

	[image: Fond-Rec_e]

	
International Telecommunication Union

	
	

	[bookmark: dnume]ITU-T
	G.722

	[bookmark: ddatee]TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU
	[bookmark: dnume2]Amendment 1
(11/2010)

	[bookmark: dsece]
	SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS
Digital terminal equipments – Coding of voice and audio signals

	[bookmark: c1tite]
	7 kHz audio-coding within 64 kbit/s
Amendment 1: New Annex B with superwideband embedded extension

	
	[bookmark: dnum2e]Recommendation ITU‑T G.722 (1988) – Amendment 1

[image: logo_E]
[bookmark: c2tope]
ITU-T G-SERIES RECOMMENDATIONS
TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS
	
	

	INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS
	G.100–G.199

	GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER-TRANSMISSION SYSTEMS
	G.200–G.299

	INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES
	G.300–G.399

	GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES
	G.400–G.449

	COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY
	G.450–G.499

	TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS
	G.600–G.699

	DIGITAL TERMINAL EQUIPMENTS
	G.700–G.799

	General
	G.700–G.709

	Coding of voice and audio signals
	G.710–G.729

	Principal characteristics of primary multiplex equipment
	G.730–G.739

	Principal characteristics of second order multiplex equipment
	G.740–G.749

	Principal characteristics of higher order multiplex equipment
	G.750–G.759

	Principal characteristics of transcoder and digital multiplication equipment
	G.760–G.769

	Operations, administration and maintenance features of transmission equipment
	G.770–G.779

	Principal characteristics of multiplexing equipment for the synchronous digital hierarchy
	G.780–G.789

	Other terminal equipment
	G.790–G.799

	DIGITAL NETWORKS
	G.800–G.899

	DIGITAL SECTIONS AND DIGITAL LINE SYSTEM
	G.900–G.999

	MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER-RELATED ASPECTS
	G.1000–G.1999

	TRANSMISSION MEDIA CHARACTERISTICS
	G.6000–G.6999

	DATA OVER TRANSPORT – GENERIC ASPECTS
	G.7000–G.7999

	PACKET OVER TRANSPORT ASPECTS
	G.8000–G.8999

	ACCESS NETWORKS
	G.9000–G.9999

	
	

For further details, please refer to the list of ITU-T Recommendations.

	[bookmark: irecnoe]Recommendation ITU-T G.722
7 kHz audio-coding within 64 kbit/s
[bookmark: imakespacee][bookmark: _Toc286912276][bookmark: _Toc286916639][bookmark: _Toc286928299][bookmark: _Toc295815360][bookmark: _Toc301337280][bookmark: _Toc301769951][bookmark: _Toc301786899]Amendment 1

New Annex B with superwideband embedded extension

	[bookmark: isume]Summary
Annex B describes a scalable superwideband (SWB, 50‑14000 Hz) speech and audio coding algorithm operating at 64, 80 and 96 kbit/s. The ITU-T G.722 superwideband extension codec is interoperable with ITU-T G.722.
The output of the ITU-T G.722 SWB coder has a bandwidth of 50-14000 Hz. The coder operates with 5 ms frames, has an algorithmic delay of 12.3125 ms and a worst case complexity of 22.76 WMOPS. By default, the encoder input and decoder output are sampled at 32 kHz.
The superwideband encoder for improved ITU-T G.722 64 kbit/s core produces an embedded bitstream structured in two layers corresponding to two available bit rates from 80 to 96 kbit/s. The superwideband encoder for improved ITU-T G.722 56 kbit/s core produces an embedded bitstream structured in one layer corresponding to one available bit rate of 64 kbit/s. This 64 kbit/s mode is also scalable with the 80 kbit/s and 96 kbit/s modes. The bitstream can be truncated at the decoder side or by any component of the communication system to instantaneously adjust the bit rate to the desired value (96 kbit/s 80 kbit/s 64 kbit/s) with no need for out-of-band signalling.
The underlying algorithm includes three main parts: higher band enhancements, bandwidth extension (BWE) and transform coding in modified discrete cosine transform (MDCT) domain based on algebraic vector quantization (AVQ).
Annex B contains an electronic attachment with the ANSI C source code, which is an integral part of this annex.

	History
	Edition
	Recommendation
	Approval
	Study Group
	

	[bookmark: ihistorye]1.0
	ITU-T G.722
	1987-02-28
	XVIII
	

	2.0
	ITU-T G.722
	1988-11-25
	
	

	2.1
		ITU-T G.722 (1988) App. II
	1988-11-25
	
	

	2.2
		ITU-T G.722 (1988) Annex A
	1993-03-12
	XV
	

	2.3
		ITU-T G.722 (1988) App. III
	2006-11-24
	16
	

	2.3
		ITU-T G.722 (1988) App. IV
	2006-11-24
	16
	

	2.4
		ITU-T G.722 (1988) App. IV
	2007-07-06
	16
	

	2.5
		ITU-T G.722 (1988) App. IV
	2009-11-06
	16
	

	2.6
		ITU-T G.722 (1988) Amend. 1
	2010-11-13
	16
	

	2.7
		ITU-T G.722 (1988) Amend. 2
	2011-03-25
	16
	

	

86	Rec. ITU‑T G.722 (1988)/Amd.1 (11/2010)
		Rec. ITU‑T G.722 (1988)/Amd.1 (11/2010)	iii

FOREWORD
The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.
[bookmark: iitexte]The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU‑T study groups which, in turn, produce Recommendations on these topics.
The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.
In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE
[bookmark: iitextea]In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.
Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS
[bookmark: iitexteb]ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.
As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at http://www.itu.int/ITU-T/ipr/.

[bookmark: iiannee] ITU 2011
All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Table of Contents
	Page
[bookmark: _GoBack]B.1	Scope		1
B.2	Normative references		1
B.3	Abbreviations and acronyms		1
B.4	Conventions		2
B.5	General description of the coder		5
B.6	Functional description of the encoder		7
B.7	Functional description of the decoder		50
B.8	Bit-exact description of the ITU-T G.722 superwideband extension coder		85
Bibliography		87

Electronic attachment: ANSI C source code for the superwideband extension coder

[bookmark: p1rectexte]
Recommendation ITU-T G.722
[bookmark: _Ref130380544][bookmark: _Toc132440761][bookmark: _Toc185419139][bookmark: _Toc189574580][bookmark: _Toc194901129][bookmark: _Toc283385066][bookmark: _Toc286912278][bookmark: _Toc286916641][bookmark: _Toc286928301]7 kHz audio-coding within 64 kbit/s
[bookmark: _Toc295815361][bookmark: _Toc301337281][bookmark: _Toc301769952][bookmark: _Toc301786900]Amendment 1

New Annex B with superwideband embedded extension
(This annex forms an integral part of this Recommendation.)
[bookmark: _Toc295815363][bookmark: _Toc301337282][bookmark: _Toc301769953][bookmark: _Toc301786901]B.1	Scope
This annex[footnoteRef:1] contains the description of an algorithm extending ITU-T G.722 for the scalable coding of superwideband speech and audio signals at bitrates from 64 to 96 kbit/s. Part of the bitstream generated by this ITU-T G.722 superwideband extension codec is interoperable with ITU-T G.722. [1: 	This annex includes an electronic attachment containing the ANSI C source code for the superwideband extension coder.]

This annex is organized as follows. The references, definitions, abbreviations and acronyms, and conventions used throughout this annex are defined in clauses B.2, B.3, and B.4, respectively. Clause B.5 gives a general outline of the ITU-T G.722 superwideband extension algorithm. The ITU-T G.722 superwideband extension encoder and decoder principles are discussed in clauses B.6 and B.7, respectively. Clause B.8 describes the software that defines this coder in 16-32 bits fixed-point arithmetic.
[bookmark: _Ref130380775][bookmark: _Toc132440762][bookmark: _Toc185419140][bookmark: _Toc189574581][bookmark: _Toc194901130][bookmark: _Toc283385067][bookmark: _Toc286912279][bookmark: _Toc286916642][bookmark: _Toc286928302][bookmark: _Toc295815364][bookmark: _Toc301337283][bookmark: _Toc301769954][bookmark: _Toc301786902]B.2	Normative references
The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.
[ITU-T G.191]	Recommendation ITU-T G.191 (2010), Software tools for speech and audio coding standardization.
[bookmark: _Ref130380978][bookmark: _Toc132440763][bookmark: _Toc185419141][bookmark: _Toc189574585][bookmark: _Toc194901134][bookmark: _Toc283385068][bookmark: _Toc286912280][bookmark: _Toc286916643][bookmark: _Toc286928303][bookmark: _Toc295815365][bookmark: _Toc301337284][bookmark: _Toc301769955][bookmark: _Toc301786903]B.3	Abbreviations and acronyms
The acronyms used in this annex are summarized in Table B.3-1.
	[bookmark: _Ref130805980][bookmark: _Ref264998024][bookmark: _Toc132440858]Table B.3-1 – Glossary of acronyms

	Acronym
	Description

	ADPCM
	Adaptive Differential Pulse Code Modulation

	AVQ
	Algebraic Vector Quantization

	BWE
	Bandwidth Extension

	DeMUX
	Demultiplexer

	FERC
	Frame Erasure Concealment

	FIR
	Finite Impulse Response

	HB
	Higher Band (4-8 kHz)

	HBE
	Higher Band Enhancement

	iMDCT
	Inverse MDCT

	LB
	Lower Band (0-4 kHz)

	LP
	Linear Prediction

	LPC
	Linear Prediction Coding

	LSB
	Least Significant Bit

	LTP
	Long-Term Prediction

	MDCT
	Modified Discrete Cosine Transform

	MSB
	Most Significant Bit

	MUX
	Multiplexer

	NB
	Narrow Band

	OLA
	OverLap and Add

	QMF
	Quadrature-Mirror Filterbank

	RMS
	Root Mean Square

	SHB
	Super Higher Band (8-16 kHz)

	SWB
	Superwideband (0-16 kHz)

	TDAC
	Time Domain Aliasing Cancellation

	VQ
	Vector Quantization

	WB
	Wideband (0-8 kHz)

	WMOPS
	Weighted Million Operations Per Second

[bookmark: _Toc132440764][bookmark: _Toc185419142][bookmark: _Ref189416420][bookmark: _Ref189416454][bookmark: _Toc189574586][bookmark: _Toc194901135][bookmark: _Toc283385069][bookmark: _Toc286912281][bookmark: _Toc286916644][bookmark: _Toc286928304][bookmark: _Toc295815366][bookmark: _Toc301337285][bookmark: _Toc301769956][bookmark: _Toc301786904]B.4	Conventions
The notational conventions are detailed below:

–	Time-domain signals are denoted by their symbol and a sample index between parentheses, e.g., . The variable is used as sample index.

–	Frequency-domain transforms are denoted by converting the related time-domain signal to capital letters, e.g., is the transform of . The variable is used as coefficient index.

–	Superscript indices between parentheses (e.g.,) are used to indicate time-dependency of variables. The variable refers, depending on the context, to either a frame or sub‑frame index.

–	Recursion indices are identified by a superscript between square brackets (e.g.,).
–	Subscript indices identify a particular element in a coefficient array.

–	The symbol ^ identifies a quantized version of a parameter (e.g.,).
–	Parameter ranges are given between square brackets, and include the boundaries (e.g., [0.6, ..., 0.9]).

–	The sign function gives the polarity of the value and is denoted as sgn(x), where .

–	Integer operator denotes rounding of towards minus infinity ().

–	Absolute value calculation of , performed with saturation operation, are denoted with .

–	The function denotes the rounding to the nearest integer, i.e., .

–	In some parts, bit special operators are used, where and represent the AND bit‑operator and the XOR bit-operator, respectively.
–	The constants with "0x" prefix mean that the values are noted in hexadecimal.

–	-bit right-shift operations of a variable are denoted as multiplications with floor of 2 to the power of , i.e., .
–	The floating-point numbers used are rounded versions of the values used in the 16‑bit fixed‑point ANSI C implementation.
Table B.4-1 lists the most relevant symbols used throughout this annex.
	[bookmark: _Ref130806102][bookmark: _Ref264998031][bookmark: _Toc132440859]Table B.4-1 – Glossary of most relevant symbols

	Type
	Name
	Description

	Signals
	

	Superwideband input signal

	
	sWB(n)
	Wideband input signal or wideband signal after QMF processing (decimated)

	
	

	Pre-processed superwideband input signal

	
	sLB(n)
	Lower band signal after QMF processing (decimated)

	
	s'LB(n)
	Lower band signal with noise feedback

	
	

	Super higher band signal after QMF processing (decimated)

	
	

	Spectral folded super higher band signal after QMF processing (decimated)

	
	sHB(n)
	Higher band signal after QMF processing (decimated)

	
	

	Super higher band MDCT coefficients

	
	

	Normalized super higher band MDCT coefficients

	
	

	Ordered sub-band normalized super higher band MDCT coefficients for SWB layer 1

	
	

	Lower band signal after decoding

	
	

	Lower band signal after FERC decoding

	
	

	Higher band signal after decoding

	
	

	Higher band signal after FERC decoding

	
	

	Super higher band MDCT error coefficients in SHB mode 1

	
	

	Decoded sub-band de-normalized super higher band MDCT coefficients

	
	

	Super higher band MDCT excitation coefficients for BWE

	
	

	BWE decoded super higher band MDCT coefficients

	
	

	Decoded super higher band MDCT coefficients after BWE/AVQ adaptation

	
	

	Decoded super higher band MDCT coefficients before inverse MDCT

	
	

	Decoded wideband MDCT coefficients

	
	

	Decoded wideband signal from ITU-T G.722

	
	

	Decoded superwideband signal

	Parameters
	

	QMF coefficient set 1

	
	

	QMF coefficient set 2

	
	

	Higher band MDCT overlap window

	
	

	
RMS value of weighted MDCT coefficients

	
	

	
Gain value of weighted normalized MDCT coefficients in decoder

	
	

	Adjusted super higher band global gain

	
	

	Decoded adjusted super higher band global gain

	
	

	Decoded spectral envelope of the SHB spectrum

	
	

	Normalized spectral envelope of the SHB spectrum

	
	

	Decoded normalized spectral envelope of the SHB spectrum

	
	

	Time envelope of the SHB signal

	
	

	Decoded time envelope of the SHB signal

	
	cdet
	Problematic zero sub-bands detection counter in SHB

	
	f0, f1, f0,s1, f0,s2
	Problematic zero sub-bands detection flags in SHB

	
	

	G722EL0 bitstream

	
	

	G722EL1 bitstream

	
	

	Super wide band signal class

	
	

	Attenuation factor of bandwidth switching from wideband to superwideband

	
	

	Additional attenuation factor of bandwidth switching

	
	

	Weighting factor for the spectral envelope of bandwidth switching from superwideband to wideband

	
	

	Attenuation factor of bandwidth switching from superwideband to wideband

	
	Eavg, Emax
	Average and maximum energies of zero sub-bands in SHB

	
	rat(j), ratmax
	Energy ratio in SHB spectrum and its maximum value

	
	Rmax1, Rmax2
	Maximum correlations in zero sub-bands filling in SHB for SWB layers 1 and 2

	
	δ1, δ2
	Lags with the maximum correlation in zero sub-bands filling in SHB

	
	φ1, φ2
	Energy correction factors in zero sub-bands filling in SHB

	
	CAVQ
	Base codebook in AVQ coding

	
	cj
	Lattice point in Gosset lattice

	
	zj
	Point in the RE8 base codebook

	
	vj
	Voronoi extension in AVQ coding

	
	nj
	AVQ codebook number

	
	

,
	Vector index in base codebook and 8-dimensional Voronoi index in AVQ coding

	
	

	Voronoi extension order in AVQ coding

	
	

	Scaling factor in AVQ coding

	
	βavq
	Low energy MDCT coefficients constant for AVQ

	
	

	Perceptual importance ordering vector

[bookmark: _Toc283385070][bookmark: _Toc286912282][bookmark: _Toc286916645][bookmark: _Toc286928305][bookmark: _Toc295815367][bookmark: _Toc301337286][bookmark: _Toc301769957][bookmark: _Toc301786905]B.5	General description of the coder
The ITU-T G.722 superwideband extension coder has a monaural superwideband encoding/decoding capability and three scalable operational bitrate modes: ITU-T G.722 core R1sm/R2sm/R3sm. Here, "Rx" specifies the rate and R1, R2 and R3 correspond to 64, 80, and 96 kbit/s modes, respectively. The notation "sm" after the rate specifier indicates that the modes are in "superwideband monaural". The ITU-T G.722 core of R1sm works at 56 kbit/s, while the core of R2sm/R3sm works at 64 kbit/s.
The underlying algorithm includes three main parts: higher band enhancements based on higher resolution scalable 3 and 4 bit quantizers, bandwidth extension and transform coding in MDCT domain based on algebraic vector quantization.
[bookmark: _Ref184746700][bookmark: _Toc185419146][bookmark: _Toc189574590][bookmark: _Toc194901139][bookmark: _Toc283385071]B.5.1	Coder modes and bit allocation
ITU-T G.722 R1sm, R2sm and R3sm include wideband enhancement, and bandwidth extension. Meanwhile, ITU-T G.722 R2sm and R3sm also include algebraic vector quantization (AVQ) and bandwidth extension/algebraic vector quantization adaptation. Signal class is identified in the bandwidth extension module, i.e., TRANSIENT or non-TRANSIENT. Table B.5-1 illustrates the mode definition of the wideband and superwideband coder modes.
[bookmark: _Ref267053241]Table B.5-1 – Mode definition
	Coder Mode
	Description

	MODE_R0wm
	ITU-T G.722 R0wm, 56 kbit/s wide band

	MODE_R1wm
	ITU-T G.722 R1wm, 64 kbit/s wide band

	MODE_R1sm
	ITU-T G.722 R1sm, 64 kbit/s superwideband (R0wm core)

	MODE_R2sm
	ITU-T G.722 R2sm, 80 kbit/s superwideband (R1wm core)

	MODE_R3sm
	ITU-T G.722 R3sm, 96 kbit/s superwideband (R1wm core)

Table B.5-2 and Table B.5-3 give the bitrate of the layers and the coder modes. Layers G722EL0 and SWBL0 are combined to form R1sm bitstream. SWBL1 is added on top of R1sm to construct R2sm bitstream. Extra layers, G722EL1 and SWBL2, are added on top of R2sm to construct R3sm bitstream. Here, G722EL0 and G722EL1 are the layers that contain the enhanced ITU-T G.722 higher band bitstream. SWBL0 is the layer for bandwidth extension, and SWBL1/SWBL2 are used for algebraic vector quantization. Note that G722EL0 with 3.8 kbit/s is only used in non-TRANSIENT frames. The bitrates for SWBL0 are 8 kbit/s and 4.2 kbit/s for TRANSIENT and non-TRANSIENT frames, respectively.
[bookmark: _Ref263862970][bookmark: _Ref263335421]Table B.5-2 – Layer bit allocation
	Layer name
	Bits per frame
	Bitrate [kbit/s]

	
	TRANSIENT
	Non-TRANSIENT
	TRANSIENT
	Non-TRANSIENT

	G722EL0
	0
	19
	0.0
	3.8

	SWBL0
	40
	21
	8.0
	4.2

	SWBL1
	40
	8.0

	G722EL1
	40
	8.0

	SWBL2
	40
	8.0

[bookmark: _Ref263862980][bookmark: _Ref264215279]Table B.5-3 – The used layers in given coder modes
	Coder
mode
	Core
layer
(kbit/s)
	SWBL0 (TRANSIENT)
	G722EL1
	SWBL1
	SWBL2
	Overall
bitrate
(kbit/s)

	
	
	G722EL0
(non-
TRANSIENT)
	SWBL0
(non-
TRANSIENT)
	
	
	
	

	R1sm
	56
	x
	–
	–
	–
	64

	R2sm
	64
	x
	–
	x
	–
	80

	R3sm
	64
	x
	x
	x
	x
	96

Note that this bitstream structure is fully scalable, lower bitrates can be obtained by simply omitting certain parts of the bitstream at a higher bitrate.
[bookmark: _Toc260992252][bookmark: _Toc283385072]B.5.2	Input/output sampling rate
This coder operates with a 16-bit linear PCM digital signal sampled at 32 kHz as input to the encoder. Similarly, the format of the decoder output is 16-bit linear PCM with a sampling frequency of 32 kHz. Other input/output characteristics should be converted to 16-bit linear PCM with a 32 kHz sampling rate before encoding, or from 16-bit linear PCM to the appropriate format after decoding. The bitstream from the encoder to the decoder is defined within this annex.
[bookmark: _Toc264998373][bookmark: _Toc264998598][bookmark: _Toc264999318][bookmark: _Toc265160366][bookmark: _Toc265162194][bookmark: _Toc265162588][bookmark: _Toc265162643][bookmark: _Toc265588792][bookmark: _Toc265588985][bookmark: _Toc265589159][bookmark: _Toc265590608][bookmark: _Toc265591295][bookmark: _Toc265593977][bookmark: _Toc265594138][bookmark: _Toc265595274][bookmark: _Toc265747861][bookmark: _Toc265775595][bookmark: _Toc265781290][bookmark: _Toc265833657][bookmark: _Toc265834264][bookmark: _Toc265840881][bookmark: _Toc265841046][bookmark: _Toc265843266][bookmark: _Toc265849071][bookmark: _Toc265849908][bookmark: _Toc265850288][bookmark: _Toc265850587][bookmark: _Toc265850753][bookmark: _Toc185419148][bookmark: _Toc189574592][bookmark: _Toc194901141][bookmark: _Toc283385073]B.5.3	Algorithmic delay
The ITU-T G.722 superwideband extension coder has an algorithmic delay of 12.3125 ms. The delay contributions are listed below:
–	5 ms for input frame;
–	5 ms for the MDCT overlap-add;
–	1.375 ms for the QMF analysis-synthesis filterbank in ITU-T G.722 core (wideband);
–	0.9375 ms for QMF analysis-synthesis filterbank for superwideband layers.
[bookmark: _Toc185419149][bookmark: _Toc189574593][bookmark: _Toc194901142][bookmark: _Toc283385074]B.5.4	Computational complexity and storage requirements
The observed worst-case complexity and storage requirements in 16-bit words of the ITU-T G.722 superwideband extension coder (encoder plus decoder) are based on the basic operators of the ITU‑T STL2009 Software Tool Library in [ITU-T G.191] and are detailed in Table B.5-4, in function of the mode.
[bookmark: _Ref263339975]Table B.5-4 – Complexity of the ITU-T G.722-SWB coder
	Mode
	R1sm
	R3sm

	Worst case complexity (in WMOPS)
	Encoder
	7.926
	10.935

	
	Decoder, no FER
	9.923
	R2sm: 11.362
R3sm: 11.801

	
	Decoder, FER (Note)
	10.613
	R2sm: 11.400
R3sm: 11.825

	
	Overall
	18.539
	22.760

	Dynamic RAM and Static RAM
	4.634 kwords

	Data ROM
	2.973 kwords

	Program ROM
	4905 operators

	NOTE – Calculated 10.7% with frame erasure rate.

[bookmark: _Toc185419151][bookmark: _Ref187685184][bookmark: _Toc189574596][bookmark: _Toc194901145][bookmark: _Toc283385075][bookmark: _Toc286912283][bookmark: _Toc286916646][bookmark: _Toc286928306][bookmark: _Toc295815368][bookmark: _Toc301337287][bookmark: _Toc301769958][bookmark: _Toc301786906]B.6	Functional description of the encoder
[bookmark: _Toc185419144][bookmark: _Toc189574588][bookmark: _Toc194901137][bookmark: _Toc283385076]B.6.1	Encoder

The encoder block diagram for the ITU-T G.722 superwideband (SWB) extension is shown in Figure B.6‑1. A pre-processing high-pass filter is applied to the 32-kHz-sampled input signal to remove 0‑50 Hz components. The pre-processed signal is divided into two 16‑kHz-sampled wideband (0-8 kHz) and super higher band (8-16 kHz) signals, sWB(n) and sSHB(n), using a 32-tap quadrature mirror filterbank (QMF) applied to the 5 ms input frame size. The wideband signal sWB(n) is encoded with an ITU-T G.722 enhanced core encoder which produces an ITU-T G.722 bitstream. The super higher band signal sSHB(n) is encoded with a super higher band (SHB) encoder: after transformation into modified discrete cosine transform (MDCT) domain, the frequency domain coefficients SSHB(k) are encoded by bandwidth extension (BWE) and algebraic vector quantization (AVQ) algorithms with a scalable bitstream.

[bookmark: _Ref264997085][bookmark: _Ref264998121]Figure B.6-1 – High-level encoder block diagram of ITU-T G.722 superwideband extension
[bookmark: _Toc185419152][bookmark: _Toc189574597][bookmark: _Toc194901146][bookmark: _Toc283385077]B.6.2	Pre-processing high-pass filter

The pre-processing filter applied to the 32-kHz sampled input signal is defined as
	

	

	(B.6-1)

where is the filter output. The pre-processing high-pass filter is designed with a cutoff frequency at 50 Hz.
[bookmark: _Ref184024494][bookmark: _Toc185419153][bookmark: _Toc189574598][bookmark: _Toc194901147][bookmark: _Toc283385078]B.6.3	Analysis QMF

An analysis QMF, , is applied to the high-pass filtered input signal in order to split it into two 16-kHz-sampled signals; wideband signal and super higher band signal . The 32‑kHz-sampled wideband signal is obtained by filtering the 32 kHz sampled pre‑processed signal through a symmetric FIR low-pass filter with 32 coefficients given by:
	

	

	(B.6-2)

where are the filter coefficients. The 16 kHz sampled WB signal is then obtained by decimating by a factor of 2:
	

	

	(B.6‑3)

Similarly, the 16-kHz-sampled super higher band signal is obtained by filtering the 32 kHz sampled pre-processed signal through a FIR high-pass filter with 32 coefficients, then decimating the filter output signal sSWSH (n) by a factor of 2:
	

	

	(B.6-4)

	

	

	(B.6-5)

The high-pass and low-pass filter coefficients and have the following relationship:
	

	

	(B.6-6)

Therefore, and can be directly computed as follows:
	

	

	(B.6-7)

	

	

	(B.6-8)

where:
	

	

	(B.6-9)

Table B.6-1 gives the values of the coefficients and .

The super higher band signal is spectrally folded as follows:
	

	

	(B.6-10)

	[bookmark: _Ref186428787][bookmark: _Ref264998131][bookmark: _Ref184573185]Table B.6-1 – QMF coefficients

	i
	

	

	0
	0.00064087
	–0.00134277

	1
	–0.00125122
	0.00415039

	2
	0.00143433
	–0.0093689

	3
	–0.00018311
	0.0178833

	4
	–0.00411987
	–0.03115845

	5
	0.01446533
	0.05291748

	6
	–0.03924561
	–0.09979248

	7
	0.128479
	0.46646118

	8
	0.46646118
	0.128479

	9
	–0.09979248
	–0.03924561

	10
	0.05291748
	0.01446533

	11
	–0.03115845
	–0.00411987

	12
	0.0178833
	–0.00018311

	13
	–0.0093689
	0.00143433

	14
	0.00415039
	–0.00125122

	15
	–0.00134277
	0.00064087

[bookmark: _Toc266174435][bookmark: _Toc266174552][bookmark: _Toc266175306][bookmark: _Toc266175431][bookmark: _Toc266175609][bookmark: _Toc266175891][bookmark: _Toc266176017][bookmark: _Toc266176144][bookmark: _Toc266176270][bookmark: _Toc266176396][bookmark: _Toc266178728][bookmark: _Toc266178854][bookmark: _Toc266179695][bookmark: _Toc266186222][bookmark: _Toc266186949][bookmark: _Toc266190455][bookmark: _Toc266193458][bookmark: _Toc266194867][bookmark: _Toc266205113][bookmark: _Toc266205240][bookmark: _Toc266174436][bookmark: _Toc266174553][bookmark: _Toc266175307][bookmark: _Toc266175432][bookmark: _Toc266175610][bookmark: _Toc266175892][bookmark: _Toc266176018][bookmark: _Toc266176145][bookmark: _Toc266176271][bookmark: _Toc266176397][bookmark: _Toc266178729][bookmark: _Toc266178855][bookmark: _Toc266179696][bookmark: _Toc266186223][bookmark: _Toc266186950][bookmark: _Toc266190456][bookmark: _Toc266193459][bookmark: _Toc266194868][bookmark: _Toc266205114][bookmark: _Toc266205241][bookmark: _Toc266174437][bookmark: _Toc266174554][bookmark: _Toc266175308][bookmark: _Toc266175433][bookmark: _Toc266175611][bookmark: _Toc266175893][bookmark: _Toc266176019][bookmark: _Toc266176146][bookmark: _Toc266176272][bookmark: _Toc266176398][bookmark: _Toc266178730][bookmark: _Toc266178856][bookmark: _Toc266179697][bookmark: _Toc266186224][bookmark: _Toc266186951][bookmark: _Toc266190457][bookmark: _Toc266193460][bookmark: _Toc266194869][bookmark: _Toc266205115][bookmark: _Toc266205242][bookmark: _Toc260068407][bookmark: _Toc283385079]B.6.4	ITU-T G.722 core, G722EL0 and G722EL1 layer encoder
[bookmark: _Toc266051890]The ITU-T G.722 core layer coder is an improved version of ITU-T G.722. As shown in the block diagram of Figure B.6-1, the ITU-T G.722 core and extension coder comprises the analysis QMF, the ITU-T G.722 LB and HB encoder, and extension coders: the Enhanced ITU-T G.722 HB encoders (EL0 and EL1). These blocks are described in the following clauses.
[bookmark: _Toc266099074][bookmark: _Toc283385080]B.6.4.1	Analysis QMF
The same as clause 3.1 of this Recommendation. Note that the analysis QMF is adapted to operate with 5 ms frames.

The wideband input is decomposed into a lower band output signal and a higher band output signal . Note that these signals, , , and , are respectively denoted , , and in the main body of this Recommendation.
[bookmark: _Toc266099075][bookmark: _Toc283385081]B.6.4.2	ITU-T G.722 LB encoder (5 or 5+1 bit/sample)
The ITU-T G.722 LB encoder is a bitstream interoperable, optimized version of the lower band embedded ADPCM encoder described in clauses 3.2-3.6 of ITU-T G.722. A block diagram of the ITU-T G.722 LB encoder is shown in Figure B.6-2. The legacy ITU-T G.722 LB encoder is modified to perceptually shape the embedded ADPCM coding noise.
The lower band ADPCM coding in clauses 3.2-3.6 of ITU-T G.722 operates at only 48 kbit/s (6 bit/sample), with the possibility to skip afterwards one or two bits per sample to reduce the bitrate to 40 or 32 kbit/s, whereas the ITU-T G.722 LB encoder of this Annex B can operate at either 40 kbit/s (5 bit/sample) for the G722R1sm mode or 48 kbit/s (6 bit/sample) for the G722R2sm and G722R3sm modes.
To shape the coding noise at both bitrates (40 and 48 kbit/s) in a coherent and optimal way, the embedded ADPCM coding in clauses 3.2-3.6 of ITU-T G.722 is separated in two stages, allowing the inclusion of a noise feedback loop in the first stage and the use of analysis by synthesis in the second stage. Hence:
–	A noise feedback loop is used with the ADPCM coder operating at a reduced bitrate of 40 kbit/s (5 bit/sample).
–	An enhancement encoder using analysis by synthesis and operating at 1 bit/sample brings the bitrate to 48 kbit/s (6 bit/sample).

Both stages use the same noise shaping filter .

[bookmark: _Ref266174656]Figure B.6-2 – ITU-T G.722 LB encoder

[bookmark: _Ref266174861]B.6.4.2.1	Computation of noise shaping filter

The perceptual noise shaping filter is given by where is derived from the linear prediction (LP) filter defined below. It can be shown that using the noise feedback loop in Figure B.6-2 the spectrum of the ADPCM quantization noise is shaped by .
Pre-emphasis and linear predictive analysis

The LP filter is computed after pre-emphasizing the signal , n = –40,…,39, where the negative indices refer to the past signal – (the ranges [–40,…,–1] and [0,…,39] represent the previous and current frames, respectively). To control the tilt in noise shaping and improve the perceptual quality of lower band encoding, an adaptive pre‑emphasis factor is used. The pre‑emphasis filter is a first‑order filter with a transfer function, where is signal‑dependent and is calculated as:
	
		
	(B.6-11)

where czc1 is a zero‑crossing rate. The zero‑crossing rate on the previous and current frames is calculated as:
	
		
	(B.6-12)

This results in . The pre‑emphasized signal is obtained as:
	

	

	(B.6-13)

A 4th‑order LP analysis is performed on the pre‑emphasized signal once per frame using an asymmetric window. The window is divided in two parts: the length of the first part is 60 samples and the length of the second part is 20 samples. The window function is given by:
	

	(B.6-14)

where L1=60 and L2=20. The pre‑emphasized signal is multiplied with this window to obtain the signal:
	

	

	(B.6-15)

The autocorrelation function of the windowed signal is computed by:
	

	

	(B.6-16)

where is an initialization value added to each correlation coefficient to ensure a proper shape of the noise shaping filter for signals with low energy, given by . A 120 Hz bandwidth expansion is then applied by lag-windowing the autocorrelation function. The lag windowing is a multiplication of with the correlation function. That is:
	

	(B.6-17)

The windowing function is defined as:
	

	

	(B.6-18)

where f0=120 Hz is the bandwidth expansion and fs=8000 Hz is the sampling frequency. The multiplication factor 1/1.0001 is a white noise correction to stabilize LP filter coefficients calculation, and this is equivalent to adding a noise floor at –40 dB below the windowed signal level.

The bandwidth‑expanded autocorrelations are used to obtain the LP filter coefficients , with the Levinson‑Durbin algorithm. This algorithm is performed in the following recursive steps:

1)	Set iteration number , , and

2)	Compute

3)	Set

4)	Compute for

5)	Compute

6)	Increment by 1 and go back to step 2, until reaches 4

The final solution is given as , j=1,…,4.
The result of the LP analysis is a filter with the transfer function:
	
		
	(B.6-19)

where , i=1,…,4, are the LP coefficients obtained from the lower band signal.
Derivation of noise shaping filter
The noise shaping filter with transfer function
	
		
	(B.6-20)

is derived from as explained below and illustrated in Figure B.6-3 with M=4.

[bookmark: _Ref266174657]Figure B.6-3 – Computation of in ITU-T G.722 LB encoder

By default, is a weighted version of, as follows: FLB(z) = ALB(z/γ1) with γ1 = 0.92 . The filter coefficients are calculated from coefficients as follows:
	

	(B.6-21)

This default operation (shown in the shaded rectangular box in Figure B.6-3) is changed in two special cases:
–	low level input signal;
–	risk of instability in noise feedback loop.
These two cases are detailed below.
Attenuation of the perceptual filter for signals with very low level

In order to detect low level signals, the normalization factor is calculated with:
	

	(B.6-22)

where is the first autocorrelation coefficient calculated in Equation (B.6-16).

When the input signal has a very low energy, the noise‑shaping may fail to properly mask the ADPCM coding noise. This special case of very low energy signal is detected when the normalization factor fulfils the condition:
	

	(B.6-23)

In this case, the attenuation for very low level signal is performed and the attenuated perceptual weighting filter of Equation (B.6-20) becomes:
	

	(B.6-24)

Attenuating the perceptual noise‑shaping filter for very low level input signals avoids the case where the noise feedback loop would increase the objective noise level without bringing the benefit of having a perceptually lower noise floor.
Deactivation of noise feedback loop in case of risk of instability and progressive reactivation
The noise feedback loop may become unstable when the noise masking filter is highly resonant and the step size and predictors in ADPCM coding are adapted too slowly to catch up with quick variations between segments of high spectral dynamics (e.g., sinusoids). ITU-T G.722 ADPCM coding may exhibit problems of mistracking (i.e., temporary divergence of adaptation), which would be amplified by the noise feedback loop. This can cause audible artefacts lasting for several consecutive frames until the noise‑shaping loop and ADPCM states converge.
To prevent such problems, the noise‑shaping feedback is deactivated whenever a signal with high spectral dynamics, giving a risk of instability, is detected in the encoder.

This detection is based on the second reflection coefficient obtained in the Levinson‑Durbin algorithm. If condition:
	

	(B.6-25)

is fulfilled, the perceptual weighting filter is used with the weighting factor (i.e., FLB(z) = 1).

The normal operation is restored progressively as soon as the condition is not fulfilled in the current frame; in that case, the weighting factor is incremented by steps of in a predetermined number of successive frames (here 4) until the value is reached.

Note that to enable the progressive reactivation of the noise feedback loop, the value of is stored in a memory which is loaded at the beginning and updated at the end of every frame. Furthermore, when low level signals are detected, the value in is set to the default value to restore the normal state of operation.
B.6.4.2.2	ADPCM encoder (5 bit/sample) with noise feedback

In the first stage of ITU-T G.722 LB coding (core coding), noise feedback is performed for each sample n by combining the signal with the filtered ADPCM coding noise, , as follows:
	

	

	(B.6-26)

where is the result of the filtering operation:
	

	

	(B.6-27)

being the ADPCM coding noise at the past sample (see Equation (B.6-30) below).

The signal including noise feedback is encoded by an ADPCM encoder operating at 5 bit/sample. This encoder is equivalent (bit-exact) to the embedded ADPCM encoder in clauses 3.2-3.6 of ITU-T G.722, in which the LSB of the output 6-bit index (see clause 3.3 of ITU‑T G.722) is forced to zero:
	

	

	(B.6-28)

Therefore the index of the first stage scalar quantizer, , is represented with 5 bits for each sample of the ITU-T G.722 lower band.

A local ADPCM decoder operating at 5 bit/sample reconstructs the decoded sample from the index :
	

	

	(B.6-29)

where is the quantized difference signal (using 5 bits) and is the predicted signal, as defined in clauses 3.2-3.6 of ITU-T G.722.

The coding noise is then computed as follows:
	

	

	(B.6-30)

B.6.4.2.3	Enhancement encoder (1 bit/sample) using analysis by synthesis

In the second stage of ITU-T G.722 LB coding, the LSB of the 6-bit index of clauses 3.2-3.6 is searched using an analysis by synthesis method for each sample n, based on the same noise masking filter as in the first stage of ITU-T G.722 LB coding.

The target sample is computed as follows:
	

	

	(B.6-31)

where is the coding noise of the second stage at the past sample (see Equation (B.6‑34) below).

Each target sample , , is then quantized by a 1-bit scalar quantizer, minimizing the mean square error between and two possible quantized values defined as:
	

	(B.6-32)

where and are given in Table 7 of ITU-T G.722. is the step size of the ITU-T G.722 lower band ADPCM encoder given in Equation (3-17) of ITU-T G.722.

The index of the second stage, , is calculated as:
	

	

	(B.6-33)

The local decoder in the enhancement stage reconstructs in order to update the coding noise for the next sample:
	

	

	(B.6-34)

[bookmark: _Toc266099076][bookmark: _Toc283385082]B.6.4.3	ITU-T G.722 HB encoder (2 bit/sample) and enhanced ITU-T G.722 HB encoders (ITU-T G.722 EL0 and EL1 layers)
Block diagrams of the ITU-T G.722 HB and enhanced ITU-T G.222 HB encoders are shown in Figure B.6-4.

[bookmark: _Ref266174755]Figure B.6-4 – ITU-T G.722 HB encoder and enhanced ITU-T G.722 HB encoder
The ITU-T G.722 HB encoder corresponds to the legacy higher band adaptive differential pulse coded modulation (ADPCM) encoder described in clauses 3.2-3.6 of ITU-T G.722. This legacy ADPCM encoder operates at 16 kbit/s (2 bit/sample).
The ADPCM signal‑to‑noise ratio in the higher band is usually quite low due to the allocated bitrate of 2 bit/sample, as opposed to the bitrate of 5 or 6 bit/sample for ITU-T G.722 LB ADPCM coding. This difference in bitrate explains that:
–	Contrary to the ITU-T G.722 lower band, no noise feedback is used in higher band with ADPCM coding. For noise feedback to be efficient, a bitrate higher than 2 bit/sample is desirable.
–	If additional bandwidth is available to improve the quality of the ITU-T G.722 core encoder, extra bits are entirely allocated to the higher band. The quantization resolution can be improved by the enhanced ITU-T G.722 HB encoders, which rely on embedded scalar quantizers of 3 and 4 bit/sample extending the ITU-T G.722 HB scalar quantizer of 2 bit/sample.
The ITU-T G.722 HB ADPCM encoder is extended in a bitstream scalable fashion with two embedded stages. The first extension stage (G722EL0) operates at 3.8 kbit/s, where only 19 of the 40 samples are enhanced using one bit per selected sample; this forms the G722EL0 layer, which is used in all superwideband layers. Note that the G722EL0 layer is disabled in case of transient signal segments where the spared 19 bits are allocated to the bandwidth extension module described in clause B.6.6. The second extension stage (G722EL1) operates at 8 kbit/s (1 bit/sample) to further refine the quantization of the ITU-T G.722 higher band, forming the G722EL1 layer. This layer is only used in the highest bitrate mode G722R3sm.
B.6.4.3.1	ITU-T G.722 HB encoder (2 bit/sample)

The same as the higher band ADPCM encoder in clauses 3.2-3.6 of ITU-T G.722. For each sample n this encoding results in an index , using the same notation as in clauses 3.2-3.6 of ITU‑T G.722.

