) INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Z.130

TELECOMMUNICATION (07/2003)
STANDARDIZATION SECTOR
OF ITU

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) — Extended Object
Definition Language (eODL)

Extended Object Definition Language (eODL):
Techniques for distributed software component
development — Conceptual foundation,
notations and technology mappings

ITU-T Recommendation Z.130

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)
Specification and Description Language (SDL)
Application of formal description techniques
Message Sequence Chart (MSC)

Extended Object Definition Language (eODL)
Testing and Test Control Notation (TTCN)

User Requirements Notation (URN)

PROGRAMMING LANGUAGES

CHILL: The ITU-T high level language

MAN-MACHINE LANGUAGE

General principles

Basic syntax and dialogue procedures

Extended MML for visual display terminals

Specification of the man-machine interface

Data-oriented human-machine interfaces

Human-computer interfaces for the management of telecommunications networks
QUALITY

Quality of telecommunication software

Quality aspects of protocol-related Recommendations

METHODS

Methods for validation and testing

MIDDLEWARE

Distributed processing environment

7.100-Z.109
Z.110-Z.119
Z.120-Z.129
7.130-7Z.139
Z7.140-Z.149
Z.150-Z.159

72.200-Z.209

7.300-Z.309
Z7.310-Z2.319
7.320-2.329
7.330-Z.349
7.350-Z.359
7.360-Z.369

7.400-Z.409
72.450-Z.459

Z2.500-Z.519

7.600-Z.609

For further details, please refer to the list of ITU-T Recommendations.

ITU-T Recommendation Z.130

Extended Object Definition Language (eODL): Techniques for
distributed software component development — Conceptual
foundation, notations and technology mappings

Summary

This Recommendation is intended for designers, implementers and managers of distributed systems, and tool
developers that provide tools to support distributed systems.

This Recommendation specifies the ITU Extended Object Definition Language (ITU-eODL). ITU-eODL is
used for a component-oriented development of distributed systems from the perspectives of four different but
related views: the computational, implementation, deployment, and target environment view. Each view is
connected with a specific modelling goal expressed by dedicated abstraction concepts. Computational object
types with (operational, stream, signal) interfaces and ports are the main computational view concepts which
describe distributed software components abstractly in terms of their potential interfaces. Artefacts as
abstractions of concrete programming language contexts and their relations to interfaces form the
implementation view. The deployment view describes software entities (software components) in binary
representation and the computational entities realized by them. The target environment view provides
modelling concepts of a physical network onto which the deployment of the software components shall be
made. All concepts of the views are related to each other. These relations form an essential base for
techniques and tools that support the software development process from design via implementation and
integration to deployment. The test phase is not yet captured by this Recommendation.

ITU-eODL is an extension of the ITU Object Definition Language ITU-ODL [1] and supersedes it. Originally
ITU-ODL was designed as an extension of ODP-IDL [9] and defined computational concepts based on ODP
[2], [3] terminology. eODL follows this principle. However, definitions are based on a metamodel rather
than the traditional abstract syntax approach. One advantage of the metamodel approach is to allow use of
MOF [4] related tools to support the automation of model transitions between the different software
development phases. Another benefit is the ability to instantiate concrete models from the metamodel, which
can be represented by existing languages, so an integration of different design approaches can be achieved.

The readers of this Recommendation are expected to be familiar with IDL [5], UML [11], MOF.
The definition of eODL is supported by the following annexes and appendices:

. Annex A introduces a textual syntax for eODL, intended to be used for the representation of eODL
specifications. The syntax is defined using the EBNF style.

. Annex B defines the mapping between the eODL metamodel and the textual syntax defined in
Annex A.

. Annex C provides a mapping from eODL to ITU SDL-2000 that allows an eODL model to be

automatically transformed to a SDL-2000 model.

. Annex D contains a software reference to the XML representation [12] of the eODL metamodel
according to the XML meta interchange format (XMI) [6]. It is provided in a separate file in order to
allow import and processing of the eODL metamodel by UML tools.

. Clause 1 provides an overview of how eODL is used by designers, implementers and managers of a
distributed system. A concrete example of the use is given in Appendix I.

. Appendix II describes the overall development process when using eODL and possible tool support.

Source

ITU-T Recommendation Z.130 was approved on 22 July 2003 by ITU-T Study Group 17
(2001-2004) under the ITU-T Recommendation A.8 procedure.

