples of use

<"Rec. G.854.1",COMPUTATIONAL_INTERFACE:simpleSncPerformerIfce,
OPERATION:releaseSNC,INPUT_PARAMETER:userLabel>

<"Rec. G.854.1",COMPUTATIONAL_INTERFACE:snQueryIfce,
OPERATION:querySnForSNCs,RAISED_EXCEPTIONS:unconnectedSubnetwork>

Recommendation G.851.1 (11/96) 45

ANNEX F

Ensemble template

F.1 The ensemble technique

This Annex describes how the ensemble concept and format of the NM Forum may be used for the
network level view within the RM-ODP framework.

The contents of the ensemble are, as far as possible, references to the appropriate viewpoint
documents. In some cases, to aid readability, some of the text may be duplicated in the ensemble.

The contents description and template proforma can be found in Network Management Forum
Document Forum 025, OMNIPOint 1, The "Ensemble" Concepts and Format, August 1992 [8].

F.2 Ensemble template

The ensemble template consists of the following parts:

– Introduction.

– Management context.

– Management information model.

– Ensemble conformance requirements.

The following subclauses describe these parts of the ensemble specification.

F.2.1 Introduction

The introduction consists of a textual summary of the application scenario by identifying the
enterprise viewpoint communities that must be supported. It consists of the following items:

– global description of the management problem using the global text in the enterprise
viewpoint;

– identification of the resources to be managed;

– global requirements and constraints to be met;

– identification of the interactions across the engineering interfaces.

F.2.2 Management context

This subclause consists of the following items:

– more detailed description of the management requirements and constraints using the policies
stated in the enterprise viewpoint (e.g. by defining which of the permissions are obligations
in this management context);

– description of the resources to be managed by reference to the information viewpoint;

– definition of the interface protocol to be supported;

– definition of the scenarios in which the message flows across the engineering interfaces are
identified and specified, by referencing the computational interfaces.

F.2.3 Management information model

This subclause references the engineering viewpoint that has been developed for this application
scenario.

46 Recommendation G.851.1 (11/96)

F.2.4 Ensemble conformance requirements

The following items are to be identified:

– general conformance requirements;

– functional support;

– the engineering objects;

– conformance requirements for the engineering solutions, such as:

• objects (e.g. MOCS proformas for GDMO based engineering solutions);

• protocol (e.g. using PICS proforma);

• use of directory service.

An example of the use of the ensemble concept can be found in Appendix V.

APPENDIX I

Examples of templates and specifications guidelines

I.1 Enterprise services versus contracts

The notion of service and contract are closely related. In fact, the service is the external perception of
the contract application. The two concepts can, therefore, be used interchangeably.

A contract type can be private or standardized. In case of private contracts, the provider is
responsible for the establishment and maintenance of them (alone or in association with its clients).
If the contract is the result of the standardization process, it is established and maintained by
standards organizations (e.g. ITU-T). Standards organizations cannot establish contract instances.

The terms in which contract features are structured and written are very important since they will be
used to establish the responsibilities in case of contract transgressions. In this sense, a contract type
defines enterprise conformance points.

There is a requirement to establish contract types starting from previous ones by adding new features
or by developing compound features. It is useful in the following circumstances:

– to construct new services by reusing existing ones;

– to develop private contracts starting with standardized ones;

– to guarantee backward compatibility in case of service enhancements.

A composite service is the union of:

– all the features that are defined in the services that are composing it (called imported
services); and

– the locally defined features.

Two rules have to be respected with regard to composition of services:

– the imported services have to be consistent with each other. That is, they do not contain
contradictory features;

– the locally added features must be consistent with the imported ones.

Recommendation G.851.1 (11/96) 47

APPENDIX II

Representation of combined states

Consider an application where the requirement is to express whether a resource can supply its normal
service. This state could be viewed across interface A to a computational object. See Figure II.1.

T1521120-96

A

Figure II.1/G.851.1 – Computational interface

The state of the resource viewed across interface A can be defined by the in service or resource failed
states (S1, S2). These can be mapped on to values of the operational state of enabled or disabled as
shown in Figure II.2. S1 and S2 may also be considered as (simple) static schema.