From the index the local decoder reconstructs:
	

	

	(B.6-35)

where is the quantized difference signal (obtained from the index) and is the predicted signal, as defined in clauses 3.2-3.6 of ITU-T G.722.

B.6.4.3.2	Computation of noise shaping filter
Pre-emphasis and linear predictive analysis

The same as the corresponding section in clause B.6.4.2.1, except that the lower band input signal is replaced by the higher band input signal .
This procedure results in the LP analysis giving a filter with the transfer function:
	

	(B.6-36)

where , i=1,…,4, are the LP coefficients obtained from the higher band signal, similarly obtained as in the lower band (see clause B.6.4.2.1).
Derivation of noise shaping filter
The noise shaping filter with transfer function
	

	(B.6-37)

is derived from as explained below and illustrated in Figure B.6-5 with M=4.

[bookmark: _Ref266174887]Figure B.6-5 – Computation of in ITU-T G.722 HB encoder

By default, is a weighted version of, as follows: with
, i.e., . This default operation is changed in the special case of low level input signal, and of signal with energy concentrated in higher frequencies. These two cases are detailed below.
Attenuation of the perceptual filter for signals with very low level
Same as corresponding clause in B.6.4.2.1.
Attenuation of the perceptual filter for signals with energy concentrated in higher frequencies
The noise shaping filter is attenuated whenever a signal whose energy is concentrated in higher frequencies is detected in the encoder. To determine the spectral tilt of the signal, the reflection coefficient k1 is used and the following condition must be fulfilled:
	

	(B.6-38)

In this case, the perceptual weighting filter is used with the weighting factor defined by:
	

	(B.6-39)

where the attenuation factor is a function of k1 given by:
	

	(B.6-40)

[bookmark: _Ref266276474]B.6.4.3.3	Encoding G722EL0 layer (0.475 bit/sample)
G.722EL0 layer is the higher band enhancement layer with 19 bits used only in non-TRANSIENT frames. 19 samples are selected for the higher band enhancement according to the available bits and the ITU-T G.722 higher band encoding. One bit is coded for each selected sample.

To obtain 19 more perceptual important samples, a moving average value of the quantized difference signal (defined in Table 3 of ITU-T G.722) is computed as follows:
	

	

	(B.6-41)

The higher band samples are selected according to the following conditions:

–	, the first higher band sample is always selected and the number of the enhanced samples is set to 1; or

–	 and the number of the enhanced samples is less than 19; or
–	the number of non-enhanced samples is equal to 21.

The number of the enhanced samples is incremented when a sample is selected. If , the number of enhanced samples is set to zero and is also set to zero.

For each selected sample n, one bit is coded according to the target signal , which is computed as follows:
	

	

	(B.6-42)

where is the coding noise of the G722EL0 layer at the past sample ; see Equation (B.6-47) below.

The target sample is then quantized by minimizing the mean square error between and two possible quantized values:
	

	

	(B.6-43)

where and are respectively defined in Table B.6-3 and Table B.6-2. Again, is the step size of the ITU-T G.722 higher band ADPCM encoder given in Equation (3-18) of ITU‑T G.722.
[bookmark: _Ref266174987]Table B.6-2 – ITU-T G.722 HB 2-bit
normalized codebook
	j
	Q2[j]

	0
	–0.22607421875

	1
	–0.04931640625

	2
	0.22607421875

	3
	0.04931640625

[bookmark: _Ref266174979]Table B.6-3 – ITU-T G.722 HB 3-bit
normalized codebook
	j
	Q3[j]

	0
	–0.293701171875

	1
	–0.182373046875

	2
	–0.09326171875

	3
	–0.026611328125

	4
	0.182373046875

	5
	0.293701171875

	6
	0.026611328125

	7
	0.09326171875

For each selected sample n, the analysis by synthesis consists of finding the bit of G722EL0 layer minimizing:
	

	

	(B.6-44)

This error minimization is equivalently realized by comparing to the corresponding decision threshold from Table B.6-4, where is the mid value:
	

	

	(B.6-45)

If , is set to "1", otherwise it is set to "0". Then all the for the selected samples produce the G722EL0 bitstream. Table B.6-4 gives the thresholds .
[bookmark: _Ref266175013]Table B.6-4 – Thresholds
for G722EL0
	j
	T[j]

	0
	–0.011963

	1
	–0.01062

	2
	0.011963

	3
	0.01062

The local decoder in the G722EL0 layer reconstructs:
	

	

	(B.6-46)

in order to update the coding noise for the next sample:
	

	

	(B.6-47)

In addition the local decoder in G722EL0 layer reconstructs the enhanced quantized difference signal:
	

	

	(B.6-48)

B.6.4.3.4	Encoding G722EL1 layer (1 bit/sample)

For each sample , one bit is coded according to the target signal , which is computed as follows:
	

	

	(B.6-49)

where is the coding noise of the G722EL0 layer at the past sample (see Equation (B.6-55) below).

The target sample is then quantized by minimizing the mean square error between and two possible quantized values that depend on whether the sample n is selected or not in the G722EL0 layer.
If the sample n is selected in G722EL0 layer, the two possible quantized values are:
	

	

	(B.6-50)

where and are respectively defined in Table B.6-5 and Table B.6-3. Otherwise (if the sample n is not selected in EL0), the two possible quantized values are:
	

	

	(B.6-51)

where and are respectively defined in Table B.6-3 and Table B.6-2.

Equivalently, the two possible quantized values are calculated using the enhanced quantized difference signal from the local decoder in G722EL0 layer:
	

	

	(B.6-52)

	[bookmark: _Ref266175033]Table B.6-5 – ITU-T G.722 HB 4-bit normalized codebook

	j
	Q4[j]

	0
	–0.444091796875

	1
	–0.267578125

	2
	–0.20849609375

	3
	–0.160400390625

	4
	–0.115234375

	5
	–0.07666015625

	6
	–0.043212890625

	7
	–0.013427734375

	8
	0.160400390625

	9
	0.20849609375

	10
	0.267578125

	11
	0.444091796875

	12
	0.013427734375

	13
	0.043212890625

	14
	0.07666015625

	15
	0.115234375

The analysis by synthesis consists in finding the bit of the G722EL1 layer with the following minimization:
	

	

	(B.6-53)

The local decoder in the G722EL1 layer reconstructs:
	

	

	(B.6-54)

in order to update the coding noise for the next sample:
	

	

	(B.6-55)

[bookmark: _Toc266051892][bookmark: _Toc266090770][bookmark: _Toc266091946][bookmark: _Toc266092031][bookmark: _Toc266174447][bookmark: _Toc266174564][bookmark: _Toc266175318][bookmark: _Toc266175443][bookmark: _Toc266175621][bookmark: _Toc266175903][bookmark: _Toc266176029][bookmark: _Toc266176156][bookmark: _Toc266176282][bookmark: _Toc266176408][bookmark: _Toc266178740][bookmark: _Toc266178866][bookmark: _Toc266179707][bookmark: _Toc266186234][bookmark: _Toc266186961][bookmark: _Toc266190467][bookmark: _Toc266193470][bookmark: _Toc266194879][bookmark: _Toc266205125][bookmark: _Toc266205252][bookmark: _Toc266090772][bookmark: _Toc266091948][bookmark: _Toc266092033][bookmark: _Toc266174449][bookmark: _Toc266174566][bookmark: _Toc266175320][bookmark: _Toc266175445][bookmark: _Toc266175623][bookmark: _Toc266175905][bookmark: _Toc266176031][bookmark: _Toc266176158][bookmark: _Toc266176284][bookmark: _Toc266176410][bookmark: _Toc266178742][bookmark: _Toc266178868][bookmark: _Toc266179709][bookmark: _Toc266186236][bookmark: _Toc266186963][bookmark: _Toc266190469][bookmark: _Toc266193472][bookmark: _Toc266194881][bookmark: _Toc266205127][bookmark: _Toc266205254][bookmark: _Toc266174452][bookmark: _Toc266174569][bookmark: _Toc266175323][bookmark: _Toc266175448][bookmark: _Toc266175626][bookmark: _Toc266175908][bookmark: _Toc266176034][bookmark: _Toc266176161][bookmark: _Toc266176287][bookmark: _Toc266176413][bookmark: _Toc266178745][bookmark: _Toc266178871][bookmark: _Toc266179712][bookmark: _Toc266186239][bookmark: _Toc266186966][bookmark: _Toc266190472][bookmark: _Toc266193475][bookmark: _Toc266194884][bookmark: _Toc266205130][bookmark: _Toc266205257][bookmark: _Toc266174457][bookmark: _Toc266174574][bookmark: _Toc266175328][bookmark: _Toc266175453][bookmark: _Toc266175631][bookmark: _Toc266175913][bookmark: _Toc266176039][bookmark: _Toc266176166][bookmark: _Toc266176292][bookmark: _Toc266176418][bookmark: _Toc266178750][bookmark: _Toc266178876][bookmark: _Toc266179717][bookmark: _Toc266186244][bookmark: _Toc266186971][bookmark: _Toc266190477][bookmark: _Toc266193480][bookmark: _Toc266194889][bookmark: _Toc266205135][bookmark: _Toc266205262][bookmark: _Toc266174458][bookmark: _Toc266174575][bookmark: _Toc266175329][bookmark: _Toc266175454][bookmark: _Toc266175632][bookmark: _Toc266175914][bookmark: _Toc266176040][bookmark: _Toc266176167][bookmark: _Toc266176293][bookmark: _Toc266176419][bookmark: _Toc266178751][bookmark: _Toc266178877][bookmark: _Toc266179718][bookmark: _Toc266186245][bookmark: _Toc266186972][bookmark: _Toc266190478][bookmark: _Toc266193481][bookmark: _Toc266194890][bookmark: _Toc266205136][bookmark: _Toc266205263][bookmark: _Toc266174459][bookmark: _Toc266174576][bookmark: _Toc266175330][bookmark: _Toc266175455][bookmark: _Toc266175633][bookmark: _Toc266175915][bookmark: _Toc266176041][bookmark: _Toc266176168][bookmark: _Toc266176294][bookmark: _Toc266176420][bookmark: _Toc266178752][bookmark: _Toc266178878][bookmark: _Toc266179719][bookmark: _Toc266186246][bookmark: _Toc266186973][bookmark: _Toc266190479][bookmark: _Toc266193482][bookmark: _Toc266194891][bookmark: _Toc266205137][bookmark: _Toc266205264][bookmark: _Toc266174460][bookmark: _Toc266174577][bookmark: _Toc266175331][bookmark: _Toc266175456][bookmark: _Toc266175634][bookmark: _Toc266175916][bookmark: _Toc266176042][bookmark: _Toc266176169][bookmark: _Toc266176295][bookmark: _Toc266176421][bookmark: _Toc266178753][bookmark: _Toc266178879][bookmark: _Toc266179720][bookmark: _Toc266186247][bookmark: _Toc266186974][bookmark: _Toc266190480][bookmark: _Toc266193483][bookmark: _Toc266194892][bookmark: _Toc266205138][bookmark: _Toc266205265][bookmark: _Toc266174462][bookmark: _Toc266174579][bookmark: _Toc266175333][bookmark: _Toc266175458][bookmark: _Toc266175636][bookmark: _Toc266175918][bookmark: _Toc266176044][bookmark: _Toc266176171][bookmark: _Toc266176297][bookmark: _Toc266176423][bookmark: _Toc266178755][bookmark: _Toc266178881][bookmark: _Toc266179722][bookmark: _Toc266186249][bookmark: _Toc266186976][bookmark: _Toc266190482][bookmark: _Toc266193485][bookmark: _Toc266194894][bookmark: _Toc266205140][bookmark: _Toc266205267][bookmark: _Toc266174463][bookmark: _Toc266174580][bookmark: _Toc266175334][bookmark: _Toc266175459][bookmark: _Toc266175637][bookmark: _Toc266175919][bookmark: _Toc266176045][bookmark: _Toc266176172][bookmark: _Toc266176298][bookmark: _Toc266176424][bookmark: _Toc266178756][bookmark: _Toc266178882][bookmark: _Toc266179723][bookmark: _Toc266186250][bookmark: _Toc266186977][bookmark: _Toc266190483][bookmark: _Toc266193486][bookmark: _Toc266194895][bookmark: _Toc266205141][bookmark: _Toc266205268][bookmark: _Toc266174479][bookmark: _Toc266174596][bookmark: _Toc266175350][bookmark: _Toc266175475][bookmark: _Toc266175653][bookmark: _Toc266175935][bookmark: _Toc266176061][bookmark: _Toc266176188][bookmark: _Toc266176314][bookmark: _Toc266176440][bookmark: _Toc266178772][bookmark: _Toc266178898][bookmark: _Toc266179739][bookmark: _Toc266186266][bookmark: _Toc266186993][bookmark: _Toc266190499][bookmark: _Toc266193502][bookmark: _Toc266194911][bookmark: _Toc266205157][bookmark: _Toc266205284][bookmark: _Toc265840890][bookmark: _Toc265841055][bookmark: _Toc265843275][bookmark: _Toc265849080][bookmark: _Toc265849917][bookmark: _Toc265850297][bookmark: _Toc265850596][bookmark: _Toc265850762][bookmark: _Toc283385083]B.6.5	MDCT

The super higher band signals is transformed into frequency domain by modified discrete cosine transform (MDCT) with a frame length of 5 ms and an analysis window of 10 ms length. The MDCT coefficients of the signal are given by:
	

	

	(B.6-56)

where is the analysis weighting window given by:
	

	

	(B.6-57)

[bookmark: _Ref267886130][bookmark: _Toc283385084]B.6.6	SWBL0 layer encoder

This layer is encoded with bandwidth extension (BWE) algorithm based on the adaptive spectral envelope coding and time envelope coding. The bit budget of 40 bits is shared with HBE module of ITU-T G.722 core, depending on whether a frame is a TRANSIENT (TS) frame or a non-TRANSIENT frame. If the input super higher band signal of the previous frame or the current frame is detected as TRANSIENT, then the current frame is classified as TRANSIENT. In case of a TRANSIENT frame, all 40 bits are allocated to BWE which includes two bits for the signal class, and 38 bits for encoding the global gain, four spectral envelopes and four time envelopes. For other cases (non‑TRANSIENT frame), only 21 bits are allocated to BWE which also includes two bits for the signal class and 19 bits for encoding the global gain and eight spectral envelopes. In this case, no time envelope is encoded. The remaining 19 bits are allocated to HBE (see clause B.6.4.3.3). Non‑TRANSIENT frames can be further classified as HARMONIC (HM), NORMAL (NM) or NOISE (NS) according to the frequency fluctuation. For BWE encoding, the first 64 (out of 80) MDCT coefficients of super higher band (SHB), , k=0,…,63, are coded. The last 16 MDCT coefficients, , k=64,…,79, that are associated with the frequency range between 14.4‑16 kHz are discarded.
[bookmark: _Toc263853842][bookmark: _Toc263856896][bookmark: _Toc263857231][bookmark: _Toc263858545][bookmark: _Ref263352799][bookmark: _Toc265158545][bookmark: _Toc283385085]B.6.6.1	Time envelope calculation and transient detection
The transient detection uses parameters computed from time envelopes of three consecutive frames, the current frame and the previous two frames.
The time envelope which represents the temporal energy of SHB signal is computed as a set of root‑mean square (RMS) calculated from 20 samples of time-domain folded SHB signal. This results in four time envelope coefficients per frame.
	

	

	(B.6-58)

where , are the time envelopes of the two previous frames. It results in 12 time envelopes corresponding to 12 time sub-frames. For the first frame, the are set to zero.
The total energy of the current frame is calculated as:
	

	(B.6-59)

with and being the total energies of the previous two frames. For the first frame, and are set to zero.
Three time parameters are calculated to perform the transient detection:

–	the total RMS of the time envelopes , for three consecutive frames:
	

	(B.6-60)

	where:.

–	the maximum difference between the consecutive time envelopes ,
	

	(B.6-61)

–	the maximum difference between the time envelopes and the total RMS of the time envelopes ,
	

	(B.6-62)

If three conditions, , and are fulfilled, the current frame is identified as a TRANSIENT frame. The signal class is set to TRANSIENT (= TS).

The sub-frame index with the maximum time envelope is denoted as , with . When the current frame or the previous frame is classified as TRANSIENT, a time envelope adjustment is performed based on two parameters, and . These parameters are the time envelope ratio between the maximum time envelope and the average time envelope of the sub-frames before and after the sub-frame respectively,
	

	(B.6-63)

and
	

	(B.6-64)

If = TS, the time envelopes to be encoded at current frame, , , are set to the previous frame time envelopes with an adjustment based on , , and :
	

	(B.6-65)

Otherwise (≠ TS), the time envelopes to be encoded at current frame, , , are set to the previous frame time envelopes without adjustment:
	

	

	(B.6-66)

The obtained time envelopes , , are further bounded in the range [0,...,15]: , . The rounded time envelopes are quantized into four bits by uniform scalar quantization in case of TRANSIENT frames.

To further reduce the pre-echo for the transients, additional time envelope adjustment is performed at the decoder side for the sub-frame with the maximum time envelope , with . The time envelope adjustment flag bit, , is set at the encoder side according to and , the energies of the first half and the second half of this maximum time envelope sub-frame:
	

	(B.6-67)

where and being the folded super higher band signal of the previous frame.
The following buffers are updated after the time envelope calculation and transient detection,
	

	

	(B.6-68)

	

	

	(B.6-69)

[bookmark: _Ref263352926]Finally, if the current frame is not classified as TRANSIENT and the saved signal class for the previous frame is TRANSIENT, the current frame is also identified as a TRANSIENT frame. Otherwise, it is identified as a non-TRANSIENT frame.
[bookmark: _Toc265158546][bookmark: _Toc283385086]B.6.6.2	Global gain

The global gain is calculated in the frequency domain and encoded using five bits by uniform scalar quantization.
	

	(B.6-70)

where is further bounded in the range [0,...,31].

The global gain is locally converted into the linear domain as follows:
	

	(B.6-71)

The locally decoded (converted) global gain of the previous frame is saved for frequency sharpness measurement in clause B.6.6.6.
[bookmark: _Ref264019689][bookmark: _Toc265158547][bookmark: _Toc283385087]B.6.6.3	Sub-band division

The 64 MDCT coefficients in the 8000-14400 Hz frequency range are split into four sub-bands for TRANSIENT frames (16 coefficients per sub-band) or eight sub-bands for non-TRANSIENT frames (eight coefficients per sub-band). Table B.6-6 and Table B.6-7 define the sub-band boundaries and size for TRANSIENT frames and non-TRANSIENT frames respectively. The j-th sub-band comprises coefficients with .
[bookmark: _Ref263262178]Table B.6-6 – Sub-band boundaries and number of coefficients
per sub-band in BWE (TRANSIENT frame)
	j
	bswb(j)
	Nswbcf(j)

	0
	0
	16

	1
	16
	16

	2
	32
	16

	3
	48
	16

	4
	64
	–

[bookmark: _Ref263262185]Table B.6-7 – Sub-band boundaries and number of coefficients
per sub-band in BWE (Non-TRANSIENT frame)
	j
	bswb(j)
	Nswbcf(j)

	0
	0
	8

	1
	8
	8

	2
	16
	8

	3
	24
	8

	4
	32
	8

	5
	40
	8

	6
	48
	8

	7
	56
	8

	8
	64
	–

[bookmark: _Ref263352931][bookmark: _Toc265158548][bookmark: _Toc283385088]B.6.6.4	Normalized spectral envelope calculation
If the current frame is a TRANSIENT frame, the normalized spectral envelope is computed with four RMS coefficients calculated using 16 samples of frequency-domain SHB signal each. For a non-TRANSIENT frame, the normalized spectral envelope consists of eight RMS coefficients calculated using eight frequency-domain samples each. The normalized spectral envelope is defined as the RMS of the sub-bands:
	

	(B.6-72)

where for TRANSIENT frame and for non-TRANSIENT frame.
[bookmark: _Toc264106848][bookmark: _Toc264107498][bookmark: _Toc264126691][bookmark: _Toc264205470][bookmark: _Toc264207155][bookmark: _Toc264213452][bookmark: _Toc264215229][bookmark: _Toc264539609][bookmark: _Toc264621208][bookmark: _Toc264646959][bookmark: _Toc264647070][bookmark: _Toc264647153][bookmark: _Toc264650476][bookmark: _Toc264879759][bookmark: _Toc264879985][bookmark: _Toc264880251][bookmark: _Toc264882033][bookmark: _Toc264882314][bookmark: _Toc264883322][bookmark: _Toc264913522][bookmark: _Toc264913918][bookmark: _Toc264969786][bookmark: _Toc264996336][bookmark: _Toc264996448][bookmark: _Toc265154161][bookmark: _Toc265158549][bookmark: _Toc264106849][bookmark: _Toc264107499][bookmark: _Toc264126692][bookmark: _Toc264205471][bookmark: _Toc264207156][bookmark: _Toc264213453][bookmark: _Toc264215230][bookmark: _Toc264539610][bookmark: _Toc264621209][bookmark: _Toc264646960][bookmark: _Toc264647071][bookmark: _Toc264647154][bookmark: _Toc264650477][bookmark: _Toc264879760][bookmark: _Toc264879986][bookmark: _Toc264880252][bookmark: _Toc264882034][bookmark: _Toc264882315][bookmark: _Toc264883323][bookmark: _Toc264913523][bookmark: _Toc264913919][bookmark: _Toc264969787][bookmark: _Toc264996337][bookmark: _Toc264996449][bookmark: _Toc265154162][bookmark: _Toc265158550][bookmark: _Toc265158555][bookmark: _Ref271298481][bookmark: _Toc283385089]B.6.6.5	Normalized spectral envelope coding

In case of TRANSIENT frame, the normalized spectral envelope is multiplied by five and rounded to the nearest integer with a ceiling of 15. Then, the spectral envelope index is calculated as follows:
	

	

	(B.6-73)

The obtained spectral envelope index is quantized with four bits per sub-band using a uniform scalar quantization.

For non-TRANSIENT frames, the lower four sub-bands and the higher four sub-bands are quantized into six bits using a 4-dimensional vector quantizer. For this vector quantization, two sets of codebook of size 64 are available. If either condition, or is fulfilled, the first codebook, , is used. Otherwise, the second codebook, , is used. Two flag bits, , are transmitted to identify the selected codebooks for the lower four sub‑bands and the higher four sub-bands, respectively.

The normalized spectral envelope is locally decoded as which will be used to sub-band ordering by perceptual importance (see clause B.6.7.2).

–	If the current frame is TRANSIENT, the normalized spectral envelope is decoded as:
	

	

	(B.6-74)

–	If the current frame is non-TRANSIENT, the normalized spectral envelope is decoded as follows:
	

	

	(B.6-75)

	where , i=0, 1 is the vector quantization index.
[bookmark: _Ref263339373][bookmark: _Toc265158556][bookmark: _Toc283385090]B.6.6.6	Frequency sharpness
For non-TRANSIENT frames, frequency sharpness is computed to measure the spectrum fluctuation of the frequency coefficients of the super higher band signal and those frames are categorized in three classes:
a)	HARMONIC: if frequency sharpness is high.
b)	NOISE: if frequency sharpness is low.
c)	NORMAL: if frequency sharpness is moderate.

The first 60 MDCT coefficients in the 8000-14000 Hz frequency range are split into ten sharpness bands (six coefficients per band). The frequency sharpness, , is defined as the ratio between peak magnitude and average magnitude in a sharpness band:
	

	

	(B.6-76)

where the maximum magnitude of spectral coefficients in a sharpness band, denoted , is:
	

	

	(B.6-77)

Then, three further sharpness parameters are determined: the maximum sharpness, , and two counters, the sharpness band counter, , and the noise band counter, .

The maximum sharpness, , in all sharpness bands is computed as:
	

	(B.6-78)

The counter is computed from the ten frequency sharpness parameters, , and from the ten maximum magnitudes, , as follows: initialized to zero, is incremented by one for each j, , if and .

The counter is computed from the ten frequency sharpness parameters as follows: initialized to zero, is incremented by one for each j, , if is less than 2.5.

The class of non-TRANSIENT frames is determined from these three sharpness parameters, , , and and two other paremeters – the previous frame saved class, , and the ratio between the locally decoded global gains of the current and previous frames.

The initial sharpness is set according to the saved signal class of previous frame :
	

	(B.6-79)

–	If and , the current frame is classified as HARMONIC frame (= HARMONIC) and the counter for signal class is incremented by one when is less than eight. Otherwise, is decremented by one when is larger than zero.

–	Then, if , the current frame is also classified as HARMONIC frame (= HARMONIC).

–	Finally, if the saved previous frame signal class was already HARMONIC, the current frame is also classified as HARMONIC.

–	For other cases, depending on the noise counter and the maximum sharpness , the current frame is classified as NORMAL or NOISE: if and , the current frame is classified as NOISE frame (= NOISE), otherwise, the current frame is classified as NORMAL frame (= NORMAL).
[bookmark: _Toc265158557][bookmark: _Toc283385091]B.6.6.7	SHB signal class coding and saving
Two bits are transmitted for SHB signal class coding. Table B.6-8 gives the coded bits for each class.
[bookmark: _Ref263268035]Table B.6-8 – SHB signal class coding
	Signal class Fclass
	Coded bits

	NORMAL
	00

	NOISE
	01

	HARMONIC
	10

	TRANSIENT
	11

The signal class of the current frame is saved in for the next frame. Nevertheless, to get accurate classification for the next frame, the saved signal class for the next frame, , is set to NORMAL in the following cases:
–	If the current frame is not TRANSIENT and the saved signal class of the previous frame is TRANSIENT, then the saved signal class is NORMAL.
–	If the current frame is not HARMONIC and the saved signal class of the previous frame is HARMONIC, then the saved signal class is NORMAL.
Then, the signal class is finally determined.
[bookmark: _Toc265158558][bookmark: _Toc283385092]B.6.6.8	Bit allocation for BWE
Table B.6-9 illustrates the BWE bit allocation for TRANSIENT and non-TRANSIENT frames.
[bookmark: _Ref263262805]Table B.6-9 – BWE bit allocation
	Signal class
	Signal class bits
	Time envelope
	Time envelope adjustment flag
	Global gain
	Spectral envelope
	Total bits

	Parameters
	

	

	

	

	

	

	TRANSIENT
	2
	16 (=4×4)
	1
	5
	16 (=4×4)
	40

	Non-TRANSIENT
	2
	0
	0
	5
	14 (=2×(6+1))
	21

[bookmark: _Toc271284614][bookmark: _Toc271296254][bookmark: _Toc271296311][bookmark: _Toc271634395][bookmark: _Toc271634724][bookmark: _Toc271634773][bookmark: _Toc271636355][bookmark: _Toc272665339][bookmark: _Toc272672801][bookmark: _Toc272839255][bookmark: _Toc272861755][bookmark: _Toc272861793][bookmark: _Toc273287544][bookmark: _Toc273389863][bookmark: _Toc271284615][bookmark: _Toc271296255][bookmark: _Toc271296312][bookmark: _Toc271634396][bookmark: _Toc271634725][bookmark: _Toc271634774][bookmark: _Toc271636356][bookmark: _Toc272665340][bookmark: _Toc272672802][bookmark: _Toc272839256][bookmark: _Toc272861756][bookmark: _Toc272861794][bookmark: _Toc273287545][bookmark: _Toc273389864][bookmark: _Toc261010728][bookmark: _Toc283385093]B.6.7	SWBL1 and SWBL2 layer encoder
While SWBL0 only transmits the spectral (and time) envelope of the SHB signal, SWBL1 and SWBL2 layers convey the fine structure (or "excitation" as in the previous clause) of the SHB MDCT coefficients SSHB(k), k=0,…,63. The same sub-band division as performed in clause B.6.6.3 in case of non-TRANSIENT frame is performed: the 64 MDCT coefficients are divided into eight sub-bands with eight coefficients in each sub-band, normalized and quantized using the algebraic vector quantization (AVQ). The SWBL1 and SWBL2 bit-budget does not allow encoding all sub‑bands using the AVQ, thus the spectrum in one or more sub-bands is derived from the BWE spectrum or other (AVQ coded) sub-bands. The sub-bands where AVQ is not applied are called "zero sub‑bands" as AVQ output vector is zero for these sub-bands.
The SWBL1 is encoded using 40 bits per frame where one bit is used to indicate the SHB coding mode and three bits are used to refine the global gain coded in SWBL0. The remaining 36 bits can be used by the AVQ. The actual bit-budget needed to encode AVQ parameters varies from frame to frame and the difference between the allocated 36 bits and the number of spent bits is further called "Unused AVQ bits". The unused AVQ bits are further used to refine the zero sub-bands.
In SWBL2 all available bits (40 bits per frame) are allocated for the AVQ. Similarly to SWBL1, if there are any "Unused AVQ bits", they are used to refine the zero sub-bands.
[bookmark: _Toc265158560][bookmark: _Toc283385094]B.6.7.1	Spectrum normalization

The first step in encoding the SHB signal in MDCT domain SSHB(k), k = 0,…,63, is the normalization. The local decoded global gain, , computed and transmitted in SWBL0 is used to obtain the normalized spectrum
	

	(B.6-80)

[bookmark: _Toc264021970][bookmark: _Toc264026133][bookmark: _Toc264026253][bookmark: _Toc264027144][bookmark: _Toc264106860][bookmark: _Toc264107510][bookmark: _Toc264126703][bookmark: _Toc264205482][bookmark: _Toc264207167][bookmark: _Toc264213464][bookmark: _Toc264215241][bookmark: _Toc264539621][bookmark: _Toc264621220][bookmark: _Toc264646971][bookmark: _Toc264647082][bookmark: _Toc264647165][bookmark: _Toc264650488][bookmark: _Toc264879771][bookmark: _Toc264879997][bookmark: _Toc264880263][bookmark: _Toc264882045][bookmark: _Toc264882326][bookmark: _Toc264883334][bookmark: _Toc264913534][bookmark: _Toc264913930][bookmark: _Toc264969798][bookmark: _Toc264996348][bookmark: _Toc264996460][bookmark: _Toc265154173][bookmark: _Toc265158561][bookmark: _Ref264020335][bookmark: _Toc265158562][bookmark: _Toc283385095]B.6.7.2	Sub-band ordering by perceptual importance

The perceptual importances of the eight sub-bands, , , are simply estimated from the locally decoded normalized spectral envelope (see clause B.6.6.5, Equations (B.6-74) and (B.6-75)):
	 If Fclass= TRANSIENT
	

	

	(B.6-81)

	 Otherwise
	

	

	

The sub-bands are then sorted in order of descending perceptual importance. This results for each sub-band in an index , , which indicates that -th sub-band has the (j+1)-th largest perceptual importance (i.e., -th sub-band has the highest perceptual importance whereas -th sub-band has the lowest perceptual importance). This ranking is used for choosing the most perceptually important sub-bands to be coded in SWBL1 while the less perceptually important sub-bands will be coded in SWBL2 for algebraic vector quantization (see clause B.6.7.4).
[bookmark: _Ref264020417][bookmark: _Toc265158563][bookmark: _Toc283385096]B.6.7.3	Selection of the SHB mode

The encoder for SWBL1 and SWBL2 layers classifies the super-highband signal into three encoding modes, SHB modes 0, 1 and 2. The first two modes are selected on the condition that the previous and the current frames are classified either NORMAL or NOISE. For frames that do not satisfy this condition, SHB mode 2 is selected. In SHB modes 0 and 1, one bit is transmitted as , indicating either SHB mode 0 or 1. For SHB mode 2, no bit is transmitted. The distinction between SHB mode 0 and 1 is whether the coefficients are sparse or not, respectively, and the SHB mode flag in the current frame m is computed as:
	

	(B.6-82)

where is the sparseness parameter. The sparseness parameter of the current frame m, , is smoothed across the pervious frame as:
	

	(B.6-83)

where is the parameter in the previous frame. Here, is computed as,
	

	(B.6-84)

where is a flag indicating if the amplitude of the normalized coefficient k is lower than the threshold 0.5. For the first decoded frame, is initialized to 0.
[bookmark: _Ref263410729][bookmark: _Toc265158564][bookmark: _Toc283385097]B.6.7.4	Encoding the SHB in mode 0

The encoding in SHB mode 0 is based on quantization of the normalized spectrum using the AVQ. Before performing the AVQ, the spectrum is normalized and ordered per sub-bands using the perceptual importance ordering, , determined in clause B.6.7.2.
Therefore, the spectrum to be quantized is computed in one step as:
	

	(B.6-85)

where βavq = 10–3 is a constant for dealing with low energy MDCT coefficients.

The normalization by the normalized spectral envelope represented by makes the spectrum flat as much as possible. The AVQ is then able to encode more sub-bands because the AVQ codebook number (see later in clause B.6.7.10) differs from sub-band to sub-band less than in the case of non-normalized spectrum. Consequently, the number of zero sub-bands is reduced.
The AVQ coding is done in two steps that correspond to the encoding of the SWBL1 content and SWBL2 content. Giving the available bit-budget allocated for the AVQ (36 bits in SWBL1 and 40 bits in SWBL2), the AVQ is able to encode maximally three sub-bands in SWBL1 and four sub‑bands in SWBL2. Thus at least one sub-band remains the zero sub-band and is dealt with differently. The signal flow in SHB mode 0 is shown in Figure B.6-6.

[bookmark: _Ref263334631]Figure B.6-6 – SHB mode 0 block diagram

The spectrum contains coefficients to be quantized with the most perceptually important sub-band corresponding to j = 0 and the least perceptually important sub-band corresponding to j = 7. The AVQ in SWBL1 quantizes the first three ranked sub-bands (j = 0, 1, 2) as described in clause B.6.7.10.
[bookmark: _Ref264646833]B.6.7.4.1	Local decoding of MDCT coefficients

The AVQ computed in SWBL1 returns three 8-dimensional quantized sub-bands , j = 0, 1, 2. If none of these sub-bands are AVQ zero sub-bands (i.e., none of quantized sub-bands contains only zero coefficients), the input spectrum for the SWBL2 AVQ consists of , j = 3, 4, 5, 6. If one or two SWBL1 output sub-bands are AVQ zero sub-bands, these AVQ zero sub-bands are placed at the first positions of the input spectrum for the SWBL2 AVQ encoding. The AVQ encoding used in SWBL2 is the same as described in clause B.6.7.10 with only one difference: the number of sub-bands to be quantized is four.

The AVQ computed in SWBL2 returns four quantized sub-bands that are joined to the quantized coefficients from SWBL1 and form the AVQ locally decoded spectrum . The remaining sub‑bands of the spectrum that are not coded using the AVQ neither in SWBL1 nor SWBL2 are replaced by zero MDCT coefficients and form the zero sub-bands.
To form the full SHB spectrum, the coefficients in AVQ zero sub-bands need to be determined as well. They are derived either from the SWBL0 output spectrum or from the other AVQ coded coefficients. This is dealt with in the next clauses.
[bookmark: _Ref263410795]B.6.7.4.2	Detection of problematic zero sub-bands

The AVQ quantizes the most perceptually important sub-bands and one of the techniques to represent the coefficients of zero sub-bands is to derive them from the SWBL0 output spectrum. However, there are signals for which the reconstruction at the decoder is likely to be very inaccurate in certain sub-bands. These sub-bands are called problematic zero sub-bands and need to be detected. The detector is based on detection of zero sub‑bands where the spectral envelope is not quantized too close to its original, basically due to the high quantization error in SWBL0 spectral envelope quantization. At the same time, a distribution of energy in zero sub‑bands of the spectrum is tested. The following assumption is used: If a sub‑band contains a peak (the energy of the maximum sample in the sub-band is substantial compared to the average energy in this sub‑band), the coding of such sub-band is usually covered by the AVQ. But if this sub-band is not coded by the AVQ (i.e., it is a zero sub-band) and the AVQ selects other sub‑bands (usually with peaks) to be encoded, this zero sub‑band has a low importance. If there is a high number of such zero sub‑bands, it is advantageous at the decoder to fill the zero sub‑bands with significantly restrained spectral envelope. The detection of problematic zero sub-bands is performed only when both SWBL1 and SWBL2 are transmitted.
The detection itself relies on the value of the counter cdet, cdet = 0,…,20, that is updated on a frame basis. If the counter cdet > 0, the detection flag for the current frame is f0 = 1, otherwise it is f0 = 0. The value of the counter cdet in the current frame depends on its value in the previous frame, on the SHB mode and also on two detection sub-flags f0,s1 and f0,s2. The sub-flag f0,s1 value can be 0 or 1 and depends on the detection of the problematic zero sub-bands where the spectral envelope is poorly quantized. The following ratio is computed for all sub-bands
	

	(B.6-86)

for non-TRANSIENT frames
	

	(B.6-87)

for TRANSIENT frames, where frms(j) is the normalized spectral envelope and is its quantized representation known from SWBL0. Then a maximum ratio ratmax is searched within zero sub‑bands. If ratmax > 4, f0,s1 = 1, otherwise f0,s1= 0.

The value of sub-flag f0,s2 can be 0, 1 or 2 and depends on the energy distribution in zero sub‑bands of spectrum . Initially it is set to f0,s2 = 0. Then, energy Emax of the maximum energy coefficient is searched and compared to the average energy Eavg of all coefficients in each zero sub‑band. If Emax > 6Eavg, then f0,s2 = 2. If there are at least 5 zero sub-bands and Emax > 4Eavg at least in one zero sub-band, then f0,s2 = 1. The sub-flag value is computed until it holds f0,s2 = 2 or all zero sub‑bands are searched.
Finally the update of the detection counter cdet is performed as shown in Figure B.6-7. Note that the updated counter value is checked in every frame to be in the defined range [0,...,20].

[bookmark: _Ref263410605][bookmark: _Ref246735464]Figure B.6-7 – Computation of detection counter cdet
The detection flag f0 is transmitted to the decoder in SWBL1 when there is at least one unused AVQ bit in this layer and both SWBL1 and SWBL2 are transmitted. The number of unused AVQ bits in SWBL1 is thus lowered by one in the current frame. If the detection flag is transmitted and holds f0 = 1 and both SWBL1 and SWBL2 are transmitted, all zero sub-bands in the current frame are filled using restrained spectral envelope: the spectral envelope coefficients are multiplied by a factor of 0.1 with sign corresponding to the sign of the SWBL0 output coefficient. If the detection flag f0 = 0, all zero sub‑bands are replaced by SWBL0 decoded coefficients, or filled by coefficients derived from the AVQ coded coefficients (see further in clause B.6.7.4.3). Note that the change of the detection flag f0 value from one state to the other is done only in frames where there is at least one AVQ unused in SWBL. In frames with no "Unused AVQ bits", the value of the detection flag corresponds to its value in the previous frame. This keeps the synchronization between the encoder and the decoder. Also note that the detection flag holds f0 = 0 and is not sent in the bitstream if only SWBL1 is transmitted.
[bookmark: _Ref263410642]B.6.7.4.3	Filling zero sub-bands
If both SWBL1 and SWBL2 are transmitted, the detection flag holds f0 = 0 (frame with non‑problematic zero sub-bands) and there are at least four unused AVQ bits in at least one of SWBL1 and SWBL2, the spectrum coefficients in one or two zero sub-bands are searched. To better match both the spectrum energy and distribution of amplitudes of the MDCT coefficients between the original spectrum and the reconstructed spectrum, the zero sub-band coefficients are derived from the AVQ coefficients in non-zero sub-bands using a correlation. The maximum correlation lag is sent to the decoder when four bits are available after the AVQ encoding and the maximum correlation is positive. This is applied for the first two zero sub-bands, one lag is sent in SWBL1 and the other lag in SWBL2 (when bits are available).