ITU-T Rec. Z.130 (07/2003) i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

© ITU 2004

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

il ITU-T Rec. Z.130 (07/2003)

CONTENTS

Page

1 N Te0] oL USSR 1
2 RETCTEINCES. ... iieceeiieeee ettt e e e et e e e tae e eab e e ebaeeesaeeenreeas 3
3 ADDIEVIATIONS ...ttt ettt ettt ettt e sttt e e st en 3
4 DETINILIONS ...viiiiiiieeiie ettt e e e et e e e te e e e baeeeabaeessseeesaseeessbeeessseeensseeas 4
5 MEtamMOAE] ... 6
5.1 Definitions and CONVENTIONSc.c.eeiuiiiiiiriiiiiieiie et 7

5.2 Naming and SCOPINEveerueeeiieriieeiienieeitee sttt ettt e eeebeesateebeeseeesseesaeeens 8

53 Computational CONCEPLSevveeuiriiriiiieiienieeeet et 9

54 IMplementation CONCEPLS.......cccvierieeiierieeiteriteeiee et sveetee e seeeebeeeeee e 19

5.5 Deployment CONCEPLSccueeeiiiriieeiieiie ettt ettt et e eae e ene 21

5.6 Target environNmMENt CONCEPLS ...eevvererurieeririeeriieeeiieeerieeeeereeeireeesareeenareessreeens 23

6 BIbLIOZIAPNY ...ttt s 27
AnNnex A — Syntax 0f @ODL.....ccuiiiiiiieie e e s 28
A.l INEEOAUCTION ... ettt e 28

A2 Lexical conventions and grammar baseccceeerveeeerieerieeenireeenreeeeeee e 28

A3 Computational VIEW.......c.coeerieriiiiiiiiienieeeeet ettt 28

A4 CONTIGUIALION VIEW ..euviiiiieiieeiieniieeiteeiie et e eite et e seeeeteesaaeebeeseaeeseesnaeenseeenns 30

A5 IMPIEMENTALION VIEW ...eotiieiiiiiiieiieeiie ettt ettt ettt et ete e 30

A.6 DEPlOYMENt VIEW.....oiiiiiiiiiiieiie ettt ettt e eveeseee e sseeeseesnee e 31

A7 Target ENVITONIMENTcccviieiiieeeiieeeiieeeiee et e eeteeesaee e aeeeereeeseseeenaseeesseeens 34

A.8 Syntax 0f €ODL.....cciiieiieeee e e 34
Annex B — Metamodel to Syntax MappPing........c..ccceeeeueerveeniienieeriienieenieesreenseesseenseesseenseennne 42
B.1 INErOAUCTION ..ottt et 42

B.2 Signal and Signal Parameter............ccceeeuvieeiieeiiieeciee e 43

B.3 Medium Type, Medium, Media Setc.ccoovviieiiiieiiieeieeeeeee e 44

B.4 Consume and ProducCecceeeeiiiiiiieeeiiccciee e 45

B.5 SINK aNd SOUICEcccviiiiiiieciie et et enas 46

B.6 INEETTACE TYPC.curiieiiiiieeiieeie ettt ettt et aae e e e 46

B.7 CO Types, Supports and REqUITES.........c.cccveeiierieeiiienieeieenie e 47

B.8 Provided and Used POrt........cccoiiiiiiieiieiiieeeeeeeeeee e 48

B.9 Artefact and Instantiation Pattern............cooceeiiiiiiiiiiiniiiiiceee 49

B.10 Implements Relation...........cccceeiiiiiiiiiiiiiiiiie e 49

B.11 Implementation EI€mMentcccociiiiiiiiiiiiiieeteie e 50

B.12 Software COMPONENL..........c.eecuiiriieiiieiieeieeiee e eriee ettt e et eaeeseeebeeseneeseens 51

B.13 Assembly and Initial Configurationc.cccceeeevierieeiiienieeieenieeieesee e 52

B.14 Constraints and Properties.........cceeivieiiierieeiieeniieeieesieeie et eveesieesveeaeesnne e 53