X

X

S1 S2

E

D

T1521130-96

Application

Status condition (schema)

Fault (operational state)

X Specified state value

State
information

Figure II.2/G.851.1 –State description for fault application

Now consider the situation in Figure II.3 where the state of the resource may be viewed via multiple
interfaces. Interface A remains as above but interface "B" is used for configuration and provisioning
applications as well. The issue is to allow an application to interface to the object via interface "A"
which only knows about states S1 and S2, and also to allow interactions via interface "B" which has
a wider range of states.

T1521140-96

A B

Figure II.3/G.851.1 – Computational interfaces

48 Recommendation G.851.1 (11/96)

Figure II.4 shows the range of states visible across interface "B". States S1 to S6 comprise the state
table. Each state is composed from the base states: administrative state, operational state, and the
connected/not connected status condition. S3 to S6 may also be defined as static schema.

States S1 and S2 were defined without the knowledge of other states. Therefore in the interface "B"
state table they are assigned default values for base states administration, and the connected/not
connected status condition.

To define the state S5, three base state values are required, while to define state S1 only one base
state value is required. If the other two base states of the resource are made visible via interface B,
then the system must maintain consistency of states S1 and S2 within the context of wider set of
states. It may be considered that the additional states are assigned default values to retain consistency
in the wider state table. If S1 to S6 are considered as static schema then when schema S3 to S6 are
defined S1 and S2 are unchanged. However, the system must ensure that the values of operational
state (S1 and S2) reported over interface A are consistent with the values of operational state (of the
same resource) reported as S3 to S6 over interface B. In this case for example if schema S1, S3 and
S4 require that the operational state is enabled while schema S2, S5 and S6 require that the
operational state be disabled then if S3 or S4 is reported via interface B then S1 must be reported
over interface A. In this way the original states which were defined with a single base state are still
valid when they become part of a much larger state table. A user of interface A will not notice the
impact if the computational object is enhanced to support interface B.

The set of states in an object or system can be extended by adding new base states and defining the
relationship between the new base states and the existing schema. The extension of state by adding a
new value to an existing base state should be avoided. However if this cannot be avoided then a
mapping from the new (extended) base state to the existing base state must be provided.

Similar considerations apply to produce two separate profiles of the information object for two
separate applications (and different computational objects).

Recommendation G.851.1 (11/96) 49

X X

X X

X

D X X

D X

X X X

X X X

S1 S2 S3 S4 S5 S6

SD

U

L

E

D

T1521150-96

Application

Status condition (schema)

Configuration (admin state)

Fault (operational state)

Connected

Not connected
Provisioning

State
information

X Specified state value
D Assigned default state value

Figure II.4/G.851.1 – State description for combined application showing use of default values

APPENDIX III

Service realization description

III.1 Scope

The way by which the provider performs the service is not relevant to the client, and hence is not part
of the contract specification. However, the provider has to document, from the enterprise perspective,
the way a given service is realized. A service realization includes two characteristics:

– the internal policy that is applicable for each contract feature;

– the subsequent services that are invoked as a consequence of the policy application.

For these subsequent services, the former provider will act as a client. Obviously, the subsequent
services may be standardized or private, depending on the policy that governs their use.

From the standards perspective, it could be useful to provide an informative behaviour that will
govern the use of subsequent standardized services. The rationale is:

– to justify the introduction of new standardized services;

– to be able to express service policy constraints between related standardized services.

For several reasons, a provider may decide to handle several service realizations for a particular
service specification (e.g. changes in the enterprise policy). If the service specification is not changed
then the clients are not aware of a change in a service realization.

50 Recommendation G.851.1 (11/96)

III.2 Concepts

While the previous subclause can be subject to standardization, this subclause provides a solution to
realize the provision of the service; any solution is obviously not unique and can be changed
according to the service provider policy. A policy will be developed for each action or activity
defined in the contract. For each contract, the standards bodies may provide a service realization
section in order to indicate how standardized services may be related to each other, for example.

In any case, it is useful to produce standardized templates for the service realization description as
part of this Recommendation in order to enable service providers to describe their own realization.

The service realization section will be structured into subsections, one for each action or activity
defined in the contract specification. Each subsection will start with a community item indicating the
roles that are involved to perform the action or activity. The enterprise object taking the service
provider role with regards to the service contract will always take service caller roles with regard to
subsequent services.

The community item is followed by a policy item, where each policy rule is equivalent to an action.

As a consequence, the realization policy associated with a service contract action (respectively a
service contract activity) will form an activity description as it will be expressed as an acyclic graph
of actions.