The search of best coefficients to be filled into a zero sub-band is based on finding the maximum correlation between the original normalized and ordered spectrum S′(k) in a zero sub-band and the spectrum referred further as a "base spectrum". The base spectrum is extracted from the AVQ locally decoded spectrum such that the zero sub-bands of are omitted. Thus the length of the spectrum is 24, if there are less than three non-zero sub-bands in the filling is not performed.

Let us define M-dimensional vector , i = 0,…,7, that corresponds to the coefficients of spectrum S′(k) in the first zero sub-band. Similarly, a vector corresponds to the coefficients of spectrum S′(k) in the second zero sub-band (if it exists). Giving the fact that sub-bands are ordered according to the perceptual importance, vectors and represent S′(k) spectrum coefficients of the two perceptually most important sub-bands not coded by the AVQ.

Therefore, if there are at least three non-zero sub-bands and there are at least four unused AVQ bits (after the AVQ coding and a 1‑bit detection flag f0 writing) in SWBL1, the maximum correlation Rmax1 between the base spectrum and the vector is searched as:
	
, l = 0,…,14
	(B.6-88)

If Rmax1 is positive, the lag δ1 corresponding to the lag with the maximum correlation Rmax1 is written into the SWBL1 bitstream and sent to the decoder. The reconstructed vector to be filled into the first zero sub-band is then computed as
	
, i = 0,…,7
	(B.6-89)

where φ1 is an energy correction factor in the first zero sub‑band that is computed as
	

	(B.6-90)

If Rmax1 is negative, a value of 15 is written to the SWBL1 bitstream to indicate that this first zero‑sub-band is not filled by the base spectrum. In this case the filling of such zero sub‑band is done using the SWBL0 output coefficients (details in clause B.7.3.6).

Similarly, if there are at least three non-zero sub-bands, and there are at least four unused AVQ bits in SWBL2, the maximum correlation Rmax2 between the base spectrum and the vector is searched as
	
, l = 0,…,14
	(B.6-91)

In the case when δ1 cannot be written into the SWBL1 bitstream (i.e., there are not at least four unused AVQ bits in SWBL1), the vector is replaced by the vector in the previous equation. This ensures the encoding of the most important zero sub-band coefficients. If Rmax2 is positive, the lag δ2 corresponding to the lag with the maximum correlation Rmax2 is written into the SWBL2 bitstream and sent to the decoder. The reconstructed vector to be filled into this (first or second) zero sub-band is obtained as
	
, i = 0,…,7
	(B.6-92)

where φ2 is an energy correction factor that corresponds to this zero sub‑band and computed accordingly as φ1 from Equation (B.6-90).
If Rmax2 is negative, a value of 15 is written to the SWBL2 bitstream to indicate that the filling procedure by the base spectrum is not applied in this zero sub-band. In this case the filling of such zero sub‑band is done using the SWBL0 output coefficients.
[bookmark: _Ref263411142]B.6.7.4.4	Backward reordering and denormalization

Vectors and found as described in clause B.6.7.4.3 are used to fill zero sub-bands in the spectrum to form the optimized spectrum , see Figure B.6-6. Similarly to the normalization per sub-band and ordering described at the beginning of clause B.6.7.4, a reverse operation is needed. Thus sub-bands of the spectrum are ordered back to the initial ordering and denormalized per sub-band to form the spectrum . Note that if there are more than two zero sub-bands, or there are not enough unused AVQ bits to encode lags δ1 and δ2, the zero sub‑bands are replaced by the SWBL0 output spectrum to form the full coded SHB spectrum.
[bookmark: _Toc265158565][bookmark: _Toc283385098]B.6.7.5	Encoding the SHB in mode 1
The input MDCT coefficients, of which the state is determined as "non sparse", are quantized based on the signal flow in SHB mode 1, as shown in Figure B.6-8. In order to achieve high quality for the "non sparse" input, as many as possible MDCT coefficients should be encoded. In the SHB mode 1, with regard to the coefficients, of which the absolute amplitude is higher than the spectral envelope from SWBL0, the difference between its magnitude and the offset calculated from spectral envelope is quantized using AVQ. At the decoder side, the decoded spectrum is obtained by adding the decoded error, which has not zero amplitude, and its offset, and then the remaining zero spectrum are filled with the spectrum envelope with the sign given in random.

[bookmark: _Ref263334792]Figure B.6-8 – SHB mode 1 encoding block diagram
B.6.7.5.1	Compute error spectrum

The error spectrum, , , to be quantized in the SHB mode 1, is computed from the normalized spectrum, , as follows:
	

	(B.6-93)

where is the coefficient index within a sub-band . The spectral envelope of the error spectrum in a sub-band j, , which is also required for the AVQ encoding, is estimated from as:
	

	(B.6-94)

Then the spectrum to be fed to the AVQ, shown in Equation (B.6-85) in case of the SHB mode 0 (see clause B.6.7.4), is replaced by:
	

	(B.6-95)

The obtained spectrum is quantized using the AVQ with the procedure described in clause B.6.7.10.
B.6.7.5.2	Local decoding of MDCT coefficients
See clause B.6.7.4.1.
[bookmark: _Ref264881809]B.6.7.5.3	Backward reordering and denormalization

Same as clause B.6.7.4.4, except that the decoded error spectrum, , , is obtained from the AVQ locally decoded spectrum in the SHB mode 1 instead of the spectrum obtained from spectrum in the SHB mode 0.
B.6.7.5.4	Replacing zero coefficients in AVQ coded sub-bands with decoded envelope

In the SHB mode 1, regarding the decoded error spectrum, which results in zero amplitude in AVQ coding, the zero coefficients will be filled with the recalculated decoded envelope and their signs will be randomly set at the decoder. Meanwhile, at the encoder, the absolute value of local decoded MDCT spectrum is computed and the encoding process hereafter will be performed based on the obtained absolute value in the SHB mode 1. The recalculation of the decoded envelopes is performed as follows:
	

	(B.6-96)

where is the temporary reconstructed spectrum from ,
	

	(B.6-97)

and is a flag to indicate the zero coefficients in AVQ decoded sub-band j:
	

	(B.6-98)

Then the absolute value of decoded normalized spectrum, , is computed by
	

	(B.6-99)

B.6.7.5.5	Detection of problematic zero sub-bands
To detect problematic zero sub-bands in SHB mode 1, another classifier from the one described in clause B.6.7.4.2 is used. In this mode, we keep in mind that MDCT coefficients to be quantized are classified as to be not sparse and that the error MDCT spectrum is quantized by the AVQ. Similar to the technique described in clause B.6.7.4.2, a detection of zero sub-bands where the spectral envelope is not quantized too close to its original is performed. However, in this mode, the energy distribution in zero sub-bands is not tested. The detection is performed only when both SWBL1 and SWBL2 are transmitted.
Similar to Equations (B.6-86) and (B.6-87), the ratio rat(j) is computed. Then, a maximum ratio rmax is searched within zero sub-bands and quantized using a 1- or 2-bit quantizer. The number of quantization levels depends on the number of unused AVQ bits in SWBL1.
Let f1 be the detection flag with value depending on rmax according to the following conditions:
	

	(B.6-100)

The 2-bit detection flag is sent in the SWBL1 bitstream if there exist "Unused AVQ bits". In case that there are no "Unused AVQ bits", the flag f1 is supposed to be 0. If there are only one unused AVQ bit, or five unused AVQ bits in SWBL1, the flag f1 is upper bounded by 1 and its 1-bit value is sent to the decoder. The number of unused AVQ bits in SWBL1 is consequently reduced by one or two bits. Note that the detection flag holds f1 = 0 and is not sent in the bitstream if only SWBL1 is transmitted.
Another difference between processing the SHB spectrum in SHB mode 1 compared to other SHB modes is that even in case that problematic frames are detected, the zero sub-bands filling described in clause B.6.7.4.3 is performed in SHB mode 1.
[bookmark: _Ref273518349]B.6.7.5.6	Filling zero sub-bands
In case of a sufficient number of unused AVQ bits and a transmission of both SWBL1 and SWBL2, the zero sub-bands are filled similarly as described in clause B.6.7.4.3, thus only the differences are emphasized here. The best vector to be filled into the zero sub-bands is found as follows:

–	The base spectrum is obtained by normalizing per sub-band the first three non-zero sub-bands from the decoded normalized SHB spectrum . Note that at the decoder side, the coefficients originally coded by the AVQ have the same signs as in the encoder, while the other coefficients (replaced by a modified spectral envelope) have signs often different from these at the encoder (this is due to the lack of this information at the decoder, where signs are deducted from the SWBL0 output spectrum).

–	The 8-dimensional vectors and are obtained by normalizing per sub-band the coefficients of the spectrum in the first two zero sub-bands. Note that in SHB mode 1, the vectors and and the base spectrum are derived from the non ordered sub-bands spectrum (see Figure B.6-8).

–	Lags δ1 and δ2 that correspond to the maximum correlation between the base vector and vectors and , respectively, are found.

–	The reconstructed vectors and to be filled into the zero sub-bands are reconstructed from the denormalized per sub-band base vector, i.e.
	
,

	(B.6-101)

where i = 0,…,7, and j1 and j2 correspond to the first and second zero sub-band, respectively. φ1 and φ2 are the energy correction factors for zero sub-band j1 and j2, respectively, computed as in Equation (B.6-90).

Finally, the vectors and are used to fill zero sub-bands in the spectrum to form the normalized optimized decoded SHB spectrum , see Figure B.6-8. Note that if there are more than two zero sub-bands, or there are not enough unused AVQ bits to encode lags δ1 and δ2, the zero sub-bands are replaced by the signed normalized spectral envelope to form the full coded SHB spectrum (see details in clause B.7.4.5).
[bookmark: _Ref273518042]B.6.7.5.7	Send sign information
In SHB mode 1, when the locally decoded AVQ output has zero amplitude, it will be replaced by a coefficient with magnitude equivalent to the decoded spectral envelope, as previously described. The basic assumption is that the polarity, i.e., sign, of this coefficient will be randomly generated at the decoder. However, in order to enhance quality, the sign information of the input MDCT coefficients is transmitted to the decoder by making use of the remaining bits.

Assume that is the number of unused bits in SWBL1 layer after AVQ, and are the indices to those unused bits. Then, the sign encoding comprises the following steps:
1)	Start with k = 0 and u = 0.

2)	If k lies within a sub-band j coded in SWBL1, and , then set the sign index as , and increment u by one.

3)	Increment k, and if the coefficient runs out, i.e., , or the number of remaining bits runs out, i.e., , then stop the iteration. Otherwise, go to Step 2.

Similarly, the sign information of the coefficients are assigned to the unused number of bits in SWBL2 using the above computation steps, except that the number of unused bits in this case is and the indices are .
[bookmark: _Toc265158566][bookmark: _Toc283385099]B.6.7.6	Encoding the SHB in mode 2
In the SHB mode 2, the input MDCT coefficients are encoded following the same procedure as the SHB mode 0 described in clause B.6.7.4, except that the one bit associated to the sparseness decision flag is not transmitted and, further, it is handled as an unused AVQ bit.
[bookmark: _Toc265158567][bookmark: _Toc283385100]B.6.7.7	Gain adjustment

The quantized global gain in linear domain, , is expressed by using the power of two as shown in Equation (B.6-71). After the AVQ coding stage, the global gain is adjusted by a gain correction factor and then this factor is transmitted to correct the magnitude of the decoded MDCT coefficients in SWBL1 layer.

The unquantized values of the adjusted global gain, , and the gain correction factor, , are represented by:
	

	(B.6-102)

where
	

	(B.6-103)

for a j-th sub-band coded in SWBL1. The index, , of the quantized gain correction factor is selected as follows:
	

	(B.6-104)

where
	

	(B.6-105)

Thus the quantized value of the adjusted gain for SWBL1 layer is obtained by
	

	(B.6-106)

[bookmark: _Toc265158568][bookmark: _Ref265662288][bookmark: _Toc283385101]B.6.7.8	Local decoding of MDCT coefficients

The quantized SHB MDCT coefficients are locally decoded when all SWB layers are encoded and the SHB mode is different from 1 as
	

	(B.6-107)

for i = 0,…,7 and j = 0,…,7. Note that sub-bands coded in SWBL2 also comprises the sub-bands filled using the technique described in clause B.6.7.4.3 and is the BWE decoded super higher band MDCT coefficients as described in clause B.7.3.6.
[bookmark: _Ref264883222][bookmark: _Toc265158569][bookmark: _Toc283385102]B.6.7.9	Gradient adjustment of the spectrum

The gradient adjustment of the spectrum is performed only when both SWBL1 and SWBL2 are transmitted to the decoder. In case there are still unused bits after AVQ coding and zero-band filling and the SHB mode is not 1, the information that adjusts the gradient of the spectrum magnitude is sent. The magnitude of the quantized SHB MDCT coefficients in each sub-band coded in each SWB layer, is adjusted by multiplying it by gradient adjustment factors, . The gradient adjustment factors are used at the decoder to obtain the adjusted spectrum . Each gradient adjustment factor is quantized using one or two bits per sub-band so as to minimize the error between the input SHB spectrum, , and its quantized spectrum .
For the SWBL1 layer, the gradient of the spectrum is adjusted by using the following steps:

1)	Define the number of sub-bands coded in the SWBL1 layer as , and the remaining number of bits in SWBL1 layer as . Initialize the iteration number j = 0, remaining number of bits as , the remaining number of sub-bands for gradient adjustment as , and the assigned number of bits per sub-band as .

2)	If , it means that -th sub-band can be assigned with two bits for gradient adjustment, while there are enough number of remaining bits u to assign at least one bit per remaining sub-bands. This means that two bits can be assigned to this -th sub-band, otherwise only one bit can be assigned:
	

	(B.6-108)

3)	Based on the assigned number of bits, the following VQ is performed and the gradient index is obtained as:
	

	(B.6-109)

	where is the gradient adjustment factor stored in the following table,
	

	(B.6-110)

4)	Update the remaining number of bits , the remaining number of sub-bands for gradient adjustment , and increment iteration number j. If and , go to Step 2.

The indices of gradient gains, , are sequentially multiplexed as . After the above iteration steps, the gradient adjustment is carried on to the remaining bits in SWBL2 layer in the same manner, where the number of remaining bits are initialized as and the remaining number of sub-bands for gradient adjustment as . This gives the gradient gain indices .
[bookmark: _Ref271630864][bookmark: _Toc283385103]B.6.7.10	AVQ quantization with split multi-rate lattice VQ
Prior to the AVQ quantization, the spectrum S'(k) of 64 coefficients is split into eight consecutive sub‑bands of eight coefficients each. In SWBL1 AVQ coding, the first three sub-bands are quantized with 36 bits, whereas in SWBL2 AVQ coding, four sub-bands are quantized with 40 bits. The sub‑bands are quantized with an 8-dimensional multi-rate algebraic vector quantizer. The AVQ codebooks are subsets of the Gosset lattice, referred to as the RE8 lattice.
B.6.7.10.1		Multi-rate AVQ with the Gosset lattice RE8
B.6.7.10.1.1	Gosset lattice RE8
The Gosset lattice RE8 is defined as the following union:
	

	(B.6-111)

where D8 is the 8-dimensional lattice composed of all points with integer components with the constraint that the sum of the eight components is even. The lattice 2D8 is simply the D8 lattice scaled by two. This implies that the sum of the components of a lattice point in 2D8 is an integer multiple of four. Therefore, the eight components of a RE8 lattice point have the same parity (either all even or all odd) and their sum is a multiple of four.

All points in lattice RE8 lie on concentric spheres of radius , nj being the codebook number in sub-band j. Each lattice point on a given sphere can be generated by permuting the coordinates of reference points called "leaders". There are very few leaders on a sphere compared to the total number of lattice points which lie on the sphere.
B.6.7.10.1.2	Multi-rate codebooks in Gosset lattice RE8
To form a vector codebook at a given rate, only lattice points inside a sphere in eight dimensions of a given radius are taken. Codebooks of different bit rates can be constructed by including only spheres up to a given radius. Multi-rate codebooks are formed by taking subsets of lattice points inside spheres of different radii.
B.6.7.10.1.2.1	Base codebooks

First, base codebooks are designed. A base codebook contains all lattice points from a given set of spheres up to a number nj. Four base codebooks, noted Q0, Q2, Q3, and Q4, are used. There are 36 non-null absolute leaders plus the zero leader (the origin): Table B.6-11 gives the list of these leaders and indicates to which codebook a leader belongs. Q0, Q2, Q3, and Q4 are constructed with respectively 0, 8, 12, and 16 bits. Hence codebook requires 4nj bits to index any point in that codebook.
B.6.7.10.1.2.2	Voronoi extensions

From a base codebook CAVQ (i.e., a codebook containing all lattice points from a given set of spheres up to a number nj), an extended codebook can be generated by multiplying the elements of CAVQ by a factor , and adding a second-stage codebook called the Voronoi extension. This construction is given by
	

	(B.6-112)

where is the scaling factor, zj is a point in a base codebook CAVQ and vj is a point in the Voronoi extension. The extension is computed in such a way that any point cj from Equation (B.6‑112) is also a lattice point in RE8. The scaling factor is a power of 2 (), where is called the Voronoi extension order.
Such extended codebooks include lattice points that extend further out from the origin than the base codebook. When a given lattice point cj is not included in a base codebook CAVQ (Q0, Q2, Q3 or Q4), the so-called Voronoi extension is applied, using the Q3 or Q4 base codebook part.

Giving the available bit-budget in particular layers, the maximum Voronoi extension order is = 2. Therefore, for Q3 or Q4, two extension orders are used: = 1 or 2 (= 2 or 4).

When = 0, there is no Voronoi extension, and only a base codebook is used.
[bookmark: _Ref271633433]B.6.7.10.1.2.3	Codebook rates

There are eight codebooks: the first four are base codebooks without Voronoi extension and the last four with Voronoi extension. The codebook number nj is encoded as a unary code with nj "1" bits and a terminating "0". Table B.6-10 gives for each of the eight codebooks, its base codebook, its Voronoi extension order (= 0 indicates that there is no Voronoi extension), and its unary code.
	[bookmark: _Ref271631012]Table B.6-10 – Multi-rate codebooks in RE8 lattice

	Codebook
number nj
	Base Codebook
	
Voronoi extension order
	Unary code for nj

	0
	Q0
	0
	0

	2
	Q2
	0
	10

	3
	Q3
	0
	110

	4
	Q4
	0
	1110

	5
	Q3
	1
	11110

	6
	Q4
	1
	111110

	7
	Q3
	2
	1111110

	8
	Q4
	2
	11111110

For the base codebook Q0, (nj = 0), there is only one point in the codebook and one bit is used to transmit the unary code corresponding to nj.

For the other three base codebooks (nj = 2, 3, or 4) without Voronoi extension:
–	nj bits are used to transmit the unary code corresponding to nj;

–	4nj bits are required to index a point in ;
–	thus 5nj bits are used in total.
For codebooks with Voronoi extension (nj > 4):

–	nj bits are used to transmit the unary code corresponding to the base codebook number Q3 (respectively Q4) if nj is even (respectively odd) and the Voronoi extension order is 1 if nj < 7, or 2 otherwise;
–	12 bits (respectively 16 bits) are required to index the point zj in the base codebook Q3 (respectively Q4);

–	8 bits are required to index the 8-dimensional point vj in the Voronoi extension of order ;
–	thus, 5nj bits are used in total.
In the codebook number encoding, a simple bit overflow check is performed: in case when the last AVQ coded sub-band of the spectrum S'(k) is quantized, nj > 0 and only 5nj – 1 bits are available for the quantization, the terminating "0" in the codebook number coding is not encoded. At the decoder, the same bit overflow check enables the right decoding of the codebook number in this sub-band.
B.6.7.10.2		Quantization with RE8 lattice
In lattice quantization, the operation of finding the nearest neighbour of the input spectrum S'(k) among all codebook points is reduced to a few simple operations, involving rounding the components of spectrum S'(k) and verifying a few constraints. Hence, no exhaustive search is carried out as in stochastic quantization, which uses stored tables. Once the best lattice codebook point is determined, further calculations are also necessary to compute the index that will be sent to the decoder. The larger the components of the input spectrum S'(k), the more bits will be required to encode the index of its nearest neighbour in the lattice codebook. Hence, to remain within a pre-defined bit-budget, a gain-shape approach has to be used, where the input spectrum is first scaled down by the AVQ gain, then each 8-dimensional block of spectrum coefficients is quantized in the lattice and finally scaled up again to produce the quantized spectrum.
B.6.7.10.2.1	AVQ gain estimation
Prior to the quantization (nearest neighbour search and indexation of the nearest neighbour), the input spectrum has to be scaled down to ensure that the total bit consumption will remain within the available bit-budget (36 bits in SWBL1, and 40 bits in SWBL2).
As there is a high correlation between the AVQ gain and the SWBL0 global gain, the quantized SWBL0 global gain is used to multiply each block of the encoded spectrum.
A first estimation of the total bit-budget nbits without scaling (i.e., with an AVQ gain equal to 1) is performed:
	

	(B.6-113)

where Rj is a first estimate of the bit budget to encode the sub-band j given by:
	

	(B.6-114)

with Ej being the energy (with a lower limit set to 2) of each sub-band :
	

	(B.6-115)

Constant βavq used in Equations (B.6-85) and (B.6-95) causes sub-band energies Ej to be too large to ensure that the total bit consumption (nbits) remains within the available bit-budget. Hence, it is necessary to estimate an AVQ gain so that the quantization of scaled down spectrum in the RE8 lattice will produce a set of parameters that stay within the bit-budget.
This gain estimation is performed in the iterative procedure described below.
Let NB_BITS (36 or 40) be the number of bits available for the quantization process, and NB_SBANDS the number of 8-dimensional sub-bands to be quantized (i.e., 3 or 4):
		Initialization:
		fac = 128,
		offset = 0,
		nbitsmax = 0.95 (NB_BITS – NB_SBANDS)
	for i = 1:10
		offset = offset + fac

		
		if nbits ≤ nbitsmax, then
			offset = offset – fac
		fac = fac / 2
	

After the 10-th iteration the AVQ gain is equal to and is used to obtain the scaled spectrum :
	

	(B.6-116)

[bookmark: _Ref269841397]B.6.7.10.2.2	Nearest neighbour search

The search of the nearest neighbour in the lattice RE8 is equivalent to searching for the nearest neighbour in the lattice 2D8 and for the nearest neighbour in the lattice 2D8 + (1,1,1,1,1,1,1,1), and finally selecting among those two lattice points the closest to in its quantized version .

Based on the definition of RE8, the following fast algorithm is used to search the nearest neighbour of an 8-dimensional sub-band among all lattice points in RE8:
	
Search for the nearest neighbour y1j in 2D8 of :

	Compute .
	Round each component of zj to the nearest integer to generate z'j.

	Compute .
	Calculate the sum S of the eight components of y1j.
	if S is not an integer multiple of four, then modify its I-th component as follows:

			
			where I = arg (max(| zj(i) – y1j(i) |))

Search for the nearest neighbour y2j in 2D8 + (1,1,1,1,1,1,1,1) of :

	Compute zj = 0.5(– 1.0) where 1.0 denotes an 8-dimensional vector with all ones.
	Round each component of zj to the nearest integer to generate z'j.

	Compute .
	Calculate the sum S of the eight components of y2j.
	if S is not an integer multiple of four then modify its I-th component as follows:

		
		where I = arg (max(| zj(i) – y2j(i) |))
	Compute y2j = y2j + 1.0.

	Select between y1j and y2j as the closest point in RE8 to :

		

		where e1j = (– y1j)2 and e2j = (– y2j)2.
	

B.6.7.10.2.3	Indexation

The quantized scaled sub-band of is a point cj in a RE8 lattice codebook, an index for each cj has to be computed and later inserted into the bitstream.
This index is actually composed of three parts:
1)	a codebook number nj;
2)	a vector index Ij, which uniquely identifies a lattice vector in a base codebook CAVQ;

3)	and if nj > 4, an 8-dimensional Voronoi extension index that is used to extend the base codebook when the selected point in the lattice is not in a base codebook CAVQ.
The calculation of an index for a given point cj in the RE8 lattice is performed as follows:
First, it is verified whether cj is in a base codebook CAVQ by identifying its sphere and its leader:

–	if cj is in a base codebook, the index used to encode cj is thus the codebook number nj plus the index Ij of the lattice point cj in .

–	Otherwise, the parameters of the Voronoi extension (see Equation (B.6-112)) have to be determined: the scaling factor Mv, the base codebook CAVQ (Q3 or Q4), the point zj in this base codebook, and the point vj in the Voronoi extension. Then, the index used to encode is composed of the codebook number nj (nj > 4) plus the index Ij of the lattice point zj in the base codebook CAVQ (Q3 or Q4), and the index of vj in the Voronoi extension.
B.6.7.10.2.3.1	Indexing a codebook number
As explained in clause B.6.7.10.1.2.3, the codebook index nj is unary encoded with nj bits except for nj = 0 that is coded with one bit (see Table B.6-10).
B.6.7.10.2.3.2	Indexing of codevector in base codebook
The index Ij indicates the rank of codevector zj in j-th sub-band, i.e., the permutation to be applied to a specific leader to obtain zj. The index computation is done in several steps, as follows:
1)	The input codevector zj is decomposed into a sign vector s0 and an absolute vector y0 following a two‑path procedure.
2)	The sign vector is encoded, the associated index bitssign(s0) and the number of non-zero components in zj signnb(s0) are obtained. More details are given in subsequent clauses.
3)	The absolute vector is encoded using a multi-level permutation-based index encoding method, and the associated index rank(y0) is obtained.
4)	The absolute vector index rank(y0) and the sign index bitssign(s0) are added together in order to obtain the input vector rank: rank(zj).
	

	(B.6-117)

5)	Finally, the offset leadoffset(zj) is added to the rank. The index Ij is obtained by
	

	(B.6-118)

B.6.7.10.2.3.2.1		Sign vector encoding
The number of bits required for encoding the sign vector elements is equal to the number of non‑zero elements in the codevector. "1" represents a negative sign and "0" a positive sign. As lattice RE8 quantization is used, the sum of all the elements in a codevector is an integer multiple of four. If there is any change of sign in the non-zero element, the sum may not be a multiple of four anymore, in that case, the last element sign in the sign vector will be omitted. For example, the sign vector of the input vector (–1, –1, 1, 1, 1, 1, –1, –1) in leader 1 (see Table B.6-11) has seven bits and its value is 0x1100001.
B.6.7.10.2.3.2.2		Encoding of the absolute vector and its position vector
The encoding method for the absolute vector works as follows. The absolute vector is first decomposed into MLmax levels. The highest-level vector L0 is the original absolute vector. The n value for Ln is initialized to zero. Then:
1)	Increment the n value. At level Ln (0 < Ln < MLmax), the intermediate absolute value vector is obtained by removing the most frequent element as given in the decomposition order column of Table B.6-11 from the upper-level vector. The remaining elements are built into a new absolute vector for the current level; it has a position order related to the level Ln–1 absolute vector. All position values of the remainder elements are used to build a position vector.
2)	The position vector of the current lower-level vector related to its upper-level vector is indexed based on a permutation and combination function, the indexing result being called the middle index Imid,n. For the absolute vector in the current lower level, the position vector indexing is computed as follows:
	

	(B.6-119)

	

	(B.6-120)

	where Ifinal is initialized to zero before the first step at the beginning of the procedure. The elements q0, q1, q2… are the element values in the Ln level position vector ranged from left to right according to their level, mn–1 is the dimension of the upper-level absolute vector, mn is the dimension of the current-level absolute vector, represents the permutation and combination formula , q,m={1,2,3,4,8}, and q > m. All the values for can be stored in a simple table in order to avoid calculation of factorials. The Ln–1 level final-index, Ifinal, is multiplied by the possible index value number, , in the current level and is added to the index, Imid,n, in the current level, to obtain the final index, Ifinal, of the current level.
3)	Repeat steps 1 and 2 until there is only one type of element left in the current absolute vector. The Ifinal for the lowest level is the rank of the absolute vector called rank(y0). Table B.6-11 is a sample extracted from the 36 leader table case. The leaders are indexed by Ka. The decomposition order corresponds to the level order. The decomposition order column gives the order in which the element will be removed from the higher level. The last column gives the three class parameters, the first one is the number of sign bits, Sn, the second one is the number of decomposition levels and equals the number of element types in the leader, Vc, from the third one to the last one they represent the absolute vector dimension in each lower level except the highest level, m1, m2, m3 (note that the dimension for the highest level is eight, but is not listed in Table B.6-11).
	
[bookmark: _Ref271631131]Table B.6-11 – List of leaders in base codebooks with their decomposition order and set parameter of multi-level permutation-based encoding

	Ka
	Leader
	Decomposition order
	Sn, Vc, m1, m2, m3
	Q0
	Q2
	Q3
	Q4

	
	{0,0,0,0,0,0,0,0}
	
	
	X
	
	
	

	0
	{1,1,1,1,1,1,1,1}
	{1}
	{7,1}
	
	X
	X
	

	1
	{2,2,0,0,0,0,0,0}
	{0,2}
	{2,2,2}
	
	X
	X
	

	2
	{2,2,2,2,0,0,0,0}
	{0,2}
	{4,2,4}
	
	
	X
	

	3
	{3,1,1,1,1,1,1,1}
	{1,3}
	{7,2,1}
	
	
	X
	

	4
	{4,0,0,0,0,0,0,0}
	{0,4}
	{1,2,1}
	
	X
	X
	

	5
	{2,2,2,2,2,2,0,0}
	{2,0}
	{6,2,2}
	
	
	
	X

	6
	{3,3,1,1,1,1,1,1}
	{1,3}
	{7,2,2}
	
	
	
	X

	7
	{4,2,2,0,0,0,0,0}
	{0,2,4}
	{3,3,3,1}
	
	
	X
	

	8
	{2,2,2,2,2,2,2,2}
	{2}
	{8,1}
	
	
	
	X

	9
	{3,3,3,1,1,1,1,1}
	{1,3}
	{7,2,3}
	
	
	
	X

	10
	{4,2,2,2,2,0,0,0}
	{2,0,4}
	{5,3,4,1}
	
	
	
	X

	11
	{4,4,0,0,0,0,0,0}
	{0,4}
	{2,2,2}
	
	
	X
	

	12
	{5,1,1,1,1,1,1,1}
	{1,5}
	{7,2,1}
	
	
	
	X

	13
	{3,3,3,3,1,1,1,1}
	{1,3}
	{7,2,4}
	
	
	
	X

	14
	{4,2,2,2,2,2,2,0}
	{2,0,4}
	{7,3,2,1}
	
	
	
	X

	15
	{4,4,2,2,0,0,0,0}
	{0,2,4}
	{4,3,4,2}
	
	
	
	X

	16
	{5,3,1,1,1,1,1,1}
	{1,3,5}
	{7,3,2,1}
	
	
	
	X

	17
	{ 6,2,0,0,0,0,0,0}
	{0,2,6}
	{2,3,2,1}
	
	
	X
	

	18
	{ 4,4,4,0,0,0,0,0}
	{0,4}
	{3,2,3}
	
	
	
	X

	19
	{ 6,2,2,2,0,0,0,0}
	{0,2,6}
	{4,3,4,1}
	
	
	
	X

	20
	{ 6,4,2,0,0,0,0,0}
	{0,2,4,6}
	{3,4,3,2,1}
	
	
	
	X

	21
	{ 7,1,1,1,1,1,1,1}
	{1,7}
	{7,2,1}
	
	
	
	X

	22
	{ 8,0,0,0,0,0,0,0}
	{0,8}
	{1,2,1}
	
	
	
	X

	23
	{6,6,0,0,0,0,0,0}
	{0,6}
	{2,2,2}
	
	
	
	X

	24
	{8,2,2,0,0,0,0,0}
	{0,2,8}
	{3,3,3,1}
	
	
	
	X

	25
	{8,4,0,0,0,0,0,0}
	{0,4, 8}
	{2,3,2,1}
	
	
	
	X

	26
	{9,1,1,1,1,1,1,1}
	{1,9}
	{7,2,1}
	
	
	
	X

	27
	{10,2,0,0,0,0,0,0}
	{0,2,10}
	{2,3,2,1}
	
	
	
	X

	28
	{8,8,0,0,0,0,0,0}
	{0,8}
	{2,2,2}
	
	
	
	X

	29
	{10,6,0,0,0,0,0,0}
	{0,6,10}
	{2,3,2,1}
	
	
	
	X

	30
	{12,0,0,0,0,0,0,0}
	{0,12}
	{1,2,1}
	
	
	
	X

	31
	{12,4,0,0,0,0,0,0}
	{0,4,12}
	{2,3,2,1}
	
	
	
	X

	32
	{10,10,0,0,0,0,0,0}
	{0,10}
	{2,2,2}
	
	
	
	X

	33
	{14,2,0,0,0,0,0,0}
	{0,2,14}
	{2,3,2,1}
	
	
	
	X

	34
	{12,8,0,0,0,0,0,0}
	{0,8,12}
	{2,3,2,1}
	
	
	
	X

	35
	{16,0,0,0,0,0,0,0}
	{0,16}
	{1,2,1}
	
	
	
	X

The last value of the decomposition order for the leader Ka = 20 is stored separately because this leader is the only one with four different values, the second dimension of the decomposition order being thus reduced from 4 to 3.
Figure B.6-9 gives an encoding example for the leader Ka = 20.

Figure B.6-9 – Example processing for Ka = 20
For example, in case the input vector is {0,–2,0,0,4,0,6,0}, the absolute input vector will be {0,2,0,0,4,0,6,0}, its associated leader can be found for Ka equal to 20. The set of decomposition order is {0,2,4,6}. For the highest level L0, element "0" is removed first from the absolute vector. The first level L1 absolute vector is {2,4,6}, its position vector is {1,4,6}. The second element which will be removed is "2", the second level L2 absolute vector is {4,6}, its position vector is {1,2}. The third element which will be removed is "4", the third level L3 absolute vector is {6}, its position vector is {1}.
B.6.7.10.2.4	Voronoi extension determination and indexing
If the nearest neighbour cj is not in the base codebook, then the Voronoi extension has to be determined through the following steps.

a)	Set the Voronoi extension order = 1 and the scaling factor .

b)	Compute the Voronoi index of the lattice point cj that depends on the extension order and the scaling factor . The Voronoi index is computed via component-wise modulo operations such that depends only on the relative position of cj in a scaled and translated Voronoi region:
	

	(B.6-121)

	where G is the RE8 generator matrix. Hence, the Voronoi index is a vector of integers with each component in [0,..., – 1].

c)	Compute the Voronoi codevector vj from the Voronoi index . The Voronoi codevector is obtained as
	

	(B.6-122)

	where is the nearest neighbour of y2j in infinite RE8 (see clause B.6.7.10.2.2 for search details) and ylj and y2j are defined as
	

	(B.6-123)

	and
	

	(B.6-124)

d)	Compute the difference vector wj = cj – vj. This difference vector wj always belongs to the scaled lattice . Compute zj = wj/, i.e., apply the inverse scaling to the difference vector wj. The codevector zj belongs to the lattice RE8 since wj belongs to lattice.
e)	Verify whether zj is in the base codebook CAVQ (i.e., in Q3 or Q4).

	If zj is not in C, increment the extension order by 1, multiply the scaling factor by 2, and go back to sub-step (b).

	Otherwise, if zj is in C, then the Voronoi extension order has been found and the scaling factor is sufficiently large to encode the index of cj.
[bookmark: _Ref271645292]B.6.7.10.3		Insertion of AVQ parameters into the bitstream

The parameters of the AVQ in each sub-band j consist of the codebook number nj, the vector index in base codebook Ij and the 8-dimensional Voronoi index . The codebook numbers nj are in the set of integers {0, 2, 3, 4, 5, 6, 7, 8} and the size of its unary code representation is nj bits with the exception of Q0 that requires one bit and a possible overflow in the last AVQ coded sub-band. The size of each index Ij and is given by 4nj bits and 8 bits, respectively. The number of sub-bands is equal to three in SWBL1 AVQ coding, four in SWBL2 AVQ coding.

The AVQ parameters nj, Ij, , are written sequentially in groups corresponding to the same sub‑band into the corresponding bitstream as
	

	(B.6-125)

Note that if the lattice point in the block j is in the base codebook C, the Voronoi extension is not searched and consequently the index is not written into the bitstream in this group.
The actual bit-budget needed to encode AVQ parameters in current frame and layer varies from frame to frame. The difference of bits between the allocated bits and actually spent bits are the "Unused AVQ bits".
[bookmark: _Toc283385104][bookmark: _Toc286912284][bookmark: _Toc286916647][bookmark: _Toc286928307][bookmark: _Toc295815369][bookmark: _Toc301337288][bookmark: _Toc301769959][bookmark: _Toc301786907]B.7	Functional description of the decoder
[bookmark: _Toc185419145][bookmark: _Toc189574589][bookmark: _Toc194901138][bookmark: _Toc283385105]B.7.1	Decoder overview
Figure B.7-1 shows the high-level block diagram of the ITU-T G.722 SWB decoder. The whole bitstream is de-multiplexed into three parts: ITU-T G.722 compatible core bitstream, wideband enhancement bitstreams (G722EL0 and G722EL1) and super higher band bitstreams (SWBL0, SWBL1 and SWBL2).
R1sm bitrate mode is based on the ITU-T G.722 core at 56 kbit/s wideband layer, and gives a superwideband signal reproduced by SWBL0 on top of an enhanced version of the wideband signal using G722EL0. R2sm bitrate mode is based on the ITU-T G.722 core at 64 kbit/s, and reproduces superwideband signals enhanced further from R1sm using SWBL1. R3sm bitrate mode is also based on the ITU-T G.722 core at 64 kbit/s, and reproduces a superwideband signal enhanced further from R2sm using G722EL1 and SWBL2.

Meanwhile, in order to improve the performance of the wideband signal, a post-processing of higher band signals is performed. To improve the quality under channel errors such as packet losses, a frame erasure concealment (FERC) algorithm is applied to the lower- and higher band signals, and independently to the super higher band signals. In case of erased frames, the FERC modules generate a replacement signal in function of the past memorized decoded signal. For the first valid frames after an erasure, the lower band FERC ensures the continuity of the signal by crossfading between the replacement signal and the decoded signal. For the other valid frames, the FERC modules only memorize the decoded signal to be able to generate a replacement signal in case of an erasure. The reproduced wideband and super higher band signals, and , are combined using a synthesis QMF filterbank to generate a 32 kHz sampled signal .

[bookmark: _Ref265162242][bookmark: _Ref184024561][bookmark: _Toc185408904][bookmark: _Toc187159317]Figure B.7-1 – High-level decoder block diagram
[bookmark: _Toc266093732][bookmark: _Toc266093976][bookmark: _Toc266094340][bookmark: _Toc266095042][bookmark: _Toc266099099][bookmark: _Toc266108571][bookmark: _Toc266121574][bookmark: _Toc266122162][bookmark: _Toc266174502][bookmark: _Toc266174619][bookmark: _Toc266175373][bookmark: _Toc266175498][bookmark: _Toc266175676][bookmark: _Toc266175958][bookmark: _Toc266176084][bookmark: _Toc266176211][bookmark: _Toc266176337][bookmark: _Toc266176463][bookmark: _Toc266178795][bookmark: _Toc266178921][bookmark: _Toc266179762][bookmark: _Toc266186289][bookmark: _Toc266187016][bookmark: _Toc266190522][bookmark: _Toc266193525][bookmark: _Toc266194934][bookmark: _Toc266205180][bookmark: _Toc266205307][bookmark: _Ref272657571][bookmark: _Toc283385106][bookmark: _Toc266051916]B.7.2	ITU-T G.722 core decoder and G722EL0 and G722EL1 decoders

The ITU-T G.722 core layer decoder is an improved version of ITU-T G.722. As shown in the block diagram of Figure B.7-1, this decoder comprises the analysis QMF and the ITU-T G.722 LB, ITU-T G.722 HB, and enhanced ITU-T G.722 HB decoders. These blocks are described in the following subclauses. In the following, the output of the ITU-T G.722 LB and HB decoders will be denoted and , respectively.
[bookmark: _Toc266099101][bookmark: _Toc283385107]B.7.2.1	Decoding ITU-T G.722 core
The same as clauses 4.1-4.3 of ITU-T G.722 for lower band and higher band ADPCM decoding.

The ITU-T G.722 lower band decoder operates at 5 or 6 bits per sample (depending on the operating ITU-T G.722 mode). The ITU-T G.722 LB 5- or 6-bit index IL(n) decoding results in the signal defined as (see clause 4.3.2 of ITU-T G.722):
	

	

	(B.7-1)

where is the quantized difference signal and is the predicted signal. In both ITU-T G.722 modes, .