B.15 Target Environment, Node and NodeLinKccccooeviieiiiiniiieeiiieecieeee, 54

B.16 InstallationMap.......cc.ooiiiiiiiiie e 55

ITU-T Rec. Z.130 (07/2003) il

B.17 InstantiationMap........ccciieeiiieeiiieeeiie ettt ettt nae e s 56
B.18 Deployment PIanccoociiiiiiiiiiiiiieeeeee e 57
Bi1O EXIOIN fY P iiiiiiiiiiie et 57
Annex C — Mapping to SDL-2000........c..ceeriiiiiiieeiieeeiieeeieeeeieeesteeerreeeereeeaeeeeneeesseeeeanees 58
C.1 INEEOAUCTION ...ttt 58
C2 The package €0dl..........cocoiviiiiiiiiiiiii e 58
C3 SEIUCTULE ..ottt ettt e et e st e st e e s e e e 58
C4 SCOPEA NAMES ...ttt ettt et eae et e e eneees 59
C.S5 Mapping of computational CONCEPLScevveeeiierieeiiienieeiieeie e 59
C.6 Mapping of configuration VIEW CONCEPLSccveererrerueerieeieeneieeieeneeeieeeeeeenns 65
C.7 Mapping of implementation CONCEPLSeeervreervireriieeieeeireeeiieeeieeeereeenes 66
C.S8 Omitting automatically generated behaviourccccoeeveeeiiieiciieciieecieee 72
C9 Not mapped €ODL CONCEPLSccoveereriiiriiiiiniirieeieeiest ettt 72
C.10 Predefined eodl package..........ccveeiiieriieiiiiie et 72
Annex D — eODL metamodel XML representation...........ccceeeeveerieerieenieesieeneeeieeseeeveeseeeenns 75
Appendix [— Example: Dining PhiloSOPhersccccoviiiiiiiiiiiiiie e 75
I.1 INEOAUCEION ...t 75
1.2 DESCIIPHION ettt et tee st e e e et e e esabeeenaseeennaeeens 76
1.3 Example in €ODL.........coooiiiiiieeeeee et 77
1.4 Example in SDL-2000.........cccciiiiiieeiieeieeeee ettt e e 79
Appendix II — Information processing and tool SUPPOTTL........cccueeruieriiienieiiiienieeieerie e 100
II.1 INEOAUCTION ... 100
1.2 MOdelling tOO] 1SSUES......ccvieeriieeeiieerieeeiee ettt ert e e et e e e e sreeesebeeensaeeens 101
1.3 GENETator tOO] ISSUEScueiiuiiiiiiiiieiie ettt 101
1.4 Deployment tOO] 1SSUES......cc.veeuieriieiieiieeiie ettt ettt 102

v ITU-T Rec. Z.130 (07/2003)

ITU-T Recommendation Z.130

Extended Object Definition Language (eODL): Techniques for
distributed software component development — Conceptual
foundation, notations and technology mappings

1 Scope

The provision of efficient techniques and of tool support for the development and engineering of
distributed systems is a key enabling factor for the further evolution of Information Technology.
Telecommunication systems are special distributed systems consisting of components which are
distributed across networks and have to cope with concurrency, autonomy, synchronization, and
communication aspects. The development of highly efficient and scalable systems is a complex and
complicated task, where tools have to support all phases of the development process — from
requirements capturing over design and implementation to integration, test and deployment.

Code generation out of object-oriented design models leads to reusable, executable components.
Such components integrate runtime environment and middleware platform technology dependent
aspects with the enterprise specific object-oriented design model. Each software component has a
physical representation (e.g., binary file), which has to be available for execution on a special node
of a distributed system. The main focus of this Recommendation is the design of such components.

Techniques for the development of distributed systems contribute significantly to a reduction of the
time to market of distributed applications and telecommunication services. An appropriate treatment
of all kinds of communication aspects lies in the very nature of the targeted application domain.
These aspects span from transactional requirements on object interactions over quality of service
issues to security policies. Taking into account the broad acceptance of object middleware
technology, middleware platforms provide an ideal implementation environment for such designs.
Of these are plain CORBA [5], CORBA Components [7] and other distributed processing
platforms.

This Recommendation is targeted to all software development processes addressing the following
phases of the software life cycle:

. design phase;

. implementation phase;
. integration phase;

. operational phase.

This Recommendation does not address the requirement capturing phase.

The special emphasis of this Recommendation lies on the technological support of the transitions
between phases to achieve their automation. The key technology is a model driven approach which
is based on a well-defined metamodel (see [11]). This metamodel allows integration of several
existing design languages like SDL [8], UML and CORBA-IDL. The metamodel is the definition of
the concepts for the addressed phases of the software lifecycle. The models being instantiated on the
basis of the metamodel can be represented using the existing languages. Since some concepts are
not covered by an existing language, this Recommendation also defines a concrete syntax: eODL
(Extended ODL). The metamodel-based approach replaces the well-known abstract syntax
approach for the definition of languages. ITU-eODL is a revision of ITU-ODL. The syntax
definition is given by Annex A.

Consequently, the metamodel is independent of a specific design notation. Design models can be
developed applying different notations, but are based on the same concepts. Design information can
be exchanged on the basis of the metamodel. Both the notation and the metamodel are independent

ITU-T Rec. Z.130 (07/2003) 1

of a specific runtime environment. The same design can be mapped onto different target
environments. This enables high flexibility and is also important for the aspect of reuse of
component design models.

The integration of this Recommendation in software development processes is depicted in Figure 1.
Starting with a precise requirements definition, a design model is specified. This Recommendation
defines concepts which enable different views of the design model. Each view covers different
aspects of the system to be developed. The concepts of the metamodel allow development of
models powerful enough to derive software component skeletons automatically. The skeletons form
the starting point of the implementation phase, where they have to be completed by the business
logic. In the integration phase the completed software components have to be integrated in the
target environment.