The term action is used in the RM-ODP sense, i.e. it may be internal or it may be an interaction. This
subsection selects whether actions are internal or interactions as part of a realization decision. When
an action is an interaction, it will be expressed in terms of service invocations; otherwise, it will be
internal. See Figure III.1.

T1521160-96

Client role

Client role

Provider role

Client role

Provider role

Provider role

Enterprise object

Service contract community

Service realization community

Figure III.1/G.851.1 – Example of role versus object

An action is not instantaneous and can be defined as:

– is occurring: the action has started. This action can be asynchronous, and other actions can
be realized at the same time.

Recommendation G.851.1 (11/96) 51

– has occurred: the action is finished. This is a synchronous action and no other action
following it in the graph can start before its completion.

– may occur: the action is optional, and may be realized following some particular requests.

As described in RM-ODP Part 2 [2], actions may overlap in the time. However, RM-ODP does not
precisely specify whether some temporal constraints exist between actions. For specification
purposes, an action which is occurring may be started only if another preceding action has occurred.

The graph description is specified as a schema in this subsection with labelled actions. Then each
action is informally described by stating the following points:

– whether this action may occur, is occurring or has occurred;

– whether this action is internal or is an interaction (with the invoked service);

– indicates the reasons why this action occurs at this level of the graph.

When several actions appear at the same level in the graph, they may occur independently at any
moment. The effective order will be specified in other viewpoints.

An example of a graph is presented in the Figure III.2.

T1521170-96

Service realization

1 is occuring

2 is occuring

3 is occuring

4 may occur

5 has occured

1 is occuring

Service realization

Service contract

Realization of a service action Realization of a service activity

1 is occuring

2 is occuring

3 is occuring

4 may occur

5 has occured

1 is occuring

Service contract

Figure III.2/G.851.1 – Example of activity description

Template

{ACTION |ACTIVITY} Name <action label>
Community

community_definition
Community Roles

<community label><Role Label>
role_definition

Community Policies
Action Name <action label>

action_definition
Action Policies

WITH ACTION GRAPH
Start

<action label>
<nth action label>

End

52 Recommendation G.851.1 (11/96)

APPENDIX IV

Example of use of the ensemble concepts and format

Consider the example of the subNetworkConnection information object type defined in
Recommendation G.853.1; an object of that type represents a G.805 subnetwork connection. Partial
views of the underlying resource can then be described on a service-per-service basis. For instance,
scmSubNetworkConnection and msSubNetworkConnectionManagement constitute respectively
partial views of the subnetwork connection for the subnetwork connection configuration
management (SCM) and the monitoring (MS) services. For each of these information object types,
state variables may be defined in the information specification as attributes or relationships, for
example.

In the computational specification of each service, a computational interface is then defined
corresponding to the service provider capabilities. For instance, the sncConfiguration computational
interface is defined as an enumeration of operations that can be invoked on that interface
(e.g. setupSNCPointToPoint, setupSNCPointToMultiPoint, ReleaseSNC); it should be noted that
each of these operations correspond to an enterprise action defined in the service contract and can be
defined as:

INTERFACE_TEMPLATE sncConfiguration {
OPERATION setupSNCPointToPoint
OPERATION setupSNCPointToMultiPoint
OPERATION ReleaseSNC
BEHAVIOUR

...
}

Computational operations are described in terms of signature, pre-conditions and post-conditions.
The two latter items refer to static schemas described in the information specification of the service.
For instance, the operation setupSNCPointToPoint has the pre-condition scmNotConnected and the
post-condition scmConnected. The transition between these two states constitute the behaviour of the
operation. How the state transition is achieved is of no interest in the context of standardized
behaviour specification; similarly, for how the invariants are respected. However, subsequent actions
may be either considered as internal or as interactions with other objects on their open interfaces, if
any.

To derive engineering interfaces, profiles must be developed. The description of a profile has four
parts:

– communication protocols, e.g. CMISE/CMIP, SNMP, etc. The choice will have an
influence on the engineering language;

– managed resources, e.g. list the resources that must be managed in the system (networkTPs,
subNetworkConnections, subnetworks, etc.);

– functions, e.g. subnetwork connection configuration management and monitoring of
networkCTPs and subnetworkConnections;

– level of abstraction, e.g. depending on whether the profile is described from the client
perspective or from the provider perspective.