Similarly, the ITU-T G.722 higher band decoder operates at 2 bits per sample. The ITU-T G.722 HB 2-bit index IH(n) decoding results in the signal defined as:
	

	

	(B.7-2)

[bookmark: _Ref266175870]where is the quantized difference signal and is the predicted signal. If ITU-T G.722 EL0 and G722EL1 are present, the signal is further enhanced to obtain . This enhancement in ITU-T G.722 HB decoding is illustrated in Figure B.7-2.

[bookmark: _Ref266176130]Figure B.7-2 – ITU-T G.722 HB decoding
[bookmark: _Toc266099105][bookmark: _Toc283385108]B.7.2.2	Decoding G722EL0 layer

Before G722EL0 layer decoding, the SHB signal class is decoded first (see clause B.7.3.1). G722EL0 layer is decoded for non-TRANSIENT frames.

In this case, 19 samples enhanced by G722EL0 are selected using the same procedure as described in clause B.6.4.3.3. One bit (0 or 1) is decoded for each selected sample, i.e.:
	

	(B.7-3)

If G722EL1 is not available, the signal decoded using EL0 is given by with:
	

	(B.7-4)

where is the ITU-T G.722 HB 2-bit index, is the 1-bit index in the G722EL0 layer, is the step size of the higher band ADPCM decoder, is the predicted signal from the main body of this Recommendation, and and are respectively defined in Table B.6-3 and Table B.6-2.
[bookmark: _Toc266099106][bookmark: _Toc283385109]B.7.2.3	Decoding G722EL1 layer

For each sample , one bit is decoded to obtain the binary index and the decoded signal becomes with:
	

	(B.7-5)

where is the ITU-T G.722 HB 2-bit index, is the 1-bit index of the G722EL0 layer, is the step size of the higher band ADPCM decoder, is the predicted signal from the main body of this Recommendation, and and are defined respectively in Table B.6-5 and Table B.6-3.
[bookmark: _Toc283385110]B.7.2.4	High-pass post-processing
A DC offset of very small magnitude may appear in the decoded higher band. After the QMF synthesis, this introduces an 8-kHz component. To avoid this annoying high-frequency noise, a first-order pole/zero filter with a cut-off frequency of 50 Hz is used prior to the QMF. As shown in Figure B.7-3 this high-pass post processing is also applied in case of erased frames. This filter is given by:
	

	(B.7-6)

[bookmark: _Toc283385111]B.7.2.5	Synthesis QMF
The same as clause 4.4 of ITU-T G.722.
Note that the synthesis QMF is adapted to operate with frames of 5 ms.
[bookmark: _Toc266051917][bookmark: _Toc266175381][bookmark: _Toc266175506][bookmark: _Toc266175684][bookmark: _Toc266175966][bookmark: _Toc266176092][bookmark: _Toc266176219][bookmark: _Toc266176345][bookmark: _Toc266176471][bookmark: _Toc266178803][bookmark: _Toc266178929][bookmark: _Toc266179770][bookmark: _Toc266186297][bookmark: _Toc266187024][bookmark: _Toc266190530][bookmark: _Toc266193533][bookmark: _Toc266194942][bookmark: _Toc266205188][bookmark: _Toc266205315][bookmark: _Toc266175382][bookmark: _Toc266175507][bookmark: _Toc266175685][bookmark: _Toc266175967][bookmark: _Toc266176093][bookmark: _Toc266176220][bookmark: _Toc266176346][bookmark: _Toc266176472][bookmark: _Toc266178804][bookmark: _Toc266178930][bookmark: _Toc266179771][bookmark: _Toc266186298][bookmark: _Toc266187025][bookmark: _Toc266190531][bookmark: _Toc266193534][bookmark: _Toc266194943][bookmark: _Toc266205189][bookmark: _Toc266205316][bookmark: _Toc266175383][bookmark: _Toc266175508][bookmark: _Toc266175686][bookmark: _Toc266175968][bookmark: _Toc266176094][bookmark: _Toc266176221][bookmark: _Toc266176347][bookmark: _Toc266176473][bookmark: _Toc266178805][bookmark: _Toc266178931][bookmark: _Toc266179772][bookmark: _Toc266186299][bookmark: _Toc266187026][bookmark: _Toc266190532][bookmark: _Toc266193535][bookmark: _Toc266194944][bookmark: _Toc266205190][bookmark: _Toc266205317][bookmark: _Toc266175388][bookmark: _Toc266175513][bookmark: _Toc266175691][bookmark: _Toc266175973][bookmark: _Toc266176099][bookmark: _Toc266176226][bookmark: _Toc266176352][bookmark: _Toc266176478][bookmark: _Toc266178810][bookmark: _Toc266178936][bookmark: _Toc266179777][bookmark: _Toc266186304][bookmark: _Toc266187031][bookmark: _Toc266190537][bookmark: _Toc266193540][bookmark: _Toc266194949][bookmark: _Toc266205195][bookmark: _Toc266205322][bookmark: _Toc283385112]B.7.2.6	Higher band post-processor

For non-TRANSIENT frames, an MDCT domain post-processor may be applied to improve the quality of the signal reproduced by ITU-T G.722 in the 4.4-8 kHz range. The application of this post-processing depends on the frequency amplitude parameters of the wideband, , and of the SHB, . These amplitude parameters are computed as follows:

First, an MDCT (see Equation (B.6-56)) is performed on the decoded wideband signal, i.e., the output signal of the QMF synthesis. Then the wideband amplitude parameter, , is computed from the obtained wideband MDCT coefficients . The SHB amplitude parameter is obtained as the average of the eight decoded spectral envelopes .
	
,

	(B.7-7)

The MDCT domain post-processor is applied to the last 36 wideband MDCT coefficients, when .

Some spectrum having sufficient quality is amplified by multiplying by gain factors slightly larger than one. On the other hand, some spectrum having poor quality is multiplied by factors smaller than one or reduce it to a level below the estimated masking threshold. Three magnitude parameters are defined in order to estimate the quality, which are respectively called local masking magnitudes, noted , local masked magnitudes, noted , and overall average magnitude, noted ; the three parameters are estimated using the frequency coefficients; especially, the estimation of and are based on the perceptual masking effect.

In principle, if a frequency tone acts as a masking tone, this masking tone influences more the area above the tone than the area below it. The influence area of the masking tone is larger when it is located in a high frequency region than in a low frequency region. Usually, ordinary audio signals do not consist of just a tone. If the spectrum energy exists on the related band, the "perceptual loudness" at a specific frequency location depends not only on the energy at the location but also on the energy distribution around its location. The local masking magnitudes are viewed as the "perceptual loudness" at location k and estimated by taking a weighted sum of the spectral magnitudes around it:
	

	

	(B.7-8)

where and are the weighting windows, is the first boundary of the masking MDCT coefficients and is the last boundary of the masking MDCT coefficients.

Note that the weighting windows are asymmetric: the tail of the window is longer on the left side than on the right side of k. Furthermore, the window size is larger at the higher frequency area than at the lower frequency area. , , , and are defined as follows:
	

,

,

,

, ,

, ,

where
	(B.7-9)

Local masked magnitudes are viewed as the estimated local "perceptual error floor". Since the encoder encodes signals in the perceptual domain, high energy frequency coefficients at the decoder side usually have low relative error but high absolute error. Low energy frequency coefficients at the decoder side have high relative error but low absolute error. The errors at different frequencies also perceptually influence each other in a way similar to the masking effect of a normal signal. Therefore, the local masked magnitudes are estimated similarly to , as:
	

	

	(B.7-10)

This time, the shape of the weighting windows and is flatter and longer than and . The weighting windows, and , and the frequency boundaries, and , are calculated as follows:
	
,

,

,

,

, ,

, ,

where
	(B.7-11)

The overall average magnitude is estimated as:
	

	(B.7-12)

The ratio can somehow reflect the local relative perceptual quality at location k. Considering the possible influence of the overall average magnitude, one way to initialize the estimation of the gain factor along the frequency is to compare the local masked magnitude with the overall average magnitude to avoid a large gain factor. It can be described as:
	

	

	(B.7-13)

In order to avoid too much change in the overall energy after the post-processing, a gain normalization factor is applied.
	

	(B.7-14)

where the maximum gain factor is . Then the gain factor is multiplied by the gain normalization factor to obtain the current normalized gain factor :
	

	

	(B.7-15)

The current normalized gain factors are smoothed with the ones from the previous frame and then applied to the MDCT coefficients,
	

	

	(B.7-16)

	

	

	(B.7-17)

If the previous frame is TRANSIENT, is set to before performing Equations (B.7-16) and (B.7-17). For the frames not applying this post-processor, is set to 1.

The newly obtained MDCT coefficients are transformed back to the decoded wideband time domain signal by the inverse MDCT as described in Equations (B.7-56) and (B.7-57). Note that those MDCT coefficients are also used for the frequency excitation generation in clause B.7.3.5.
[bookmark: _Toc271284620][bookmark: _Toc271296260][bookmark: _Toc271296317][bookmark: _Toc271634401][bookmark: _Toc271634730][bookmark: _Toc271634779][bookmark: _Toc271636361][bookmark: _Toc272665345][bookmark: _Toc272672807][bookmark: _Toc272839261][bookmark: _Toc272861761][bookmark: _Toc272861799][bookmark: _Toc273287550][bookmark: _Toc273389869][bookmark: _Toc271284622][bookmark: _Toc271296262][bookmark: _Toc271296319][bookmark: _Toc271634403][bookmark: _Toc271634732][bookmark: _Toc271634781][bookmark: _Toc271636363][bookmark: _Toc272665347][bookmark: _Toc272672809][bookmark: _Toc272839263][bookmark: _Toc272861763][bookmark: _Toc272861801][bookmark: _Toc273287552][bookmark: _Toc273389871][bookmark: _Toc265158578][bookmark: _Ref273450538][bookmark: _Toc283385113]B.7.3	SWBL0 decoder
First, the super higher band signal class is decoded. Then spectral envelopes or spectral/time envelopes are adaptively decoded depending on the above decoded SHB signal class. Four spectral envelopes and four time envelopes are decoded for TRANSIENT frame. For other cases (non‑TRANSIENT frame), eight spectral envelopes are decoded and no time envelope is decoded. Frequency excitations are also generated according to the SHB signal class. Finally, the super higher band signal is decoded with the signal class, decoded envelopes and generated frequency excitations.
[bookmark: _Ref264647123][bookmark: _Toc265158579][bookmark: _Toc283385114]B.7.3.1	Decoding SHB signal class
Two bits are decoded from SWBL0 bitstream to get the SHB signal class according to Table B.6-8.
[bookmark: _Ref264021617][bookmark: _Toc265158580][bookmark: _Toc283385115]B.7.3.2	Decoding spectral envelope
Five bits are decoded to obtain the global gain, which is converted into the linear domain as follows:
	

	(B.7-18)

–	If the current frame is TRANSIENT, four bits are decoded to obtain each normalized spectral envelope index , . The normalized spectral envelope is decoded using Equation (B.6-74).
	The decoded spectral envelope is as follows:
	

	

	(B.7-19)

–	If the current frame is non-TRANSIENT, two vectors are decoded for the normalized spectral envelopes of the lower four sub-bands and the higher four sub-bands. For each vector, one bit is first decoded to obtain the codebook flag, . Then the vector quantization index , i=0, 1 is read from the bitstream. The normalized spectral envelope is decoded using Equation (B.6-75).
	The decoded spectral envelope is as follows:
	

	

	(B.7-20)

	Additional spectral envelope adjustment is performed if the current frame is NORMAL or NOISE. The maximum, minimum, and average of the spectral envelope (, and) are calculated as follows:
	

	(B.7-21)

	The spectral envelope of each sub-band is multiplied by 0.5, if conditions , and are satisfied,
	

	

	(B.7-22)

[bookmark: _Toc265158581][bookmark: _Ref270367932][bookmark: _Ref271895241][bookmark: _Toc283385116]B.7.3.3	Decoding time envelope

If the current frame is TRANSIENT, four bits are decoded to obtain the index of each time envelope, . This envelope is converted into the linear domain as follows:
	

	

	(B.7-23)

The linear domain time envelope of the previous sub-frame is saved as . is set to zero for the first frame. A time envelope adjustment flag bit is decoded and set as . Time envelope denormalization is performed after the frequency domain processing in clause B.7.6.
[bookmark: _Toc265158582][bookmark: _Toc283385117]B.7.3.4	Signal class counting for frequency excitation selection

Counter is a counter for the SHB signal class to help frequency excitation selection in the decoder side. It is initialized to zero. Counter is updated according to the SHB signal class, as:
	

	(B.7-24)

[bookmark: _Toc263346629][bookmark: _Toc263354063][bookmark: _Toc263410148][bookmark: _Toc263412086][bookmark: _Toc263420533][bookmark: _Toc263424292][bookmark: _Toc263424893][bookmark: _Toc263443481][bookmark: _Toc265158583][bookmark: _Ref265833071][bookmark: _Ref273286438][bookmark: _Toc283385118]B.7.3.5	Frequency excitation generation

The wideband MDCT coefficients after the higher band post-processing are used for SHB frequency excitation generation in SWBL0 depending on the decoded SHB signal class, as follows.

The base frequency excitation signal is generated from the wideband MDCT coefficients or from a random noise.
If the current frame is NOISE and the previous frame is not HARMONIC,
	

	

	(B.7-25)

where
	

	 and
	

	(B.7-26)

Parameter is initialized as 21211 and updated for each MDCT coefficient. It is noted that is calculated for every frame.
For other frames,
	

	

	(B.7-27)

If both signal classes of the current frame and the previous frame are NORMAL/NOISE and equals to zero, the base frequency excitation is updated as follows:
	

	

	(B.7-28)

For this case, MDCT coefficients in the frequency range 3.2 kHz-6.4 kHz are used for the base frequency excitation.
[bookmark: _Ref263766737][bookmark: _Toc265158584][bookmark: _Ref273290508][bookmark: _Toc283385119]B.7.3.6	Frequency excitation normalization and spectral envelope denormalization
Firstly, the spectral envelope is adjusted according to the SHB signal class. Then the base frequency excitation signal is normalized to remove the envelope information. Finally, the spectral envelope is applied to the normalized excitation signal.

For TRANSIENT frames, is set to when equals to zero. The decoded super higher band frequency coefficients are calculated as follows:
	

	(B.7-29)

where and .

For non-TRANSIENT frames, the spectral envelope of the current frame is smoothed with the spectral envelope of the previous frame , , when the following conditions are satisfied:
	

 and
	(B.7-30)

In this case, the smoothed spectral envelope, , is calculated as follows:
	

	

	(B.7-31)

where
	

	(B.7-32)

The decoded super higher band frequency coefficients are calculated as follows:
	

	(B.7-33)

where and .

[bookmark: _Toc263261724][bookmark: _Toc263261822][bookmark: _Toc263262070][bookmark: _Toc263262628][bookmark: _Toc263262703][bookmark: _Toc263262778]Finally, is saved for next frame. In case of frame erasure, the spectral envelope of the previous frame , , is attenuated by a factor of 0.85.

Note that in case that only SWBL0 is received (MODE_R1sm), the spectrum is equal to the output decoded spectrum .
[bookmark: _Toc263329139][bookmark: _Toc263334055][bookmark: _Toc263334139][bookmark: _Toc263334223][bookmark: _Toc263335389][bookmark: _Toc263338382][bookmark: _Toc263340099][bookmark: _Toc263346635][bookmark: _Toc263354069][bookmark: _Toc263410154][bookmark: _Toc263412092][bookmark: _Toc263420539][bookmark: _Toc263424298][bookmark: _Toc263424899][bookmark: _Toc263443487][bookmark: _Toc262817489][bookmark: _Toc265158585][bookmark: _Toc283385120]B.7.4	SWBL1 and SWBL2 decoder

The decoded normalized spectral envelope from SWBL0 is used to set the perceptual importance order of sub-bands .
The decoding of the SWBL1 and SWBL2 spectrum coefficients depends on the SHB mode corresponding to the sparseness of the spectrum where the SHB mode information is obtained from the SWBL1 bitstream and the signal class extracted from the SWBL0 bitstream.
When both signal classes of the current frame and the previous one are NORMAL/NOISE, the SHB mode 0 for the sparse spectrum is selected on the condition that the SHB mode flag is 0, and the SHB mode 1 for the non-sparse spectrum is chosen if the SHB mode is 1. For other cases of the signal classes, the SHB mode 2 is applied.
[bookmark: _Toc262817490][bookmark: _Ref264882208][bookmark: _Toc265158586][bookmark: _Toc283385121]B.7.4.1	Decoding the SHB in mode 0

[bookmark: _Toc194315303][bookmark: _Toc194401156][bookmark: _Toc195526949][bookmark: _Toc196572843]The decoding in SHB mode 0 starts with reading and decoding the AVQ parameters to obtain the decoded spectrum ; for details, see clause B.7.4.9.
B.7.4.1.1	Problematic frame information decoding
The detection flag f0 is read from the SWBL1 bitstream if there is at least one unused AVQ bit in this layer and both SWBL1 and SWBL2 are received. The detection flag f0 is used to form the MDCT spectrum (see clause B.7.4.5). The number of unused AVQ bits in SWBL1 is consequently reduced by one. If only SWBL1 is received, the detection flag is set to f0 = 0.
[bookmark: _Ref262564228]B.7.4.1.2	Filling zero sub-bands

If both SWBL1 and SWBL2 are received, the flag f0 = 0, and there are at least four remaining unused AVQ bits in SWBL1 or in SWBL2, the base spectrum is computed as described in clause B.6.7.4.3. Then,

–	if there are at least four remaining unused AVQ bits in SWBL1 and in SWBL2, both lags δ1 and δ2 are read from the SWBL1 and SWBL2 bitstreams respectively. Finally, vectors (if δ1 < 15) and (if δ2 < 15) are computed using Equations (B.6-89) and (B.6-92);

–	if there is only one SWB layer with at least four remaining unused AVQ bits, only lag δ1 is read from this SWBL1 or SWBL2 bitstream. Finally, if δ1 < 15, vector is computed using Equation (B.6-89).
B.7.4.1.3	Backward reordering and denormalization
The same as described in clause B.6.7.4.4.
[bookmark: _Toc262817491][bookmark: _Toc265158587][bookmark: _Toc283385122]B.7.4.2	Decoding the SHB in mode 1
B.7.4.2.1	Recalculation of the decoded spectral envelope

Before the AVQ decoding (for details see clause B.7.4.9) of the SHB mode 1, the envelopes of the error spectrum, , which are required for the denormalization of the AVQ in place of the decoded normalized envelopes,, are computed using Equation (B.6-94).
B.7.4.2.2	Backward reordering and denormalization
The same as clause B.6.7.5.3.
B.7.4.2.3	Calculation of the decoded normalized spectra

The recalculated decoded envelopes are computed using Equation (B.6-96) and then the decoded normalized spectra, , of which the sub-band is not a zero sub-band, are extracted as:
	

	(B.7-34)

where i = 0,…,7 and j = 0,…,7, for j not corresponding to a zero sub-band.
B.7.4.2.4	Problematic frame information decoding
The detection flag f1 is read from the SWBL1 bitstream if there is at least one unused AVQ bit in this layer and both SWBL1 and SWBL2 are received. The number of bits (1 or 2) used to quantize flag f1 is deducted from the number of remaining unused AVQ bits in SWBL1 (see clause B.7.4.9). Then, the value of flag f1 (f1 =0, 1, 2, 3) is used to update the spectral envelope in all zero sub-bands of the SHB spectrum as follows:
	

	(B.7-35)

where is the decoded normalized spectral envelope for any j corresponding to a zero sub‑band. The number of unused AVQ bits in SWBL1 is finally reduced by one or two. Note that if only SWBL1 is received, the detection flag is set to f1 = 0.
[bookmark: _Ref262564236]B.7.4.2.5	Filling zero sub-bands

In case both SWBL1 and SWBL2 are received and there are at least four unused bits in SWBL1 or SWBL2, the lags δ1 and δ2 are read from the SWBL1 and SWBL2 bitstreams, respectively. Furthermore, the base spectrum is obtained as described in clause B.6.7.5.6. Then vectors (if δ1 < 15) and (if δ2 < 15) are computed using (B.6-101). Finally, vectors and are used to fill zero sub-bands in the spectrum to form the normalized optimized decoded SHB spectrum .
B.7.4.2.6	Sign information decoding

When the SHB mode is 1 and the number of unused remaining bits of the AVQ in the two SWB layers is more than one, the sign information is extracted from the SWBL1 and SWBL2 bitstreams, and , respectively. and are the number of remaining bits from the SWBL1 and SWBL2 layers. For incrementing k from 0 to 63, on the condition that and corresponds to the sub-band coded in SWBL1, the decoded normalized spectrum, , is modified using :
	

	(B.7-36)

and then u is incremented by one. The above calculation continues until there are no remaining bits in the SWBL1 layer. After that, on the condition that and corresponds to the sub-band coded in SWBL1, the decoded spectrum is also modified using :
	

	(B.7-37)

Then v is incremented by one, where u and v are defined in clause B.6.7.5.7. The above calculation continues until there are no bits remaining in the SWBL2 layer.
[bookmark: _Toc262817492][bookmark: _Toc265158588][bookmark: _Toc283385123]B.7.4.3	Decoding the SHB in mode 2
Decoding the SHB in mode 2 is the same as the decoding in SHB mode 0 described in clause B.7.4.1, except that, for SHB mode 2 bitstreams, the one-bit flag for the decision of sparseness is not included.
[bookmark: _Toc262817493][bookmark: _Toc265158589][bookmark: _Toc283385124]B.7.4.4	Gain adjustment decoding

The decoded value of the adjusted gain for SWBL1 layer is computed from its index, , by
	

	(B.7-38)

[bookmark: _Ref262563803][bookmark: _Toc262817494][bookmark: _Toc265158590]where
	

	(B.7-39)

[bookmark: _Ref273619421][bookmark: _Toc283385125]B.7.4.5	Decoding of MDCT coefficients

The AVQ decoded SHB spectrum is obtained on a sub-band basis depending on the SHB mode and the number of decoded layers. If all SWB layers are received and decoded, then
	

	(B.7-40)

where i = 0,…,7 and j = 0,…,7, for j corresponding to sub-bands coded in SWBL1, and
	

	(B.7-41)

for j corresponding to sub-bands coded in SWBL2. Note that sub-bands coded in SWBL2 also comprise the sub-bands filled using the technique described in clauses B.7.4.1.2 and B.7.4.2.5, respectively.
Finally, the zero sub-bands are dealt with depending on the SHB mode, as follows.
For all j corresponding to zero sub-bands:
–	If SHB mode equals 1, then
	

	(B.7-42)

–	Otherwise (SHB mode is other than 1),
•	if the detection flag f0 = 1, then
	

	(B.7-43)

•	otherwise (the detection flag f0 = 0), the SWBL0 output spectrum is used to fill zero sub-bands in spectrum .
[bookmark: _Toc265158591][bookmark: _Toc283385126]B.7.4.6	Gradient adjustment of the spectrum decoding
In case that there are still unused AVQ bits in at least one of the SWB layers and the SHB mode is not one, these bits represent the indices of the gradient adjustment factor. For each of two SWB layers, the indices of the gradient adjustment factors are de-multiplexed from each bitstream by one or two bits per sub-band as long as there are remaining unused AVQ bits.
For the SWBL1 layer, the gradient adjustment is done in the following steps:

–	The adjustment is performed in the perceptual importance order of sub-bands, , that have been coded in the SWBL1 layer. The number of bits allocated for each sub-band is calculated using Equation (B.6-108).

–	Based on the results of the bit allocation, the index of the -th sub-band, , is sequentially de-multiplexed.

–	The adjusted decoded SHB spectrum of b (=)-th sub-band, , is computed as follows:
	

	(B.7-44)

where is the decoded SHB spectrum of b-th sub-band and is the gradient adjustment factor, given in Equation (B.6-110). This gradient adjustment is continued till there are no more bits. After the above processing is finished for the SWBL1 layer, the same procedure is performed for bitstream , for the adjustment of the sub-bands corresponding to the SWBL2 layer.
[bookmark: _Toc265158592][bookmark: _Ref266095152][bookmark: _Toc283385127]B.7.4.7	BWE/AVQ adaptation

The MDCT coefficients decoded by AVQ are used to replace the BWE coefficients in higher layers SWBL1 and SWBL2. For empty sub-bands, i.e., for all in j-th sub‑band, or the zero MDCT coefficients in non-empty sub-bands, BWE/AVQ adaptation is performed to reduce the perceptual noise and improve the subjective quality especially for layer SWBL1. Empty sub-bands often occur when only decoding SWBL1 layer.

According to the correlation between the current frame and the previous frames, first select at least two MDCT coefficients which have higher correlation with the MDCT coefficients to be adjusted. The selected MDCT coefficients and the MDCT coefficients to be adjusted are weighted to obtain the predicted values of current MDCT coefficients. Then, the predicted values combined with the same sign before the adjustment are decoded as the adjusted MDCT coefficients. The obtained MDCT coefficients as a result of BWE/AVQ adaptation are .
1)	Current and previous frames are HARMONIC

If both the current frame and the previous frame are HARMONIC, there should be high correlations between those two frames. In this case, the BWE/AVQ adapted MDCT coefficients in the previous (m – 1)-th frame and the AVQ decoded MDCT coefficients in the previous (m – 1)-th and (m – 2)-th frames are used for prediction.

If -th sub-band is empty in the current frame and was not empty in the previous frame, the following BWE/AVQ adaptation operation is performed:
	

	(B.7-45)

where is the predicted MDCT magnitude obtained by:
	

	(B.7-46)

2)	Current or previous frame is TRANSIENT

If the current or the previous frame is TRANSIENT, there should be low correlation between those two frames. For non-empty sub-bands, MDCT coefficients are weighted by their neighbouring MDCT coefficients. The BWE/AVQ adapted MDCT coefficients are obtained:
	

	

	(B.7-47)

where the rectification threshold is obtained by and adapted MDCT magnitude is obtained by:
	

	(B.7-48)

3)	Other cases

For other cases, there should be medium correlations between the current and the previous frames. In this case, the BWE/AVQ adapted MDCT coefficients , and in the previous (m – 1)-th frames are used for prediction.
In case SHB mode is 1, the MDCT coefficients in the current frames are adapted:
	

	

	(B.7-49)

where the rectification threshold is similarly obtained by .

If -th sub-band is empty, the adapted MDCT magnitudes are calculated as:
	

	(B.7-50)

If -th sub-band is not empty, the adapted MDCT magnitudes are calculated as:
	

	(B.7-51)

In case SHB mode is not 1, the adaptation is not performed:
	

	

	(B.7-52)

[bookmark: _Toc266175991][bookmark: _Toc266176117][bookmark: _Toc266176244][bookmark: _Toc266176370][bookmark: _Toc266176496][bookmark: _Toc266178828][bookmark: _Toc266178954][bookmark: _Toc266179795][bookmark: _Toc266186322][bookmark: _Ref272839280][bookmark: _Toc283385128]B.7.4.8	Spectrum post-processor

When the SHB mode equals one, a spectrum post-processor is applied to smooth the decoded SHB spectrum. Using the current frame and the previous frame, the decoded SHB spectrum is updated for incrementing k from 0 to 63 for :
	

	

	(B.7-53)

If the SHB mode is not equal to 1,
	

	

	(B.7-54)

and all previously adapted MDCT coefficients are initialized to zero.
[bookmark: _Toc266187050][bookmark: _Toc266190556][bookmark: _Toc266193559][bookmark: _Toc266194968][bookmark: _Toc266205214][bookmark: _Toc266205341][bookmark: _Ref272675531][bookmark: _Toc283385129][bookmark: _Toc265158593]B.7.4.9	AVQ decoding
The reading of the AVQ parameters from the bitstream is complementary to the insertion described in clause B.6.7.10.3. The codebook numbers nj are used to estimate the actual bit-budget needed to encode AVQ parameters at the decoder and the number of unused AVQ bits is computed as a difference between the allocated and actual bit budgets.

Parameter decoding involves decoding the AVQ parameters describing each 8-dimensional quantized sub‑bands of the quantized spectrum . The in SWBL1 and SWBL2 comprise respectively three and four sub-bands, each of eight samples. The decoded AVQ parameters for each sub‑band comprise:
–	the codebook number nj,
–	the vector index Ij ,

–	and, if the codevector (i.e., lattice point) is not in a base codebook, the Voronoi index .

The unary code for the codebook number nj, is first read from the bitstream and nj is determined (see Table B.6-10). From the codebook number nj, the base codebook and the Voronoi extension order are then obtained. If nj < 5, there is no Voronoi extension (= 0) and the base codebook is . If nj ≥ 5 the base codebook is either Q3 (nj even) or Q4 (nj odd) and the Voronoi order (1 or 2) is also determined (= 1 if nj < 7; = 2, otherwise).
Then, if nj > 0, the vector index Ij, coded on 4nj bits is read from the bitstream and the base codevector zj is decoded.

After the decoding of the base codevector, if the Voronoi order is greater than 0, the Voronoi extension index is decoded to obtain the Voronoi extension vector vj. The number of bits in each component of index vector is given by the Voronoi extension order , and the scaling factor of the Voronoi extension is given by .

Finally, from the scaling factor , the Voronoi extension vector vj and the base codebook vector zj, each 8-dimensional AVQ sub-band is computed as:
	

	(B.7-55)

B.7.4.9.1	De-indexing of the codevector in the base codebook
The index decoding of the codevector zj is done in several steps. First, the absolute leader and its offset are identified by comparing the index with the offset in the look-up table. The offset is subtracted from the index to produce a new index. From this index, the sign index and the absolute vector index are extracted. The sign index is decoded and the sign vector is obtained. The absolute vector index is decoded by using a multi-level permutation-based index decoding method and the absolute vector is obtained. Finally, the decoded vector is reconstructed by combining the sign vector with the absolute vector.
B.7.4.9.1.1	Sign decoding
The sign vector is obtained by extracting from left to right all the sign bits for non-zero elements in the absolute vector. The bit number of the sign code is read from the (Sn) in Table B.6-11. If the bit number of the sign index is not equal to the number of the non-zero elements in the decoded absolute vector, the sign of the last non-zero element is recovered.
B.7.4.9.1.2	Decoding of the absolute vector and of its position vector
The decoding method of the absolute vector index is described as follows:

1)	The absolute vector index is decomposed into several mid-indices for each level from lowest level to highest level. The absolute vector index is the starting value for the lowest level. The mid-index of each lower level is obtained by dividing the absolute vector index by the possible index value count, , the quotient is the absolute vector index for the next lower level. The remainder is the middle index, Imid,n, for the current level.
2)	The Imid,n of each lower level is decoded based on a permutation and combination function and the position vector of each lower level vector related to its upper level vector is obtained.
3)	Finally, one-by-one from the lowest level to the highest level, each lower level absolute vector is used to partly replace the upper level absolute vector elements according to the position parameter. The highest level vector is the decoded output absolute vector.
B.7.4.9.1.3	Position vector decoding
To obtain the position vector from the middle index in each lower level, the algorithm uses a permutation and combination procedure to estimate the position sequence. The procedure is as follows:

1)	Increment the pos value beginning from zero, until Imid,n is not more than .

2)	Let q0= pos –1 be the first position, and subtract from the Imid.

3)	Increase pos, beginning from qi–1+1, until Imid is not more than , where qi–1 is the position decoded at the previous step.

4)	Let qi= pos –1 be the position number i, and subtract from the Imid.
5)	Repeat steps 3 and 4 until all positions are decoded for the current level position sequence.
B.7.4.9.1.4	Absolute vector decoding
For the lowest level, the absolute vector only includes one type of element whose value can be obtained from the decomposition order column in Table B.6-11. The lowest level absolute vector is passed to the next level and at the next step another type of element is added. This new element is obtained from the decomposition order column in Table B.6-11. This procedure is repeated until the highest level is reached.
B.7.4.9.1.5	Construction of the output codevector in base codebook
Constructing the 8-dimensional output codevector in the base codebook is the final step of the decoding procedure. The codevector zj is obtained by combining the sign vector with the absolute vector. If the bit number of the sign index is not equal to the number of the non-zero elements in the decoded absolute vector, the sign of the last non-zero element is recovered. The recovery rule, based on the RE8 lattice property, is as follows: if the sum of all output vector elements is not an integer multiple of four, the sign of the last element is set to negative.
[bookmark: _Toc283385130]B.7.5	Inverse MDCT and overlap-add
Before applying inverse MDCT, the last 20 super higher band frequency coefficients are set to zero to obtain 14 kHz bandwidth output. Then, the super higher band frequency coefficients are transformed to the time domain by an inverse MDCT transform:
	

	(B.7-56)

The super higher band signal is obtained by the following overlap-add operation:
	

	

	(B.7-57)

where is the synthesis weighting window:
	

	

	(B.7-58)

and was obtained from the previous inverse MDCT transform, which is updated as:
	

[bookmark: _Ref265158473][bookmark: _Toc265158594][bookmark: _Ref270367376][bookmark: _Toc283385131]B.7.6	Time envelope denormalization

Time envelope is applied if the current or previous frame is classified as TRANSIENT. The time envelope and the time envelope adjustment flag are decoded in clause B.7.3.3.
When the current frame is not TRANSIENT, the time envelope is obtained as follows:
	

	

	(B.7-59)

where and is the decoded time envelope of the previous sub‑frame as described in clause B.7.3.3.
The decoded super higher band signal after applying time envelope is calculated as follows:
	

	(B.7-60)

where and .

When the current frame is TRANSIENT and the time envelope adjustment flag equals to one, additional time envelope adjustment is applied to . Firstly, the index of the sub-frame with the peak time envelope is calculated with .

–	If is not equal to zero (i.e., the peak time envelope is not in the first sub-frame), the first half samples of sub-frame are attenuated by the ratio between the time envelopes of the previous sub-frame and current sub-frame. Then the decoded super higher band signal is obtained as follows:
	

	

	(B.7-61)

–	Otherwise (if is equal to zero), the first half samples of the first sub-frame are attenuated by the ratio between the average energy of the last ten samples of the previous frame and the time envelope of the current sub-frame, . Then the decoded super higher band signal is obtained as follows:
	

	

	(B.7-62)

The last ten samples of are saved as for the next frame. For the first frame, is initialized to zero.
[bookmark: _Ref265158486][bookmark: _Toc265158595][bookmark: _Toc283385132]B.7.7	Time envelope post-processor
If the current frame and the previous frame are not decoded as TRANSIENT, a time envelope post-processor is applied to smooth the decoded super higher band signal.
	

	(B.7-63)

where .

The last ten samples of are saved as for the next frame.
[bookmark: _Toc263261728][bookmark: _Toc263261826][bookmark: _Toc263262074][bookmark: _Toc263262632][bookmark: _Toc263262707][bookmark: _Toc263262782][bookmark: _Toc263329143][bookmark: _Toc263334063][bookmark: _Toc263334147][bookmark: _Toc263334231][bookmark: _Toc263335397][bookmark: _Toc263338390][bookmark: _Toc263340107][bookmark: _Toc263346643][bookmark: _Toc263354077][bookmark: _Toc263410162][bookmark: _Toc263412100][bookmark: _Toc263420547][bookmark: _Toc263424306][bookmark: _Toc263424907][bookmark: _Toc263443495][bookmark: _Toc263261729][bookmark: _Toc263261827][bookmark: _Toc263262075][bookmark: _Toc263262633][bookmark: _Toc263262708][bookmark: _Toc263262783][bookmark: _Toc263329144][bookmark: _Toc263334064][bookmark: _Toc263334148][bookmark: _Toc263334232][bookmark: _Toc263335398][bookmark: _Toc263338391][bookmark: _Toc263340108][bookmark: _Toc263346644][bookmark: _Toc263354078][bookmark: _Toc263410163][bookmark: _Toc263412101][bookmark: _Toc263420548][bookmark: _Toc263424307][bookmark: _Toc263424908][bookmark: _Toc263443496][bookmark: _Toc263261733][bookmark: _Toc263261831][bookmark: _Toc263262079][bookmark: _Toc263262637][bookmark: _Toc263262712][bookmark: _Toc263262787][bookmark: _Toc263329148][bookmark: _Toc263334068][bookmark: _Toc263334152][bookmark: _Toc263334236][bookmark: _Toc263335402][bookmark: _Toc263338395][bookmark: _Toc263340112][bookmark: _Toc263346648][bookmark: _Toc263354082][bookmark: _Toc263410167][bookmark: _Toc263412105][bookmark: _Toc263420552][bookmark: _Toc263424311][bookmark: _Toc263424912][bookmark: _Toc263443500][bookmark: _Toc263261738][bookmark: _Toc263261836][bookmark: _Toc263262084][bookmark: _Toc263262642][bookmark: _Toc263262717][bookmark: _Toc263262792][bookmark: _Toc263329153][bookmark: _Toc263334073][bookmark: _Toc263334157][bookmark: _Toc263334241][bookmark: _Toc263335407][bookmark: _Toc263338400][bookmark: _Toc263340117][bookmark: _Toc263346653][bookmark: _Toc263354087][bookmark: _Toc263410172][bookmark: _Toc263412110][bookmark: _Toc263420557][bookmark: _Toc263424316][bookmark: _Toc263424917][bookmark: _Toc263443505][bookmark: _Toc263261744][bookmark: _Toc263261842][bookmark: _Toc263262090][bookmark: _Toc263262648][bookmark: _Toc263262723][bookmark: _Toc263262798][bookmark: _Toc263329159][bookmark: _Toc263334079][bookmark: _Toc263334163][bookmark: _Toc263334247][bookmark: _Toc263335413][bookmark: _Toc263338406][bookmark: _Toc263340123][bookmark: _Toc263346659][bookmark: _Toc263354093][bookmark: _Toc263410178][bookmark: _Toc263412116][bookmark: _Toc263420563][bookmark: _Toc263424322][bookmark: _Toc263424923][bookmark: _Toc263443511][bookmark: _Toc265158596][bookmark: _Toc283385133]B.7.8	Frame erasure concealment
[bookmark: _Toc283385134]B.7.8.1	Frame erasure concealment for the wideband portion of the signal
In case of frame erasures, a FERC algorithm derived from the Appendix IV low complexity PLC algorithm is used to extrapolate missing samples for the wideband part of the signal. The algorithm was adapted to a 5 ms frame length and optimized for performance.
B.7.8.1.1	Enhanced ITU-T G.722 decoder
The enhanced ITU-T G.722 decoder integrating the FERC modules is illustrated in Figure B.7-3. Decoding and frame error concealment is performed in two sub-bands, which are combined using the QMF synthesis filterbank of this Recommendation.

[bookmark: _Ref266094013]Figure B.7-3 – Block diagram of the ITU-T G.722 decoder with FERC
The ITU-T G.722 decoder with FERC generates an output signal sampled at 16. Its behaviour depends on the type of the current and previous frame (either good or bad frame):
–	Without frame erasures (i.e., in the presence of good frames only, see clause B.7.2):

	The bitstream of the lower band (LB) is decoded according to the specified ITU-T G.722 mode (1 or 2, indicating 64 or 56 kbit/s, respectively). The cross-fading block does not change the reconstructed signal, i.e., . Similarly, the bitstream of the higher band (HB) is decoded and switch A selects . Signal uh(n) is high-pass filtered by a remove-DC filter Hpost to obtain . The decoded signals and uh(n) are stored to be used in case of erasure in future frames.
–	In case of frame erasure:

•	In the lower band, for the first erased frame, short- and long-term predictors are updated using the past valid signal , n < 0. Class information is also extracted. Signal yl(n) is generated using these predictors and the class information. The signal for the erased frame is reconstructed as , n = 0,…,39. In addition, ADPCM states are updated. The process of erased frame reconstruction and ADPCM states update is repeated until a good frame is received. Note that not only the missing frame is generated, but also an additional 10 ms signal, yl(n), n = 40,…,119, to be used for cross-fading with the first decoded samples after the erasure.

•	In the higher band, the missing frame is extrapolated using the past signal uh(n), n < 0, and ADPCM states are updated. The extrapolated signal yh(n) is obtained by repeating pitch-synchronously the previous frame of uh(n). The switch A selects uh(n) = yh(n), n = 0,…,39. The signal uh(n) is high-pass filtered by a remove-DC filter Hpost to obtain . This process is repeated until a good frame is received.
–	In case of good frames following erased frames:

	To insure the continuity of the signal, in the lower band, for the first two good frames (first 10 ms, 80 samples), following erased frames the signal reconstructed by the ADPCM decoder, is crossfaded with the signal stored in the cross-fade buffer yl(n), n = 40,…,119 to form the lower band output signal .
B.7.8.1.2	Functional description of the WB FERC algorithm
B.7.8.1.2.1	Lower band decoding
B.7.8.1.2.1.1	Extrapolation of missing frame: Case of bad frame following a good frame

The extrapolation of a missing frame in the lower band , n = 0,…,39 is illustrated in Figure B.7-4. It comprises, for the first erased frame after a valid frame (Nerase=1), the analysis of the past valid signal , n<0, followed by synthesis of the signal yl(n), n = 0,…,39.

