

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.165.1
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(05/2012)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) – Testing and Test
Control Notation (TTCN)

 Testing and Test Control Notation version 3:

TTCN-3 extension package: Extended TRI

Recommendation ITU-T Z.165.1

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
User Requirements Notation (URN) Z.150–Z.159
Testing and Test Control Notation (TTCN) Z.160–Z.179

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Z.165.1 (05/2012) i

Recommendation ITU-T Z.165.1

Testing and Test Control Notation version 3:
TTCN-3 extension package: Extended TRI

Summary

Recommendation ITU-T Z.165.1 defines the extended TRI package of TTCN-3. TTCN-3 can be
used for the specification of all types of reactive system tests over a variety of communication ports.
Typical areas of application are protocol testing (including mobile and Internet protocols), service
testing (including supplementary services), module testing, testing of CORBA based platforms,
APIs, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of
testing including interoperability, robustness, regression, system and integration testing. The
specification of test suites for physical layer protocols is outside the scope of this Recommendation.

This Recommendation is technically aligned with ETSI ES 202 789 V1.1.1 (2012).

History

Edition Recommendation Approval Study Group

1.0 ITU-T Z.165.1 2012-05-29 17

ii Rec. ITU-T Z.165.1 (05/2012)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2012

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Z.165.1 (05/2012) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

2.1 Normative references .. 1

2.2 Informative references .. 2

3 Definitions and abbreviations ... 3

3.1 Definitions .. 3

3.2 Abbreviations and acronyms .. 3

4 Package conformance and compatibility .. 3

5 Package concepts for the core language ... 4

6 Package semantics .. 4

7 TRI extensions for the package .. 4

7.1 Changes to clause 5.5.2 of [3], Connection handling operations 4

7.2 Changes to clause 5.5.3 of [3], Message based communication operations ... 5

7.3 Addition to clause 5.5.3 of [3], Message based communication operations .. 7

7.4 Changes to clause 5.5.4 of [3], Procedure based communication
operations ... 8

7.5 Changes to clause 5.6.3 of [3], Miscellaneous operations 16

7.6 Changes to clause 6 of [3], Java language mapping 17

7.7 Changes to clause 7 of [3], C language mapping ... 18

7.8 Changes to clause 8 of [3], C++ language mapping 21

7.9 Changes to clause 9 of [3], C# language mapping ... 23

8 TCI extensions for the package .. 24

 Rec. ITU-T Z.165.1 (05/2012) 1

Recommendation ITU-T Z.165.1

Testing and Test Control Notation version 3:
TTCN-3 extension package: Extended TRI

1 Scope

This Recommendation defines the Extended TRI package of TTCN-3. TTCN-3 can be used for the
specification of all types of reactive system tests over a variety of communication ports. Typical
areas of application are protocol testing (including mobile and Internet protocols), service testing
(including supplementary services), module testing, testing of CORBA based platforms, APIs, etc.
TTCN-3 is not restricted to conformance testing and can be used for many other kinds of testing
including interoperability, robustness, regression, system and integration testing. The specification
of test suites for physical layer protocols is outside the scope of the present document.

TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as
concepts in the TTCN-3 core language or in its interfaces TRI and TCI, but which are optional as
part of a package which is suited for dedicated applications and/or usages of TTCN-3.

This package defines a more efficient handling of software values by a version of TRI, that does not
use binary encoded messages for the communication with the SUT, but uses the values as they are;
meaning, e.g., that software objects or serialized data can be passed directly between the SUT and
the TE.

While the design of TTCN-3 package has taken into account the consistency of a combined usage
of the core language with a number of packages, the concrete usages of and guidelines for this
package in combination with other packages is outside the scope of the present document.

2 References

References are either specific (identified by date of publication and/or edition number or version
number) or non-specific. For specific references, only the cited version applies. For non-specific
references, the latest version of the reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might
be found at http://docbox.etsi.org/Reference.

NOTE – While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot
guarantee their long-term validity.

2.1 Normative references

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[1] Recommendation ITU-T Z.161 (2012), Testing and Test Control Notation version 3:
TTCN-3 core language.

 ETSI ES 201 873-1 (2012), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language.
<http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35092>

http://docbox.etsi.org/Reference
http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35092

2 Rec. ITU-T Z.165.1 (05/2012)

[2] Recommendation ITU-T Z.164 (2012), Testing and Test Control Notation version 3:
TTCN-3 operational semantics.

 ETSI ES 201 873-4 (2012), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics.
<http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35095>

[3] Recommendation ITU-T Z.165 (2012), Testing and Test Control Notation version 3:
TTCN-3 runtime interface (TRI).

 ETSI ES 201 873-5 (2012), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI).
<http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35096>

[4] Recommendation ITU-T Z.166 (2012), Testing and Test Control Notation version 3:
TTCN-3 control interface (TCI).

 ETSI ES 201 873-6 (2012), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI).
<http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35097>

[5] Recommendation ITU-T X.290 (1995), OSI conformance testing methodology and
framework for protocol Recommendations for ITU-T applications – General concepts.

 NOTE – The corresponding ISO/IEC standard is ISO/IEC 9646-1:1994, Information technology –
Open Systems Interconnection – Conformance testing methodology and framework – Part 1:
General concepts.

 <http://webstore.iec.ch/webstore/webstore.nsf/ArtNum_PK/39613?OpenDocument>

2.2 Informative references

The following referenced documents are not necessary for the application of the present document
but they assist the user with regard to a particular subject area.

[i.1] Recommendation ITU-T Z.162 (2012), Testing and Test Control Notation version 3:
TTCN-3 tabular presentation format (TFT).

 ETSI ES 201 873-2 (2007), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 2: TTCN-3 Tabular presentation Format (TFT).
<http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=25471>

[i.2] Recommendation ITU-T Z.163 (2012), Testing and Test Control Notation version 3:
TTCN-3 graphical presentation format (GFT).

 ETSI ES 201 873-3 (2007), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT).
<http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=25472>

[i.3] Recommendation ITU-T Z.167 (2012), Testing and Test Control Notation version 3:
TTCN-3 mapping from ASN.1.

 ETSI ES 201 873-7 (2012), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 7: Using ASN.1 with TTCN-3.
<http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35098>

[i.4] Recommendation ITU-T Z.168 (2012), Testing and Test Control Notation version 3:
TTCN-3 mapping from CORBA IDL.

 ETSI ES 201 873-8 (2012), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 8: The IDL to TTCN-3 Mapping.
<http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35099>

[i.5] Recommendation ITU-T Z.169 (2012), Testing and Test Control Notation version 3:
TTCN-3 mapping from XML data definition.

http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35095
http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35096
http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35097
http://webstore.iec.ch/webstore/webstore.nsf/ArtNum_PK/39613?OpenDocument
http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=25471
http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=25472
http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35098
http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35099

 Rec. ITU-T Z.165.1 (05/2012) 3

 ETSI ES 201 873-9 (2012), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 9: Using XML schema with TTCN-3.
<http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35100>

[i.6] Recommendation ITU-T Z.170 (2012), Testing and Test Control Notation version 3:
TTCN-3 documentation comment specification.