.- -~~.._ Manual transition
Intended T
software system Design phase: Specification)
Requiréments Computational view
definition Computational objects (COs) with interfaces
A

Implementation view
Artefacts with Implementation
elements

Deployment view
Assemblies with initial configurations of
COs

N | J
Automatic derivation of software component skeletons
Comparison of Ve \
intention and results Implementation phase: Real software components (SCOs)
with code modules
b b‘ b B‘ | 1
Automatic derivation N N ™
do of intzgratipn .and — | SCOA — | SCOB p— SO X C
eployment descriptions L J
// Use of software components
Inteerati ¢ Integration phase:
ntegration suppor Deployed and
y .
Real Target environment view integrated components
software system Nodes, node links, and services
¥ g Z.130_F01

R, Operation

Figure 1/Z.130 — Software development

This Recommendation also contains concepts that allow the description of the topology and
properties of the target environment. Together with the automatically generated deployment and
integration descriptions stemming from the design phase, the target environment description enables
the automation of the deployment. After the integration phase, the developed software system can
be put into operation.

2 ITU-T Rec. Z.130 (07/2003)

2

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the

References

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within

this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[1]
[2]

[3]

[4]
[5]

[6]

[7]
[8]
[9]

[10]

ITU-T Recommendation Z.130 (1999), ITU object definition language.

ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1996, Information technology —
Open Distributed Processing — Reference Model: Foundations.

ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1996, Information technology —
Open distributed processing — Reference Model: Architecture.

OMG Document formal/00-04-03, Meta Object Facility (MOF) Specification, Version 1.3.

OMG Document formal/01-02-33, The Common Object Request Broker Architecture and
Specification, Revision 2.4.2.

OMG Document formal/00-11-02, XML Metadata Interchange (XMI) Specification,
Version 1.1.

OMG Document formal/02-06-65, CORBA Component, Version 3.0.
ITU-T Recommendation Z.100 (2002), Specification and Description Language (SDL).

ITU-T Recommendation X.920 (1997) | ISO/IEC 14750:1999, Information technology —
Open Distributed Processing — Interface Definition Language.

ITU-T Recommendation Z.600 (2000), Distributed processing environment architecture.

3 Abbreviations

This Recommendation uses the following abbreviations:

API Application Programming Interface
ASN.1 Abstract Syntax Notation One

CCM CORBA Component Model

CcoO Computational Object

COM Component Object Model

CORBA Common Object Request Broker Architecture
CWM Common Warehouse Metamodel
DTD Document Type Definition for XML
EBNF Extended Backus-Naur Form

EJB Enterprise JavaBeans™

IDL Interface Definition Language

MDA Model Driven Architecture

MOF Meta Object Facility

OCL Object Constraint Language

ITU-T Rec. Z.130 (07/2003)

3

ODL Object Definition Language

OMG Object Management Group

OSD Open Software Description

RM-ODP Reference Model for Open Distributed Processing

SDL Specification and Description Language

TINA Telecommunication Information Networking Architecture
UML Unified Modelling Language

XMI XML Metadata Interchange

XML eXtensible Markup Language

4 Definitions
This Recommendation defines the following terms:

4.1 artefact: Abstraction of concrete programming language constructs, e.g., a class in case of
object-oriented languages (realized in the form of code modules), enclosed by a software
component. An artefact instance realizes (in a model sense) the state, behaviour and identity of
a CO.

4.2 assembly: Description of a distributed software system by the set of all participating
CO types and the initial configuration. (Used by CCM.)

4.3 exception: Special kind of operation termination in case of errors. (Defined by RM-ODP.)

4.4 class: Concept for the classification of objects. On the basis of a class description, objects
can be instantiated. (Defined by MOF.)

4.5 connection: Concept for the exchange of interface references, which belong to port
definitions according to their special definition kind (use or provide relation). (Defined as
computational binding by RM-ODP; used by CCM.)

4.6 component architecture: Distributed processing environment which supports the
interaction of distributed software components.

4.7 target platform: Component architecture with support of deployment and distributed
execution, where components are intended to be deployed.

4.8 computational object (CO): Functional unit that results from a functional decomposition
of the software system being modelled. (Defined by RM-ODP.)

4.9 computational object type (CO type): Template for the instantiation of computational
objects. (Defined by RM-ODP; identified by CCM as CORBA component.)

4.10 consume: Concept for modelling potential signal reception. (Used by CCM.)

4.11 continuous medium, signal and operational interaction: Interaction between COs using
operational-, signal- or continuous medium interaction elements: operation, attribute, consume,
produce, sink, source. (Defined by RM-ODP and TINA (operational and continuous media
interaction).)

4.12 data type: A prescription of permissible structure, contents and behaviour of data; it is an
element of a data type model (i.e., CORBA-IDL) which is a base of information models. (Defined
by CORBA.)