The past signal , n = –297,…,–1 is buffered using a buffer length of 297 samples, which can be divided as follows:
–	288 samples corresponding to twice the maximal pitch delay (2 × 144) used in the PLC algorithm;
–	one sample for pitch jitter; and
–	eight samples used for LPC memory.

[bookmark: _Ref266094014]Figure B.7-4 – Block diagram of lower band extrapolation of missing frame
B.7.8.1.2.1.2	Pre-processing
A high-pass filter protects against undesired low-frequency components. A first-order pole/zero filter with a cut-off frequency of 50 Hz is used. This filter is given by:
	

	(B.7-64)

The past signal , n = –297,…,–1, is filtered through Hpre(z) to obtain the pre-processed signal zlpre(n),
	

	(B.7-65)

where and zlpre(–298) are set to 0.
B.7.8.1.2.1.3	LP analysis
The short-term analysis and synthesis filters, A(z) and 1/A(z), are based on eighth-order linear prediction (LP) filters. The LP analysis filter is defined as:
	

	(B.7-66)

The LP analysis is made on the past valid pre-processed signal zlpre(n), n= –80,…, –1. It consists of windowing, autocorrelation computation and the Levinson-Durbin algorithm. The LP window here is an asymmetrical Hamming window defined as:
	

	(B.7-67)

This window wlp(n), which is limited to 80 samples (10 ms at 8-kHz sampling frequency) to reduce complexity, is applied to the last 10 ms of zlpre(n), n = –80,…,–1:
	

	(B.7-68)

The windowed speech is used to compute the autocorrelation coefficients:
	

	(B.7-69)

To avoid arithmetic problems for low-level input signals the value of r(0) has a lower boundary of r(0) = 1.0. A 60 Hz bandwidth expansion is applied by multiplying the autocorrelation coefficients with:
	

	(B.7-70)

where f0 = 60 Hz is the bandwidth expansion and fs = 8000 Hz is the sampling frequency. Furthermore, r(0) is multiplied by a white-noise correction factor 1.0001, which is equivalent to adding a noise floor at –40 dB. The modified autocorrelation coefficients are given by:
	
.
	(B.7-71)

The Levinson-Durbin algorithm is identical to that described in clause B.6.4.2.1.

After the LP analysis, the past signal , n = –289,…,–1, is filtered through A(z) to obtain the residual signal e(n)
	

	(B.7-72)

B.7.8.1.2.1.4	LTP analysis
The PLC algorithm uses pitch period repetition. The pitch period or pitch delay, T0, is determined on the past valid pre-processed signal just before erasure, zlpre(n), n = –288,…,–1. T0 is estimated in open loop by a long-term predictive (LTP) analysis.

[bookmark: _Ref266094058]Figure B.7-5 – Block diagram of LTP analysis
As illustrated in Figure B.7-5, pitch estimation is conducted in the following steps:
–	The signal zlpre(n), n –288,…,–1, is low-pass filtered by Hdec(z), where:
	

	(B.7-73)

	is an eighth-order FIR filter, and decimated by a factor of four to obtain the signal t(n),
n = –72, ..., –1, sampled at 2 kHz. The filter memory of length 8 is initialized to 0 at each first erased frame.
–	The signal t(n), n –72,…,–1, is weighted by a filter B(z/LTP_FEC), where B(z) 1 – b1z–1 – b2z–2 and LTP_FEC = 0.94, to obtain the signal tw(n), n –70,,–1. The coefficients of B(z) are obtained by 2nd-order LP analysis of t(n) using the windowing, autocorrelation computation and Levinson-Durbin algorithm described in the previous clause. Note that only the last 72 samples of the window wlp(n), n –72,…,–1, are used, which gives a 36 ms time support at 2 kHz sampling frequency.
–	A first estimation Tds of the pitch delay is computed in the weighted decimated signal domain by normalized cross-correlation as follows:
a)	Initialization: Tds = 18.
b)	Computation of the normalized cross-correlation, r(i):
	

	(B.7-74)

c)	Computation of zero crossings, zcr(i), in the last i samples, for i = 2,…,35
	

	(B.7-75)

		where the comparisons and < give a binary result (1 for true, 0 for false).
d)	Determination of the first delay i0 in [1,...,35] for which r(i) < 0 and zcr(i) > 0. Note that if i0 is not found in [1,...,35], steps e) and f) are omitted and the initial value Tds = 18 is kept.
e)	Determination of the lower bound for the maximum correlation search:
	

	(B.7-76)

f)	Search for the maximum correlation and its index Tds in by a procedure favouring smaller pitch values, to avoid choosing pitch multiples. A second best candidate Tds2 is also memorized with the following constraint: Tds – Tds2>1.
–	The pitch delay Tds estimated in the 2 kHz sub-sampled signal domain is then refined in the 8 kHz sampled pre-processed signal domain. The pitch delay T0 is searched for by maximizing a normalized cross-correlation function R(i) in the interval [T – 2,..., T + 2] where T 4Tds:
	

	(B.7-77)

	with:
	

	(B.7-78)

–	The value Rmax is computed as Rmax = R(T0).

–	If Rmax > 0.4, another pitch delay is searched for by maximizing a normalized cross‑correlation function R'(i) in the interval [T2 – 2,..., T2 + 2] where T2 4Tds2:
	

	(B.7-79)

	with
	

	(B.7-80)

	If then is considered as the pitch value, the value of T0 is updated as and the value of Rmax is updated as Rmax = R'().
–	Otherwise, if the value Rmax < 0.25 and T0 < 32 then the pitch value is doubled to avoid high frequency resonance due to too short period repetitions: T0 =2*T0.
B.7.8.1.2.1.5	Signal classification
The PLC strategy uses signal classification based on signal characteristics to optimize quality. For instance, if the frame preceding an erasure is a non-stationary segment (e.g., plosives), the signal should be rapidly muted; if this frame is a stationary segment (e.g., strongly voiced speech), it can be pitch-synchronously repeated and slowly damped. Classification is used in the PLC algorithm for LP residual extrapolation and muting control.
The signal zlpre(n), n –288,…,–1 preceding an erasure is classified into one out of five possible classes, which are defined as follows:
–	TRANSIENT (TR) for transients with large energy variation (e.g., plosives);
–	UNVOICED (UV) for unvoiced signals;
–	VUV_TRANSITION (VUV) for a transition from voiced to unvoiced signals;
–	WEAKLY_VOICED (WV) for weakly voiced signals (e.g., onset or offset of vowels);
–	VOICED (V) for voiced signals (e.g., steady vowels).
The features used for classification are the following:
–	the maximum normalized correlation Rmax, which is a side product of the LTP analysis;
–	the higher and lower bands energy ratio, which is obtained here in the log domain by taking the difference between the lower- and higher band ADPCM delayed logarithmic quantizer scale factors, NBH – NBL using the ITU‑T G.722 notations. NBL and NBH are computed as in clause 3.5 of ITU-T G.722;
–	the zero-crossing rate zcr of zlpre(n), n –80,…,–1, defined as:
	

	(B.7-81)

	where the comparisons and give a binary result (1 for true, 0 for false);
–	the number cnt_peak of detected high amplitude peaks in the LP residual in the last pitch period with respect to the last but one period: This value is computed only when class is WEAKLY_VOICED or VUV_TRANSITION.
	

	(B.7-82)

	where the comparison > gives a binary result (1 for true, 0 for false) and T0 is the pitch delay estimated by the LTP analysis. The counter, cnt_peak, represents the number of detected large peaks in the last pitch period that were not present in the previous pitch period.
Based on these features, the signal category, class, is obtained by heuristics according to the flowchart shown in Figure B.7-6. Note also that if class is not VOICED, and T0 is even, T0 is increased by 1. The so-called pitch delay T0 determines the repetition period used in the residual signal generation procedure.

[bookmark: _Ref266094084]Figure B.7-6 – Classification flowchart
B.7.8.1.2.1.6	Modifications of the repetition period
Based on the classification results, the repetition period T0 value can be modified in the following cases:
–	If class is set to UNVOICED and T0 < 32 the pitch delay T0 value is doubled: T0 = 2*T0 to avoid artefacts due to too short period repetition.
–	If class is set to TRANSIENT, T0 is upper bounded by 40 (5 ms): T0 = min(40, T0).
–	If class is not VOICED, and T0 is even, T0 is increased by 1.
–	If class is set to VOICED it is verified that there are not two glottal pulses in the last period due to decreasing pitch. The procedure uses the following values:
	

	(B.7-83)

	

	(B.7-84)

	

	(B.7-85)

	When mxT > 4mT, a second maximum is searched in the following intervals:
	

	(B.7-86)

	and Imx2 is the index of this second maximum. Note that when the first maximum is not close to an extremity of the repetition period, these intervals are empty and mxT2 is undefined. If mxT2 is defined and mxT2 > mxT/2 and the signs of these two pulses are identical, the pitch value is set to
	

	(B.7-87)

	to improve the correspondence of the repetition period with the pitch period for voiced signals.
B.7.8.1.2.1.7	Modification/pitch repetition of LP residual
Before performing the pitch repetition procedure, the LP residual that forms the repetition period is modified as follows:
–	if class is WEAKLY_VOICED or VUV_TRANSITION, the repetition period is corrected to limit the amplitude of an eventual transition signal. The modification consists in limiting the magnitude of each sample in the repetition period in function of the previous period as follows:
	

	(B.7-88)

–	if class is UNVOICED, the last T0 samples are smoothed as follows:
	

	(B.7-89)

[bookmark: _Ref272660326]B.7.8.1.2.1.8	Pitch repetition of LP residual
The LP excitation signal e(n), n 0,…,39, in the missing frame is extrapolated based on the classification. In addition, 80 extra samples (10 ms), e(n), n 40,…,119, are generated for the purpose of cross-fading.
–	If class is VOICED, the missing excitation signal, e(n), n 0,…,39, and the excitation signal for cross-fading e(n), n 40,…,119, are generated by repeating pitch-synchronously the repetition period:
	

	(B.7-90)

–	If class is not VOICED, the pitch-synchronous repetition procedure is modified to avoid over-voicing by introducing, sample by sample, a small jitter using the following procedure. The samples of the repetition period can be viewed as grouped two by two; then, every two samples forming a group are swapped and the swapped groups are concatenated to form the extrapolated residual signal. With this procedure, the missing excitation signal, e(n), n 0,…,39 and the excitation signal for cross-fading e(n), n 40,…,119, are obtained as:
	

	(B.7-91)

[bookmark: _Ref272660372]B.7.8.1.2.1.9	LP synthesis
The extrapolated excitation signal e(n), n 0,…,39, is filtered with the LP synthesis filter 1/A(z) to obtain the reconstructed missing frame, ylpre(n):
	

	(B.7-92)

Then, 80 samples (10 ms), ylpre(n), n 40,…,119 are generated by LP synthesis filtering of the excitation signal for cross-fading e(n), n 40,…,119 with an attenuated LP synthesis filter, A(z/LPC_FEC), with LPC_FEC = 0.99:
	

	(B.7-93)

[bookmark: _Ref272660492]B.7.8.1.2.1.10	Adaptive muting
The energy of the reconstructed signal is controlled by applying to each sample a gain factor that is computed and adapted sample by sample. Thus, the synthesized signal ylpre(n), n 0,…,119 (40 samples for the current lost frame and 80 samples needed for the cross-fading), is muted sample by sample with a muting factor function g_mute(n) for n 0,…,119 to obtain the reconstructed lower band signal yl(n) before crossfading:
	

	(B.7-94)

The value of g_mute(n) depends on the value of class. The muting factor adaptation is illustrated in Figure B.7-7 for the three different cases. In case of consecutive erased frames, the index of the muting factor n increases continuously and so the muting is done according to the following equation:
	

	(B.7-95)

where Nerase is the number of erased frames. Nerase is set to one at the first erased frame and incremented by one at each consecutive erased frame.
As can be observed in Figure B.7-7, the complete muting is achieved in 10, 30 or 60 ms respectively for the three different classes (TRANSIENT, VUV_TRANSITION and other classes).

[bookmark: _Ref266094109][bookmark: _Toc150337454]Figure B.7-7 – Muting factor as a function of the sample index and the class value
Initialized to one (32767 in Q15), the muting factor is decreased sample by sample in function of the class and index range of n according to Table B.7-1.
Table B.7-1 – Sample by sample muting factor decrease values (in Q15)
	
	Index range of n

	Class
	0-79
	80-159
	160-239
	240-479

	TRANSIENT
	409
	0
	0
	0

	VUV_TRANSITION
	10
	200
	200
	0

	Other classes
	10
	20
	95
	95

B.7.8.1.2.1.11	Extrapolation of missing frame: Case of a bad frame following a bad frame
In the case of a bad frame following a bad frame, the analysis parameters computed for the first erased frame (ai, i = 1,…,8, T0, class) are kept. The first 40 samples of the signal generated in the previous frame for cross‑fading yl(n), n 40,…,79 are copied to yl(n), n 0,…,39, and the other 40 cross‑fading samples yl(n), n 80,…,119 are also shifted to yl(n), n 40,…,79. The last 40 samples for the cross-fading with the next frame yl(n), n 80,…,119 are synthesized as described above:
–	The LP excitation signal e(n) n 80,…,119 is generated by the pitch-synchronous repetition procedure (see clause B.7.8.1.2.1.8).
–	The signal ylpre(n), n 80,…,119 is obtained by LP synthesis filtering of the excitation signal e(n), n 80,…,119 using the attenuated LP synthesis filter A(z/LPC_FEC) (see clause B.7.8.1.2.1.9).
–	The signal ylpre(n), n 80,…,119 is attenuated according to Equation (B.7-95) in clause B.7.8.1.2.1.10 to obtain the signal yl(n), n 80,…,119.
B.7.8.1.2.1.12	Update of ADPCM decoder states
The states of the lower band ADPCM decoder are updated after extrapolating missing frames to help in recovery from frame erasures. This update is more elaborate than a simple ADPCM decoder reset. However, to minimize complexity, the ADPCM states are updated based on available or a priori information, without additional processing. The decoder states are modified as follows, using ITU‑T G.722 notation:
The quantized delayed difference signal for the adaptive predictor is updated as:
	
DLTi = 0,
	(B.7-96)

The partially reconstructed signal with delays 1 and 2 predictor is updated as:
	

PLTi = ,
	(B.7-97)

The reconstructed signal for the adaptive predictor with delay 1 predictor is updated as:
	
RLT1 =
	(B.7-98)

The predictor output value predictor is updated as:
	SL = yl(40)
	(B.7-99)

The zero section output signal predictor is updated as:
	
SZL =
	(B.7-100)

If more than four frames were erased, the delayed quantizer scale factor predictor DETL and the delayed logarithmic quantizer scale factor predictor NBL are updated as:
	DETL = 32
	(B.7-101)

	NBL = 0
	(B.7-102)

B.7.8.1.2.1.13	Cross-fading

The cross-fading is detailed in Table B.7-2. The cross-fading window with a time length of 10 ms is a concatenation of a flat part of 20 samples and a Bartlett window (triangular) part of 60 samples. When the current frame is erased ("Bad"), the output is always equal to the concealment module output , n 0,…,39.
When the current frame is received ("Good"), the cross-fading depends on the status of the two previous frames. Table B.7-2 summarizes the possible cases. In this table yl(n), n=40,…,119, refers to the cross-fade buffer that contains 80 samples and it is not shifted any more in case of received frames.
[bookmark: _Ref266094153][bookmark: _Toc151873809]Table B.7-2 – Cross-fading operation e
	Frame N-2
	Frame N-1
	Current frame N received

	Bad or Good
	Bad
	

	Bad
	Good
	

	Good
	Good
	

B.7.8.1.2.2	Higher band decoding
B.7.8.1.2.2.1	Extrapolation of missing frame
The extrapolation of a missing frame in the higher band uses the past signal uh(n), n = –160,…,–1, to form the repetition period.
B.7.8.1.2.2.2	Modification of the past high-band signal
Before performing the pitch repetition procedure, the repetition period is modified if class is UNVOICED. The last 80 samples are smoothed in the following way:
	

	(B.7-103)

B.7.8.1.2.2.3	Pitch repetition of the past high-band signal
The extrapolation of a missing frame in the higher band consists of pitch synchronous repeating of the previous signal uh(n) if class = VOICED; otherwise, the repetition period is set to 80 samples (10 ms):
	

	(B.7-104)

where Th T0 if class = VOICED, Th 80 otherwise.
B.7.8.1.2.2.4	Adaptive muting
As for the lower band reconstructed signal, the energy of the higher band reconstructed signal is also controlled by applying a gain factor computed and adapted sample by sample. To obtain the reconstructed higher band signal yh(n), the synthesized signal yhpre(n) for n 0,…,39 is muted sample by sample with the same adaptive muting factor function used for muting the corresponding lower band sample, as described in clause B.7.8.1.2.1.10:
	

	(B.7-105)

B.7.8.1.2.2.5	Update of ADPCM decoder states
Similar to lower band decoding, the states of the higher band ADPCM decoder are updated after extrapolating a missing frame. The update is described below using ITU-T G.722 notation:
The delayed logarithmic quantizer scale factor NBH and the delayed quantizer scale factor DETH are updated as:
	NBH = NBH/2
	(B.7-106)

	DETH = SCALEH(NBH)
	(B.7-107)

If more than four frames were erased, the delayed logarithmic quantizer scale factor NBH and the delayed quantizer scale factor NETH are updated as:
	NBH = 0
	(B.7-108)

	NETH = 8
	(B.7-109)

The update is restricted to the higher band scale factor.
[bookmark: _Ref273450598][bookmark: _Toc283385135]B.7.8.2	Frame erasure concealment in the super higher band

In the case of an erased frame, the super higher band FERC algorithm is used to recover the super higher band signal. Except for the operational coder mode R1sm, for the frame following the erased one, on the condition that the signal class is detected as NORMAL or NOISE, that frame has to be treated as an erased frame. Note that the class information of two sequential non-erased frames are required in order to extract the proper SHB mode for this condition. The FERC flag of the current frame, , is calculated as,
	

	(B.7-110)

where represents the detected frame erasure, is the copied flag of in the previous frame. When equals to one, buffers , , and , for BWE/AVQ adaptation described in clause B.7.4.7, are reset to zero, and is set to NORMAL. If the is zero, that means, the signal class of the current frame is correctly obtained. The signal class of the previous frame, , should be updated with the correct current one for the preparation of the SHB mode extraction in the next frame. Since no SHB mode is required for R1sm, is always identical to .

Then, for the erased frame (), an attenuated inverse MDCT signal from the last Good frame is copied and used as the inverse MDCT data for erased frames. Overlap and add (OLA) is performed to generate the recovered super higher band signal.

The intermediate inverse-transformed super higher band signal, is recovered using an attenuated version of the previous signal by:
	

	

	(B.7-111)

[bookmark: OLE_LINK7]where is an attenuation factor. Then, to synthesize output signal , an OLA is performed using Equation (B.7-57). Finally, a time envelope is applied as described in clauses B.7.6 and B.7.7.
[bookmark: _Toc265158597][bookmark: _Toc283385136]B.7.9	Bandwidth switching
Since the scalable bitstream structure allows bitrate switching, this may result in bandwidth switching, where there is a change in frequency bandwidth between adjacent frames (e.g., a wideband frame followed by a superwideband one). The process described in this clause mitigates the audible artefact by smoothing out the spectral coefficients across frames with different bandwidth. Note that this smoothing takes place for some succeeding frames.

Let the decoded coder mode of this frame for the current m-th frame be . and are the decoded coder mode of the previous frame and the bitstream coder mode of the previous frame, respectively. The initial value of and is –1. In case the first frame is superwideband, is set to the decoded coder mode of current frame to avoid switching from wideband to superwideband.

A flag is defined to indicate the bandwidth switching mode and calculated as follows:

–	If and , is set to one and is set to . It indicates that there has been a switch from superwideband to wideband;

–	If and , is set to two. It indicates that there has been a switch from wideband to superwideband;

–	For other cases, is set to zero. There is no bandwidth switching.

 is the bandwidth switching mode of previous frame. It is initialized to zero.
[bookmark: _Toc283385137]B.7.9.1	Superwideband to wideband switching

In case = 1, the decoder is forced to operate in the R1sm mode to reduce the effect of a sudden loss of 7-14 kHz frequency components. The current coder mode is set to MODE_R1sm. The MDCT coefficients in the missing frequency range are obtained by BWE (see clause B.7.3), as described below.

Firstly, the spectral envelope of the excitation signal is calculated
	

	(B.7-112)

where and are the sub-band boundaries and the number of coefficients per sub-band as defined in Table B.7-3. The signal class of the super higher band is set to NORMAL. is obtained as described in clause B.7.3.5.
[bookmark: _Ref264207205]Table B.7-3 – Sub-band boundaries and number of coefficients
per sub-band in wideband for bit-rate switching
	j
	bwb(j)
	Nwbcf(j)

	0
	20
	4

	1
	24
	8

	2
	32
	8

	3
	40
	8

	4
	48
	8

	5
	56
	8

	6
	64
	8

	7
	72
	8

	8
	80
	–

The maximum envelope value is obtained with . The RMS value of the last half spectrum of the excitation signal Eexc is calculated as follows:
	

	(B.7-113)

The predicted spectral envelope of the super higher band signal is obtained as follows:
	

	

	(B.7-114)

The predicted spectral envelope is smoothed according to the spectral envelope of the previous frame when bandwidth switching from superwideband to wideband.
An energy ratio between the same parts of the wideband spectrum of the current frame and the previous frame is introduced to control the smoothing of the predicted spectral envelope. This ratio rbws reflects the correlation of the spectral envelope of the current frame and the previous frame:
	

	(B.7-115)

where is the RMS value of the first 45 spectral coefficients of the current excitation signal, calculated as:
	

	(B.7-116)

and is the one for the previous frame. is initialized to zero.

Factor is the weighting factor for the spectral envelope of the current frame, and is the one for the previous frame. is initialized to 0.1. Note that is reset to 0.1 if is equal to zero.
–	If wbws2 is less than 0.5, the predicted spectral envelope is differently weighted according to the energy ratio rbws. Then, the decoded spectral envelope is obtained as follows:
	

	

	(B.7-117)

	where is the spectral envelope of the previous frame. Factor is incremented by 0.01 and saved for the next frame.
–	Otherwise, the predicted spectral envelope is weighted as follows:
	

	

	(B.7-118)

Then, the decoded super higher band MDCT coefficients , , are obtained using Equation (B.7-33) found in clause B.7.3.6.

Counter denotes the number of consecutive wideband frames after superwideband frames. The initial value of is zero. If = 1, is incremented by one. Otherwise, is reset to zero.

The obtained super higher band frequency coefficients are attenuated by a factor .
	

	

	(B.7-119)

Factor is initialized to one and is updated as follows:

–	In case = 1,

a)	If is larger than 200, is decremented by 0.01;

b)	If is less than 0, is set to 0;

c)	Otherwise, is not changed.

–	In case is not equal to 1, is set to 1.

Finally, the decoded coder mode is saved to .
[bookmark: _Toc283385138]B.7.9.2	Wideband to superwideband switching

In case is equal to two, it means that there has been a bandwidth switch from wideband to superwideband. In the first superwideband frame immediately after the bandwidth switching and , the MDCT coefficients are generated by SHB frame erasure concealment as described in clause B.7.8.2. In later superwideband frames, the MDCT coefficients are obtained through ordinary decoding procedure. The decoded super higher band frequency coefficients are attenuated by a factor for better switching quality:
	

	

	(B.7-120)

Factor is initialized to 0.1. Note that this attenuation is carried on to the next superwideband frames. Factor is updated as follows:

–	Factor is incremented by 0.02 and is set to MODE_R0wm. It means that the bitstream coder mode is set to wideband.

–	If is larger than 1.0, is set to 0.1; accordingly is set to 0 and is set to . It means that no more attenuation is needed and the bitstream coder mode is set to superwideband.

Finally, the decoded coder mode is saved to .
[bookmark: _Toc283385139]B.7.9.3	Additional attenuation for the switching from wideband to superwideband and 	superwideband to wideband

Additional attenuation using a factor is performed when there has been a switch from wideband to superwideband and superwideband to wideband, i.e., when is either one or two:
	

	

	(B.7-121)

Factor is initialized to 0.1 and is incremented by 0.02 after the attenuation performed in Equation (B.7-121). If and , is reset to 0.1.
[bookmark: _Toc265158598][bookmark: _Toc283385140]B.7.10	Spectral folding of super higher band, signal upscaling and QMF synthesis filterbank

The super higher band synthesis is spectrally folded as follows:
	

	

	(B.7-122)

A synthesis QMF is used to synthesize the 32-kHz sampled output signal from the wideband decoded signal and super higher band decoded signal. Both 16 kHz sampled decoded signals in the wideband and super higher band are upsampled by a factor of two. Then, the upsampled signals are filtered through the synthesis filter for each band. The coefficients of those two synthesis filters are given by:
	

	

	(B.7-123)

where and are the coefficients of the wideband and super higher band synthesis filter, and and are those of the analysis QMF described in clause B.6.3, respectively. The 32 kHz sampled output is obtained by adding the two filtered signals as follows:
	

	

	(B.7-124)

where and are the upsampled signals in wideband and super higher band, respectively.

In order to reduce the complexity, the above calculations are optimized as follows. Firstly, two intermediate signals and are obtained by the following equations:
	

	

	(B.7-125)

where is the wideband decoded signal, is the super higher band decoded signal and and are the filter coefficients described in Table B.6-1. Then the intermediate signals and are interleaved to obtain the 32 kHz sampled signal as follows:
	

	

	(B.7-126)

[bookmark: _Toc265589038][bookmark: _Toc265589212][bookmark: _Toc265590661][bookmark: _Toc265591348][bookmark: _Toc265594030][bookmark: _Toc265594191][bookmark: _Toc265595327][bookmark: _Toc265747914][bookmark: _Toc265775649][bookmark: _Toc265781344][bookmark: _Toc265833711][bookmark: _Toc265834318][bookmark: _Toc265840936][bookmark: _Toc265841101][bookmark: _Toc265843321][bookmark: _Toc265849127][bookmark: _Toc265849964][bookmark: _Toc265850344][bookmark: _Toc265850643][bookmark: _Toc265850809][bookmark: _Toc265589040][bookmark: _Toc265589214][bookmark: _Toc265590663][bookmark: _Toc265591350][bookmark: _Toc265594032][bookmark: _Toc265594193][bookmark: _Toc265595329][bookmark: _Toc265747916][bookmark: _Toc265775651][bookmark: _Toc265781346][bookmark: _Toc265833713][bookmark: _Toc265834320][bookmark: _Toc265840938][bookmark: _Toc265841103][bookmark: _Toc265843323][bookmark: _Toc265849129][bookmark: _Toc265849966][bookmark: _Toc265850346][bookmark: _Toc265850645][bookmark: _Toc265850811][bookmark: _Toc265589041][bookmark: _Toc265589215][bookmark: _Toc265590664][bookmark: _Toc265591351][bookmark: _Toc265594033][bookmark: _Toc265594194][bookmark: _Toc265595330][bookmark: _Toc265747917][bookmark: _Toc265775652][bookmark: _Toc265781347][bookmark: _Toc265833714][bookmark: _Toc265834321][bookmark: _Toc265840939][bookmark: _Toc265841104][bookmark: _Toc265843324][bookmark: _Toc265849130][bookmark: _Toc265849967][bookmark: _Toc265850347][bookmark: _Toc265850646][bookmark: _Toc265850812][bookmark: _Toc265589042][bookmark: _Toc265589216][bookmark: _Toc265590665][bookmark: _Toc265591352][bookmark: _Toc265594034][bookmark: _Toc265594195][bookmark: _Toc265595331][bookmark: _Toc265747918][bookmark: _Toc265775653][bookmark: _Toc265781348][bookmark: _Toc265833715][bookmark: _Toc265834322][bookmark: _Toc265840940][bookmark: _Toc265841105][bookmark: _Toc265843325][bookmark: _Toc265849131][bookmark: _Toc265849968][bookmark: _Toc265850348][bookmark: _Toc265850647][bookmark: _Toc265850813][bookmark: _Toc265589046][bookmark: _Toc265589220][bookmark: _Toc265590669][bookmark: _Toc265591356][bookmark: _Toc265594038][bookmark: _Toc265594199][bookmark: _Toc265595335][bookmark: _Toc265747922][bookmark: _Toc265775657][bookmark: _Toc265781352][bookmark: _Toc265833719][bookmark: _Toc265834326][bookmark: _Toc265840944][bookmark: _Toc265841109][bookmark: _Toc265843329][bookmark: _Toc265849135][bookmark: _Toc265849972][bookmark: _Toc265850352][bookmark: _Toc265850651][bookmark: _Toc265850817][bookmark: _Toc265589051][bookmark: _Toc265589225][bookmark: _Toc265590674][bookmark: _Toc265591361][bookmark: _Toc265594043][bookmark: _Toc265594204][bookmark: _Toc265595340][bookmark: _Toc265747927][bookmark: _Toc265775662][bookmark: _Toc265781357][bookmark: _Toc265833724][bookmark: _Toc265834331][bookmark: _Toc265840949][bookmark: _Toc265841114][bookmark: _Toc265843334][bookmark: _Toc265849140][bookmark: _Toc265849977][bookmark: _Toc265850357][bookmark: _Toc265850656][bookmark: _Toc265850822][bookmark: _Toc265589068][bookmark: _Toc265589242][bookmark: _Toc265590691][bookmark: _Toc265591378][bookmark: _Toc265594060][bookmark: _Toc265594221][bookmark: _Toc265595357][bookmark: _Toc265747944][bookmark: _Toc265775679][bookmark: _Toc265781374][bookmark: _Toc265833741][bookmark: _Toc265834348][bookmark: _Toc265840966][bookmark: _Toc265841131][bookmark: _Toc265843351][bookmark: _Toc265849157][bookmark: _Toc265849994][bookmark: _Toc265850374][bookmark: _Toc265850673][bookmark: _Toc265850839][bookmark: _Toc265589070][bookmark: _Toc265589244][bookmark: _Toc265590693][bookmark: _Toc265591380][bookmark: _Toc265594062][bookmark: _Toc265594223][bookmark: _Toc265595359][bookmark: _Toc265747946][bookmark: _Toc265775681][bookmark: _Toc265781376][bookmark: _Toc265833743][bookmark: _Toc265834350][bookmark: _Toc265840968][bookmark: _Toc265841133][bookmark: _Toc265843353][bookmark: _Toc265849159][bookmark: _Toc265849996][bookmark: _Toc265850376][bookmark: _Toc265850675][bookmark: _Toc265850841][bookmark: _Toc265589076][bookmark: _Toc265589250][bookmark: _Toc265590699][bookmark: _Toc265591386][bookmark: _Toc265594068][bookmark: _Toc265594229][bookmark: _Toc265595365][bookmark: _Toc265747952][bookmark: _Toc265775687][bookmark: _Toc265781382][bookmark: _Toc265833749][bookmark: _Toc265834356][bookmark: _Toc265840974][bookmark: _Toc265841139][bookmark: _Toc265843359][bookmark: _Toc265849165][bookmark: _Toc265850002][bookmark: _Toc265850382][bookmark: _Toc265850681][bookmark: _Toc265850847][bookmark: _Toc265589077][bookmark: _Toc265589251][bookmark: _Toc265590700][bookmark: _Toc265591387][bookmark: _Toc265594069][bookmark: _Toc265594230][bookmark: _Toc265595366][bookmark: _Toc265747953][bookmark: _Toc265775688][bookmark: _Toc265781383][bookmark: _Toc265833750][bookmark: _Toc265834357][bookmark: _Toc265840975][bookmark: _Toc265841140][bookmark: _Toc265843360][bookmark: _Toc265849166][bookmark: _Toc265850003][bookmark: _Toc265850383][bookmark: _Toc265850682][bookmark: _Toc265850848][bookmark: _Toc265589079][bookmark: _Toc265589253][bookmark: _Toc265590702][bookmark: _Toc265591389][bookmark: _Toc265594071][bookmark: _Toc265594232][bookmark: _Toc265595368][bookmark: _Toc265747955][bookmark: _Toc265775690][bookmark: _Toc265781385][bookmark: _Toc265833752][bookmark: _Toc265834359][bookmark: _Toc265840977][bookmark: _Toc265841142][bookmark: _Toc265843362][bookmark: _Toc265849168][bookmark: _Toc265850005][bookmark: _Toc265850385][bookmark: _Toc265850684][bookmark: _Toc265850850][bookmark: _Toc265589101][bookmark: _Toc265589275][bookmark: _Toc265590724][bookmark: _Toc265591411][bookmark: _Toc265594093][bookmark: _Toc265594254][bookmark: _Toc265595390][bookmark: _Toc265747977][bookmark: _Toc265775712][bookmark: _Toc265781407][bookmark: _Toc265833774][bookmark: _Toc265834381][bookmark: _Toc265840999][bookmark: _Toc265841164][bookmark: _Toc265843384][bookmark: _Toc265849190][bookmark: _Toc265850027][bookmark: _Toc265850407][bookmark: _Toc265850706][bookmark: _Toc265850872][bookmark: _Toc265589102][bookmark: _Toc265589276][bookmark: _Toc265590725][bookmark: _Toc265591412][bookmark: _Toc265594094][bookmark: _Toc265594255][bookmark: _Toc265595391][bookmark: _Toc265747978][bookmark: _Toc265775713][bookmark: _Toc265781408][bookmark: _Toc265833775][bookmark: _Toc265834382][bookmark: _Toc265841000][bookmark: _Toc265841165][bookmark: _Toc265843385][bookmark: _Toc265849191][bookmark: _Toc265850028][bookmark: _Toc265850408][bookmark: _Toc265850707][bookmark: _Toc265850873][bookmark: _Toc265589111][bookmark: _Toc265589285][bookmark: _Toc265590734][bookmark: _Toc265591421][bookmark: _Toc265594103][bookmark: _Toc265594264][bookmark: _Toc265595400][bookmark: _Toc265747987][bookmark: _Toc265775722][bookmark: _Toc265781417][bookmark: _Toc265833784][bookmark: _Toc265834391][bookmark: _Toc265841009][bookmark: _Toc265841174][bookmark: _Toc265843394][bookmark: _Toc265849200][bookmark: _Toc265850037][bookmark: _Toc265850417][bookmark: _Toc265850716][bookmark: _Toc265850882][bookmark: _Toc265589112][bookmark: _Toc265589286][bookmark: _Toc265590735][bookmark: _Toc265591422][bookmark: _Toc265594104][bookmark: _Toc265594265][bookmark: _Toc265595401][bookmark: _Toc265747988][bookmark: _Toc265775723][bookmark: _Toc265781418][bookmark: _Toc265833785][bookmark: _Toc265834392][bookmark: _Toc265841010][bookmark: _Toc265841175][bookmark: _Toc265843395][bookmark: _Toc265849201][bookmark: _Toc265850038][bookmark: _Toc265850418][bookmark: _Toc265850717][bookmark: _Toc265850883][bookmark: _Toc265589113][bookmark: _Toc265589287][bookmark: _Toc265590736][bookmark: _Toc265591423][bookmark: _Toc265594105][bookmark: _Toc265594266][bookmark: _Toc265595402][bookmark: _Toc265747989][bookmark: _Toc265775724][bookmark: _Toc265781419][bookmark: _Toc265833786][bookmark: _Toc265834393][bookmark: _Toc265841011][bookmark: _Toc265841176][bookmark: _Toc265843396][bookmark: _Toc265849202][bookmark: _Toc265850039][bookmark: _Toc265850419][bookmark: _Toc265850718][bookmark: _Toc265850884][bookmark: _Toc265589114][bookmark: _Toc265589288][bookmark: _Toc265590737][bookmark: _Toc265591424][bookmark: _Toc265594106][bookmark: _Toc265594267][bookmark: _Toc265595403][bookmark: _Toc265747990][bookmark: _Toc265775725][bookmark: _Toc265781420][bookmark: _Toc265833787][bookmark: _Toc265834394][bookmark: _Toc265841012][bookmark: _Toc265841177][bookmark: _Toc265843397][bookmark: _Toc265849203][bookmark: _Toc265850040][bookmark: _Toc265850420][bookmark: _Toc265850719][bookmark: _Toc265850885][bookmark: _Toc265589116][bookmark: _Toc265589290][bookmark: _Toc265590739][bookmark: _Toc265591426][bookmark: _Toc265594108][bookmark: _Toc265594269][bookmark: _Toc265595405][bookmark: _Toc265747992][bookmark: _Toc265775727][bookmark: _Toc265781422][bookmark: _Toc265833789][bookmark: _Toc265834396][bookmark: _Toc265841014][bookmark: _Toc265841179][bookmark: _Toc265843399][bookmark: _Toc265849205][bookmark: _Toc265850042][bookmark: _Toc265850422][bookmark: _Toc265850721][bookmark: _Toc265850887][bookmark: _Toc265589120][bookmark: _Toc265589294][bookmark: _Toc265590743][bookmark: _Toc265591430][bookmark: _Toc265594112][bookmark: _Toc265594273][bookmark: _Toc265595409][bookmark: _Toc265747996][bookmark: _Toc265775731][bookmark: _Toc265781426][bookmark: _Toc265833793][bookmark: _Toc265834400][bookmark: _Toc265841018][bookmark: _Toc265841183][bookmark: _Toc265843403][bookmark: _Toc265849209][bookmark: _Toc265850046][bookmark: _Toc265850426][bookmark: _Toc265850725][bookmark: _Toc265850891][bookmark: _Toc265589125][bookmark: _Toc265589299][bookmark: _Toc265590748][bookmark: _Toc265591435][bookmark: _Toc265594117][bookmark: _Toc265594278][bookmark: _Toc265595414][bookmark: _Toc265748001][bookmark: _Toc265775736][bookmark: _Toc265781431][bookmark: _Toc265833798][bookmark: _Toc265834405][bookmark: _Toc265841023][bookmark: _Toc265841188][bookmark: _Toc265843408][bookmark: _Toc265849214][bookmark: _Toc265850051][bookmark: _Toc265850431][bookmark: _Toc265850730][bookmark: _Toc265850896][bookmark: _Toc265589131][bookmark: _Toc265589305][bookmark: _Toc265590754][bookmark: _Toc265591441][bookmark: _Toc265594123][bookmark: _Toc265594284][bookmark: _Toc265595420][bookmark: _Toc265748007][bookmark: _Toc265775742][bookmark: _Toc265781437][bookmark: _Toc265833804][bookmark: _Toc265834411][bookmark: _Toc265841029][bookmark: _Toc265841194][bookmark: _Toc265843414][bookmark: _Toc265849220][bookmark: _Toc265850057][bookmark: _Toc265850437][bookmark: _Toc265850736][bookmark: _Toc265850902][bookmark: _Toc265589132][bookmark: _Toc265589306][bookmark: _Toc265590755][bookmark: _Toc265591442][bookmark: _Toc265594124][bookmark: _Toc265594285][bookmark: _Toc265595421][bookmark: _Toc265748008][bookmark: _Toc265775743][bookmark: _Toc265781438][bookmark: _Toc265833805][bookmark: _Toc265834412][bookmark: _Toc265841030][bookmark: _Toc265841195][bookmark: _Toc265843415][bookmark: _Toc265849221][bookmark: _Toc265850058][bookmark: _Toc265850438][bookmark: _Toc265850737][bookmark: _Toc265850903][bookmark: _Toc265589133][bookmark: _Toc265589307][bookmark: _Toc265590756][bookmark: _Toc265591443][bookmark: _Toc265594125][bookmark: _Toc265594286][bookmark: _Toc265595422][bookmark: _Toc265748009][bookmark: _Toc265775744][bookmark: _Toc265781439][bookmark: _Toc265833806][bookmark: _Toc265834413][bookmark: _Toc265841031][bookmark: _Toc265841196][bookmark: _Toc265843416][bookmark: _Toc265849222][bookmark: _Toc265850059][bookmark: _Toc265850439][bookmark: _Toc265850738][bookmark: _Toc265850904][bookmark: _Toc265589134][bookmark: _Toc265589308][bookmark: _Toc265590757][bookmark: _Toc265591444][bookmark: _Toc265594126][bookmark: _Toc265594287][bookmark: _Toc265595423][bookmark: _Toc265748010][bookmark: _Toc265775745][bookmark: _Toc265781440][bookmark: _Toc265833807][bookmark: _Toc265834414][bookmark: _Toc265841032][bookmark: _Toc265841197][bookmark: _Toc265843417][bookmark: _Toc265849223][bookmark: _Toc265850060][bookmark: _Toc265850440][bookmark: _Toc265850739][bookmark: _Toc265850905][bookmark: _Ref193790275][bookmark: _Toc194315336][bookmark: _Toc194401203][bookmark: _Toc195526998][bookmark: _Toc196572897][bookmark: _Toc208194483][bookmark: _Toc283385141][bookmark: _Toc286912285][bookmark: _Toc286916648][bookmark: _Toc286928308][bookmark: _Toc295815370][bookmark: _Toc301337289][bookmark: _Toc301769960][bookmark: _Toc301786908]B.8	Bit-exact description of the ITU-T G.722 superwideband extension coder
The description of the coding algorithm of this annex is made in terms of bit-exact fixed-point mathematical operations. The ANSI C code indicated in this clause, which is an integral part of this annex, reflects this bit-exact, fixed-point descriptive approach. The mathematical description of the encoder and decoder can be implemented in other fashions, possibly leading to a codec implementation not complying with this annex. Therefore, the algorithm description of the ANSI code of this clause shall take precedence over the mathematical descriptions whenever discrepancies are found. A non-exhaustive set of test signals, which can be used with the ANSI C code, is available as an electronic attachment.
[bookmark: _Toc132440856][bookmark: _Toc142816562][bookmark: _Toc150599904][bookmark: _Toc150673976][bookmark: _Toc152131345][bookmark: _Toc152146800][bookmark: _Toc162434662][bookmark: _Toc162933469][bookmark: _Toc194315337][bookmark: _Toc194401204][bookmark: _Toc195526999][bookmark: _Ref196571741][bookmark: _Ref196571743][bookmark: _Toc196572898][bookmark: _Toc208194484][bookmark: _Toc283385142]B.8.1	Use of the simulation software
The C code consists of two main programs, encoder.c and decoder.c, which simulate the main encoder and main decoder, respectively.
The command line for the encoder is as follows:
	encoder [-options] <infile> <codefile> [rate]
	where
	rate
	is the desired encoding bitrate in kbit/s: either 64 or 96 (64 for the ITU-T G.722 core at 56 kbit/s or 96 for the ITU-T G.722 core at 64 kbit/s)

	infile
	is the name of the input file to be encoded

	codefile
	is the name of the output bitstream file

	Options:

	-quiet
	quiet processing

The command line for the decoder is as follows:
	decoder [-options] <codefile> <outfile> [rate]
	where
	rate
	is the desired decoding bitrate in kbit/s: 64 for ITU-T G.722 R1sm, 80 for ITU-T G.722 R2sm and 96 for ITU-T G.722 R3sm

	codefile
	is the name of the input bitstream file

	outfile
	is the name of the decoded output file

	Options:
	

	-quiet
	quiet processing

	-bitrateswitch [bsflag]
	bsflag is 1 for ITU-T G.722 core at 56 kbit/s, and 0 for the ITU-T G.722 core at 64 kbit/s

The encoder input and the decoder output files are sampled data files containing 16-bit PCM signals. The default file format for the encoder output and decoder input files follow the [b‑ITU‑T G.192] bitstream format.
[bookmark: _Toc132440857][bookmark: _Toc142816563][bookmark: _Toc150599905][bookmark: _Toc150673977][bookmark: _Toc152131346][bookmark: _Toc152146801][bookmark: _Toc162434663][bookmark: _Toc162933470][bookmark: _Toc194315342][bookmark: _Toc194401209][bookmark: _Toc195527004][bookmark: _Toc196572907][bookmark: _Toc208194485][bookmark: _Toc283385143]B.8.2	Organization of the simulation software
[bookmark: _Toc132440881]Table B.8-1 – Summary of encoder specific routines
	Filename
	Description

	encoder.c
	ITU-T G.722-SWB encoder interface routine

	pcmswbenc.c
	ITU-T G.722-SWB main encoder

	prehpf.c
	High-pass pre-filter routine

	bwe_enc.c
	SWBL0 encoder

	swb_avq_encode.c
	SWBL1/SWBL2 encoder

	avq_cod.c
	AVQ main encoder

[bookmark: _Toc132440882]Table B.8-2 – Summary of decoder specific routines
	Filename
	Description

	decoder.c
	ITU-T G.722-SWB decoder interface routine

	pcmswbdec.c
	ITU-T G.722-SWB main decoder

	bwe_dec.c
	SWBL0 decoder

	bwe_mdct.c
	MDCT routine for ITU-T G.722 post-processor

	bwe_mdct_table.c
	Tables for MDCT routine for ITU-T G.722 post-processor

	swb_avq_decode.c
	SWBL1/SWBL2 decoder

	avq_dec.c
	AVQ main decoder

[bookmark: _Toc132440883][bookmark: OLE_LINK1][bookmark: OLE_LINK2]Table B.8-3 – Summary of common routines
	Filename
	Description

	qmfilt.c
	QMF filterbank routine

	softbit.c
	Routine for conversion between hardbit and softbit

	table_qmfilt.c
	Tables for QMF filterbank

	ns_common.c
	ITU-T G.722 noise shaping routine

	dsputil.c
	Fixed-point utility routines

	errexit.c
	Exit routine

	mathtool.c
	Square-root routines

	oper_32b.c
	Routine of basic operators in double precision (32 bits)

	table_mathtool.c
	Tables for square-root routines

	table.c
	Tables for SWBL0

	rom.c
	Tables for AVQ

[bookmark: _Toc286912286][bookmark: _Toc286916649][bookmark: _Toc286928309][bookmark: _Toc295815371][bookmark: _Toc301337290][bookmark: _Toc301769961][bookmark: _Toc301786909]Bibliography

[b-ITU-T G.192]	Recommendation ITU-T G.192 (1996), A common digital parallel interface for speech standardization activities.