 ETSI ES 201 873-10 (2012), Methods for Testing and Specification (MTS); The Testing
and Test Control Notation version 3; Part 10: TTCN-3 Documentation Comment
Specification.
<http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35101>

[i.7] ETSI ES 202 781 (2010), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; TTCN-3 Language Extensions: Configuration and
Deployment Support.
<http://pda.etsi.org/pda/home.asp?wki_id=YONHi.nwr3GIPIMLJ.Y6l>

[i.8] ETSI ES 202 784 (2011), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; TTCN-3 Language Extensions: Advanced
Parameterization.
<http://pda.etsi.org/pda/home.asp?wki_id=u-e'6-ZnV9697F68knFt->

[i.9] ETSI ES 202 785 (2011), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; TTCN-3 Language Extensions: Behaviour Types.
<http://pda.etsi.org/pda/home.asp?wki_id=cL74ubdUfkwzx-wx,-1lZ>

[i.10] ETSI ES 202 782 (2010), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; TTCN-3 Language Extensions: TTCN-3 Performance and
Real Time Testing.
<http://pda.etsi.org/pda/home.asp?wki_id=3rxD8efqMX'-6-33q3YBK>

3 Definitions and abbreviations

3.1 Definitions

For the purposes of this Recommendation, the terms and definitions given in [1], [2], [3], [4] and
[5] apply.

3.2 Abbreviations and acronyms

For the purposes of this Recommendation, the abbreviations and acronyms given in [1], [2], [3], [4],
[5] and the following apply:

XTRI Extended TRI

4 Package conformance and compatibility

The package has no package tag as the choice to use TRI and/or XTRI affects the test adaptor only,
but not the test specifications in TTCN-3.

For an implementation claiming to conform to this package version, all features specified in the
present document shall be implemented consistently with the requirements given in the present
document and in [1] and [2].

The package presented in the present document is compatible to:

 [1]

 [2]

 [4]

 [i.3]

http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35100
http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=35101
http://pda.etsi.org/pda/home.asp?wki_id=YONHi.nwr3GIPIMLJ.Y6l
http://pda.etsi.org/pda/home.asp?wki_id=u-e'6-ZnV9697F68knFt-
http://pda.etsi.org/pda/home.asp?wki_id=cL74ubdUfkwzx-wx,-1lZ
http://pda.etsi.org/pda/home.asp?wki_id=3rxD8efqMX'-6-33q3YBK

4 Rec. ITU-T Z.165.1 (05/2012)

 [i.4]

 [i.5]

 [i.6]

If later versions of those parts are available and should be used instead, the compatibility of the
package defined in the present document has to be checked individually.

The package defined in the present document is also compatible to, and can be used together with,
the following packages:

 ES 202 781 [i.7] (V1.1.1)

 ES 202 782 [i.10] (V1.1.1)

 ES 202 784 [i.8] (V1.2.1)

 ES 202 785 [i.9] (V1.2.1)

If later versions of those packages are available and should be used instead, the compatibility to the
package defined in the present document has to be checked individually.

5 Package concepts for the core language

Not applicable.

6 Package semantics

Not applicable.

7 TRI extensions for the package

Historically, TTCN has been used to test communication protocols which typically use encoded
messages. This has been reflected in the TRI SA and TCI CD design of TTCN-3 by encoding and
decoding messages to and from bitstrings. However, TTCN-3 also supports signature-based
communication for which the transformation of objects into bitstrings and vice versa is
cumbersome. Furthermore, some protocols use also structured messages for which the bitstring
encoding is not helpful.

Therefore, an alternative API is being defined in this extension package of TTCN-3 along which
TTCN-3 values can be directly passed to/from the SUT. It is defined by redefining the operations in
TRI SA and PA as follows.

7.1 Changes to clause 5.5.2 of [3], Connection handling operations

5.5.2.3 triMapParam xtriMapParam

Signature TriStatusType xtriMap(in TriPortIdType compPortId,

 in TriPortIdType tsiPortId,
 in TciParameterListType paramList)

In Parameters compPortId identifier of the test component port to be mapped
tsiPortId identifier of the test system interface port to be mapped
paramList parameters of the parameterized map

Out
Parameters

n.a.

Return Value The return status of the triMap operation. The return status indicates the local success
(TRI_OK) or failure (TRI_Error) of the operation.

Constraints This operation is called by the TE when it executes a TTCN-3 map operation.

 Rec. ITU-T Z.165.1 (05/2012) 5

Effect The SA can establish a dynamic connection to the SUT for the referenced TSI port.
The triMap operation returns TRI_Error in case a connection could not be established
successfully, TRI_OK otherwise. The operation should return TRI_OK in case no
dynamic connection needs to be established by the test system.

5.5.2.5 triUnmapParam xtriUnmapParam

Signature TriStatusType xtriUnmap(in TriPortIdType compPortId,

 in TriPortIdType tsiPortId,
 in TciParameterListType paramList)

In
Parameters

compPortId identifier of the test component port to be unmapped
tsiPortId identifier of the test system interface port to be unmapped
paramList parameters of the parameterized map

Out
Parameters

n.a.

Return
Value

The return status of the triUnmap operation. The return status indicates the local success
(TRI_OK) or failure (TRI_Error) of the operation.

Constraints This operation is called by the TE when it executes any TTCN-3 unmap operation.

Effect The SA shall close a dynamic connection to the SUT for the referenced TSI port.
The triUnmap operation returns TRI_Error in case a connection could not be closed
successfully or no such connection has been established previously, TRI_OK otherwise.
The operation should return TRI_OK in case no dynamic connections have to be closed
by the test system.

7.2 Changes to clause 5.5.3 of [3], Message based communication operations

5.5.3.1 triSend xtriSend

Signature TriStatusType xtriSend(in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,
 in Value SUTaddress,
 in Value sendMessage)

In
Parameters

componentId identifier of the sending test component
tsiPortId identifier of the test system interface port via which the message is sent to

the SUT adaptor
SUTaddress (optional) destination address value within the SUT
sendMessage the value to be sent

Out
Parameters

n.a.

Return
Value

The return status of the triSend operation. The return status indicates the local success
(TRI_OK) or failure (TRI_Error) of the operation.

Constraints This operation is called by the TE when it executes a TTCN-3 unicast send operation on a
component port, which has been mapped to a TSI port. This operation is called by the TE
for all TTCN-3 send operations if no system component has been specified for a test case,
i.e., only a MTC test component is created for a test case.
The encoding of sendMessage has to be done in the TE prior to this TRI operation call.

Effect The SA can send the message to the SUT.
The triSend operation returns TRI_OK in case it has been completed successfully.
Otherwise TRI_Error shall be returned. Notice that the return value TRI_OK does not
imply that the SUT has received sendMessage.

6 Rec. ITU-T Z.165.1 (05/2012)

5.5.3.2 triSendBC xtriSendBC

Signature TriStatusType xtriSendBC(in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,
 in Value sendMessage)

In
Parameters

componentId identifier of the sending test component
tsiPortId identifier of the test system interface port via which the message is sent to

the SUT adaptor
sendMessage the value to be sent

Out
Parameters

n.a.

Return
Value

The return status of the triSendBC operation. The return status indicates the local success
(TRI_OK) or failure (TRI_Error) of the operation.

Constraints This operation is called by the TE when it executes a TTCN-3 broadcast send operation
on a component port, which has been mapped to a TSI port. This operation is called by
the TE for all TTCN-3 send operations if no system component has been specified for a
test case, i.e., only a MTC test component is created for a test case.
The encoding of sendMessage has to be done in the TE prior to this TRI operation call.

Effect The SA can broadcast the message to the SUT.
The triSendBC operation returns TRI_OK in case it has been completed successfully.
Otherwise TRI_Error shall be returned. Notice that the return value TRI_OK does not
imply that the SUT has received sendMessage.

5.5.3.3 triSendMC xtriSendMC

Signature TriStatusType xtriSendMC(in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,
 in TciValueList SUTaddresses,
 in Value sendMessage)

In
Parameters

componentId identifier of the sending test component
tsiPortId identifier of the test system interface port via which the message is sent to

the SUT adaptor
SUTaddresses destination address values within the SUT
sendMessage the values to be sent

Out
Parameters

n.a.