4.13 distributed processing environment: Technological base, supporting interactions between
objects of a distributed system. (Defined by TINA.)

4 ITU-T Rec. Z.130 (07/2003)

4.14 deployment: The process of making physical representations of software components
available on nodes, installing them so that they are ready for execution and for setting up the initial
configuration.

4.15 implementation element: Relation between an interaction element and an artefact,
where an artefact instance is responsible for behaviour of the interaction element.

4.16 implements: Relation between artefacts and CO types, where artefact instances realize
the behaviour of the CO type.

4.17 initial CO: CO which is created at the beginning of the runtime of a distributed software
system.

4.18 initial configuration: Set of initial COs and initial connections. (Used by CCM.)

4.19 initial connection: A binding which is established initially at the beginning of the runtime
of a distributed software system. (Used by CCM.)

4.20 instantiation policy: Policy-based description of instantiation of various implementation
concepts modelled by artefacts.

4.21 interaction: Action in which the environment of an object is involved. (Defined by
RM-ODP.)

4.22 interaction element: Generalization of the concepts operation, attribute, sink, source,
consume and produce.

4.23 interface: Referencible aggregation of possible interactions of a CO. (Defined by
RM-ODP.)

4.24 interface attribute: Special kind of operations as a shorthand for get and set operations for
a given data type. (Used by CORBA.)

4.25 interface reference: Reference to an interface. (Corresponds to CORBA object reference.)

4.26 interface type: Description of a set of interaction elements as named and identifiable
endpoints of possible communication. (Defined by RM-ODP; corresponds to OMG IDL interface.)

4.27 media set: Aggregation of media.

4.28 medium type: Declaration to be used for coding, transmission and decoding of the data on
a medium.

4.29 medium: Atomic unidirectional continuous stream of data. (Replaces the stream notation
from ITU-T Rec. Z.600 [10].)

430 metamodel: Definition of modelling concepts for the construction of models of a specific
domain. (Defined by MOF.)

431 meta-metamodel: Definition of modelling concepts for the construction of metamodels.
(Defined by MOF.)

4.32 multiple port: Port which dynamically supports registration and retrieval of multiple
interface references. (Defined by CCM.)

4.33 name space: Concept to structure identifiers of model elements. (Defined by RM-ODP.)

4.34 node: Device used for interpretation of the code modules of a software component.
(Defined by RM-ODP.)

4.35 object: Model of an entity, where an entity is any phenomenon of interest in the examined
domain; an object has an identity, state and behaviour. (Defined by RM-ODP.)

4.36 operation: Element of an operational interaction, described by a set of parameters and
possible terminations. (Defined by RM-ODP, CORBA..)

ITU-T Rec. Z.130 (07/2003) 5

4.37 parameter: Element of the invocation of an operation, described by the direction of an
information exchange and a data type. (Defined by CORBA.)

4.38 port: Entity for registration and retrieval of interface references of a CO. (Defined by
CCM.)

4.39 produce: Interaction element to send signals. (Defined by CCM.)

4.40 provided port: Port where interface references of the corresponding CO can be retrieved.
(Defined by CCM.)

4.41 realize: Correspondence of software components to CO types. (Defined by UML.)

4.42 requires: Relation of an interface type and a CO type where the COs of this CO type
require interface references of the interface type from the CO environment. (Defined by TINA.)

4.43 runtime: The time when a software component is executed.

4.44 signal: Interaction element for the asynchronous exchange of atomic messages. (Defined
by RM-ODP.)

4.45 single port: Port where only a single interface reference can be registered and retrieved.
(Defined by CCM.)
4.46 sink: Interaction element to receive a media set. (Defined by TINA.)

4.47 software component: An entity which consists of sequences of instructions (code
modules), which is physically represented (in form of special data format), and which can be
assembled to structured software components or to a software system; to enable the composition of
software components, their functionality is provided via well-defined interface types.

During an execution of a software component, objects are incarnated as instances of classes
(realized as code modules). (Defined by [16].)

4.48 software package: Package of software components. (Defined by CCM.)
4.49 source: Interaction element for sending a media set. (Defined by TINA.)

4.50 supports: Relation of an interface type and a CO type, where the COs of this CO type
support interface references of the interface type from the CO environment. (Defined by TINA.)

4.51 termination: End of an invoked operation. (Defined by RM-ODP.)

4.52 signal parameter: Element of a signal to carry information; refers to a data type. (Defined
by SDL.)

4.53 used port: Port where interface references can be registered. (Defined by CCM.)