[bookmark: c3tope]

[bookmark: cov4top]
	SERIES OF ITU-T RECOMMENDATIONS

	[bookmark: c4seriee]Series A
	Organization of the work of ITU-T

	Series D
	General tariff principles

	Series E
	Overall network operation, telephone service, service operation and human factors

	Series F
	Non-telephone telecommunication services

	Series G
	Transmission systems and media, digital systems and networks

	Series H
	Audiovisual and multimedia systems

	Series I
	Integrated services digital network

	Series J
	Cable networks and transmission of television, sound programme and other multimedia signals

	Series K
	Protection against interference

	Series L
	Construction, installation and protection of cables and other elements of outside plant

	Series M
	Telecommunication management, including TMN and network maintenance

	Series N
	Maintenance: international sound programme and television transmission circuits

	Series O
	Specifications of measuring equipment

	Series P
	Terminals and subjective and objective assessment methods

	Series Q
	Switching and signalling

	Series R
	Telegraph transmission

	Series S
	Telegraph services terminal equipment

	Series T
	Terminals for telematic services

	Series U
	Telegraph switching

	Series V
	Data communication over the telephone network

	Series X
	Data networks, open system communications and security

	Series Y
	Global information infrastructure, Internet protocol aspects and next-generation networks

	Series Z
	Languages and general software aspects for telecommunication systems

	
	

Printed in Switzerland
Geneva, 2011
Printed in Switzerland
Geneva,
image2.png

image44.wmf
ˆ

()

SWB

sn

oleObject550.bin

image437.wmf
ˆ

()

norm

SHB

Sk

oleObject551.bin

image438.emf
G.722(88)Amd.1(10)_FB.6-8

err

Sk

SHB

()

AVQ local

decoding

AVQ in

two stages

Per sub-band

normalization

and ordering

Compute error

spectrum

Sign

information

coding

Filling zero

sub-bands

Gain

adjustment

Compute full

spectrum

Per sub-band

denormalization and

backward ordering

S'k ()

ˆ

norm

Sk

SHB

()

ˆ

norm

Sk

SHB

()

S'(k)

Sk

SHB

()

err

ˆ

Sk

SHB

()

ˆ

abs

oleObject552.bin

oleObject553.bin

image439.wmf
0,...,63

k

=

oleObject554.bin

image440.wmf
()

norm

SHB

Sk

oleObject555.bin

oleObject43.bin

image441.wmf
(

)

(

)

ˆ

(8)sgn(8)max(8)0.5(),0

errnormnorm

SHBSHBSHBrms

SjiSjiSjifj

+=++-

oleObject556.bin

image442.wmf
0,...,7

i

=

oleObject557.bin

image443.wmf
0,...,7

j

=

oleObject558.bin

image444.wmf
ˆ

()

err

rms

fj

oleObject559.bin

image445.wmf
ˆ

()

rms

fj

oleObject560.bin

image45.wmf
)

(

0

i

h

qmf

image446.wmf
ˆ

ˆ

()0.6()

err

rmsrms

fjfj

=

oleObject561.bin

image447.wmf
(

)

(

)

8()

'(8), 0,...,7, 0,...,7

ˆ

()

err

SHBb

err

avqrmsb

Sji

Sjiji

fj

b

W+

+===

×W

oleObject562.bin

image448.wmf
ˆ

()

err

SHB

Sk

oleObject563.bin

oleObject564.bin

oleObject565.bin

oleObject566.bin

oleObject567.bin

oleObject44.bin

image449.wmf
'

ˆ

()

rms

fi

oleObject568.bin

image450.wmf
(

)

(

)

7

2

2

'

0

7

0

ˆ

ˆ

8(8)

ˆ

,0,...,7

(8)

tmp

rmsSHB

i

rms

zero

i

fjSji

fjj

fji

=

=

éù

éù

-+

ëû

ëû

==

+

å

å

oleObject569.bin

image451.wmf
ˆ

(8)

tmp

SHB

Sji

+

oleObject570.bin

oleObject571.bin

image452.wmf
ˆ

0if(8)0

ˆ

(8)

ˆ

ˆ

(8)0.5()otherwise

err

SHB

tmp

SHB

err

SHBrms

Sji

Sji

Sjifi

ì

+=

ï

+=

í

++

ï

î

oleObject572.bin

image453.wmf
()

zero

fj

image46.wmf
)

(

1

i

h

qmf

oleObject573.bin

image454.wmf
ˆ

1if (8)0

(8)

0otherwise

err

SHB

zero

Sji

fji

ì

+=

ï

+=

í

ï

î

oleObject574.bin

image455.wmf
ˆ

(8)

abs

SHB

Sji

+

oleObject575.bin

image456.wmf
'

ˆ

ˆ

(),if (8)0

ˆ

(8)

ˆ

(8),otherwise

err

rmsSHB

abs

SHB

tmp

SHB

fjSji

Sji

Sji

ì

+=

ï

+=

í

+

ï

î

oleObject576.bin

image457.wmf
max

max

1

max

3,if 8,

2,else if 4,

1,else if 2,

0,otherwise.

r

r

f

r

>

ì

ï

>

ï

=

í

>

ï

ï

î

oleObject577.bin

oleObject578.bin

oleObject45.bin

image458.wmf
ˆ

()

abs

SHB

Sk

oleObject579.bin

image459.wmf
01

()

sb

Si

¢

oleObject580.bin

image460.wmf
02

()

sb

Si

¢

oleObject581.bin

image461.wmf
()

norm

SHB

Sk

oleObject582.bin

oleObject583.bin

oleObject584.bin

image47.wmf
()

TDAC

wi

image462.wmf
01

()

sb

Sk

¢

oleObject585.bin

image463.wmf
02

()

sb

Sk

¢

oleObject586.bin

image464.wmf
01

ˆ

()

sb

Si

¢

oleObject587.bin

image465.wmf
02

ˆ

()

sb

Si

¢

oleObject588.bin

image466.wmf
'

01 111

ˆ

ˆ

ˆ

()()()

sbenvbase

SifjSi

jd

¢

=××+

oleObject589.bin

oleObject46.bin

image467.wmf
'

02 222

ˆ

ˆ

ˆ

()()()

sbenvbase

SifjSi

jd

¢

=××+

oleObject590.bin

oleObject591.bin

oleObject592.bin

oleObject593.bin

image468.wmf
ˆ

()

norm

SHB

Sk

oleObject594.bin

image469.wmf
1_

swblunused

B

oleObject595.bin

image470.wmf
1_1_

(), 0,...,1

swblsignswblunused

IuuB

=-

image48.wmf
HB

g

oleObject596.bin

image471.wmf
ˆ

()0

err

SHB

Sk

=

oleObject597.bin

image472.wmf
1_

0if ()0

()

1otherwise

norm

SHB

swblsign

Sk

Iu

ì

<

=

í

î

oleObject598.bin

image473.wmf
63

k

=

oleObject599.bin

image474.wmf
1_

swblunused

uB

=

oleObject600.bin

image475.wmf
2_

swblunused

B

oleObject47.bin

oleObject601.bin

image476.wmf
(

)

1

,...,

0

,

_

2

_

2

-

=

unused

swbl

sign

swbl

B

v

v

I

oleObject602.bin

oleObject603.bin

image477.wmf
adj

g

oleObject604.bin

image478.wmf
correct

g

oleObject605.bin

image479.wmf
ˆ

 ,

adjcorrectglob

ggg

=

oleObject606.bin

image49.wmf
()

HBw

Sk

image480.wmf
7

0

7

2

0

7

0

7

2

0

ˆ

(8)(8)

,if 1

ˆ

((8))

ˆ

(8)(8)

,otherwise

ˆ

((8))

normabs

SHBSHB

ji

shb_mode

abs

SHB

ji

correct

normnorm

SHBSHB

ji

norm

SHB

ji

SjiSji

f

Sji

g

SjiSji

Sji

=

=

=

=

ì

++

ï

ï

=

ï

+

ï

ï

=

í

ï

++

ï

ï

ï

+

ï

î

åå

åå

åå

åå

oleObject607.bin

image481.wmf
gc

I

oleObject608.bin

image482.wmf
(

)

2

0,...,7

ˆ

argmin(),

gccorrectcorrect

i

Iggi

=

=-

oleObject609.bin

image483.wmf
{

}

8

0.2,if 0 and 04

ˆ

()

2, 7,5,3,2,1,0,1,3,otherwise

i

glob

k

correct

i

igi

gi

k

=££

ì

ï

=

í

=-----

ï

î

oleObject610.bin

image484.wmf
ˆ

ˆ

ˆ

 ()

adjcorrectgcglob

ggIg

=×

oleObject611.bin

oleObject48.bin

image485.wmf
ˆ

()

SHB

Sk

oleObject612.bin

image486.wmf
ˆ

ˆ

(8),for -th sub-bands coded in SWBL1,

ˆ

ˆ

ˆ

(8)(8),for -th sub-bands coded in SWBL2

,

ˆ

(8),otherwise,

norm

adjSHB

AVQnorm

SHBglobSHB

BWE

SHB

gSjij

SjigSjij

Sji

ì

×+

ï

ï

+=×+

í

ï

+

ï

î

oleObject613.bin

image487.wmf
ˆ

()

BWE

SHB

Sk

oleObject614.bin

image488.wmf
ˆ

(8), 0,...,7,

AVQ

SHB

Sjii

+=

oleObject615.bin

image489.wmf
(,), =0,...,3,0,...,7

grd

qiqi

g

=

oleObject616.bin

image50.wmf
ˆ

HB

g

image490.wmf
ˆ

(8)

adj

SHB

Sji

+

oleObject617.bin

image491.wmf
()

SHB

Sk

oleObject618.bin

image492.wmf
ˆ

()

AVQ

SHB

Sk

oleObject619.bin

image493.wmf
1

SWBL

n

oleObject620.bin

image494.wmf
1_

swblunused

B

oleObject621.bin

oleObject49.bin

image495.wmf
1_

swblunused

uB

=

oleObject622.bin

image496.wmf
1

SWBL

vn

=

oleObject623.bin

image497.wmf
()0, 0,...,7

grd

bii

==

oleObject624.bin

image498.wmf
1

uv

³+

oleObject625.bin

oleObject626.bin

oleObject627.bin

image51.wmf
ˆ

()

HBw

Sk

image499.wmf
(

)

(

)

2,if

1,otherwise

grdb

uv

bj

>

ì

W=

í

î

oleObject628.bin

image500.wmf
(())

7

1_

0

02

ˆ

()argmin(8())(,)(8()), 0,...,7

bj

grdb

swblgrdSHBbgrdSHBb

i

q

IjSjiqiSjii

g

W

=

£<

æö

=W+-W+=

ç÷

èø

å

oleObject629.bin

image501.wmf
(,)

grd

qi

g

oleObject630.bin

image502.wmf
(0,0)(0,7)

1.0001.0001.0001.0001.0001.0001.0001.000

(1,0)(1,7)

1.3501.2501.1501.0500.9500.8500.7500.650

(2,0)(2,7)

1.1751.1251.0751.0250.9750.9

(3,0)(3,7)

grdgrd

grdgrd

grdgrd

grdgrd

gg

gg

gg

gg

ìü

ïï

ïï

=

íý

ïï

ïï

îþ

L

L

L

L

250.8750.825

0.6500.7500.8500.9501.0501.1501.2501.350

ìü

ïï

ïï

íý

ïï

ïï

îþ

oleObject631.bin

image503.wmf
(())

grdb

uubj

=-W

oleObject632.bin

oleObject50.bin

image504.wmf
1

vv

=-

oleObject633.bin

image505.wmf
0

u

>

oleObject634.bin

image506.wmf
0

v

>

oleObject635.bin

image507.wmf
1_

()

swblgrd

Ij

oleObject636.bin

image508.wmf
1_

swblgrd

I

oleObject637.bin

image52.wmf
adj

g

image509.wmf
2_

swblunused

uB

=

oleObject638.bin

image510.wmf
2

SWBL

vn

=

oleObject639.bin

image511.wmf
2_

swblgrd

I

oleObject640.bin

image512.wmf
(

)

{

}

888

221,1,1,1,1,1,1,1

REDD

=È+

oleObject641.bin

image513.wmf
8

j

n

oleObject642.bin

oleObject51.bin

image514.wmf
j

n

Q

oleObject643.bin

oleObject644.bin

image515.wmf
v

jjjj

M

=×+

czv

oleObject645.bin

oleObject646.bin

oleObject647.bin

image516.wmf
2

v

j

r

v

j

M

=

oleObject648.bin

image517.wmf
v

j

r

image53.wmf
ˆ

adj

g

oleObject649.bin

oleObject650.bin

oleObject651.bin

oleObject652.bin

oleObject653.bin

oleObject654.bin

oleObject655.bin

oleObject656.bin

oleObject657.bin

oleObject658.bin

oleObject52.bin

oleObject659.bin

oleObject660.bin

image518.wmf
å

=

j

j

R

nbits

oleObject661.bin

image519.wmf
2

5log

2

j

j

E

R

æö

=

ç÷

èø

oleObject662.bin

image520.wmf
(8)

j

¢

S

oleObject663.bin

image521.wmf
[

]

7

2

0

max2,(8)

j

i

ESji

=

æö

¢

=+

ç÷

èø

å

oleObject664.bin

image54.wmf
ˆ

()

env

fj

image522.wmf
()

norm

Sk

¢

oleObject665.bin

image523.wmf
(

)

NB_SBANDS

1

max0,

j

j

nbitsRoffset

=

=-

å

oleObject666.bin

image524.wmf
(

)

(

)

10

10exp0.1log2

offset

×

oleObject667.bin

oleObject668.bin

image525.wmf
(

)

(

)

(

)

(

)

10

10exp0.1log2

norm

SkSkoffset

éù

¢¢

=××

ëû

oleObject669.bin

image526.wmf
(8)

norm

j

¢

S

oleObject53.bin

oleObject670.bin

image527.wmf
ˆ

(8)

j

¢

S

oleObject671.bin

oleObject672.bin

oleObject673.bin

image528.wmf
)

8

(

5

.

0

'

j

norm

j

S

z

=

oleObject674.bin

image529.wmf
1

2

jj

¢

=

yz

oleObject675.bin

image530.wmf
(

)

(

)

(

)

(

)

(

)

11

1

1

 2,if –

 0,

 + 2,otherwise.

jjj

j

j

yIzIyI

yI

yI

-<

ì

ï

=

í

ï

î

image55.wmf
()

rms

fj

oleObject676.bin

oleObject677.bin

oleObject678.bin

image531.wmf
2

2

jj

¢

=

yz

oleObject679.bin

image532.wmf
(

)

(

)

(

)

(

)

(

)

22

2

2

 2,if –

 0,

 + 2,otherwise.

jjj

j

j

yIzIyI

yI

yI

-<

ì

ï

=

í

ï

î

oleObject680.bin

oleObject681.bin

oleObject682.bin

image533.wmf
112

2

,if ,

ˆ

(8)

,otherwise.

jjj

j

ee

j

>

ì

¢

=

í

î

y

S

y

oleObject54.bin

oleObject683.bin

oleObject684.bin

oleObject685.bin

oleObject686.bin

oleObject687.bin

oleObject688.bin

oleObject689.bin

image534.wmf
v

j

I

oleObject690.bin

image535.wmf
0

()

00

()()2()

nb

sign

jsign

rankrankbits

=×+

s

zys

image56.wmf
ˆ

()

rms

fj

oleObject691.bin

image536.wmf
()()

joffsetjj

Ileadrank

=+

zz

oleObject692.bin

image537.wmf
(

)

å

<

=

-

-

-

-

-

-

-

-

-

-

-

+

-

=

n

n

i

n

n

i

n

n

n

n

n

m

i

i

i

m

q

m

i

m

q

m

m

q

m

m

m

n

mid

C

C

C

C

I

1

,

1

1

1

0

1

1

oleObject693.bin

image538.wmf
n

mid

m

m

final

final

I

C

I

I

n

n

,

1

+

×

=

-

oleObject694.bin

image539.wmf
m

q

C

oleObject695.bin

image540.wmf
)!

(

!

!

q

p

m

q

C

m

q

-

=

oleObject55.bin

oleObject696.bin

image541.wmf
m

q

C

oleObject697.bin

image542.wmf
n

n

m

m

C

1

-

oleObject698.bin

oleObject699.bin

image543.emf
G.722(88)Amd.1(10)_FB.6-9

Lead20: (0,2,0,0,4,0,6,0)

- (2,4,6)

Lead

20: (0,2,0,0,4,0,6,0)

(4,6)

(6)

(0,1,0,0,1,0,1,0)

-

(0,x,0,0,x,0,x,0)

3 from 8: (1,4,6

 (o,x,o,o,x,o,x,o)

(4,x)

1 from 2: (1

 (o,x)

(2,x,x)

2 from 3: (1,2

 (o,x,x)

(1,1,1)

-

(1,0,0)

final_index=0

sign = 4

rank=191*8+4=1532

 =rank+offset=59260

I

p

I

I

final

final

×

3=93

+2=95

I

I

final

final

×

56=0

+31=31

I

I

final

final

×

2=190

+1=191

oleObject700.bin

oleObject701.bin

oleObject702.bin

image57.wmf
()

rms

tj

oleObject703.bin

oleObject704.bin

oleObject705.bin

oleObject706.bin

image544.wmf
1

mod()

v

j

v

jj

M

-

=

IcG

oleObject707.bin

oleObject708.bin

oleObject709.bin

oleObject710.bin

image545.wmf
12

ˆ

v

jjjj

M

=-×

vyy

oleObject56.bin

oleObject711.bin

image546.wmf
2

ˆ

j

y

oleObject712.bin

image547.wmf
1

40000000

22000000

20200000

20020000

20002000

20000200

20000020

11111111

v

jj

éù

êú

êú

êú

êú

êú

=

êú

êú

êú

êú

êú

êú

ëû

yI

oleObject713.bin

image548.wmf
(

)

21

[2,0,0,0,0,0,0,0]

v

jjj

M

=-

yy

oleObject714.bin

image549.wmf
8

v

j

MRE

×

oleObject715.bin

oleObject716.bin

image58.wmf
'

ˆ

()

rms

tj

oleObject717.bin

image550.wmf
v

j

r

oleObject718.bin

image551.wmf
v

j

M

oleObject719.bin

oleObject720.bin

oleObject721.bin

oleObject722.bin

oleObject723.bin

oleObject724.bin

oleObject57.bin

oleObject725.bin

image552.wmf
)...]

)(

[(

1

1

1

0

0

0

v

v

I

n

I

n

I

I

oleObject726.bin

oleObject727.bin

image553.wmf
ˆ

()

WB

sn

oleObject728.bin

image554.wmf
ˆ

()

SHB

sn

oleObject729.bin

image555.wmf
)

(

ˆ

n

S

SWB

oleObject730.bin

image59.wmf
0

EL

HB

I

image556.emf
G.722(88)Amd.1(10)_FB.7-1

Multiplexed

bitstream

ˆ

S

SWB

SWBL0 bitstream

ITU-T

G.722EL0

bitstream

ITU-T G.722

compatible

bitstream

ITU-T G.722 core

decoder

ITU-T G.722 LB

decoder

ITU-T G.722 HB

 decoder

Lower band

FERC

Higher band

FERC

Enhanced

ITU-T G.722

HB decoder

SWBL1

decoder

SWBL2

decoder

SWBL0

decoder

Super higher

band FERC

DE

MUX

SWBL1 bitstream

SWBL2 bitstream

Synthesis

QMF

Synthesis

QMF

DE

MUX

ITU-T

G.722EL1

bitstream

ˆ

S

WB

ˆ

S

SHB

HB post-

processor

ˆ

s

LB

ˆ'

s

LB

ˆ'

s

HB

ˆ

s

HB

ˆ

Sk

WB

()

PP

oleObject731.bin

image557.wmf
ˆ

()

LB

sn

oleObject732.bin

image558.wmf
ˆ

()

HB

sn

oleObject733.bin

image559.wmf
()

L

rn

oleObject734.bin

image560.wmf
()()()

LLL

rndnsn

=+

oleObject735.bin

oleObject58.bin

oleObject736.bin

image561.wmf
()

L

dn

oleObject737.bin

image562.wmf
()

L

sn

oleObject738.bin

image563.wmf
ˆ

()()

LBL

snrn

=

oleObject739.bin

image564.wmf
()

H

rn

oleObject740.bin

image565.wmf
()()()

HHH

rndnsn

=+

image60.wmf
1

EL

HB

I

oleObject741.bin

oleObject742.bin

oleObject743.bin

oleObject744.bin

image566.wmf
()

H

rn

oleObject745.bin

oleObject746.bin

image567.emf
G.722(88)Amd.1(10)_FB.7-2

Q

adapt

Q

-

1

(2 bits)

dn

H

()

In

H

()

D

H

()n

D

H

()n

EL0 decoder

EL1 decoder

D

H

()n

P

adapt

Pz

z

()

Pz

P

()

rn

H

()

dn

HB

()

EL

0

sn

H

()

ˆsn

HB

()

In

HB

()

EL

0

In

HB

()

EL1

dn

HB

()

EL

1

DE

MUX

Mode (core, EL0, EL1)

oleObject747.bin

image568.wmf
class

F

oleObject59.bin

oleObject748.bin

oleObject749.bin

image569.wmf
0

1,if thedecodedbitis1andisselected

()

0,if thedecodedbitis0andisselected

EL

HB

n

In

n

ì

=

í

î

oleObject750.bin

image570.wmf
0

ˆ

()()()

EL

HBHBH

sndnsn

=+

oleObject751.bin

image571.wmf
0

0

()3[2()()],if isselected

()

()2[()],otherwise

EL

EL

HHHB

HB

HH

nQInInn

dn

nQIn

ì

D+

=

í

D

î

oleObject752.bin

image572.wmf
()

H

In

oleObject753.bin

image61.wmf
class

F

image573.wmf
0

()

EL

HB

In

oleObject754.bin

image574.wmf
()

H

n

D

oleObject755.bin

oleObject756.bin

image575.wmf
3[.]

Q

oleObject757.bin

image576.wmf
2[.]

Q

oleObject758.bin

oleObject759.bin

oleObject60.bin

image577.wmf
1

()

EL

HB

In

oleObject760.bin

image578.wmf
1

ˆ

()()()

EL

HBHBH

sndnsn

=+

oleObject761.bin

image579.wmf
01

1

1

()4[4()2()()],if isselected in EL0

()

()3[2()()],otherwise

ELEL

EL

HHHBHB

HB

EL

HHHB

nQInInInn

dn

nQInIn

ì

D++

=

í

D+

î

oleObject762.bin

oleObject763.bin

oleObject764.bin

oleObject765.bin

oleObject766.bin

image62.wmf
bws

w

image580.wmf
4[.]

Q

oleObject767.bin

oleObject768.bin

image581.wmf
(

)

1

1

983

1

1024

()

28835

1

32768

post

z

Hz

z

-

-

-

=

-

oleObject769.bin

image582.wmf
wb

M

oleObject770.bin

image583.wmf
shb

M

oleObject771.bin

image584.wmf
wb

M

oleObject61.bin

oleObject772.bin

image585.wmf
ˆ

(),0,...,79

WB

Skk

=

oleObject773.bin

image586.wmf
shb

M

oleObject774.bin

image587.wmf
ˆ

()

env

fj

oleObject775.bin

image588.wmf
79

2

0

1

ˆ

()

80

wbWB

k

MSk

=

=

å

oleObject776.bin

image589.wmf
7

0

1

ˆ

()

8

shbenv

j

Mfj

=

=

å

image63.wmf
1

bws

w

oleObject777.bin

image590.wmf
(

)

79

,

,

44

,

ˆ

K

=

k

k

S

WB

oleObject778.bin

image591.wmf
0.8

wbshb

MM

>

oleObject779.bin

image592.wmf
0

(),44,...,79

Mkk

=

oleObject780.bin

image593.wmf
1

(),44,...,79

Mkk

=

oleObject781.bin

image594.wmf
av

M

oleObject62.bin

oleObject782.bin

image595.wmf
0

()

Mk

oleObject783.bin

image596.wmf
1

()

Mk

oleObject784.bin

oleObject785.bin

image597.wmf
00

00

()1

()1

00

01

0

()1

()1

00

01

ˆ

ˆ

()()()()

()

()()

f

l

f

l

bk

bk

fl

WBWB

jj

bk

bk

fl

jj

wkSkjwkSkj

Mk

wkwk

-

-

==

-

-

==

-++

=

+

åå

åå

oleObject786.bin

image598.wmf
44,...,79

k

=

oleObject787.bin

image64.wmf
2

bws

w

image599.wmf
0

()

f

wk

oleObject788.bin

image600.wmf
0

()

l

wk

oleObject789.bin

image601.wmf
0

()

f

bk

oleObject790.bin

image602.wmf
0

()

l

bk

oleObject791.bin

oleObject792.bin

oleObject793.bin

oleObject63.bin

oleObject794.bin

oleObject795.bin

image603.wmf
0

4000(36(44))8000(44)

()0.00056251

36

tmpf

kk

wk

--+-

=×+

oleObject796.bin

image604.wmf
0

4000(36(44))8000(44)

()0.000393751

36

tmpl

kk

wk

--+-

=×+

oleObject797.bin

image605.wmf
00

()min((),44)

ftmpf

bkwkk

êú

=-

ëû

oleObject798.bin

image606.wmf
00

()min((),36(44))

ltmpl

bkwkk

êú

=--

ëû

oleObject799.bin

image65.wmf
3

bws

w

image607.wmf
0

0

0.75

(,)1

()

f

tmpf

j

wkj

wk

=-

oleObject800.bin

image608.wmf
0

0,...,()1

f

jbk

=-

oleObject801.bin

image609.wmf
0

0

0.75

(,)1

()

l

tmpl

j

wkj

wk

=-

oleObject802.bin

image610.wmf
0

1,...,()1

l

jbk

=-

oleObject803.bin

image611.wmf
44,...,79

k

=

oleObject804.bin

oleObject64.bin

image612.wmf
1

(),44,...,79

Mkk

=

oleObject805.bin

image613.wmf
1

()

Mk

oleObject806.bin

image614.wmf
0

()

Mk

oleObject807.bin

image615.wmf
11

11

()1

()1

11

11

1

()1

()1

11

01

ˆ

ˆ

(,)()(,)()

()

(,)(,)

f

l

f

l

bk

bk

fl

WBWB

jj

bk

bk

fl

jj

wkjSkjwkjSkj

Mk

wkjwkj

-

-

==

-

-

==

-++

=

+

åå

åå

oleObject808.bin

oleObject809.bin

image616.wmf
1

()

f

wk

image66.wmf
j

I

oleObject810.bin

image617.wmf
1

()

l

wk

oleObject811.bin

oleObject812.bin

oleObject813.bin

image618.wmf
1

()

f

wk

oleObject814.bin

image619.wmf
1

()

l

wk

oleObject815.bin

image620.wmf
1

()

f

bk

oleObject65.bin

oleObject816.bin

image621.wmf
1

()

l

bk

oleObject817.bin

image622.wmf
1

4000(36(44))8000(44)

()0.0011254

36

tmpf

kk

wk

--+-

=×+

oleObject818.bin

image623.wmf
1

4000(36(44))8000(44)

()0.00078754

36

tmpl

kk

wk

--+-

=×+

oleObject819.bin

image624.wmf
ë

û

)

44

,

)

(

min(

)

(

1

1

-

=

k

k

w

k

b

tmpf

f

oleObject820.bin

image625.wmf
ë

û

))

44

(

36

,

)

(

min(

)

(

1

1

-

-

=

k

k

w

k

b

tmpl

l

image67.wmf
v

j

I

oleObject821.bin

image626.wmf
1

1

0.5

(,)1

()

f

tmpf

j

wkj

wk

=-

oleObject822.bin

image627.wmf
1

0,...,()1

f

jbk

=-

oleObject823.bin

image628.wmf
1

1

0.5

(,)1

()

l

tmpl

j

wkj

wk

=-

oleObject824.bin

image629.wmf
1

1,...,()1

l

jbk

=-

oleObject825.bin

oleObject826.bin

oleObject66.bin

image630.wmf
av

M

oleObject827.bin

image631.wmf
79

44

1

ˆ

()

36

avWB

k

MSk

=

=

å

oleObject828.bin

image632.wmf
01

()()

MkMk

oleObject829.bin

image633.wmf
0

1

()

()

0.75()0.25

pp

av

Mk

gk

MkM

=

+

oleObject830.bin

oleObject831.bin

image634.wmf
'

pp

g

image68.wmf
v

j

r

oleObject832.bin

image635.wmf
79

44

max

max

max

'

max

36

,

ˆ

(()())

1.5

(0.5),if1.5and32

16

1.5

,elseif1.5

(0.5),elseif32

16

,otherwise

temp

av

pp

ppWB

k

temp

av

ppppav

pp

temp

pppp

pp

pp

temp

av

ppav

temp

pp

M

g

gkSk

M

ggM

g

gg

g

g

M

gM

g

=

=

×

ì

×+×><

ï

ï

ï

×>

ï

=

í

ï

ï

×+<

ï

ï

î

å

oleObject833.bin

image636.wmf
max

44,...,79

max(())

pppp

j

ggk

=

=

oleObject834.bin

image637.wmf
pp

g

oleObject835.bin

image638.wmf
'

pp

g

oleObject836.bin

image639.wmf
norm

pp

g

oleObject67.bin

oleObject837.bin

image640.wmf
'

()()

norm

pppppp

gkgkg

=×

oleObject838.bin

oleObject839.bin

image641.wmf
(

)

__

1

()()

2

normsmnormnormsm

pppppp

gkgkg

=+

oleObject840.bin

oleObject841.bin

image642.wmf
__

ˆ

()(),if()1.15

ˆ

()

ˆ

(),otherwise

normsmnormsm

ppWBpp

pp

WB

WB

gkSkgk

Sk

Sk

ì

<

ï

=

í

ï

î

oleObject842.bin

oleObject843.bin

image69.wmf
v

j

M

image643.wmf
_

()

normsm

pp

gk

oleObject844.bin

image644.wmf
()

norm

pp

gk

oleObject845.bin

oleObject846.bin

image645.wmf
ˆ

()

pp

WB

Sk

oleObject847.bin

image646.wmf
ˆ

WB

s

oleObject848.bin

oleObject849.bin

oleObject68.bin

oleObject850.bin

oleObject851.bin

oleObject852.bin

image647.wmf
ˆ

ˆ

ˆ

()()

envglobrms

fjgfj

=×

oleObject853.bin

oleObject854.bin

image648.wmf
(),0,1

cb

Fii

=

oleObject855.bin

oleObject856.bin

image649.wmf
ˆ

ˆ

ˆ

()()

envglobrms

fjgfj

=×

image70.wmf
()

b

j

W

oleObject857.bin

image650.wmf
 0,,7

j

=

L

oleObject858.bin

image651.wmf
_max

env

f

oleObject859.bin

image652.wmf
_min

env

f

oleObject860.bin

image653.wmf
_

envavg

f

oleObject861.bin

image654.wmf
(

)

(

)

_max

0,...,7

_min

0,...,7

7

_

0

ˆ

max(),

ˆ

min(),

1

ˆ

()

8

envrms

j

envrms

j

envavgrms

j

ffj

ffj

ffj

=

=

=

=

=

=

å

oleObject69.bin

oleObject862.bin

image655.wmf
_max_min

()2.5

envenv

ff

->

oleObject863.bin

image656.wmf
_min

12

env

f

<

oleObject864.bin

image657.wmf
_

ˆ

()0.4

envenvavg

fjf

<

oleObject865.bin

image658.wmf
ˆ

ˆ

()0.5()

envenv

fjfj

=

oleObject866.bin

oleObject867.bin

oleObject70.bin

image659.wmf
'

()

rms

tj

oleObject868.bin

image660.wmf
'

()

'

ˆ

()2

rms

tj

rms

tj

=

oleObject869.bin

oleObject870.bin

image661.wmf
'(1)

ˆ

rms

t

-

oleObject871.bin

oleObject872.bin

image662.wmf
tenv

F

oleObject873.bin

oleObject71.bin

image663.wmf
ˆ

class

c

oleObject874.bin

oleObject875.bin

image664.wmf
0,if

ˆ

ˆ

1,elseif

ˆ

max(1,0),otherwise

class

classclassclass

class

FTRANSIENT

ccFHARMONIC

c

=

ì

ï

=+=

í

ï

-

î

oleObject876.bin

image665.wmf
ˆ

()

PP

WB

Sk

oleObject877.bin

image666.wmf
_

ˆ

()

excbase

Sk

oleObject878.bin

image667.wmf
_

ˆ

()()

excbasenoise

SkSk

=

image71.emf
G.722(88)Amd.1(10)_FB.6-1

0-8 kHz

signal

(WB)

SWBL0 bitstream

ITU-T

G.722

bitstream

Analysis

QMF

ITU-T G.722 LB

encoder

MUX

Input signal (32 kHz sampling)

Analysis

QMF

SWBL1 bitstream

SWBL2 bitstream

ITU-T G.722

HB encoder

Enhanced ITU-T G.722

HB encoder

ITU-T G.722 encoder

8-16 kHz

signal

(SHB)

Pre-

processing

MUX

Multiplexed

bitstream

sn

WB

()

G722EL0 bitstream

G722EL1 bitstream

Sn

SHB

()

SHB encoders

ITU-T

G.722 LB

bitstream

ITU-T

G.722 HB

bitstream

oleObject879.bin

image668.wmf
 0,,63

k

=

L

oleObject880.bin

image669.wmf
32768

)

(

seed

noise

k

S

l

=

oleObject881.bin

image670.wmf
20101

12345

+

l

=

l

seed

seed

oleObject882.bin

oleObject883.bin

image671.wmf
seed

l

oleObject884.bin

oleObject72.bin

image672.wmf
()

noise

Sk

oleObject885.bin

image673.wmf
_

ˆ

ˆ

()()

PP

excbaseWB

SkSk

=

oleObject886.bin

image674.wmf
0,,79

k

=

L

oleObject887.bin

oleObject888.bin

image675.wmf
__

ˆ

ˆ

()(32)

excbaseexcbase

SkSk

=+

oleObject889.bin

image676.wmf
 0,,31

k

=

L

image72.wmf
()

SWB

sn

oleObject890.bin

image677.wmf
ˆ

()

env

fj

oleObject891.bin

image678.wmf
ˆ

0.02

glob

g

oleObject892.bin

oleObject893.bin

image679.wmf
_

(1)1

2

_

()

()

ˆ

ˆ

ˆ

(16)(16)()