Return
Value

The return status of the triSendMC operation. The return status indicates the local success
(TRI_OK) or failure (TRI_Error) of the operation.

Constraints This operation is called by the TE when it executes a TTCN-3 multicast send operation on
a component port, which has been mapped to a TSI port. This operation is called by the
TE for all TTCN-3 send operations if no system component has been specified for a test
case, i.e., only a MTC test component is created for a test case.
The encoding of sendMessage has to be done in the TE prior to this TRI operation call.

Effect The SA can multicast the message to the SUT.
The triSendMC operation returns TRI_OK in case it has been completed successfully.
Otherwise TRI_Error shall be returned. Notice that the return value TRI_OK does not
imply that the SUT has received sendMessage.

 Rec. ITU-T Z.165.1 (05/2012) 7

5.5.3.4 triEnqueueMsg xtriEnqueueMsg

Signature void xtriEnqueueMsg(in TriPortIdType tsiPortId,

 in any SUTaddress,
 in TriComponentIdType componentId,
 in any receivedMessage)

In
Parameters

tsiPortId identifier of the test system interface port via which the message is
 enqueued by the SUT adaptor

SUTaddress (optional) source address value within the SUT
componentId identifier of the receiving test component
receivedMessage the received value

Out
Parameters

n.a.

Return
Value

void

Constraints This operation is called by the SA after it has received a message from the SUT. It can
only be used when tsiPortId has been either previously mapped to a port of componentId
or has been referenced in the previous triExecuteTestCase statement.
In the invocation of a triEnqueueMsg operation receivedMessage shall contain an
encoded value.

Effect This operation shall pass the message to the TE indicating the component componentId to
which the TSI port tsiPortId is mapped.
The decoding of receivedMessage has to be done in the TE.

7.3 Addition to clause 5.5.3 of [3], Message based communication operations

In order to interpret unknown values along a type hypothesis, an additional xtriConvert operation is
defined. It can be used in all cases where the type of the incoming value is not known. Please note
that typically the value type is known in procedure-based communication and sometimes in
message-based communication.

5.5.3.5 xtriConvert

Signature Value xtriConvert(in any value, in Type typeHypothesis)

In
Parameters

value the value to be converted
typeHypothesis the type hypothesis

Out
Parameters

n.a.

Return
Value

Returns the converted value, if the value is of a compatible type as the typeHypothesis,
else the distinct value null.

Constraints This operation shall be called whenever the TE has to convert a value. The TE might
convert immediately after reception of the value, or might for performance considerations
postpone the conversion until the actual access to the value.

Effect This operation converts a value and returns a value according to the type hypothesis if it
matches. The typeHypothesis determines whether the value can be converted. If not, the
distinct null value shall be returned.

8 Rec. ITU-T Z.165.1 (05/2012)

7.4 Changes to clause 5.5.4 of [3], Procedure based communication operations

5.5.4.1 triCall xtriCall

Signature TriStatusType xtriCall(in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,
 in Value SUTaddress,
 in TriSignatureIdType signatureId,
 in TciParameterListType parameterList)

In
Parameters

componentId identifier of the test component issuing the procedure call
tsiPortId identifier of the test system interface port via which the procedure

call is sent to the SUT adaptor
SUTaddress (optional) destination address within the SUT
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature.

The parameters in parameterList are ordered as they appear in the
TTCN-3 signature declaration

Out
Parameters

n.a.

Return Value The return status of the triCall operation. The return status indicates the local success
(TRI_OK) or failure (TRI_Error) of the operation.

Constraints This operation is called by the TE when it executes a TTCN-3 unicast call operation on a
component port, which has been mapped to a TSI port. This operation is called by the TE
for all TTCN-3 call operations if no system component has been specified for a test case,
i.e., only a MTC test component is created for a test case. All in and inout procedure
parameters contain encoded values.
The procedure parameters are the parameters specified in the TTCN-3 signature
template. Their encoding has to be done in the TE prior to this TRI operation call.

Effect On invocation of this operation the SA can initiate the procedure call corresponding to
the signature identifier signatureId and the TSI port tsiPortId.
The triCall operation shall return without waiting for the return of the issued procedure
call (see Note). This TRI operation returns TRI_OK on successful initiation of the
procedure call, TRI_Error otherwise. No error shall be indicated by the SA in case the
value of any out parameter is non-null. Notice that the return value of this TRI operation
does not make any statement about the success or failure of the procedure call. Note that
an optional timeout value, which can be specified in the TTCN-3 ATS for a call
operation, is not included in the triCall operation signature. The TE is responsible to
address this issue by starting a timer for the TTCN-3 call operation in the PA with a
separate TRI operation call, i.e., triStartTimer.

NOTE – This might be achieved for example by spawning a new thread or process. This handling of this
procedure call is, however, dependent on implementation of the TE.

 Rec. ITU-T Z.165.1 (05/2012) 9

5.5.4.2 triCallBC xtriCallBC

Signature TriStatusType xtriCallBC(in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,
 in TriSignatureIdType signatureId,
 in TciParameterListType parameterList)

In
Parameters

componentId identifier of the test component issuing the procedure call
tsiPortId identifier of the test system interface port via which the procedure

call is sent to the SUT adaptor
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature.

The parameters in parameterList are ordered as they appear in the
TTCN-3 signature declaration.

Out
Parameters

n.a.

Return Value The return status of the triCallBC operation. The return status indicates the local
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints This operation is called by the TE when it executes a TTCN-3 broadcast call operation
on a component port, which has been mapped to a TSI port. This operation is called by
the TE for all TTCN-3 call operations if no system component has been specified for a
test case, i.e., only a MTC test component is created for a test case. All in and inout
procedure parameters contain encoded values.
The procedure parameters are the parameters specified in the TTCN-3 signature
template. Their encoding has to be done in the TE prior to this TRI operation call.

Effect On invocation of this operation the SA can initiate and broadcast the procedure call
corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triCallBC operation shall return without waiting for the return of the issued
procedure call (see Note). This TRI operation returns TRI_OK on successful initiation of
the procedure call, TRI_Error otherwise. No error shall be indicated by the SA in case
the value of any out parameter is non-null. Notice that the return value of this TRI
operation does not make any statement about the success or failure of the procedure call.
Note that an optional timeout value, which can be specified in the TTCN-3 ATS for a
call operation, is not included in the triCallBC operation signature. The TE is
responsible to address this issue by starting a timer for the TTCN-3 call operation in the
PA with a separate TRI operation call, i.e., triStartTimer.

NOTE – This might be achieved for example by spawning a new thread or process. This handling of this
procedure call is, however, dependent on implementation of the TE.

5.5.4.3 triCallMC xtriCallMC

Signature TriStatusType xtriCallMC(in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,
 in TciValueList SUTaddresses,
 in TriSignatureIdType signatureId,
 in TciParameterListType parameterList)

In
Parameters

componentId identifier of the test component issuing the procedure call
tsiPortId identifier of the test system interface port via which the procedure

call is sent to the SUT adaptor
SUTaddresses destination addresses within the SUT
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature.

The parameters in parameterList are ordered as they appear in the
TTCN-3 signature declaration.

10 Rec. ITU-T Z.165.1 (05/2012)

Out
Parameters

n.a.

Return Value The return status of the triCallMC operation. The return status indicates the local
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints This operation is called by the TE when it executes a TTCN-3 multicast call operation on
a component port, which has been mapped to a TSI port. This operation is called by the
TE for all TTCN-3 call operations if no system component has been specified for a test
case, i.e., only a MTC test component is created for a test case. All in and inout
procedure parameters contain encoded values.
The procedure parameters are the parameters specified in the TTCN-3 signature
template. Their encoding has to be done in the TE prior to this TRI operation call.