As an example, consider a Q3 interface to an SDH ring, where:

– CMISE/CMIP is supported at the interface;

– only subnetworks and subnetworkConnections are managed. This can be easily derived from
the enterprise contract specifications;

Recommendation G.851.1 (11/96) 53

– only subnetwork connection configuration and monitoring are expected. This can be easily
derived from the enterprise contract specifications;

– the client view is only described.

Thus, an ensemble called "SNC" configuration and monitoring in a SDH ring can be described made
up of:

1) Requirements which are captured in the enterprise contract specifications of services.

2) Scenarios which are captured in the enterprise contract specifications of services (basic
services, enhanced services).

3) Resources, derived from the enterprise contract specifications of services and from the
information specification of services.

4) Managed object specifications, which are part of the engineering specification.

5) Managed object conformance statements.

Modelling guidelines have to be defined and respected for managed object specifications. In
particular, differences may appear in models depending on how to realize the interobject
relationships mapping. An example is whether the relationship between a connection performer and
the subnetwork is realized either through name binding between managed object classes or in
conditional packages which may be imported into managed object classes (note that CMISE was
selected, tightly coupled with full GDMO at the engineering viewpoint).

The resulting managed object class and package definitions would be as follows:

subnetwork MANAGED OBJECT CLASS
DERIVED FROM "Recommendation X.721 | ISO/IEC 10165-2 : 1992":top;
CONDITIONAL PACKAGES

sncConfigurationPackage PACKAGE
BEHAVIOUR

sncConfigurationPackageBehaviour BEHAVIOUR
DEFINED AS " ...";

PRESENT IF "...";;;
REGISTERED AS {...};

subnetworkConnection MANAGED OBJECT CLASS
DERIVED FROM "Recommendation X.721 | ISO/IEC 10165-2 : 1992":top;
CONDITIONAL PACKAGES

sncMonitoringPackage PACKAGE
BEHAVIOUR

sncMonitoringPackageBehaviour BEHAVIOUR
DEFINED AS " ...";

PRESENT IF "...";;;
REGISTERED AS {...};

sncConfigurationPackage PACKAGE
BEHAVIOUR ...
ACTIONS

setupSNCPointToPoint,
setupSNCPointToMultiPoint,
releaseSNC;

REGISTERED AS {...};

sncMonitoringPackage PACKAGE
BEHAVIOUR ...
NOTIFICATIONS

operationalStateValueChangeNotification;
REGISTERED AS {...};

54 Recommendation G.851.1 (11/96)

setupSNCPointToPoint ACTION
BEHAVIOUR

setupSNCPointToPointBehaviour BEHAVIOUR
DEFINED AS " See the definition of the behaviour of the setupSNCPointToPoint

operation of the computational interface scmConfiguration ";;
MODE CONFIRMED;
WITH INFORMATION SYNTAX see the INPUT PARAMETERS construct of the

operation setupSNCPointToPoint;
WITH REPLY SYNTAX see the OUTPUT PARAMETERS construct of the

operation setupSNCPointToPoint;
REGISTERED AS {...};

As much as possible, convergence should be achieved between resulting GDMO specifications and
existing managed object classes libraries in two ways: reutilization of generic managed object classes
for specific purposes or enhanced managed object class libraries starting from specific models.

Recommendation G.851.1 (11/96) 55

APPENDIX V

Example specification development process

This process may be used to develop a complete set of specifications based on this methodology. See
Figure V.1.

T1521180-96

Engineering
Process

Enterprise
specification

Information
specification

Computational
specification

Specification
of management

services

Functional
architecture of

transport networks

Abstraction for
management

Engineering
constraints

Modelling
Guidelines

Information specification
for the management of a

transport network

Engineering
specification

Generic
models

Figure V.1/G.851.1 – Specification development process

APPENDIX VI

Inter-viewpoint mapping

VI.1 Approach

The process used to derive the specifications for the network level model using the RM-ODP
framework has resulted in a variety of relationships between elements (e.g. role, information object
and static schema) associated with different viewpoints. It is of interest to characterize these
inter-viewpoint relationships in terms of two principal types of relationships: influence and
reference. The influence relationships are further differentiated as having either strong (or
determining) influence or weaker (affecting) influence. A reference relationship borrows or maps

56 Recommendation G.851.1 (11/96)

some or all of the information from one element to another. To avoid redundancy, the relationships
are described only in the context of the related element within the viewpoint that is "closest" to the
implementation specification (engineering). Thus, no inter-viewpoint relationships are discussed in
the context of the enterprise viewpoint.