ˆ

()

swb

swb

swbcf

BWE

SHBexcbaseenv

bj

excbaserms

kbj

Nj

SjiSjifj

Sk

e

+-

=

+=+××

æö

+

ç÷

èø

å

oleObject894.bin

image680.wmf
0,,15

i

=

L

oleObject895.bin

oleObject73.bin

image681.wmf
0,,3

j

=

L

oleObject896.bin

image682.wmf
(1)

ˆ

()

env

fj

-

oleObject897.bin

image683.wmf
0,,7

j

=

L

oleObject898.bin

image684.wmf
glob

env

g

j

f

j

f

env

ˆ

3

)

(

ˆ

)

(

ˆ

)

1

(

£

-

-

oleObject899.bin

image685.wmf
TRANSIENT

F

class

¹

-

)

1

(

oleObject900.bin

image73.wmf
(

)

(

)

(

)

(

)

0.98437511

SWBSWBSWBSWB

snsnsnsn

=×-+--

%%

image686.wmf
_

ˆ

()

envsm

fj

oleObject901.bin

image687.wmf
(1)

_

ˆ

ˆ

ˆ

()()(1)()

envsmfenvenvfenvenv

fjwfjwfj

-

=×+-×

oleObject902.bin

image688.wmf
 0,,7

j

=

L

oleObject903.bin

image689.wmf
0.7,ifor

0.5,otherwise

class

fenv

FNORMALNOISE

w

=

ì

=

í

î

oleObject904.bin

image690.wmf
__

(1)1

2

_

()

()

ˆ

ˆ

ˆ

(8)(8)()

ˆ

()

swb

swb

swbcf

BWE

SHBexcbaseenvsm

bj

excbaserms

kbj

Nj

SjiSjifj

Sk

e

+-

=

+=+××

æö

+

ç÷

èø

å

oleObject905.bin

oleObject74.bin

image691.wmf
0,,7

i

=

L

oleObject906.bin

oleObject907.bin

image692.wmf
ˆ

()

env

fj

oleObject908.bin

oleObject909.bin

oleObject910.bin

oleObject911.bin

image693.wmf
ˆ

()

SHB

Sk

oleObject912.bin

image74.wmf
 0,,159

n

=

L

image694.wmf
()

b

j

W

oleObject913.bin

image695.wmf
ˆ

()

Sk

¢

oleObject914.bin

image696.wmf
ˆ

()

base

Sk

¢

oleObject915.bin

oleObject916.bin

oleObject917.bin

oleObject918.bin

image697.wmf
ˆ

()

err

rms

fi

oleObject75.bin

oleObject919.bin

image698.wmf
ˆ

()

rms

fi

oleObject920.bin

image699.wmf
'

ˆ

()

rms

fj

oleObject921.bin

image700.wmf
ˆ

()

norm

SHB

Sk

oleObject922.bin

image701.wmf
(

)

(

)

(

)

'

_

ˆ

ˆ

ˆ

sgn(8),if (8)0,

ˆ

(8)

ˆ

ˆ

ˆ

sgn(8)(8)0.5(),otherwise

err

excbasermsSHB

norm

SHB

errerr

SHBSHBrms

SjifSji

Sji

SjiSjifi

ì

+×+=

ï

+=

í

+×++

ï

î

oleObject923.bin

image702.wmf
1

ˆ

ˆ

()2()

f

rmsrms

fjfj

-

=×

image75.wmf
(

)

SWB

sn

%

oleObject924.bin

image703.wmf
ˆ

()

rms

fj

oleObject925.bin

oleObject926.bin

oleObject927.bin

oleObject928.bin

oleObject929.bin

oleObject930.bin

oleObject931.bin

oleObject932.bin

oleObject76.bin

oleObject933.bin

image704.wmf
2_2_

(), 0,...,1

swblsignswblunused

IuuB

=-

oleObject934.bin

image705.wmf
1_

swblunused

B

oleObject935.bin

image706.wmf
2_

swblunused

B

oleObject936.bin

image707.wmf
ˆ

(8)=0

err

SHB

Sji

+

oleObject937.bin

image708.wmf
(

)

/8

jk

=

êú

ëû

image76.wmf
qmfA

h

oleObject938.bin

image709.wmf
ˆ

()

norm

SHB

Sk

oleObject939.bin

image710.wmf
1_

()

swblsign

Iu

oleObject940.bin

image711.wmf
1_

ˆ

(),if ()0,

ˆ

()

ˆ

(),otherwise,

norm

SHBswblsign

norm

SHB

norm

SHB

SkIu

Sk

Sk

ì

-=

ï

=

í

ï

î

oleObject941.bin

image712.wmf
ˆ

(8)=0

err

SHB

Sji

+

oleObject942.bin

oleObject943.bin

oleObject77.bin

image713.wmf
2_

()

swblsign

Iv

oleObject944.bin

image714.wmf
2_

ˆ

(),if ()0,

ˆ

()

ˆ

(),otherwise,

norm

SHBswblsign

norm

SHB

norm

SHB

SkIv

Sk

Sk

ì

-=

ï

=

í

ï

î

oleObject945.bin

oleObject946.bin

image715.wmf
ˆ

ˆ

ˆ

 ()

adjcorrectgcglob

ggIg

=×

oleObject947.bin

image716.wmf
{

}

8

0.2if 0 and 04

ˆ

()

2, 7,5,3,2,1,0,1,3otherwise,

i

glob

k

correct

i

igi

gi

k

=££

ì

ï

=

í

=-----

ï

î

oleObject948.bin

image717.wmf
ˆ

AVQ

SHB

S

oleObject78.bin

oleObject949.bin

image718.wmf
ˆ

ˆ

ˆ

(8)(8)

AVQnorm

SHBadjSHB

SjigSji

+=×+

oleObject950.bin

image719.wmf
ˆ

ˆ

ˆ

(8)(8)

AVQnorm

SHBglobSHB

SjigSji

+=×+

oleObject951.bin

image720.wmf
(

)

_

ˆ

ˆ

ˆ

ˆ

(8)sgn(8)()

AVQ

SHBexcbaseglobrms

SjiSjigfj

+=+××

oleObject952.bin

image721.wmf
(

)

7

__

0

ˆ

ˆ

ˆ

ˆ

(8)0.1sgn(8)(8)

8

glob

AVQ

SHBexcbaseexcbase

i

g

SjiSjiSji

=

+=×++

å

oleObject953.bin

oleObject954.bin

image77.wmf
()

WB

sn

image722.wmf
ˆ

()

AVQ

SHB

Sk

oleObject955.bin

oleObject956.bin

oleObject957.bin

image723.wmf
1_

(())

swblgrdb

Ij

W

oleObject958.bin

oleObject959.bin

image724.wmf
ˆ

(8)

adj

SHB

Sbi

+

oleObject960.bin

image725.wmf
1_

ˆ

ˆ

(8)((),)(8)

adjAVQ

SHBgrdswblgrdSHB

SbiIbiSbi

g

+=×+

image3.wmf
)

(

n

s

oleObject79.bin

oleObject961.bin

image726.wmf
ˆ

(8)

AVQ

SHB

Sbi

+

oleObject962.bin

oleObject963.bin

image727.wmf
2_

swblgrd

I

oleObject964.bin

image728.wmf
ˆ

(8)0

norm

SHB

Sji

+=

oleObject965.bin

image729.wmf

0,...,7

i

=

oleObject966.bin

image78.wmf
()

SHB

sn

image730.wmf
ˆ

()

adp

SHB

Sk

oleObject967.bin

image731.wmf
(1)

ˆ

()

adpm

SHB

Sk

-

oleObject968.bin

image732.wmf
j

oleObject969.bin

image733.wmf
(

)

ˆ

ˆ

()sgn()()

adpadj

SHBSHBadp

SkSkek

=×

oleObject970.bin

image734.wmf
()

()

m

adp

ek

oleObject971.bin

oleObject80.bin

image735.wmf
(1)(1)()

(2)(1)(1)

(2)(1)

ˆ

ˆ

ˆ

0.375()0.375()0.25()

ˆ

ˆ

ˆ

 if()()(),

()

ˆ

ˆ

ˆ

0.125()0.375()0.375

AVQmadpmadjm

SHBSHBSHB

AVQmAVQmadpm

SHBSHBSHB

adp

AVQmAVQm

SHBSHB

SkSkSk

SkSkSk

ek

SkSkS

--

--

++

>+

=

++

(1)()

ˆ

()0.125()

 otherwise,

adpmadjm

SHBSHB

kSk

-

ì

ï

ï

ï

í

ï

+

ï

ï

î

oleObject972.bin

image736.wmf
ˆ

()

adp

SHB

Sk

oleObject973.bin

image737.wmf
(

)

(

)

ˆ

ˆ

sgn()min(), ()if ()0

ˆ

()

ˆ

()otherwise

adjnorm

SHBadpadpSHB

adp

SHB

adj

SHB

SkkekSk

Sk

Sk

q

ì

×=

ï

=

í

ï

î

oleObject974.bin

image738.wmf
0,...,63

k

=

oleObject975.bin

image739.wmf
ˆ

ˆ

()0.6(/16)

adpglobrms

kgfk

q

=×

êú

ëû

oleObject976.bin

image79.wmf
()

SWW

sn

image740.wmf
()

adp

ek

oleObject977.bin

image741.wmf
(

)

ˆ

ˆ

0.5(1)(),0

()

ˆ

ˆ

ˆ

0.25(1)0.25(1)0.5(),063

AVQadj

SHBSHB

adp

AVQAVQadj

SHBSHBSHB

SkSkk

ek

SkSkSkk

ì

++=

ï

=

í

ï

-+++<<

î

oleObject978.bin

image742.wmf
(1)

ˆ

(1)

adpm

SHB

Sk

-

-

oleObject979.bin

oleObject980.bin

image743.wmf
(1)

ˆ

(1)

adpm

SHB

Sk

-

+

oleObject981.bin

image744.wmf
(

)

(

)

ˆ

ˆ

sgn()min(), ()if ()0

ˆ

()

ˆ

()otherwise

adjAVQ

SHBadpadpSHB

adp

SHB

adj

SHB

SkkekSk

Sk

Sk

q

ì

×=

ï

=

í

ï

î

oleObject81.bin

oleObject982.bin

oleObject983.bin

image745.wmf
ˆ

ˆ

()0.6(/8)

adpglobrms

kgfk

q

=×

êú

ëû

oleObject984.bin

oleObject985.bin

image746.wmf
(1)()

(1)()

(1)()(1)

()

ˆ

ˆ

0.35()0.45()

0

ˆ

ˆ

 0.1(1)0.1(1),

ˆ

ˆ

ˆ

0.1(1)0.1(1)0.25()

()

ˆ

ˆ

 0.35()0.1

adpmadjm

SHBSHB

adpmadjm

SHBSHB

adpmadjmadpm

SHBSHBSHB

adp

adjma

SHBSHB

SkSk

k

SkSk

SkSkSk

ek

SkS

-

-

--

+

=

++++

-+-+

=

++

(1)()

(1)()

(1)()

1,...,62

ˆ

(1)0.1(1),

ˆ

ˆ

0.25()0.35()

63

ˆ

ˆ

 0.15(1)0.25(1),

dpmadjm

SHB

adpmadjm

SHBSHB

adpmadjm

SHBSHB

k

kSk

SkSk

k

SkSk

-

-

-

ì

ï

ï

ï

ï

ï

=

í

+++

ï

ï

ï

+

ï

=

ï

+-+-

î

oleObject986.bin

oleObject987.bin

image747.wmf
(1)()

(1)()

(1)()(1)

()

ˆ

ˆ

0.15()0.65()

0

ˆ

ˆ

 0.1(1)0.1(1),

ˆ

ˆ

ˆ

0.05(1)0.05(1)0.15()

()

ˆ

ˆ

 0.65()0.05

adpmadjm

SHBSHB

adpmadjm

SHBSHB

adpmadjmadpm

SHBSHBSHB

adp

adjm

SHBS

SkSk

k

SkSk

SkSkSk

ek

SkS

-

-

--

+

=

++++

-+-+

=

++

(1)()

(1)()

(1)()

1,...,62

ˆ

(1)0.05(1),

ˆ

ˆ

0.15()0.65()

63

ˆ

ˆ

 0.05(1)0.15(1),

adpmadjm

HBSHB

adpmadjm

SHBSHB

adpmadjm

SHBSHB

k

kSk

SkSk

k

SkSk

-

-

-

ì

ï

ï

ï

ï

ï

=

í

+++

ï

ï

ï

+

ï

=

ï

+-+-

î

oleObject988.bin

oleObject82.bin

image748.wmf
ˆ

ˆ

()()

adpadj

SHBSHB

SkSk

=

oleObject989.bin

oleObject990.bin

image749.wmf
ˆ

()

SHB

Sk

oleObject991.bin

image750.wmf
(2)

ˆ

()0

adpm

SHB

Sk

-

¹

oleObject992.bin

image751.wmf
(

)

(

)

()()(1)(1)

()

()

ˆ

ˆ

ˆ

ˆ

sgn()0.85()0.15()if ()0,

ˆ

()

ˆ

()otherwise

adpmadpmadpmadpm

SHBSHBSHBSHB

m

SHB

adpm

SHB

SkSkSkSk

Sk

Sk

--

ì

×+¹

ï

=

í

ï

î

oleObject993.bin

oleObject994.bin

image80.wmf
(

)

(

)

(

)

31

0

qmfA

SWWLSWB

i

snhisni

=

=-

å

%

image752.wmf
()()

ˆ

ˆ

()()

madpm

SHBSHB

SkSk

=

oleObject995.bin

oleObject996.bin

image753.wmf
(1)

ˆ

() 0,...,63

adpm

SHB

Skk

-

=

oleObject997.bin

image754.wmf
ˆ

(8)

j

¢

S

oleObject998.bin

image755.wmf
()

Sk

¢

oleObject999.bin

oleObject1000.bin

oleObject83.bin

oleObject1001.bin

oleObject1002.bin

oleObject1003.bin

oleObject1004.bin

oleObject1005.bin

oleObject1006.bin

oleObject1007.bin

oleObject1008.bin

oleObject1009.bin

oleObject1010.bin

oleObject84.bin

oleObject1011.bin

oleObject1012.bin

oleObject1013.bin

oleObject1014.bin

image756.wmf
ˆ

(8)

j

¢

S

oleObject1015.bin

image757.wmf
ˆ

(8)

v

jjj

jM

¢

=×+

Szv

oleObject1016.bin

image758.wmf
n

n

m

m

C

1

-

oleObject1017.bin

image81.wmf
)

(

i

h

qmfA

L

image759.wmf
n

n

n

n

m

pos

m

m

m

C

C

-

-

-

-

1

1

oleObject1018.bin

image760.wmf
n

n

n

n

m

q

m

m

m

C

C

0

1

1

-

-

-

-

oleObject1019.bin

image761.wmf
i

m

pos

m

i

m

q

m

n

n

n

i

n

C

C

-

-

-

-

-

-

-

-

-

1

1

1

1

oleObject1020.bin

image762.wmf
i

m

q

m

i

m

q

m

n

i

n

n

i

n

C

C

-

-

-

-

-

-

-

-

-

1

1

1

1

oleObject1021.bin

image763.wmf
79

0

ˆ

ˆ

()2cos(0.5)(40.5)()

80

cur

SHBSHB

k

snknSk

p

=

æö

=++

ç÷

èø

å

oleObject1022.bin

oleObject1.bin

oleObject85.bin

image764.wmf
'

ˆ

ˆ

ˆ

()(80)()()()

precur

SHBTDACSHBTDACSHB

snwnsnwnsn

=++

oleObject1023.bin

image765.wmf
0,...,79

n

=

oleObject1024.bin

image766.wmf
)

(

n

w

TDAC

oleObject1025.bin

oleObject1026.bin

oleObject1027.bin

image767.wmf
)

(

ˆ

n

s

pre

SHB

oleObject1028.bin

oleObject86.bin

image768.wmf
(

)

79

,...,

0

,

80

ˆ

)

(

ˆ

=

+

=

n

n

s

n

s

cur

SHB

pre

SHB

oleObject1029.bin

image769.wmf
'

ˆ

()

rms

tj

oleObject1030.bin

image770.wmf
tenv

F

oleObject1031.bin

image771.wmf
''(1)

ˆ

ˆ

()()

rmstenvrms

tjwjt

-

=

oleObject1032.bin

oleObject1033.bin

image772.wmf
[0.95,0.94,0.93,0.92]

tenv

w

=

image82.wmf
()

SWW

sn

oleObject1034.bin

image773.wmf
'(1)

ˆ

rms

t

-

oleObject1035.bin

image774.wmf
''''

20(1)1

'2

20

20

ˆ

ˆ

ˆ

(20)(20)()

ˆ

()

SHBSHBrms

j

SHBrms

nj

sjisjitj

sn

e

+-

=

+=+××

æö

+

ç÷

èø

å

oleObject1036.bin

image775.wmf
0,,19

i

=

L

oleObject1037.bin

image776.wmf
0,,3

j

=

L

oleObject1038.bin

oleObject1039.bin

oleObject87.bin

image777.wmf
''

ˆ

SHB

s

oleObject1040.bin

image778.wmf
trans

idx

oleObject1041.bin

image779.wmf
(

)

'

0,...,3

ˆ

argmax()

transrms

j

idxtj

=

=

oleObject1042.bin

oleObject1043.bin

oleObject1044.bin

image780.wmf
'

''

'

ˆ

(1)

ˆ

ˆ

(20)(20)

ˆ

()

fold

rmstrans

SHBtransSHBtrans

rmstrans

tidx

sidxjsidxj

tidx

-

+=+×

oleObject1045.bin

image83.wmf
(

)

(

)

21

WBSWW

snsn

=+

image781.wmf
 0,,9

j

=

L

oleObject1046.bin

oleObject1047.bin

image782.wmf
'

(0)

rmsq

t

oleObject1048.bin

image783.wmf
10

'2''

'

1

11

ˆ

ˆ

ˆ

()()()

(0)10

fold

SHBSHBSHB

k

rmsq

sjsksj

t

=

=-×

å

oleObject1049.bin

oleObject1050.bin

image784.wmf
ˆ

fold

SHB

s

oleObject1051.bin

oleObject88.bin

image785.wmf
'

ˆ

(),1,...,10

SHB

sjj

-=

oleObject1052.bin

oleObject1053.bin

image786.wmf
''''

ˆ

ˆ

ˆ

ˆ

ˆ

()0.85()0.08(1)0.05(2)0.02(3)

fold

SHBSHBSHBSHBSHB

sisisisisi

=+-+-+-

oleObject1054.bin

image787.wmf
0,,79

i

=

L

oleObject1055.bin

oleObject1056.bin

oleObject1057.bin

image788.emf
Lower-band

ADPCM

decoder

Mode

Lower-band

ADPCM state

update

LPC-based

pitch

repetition

Cross-

fading

yln ()

Higher-band

ADPCM

decoder

yhn ()

H

post

Pitch

repetition

Higher-band

ADPCM state

update

T

0

2 L

QMF synthesis

filterbank

+

–

2 H A

uhn ()

+

ˆ'

Sn

LB

()

ˆ'

Sn

HB

()

ˆsn

WB

()

ˆ

Sn

LB

()

ˆ

Sn

HB

()

image84.wmf
79

,

,

0

L

=

n

oleObject1058.bin

image789.wmf
(

)

(

)

'

ˆ

ˆ

LBLB

snsn

=

oleObject1059.bin

image790.wmf
(

)

(

)

ˆ

HB

uhnsn

=

oleObject1060.bin

image791.wmf
)

(

ˆ

'

n

s

HB

oleObject1061.bin

oleObject1062.bin

image792.wmf
(

)

'

ˆ

LB

sn

oleObject1063.bin

oleObject89.bin

image793.wmf
(

)

(

)

'

ˆ

LB

snyln

=

oleObject1064.bin

image794.wmf
(

)

'

ˆ

HB

sn

oleObject1065.bin

image795.wmf
(

)

ˆ

LB

sn

oleObject1066.bin

image796.wmf
(

)

'

ˆ

LB

sn

oleObject1067.bin

image797.wmf
(

)

ˆ

LB

sn

oleObject1068.bin

oleObject90.bin

image798.wmf
(

)

'

ˆ

LB

sn

oleObject1069.bin

image799.wmf
(

)

'

ˆ

LB

sn

oleObject1070.bin

image800.emf
G.722(88)Amd.1(10)_FB.7-4

Analysis Synthesis Signal

classification

LTP

analysis

LP

analysis

H

pre

Az ()

zln

pre

()

T

0

en ()

Modification/

pitch repetition

1/() Az

en ()

yln

pr

e

()

gn

mute

()

class

Muting factor

computation

yln ()

R

max

ˆs'n

LB

()

oleObject1071.bin

image801.wmf
1

1

128

123

1

1

)

(

-

-

-

-

=

z

z

z

H

pre

oleObject1072.bin

image802.wmf
(

)

'

ˆ

LB

sn

oleObject1073.bin

oleObject91.bin

image803.wmf
(

)

(

)

(

)

(

)

''

123

ˆ

ˆ

11; 297,...,1

128

preLBLBpre

zlnsnsnzlnn

=--+-=--

oleObject1074.bin

image804.wmf
(

)

'

ˆ

298

LB

s

-

oleObject1075.bin

image805.wmf
8

8

2

2

1

1

...

1

)

(

-

-

-

+

+

+

+

=

z

a

z

a

z

a

z

A

oleObject1076.bin

image806.wmf
ï

ï

î

ï

ï

í

ì

-

-

=

÷

ø

ö

ç

è

æ

+

+

-

-

=

÷

ø

ö

ç

è

æ

+

-

=

1

,

,

10

,

10

)

11

(

cos

46

.

0

54

.

0

11

,

,

80

,

69

)

80

(

cos

46

.

0

54

.

0

)

(

L

L

n

n

n

n

n

w

lp

p

p

oleObject1077.bin

image807.wmf
(

)

(

)

(

)

'

 80,...,-1

prelppre

zlnwnzlnn

==-

oleObject1078.bin

image4.wmf
n

image85.wmf
(

)

(

)

(

)

31

0

qmfA

SWSHHSWB

i

snhisni

=

=-

å

%

image808.wmf
(

)

'

pre

zln

oleObject1079.bin

image809.wmf
(

)

(

)

(

)

80

''

 0,...,8

prepre

nk

rkzlnzlnkk

=

=-=

å

oleObject1080.bin

image810.wmf
(

)

2

0

2

1

exp 1,...,8

2

lag

s

fk

wkk

f

p

éù

æö

êú

=-=

ç÷

êú

èø

ëû

oleObject1081.bin

image811.wmf
(

)

(

)

(

)

(

)

(

)

01.0001 0

 1,...,8

lag

rr

rkwkrkk

¢

=

¢

==

oleObject1082.bin

image812.wmf
(

)

'

ˆ

LB

sn

oleObject1083.bin

oleObject92.bin

image813.wmf
1

,...,

289

);

(

ˆ

)

(

)

(

'

8

1

'

-

-

=

-

+

=

å

=

n

i

n

s

a

n

s

n

e

LB

i

i

LB

oleObject1084.bin

image814.emf
G.722(88)Amd.1(10)_FB.7-5

zln

pre

()

H

dec

4

tn ()

2nd order

LP analysis

Bz (/)

g

tn

w

()

4

T

ds

T

Initial pitch

estimation

r

max

Pitch

refinement

R

max

T

0

Bz ()

oleObject1085.bin

image815.wmf
65536

10787

)

(

10186

)

(

8525

)

(

6190

)

3692(1

)

(

4

5

3

6

2

7

1

8

-

-

-

-

-

-

-

-

+

+

+

+

+

+

+

+

=

z

z

z

z

z

z

z

z

z

H

dec

oleObject1086.bin

image816.wmf
35

,...,

1

,

)

(

),

(

max

)

(

)

(

)

(

1

35

2

1

35

2

1

35

=

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

å

å

å

-

-

=

-

-

=

-

-

=

i

i

j

t

j

t

i

j

t

j

t

i

r

j

w

j

w

j

w

w

oleObject1087.bin

image817.wmf
(

)

(

)

(

)

1

(()0)((1)0)((1)0)(()0),

 =2,...35

wwww

ni

zcritntntntn

i

-

=-

éù

=³Ä+<Å+³Ä<

ëû

å

oleObject1088.bin

oleObject93.bin

image818.wmf
)

4

,

max(

0

1

i

i

=

oleObject1089.bin

image819.wmf
[

]

35

,

1

i

oleObject1090.bin

image820.wmf
)

(

max

arg

2

,

2,

0

i

R

T

T

T

i

+

-

=

=

L

oleObject1091.bin

image821.wmf
÷

÷

ø

ö

ç

ç

è

æ

-

-

=

å

å

å

-

-

=

-

-

=

-

-

=

1

2

1

2

1

)

(

,

)

(

max

)

(

)

(

)

(

T

j

pre

T

j

pre

pre

T

j

pre

i

j

zl

j

zl

i

j

zl

j

zl

i

R

oleObject1092.bin

image822.wmf
'

0

T

oleObject1093.bin

image86.wmf
(

)

(

)

21

SHBSWSH

snsn

=+

image823.wmf
22

'

0

2,,2

 arg max '()

iTT

TRi

=-+

=

L

oleObject1094.bin

image824.wmf
2

,...,

2

,

)

(

),

(

max

)

(

)

(

)

(

'

2

2

1

2

1

2

1

2

2

2

+

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

å

å

å

-

-

=

-

-

=

-

-

=

T

T

i

i

j

zl

j

zl

i

j

zl

j

zl

i

R

T

j

pre

T

j

pre

pre

T

j

pre

oleObject1095.bin

image825.wmf
(

)

(

)

'

00

'

RTRT

>

oleObject1096.bin

oleObject1097.bin

image826.wmf
'

00

TT

=

oleObject1098.bin

oleObject1099.bin

oleObject94.bin

image827.wmf
1

80

(()0)((1)0)

prepre

n

zcrzlnzln

-

=-

éù

=£Ä->

ëû

å

oleObject1100.bin

image828.wmf
(

)

(

)

(

)

0

1

0

2,,2

_max

8

i

nT

en

cntpeakenTi

-

=-

=-

éù

=>-+

êú

êú

ëû

å

K

oleObject1101.bin

image829.emf
START

class :=

WEAKLY_

VOICED

R

max

> 0.7?

No

Yes

NBH > NBL?

zcr≥ 20?

END

class :=

TRANSIENT

class :=

UNVOICED

class :=

VUV_

TRANSITION

class :=

VOICED

NBH > NBL?

class :=

WEAKLY_

VOICED

No

No

No

Yes

Yes

Yes

(class =WEAKLY_VOICED

OR class=VUV_TRANSITION)

AND > 0?

cnt_peak

Yes

No

oleObject1102.bin

image830.wmf
(

)

0

1

0

T

i

T

ei

m

T

=

-

=

å

oleObject1103.bin

image831.wmf
(

)

(

)

0

,...,

1

;

max

T

i

i

e

mx

T

=

-

=

oleObject1104.bin

image87.wmf
79

,

,

0

L

=

n

image832.wmf
0

i1,,

 arg max (-)

mx

T

Iei

=

=

L

oleObject1105.bin

image833.wmf
(

)

(

)

[

]

[

]

5

,

1

,

,

5

;

max

0

0

0

2

+

-

-

+

=

-

=

T

I

T

T

I

i

i

e

mx

mx

mx

T

oleObject1106.bin

image834.wmf
02

mxmx

TII

=-

oleObject1107.bin

image835.wmf
(

)

(

)

(

)

(

)

(

)

00

2,,2

()minmax, (),,,1

i

enenTiensgnennT

=-+

=-+´=--

L

L

oleObject1108.bin

image836.wmf
(

)

(

)

0

80

1

()()/4, if, =-T,...,-1

where.

32

th

i

th

enenenmn

ei

m

=

=>

-

=

å

oleObject1109.bin

oleObject95.bin

image837.wmf
)

(

)

(

0

T

n

e

n

e

-

=

oleObject1110.bin

image838.wmf
)

)

1

(

(

)

(

0

n

T

n

e

n

e

-

+

-

=

oleObject1111.bin

image839.wmf
8

1

()()()

preipre

i

ylnenaylni

=

=--

å

oleObject1112.bin

image840.wmf
8

_

1

()()(), n=0,...,119

i

preiLPCFECpre

i

ylnenaylni

g

=

=--

å

oleObject1113.bin

image841.wmf
(

)

()_()

pre

ylngmutenyln

=×

oleObject1114.bin

image88.wmf
)

(

i

h

qmfA

H

image842.wmf
(

)

(

)

()_401()

erasepre

ylngmuteNnyln

=-+×

oleObject1115.bin

image843.emf
1

0.8

0.6

0.4

0.2

0

M

u

t

i

n

g

f

a

c

t

o

r

n

0 40 80 120 160 200 240 280 320 360 400 440 480

Original TRANSIENT

Original VUV_TRANSITION

Original other classes

0.9756

0.9267

oleObject1116.bin

image844.wmf
6

,

,

1

L

=

i

oleObject1117.bin

image845.wmf
(40)

2

yli

-

oleObject1118.bin

image846.wmf
2

,

1

=

i

oleObject1119.bin

oleObject96.bin

image847.wmf
(39)

yl

oleObject1120.bin

image848.wmf
(40)

2

yl

oleObject1121.bin

image849.wmf
(

)

(

)

'

ˆ

LB

snyln

=

oleObject1122.bin

image850.wmf
(

)

(

)

(

)

(

)

'

'

ˆ

0,...,19

ˆ

()()(1)(40)20,...,39

40

5461954619

ˆ

3276732767

LB

LBLB

sn

snnylnn

nyln

nn

s

=

=+-+=

=+

--

oleObject1123.bin

image851.wmf
(

)

(

)

'

5462154621

ˆ

ˆ

()()(1)(80) 0,...,39

3276732767

LBLB

nn

snsnylnn

++

=+-+=

oleObject1124.bin

image89.wmf
)

(

i

h

qmfA

L

image852.wmf
'

ˆ

ˆ

()() 0,...,39

LBLB

snsnn

==

oleObject1125.bin

image853.wmf
(

)

(

)

80

1

()()/4, if, =-80,...,-1

where .

32

th

i

th

uhnuhnuhnmn

uhi

m

=

=>

-

=

å

oleObject1126.bin

image854.wmf
(

)

(

)

1

,...,

0

,

-

=

-

=

L

n

T

n

zh

n

yh

h

pre

oleObject1127.bin

image855.wmf
(

)

(

)

()_401()

erasepre

yhngmuteNnyhn

=-+×

oleObject1128.bin

image856.wmf
cur

FERC

f

oleObject1129.bin

oleObject2.bin

oleObject97.bin

image857.wmf
(

)

(

)

(1)

if 1 or

1

1 and NORMAL or NOISE and not for R1sm

0otherwise

det

FERC

cur

FERC

FERCclass

f

f

fF

-

ì

=

ï

=

==

í

ï

î

oleObject1130.bin

image858.wmf
det

FERC

f

oleObject1131.bin

image859.wmf
(1)

FERC

f

-

oleObject1132.bin

oleObject1133.bin

oleObject1134.bin

image860.wmf
(1)

ˆ

()

adpm

SHB

Sk

-

oleObject1135.bin

image90.wmf
(

)

(

)

(

)

1

i

qmfAqmfA

HL

hihi

=-

image861.wmf
()

ˆ

()

AVQm

SHB

Sk

oleObject1136.bin

image862.wmf
(1)

ˆ

()

AVQm

SHB

Sk

-

oleObject1137.bin

image863.wmf
(2)

ˆ

()

AVQm

SHB

Sk

-

oleObject1138.bin

image864.wmf
class

F

oleObject1139.bin

oleObject1140.bin

image865.wmf
(1)

class

F

-

oleObject98.bin

oleObject1141.bin

oleObject1142.bin

oleObject1143.bin

image866.wmf
1

cur

FERC

f

=

oleObject1144.bin

image867.wmf
ˆ

()

cur

SHB

sn

oleObject1145.bin

image868.wmf
ˆ

()

pre

SHB

sn

oleObject1146.bin

image869.wmf
2

ˆ

ˆ

()()

curpre

SHBHBPLCSHB

snsn

a

=

image91.wmf
31

,

,

0

L

=

i

oleObject1147.bin

image870.wmf
79

,

,

0

K

=

n

oleObject1148.bin

image871.wmf
875

.

0

2

=

a

HBPLC

oleObject1149.bin

image872.wmf
'

ˆ

()

SHB

sn

oleObject1150.bin

image873.wmf
()

m

bw

F

oleObject1151.bin

image874.wmf
(1)

0

m

bw

F

-

oleObject99.bin

oleObject1152.bin

image875.wmf
(1)

1

m

bw

F

-

oleObject1153.bin

image876.wmf
(1)

0

bw

F

-

oleObject1154.bin

image877.wmf
(1)

1

bw

F

-

oleObject1155.bin

image878.wmf
(1)

1

m

bw

F

-

oleObject1156.bin

oleObject1157.bin

image92.wmf
()

WB

sn

image879.wmf
()

m

bws

F

oleObject1158.bin

image880.wmf
sm

R

MODE

F

m

bw

1

_

)

(

<

oleObject1159.bin

image881.wmf
sm

R

MODE

F

m

bw

1

_

)

1

(

0

³

-

oleObject1160.bin

image882.wmf
)

(

m

bws

F

oleObject1161.bin

image883.wmf
)

1

(

1

-

m

bw

F

oleObject1162.bin

oleObject100.bin

image884.wmf
)

(

m

bw

F

oleObject1163.bin

image885.wmf
sm

R

MODE

F

m

bw

1

_

)

(

³

oleObject1164.bin

image886.wmf
sm

R

MODE

F

m

bw

1

_

)

1

(

1

<

-

oleObject1165.bin

oleObject1166.bin

image887.wmf
)

(

m

bws

F

oleObject1167.bin

image888.wmf
(1)

m

bws

F

-

oleObject101.bin

oleObject1168.bin

oleObject1169.bin

oleObject1170.bin

image889.wmf
(), 0,...,7

exc

env

fjj

=

oleObject1171.bin

image890.wmf
(1)1

()2

_

(0)

(1)1

()2

_

()

1

ˆ

()0

8

()

1

ˆ

()1,...,7

()

wb

wb

wb

wb

b

m

excbase

kb

exc

env

bj

m

excbase

kbj

wbcf

Skj

fj

Skj

Nj

-

=

+-

=

ì

=

ï

ï

=

í

ï

=

ï

î

å

å

oleObject1172.bin

image891.wmf
()

wb

bj

oleObject1173.bin

image892.wmf
()

wbcf

Nj

image93.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

1515

01

00

221

qmfqmf

WBSWBSWB

ii

snhisnihisni

==

=-+-+

åå

%%

oleObject1174.bin

image893.wmf
()

_

ˆ

()

m

excbase

Sk

oleObject1175.bin

image894.wmf
_max

0,...,7

max(())

excexc

envenv

j

ffj

=

=

oleObject1176.bin

image895.wmf
79

()2

_

40

1

ˆ

(())

40

m

excexcbase

k

ESk

=

=

å

oleObject1177.bin

image896.wmf
'

_max

()

ˆ

()

8

exc

excenv

env

exc

env

Efj

fj

f

=×

oleObject1178.bin

oleObject1179.bin

oleObject102.bin

image897.wmf
(1)

_

()

_

m

exclb

bws

m

exclb

E

r

E

-

=

oleObject1180.bin

image898.wmf
()

_

m

exclb

E

oleObject1181.bin

image899.wmf
44

()()2

__

0

1

ˆ

()

45

mm

exclbexcbase

k

ESk

=

=

å

oleObject1182.bin

image900.wmf
(1)

_

m

exclb

E

-

oleObject1183.bin

image901.wmf
(1)

lbm

exc

E

-

oleObject1184.bin

image5.wmf
)

(

k

S

image94.wmf
79

,

,

0

L

=

n

image902.wmf
2

bws

w

oleObject1185.bin

image903.wmf
2

(1)

bws

w

-

oleObject1186.bin

oleObject1187.bin

oleObject1188.bin

image904.wmf
(1)

m

bws

F

-

oleObject1189.bin

image905.wmf
(

)

'(1)

'(1)

ˆ

ˆ

()(1)(),if0.52.0

ˆ

()

1

ˆ

ˆ

()(),otherwise

2

m

bwsenvbwsenvbws

env

m

envenv

wfjwfjr

fj

fjfj

-

-

ì

×+-×<<

ï

=

í

+

ï

î

oleObject1190.bin

oleObject103.bin

oleObject1191.bin

image906.wmf
(1)

ˆ

()

m

rms

fj

-

oleObject1192.bin

oleObject1193.bin

image907.wmf
'(1)

ˆ

ˆ

ˆ

()0.5(()())

m

envenvenv

fjfjfj

-

=×+

oleObject1194.bin

oleObject1195.bin

image908.wmf
ˆ

()

SHB

Sk

oleObject1196.bin

image909.wmf
0,,59

k

=

L

image95.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

1515

01

00

221

qmfqmf

SHBSWBSWB

ii

snhisnihisni

==

=--+-+

åå

%%

oleObject1197.bin

image910.wmf
bws

c

oleObject1198.bin

oleObject1199.bin

oleObject1200.bin

oleObject1201.bin

oleObject1202.bin

image911.wmf
3

bws

w

oleObject1203.bin

image912.wmf
3

ˆ

ˆ

()()

SHBbwsSHB

SkwSk

=×

oleObject104.bin

oleObject1204.bin

oleObject1205.bin

oleObject1206.bin

image913.wmf
)

(

m

bws

F

oleObject1207.bin

image914.wmf
bw

c

oleObject1208.bin

image915.wmf
3

bws

w

oleObject1209.bin

oleObject1210.bin

image96.wmf
79

,

,

0

L

=

n

oleObject1211.bin

oleObject1212.bin

oleObject1213.bin

oleObject1214.bin

oleObject1215.bin

image916.wmf
(1)

0

m

bw

F

-

oleObject1216.bin

oleObject1217.bin

image917.wmf
()

_2

m

bw

FMODERsm

³

oleObject1218.bin

oleObject105.bin

image918.wmf
bws

w

oleObject1219.bin

image919.wmf
ˆ

ˆ

()()

SHBbwsSHB

SkwSk

=×

oleObject1220.bin

oleObject1221.bin

oleObject1222.bin

oleObject1223.bin

oleObject1224.bin

image920.wmf
(1)

1

m

bw

F

-

oleObject1225.bin

image97.wmf
(

)

(

)

(

)

(

)

0

1

2

21

qmfqmfA

H

qmfqmfA

L

hihi

hihi

=

=+

image921.wmf
(1)

1

m

bw

F

-

oleObject1226.bin

image922.wmf
bws

w

oleObject1227.bin

oleObject1228.bin

image923.wmf
)

(

m

bws

F

oleObject1229.bin

image924.wmf
)

1

(

1

-

m

bw

F

oleObject1230.bin

image925.wmf
)

(

m

bw

F

oleObject106.bin

oleObject1231.bin

oleObject1232.bin

oleObject1233.bin

image926.wmf
(1)

0

m

bw

F

-

oleObject1234.bin

image927.wmf
1

bws

w

oleObject1235.bin

oleObject1236.bin

image928.wmf
11

ˆ

ˆ

()(),if1.0

SHBbwsSHBbws

SkwSkw

=×<

oleObject1237.bin

image98.wmf
15

,

,

0

L

=

i

oleObject1238.bin

oleObject1239.bin

image929.wmf
()

0

m

bws

F

=

oleObject1240.bin

image930.wmf
(1)

1

m

bws

F

-

=

oleObject1241.bin

oleObject1242.bin

image931.wmf
ˆ

()

fold

SHB

sn

oleObject1243.bin

image932.wmf
ˆ

ˆ

()(1)()

nfold

SHBSHB

snsn

=-

oleObject107.bin

oleObject1244.bin

image933.wmf
0,,159

n

=

L

oleObject1245.bin

image934.wmf
(

)

(

)

(

)

i

h

i

h

i

h

i

h

qmfA

H

qmfS

H

qmfA

L

qmfS

L

ï

î

ï

í

ì

-

=

=

)

(

oleObject1246.bin

image935.wmf
31

,

,

0

L

=

i

oleObject1247.bin

image936.wmf
qmfS

L

h

oleObject1248.bin

image937.wmf
qmfS

H

h

oleObject3.bin

image99.wmf
qmf

h

0

oleObject1249.bin

image938.wmf
qmfA

L

h

oleObject1250.bin

image939.wmf
qmfA

H

h

oleObject1251.bin

image940.wmf
ˆ

()

SWB

sn

oleObject1252.bin

image941.wmf
(

)

(

)

(

)

(

)

(

)

3131

00

ˆ

ˆ

ˆ

,

qmfSqmfS

SWBLWSLSHS

ii

snhisnihnsni

==

=-+-

åå

oleObject1253.bin

oleObject1254.bin

oleObject108.bin

image942.wmf
ˆ

()

WS

sn

oleObject1255.bin

image943.wmf
ˆ

()

SHS

sn

oleObject1256.bin

image944.wmf
)

(

n

s

sum

oleObject1257.bin

image945.wmf
)

(

n

s

diff

oleObject1258.bin

image946.wmf
(

)

(

)

(

)

(

)

(

)

15

0

0

ˆ

ˆ

ˆ

qmf

sumWBSHB

i

snhisnisni

=

=-+-

å

oleObject1259.bin

image100.wmf
qmf

h

1

image947.wmf
(

)

(

)

(

)

(

)

(

)

15

1

0

ˆ

ˆ

ˆ

qmf

diffWBSHB

i

snhnsnisni

=

=---

å

oleObject1260.bin

image948.wmf
0,,79

n

=

L

oleObject1261.bin

image949.wmf
ˆ

()

WB

sn

oleObject1262.bin

image950.wmf
ˆ

()

SHB

sn

oleObject1263.bin

image951.wmf
qmf

h

0

oleObject1264.bin

oleObject109.bin

image952.wmf
qmf

h

1

oleObject1265.bin

image953.wmf
)

(

ˆ

n

s

sum

oleObject1266.bin

image954.wmf
)

(

ˆ

n

s

diff

oleObject1267.bin

oleObject1268.bin

image955.wmf
(

)

(

)

(

)

(

)

ˆ

ˆ

22,

ˆ

ˆ

212

SWBdiff

SWBsum

snsn

snsn

=

+=

oleObject1269.bin

image956.wmf
0,,79

n

=

L

oleObject110.bin

oleObject1270.bin

image101.wmf
()(1)()

foldn

SHBSHB

snsn

=-

oleObject111.bin

image102.wmf
 0,,159

n

=

L

oleObject112.bin

image103.wmf
)

(

0

i

h

qmf

image6.wmf
)

(

n

s

oleObject113.bin

image104.wmf
)

(

1

i

h

qmf

oleObject114.bin

image105.wmf
(

)

WB

sn

oleObject115.bin

image106.wmf
(

)

LB

sn

oleObject116.bin

image107.wmf
(

)

HB

sn

oleObject117.bin

oleObject118.bin

oleObject4.bin

oleObject119.bin

oleObject120.bin

image108.wmf
in

x

oleObject121.bin

image109.wmf
L

x

oleObject122.bin

image110.wmf
H

x

oleObject123.bin

image111.wmf
()1

LB

Fz

-

oleObject124.bin

image7.wmf
k

image112.emf
-

-

G.722(88)Amd.1(10)_FB.6-2

Enhancement local

decoder

Compute

Fz

LB

()1

-

ADPCM local

decoder

Enhancement stage (1 bit/sample)

ADPCM stage incl. noise feedback (5 bits/sample)

ADPCM encoder

(5 bits/sample)

Enhancement encoder

(1 bit/sample)

sn

LB

()

dn

LB

()

Fz

LB

()1

-

en

LB

()

In

LB

()

In

LB

()

s'n

LB

()

en

LB

()

Fz

LB

()1

-

In

LB

()

enh

~

sn

LB

()

tn

LB

()

enh

en

LB

()

enh

tn

LB

()

enh

~

oleObject125.bin

image113.wmf
()1

LB

Fz

-

oleObject126.bin

image114.wmf
()1

LB

Fz

-

oleObject127.bin

image115.wmf
()

LB

Fz

oleObject128.bin

image116.wmf
()

LB

Az

oleObject129.bin

oleObject5.bin

image117.wmf
1/()

LB

Fz

oleObject130.bin

oleObject131.bin

oleObject132.bin

image118.wmf
1

1

)

(

-

b

-

=

z

z

P

e

oleObject133.bin

image119.wmf
e

b

oleObject134.bin

image120.wmf
1

007813

.