5 Metamodel

A metamodel defines modelling concepts for the construction of models of a specific domain. The
metamodel in this Recommendation is a Meta-Object Facility (MOF) compliant metamodel. The
metamodel is described by means of UML class diagrams. The semantics is given in natural
language. When needed, well-formedness rules are added. The MOF is the adopted standard for
metamodelling in the OMG (Object Management Group). The MOF defines a generic framework
for describing and representing meta-information.

The MOF defines a four-level architecture, depicted in Figure 2:

. In the M3 level, we find a single meta-metamodel (the MOF model) that defines the basic
concepts needed to describe any metamodel in an object-oriented way. The basic
constructs are: class, association, data type, class attribute and class inheritance.

6 ITU-T Rec. Z.130 (07/2003)

. In the M2 level, we find metamodels (languages). A metamodel provides the abstractions
that are needed to build models. It is described in terms of the M3 basic constructs (in
practice the abstract syntax of a metamodel is provided as a collection of class diagrams).
Examples of metamodels are UML, CWM (data warehouse), and the CCM metamodel.

. In the M1 level, we find models. These are described in terms of one of the metamodels
defined at the M2 level. An example of a model is a network level model in UML that
defines what a trail is.

. In the MO level, we find data, which are instances of a model at the M1 level. A list of
records representing trails is example data.

M3

{ meta-metamodel J—\

M2

MOF

L metamodel

UML

f— .

model instances
00

O 0O
Z.130_F02

Figure 2/7.130 — MOF levels

In addition to basic language constructs for the object-oriented description of metamodels, the
MOF standardizes the interface types (OMG IDL interfaces) that can be used to operate on model
entities. Furthermore, the related XMI [6] standard standardizes the way a model can be
externalized in an XML [12] stream format. The XML vocabulary used for externalization depends
only on the metamodel entities.

5.1 Definitions and conventions

This clause defines concepts of the MOF model (meta-metamodel) which are used to define the
eODL concepts (metamodel). The notation used for the visibility of attributes and operations is
introduced in Figure 3. It is consistently used in all UML figures. For further information, please

refer to [4].

Package
Class
ClassB association ClassC
ClassD aggregation ClassE
ClassH
© attribute : string © public attribute
§ operation() « public operation

AbstractClass

ClassF

generalization

ClassG

Z.130_F03

Figure 3/Z.130 — UML notation for MOF concepts

ITU-T Rec. Z.130 (07/2003) 7

5.1.1 class and object. A class is the description of a set of objects all having the same distinct
class characteristics. Class is used for classification and serves as the basic concept for construction.
An object is an instance of a certain class.

5.1.2 generalization: A generalization is a unidirectional relation between two classes.
Generalization associates the special and the general class. The special class inherits all
characteristics of the general class.

5.1.3 association: An association is a relation between two classes. In case there are instances of
the two classes, an association may or may not be instantiated between them. The association is
navigable from one involved object to the other.

5.1.4 aggregation: An aggregation is a directed relationship between classes where the instances
of the aggregated classes (parts) are considered to be contained in instances of the container class
(i.e., the aggregating class). Its semantics is that of a 'has-a' relation. There is a distinction between
strong and weak aggregation in regard to the life cycle of the parts and their container. In this
Recommendation, always strong aggregation is applied. It is used for the reflection of composition
respective decomposition.

The metamodel of eODL is defined using the UML notation for MOF (see Figure 4). The
constraints and well-formedness rules which are part of this metamodel and essential for its
semantics are provided as English text. The UML diagrams which appear as figures in the following
clauses show only parts of the complete e€ODL metamodel. The explaining text and especially the
constraints contained in the text have to be read in order to understand the semantics. Constraints
which are already described as part of the metamodel of IDL are not mentioned again in this
Recommendation. Please refer to [7] instead.

The complete metamodel, including all constraints, is referenced as an XMI stream in Annex D.

M3 (MOF)

N

general concepts for
object-oriented modelling

|
T\class \association [|
[|
u J M2 (Z.130)

-
computational, implementation
and deployment concepts
—M interface
Ry W artefact -
|

>]

AR €O type) M1 (specification)
Vs
—# CO type A]]
—# CO type B |

. -

L.

Z.130_F04
Figure 4/7.130 — Object-oriented concepts

5.2 Naming and scoping
Naming and scoping rules are defined to enable the unambiguous identification of model elements.

The entire model forms a name scope. Each entity that forms a new scope is an instance of the
abstract metaclass Container. Contained elements of a scope are instances of the abstract metaclass
Contained. Defining the metaclasses Container and Contained as being abstract implies that all

8 ITU-T Rec. Z.130 (07/2003)

instances are instances of derived non-abstract metaclasses. The Container-Contained relation is
frequently used in the metamodel.

Each named entity (instance of metaclass Contained) has an identifier to denote the name. The
identifier is an attribute of the metaclass Contained. The identifiers of two different named entities,
which belong to the same Container (definedIn points to the same model element) must be
different.