Effect On invocation of this operation the SA can initiate and multicast the procedure call
corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triCallMC operation shall return without waiting for the return of the issued
procedure call (see Note). This TRI operation returns TRI_OK on successful initiation of
the procedure call, TRI_Error otherwise. No error shall be indicated by the SA in case
the value of any out parameter is non-null. Notice that the return value of this TRI
operation does not make any statement about the success or failure of the procedure call.
Note that an optional timeout value, which can be specified in the TTCN-3 ATS for a
call operation, is not included in the triCallMC operation signature. The TE is
responsible to address this issue by starting a timer for the TTCN-3 call operation in the
PA with a separate TRI operation call, i.e., triStartTimer.

NOTE – This might be achieved for example by spawning a new thread or process. This handling of this
procedure call is, however, dependent on implementation of the TE.

5.5.4.4 triReply xtriReply

Signature TriStatusType xtriReply(in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,
 in Value SUTaddress,
 in TriSignatureIdType signatureId,
 in TciParameterListType parameterList,
 in Value returnValue)

In
Parameters

componentId identifier of the replying test component
tsiPortId identifier of the test system interface port via which the reply is sent

to the SUT adaptor
SUTaddress (optional) destination address within the SUT
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature.

The parameters in parameterList are ordered as they appear in the
TTCN-3 signature declaration

returnValue (optional) encoded return value of the procedure call

Out
Parameters

n.a.

Return Value The return status of the triReply operation. The return status indicates the local success
(TRI_OK) or failure (TRI_Error) of the operation.

 Rec. ITU-T Z.165.1 (05/2012) 11

Constraints This operation is called by the TE when it executes a TTCN-3 unicast reply operation on
a component port that has been mapped to a TSI port. This operation is called by the TE
for all TTCN-3 reply operations if no system component has been specified for a test
case, i.e., only a MTC test component is created for a test case.
All out and inout procedure parameters and the return value contain encoded values.
The parameterList contains procedure call parameters. These parameters are the
parameters specified in the TTCN-3 signature template. Their encoding has to be done in
the TE prior to this TRI operation call.
If no return type has been defined for the procedure signature in the TTCN-3 ATS, the
distinct value null shall be passed for the return value.

Effect On invocation of this operation the SA can issue the reply to a procedure call
corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triReply operation will return TRI_OK on successful execution of this operation,
TRI_Error otherwise. The SA shall indicate no error in case the value of any in
parameter or an undefined return value is different from null.

5.5.4.5 triReplyBC xtriReplyBC

Signature TriStatusType xtriReplyBC(in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,
 in TriSignatureIdType signatureId,
 in TciParameterListType parameterList,
 in Value returnValue)

In
Parameters

componentId identifier of the replying test component
tsiPortId identifier of the test system interface port via which the reply is sent

to the SUT adaptor
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature.

The parameters in parameterList are ordered as they appear in the
TTCN-3 signature declaration

returnValue (optional) encoded return value of the procedure call

Out
Parameters

n.a.

Return Value The return status of the triReplyBC operation. The return status indicates the local
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints This operation is called by the TE when it executes a TTCN-3 broadcast reply operation
on a component port that has been mapped to a TSI port. This operation is called by the
TE for all TTCN-3 reply operations if no system component has been specified for a test
case, i.e., only a MTC test component is created for a test case.
All out and inout procedure parameters and the return value contain encoded values.
The parameterList contains procedure call parameters. These parameters are the
parameters specified in the TTCN-3 signature template. Their encoding has to be done in
the TE prior to this TRI operation call.
If no return type has been defined for the procedure signature in the TTCN-3 ATS, the
distinct value null shall be passed for the return value.

Effect On invocation of this operation the SA can broadcast the reply to procedure calls
corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triReplyBC operation will return TRI_OK on successful execution of this
operation, TRI_Error otherwise. The SA shall indicate no error in case the value of any
in parameter or an undefined return value is different from null.

12 Rec. ITU-T Z.165.1 (05/2012)

5.5.4.6 triReplyMC xtriReplyMC

Signature TriStatusType xtriReplyMC(in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,
 in TciValueList SUTaddresses,
 in TriSignatureIdType signatureId,
 in TciParameterListType parameterList,
 in Value returnValue)

In
Parameters

componentId identifier of the replying test component
tsiPortId identifier of the test system interface port via which the reply is sent

to the SUT adaptor
SUTaddresses destination addresses within the SUT
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature.

The parameters in parameterList are ordered as they appear in the
TTCN-3 signature declaration

returnValue (optional) encoded return value of the procedure call

Out
Parameters

n.a.

Return Value The return status of the triReplyMC operation. The return status indicates the local
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints This operation is called by the TE when it executes a TTCN-3 multicast reply operation
on a component port that has been mapped to a TSI port. This operation is called by the
TE for all TTCN-3 reply operations if no system component has been specified for a test
case, i.e., only a MTC test component is created for a test case.
All out and inout procedure parameters and the return value contain encoded values.
The parameterList contains procedure call parameters. These parameters are the
parameters specified in the TTCN-3 signature template. Their encoding has to be done in
the TE prior to this TRI operation call.
If no return type has been defined for the procedure signature in the TTCN-3 ATS, the
distinct value null shall be passed for the return value.

Effect On invocation of this operation the SA can multicast the reply to procedure calls
corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triReplyMC operation will return TRI_OK on successful execution of this
operation, TRI_Error otherwise. The SA shall indicate no error in case the value of any
in parameter or an undefined return value is different from null.

5.5.4.7 triRaise xtriRaise

Signature TriStatusType xtriRaise(in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,
 in Value SUTaddress,
 in TriSignatureIdType signatureId,
 in Value exc)

In
Parameters

componentId identifier of the test component raising the exception
tsiPortId identifier of the test system interface port via which the exception is

sent to the SUT adaptor
SUTaddress (optional) destination address within the SUT

signatureId identifier of the signature of the procedure call which the exception is
associated with

exc the encoded exception

Out
Parameters

n.a.

 Rec. ITU-T Z.165.1 (05/2012) 13

Return Value The return status of the triRaise operation. The return status indicates the local success
(TRI_OK) or failure (TRI_Error) of the operation.

Constraints This operation is called by the TE when it executes a TTCN-3 unicast raise operation on
a component port that has been mapped to a TSI port. This operation is called by the TE
for all TTCN-3 raise operations if no system component has been specified for a test
case, i.e., only a MTC test component is created for a test case.
The encoding of the exception has to be done in the TE prior to this TRI operation call.

Effect On invocation of this operation the SA can raise an exception to a procedure call
corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triRaise operation returns TRI_OK on successful execution of the operation,
TRI_Error otherwise.

5.5.4.8 triRaiseBC xtriRaiseBC

Signature TriStatusType xtriRaiseBC(in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,
 in TriSignatureIdType signatureId,
 in Value exc)

In
Parameters

componentId identifier of the test component raising the exception
tsiPortId identifier of the test system interface port via which the exception is sent

to the SUT adaptor
signatureId identifier of the signature of the procedure call which the exception is

associated with
exc the encoded exception

Out
Parameters

n.a.

Return Value The return status of the triRaiseBC operation. The return status indicates the local
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints This operation is called by the TE when it executes a TTCN-3 broadcast raise operation
on a component port that has been mapped to a TSI port. This operation is called by the
TE for all TTCN-3 raise operations if no system component has been specified for a test
case, i.e., only a MTC test component is created for a test case.
The encoding of the exception has to be done in the TE prior to this TRI operation call.

Effect On invocation of this operation the SA can raise and broadcast an exception to procedure
calls corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triRaiseBC operation returns TRI_OK on successful execution of the operation,
TRI_Error otherwise.