Figure VI.1 depicts the inter-viewpoint relationships considered to be determining and reference. A
determining relationship is indicated by an arrow pointing from the influencing element to the
influenced element. A reference relationship is shown as a line without arrowheads. Each of these
relationships as well as other affecting relationships are described in the subclause below
corresponding to the viewpoint of the element closest to the implementation specification. The
engineering viewpoint is not addressed using this model since it is addressed in a separate context
using an ensemble technique.

T1521190-96

ComObj

Role

Policy

ActionActivityCommunity
[purpose]

Attr
InfObj

InfRel

Static
schema

Dynamic
schema

Inf

Comp

Operation

I/O param.

Raised exc.

Behaviour

Determining relationship

Reference

Ent

Com interface

Figure VI.1/G.851.1 – Inter-viewpoint relationships

VI.2 Information viewpoint mappings

Key elements within the information viewpoint are information objects and attributes, information
relationships, static schema and dynamic schema.

Recommendation G.851.1 (11/96) 57

VI.2.1 Information objects and relationships

This selection of information objects and relationships for the information viewpoint is determined
principally by the resource roles defined in the enterprise viewpoint. However, information objects
and relationships may also be determined by community policies, action policies and activity
policies. Specific attributes associated with information objects are determined by the community
purpose and/or community actions. The need to include attributes in the information viewpoint may
be affected by community policies and action policies.

VI.2.2 Static schema

The definition of a static schema in the information viewpoint is determined by one or more
enterprise community action policies. The roles associated with a static schema reference
information objects; invariants reference information relationships. Enterprise community policies
affect static schema.

VI.2.3 Dynamic schema

Dynamic schema are defined to provide a way of referring to particular transitions between static
schema. Dynamic schema are determined by actions.

VI.3 Computational viewpoint mappings

Key elements in the computational viewpoint are operations, computational interfaces and
computational objects. Operations are characterized by input parameters, output parameters, raised
exceptions, and behaviour. Computational interfaces represent assemblies of operations.
Computational objects represent assemblies of computational interfaces with definitions of
constraints on the interfaces. The need to allow for distribution is a key driver of the computational
viewpoint, but is not included in the discussion of inter-viewpoint relationships.

VI.3.1 Computational operation

The general nature of an operation as well as each operation attribute is determined by community
action (enterprise viewpoint) and dynamic schema (information viewpoint). A given operation may
represent one or more community actions. Both input and output parameters reference information
viewpoint attributes. Raised exceptions are generally determined by static schema invariants.
Behaviour is determined principally on the basis of information viewpoint static schema. In
particular, pre-conditions and post-conditions of an operation BEHAVIOUR are determined by static
schema; PARAMETER MATCHING associates (references) particular roles in each static schema
with particular information objects.

VI.3.2 Computational interface

The definition of a computational interface in terms of its comprised operations is determined by
roles defined in the enterprise viewpoint. The nature of the interface (client or server) is also
determined by the type of role.

VI.3.3 Computational object

The definition of a computational object as a collection of computational interfaces is determined
principally by needs of the computational viewpoint, and thus is not strongly related to elements
within other viewpoints.

58 Recommendation G.851.1 (11/96)

APPENDIX VII

Guidelines for the use of Z in the information viewpoint

VII.1 Introduction

The formal parts of the information viewpoint specification have been specified using the Z notation.
The schema notation of Z is not used directly to describe the object and relationship types that define
the information viewpoint. Rather, the specification is based on two sets (OBJECT and
RELATIONSHIP) that are opaque abstractions of all the possible object and relationship instances of
an application. The system is described in terms of a set of mappings from the base sets to object and
relationship characteristics. These mappings, taken together, describe the actual objects and
relationships that comprise the system at a given time.

The attributes of an object and the role players in a relationship must be determined from the
appropriate mappings. Z schemas are used to group these mappings in a way consistent with the
concepts of object type declaration, as described in detail below. Each type (attribute, object or
relationship type) is defined by two Z schemas; the first schema declares the components needed to
define the type, and expresses its static invariants; the second defines the permitted state transitions
for the type. The name of the first schema consists by convention of the name of the type followed by
the suffix _Static; the name of the second schema similarly appends the suffix _Dynamic.