To allow pure scopes in a model, the metaclasses ModuleDef is introduced. ModuleDef'is a part of
the metamodel of CORBA-IDL on which the metamodel in this Recommendation is based. It is a
concrete metaclass and can be instantiated. It has no further properties.

Each instance of Container forms a namespace. The generalization from Contained to Container
expresses the ability of nesting name scopes (see Figure 5).

Container | +definedIn contains +contents Contained
(from IDL) (from IDL)
0.1 0.n
ﬁ Z.130_F05
ModuleDef
(from IDL)
Figure 5/Z.130 — Naming and scoping
53 Computational concepts

5.3.1 Used CORBA-IDL concepts

In order to introduce data types, operations, attributes, exceptions and interface types as
modelling concepts, the eODL metamodel is based on the metamodel of CORBA-IDL.

All these modelling concepts allow the definition of basic building blocks for computational
specifications. One purpose of a computational specification is to define the signatures of
computational objects (CO) at their ports. Since this Recommendation introduces a type-based
modelling, data types are essential to describe such signatures.

5.3.1.1 Data types, Interface types, Operations, Attributes, Exceptions

Data types in models are instances of metaclasses which are derived from the abstract metaclass
IDLType. This implies the inclusion of the whole CORBA-IDL data type system. Through the
usage of the abstract metaclass /DL Type, it is ensured that the data type system can be exchanged to
ensure the openness of this Recommendation. Figure 6 shows a subset of the CORBA-IDL
metamodel for data types. The metamodel together with its description can be found in [7].

ITU-T Rec. Z.130 (07/2003) 9

IDLType
(from IDL)
InterfaceDef ¢/ typeCode : TypeCode
(from IDL)
€ isAbstract : boolean %
isLocal : boolean ;
<<reference>> base : InterfaceDef StringDef
(from IDL)
¢ bound : unsigned long
S(eggglgz;f WitringDef
(from IDL)
< bound : unsigned long < bound : unsigned long
ArrayDef -
(from IDL) FixedDef
from IDL
< bound : unsigned long TypedefDef — (omi)
(from IDL) © digits : unsigned short
¢ scale : short
StructDef
(from IDL)
© members : Field
EnumDef
(from IDL)
¢© members : string ValueDef
(from IDL)
¢ isAbstract : boolean
¢ isCustom : boolean
UnionDef PrimitiveDer ¢ isTruncatable : boolean
(from IDL) (rf1rm1 “I,]gLi O <<reference>> interfaceDef : InterfaceDef
¢ unionMembers : UnionField om & <<reference>> base : ValueDef
& <<reference>> discriminatorType : IDLType < kind : PrimitiveKind & <<reference>> abstractBase : ValueDef

Z.130_F06

Figure 6/Z.130 — Data types

The CORBA data type system contains all commonly used primitive data types such as long, float,
char, string, etc. Furthermore, there are concepts to describe structured data types like array,
struct, sequence, union, etc. The data type value is an additional type which is used to pass objects
using a object by value semantic. Like classes in programming languages, an instance of type value
can aggregate attributes and operations.

In order to use other data type definitions different from those included in CORBA, the element
ExternType is introduced. It is a specialization of the concept TypedefDef of CORBA. The attribute
identifier refers here to an externally provided definition of the data type. See Figure 7.

10 ITU-T Rec. Z.130 (07/2003)

TypedefDef
(from IDL)

[

ExternType
© identifier : string

Z.130_F07

Figure 7/2.130 — Extern type

Attributes, operations, exceptions and parameters are concepts required for the definition of
operational interactions. An operation defined in a model contains a list of parameters, a type for a
possible return value and a list of non-successful terminations modelled by exceptions. Exceptions
carry information and are defined in the same way as the data type StructDef. They contain a list of
members for that information. An attribute is a shorthand notation for modelling operations used
for getting and setting a named variable of a certain type. Also, exceptions can be added to
attributes. In that case, it is distinguished between those exceptions which are possibly raised
during a set-operation for that attribute and those being raised during a ger-operation. The
metamodel for exceptions is shown in Figure 8.

Contained

identifier : CorbaString
repositoryld : CorbaString
version : CorbaString

/ absoluteName : CorbaString

OperationDef GetRaises AttributeDef
isOneway : Boolean Oon isReadonly : Boolean
parameters : CCMMetamodel::BaseIDL::ParameterDef -
contexts : CorbaString 0.n

0.n
0.n +getException
CanRaise 0..n ExceptionDef
. tionDef typeCode : CorbaString _
exceptione members : CCMMetamodel::BaseIDL::Field 0.n SetRaises
+setException 2130 Fo8

Figure 8/Z.130 — Exceptions

ITU-T Rec. Z.130 (07/2003) 11

The metaclasses OperationDef, AttributeDef, ParameterDef and ExceptionDef are from the
CORBA-IDL metamodel and are described in detail there. The metamodel for attributes and
operations is shown below (see Figures 9 and 10).