5.5.4.9 triRaiseMC xtriRaiseMC

Signature TriStatusType xtriRaiseMC(in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,
 in TciValueList SUTaddresses,
 in TriSignatureIdType signatureId,
 in Value exc)

In
Parameters

componentId identifier of the test component raising the exception
tsiPortId identifier of the test system interface port via which the exception is

sent to the SUT adaptor
SUTaddresses destination addresses within the SUT

signatureId identifier of the signature of the procedure call which the exception is
associated with

exc the encoded exception

14 Rec. ITU-T Z.165.1 (05/2012)

Out
Parameters

n.a.

Return Value The return status of the triRaiseMC operation. The return status indicates the local
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints This operation is called by the TE when it executes a TTCN-3 multicast raise operation
on a component port that has been mapped to a TSI port. This operation is called by the
TE for all TTCN-3 raise operations if no system component has been specified for a test
case, i.e., only a MTC test component is created for a test case.
The encoding of the exception has to be done in the TE prior to this TRI operation call.

Effect On invocation of this operation the SA can raise and multicast an exception to a
procedure calls corresponding to the signature identifier signatureId and the TSI port
tsiPortId.
The triRaiseMC operation returns TRI_OK on successful execution of the operation,
TRI_Error otherwise.

5.5.4.10 triEnqueueCall xtriEnqueueCall

Signature void xtriEnqueueCall(in TriPortIdType tsiPortId,

 in any SUTaddress,
 in TriComponentIdType componentId,
 in TriSignatureIdType signatureId,
 in TciParameterListType parameterList)

In
Parameters

tsiPortId identifier of the test system interface port via which the procedure
call is enqueued by the SUT adaptor

SUTaddress (optional) source address within the SUT
componentId identifier of the receiving test component
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature.

The parameters in parameterList are ordered as they appear in the
TTCN-3 signature declaration. Description of data passed as
parameters to the operation from the calling entity to the called entity

Out
Parameters

n.a.

Return Value void

Constraints This operation can be called by the SA after it has received a procedure call from the
SUT. It can only be used when tsiPortId has been either previously mapped to a port
of componentId or referenced in the previous triExecuteTestCase statement.
In the invocation of a triEnqueueCall operation all in and inout procedure parameters
contain encoded values.

Effect The TE can enqueue this procedure call with the signature identifier signatureId at the
port of the component componentId to which the TSI port tsiPortId is mapped. The
decoding of procedure parameters has to be done in the TE.
The TE shall indicate no error in case the value of any out parameter is different from
null.

5.5.4.11 triEnqueueReply xtriEnqueueReply

Signature void xtriEnqueueReply(in TriPortIdType tsiPortId,

 in any SUTaddress,
 in TriComponentIdType componentId,
 in TriSignatureIdType signatureId,
 in TciParameterListType parameterList,
 in Value returnValue)

 Rec. ITU-T Z.165.1 (05/2012) 15

In
Parameters

tsiPortId identifier of the test system interface port via which the reply is
enqueued by the SUT adaptor

SUTaddress (optional) source address within the SUT
componentId identifier of the receiving test component
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature.

The parameters in parameterList are ordered as they appear in the
TTCN-3 signature declaration

returnValue (optional) encoded return value of the procedure call

Out
Parameters

n.a.

Return Value void

Constraints This operation can be called by the SA after it has received a reply from the SUT. It can
only be used when tsiPortId has been either previously mapped to a port of
componentId or referenced in the previous triExecuteTestCase statement.
In the invocation of a triEnqueueReply operation all out and inout procedure
parameters and the return value contain encoded values.
If no return type has been defined for the procedure signature in the TTCN-3 ATS, the
distinct value null shall be used for the return value.

Effect The TE can enqueue this reply to the procedure call with the signature identifier
signatureId at the port of the component componentId to which the TSI port
tsiPortId is mapped. The decoding of the procedure parameters has to be done within
the TE.
The TE shall indicate no error in case the value of any in parameter or an undefined
return value is different from null.

5.5.4.12 triEnqueueException xtriEnqueueException

Signature void xtriEnqueueException(in TriPortIdType tsiPortId,

 in any SUTaddress,
 in TriComponentIdType componentId,
 in TriSignatureIdType signatureId,
 in any exc)

In Parameters tsiPortId identifier for the test system interface port via which the exception is
enqueued by the SUT adaptor

SUTaddress (optional) source address within the SUT
componentId identifier of the receiving test component
signatureId identifier of the signature of the procedure call which the exception

is associated with
exc the encoded exception

Out
Parameters

n.a.

Return Value void

Constraints This operation can be called by the SA after it has received a reply from the SUT. It can
only be used when tsiPortId has been either previously mapped to a port of
componentId or referenced in the previous triExecuteTestCase statement.
In the invocation of a triEnqueueException operation exception shall contain an
encoded value.

16 Rec. ITU-T Z.165.1 (05/2012)

Effect The TE can enqueue this exception for the procedure call with the signature identifier
signatureId at the port of the component componentId to which the TSI port
tsiPortId is mapped.
The decoding of the exception has to be done within the TE.

7.5 Changes to clause 5.6.3 of [3], Miscellaneous operations

5.6.3.1 triExternalFunction xtriExternalFunction

Signature TriStatusType xtriExternalFunction(

 in TriFunctionIdType functionId,
 inout TciParameterListType parameterList,
 out Value returnValue)

In Parameters functionId identifier of the external function

Out Parameters returnValue (optional) encoded return value

InOutParameters parameterList a list of encoded parameters for the indicated function. The
parameters in parameterList are ordered as they appear in
the TTCN-3 function declaration.

Return Value The return status of the triExternalFunction operation. The return status
indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints This operation is called by the TE when it executes a function which is defined to be
TTCN-3 external (i.e., all non-external functions are implemented within the TE).
In the invocation of a triExternalFunction operation by the TE all in and inout
function parameters contain encoded values. No error shall be indicated by the PA in
case the value of any out parameter is non-null.

Effect For each external function specified in the TTCN-3 ATS the PA shall implement the
behaviour. On invocation of this operation the PA shall invoke the function indicated
by the identifier functionId. It shall access the specified in and inout function
parameters in parameterList, evaluate the external function using the values of
these parameters, and compute values for inout and out parameters in
parameterList. The operation shall then return encoded values for all inout and out
function parameters and the encoded return value of the external function.
If no return type has been defined for this external function in the TTCN-3 ATS, the
distinct value null shall be used for the latter.
The triExternalFunction operation returns TRI_OK if the PA completes the
evaluation of the external function successfully, TRI_Error otherwise.
Note that whereas all other TRI operations are considered to be non-blocking, the
triExternalFunction operation is considered to be blocking. That means that the
operation shall not return before the indicated external function has been fully
evaluated. External functions have to be implemented carefully as they could cause
deadlock of test component execution or even the entire test system implementation.

 Rec. ITU-T Z.165.1 (05/2012) 17

7.6 Changes to clause 6 of [3], Java language mapping

Addition of the following clause in clause 6.3 of [3], Type mapping.

6.3.3 Any type mapping

The IDL any type is represented by Java java.lang.Object.