VII.2 Z notation review

VII.2.1 Schemas

Z is a formal notation based on set theory and first order predicate logic. The basic modelling
concept in Z is the set, upon which more elaborate structure can be built. For example, a function is
simply a (possibly infinite) set of ordered pairs. A set may be a given set (without internal structure
of its members visible), may be defined by extension (by enumerating its elements) or may be
defined by comprehension (by providing a base set and a predicate that all potential elements should
verify). Encapsulation is provided in Z by the schema notation, which may be used in a number of
ways. In the current specification, schemas are only used to encapsulate declarations and invariants
for labelling and reuse. A named schema in Z has the following form:

________ Schema-name __
Declaration

Predicate

where:

• declaration is composed of a list of variables and their types (the sets to which their values
belong); and

• predicate is a (possibly empty) list of conditions that the variable values must satisfy.

After this declaration, schema-name may be used in the declaration part of a subsequent schema,
with the effect of adding declaration and predicate to the declaration and predicate parts of the
including schema.

A standard Z convention typically used for describing state transitions is that the declaration
∆schema-name declares two copies of the variables in schema-name, one set of variables being
decorated with a prime (Ô). Primed variables are interpreted as post-state variables, unprimed as
pre-state.

Recommendation G.851.1 (11/96) 59

VII.2.2 Symbols

Z provides a rich variety of notation applying to sets and to logic, which allows compact
specification of data and functional aspects of a system. In the specification of information objects
and relationships, only a small subset of these symbols is used, which are summarized below:

1) ∈: set membership.

2) ∪: set union.

3) ∩: set intersection.

4) ⊆: subset relation.

5) #: number of members of a set.

6) --+-->: a partial function. If X and Y are sets, X --+--> Y is the set of partial functions from
X to Y. These are relations which relate each member x of X to at most one member of Y.

7) dom, ran: domain and range of a relation (in particular, a function). If R is a binary relation
between X and Y, the domain of R (dom R) is the set of all members of X which are related
to at least one member of Y by R. The range of R (ran R) is the set of all members of Y to
which at least one member of X is related by R.

8) ∼: relational inverse. If relation R maps a to b, then R∼ maps b to a.

9) (| |): relational image. If R is a relation from X to Y, then for any subset S of X, R(|S|) is the
set of values in Y related by R to a value in S.

10) \/: logical disjunction (or).

11) /\: logical conjunction (and).

12) ⇔: logical implication.

13) ∀: universal quantifier. The predicate ∀ x: S | pre • cond, where pre and cond are logical
formulas, may be read as "for each element x of set S satisfying the condition pre, the
predicate cond holds".

14) ∃: existential quantifier. The predicate ∃ x : S | pre • cond may be read as "there exists an
element x in set S satisfying the condition pre, for which the predicate cond holds".

15) F: finitepower set. If S is a set, F S is the set of all the subsets of S.

16) ∆: delta ("operation") schema naming convention (see VII.2.1).

NOTE – In this Appendix, many of the symbols above have a slightly different appearance from the actual
specifications, where specialized fonts have been used.

VII.2.3 Example

The fragment of Z below introduces two given sets X and Y, then declares a schema S with two
variables: a, of type X (i.e. a member of X) and f, a partial function from X to Y. The predicate of
S asserts that a is one of the elements of X mapped by f, and that there are at least two elements of
Y that f maps to.

[X, Y]

________ S ___
a: X
f: X --+--> Y

a ∈ dom f /\ #(ran f) > 1

60 Recommendation G.851.1 (11/96)

VII.3 Specification conventions

The specification of a system consists of the attributes that objects may have, the object classes
themselves, and the relationship classes. Z’s schema notation is used to provide encapsulated
declarations of all the mappings necessary to specify a given type. These mappings have domains
within the given sets OBJECT (the set of all potential objects), and RELATIONSHIP (the set of all
potential relationships).

[OBJECT, RELATIONSHIP]

VII.3.1 Attribute specification

An attribute type is modelled by a partial function (with the same name as the type) over the set of
potential objects. The domain of the function is the set of instances of any object class that has that
attribute. The values the function can take are the values the attribute can have. This range may be
specified by the usual set enumeration and constructions of Z, and is declared in the _Static schema.