0

38275

.

0

zc

e

c

+

=

b

oleObject135.bin

image8.wmf
)

(

m

g

image121.wmf
(

)

(

)

39

1

–

39

1

sgn(1)sgn()

2

zcLBLB

n

csnsn

=

=-+

å

oleObject136.bin

image122.wmf
0

.

1

38

.

0

<

b

<

e

oleObject137.bin

image123.wmf
(

)

pre

LB

sn

oleObject138.bin

image124.wmf
()()(1)

pre

LBLBeLB

snsnsn

b

=--

oleObject139.bin

image125.wmf
39,,39

n

=-

L

oleObject140.bin

oleObject6.bin

image126.wmf
2

1

11

2

11112

22

00

1111

()coscos1,...,1

22222222

1111

coscos,...,1

222222

LP

n

wnnnnL

LL

nLnLnLLL

LL

pppp

pp

ì

ï

=

ï

ï

æöæö

ï

æöæö

=+-++-=-

í

ç÷ç÷

ç÷ç÷

èøèø

èøèø

ï

ï

æöæö

æöæö

ï

-++-+=+-

ç÷ç÷

ç÷ç÷

ï

èøèø

èøèø

î

oleObject141.bin

oleObject142.bin

image127.wmf
(

)

w

LB

sn

oleObject143.bin

image128.wmf
()()(40)

wpre

LBLPLB

snwnsn

=-

oleObject144.bin

image129.wmf
79

,

,

0

L

=

n

oleObject145.bin

oleObject146.bin

image9.wmf
m

image130.wmf
79

()()()()

ww

LBLBLBLB

nk

rk

ε

ksnsnk

=

=+-

å

oleObject147.bin

image131.wmf
4

,

,

0

L

=

k

oleObject148.bin

image132.wmf
()

LB

k

e

oleObject149.bin

image133.wmf
2

()0.95100

k

LB

k

e

=´

oleObject150.bin

image134.wmf
()

lag

wk

oleObject151.bin

oleObject7.bin

image135.wmf
()0

()

()()1,...,4

LB

LB

lagLB

rkk

rk

wkrkk

=

ì

ï

¢

=

í

=

ï

î

oleObject152.bin

image136.wmf
2

0

2

11

()exp

1.00012

lag

s

fi

wi

f

p

éù

æö

êú

=-

ç÷

êú

èø

ëû

oleObject153.bin

image137.wmf
4

,

,

1

L

=

i

oleObject154.bin

image138.wmf
()

LB

rk

¢

oleObject155.bin

image139.wmf
LBj

a

oleObject156.bin

image10.wmf
]

[

k

E

image140.wmf
1

=

i

oleObject157.bin

image141.wmf
[

]

0

0

1.0

LB

a

=

oleObject158.bin

image142.wmf
[

]

0

(0)

LB

Er

¢

=

oleObject159.bin

image143.wmf
1

[1]

[1]

1

1

()()

i

i

iLBLBkLB

i

j

kriarij

E

-

-

-

=

æö

¢¢

=-+-

ç÷

èø

å

oleObject160.bin

image144.wmf
[]

i

LBii

ak

=

oleObject161.bin

oleObject8.bin

image145.wmf
[][1][1]

()

iii

LBjLBjiLBij

aaka

--

-

=+

oleObject162.bin

image146.wmf
1

,...,

1

-

=

i

j

oleObject163.bin

image147.wmf
]

1

[

2

]

[

)

1

(

-

-

=

i

i

i

E

k

E

oleObject164.bin

image148.wmf
i

oleObject165.bin

image149.wmf
i

oleObject166.bin

image11.wmf
c

g

ˆ

image150.wmf
[4]

LBjLBj

aa

=

oleObject167.bin

image151.wmf
1234

1234

()1

LBLBLBLBLB

Azazazazaz

=++++

oleObject168.bin

image152.wmf
LBi

a

oleObject169.bin

image153.wmf
1234

1234

()1

LBLBLBLBLB

Fzazazazaz

¢¢¢¢

=++++

oleObject170.bin

image154.wmf
()

LB

Az

oleObject171.bin

oleObject9.bin

image155.emf
G.722(88)Amd.1(10)_FB.6-3

a'a

jM

LBjj

 = 2

 = 1,...,

- +-

() j16

h

LB

START

yes

h

LB

 16 ?

³

END

gg

LB

 =

1

mem

gg

 LB

 =

1

mem

gg

LB LB

=

mem

g

LB

 = 0

k

2

 > 0.95 ?

no

yes

a'a,jM

LBjj LB

 = = 1,...,

j

g

gg

 LBLB

 = +

mem 1

4

g

gg

 LB

 > ?

1

mem

yes

no

no

oleObject172.bin

image156.wmf
()1

LB

Fz

-

oleObject173.bin

image157.wmf
()

LB

Fz

oleObject174.bin

image158.wmf
()

LB

Az

oleObject175.bin

oleObject176.bin

oleObject177.bin

image12.wmf
î

í

ì

<

-

³

=

0

1

0

1

)

sgn(

x

if

x

if

x

image159.wmf
1

,1,...,

i

LBjLBj

aajM

g

¢

==

oleObject178.bin

image160.wmf
LB

h

oleObject179.bin

image161.wmf
(

)

2

30log(0)

LBLB

r

h

êú

=-

ëû

oleObject180.bin

image162.wmf
(0)

LB

r

oleObject181.bin

image163.wmf
LB

h

oleObject182.bin

oleObject10.bin

image164.wmf
16

³

h

LB

oleObject183.bin

image165.wmf
(16)

2,1,...,

LB

j

LBjLBj

aajM

h

-+-

¢

==

oleObject184.bin

image166.wmf
2

k

oleObject185.bin

image167.wmf
2

0.95

k

>

oleObject186.bin

image168.wmf
0

LB

g

=

oleObject187.bin

image13.wmf
x

êú

ëû

oleObject188.bin

image169.wmf
LB

g

oleObject189.bin

image170.wmf
1

4

g

oleObject190.bin

image171.wmf
1

g

oleObject191.bin

oleObject192.bin

image172.wmf
mem

LB

g

oleObject193.bin

oleObject11.bin

oleObject194.bin

oleObject195.bin

image173.wmf
()

LB

sn

oleObject196.bin

image174.wmf
(

)

LB

dn

oleObject197.bin

image175.wmf
'()()()

LBLBLB

snsndn

=+

oleObject198.bin

image176.wmf
 0,,39

n

=

L

oleObject199.bin

image14.wmf
x

oleObject200.bin

image177.wmf
1

()()

M

LBLBiLB

i

dnaeni

=

¢

=-

å

oleObject201.bin

oleObject202.bin

image178.wmf
()

LB

eni

-

oleObject203.bin

image179.wmf
ni

-

oleObject204.bin

image180.wmf
'()

LB

sn

oleObject205.bin

oleObject12.bin

image181.wmf
()

L

In

oleObject206.bin

image182.wmf
()

()

2

L

LB

In

In

êú

=

êú

ëû

oleObject207.bin

oleObject208.bin

image183.wmf
()

LB

In

oleObject209.bin

image184.wmf
()

LB

sn

%

oleObject210.bin

image185.wmf
()

L

In

image15.wmf
ë

û

{

}

n

x

Z

n

x

³

Î

=

|

max

oleObject211.bin

image186.wmf
()()()

LBLL

sndnsn

=+

%

oleObject212.bin

oleObject213.bin

image187.wmf
()

L

dn

oleObject214.bin

image188.wmf
()

L

sn

oleObject215.bin

image189.wmf
()

LB

en

oleObject216.bin

oleObject13.bin

image190.wmf
()()()

LBLBLB

ensnsn

=-

%

oleObject217.bin

oleObject218.bin

image191.wmf
()1

LB

Fz

-

oleObject219.bin

image192.wmf
()

enh

LB

tn

oleObject220.bin

image193.wmf
1

()()()

M

enhenh

LBLBLBiLB

i

tnenaeni

=

¢

=--

å

oleObject221.bin

oleObject222.bin

oleObject14.bin

image194.wmf
()

enh

LB

eni

-

oleObject223.bin

oleObject224.bin

image195.wmf
()

enh

LB

tn

oleObject225.bin

image196.wmf
0,,39

n

=

L

oleObject226.bin

image197.wmf
()

enh

LB

tn

oleObject227.bin

image198.wmf
{

}

0,1

()

i

LB

i

n

x

=

image16.wmf
x

oleObject228.bin

image199.wmf
(

)

[

]

(

)

[

]

(

)

-1-1

L

()()sgn2()QL62()sgn()QL5()

i

LBLBLBLBLB

nnIniIniInIn

x

=D++-

oleObject229.bin

image200.wmf
[

]

-1

QL6.

oleObject230.bin

image201.wmf
[

]

-1

QL5.

oleObject231.bin

image202.wmf
L

()

n

D

oleObject232.bin

image203.wmf
()

enh

LB

In

oleObject15.bin

oleObject233.bin

image204.wmf
2

0,1

()argmin()()

enhenhi

LBLBLB

i

Intnn

x

=

=-

oleObject234.bin

oleObject235.bin

image205.wmf
()

()()

enh

LB

In

enh

LBLB

tnn

x

=

%

oleObject236.bin

image206.wmf
()

enh

LB

en

oleObject237.bin

image207.wmf
()()()

enhenh

LBLBLB

enentn

=-

%

oleObject238.bin

image17.wmf
()

roundx

oleObject239.bin

image208.emf
-

-

G.722(88)Amd.1(10)_FB.6-4

-

-

EL0 local

decoder

Compute

Fz

HB

()1

-

ADPCM local

decoder

HB ADPCM stage

ADPCM encoder

(2 bits/sample)

EL0 encoder

(0.475 bit/sample)

sn

HB

()

en

HB

()

In

H

()

Fz

HB

()1

-

In

HB

()

EL

0

tn

HB

()

EL0

en

HB

()

EL0

tn

HB

()

EL0 ~

~

sn

HB

()

In

H

()

EL0

stage

EL1

stage

EL1 encoder

(1 bit/sample)

EL1 local

decoder

In

HB

()

EL1

en

HB

()

EL1

tn

HB

()

EL1

~

Fz

HB

()1

-

en

HB

()

EL0

sn

HB

()

EL0 ~

tn

HB

()

EL1

oleObject240.bin

image209.wmf
()

H

In

oleObject241.bin

oleObject242.bin

image210.wmf
()()()

HBHH

sndnsn

=+

%

oleObject243.bin

image211.wmf
0,...,39

n

=

oleObject244.bin

oleObject16.bin

image212.wmf
()

H

dn

oleObject245.bin

oleObject246.bin

image213.wmf
()

H

sn

oleObject247.bin

image214.wmf
()1

HB

Fz

-

oleObject248.bin

oleObject249.bin

image215.wmf
(

)

HB

sn

oleObject250.bin

image18.wmf
()sgn()0.5

roundxxx

êú

=+

ëû

image216.wmf
1234

1234

()1

HBHBHBHBHB

Azazazazaz

=++++

oleObject251.bin

image217.wmf
HBi

a

oleObject252.bin

image218.wmf
1234

1234

()1

HBHBHBHBHB

Fzazazazaz

¢¢¢¢

=++++

oleObject253.bin

image219.wmf
()

HB

Az

oleObject254.bin

image220.emf
G.722(88)Amd.1(10)_FB.6-5

a'a

jM

HBjj

 = 2

 = 1,...,

- -

()

j+16 h

HB

START

yes

h

HB

 16 ?

³

END

ga

HB

 = 0.92

s

k

1

 > 0.984375 ?

no

a'a,jM

HBjj

 = = 1,...,

g

j

1

yes

no

a

s

 = 16.7516

-

k

1

a'a,jM

HBjj HB

 = = 1,...,

g

j

oleObject255.bin

oleObject17.bin

image221.wmf
()1

HB

Fz

-

oleObject256.bin

image222.wmf
()

HB

Fz

oleObject257.bin

image223.wmf
()

HB

Az

oleObject258.bin

image224.wmf
1

()(/)

HBHB

FzAz

g

=

oleObject259.bin

image225.wmf
1

0.92

g

=

oleObject260.bin

image19.wmf
Ä

image226.wmf
1

,1,...,

i

HBjHBj

aajM

g

¢

==

oleObject261.bin

image227.wmf
1

0.984375

k

>

oleObject262.bin

image228.wmf
HB

g

oleObject263.bin

image229.wmf
0.92

HBs

ga

=

oleObject264.bin

image230.wmf
s

a

oleObject265.bin

oleObject18.bin

image231.wmf
1

16.7516

s

k

a

=-

oleObject266.bin

image232.wmf
H

d

oleObject267.bin

image233.wmf
H

d

oleObject268.bin

image234.wmf
1

0

1

()()

i

HH

n

didn

i

-

=

=

å

oleObject269.bin

image235.wmf
1,...,39

i

=

oleObject270.bin

image20.wmf
Å

image236.wmf
0

i

=

oleObject271.bin

image237.wmf
()(), 1,,39

HH

didii

>=

K

oleObject272.bin

image238.wmf
39

i

=

oleObject273.bin

image239.wmf
()

H

di

oleObject274.bin

image240.wmf
0

()

EL

HB

tn

oleObject275.bin

oleObject19.bin

image241.wmf
00

1

()()()

M

ELEL

HBHBHBiHB

i

tnenaeni

=

=--

å

oleObject276.bin

image242.wmf
0,...,39

n

=

oleObject277.bin

image243.wmf
0

()

EL

LB

eni

-

oleObject278.bin

oleObject279.bin

image244.wmf
0

()

EL

HB

tn

oleObject280.bin

image245.wmf
0

()

EL

HB

tn

image21.wmf
N

oleObject281.bin

image246.wmf
[

]

[

]

(

)

0H

()()32()2()

i

ELHH

nnQIniQIn

x

=D+-

oleObject282.bin

image247.wmf
0,...,39,0,1

ni

==

oleObject283.bin

image248.wmf
3[]

Q

×

oleObject284.bin

image249.wmf
2[]

Q

×

oleObject285.bin

image250.wmf
()

H

n

D

oleObject20.bin

oleObject286.bin

image251.wmf
0

()

EL

HB

In

oleObject287.bin

image252.wmf
2

00

0

0,1

()argmin()()

ELELi

HBHBEL

i

Intnn

x

=

=-

oleObject288.bin

oleObject289.bin

oleObject290.bin

image253.wmf
(())

H

TIn

oleObject291.bin

image254.wmf
[

]

[

]

(

)

[

]

[

]

(

)

32()12()32()2()

(())

2

HHHH

H

QInQInQInQIn

TIn

+-+-

=

image22.wmf
x

oleObject292.bin

oleObject293.bin

image255.wmf
0

()()(())

EL

HBHH

tnnTIn

>D×

oleObject294.bin

oleObject295.bin

oleObject296.bin

image256.wmf
(())

H

TIn

oleObject297.bin

image257.wmf
0

()

0

0

(),if isselected

()

0,otherwise

EL

HB

In

EL

EL

HB

nn

tn

x

ì

ï

=

í

ï

î

%

oleObject298.bin

oleObject21.bin

oleObject299.bin

image258.wmf
0

()

EL

HB

en

oleObject300.bin

image259.wmf
00

()()()

ELEL

HBHBHB

enentn

=-

%

oleObject301.bin

oleObject302.bin

image260.wmf
[

]

0

H

0

H

32()()(),if isselected

()

2()(),otherwise

EL

HHB

EL

HB

H

QInInnn

dn

QInn

ì

éù

+×D

ï

ëû

=

í

×D

ï

î

oleObject303.bin

oleObject304.bin

image261.wmf
n

image23.wmf
N

-

oleObject305.bin

image262.wmf
1

()

EL

HB

tn

oleObject306.bin

image263.wmf
101

1

()()()

M

ELELEL

HBHBHBiHB

i

tnenaeni

=

=--

å

oleObject307.bin

oleObject308.bin

image264.wmf
1

()

EL

LB

eni

-

oleObject309.bin

oleObject310.bin

image265.wmf
1

()

EL

HB

tn

oleObject22.bin

oleObject311.bin

image266.wmf
1

()

EL

HB

tn

oleObject312.bin

image267.wmf
(

)

00

1H

()()44()()32()()

iELEL

ELHHBHHB

nnQInIniQInIn

x

éùéù

=D×++-+

ëûëû

oleObject313.bin

image268.wmf
0,1

i

=

oleObject314.bin

image269.wmf
4[]

Q

×

oleObject315.bin

image270.wmf
3[]

Q

×

image24.wmf
2

N

x

-

êú

ëû

oleObject316.bin

image271.wmf
[

]

[

]

(

)

1H

()()32()2()

i

ELHH

nnQIniQIn

x

=D×+-

oleObject317.bin

oleObject318.bin

oleObject319.bin

image272.wmf
2[]

Q

×

oleObject320.bin

image273.wmf
0

()

EL

HB

dn

oleObject321.bin

image274.wmf
[

]

00

H

1

0

H

()44()()(),if is selected in EL0

()

()32()(),otherwise

ELEL

HHBHB

i

EL

EL

HHB

nQInInidnn

n

nQInidn

x

ì

éù

D×++-

ï

ëû

=

í

D×+-

ï

î

oleObject23.bin

oleObject322.bin

oleObject323.bin

image275.wmf
1

()

EL

HB

In

oleObject324.bin

image276.wmf
2

11

1

0,1

()argmin()()

ELELi

HBHBEL

i

Intnn

x

=

=-

oleObject325.bin

oleObject326.bin

image277.wmf
1

()

1

1

()()

EL

HB

In

EL

HBEL

tnn

x

=

%

oleObject327.bin

oleObject328.bin

image25.wmf
()

SWB

sn

image278.wmf
1

()

EL

HB

en

oleObject329.bin

image279.wmf
11

()()()

ELEL

HBHBHB

enentn

=-

%

oleObject330.bin

oleObject331.bin

image280.wmf
()

fold

SHB

sn

oleObject332.bin

image281.wmf
()

SHB

Sk

oleObject333.bin

oleObject334.bin

oleObject24.bin

image282.wmf
159

0

2

()()cos(40.5)(0.5)()

8080

fold

SHBTDACSHB

n

Skwnnksn

p

=

æö

=++

ç÷

èø

å

oleObject335.bin

image283.wmf
0,...,79

k

=

oleObject336.bin

image284.wmf
)

(

n

w

TDAC

oleObject337.bin

image285.wmf
()sin(0.5)

160

TDAC

wnn

p

æö

=+

ç÷

èø

oleObject338.bin

image286.wmf
0,...,159

n

=

oleObject339.bin

image26.wmf
()

SWB

sn

%

oleObject340.bin

oleObject341.bin

image287.wmf
19

2

2

0

11

(8)log(20)

220

fold

rmsSHB

n

tjsjn

=

æö

+=+

ç÷

èø

å

oleObject342.bin

image288.wmf
 0,,3

j

=

L

oleObject343.bin

image289.wmf
(),0,...,7

rms

tjj

=

oleObject344.bin

oleObject345.bin

image290.wmf
79

2

0

(2)()

fold

enSHB

n

tsn

=

=

å

oleObject25.bin

oleObject346.bin

image291.wmf
(0)

en

t

oleObject347.bin

image292.wmf
(1)

en

t

oleObject348.bin

oleObject349.bin

oleObject350.bin

image293.wmf
_

rmstotal

t

oleObject351.bin

image294.wmf
2

0

_2

()

1

log

2240

en

j

rmstotalrms

tj

t

e

=

æö

ç÷

ç÷

=+

ç÷

ç÷

èø

å

image27.wmf
()

SHB

sn

oleObject352.bin

image295.wmf
3

10

rms

e

-

=

oleObject353.bin

image296.wmf
tenv

d

oleObject354.bin

image297.wmf
))

(

)

1

(

(

max

10

,...,

0

j

t

j

t

d

rms

rms

j

tenv

-

+

=

=

oleObject355.bin

image298.wmf
_max

tenv

d

oleObject356.bin

image299.wmf
)

)

(

(

max

_

11

,...,

0

max

_

total

rms

rms

j

tenv

t

j

t

d

-

=

=

oleObject26.bin

oleObject357.bin

image300.wmf
_max

3.3

tenv

d

>

oleObject358.bin

image301.wmf
2.4

tenv

d

>

oleObject359.bin

image302.wmf
_

8

rmstotal

t

>

oleObject360.bin

image303.wmf
class

F

oleObject361.bin

oleObject362.bin

image28.wmf
()

fold

SHB

sn

image304.wmf
_max

tenv

idx

oleObject363.bin

image305.wmf
(

)

_max

0,...,11

argmax()

tenvrms

j

idxtj

=

=

oleObject364.bin

image306.wmf
1

avg

r

oleObject365.bin

image307.wmf
2

avg

r

oleObject366.bin

oleObject367.bin

image308.wmf
_max

_max_max

_max

1

1

0

()

,if4

()

0,otherwise

tenv

rmstenvtenv

tenv

idx

rms

avg

j

tidxidx

idx

tj

r

-

=

×

ì

³

ï

ï

=

í

ï

ï

î

å

oleObject27.bin

oleObject368.bin

image309.wmf
_max

_max_max

_max

11

2

1

()(11)

,if48

()

0,otherwise

tenv

rmstenvtenv

tenv

rms

avg

jidx

tidxidx

idx

tj

r

=+

×-

ì

£<

ï

ï

=

í

ï

ï

î

å

oleObject369.bin

oleObject370.bin

image310.wmf
(

)

j

t

rms

oleObject371.bin

image311.wmf
03

j

££

oleObject372.bin

oleObject373.bin

oleObject374.bin

image29.wmf
()

SHB

Sk

oleObject375.bin

image312.wmf
_max12

_max

(4)0.5,if4 and 2 and 2

()(4)1.0,elseif4

(4),otherwise

rmstenvavgavg

rms

rmstenv

rms

tjjidxrr

tjtjjidx

tj

+++=>>

ì

ï

=+-+<

í

ï

+

î

oleObject376.bin

oleObject377.bin

image313.wmf
(

)

j

t

rms

oleObject378.bin

oleObject379.bin

image314.wmf
(

)

(

)

4

rms

rms

tjtj

=+

oleObject380.bin

oleObject381.bin

oleObject28.bin

image315.wmf
)

(

j

t

rms

oleObject382.bin

oleObject383.bin

image316.wmf
0()15

rms

tj

££

oleObject384.bin

oleObject385.bin

image317.wmf
'

()(())

rmsrms

tjroundtj

=

oleObject386.bin

image318.wmf
)

(

trans

rms

idx

t

oleObject387.bin

image30.wmf
()

norm

SHB

Sk

image319.wmf
(

)

0,...,3

argmax()

rms

trans

j

idxtj

=

=

oleObject388.bin

image320.wmf
tenv

F

oleObject389.bin

image321.wmf
0

e

oleObject390.bin

image322.wmf
1

e

oleObject391.bin

image323.wmf
10

1,if

0,otherwise

tenv

tenv

Fee

F

=>

ì

í

=

î

oleObject392.bin

oleObject29.bin

image324.wmf
99

(1)(1)

01

00

(20),(2010)

foldfold

SHBtransSHBtrans

nn

esidxnesidxn

--

==

=×+=×++

åå

oleObject393.bin

image325.wmf
(1)

()

fold

SHB

sn

-

oleObject394.bin

image326.wmf
()(4)

rmsrms

tjtj

=+

oleObject395.bin

image327.wmf
 0,,7

j

=

L

oleObject396.bin

image328.wmf
()(1)

enen

tktk

=+

oleObject397.bin

image31.wmf
SWBL1

()

Sk

¢

image329.wmf
1

,

0

=

k

oleObject398.bin

image330.wmf
glob

g

oleObject399.bin

image331.wmf
63

2

2

0

1

log()

64

globSHBrms

k

groundSk

e

=

æö

æö

=+

ç÷

ç÷

ç÷

èø

èø

å

oleObject400.bin

oleObject401.bin

oleObject402.bin

image332.wmf
ˆ

2

glob

g

glob

g

=

oleObject403.bin

oleObject30.bin

image333.wmf
(1)

ˆ

glob

g

-

oleObject404.bin

image334.wmf
()

swbcf

Nj

oleObject405.bin

image335.wmf
()

SHB

Sk

oleObject406.bin

image336.wmf
()(1)

swbswb

bjkbj

£<+

oleObject407.bin

image337.wmf
(1)1

2

()

11

()()

ˆ

()

swb

swb

bj

rmsSHBrms

kbj

globswbcf

fjSk

gNj

e

+-

=

æö

=+

ç÷

èø

å

oleObject408.bin

image32.wmf
)

(

ˆ

n

s

LB

oleObject409.bin

image338.wmf
 0,,7

j

=

L

oleObject410.bin

image339.wmf
__

()

rmsidxt

fj

oleObject411.bin

image340.wmf
)

15

)),

(

5

(

min(

)

(

_

_

j

f

round

j

f

rms

t

idx

rms

=

oleObject412.bin

oleObject413.bin

oleObject414.bin

image341.wmf
3

2

0

()1.69

rms

j

fj

=

>

å

oleObject31.bin

oleObject415.bin

image342.wmf
7

2

4

()1.69

rms

j

fj

=

>

å

oleObject416.bin

image343.wmf
1

fenv

cb

oleObject417.bin

image344.wmf
2

fenv

cb

oleObject418.bin

image345.wmf
(),0,1

cb

Fii

=

oleObject419.bin

image346.wmf
ˆ

()

rms

fj

image33.wmf
'

ˆ

()

LB

sn

oleObject420.bin

image347.wmf
ˆ

()

rms

fj

oleObject421.bin

image348.wmf
__

ˆ

()0.2()

rmsrmsidxt

fjfj

=

oleObject422.bin

image349.wmf
 0,,3

j

=

L

oleObject423.bin

oleObject424.bin

image350.wmf
1__

2__

(4()),if()1

ˆ

(4)

(4()),otherwise

fenvrmsidxntcb

rms

fenvrmsidxnt

cbfijFi

fji

cbfij

+=

ì

+=

í

+

î

oleObject425.bin

oleObject32.bin

image351.wmf
 0,,3

j

=

L

oleObject426.bin

image352.wmf
0,1

i

=

oleObject427.bin

image353.wmf
__

()

rmsidxnt

fj

oleObject428.bin

image354.wmf
()

j

k

oleObject429.bin

image355.wmf
65

65

6

6

5()

if()0

()()

()

0,otherwise

j

sharp

SHB

j

kj

SHBsharp

kj

Aj

Sk

SkAj

j

k

+

+

=

=

×

ì

¹

ï

ï

-

=

í

ï

ï

î

å

å

oleObject430.bin

image34.wmf
ˆ

()

HB

sn

image356.wmf
 0,,9

j

=

L

oleObject431.bin

image357.wmf
)

(

j

A

sharp

oleObject432.bin

image358.wmf
)

(

max

)

(

5

6

,...,

6

k

S

j

A

SHB

j

j

k

sharp

+

=

=

oleObject433.bin

image359.wmf
9

,

0

K

=

j

oleObject434.bin

image360.wmf
max

k

oleObject435.bin

oleObject33.bin

image361.wmf
sharp

c

oleObject436.bin

image362.wmf
noise

c

oleObject437.bin

oleObject438.bin

image363.wmf
(

)

max

0,...,9

max()

sharp

j

Aj

k

=

=

oleObject439.bin

oleObject440.bin

oleObject441.bin

image364.wmf
)

(

j

A

sharp

image35.wmf
'

ˆ

()

HB

sn

oleObject442.bin

oleObject443.bin

image365.wmf
9

,

0

K

=

j

oleObject444.bin

image366.wmf
()4

j

k

>

oleObject445.bin

image367.wmf
()10

sharp

Aj

>

oleObject446.bin

oleObject447.bin

oleObject448.bin

oleObject34.bin

oleObject449.bin

image368.wmf
9

,

0

K

=

j

oleObject450.bin

oleObject451.bin

oleObject452.bin

oleObject453.bin

oleObject454.bin

image369.wmf
(1)

class

F

-

oleObject455.bin

image370.wmf
sharp

i

image36.wmf
()

err

SHB

Sk

oleObject456.bin

oleObject457.bin

image371.wmf
(1)

(1)

4,if

7,elseif

5,otherwise

class

sharpclass

FHARMONIC

iFTRANSIENT

-

-

ì

=

ï

==

í

ï

î

oleObject458.bin

image372.wmf
sharpsharp

ci

³

oleObject459.bin

image373.wmf
(1)

ˆ

0.51.8

ˆ

glob

glob

g

g

-

<<

oleObject460.bin

image374.wmf
class

F

oleObject461.bin

oleObject35.bin

image375.wmf
class

c

oleObject462.bin

oleObject463.bin

oleObject464.bin

oleObject465.bin

image376.wmf
2

class

c

³

oleObject466.bin

oleObject467.bin

oleObject468.bin

oleObject469.bin

image37.wmf
ˆ

()

AVQ

SHB

Sk

image377.wmf
max

k

oleObject470.bin

image378.wmf
6

noise

c

>

oleObject471.bin

image379.wmf
max

3.5

k

<

oleObject472.bin

oleObject473.bin

oleObject474.bin

oleObject475.bin

oleObject476.bin

oleObject36.bin

oleObject477.bin

oleObject478.bin

image380.wmf
)

(

j

t

rms

oleObject479.bin

oleObject480.bin

oleObject481.bin

image381.wmf
)

(

j

f

rms

oleObject482.bin

image382.wmf
glob

g

ˆ

oleObject483.bin

image38.wmf
_

ˆ

()

excbase

Sk

image383.wmf
ˆ

()()/, 0,...,63

norm

SHBSHBglob

SkSkgk

==

oleObject484.bin

image384.wmf
)

(

j

ip

oleObject485.bin

image385.wmf
7

,

,

0

K

=

j

oleObject486.bin

image386.wmf
ˆ

()

rms

fj

oleObject487.bin

image387.wmf
ˆ

(2)(21)(),

rms

ipjipjfj

=+=

oleObject488.bin

oleObject37.bin

image388.wmf
3

,

,

0

K

=

j

oleObject489.bin

image389.wmf
),

(

ˆ

)

(

j

f

j

ip

rms

=

oleObject490.bin

image390.wmf
7

,

,

0

K

=

j

oleObject491.bin

oleObject492.bin

image391.wmf
0()8

b

j

£W<

oleObject493.bin

image392.wmf
7

,

,

0

K

=

j

image1.png
LR LR LR AL KL

Ny

TP T FE

image39.wmf
ˆ

()

BWE

SHB

Sk

oleObject494.bin

image393.wmf
()

b

j

W

oleObject495.bin

image394.wmf
(0)

b

W

oleObject496.bin

image395.wmf
(7)

b

W

oleObject497.bin

image396.wmf
shb_mode

f

oleObject498.bin

image397.wmf
()

m

shb_mode

f

oleObject38.bin

oleObject499.bin

image398.wmf
()

()(1)()

_

1, if 15

, if 15<20

0,otherwise

m

shb

mmm

shb_modeshbmodeshb

ff

j

j

-

£

ì

ï

=<

í

ï

î

oleObject500.bin

image399.wmf
()

m

shb

j

oleObject501.bin

oleObject502.bin

image400.wmf
()(1)

0.30.7

mm

shbshbshb

c

jj

-

=+

oleObject503.bin

image401.wmf
(1)

m

shb

j

-

oleObject504.bin

image40.wmf
ˆ

()

adp

SHB

Sk

image402.wmf
shb

c

oleObject505.bin

image403.wmf
63

0

(),

1if ()0.5 and (/8)4

(), 0,...,63

0otherwise

shbsparse

k

norm

SHBb

sparse

cfk

Skk

fkk

=

=

ì

<W<

êú

ï

ëû

==

í

ï

î

å

oleObject506.bin

image404.wmf
()

sparse

fk

oleObject507.bin

image405.wmf
(1)

shb

j

-

oleObject508.bin

image406.wmf
()

norm

SHB

Sk

oleObject509.bin

oleObject39.bin

oleObject510.bin

image407.wmf
(

)

(

)

8()

'(8),0,7,0,7.

()

norm

SHBb

avqb

Sji

Sjiji

ipj

b

W+

+===

×W

KK

oleObject511.bin

image408.wmf
()

ipj

oleObject512.bin

image409.emf
G.722(88)Amd.1(10)_FB.6-6

AVQ local

decoding

AVQ in

two stages

Filling zero

sub-bands

Per sub-band

normalization

and ordering

Per sub-band

denormalization and

backward ordering

Spectrum

normalization

Gain

adjustment

Spectrum

decoding

Gradient

adjustment

Detection of

problematic zero

sub-bands

Sk

SHB

()

norm

Sk

SHB

()

S'(k)

norm

Sk

SHB

()

ˆ

S'k ()

ˆ

S''k ()

ˆ

Sk

SHB

()

BWE

ˆ

adj

Sk

SHB

()

ˆ

Sk

SHB

()

AVQ

ˆ

oleObject513.bin

image410.wmf
(8)

Sji

¢

+

oleObject514.bin

image411.wmf
ˆ

(8)

j

¢

S

image41.wmf
ˆ

()

SHB

Sk

oleObject515.bin

oleObject516.bin

image412.wmf
ˆ

()

Sk

¢

oleObject517.bin

oleObject518.bin

image413.wmf
(8)

Sji

¢

+

oleObject519.bin

image414.wmf
ˆ

()()

(), 0,..,7

()

rmsrms

rms

fjfj

ratjj

fj

-

==

oleObject520.bin

image415.wmf
(

)

(

)

(

)

ˆ

/2/2

(), 0,..,7

/2

rmsrms

rms

fjfj

ratjj

fj

-

êúêú

ëûëû

==

êú

ëû

oleObject40.bin

oleObject521.bin

image416.wmf
ˆ

rms

f

oleObject522.bin

image417.wmf
()

Sk

¢

oleObject523.bin

image418.emf
G.722(88)Amd.1(10)_FB.6-7

sub-flag

sub-flag

counter

f

f

c

0,sl,

0,s2,

det

mode = 1

f

0,s1

 > 0

c

det

 = +3 c

det

c

det

 = 20 c

det

 = 2

-

c

det

c

det

 = 1

-

c

det

f

0,s2

 = 1

Counter c

det

c

det

 = 3

-

c

det

- - - - -

+ + + + +

f

0,s2

 = 0

f

c

0,s2

 = 2

and > 0

det

oleObject524.bin

image419.wmf
ˆ

()

base

Sk

¢

oleObject525.bin

oleObject526.bin

image42.wmf
ˆ

()

WB

Sk

image420.wmf
ˆ

()

Sk

¢

oleObject527.bin

oleObject528.bin

oleObject529.bin

oleObject530.bin

image421.wmf
01

()

sb

Si

¢

oleObject531.bin

image422.wmf
02

()

sb

Si

¢

oleObject532.bin

image423.wmf
01

()

sb

Si

¢

oleObject41.bin

oleObject533.bin

image424.wmf
02

()

sb

Si

¢

oleObject534.bin

oleObject535.bin

image425.wmf
01

()

sb

Si

¢

oleObject536.bin

image426.wmf
7

max101

0

ˆ

max()()

basesb

l

i

RSliSi

=

æö

¢¢

=+

ç÷

èø

å

oleObject537.bin

image427.wmf
'

01 11

ˆ

ˆ

()()

sbbase

SiSi

jd

¢

=×+

oleObject538.bin

image43.wmf
)

(

ˆ

n

s

WB

image428.wmf
(

)

7

2

'

 11

0

ˆ

min1, 1()

base

i

Si

jd

=

æö

=+

ç÷

ç÷

èø

å

oleObject539.bin

oleObject540.bin

image429.wmf
02

()

sb

Si

¢

oleObject541.bin

image430.wmf
7

max202

0

ˆ

max()()

basesb

l

i

RSliSi

=

æö

¢¢

=+

ç÷

èø

å

oleObject542.bin

image431.wmf
02

()

sb

Si

¢

oleObject543.bin

image432.wmf
01

()

sb

Si

¢

oleObject42.bin

oleObject544.bin

image433.wmf
'

02 22

ˆ

ˆ

()()

sbbase

SiSi

jd

¢

=×+

oleObject545.bin

image434.wmf
01

ˆ

()

sb

Si

¢

oleObject546.bin

image435.wmf
02

ˆ

()

sb

Si

¢

oleObject547.bin

oleObject548.bin

image436.wmf
ˆ

()

Sk

¢¢

oleObject549.bin

 International Telecommunication Union

ITU - T G.722

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU Amendment 1 (11/2010)

 SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Digital terminal equipments – Coding of voice and audio signals

 7 kHz audio - coding within 64 kbit/s Amendment 1: New Annex B with superwideband embedded extension

 Recommendation ITU - T G.722 (1988) – Amendment 1