6.5.2.1 Changes to triCommunicationSA

The extensions to the triCommunicationSA interface is mapped to the following interface:

// TriCommunication
// TE -> SA
package org.etsi.ttcn.xtri;
public interface xTriCommunicationSA {
 public TriStatus xtriMapParam(TriPortId compPortId, TriPortId tsiPortId,
 in TciParameterListType paramList);
 // Ref: TRI-Definition 5.5.2.3
 public TriStatus xtriUnmapParam(TriPortId compPortId, TriPortId tsiPortId,
 in TciParameterListType paramList);
 // Ref: TRI-Definition 5.5.2.4

 // Message based communication operations
 // Ref: TRI-Definition 5.5.3.1
 public TriStatus xtriSend(TriComponentId componentId, TriPortId tsiPortId,
 Value sutAddress, Value sendMessage);
 // Ref: TRI-Definition 5.5.3.2
 public TriStatus xtriSendBC(TriComponentId componentId, TriPortId tsiPortId,
 Value sendMessage);
 // Ref: TRI-Definition 5.5.3.3
 public TriStatus xtriSendMC(TriComponentId componentId, TriPortId tsiPortId,
 TciValueList sutAddresses, Value sendMessage);

 // Procedure based communication operations
 // Ref: TRI-Definition 5.5.4.1
 public TriStatus xtriCall(TriComponentId componentId,
 TriPortId tsiPortId, Value sutAddress,
 TriSignatureId signatureId, TciParameterList parameterList);
 // Ref: TRI-Definition 5.5.4.2
 public TriStatus xtriCallBC(TriComponentId componentId,
 TriPortId tsiPortId,
 TriSignatureId signatureId, TciParameterList parameterList);
 // Ref: TRI-Definition 5.5.4.3
 public TriStatus xtriCallMC(TriComponentId componentId,
 TriPortId tsiPortId, TciValueList sutAddresses,
 TriSignatureId signatureId, TciParameterList parameterList);

 // Ref: TRI-Definition 5.5.4.4
 public TriStatus xtriReply(TriComponentId componentId,
 TriPortId tsiPortId, Value sutAddress,
 TriSignatureId signatureId, TciParameterList parameterList,
 Value returnValue);
 // Ref: TRI-Definition 5.5.4.5
 public TriStatus xtriReplyBC(TriComponentId componentId,
 TriPortId tsiPortId,
 TriSignatureId signatureId, TciParameterList parameterList,
 Value returnValue);
 // Ref: TRI-Definition 5.5.4.6
 public TriStatus xtriReplyMC(TriComponentId componentId,
 TriPortId tsiPortId, TciValueList sutAddresses,
 TriSignatureId signatureId, TciParameterList parameterList,
 Value returnValue);

 // Ref: TRI-Definition 5.5.4.7
 public TriStatus xtriRaise(TriComponentId componentId, TriPortId tsitPortId,
 Value sutAddress,
 TriSignatureId signatureId,
 Value exc);
 // Ref: TRI-Definition 5.5.4.8
 public TriStatus xtriRaiseBC(TriComponentId componentId,
 TriPortId tsitPortId,
 TriSignatureId signatureId,
 Value exc);
 // Ref: TRI-Definition 5.5.4.9
 public TriStatus xtriRaiseMC(TriComponentId componentId, TriPortId tsitPortId,
 TciValueList sutAddresses,
 TriSignatureId signatureId,

18 Rec. ITU-T Z.165.1 (05/2012)

 Value exc);

}

6.5.2.2 Changes to triCommunicationTE

The extensions to the triCommunicationTE interface is mapped to the following interface:

// TriCommunication
// SA -> TE
package org.etsi.ttcn.xtri;
public interface xTriCommunicationTE {
 // Message based communication operations
 // Ref: TRI-Definition 5.5.3.4
 public void xtriEnqueueMsg(TriPortId tsiPortId,
 Value sutAddress, TriComponentId componentId,
 Object receivedMessage);

 // Procedure based communication operations
 // Ref: TRI-Definition 5.5.4.10
 public void xtriEnqueueCall(TriPortId tsiPortId,
 Object sutAddress, TriComponentId componentId,
 TriSignatureId signatureId, TciParameterList parameterList);

 // Ref: TRI-Definition 5.5.4.11
 public void xtriEnqueueReply(TriPortId tsiPortId, Object sutAddress,
 TriComponentId componentId, TriSignatureId signatureId,
 TciParameterList parameterList, Value returnValue);

 // Ref: TRI-Definition 5.5.4.12
 public void xtriEnqueueException(TriPortId tsiPortId,
 Object sutAddress, TriComponentId componentId,
 TriSignatureId signatureId, Object exc);

 // Miscellaneous operations
 // Ref: TRI-Definition 5.5.3.5
 public Value xtriConvert(in Object value, in Type typeHypothesis);

}

6.5.3.1 Changes to TriPlatformPA

The extensions to the triPlatformPA interface is mapped to the following interface:

// TriPlatform
// TE -> PA
package org.etsi.ttcn.xtri;
public interface xTriPlatformPA {
 // Ref: TRI-Definition 5.6.3.1
 public TriStatus xtriExternalFunction(TriFunctionId functionId,
 TciParameterList parameterList, Value returnValue);
}

7.7 Changes to clause 7 of [3], C language mapping

7.2.1 Changes to Abstract type mapping

TRI
ADT

ANSI C Representation Notes and comments

any typedef enumerated {
 e_char = 1, // character
 e_unsigned_char = 2, // unsigned char
 e_signed_char = 3, // signed char

 e_short = 4, // short signed integer
 e_short_int = 5, // short signed integer
 e_signed_short = 6, // short signed integer
 e_signed_short_int = 7, // short signed integer

 e_unsigned_short = 8, // unsigned short
 e_unsigned_short_int = 9, // unsigned short integer

 Rec. ITU-T Z.165.1 (05/2012) 19

TRI
ADT

ANSI C Representation Notes and comments

 e_int = 10, // integer

 e_signed_int = 11, // signed integer

 e_unsigned = 12, // unsigned
 e_unsigned_int = 13, // unsigned integer

 e_long = 14, // long integer

 e_long_int = 15, // long integer

 e_signed_long = 16, // signed long integer

 e_signed_long_int = 17, // signed long integer

 e_unsigned_long = 18, // unsigned long integer
 e_unsigned_long_int = 19, // unsigned long integer

 e_long_long = 20, // long long integer

 e_long_long_int = 21, // long long integer

 e_signed_long_long = 22, // signed long long integer

 e_signed_long_long_int = 23, // signed long long integer

 e_unsigned_long_long = 24, // unsigned long long integer

 e_unsigned_long_long_int = 25, // unsigned long long integer

 e_float = 26, // float
 e_double = 27, // double
 e_long_double = 28, // long double

 e_ptr = 29 // void *
} type_kind;

typedef void *value;

typedef struct {
 type_kind tag,
 value val
} Object;

7.2.4 Changes to TRI operation mapping

TriStatus xtriMapParam
 (const TriPortId* compPortId,
 const TriPortId* tsiPortId,
 const TciParameterList* parameterList)
TriStatus xtriUnmapParam
(const TriPortId* compPortId,
 const TriPortId* tsiPortId,
 const TciParameterList* parameterList)
TriStatus xtriSend
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const Value* sutAddress,
 const Value* sendMessage)
TriStatus xtriSendBC
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const Value* sendMessage)
TriStatus xtriSendMC
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TciValueList* sutAddresses,
 const Value* sendMessage)
void xtriEnqueueMsg
(const TriPortId* tsiPortId,
 const Object* sutAddress,
 const TriComponentId* componentId,
 const Object* receivedMessage)
TriStatus xtriCall
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const Value* sutAddress,