An attribute type may have dynamic behaviour constraints. These are declared in the _Dynamic
schema, which refers to both pre- and post-state.

For example, the attribute number might be declared as:

________ number _Static ___
number: OBJECT --+--> Integer

∀ n: ran number • n > 5

If the number attribute of an object never changed, the dynamic schema might be:

________ number_Dynamic ___
∆number_Static

∀ obj: dom number ∪ dom number' • number'(obj) = number(obj)

indicating that an object that exists before and after a state transition of the system cannot change its
number attribute.

VII.3.2 Object specification

In the specification style followed here, a schema describing the attributes of a single object instance
in not defined. Instead, for each object type, a set of objects (the set having the name of the type) is
defined. This object class is the set of all the actual objects of the system that satisfy the properties of
the object type (in ODP terminology, an object class is the set of all the actual instances of an object
type). The notion of instantiation (in ODP sense) is not modelled in the information viewpoint.
Moreover, a Z schema defining an object class is not a template that allows the instantiation of an
object of this class.

There are several structuring conventions that must be followed in order to describe object attributes,
inheritance and invariants.

Recommendation G.851.1 (11/96) 61

attributes

To specify that all the objects of a class have a given attribute, the _Static schema for that attribute
must be included (explicitly or by inclusion of another object schema) in the declaration section of
the object _Static schema. In addition, the predicate of the object schema must ensure that the
attribute mapping applies to each member of the class (that is, the class members form a subset of the
domain of the mapping).

subtyping

To specify a subtyping relationship (represented in GDMO by the mechanism of class inheritance),
the _Static schema for each super-class (more than one for multiple inheritance) must be included in
the declaration section of the object _Static schema. In addition, the predicate of the object schema
must ensure that the members of the subclass are all members of the super-class(es) as well.

invariants

Constraints on the combinations of attribute values permitted for an object may be expressed in the
predicate of the object _Static schema.

transitions

To specify the valid state transitions for an object type, a _Dynamic schema must be specified for the
type. The signature for the schema must be the usual Z delta schema (describing primed and
unprimed copies of the static variables), supplemented as follows: for each schema included in the
_Static schema to describe inheritance and attributes of the type, a corresponding _Dynamic schema
must be included in the object _Dynamic schema. In addition, further constraints may be added to the
predicate of the object _Dynamic schema.

example

Suppose an object type super has already been defined. Then a subclass sub that adds an extra
attribute could be defined by:

________ sub_Static ___
sub: F OBJECT
super_Static
number_Static

sub subseteq super
 sub subseteq dom number

________ sub_Dynamic ___
∆sub_Static
super_Dynamic
number_Dynamic

VII.3.3 Relationship specification

Similarly, a relationship type is specified by describing the relationship class as a set of instances (in
this case a subset of the set RELATIONSHIP, rather than OBJECT), together with mappings that
in this case must describe roles as well as attributes.

62 Recommendation G.851.1 (11/96)

roles

To specify that all the relationships of a class involve a particular role, the relationship _Static
schema must declare (directly or by inheritance) an appropriately named partial function over the set
of all possible relationship instances. In addition, the predicate of the relationship schema must
ensure that the role mapping applies to each member of the relationship class.

role compatibility

The object classes compatible with a role are specified by including an appropriate set inclusion
condition in the predicate of the relationship _Static schema. For a given relationship type, the range
of the partial function modelling a role is constrained to be a subset of the union of the object classes
compatible with this role.

role cardinality

The cardinality of a role may be specified in two ways. First, the declaration of the role may imply a
certain cardinality: if the function modelling the role has the set OBJECT as its range set, the role has
implied cardinality (1..1); if the function has as its range set F OBJECT (the set of subsets of
OBJECT), the role has implied cardinality (0..N). In the latter case, an explicit predicate can restrict
the cardinality further.

subtyping

Similarly to the object types, subtyping is represented by schema inclusion of the super-type(s) and
predicate(s) that ensure that the new relationship class is a subset of the super-class(es). In addition,
the object types that are permitted to play an inherited role may be restricted to a subset of the
inherited object types by adding a predicate on the range of the appropriate role mapping.

invariants and attributes

Invariants for a relationship are specified in the predicate of the _Static schema. Since these
invariants typically involve the attributes of the objects playing the roles, the _Static schema for any
attribute referred to in an invariant must be included in the declarations for the relationship _Static
schema.

transitions

In the same way as for the object transitions, the _Dynamic schema for a relationship is based on a
delta of its _Static schema, and for any schema included in the _Static schema there must be a
corresponding _Dynamic declaration in the relationship _Dynamic schema.