20 Rec. ITU-T Z.165.1 (05/2012)

 const TriSignatureId* signatureId,
 const TciParameterList* parameterList)
TriStatus xtriCallBC
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriSignatureId* signatureId,
 const TciParameterList* parameterList)
TriStatus xtriCallMC
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TciValueList* sutAddresses,
 const TriSignatureId* signatureId,
 const TciParameterList* parameterList)
TriStatus xtriReply
 (const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const Value* sutAddress,
 const TriSignatureId* signatureId,
 const TciParameterList* parameterList,
 const Value* returnValue)
TriStatus xtriReplyBC
 (const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriSignatureId* signatureId,
 const TciParameterList* parameterList,
 const Value* returnValue)
TriStatus xtriReplyMC
 (const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TciValueList* sutAddresses,
 const TriSignatureId* signatureId,
 const TciParameterList* parameterList,
 const Value* returnValue)
TriStatus xtriRaise
 (const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const Value* sutAddress,
 const TriSignatureId* signatureId,
 const Value* exception)
TriStatus xtriRaiseBC
 (const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriSignatureId* signatureId,
 const Value* exception)
TriStatus xtriRaiseMC
 (const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TciValueList* sutAddresses,
 const TriSignatureId* signatureId,
 const Value* exception)
void xtriEnqueueCall
 (const TriPortId* tsiPortId,
 const Object* sutAddress,
 const TriComponentId* componentId,
 const TriSignatureId* signatureId,
 const TciParameterList* parameterList)
void xtriEnqueueReply
 (const TriPortId* tsiPortId,
 const Object* sutAddress,
 const TriComponentId* componentId,
 const TriSignatureId* signatureId,
 const TciParameterList* parameterList,
 const Value* returnValue)
void xtriEnqueueException
 (const TriPortId* tsiPortId,
 const Object* sutAddress,
 const TriComponentId* componentId,
 const TriSignatureId* signatureId,
 const Object* exception)
TriStatus xtriExternalFunction
 (const TriFunctionId* functionId,

 Rec. ITU-T Z.165.1 (05/2012) 21

 TciParameterList* parameterList,
 Value* returnValue)
Value xtriConvert
 (Object* value,
 Type* typeHypothesis)

7.8 Changes to clause 8 of [3], C++ language mapping

Addition of the following clause in clause 8.5 of [3], Type mapping.

8.5.3 Any type mapping

The IDL any type is represented by struct type of type tag and value:

typedef enumerated {
 e_char = 1, // character
 e_unsigned_char = 2, // unsigned char
 e_signed_char = 3, // signed char

 e_short = 4, // short signed integer
 e_short_int = 5, // short signed integer
 e_signed_short = 6, // short signed integer
 e_signed_short_int = 7, // short signed integer
 e_unsigned_short = 8, // unsigned short
 e_unsigned_short_int = 9, // unsigned short integer

 e_int = 10, // integer
 e_signed_int = 11, // signed integer
 e_unsigned = 12, // unsigned
 e_unsigned_int = 13, // unsigned integer

 e_long = 14, // long integer
 e_long_int = 15, // long integer
 e_signed_long = 16, // signed long integer
 e_signed_long_int = 17, // signed long integer
 e_unsigned_long = 18, // unsigned long integer
 e_unsigned_long_int = 19, // unsigned long integer

 e_long_long = 20, // long long integer
 e_long_long_int = 21, // long long integer
 e_signed_long_long = 22, // signed long long integer
 e_signed_long_long_int = 23, // signed long long integer
 e_unsigned_long_long = 24, // unsigned long long integer
 e_unsigned_long_long_int = 25, // unsigned long long integer

 e_float = 26, // float
 e_double = 27, // double
 e_long_double = 28, // long double

 e_ptr = 29 // void *
} type_kind;

typedef void *value;

typedef struct {
 type_kind tag,
 value val
} Object;

8.6.1 Changes to TriCommunicationSA

The extensions to the triCommunicationSA interface is mapped to the following interface:

class xTriCommunicationSA {
public:

 //Destructor.
 virtual ~xTriCommunicationSA ();
 //To reset the System Adaptor
 virtual xTriStatus triSAReset ()=0;

 //To establish a dynamic connection between two ports.

 virtual TriStatus xtriMapParam (const TriPortId *comPortId, const TriPortId *tsiPortId, const
 TciParameterList *parameterList)=0;

22 Rec. ITU-T Z.165.1 (05/2012)

 //To close a dynamic connection to the SUT for the referenced TSI port.
 virtual TriStatus xtriUnmapParam (const TriPortId *comPortId, const TriPortId *tsiPortId, const
 TciParameterList *parameterList)=0;

 //Send operation on a component which has been mapped to a TSI port.
 virtual TriStatus xtriSend (const TriComponentId *componentId, const TriPortId *tsiPortId, const
 TciValue *SUTaddress, const TciValue *sendMessage)=0;

 //Send (broadcast) operation on a component which has been mapped to a TSI port.
 virtual TriStatus xtriSendBC (const TriComponentId *componentId, const TriPortId *tsiPortId,
 const TciValue *sendMessage)=0;

 //Send (multicast) operation on a component which has been mapped to a TSI port.
 virtual TriStatus xtriSendMC (const TriComponentId *componentId, const TriPortId *tsiPortId,
 const TciValueList *SUTaddresses, const TciValue *sendMessage)=0;

 //Initiate the procedure call.
 virtual TriStatus xtriCall (const TriComponentId *componentId, const TriPortId *tsiPortId, const
 TciValue *sutAddress, const TriSignatureId *signatureId, const TciParameterList
 *parameterList)=0;

 //Initiate and broadcast the procedure call.
 virtual TriStatus xtriCallBC (const TriComponentId *componentId, const TriPortId *tsiPortId,
 const TriSignatureId *signatureId, const TciParameterList *parameterList)=0;

 //Initiate and multicast the procedure call.
 virtual TriStatus xtriCallMC (const TriComponentId *componentId, const TriPortId *tsiPortId,
 const TciValueList *sutAddresses, const TriSignatureId *signatureId, const TciParameterList
 *parameterList)=0;

 //Issue the reply to a procedure call.
 virtual TriStatus xtriReply (const TriComponentId *componentId, const TriPortId *tsiPortId,
 const TciValue *sutAddress, const TriSignatureId *signatureId, const TciParameterList *
 parameterList, const TciValue *returnValue)=0;

 //Broadcast the reply to a procedure call.
 virtual TriStatus xtriReplyBC (const TriComponentId *componentId, const TriPortId *tsiPortId,
 const TriSignatureId *signatureId, const TciParameterList *parameterList, const TciValue
 *returnValue)=0;

 //Multicast the reply to a procedure call.
 virtual TriStatus xtriReplyMC (const TriComponentId *componentId, const TriPortId *tsiPortId,
 const TciValueList *sutAddresses, const TriSignatureId *signatureId, const TciParameterList
 *parameterList, const TciValue *returnValue)=0;

 //Raise an exception to a procedure call.
 virtual TriStatus xtriRaise (const TriComponentId *componentId, const TriPortId *tsiPortId,
 const TciValue *sutAddress, const TriSignatureId *signatureId, const TciValue *exc)=0;

 //Raise a broadcast an exception to a procedure call.
 virtual TriStatus xtriRaiseBC (const TriComponentId *componentId, const TriPortId *tsiPortId,
 const TriSignatureId *signatureId, const TciValue *exc)=0;

 //Raise a multicast an exception to a procedure call.
 virtual TriStatus xtriRaiseMC (const TriComponentId *componentId, const TriPortId *tsiPortId,
 const TciValueList *sutAddresses, const TriSignatureId *signatureId, const TciValue *exc)=0;

}

8.6.2 Changes to TriCommunicationTE

The extensions to the triCommunicationTE interface is mapped to the following interface:

class xTriCommunicationTE {
public:

 //Destructor.
 virtual ~xTriCommunicationTE ();

 //Called by SA after it has received a message from the SUT.
 virtual void xtriEnqueueMsg (const TriPortId *tsiPortId, const Object *SUTaddress, const
 TriComponentId *componentId, const Object *receivedMessage)=0;

 //Called by SA after it has received a procedure call from the SUT.
 virtual void xtriEnqueueCall (const TriPortId *tsiPortId, const Object *SUTaddress, const
 TriComponentId *componentId, const TriSignatureId *signatureId, const TciParameterList
 *parameterList)=0;

 Rec. ITU-T Z.165.1 (05/2012) 23

 //Called by SA after it has received a reply from the SUT.
 virtual void xtriEnqueueReply (const TriPortId *tsiPortId, const Object *SUTaddress, const
 TriComponentId *componentId, const TriSignatureId *signatureId, const TciParameterList
 *parameterList, const TciValue *returnValue)=0;

 //Called by SA after it has received an exception from the SUT.
 virtual void xtriEnqueueException (const TriPortId *tsiPortId, const Object *SUTaddress,
 const TriComponentId *componentId, const TriSignatureId *signatureId, const Object *exc)=0;

 // Miscellaneous operations
 virtual TciValue xtriConvert(const Object *value, const TciType *typeHypothesis)=0;

}

8.6.3 Changes to TriPlatformPA

The extensions to the TriPlatformPA interface is mapped to the following interface:

class xTriPlatformPA {
public:

 //Destructor.
 virtual ~TriPlatformPA ();

 //For each external function specified in the TTCN-3 ATS implement the behaviour.
 virtual TriStatus xtriExternalFunction (const TriFunctionId *functionId, TciParameterList
 *parameterList, TciValue *returnValue)=0;
}

7.9 Changes to clause 9 of [3], C# language mapping

Addition of the following clause in clause 9.4 of [3], Type mapping.

9.4.3 Any type mapping

The IDL any type is represented by C# Object.

9.5.2.1 Changes to ITriCommunicationSA

The extensions to the ITriCommunicationSA interface are defined as follows:

public interface IXTriCommunicationSA {
 // Reset operation
 // Ref: TRI-Definition 5.5.1
 TriStatus XTriMapParam(ITriPortId compPortId, ITriPortId tsiPortId,
 ITciValueList parameterList);
 // Ref: TRI-Definition 5.5.2.3
 TriStatus XTriUnmapParam(ITriPortId compPortId, ITriPortId tsiPortId,
 ITciValueList parameterList);
 // Ref: TRI-Definition 5.5.2.4

 // Message based communication operations
 // Ref: TRI-Definition 5.5.3.1
 TriStatus XTriSend(ITriComponentId componentId, ITriPortId tsiPortId,
 ITciValue address, ITciValue sentMessage);
 // Ref: TRI-Definition 5.5.3.2
 TriStatus XTriSendBC(ITriComponentId componentId, ITriPortId tsiPortId,
 ITciValue sentMessage);
 // Ref: TRI-Definition 5.5.3.3
 TriStatus XTriSendMC(ITriComponentId componentId, ITriPortId tsiPortId,
 ITciValueList addresses, ITciValue sentMessage);

 // Procedure based communication operations
 // Ref: TRI-Definition 5.5.4.1
 TriStatus XTriCall(ITriComponentId componentId, ITriPortId tsiPortId,
 ITciValue sutAddress, ITriSignatureId signatureId,
 ITciValueList parameterList);
 // Ref: TRI-Definition 5.5.4.2
 TriStatus XTriCallBC(ITriComponentId componentId, ITriPortId tsiPortId,
 ITriSignatureId signatureId, ITciValueList parameterList);
 // Ref: TRI-Definition 5.5.4.3
 TriStatus XTriCallMC(ITriComponentId componentId, ITriPortId tsiPortId,
 ITciValueList sutAddresses, ITriSignatureId signatureId,
 ITciValueList parameterList);
 // Ref: TRI-Definition 5.5.4.4

24 Rec. ITU-T Z.165.1 (05/2012)

 TriStatus XTriReply(ITriComponentId componentId, ITriPortId tsiPortId,
 ITciValue sutAddress, ITriSignatureId signatureId,
 ITciValueList parameterList, ITciValue returnValue);
 // Ref: TRI-Definition 5.5.4.5
 TriStatus XTriReplyBC(ITriComponentId componentId, ITriPortId tsiPortId,
 ITriSignatureId signatureId, ITciValueList parameterList,
 ITciValue returnValue);
 // Ref: TRI-Definition 5.5.4.6
 TriStatus XTriReplyMC(ITriComponentId componentId, ITriPortId tsiPortId,
 ITciValueList sutAddresses, ITriSignatureId signatureId,
 ITciValueList parameterList, ITciValue returnValue);
 // Ref: TRI-Definition 5.5.4.7
 TriStatus XTriRaise(ITriComponentId componentId, ITriPortId tsiPortId,
 ITciValue sutAddress, ITriSignatureId signatureId,
 ITciValue exc);
 // Ref: TRI-Definition 5.5.4.8
 TriStatus XTriRaiseBC(ITriComponentId componentId, ITriPortId tsiPortId,
 ITriSignatureId signatureId, ITciValue exc);
 // Ref: TRI-Definition 5.5.4.9
 TriStatus XTriRaiseMC(ITriComponentId componentId, ITriPortId tsiPortId,
 ITciValueList sutAddresses, ITriSignatureId signatureId,
 ITciValue exc);
}

9.5.2.2 Changes to ITriCommunicationTE

The extensions to the ITriCommunicationTE interface are defined as follows:

public interface IXTriCommunicationTE {
 // Message based communication operations
 // Ref: TRI-Definition 5.5.3.4
 void XTriEnqueueMessage(ITriPortId tsiPortId, Object sutAddress,
 ITriComponentId componentId, Object msg);

 // Procedure based communication operations
 // Ref: TRI-Definition 5.5.4.10
 void XTriEnqueueCall(ITriPortId tsiPortId, Object sutAddress,
 ITriComponentId componentId, ITriSignatureId signatureId,
 ITciValueList parameterList);
 // Ref: TRI-Definition 5.5.4.10
 void XTriEnqueueReply(ITriPortId tsiPortId, Object sutAddress,
 ITriComponentId componentId, ITriSignatureId signatureId,
 ITciValueList parameterList, ITciValue returnValue);
 // Ref: TRI-Definition 5.5.4.11
 void XTriEnqueueException(ITriPortId tsiPortId, Object sutAddress,
 ITriComponentId componentId, ITriSignatureId signatureId,
 Object exc);
 // Ref: TRI-Definition 5.5.3.5
 ITciValue XTriConvert(Object value, ITciType typeHypothesis);

}

9.5.2.3 Changes to ITriPlatformPA

The extensions to the ITriPlatformPA interface are defined as follows:

public interface IXTriPlatformPA {
 // Ref: TRI-Definition 5.6.1 // Miscellaneous operations
 // Ref: TRI-Definition 5.6.3.1
 TriStatus XTriExternalFunction(ITriFunctionId functionId,
 ITciValueList parameterList, ITciValue returnValue);
}

8 TCI extensions for the package

Not applicable.

Printed in Switzerland
Geneva, 2012

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.165.1 (05/2012) – Testing and Test Control Notation version 3: TTCN-3 extension package: Extended TRI
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations and acronyms

	4 Package conformance and compatibility
	5 Package concepts for the core language
	6 Package semantics
	7 TRI extensions for the package
	7.1 Changes to clause 5.5.2 of [3], Connection handling operations
	7.2 Changes to clause 5.5.3 of [3], Message based communication operations
	7.3 Addition to clause 5.5.3 of [3], Message based communication operations
	7.4 Changes to clause 5.5.4 of [3], Procedure based communication operations
	7.5 Changes to clause 5.6.3 of [3], Miscellaneous operations
	7.6 Changes to clause 6 of [3], Java language mapping
	7.7 Changes to clause 7 of [3], C language mapping
	7.8 Changes to clause 8 of [3], C++ language mapping
	7.9 Changes to clause 9 of [3], C# language mapping

	8 TCI extensions for the package