Recommendation G.851.1 (11/96) 63

example

Suppose there was a relationship rel involving two roles: firstRole, played by a unique object of type
super and secondRole, played by at least two objects of type sub, each of which must have a value
of 10 as a number attribute. This might be specified by:

________ rel_Static __
rel: F RELATIONSHIP
 firstRole: RELATIONSHIP --+--> OBJECT
 secondRole: RELATIONSHIP --+--> F OBJECT
 super_Static
 sub_Static
 number_Static

rel subseteq dom firstRole
rel subseteq dom secondRole

∀ R: rel•
firstRole(R) ∈ super /\
secondRole(R) ∈ F sub

∀ R: rel•
#(secondRole R) > 1

∀ R: rel•
∀ s: (secondRole R) • number(s) = 10

(Note that there are more compact ways of specifying the properties above. However, it is important
to follow a systematic structure which allows easy identification of the invariants described in the
informal specification.)

________ rel_Dynamic __
∆rel_Static
super_Dynamic
sub_Dynamic
number_Dynamic

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communication

Series Z Programming languages

	ITU-T Rec. G.851.1 (11/96) MANAGEMENT OF THE TRANSPORT NETWORK – APPLICATION OF THE RM-ODP FRAMEWORK
	Source
	CONTENTS
	MANAGEMENT OF THE TRANSPORT NETWORK – APPLICATION OF THE RM-ODP FRAMEWORK
	1 Scope
	1.1 Objectives
	1.2 Principles
	1.3 Structure of this Recommendation

	2 References
	3 Definitions
	3.1 contract type
	3.2 contract instance

	4 Abbreviations used in this Recommendation
	5 Methodology overview
	5.1 Introduction
	5.2 Using RM-ODP viewpoints in a specification design methodology
	5.3 Tracing between the viewpoints

	6 Enterprise viewpoint
	6.1 Scope of the enterprise viewpoint
	6.2 Concepts
	6.3 Extension of communities
	6.4 Domains

	7 Information viewpoint
	7.1 Information viewpoint

	8 Computational viewpoint
	8.1 Computational concepts

	9 Engineering viewpoint
	9.1 Introduction
	9.2 Engineering concepts
	9.3 OSI management based engineering viewpoint
	9.4 The distributed processing environment

	10 The use of ensembles in the definition of network management applications
	10.1 Scope

	ANNEX A
	Template and guidelines for the enterprise viewpoint specification
	A.1 Informal definition of the enterprise template
	A.2 Formal definition of the enterprise template
	ANNEX B
	Information viewpoint structure
	B.1 Introduction
	B.2 Model descriptions
	B.3 Structure of the specification
	ANNEX C
	Computational viewpoint template description
	C.1 Introduction
	C.2 Guidelines
	C.3 Formal template definitions
	C.4 Example
	ANNEX D
	OSI management engineering viewpoint templates and guidelines
	D.1 Templates
	D.2 Possible mappings to managed object definitions
	ANNEX E
	Label syntax
	E.0 Introduction
	E.1 BNF definition of label syntax
	E.2 Enterprise viewpoint label tree structure
	E.3 Information viewpoint label tree structure
	E.4 Computational viewpoint label tree structure
	ANNEX F
	Ensemble template
	F.1 The ensemble technique
	F.2 Ensemble template
	APPENDIX I
	Examples of templates and specifications guidelines
	I.1 Enterprise services versus contracts
	APPENDIX II
	Representation of combined states
	APPENDIX III
	Service realization description
	III.1 Scope
	III.2 Concepts
	APPENDIX IV
	Example of use of the ensemble concepts and format
	APPENDIX V
	Example specification development process
	APPENDIX VI
	Inter-viewpoint mapping
	VI.1 Approach
	VI.2 Information viewpoint mappings
	VI.3 Computational viewpoint mappings
	APPENDIX VII
	Guidelines for the use of Z in the information viewpoint
	VII.1 Introduction
	VII.2 Z notation review
	VII.3 Specification conventions