Typed) IDLType
(from IDL) +typed TypedBy +dIType (from IDL)

¢ <<reference>> idIType : IDLType ¢ / typeCode : TypeCode

* 1.1

A 2.130_F09

OperationDef
(from IDL)

isOneway : boolean

parameters : ParameterDef

contexts : string

<<reference>> exceptionDef : ExceptionDef

QU™

Figure 9/7.130 — Operations

Contained

¢ identifier : CorbaString

¢ repositoryld : CorbaString

¢ version : CorbaString

& / absoluteName : CorbaString

A

. AttributeDef Tped | Hyped TypedBy i qitype IDLType
< isReadonly : Boolean » < [typeCode : CorbaString

0.n 1

Z.130_F10

Figure 10/Z.130 — Attributes

Interface types are used to define signatures for possible interactions in a system. The concept of
interface type is already known from OMG IDL, where it is named interface. In OMG IDL,
interfaces only aggregate operational interaction elements. That means they are containers for
attributes and operations. This is shown in Figure 11.

12 ITU-T Rec. Z.130 (07/2003)

Container Contains — Contained -
¢ identifier : CorbaString
+definedln +contents . .
& lookupName() @ ¢ repositoryld : CorbaString
& lookup() 0.1 o.n | <€ version: CorbaString
& getFilteredContents() \/ &/ absoluteName : CorbaString

InterfaceDef AttributeDef OperationDef
& isAbstract : Boolean @ isReadonly : Boolean © isOneway : Boolean
<© isLocal : Boolean & parameters : CCMMetamodel::BaseIDL:: ParameterDef
' O.n ¢ contexts : CorbaString
0.n +derived
+base Z.130_F11
InterfaceDerivedFrom

Figure 11/Z.130 — Operational interfaces

5.3.2 Signals and signal parameters

Metamodel
Container
IDLType
(from IDL) (from IDL)
17| +type
0..n
Typed
(from IDL)
- Ccfar.ryField. ‘rparameter SignalDef
identifier : string
0..n
Z.130_F12
Figure 12/Z.130 — Signal and signal parameter
Semantics

To enhance the modelling concepts offered by CORBA-IDL and to include other interaction kinds
into the modelling of distributed systems further modelling concepts are necessary (see Figure 12).

Signals are used to model signal-based interaction, that means the asynchronous decoupled
message exchange between system entities. Signals carry information. Signals are modelled as
instances of the metaclass SignalDef. The carried information (called signal parameters) is
modelled as instances of CarryField, each referring to an instance of ValueDef, which is a special
data type of CORBA-IDL. Each signal parameter is identifiable using a name in the context of a
signal definition. The names have to be unique.

ITU-T Rec. Z.130 (07/2003) 13

A signal definition prescribes the structure and the properties of the information which is carried in
a concrete signal interaction between system entities. It is not yet associated to an interface type.
Signal definitions can be reused in different interface type definitions. They play the same role as
data types do for the definition of operations. They are building blocks for signal-based
interaction.

Signal definitions in models can only occur in name spaces which are either modules or which is
the global name space formed by the specification itself.

The IDL types which are used to specify the parameters of signals have to be instances of the type
value.

5.3.3 Medium type, medium, media set

Metamodel
Contained
IDLType
(from Iyll))L) (from IDL)
+ype 1 \ MediumDef
\)..n
0n realized by
Typed +type 1.0
(from IDL)
MediatypeDef
MediumField :
- - - +media MediasetDef
identifier : string
l.n
Z.130_F13
Figure 13/Z.130 — Medium, medium type, media set
Semantics

In addition to operational and signal-based interaction, the exchange of continuous media is also
an important interaction kind in distributed systems. Modelling concepts for this interaction kind
have to be provided. This is done in this Recommendation in exactly the same way as for
operational and signal interaction. At first, the basic building blocks for the interaction elements
have to be defined. These are medium, media set and medium type (see Figure 13).

The concept media set is used to model the continuous media interaction. In the metamodel this is
provided by the definition of the class MediasetDef. Instances of this class aggregate instances of
the class MediumDef in a named list where each element has the type MediumField. The concept of
medium is used to model one atomic data flow between two entities. A medium has the meaning
of multimedia information like films or audio sequences. The exchange requires the presence of
coding, decoding and transmission formats, which are modelled by instances of the class
MediatypeDef. A medium can be realized by one or more media types. Media sets are necessary
to model the exchange of two different media which belong together (like video and audio data of a
film) and where the interactions for both should have the same properties.

Definitions of media, media sets and media types in models can only occur in namespaces which
are either modules or which is the global namespace formed by the specification itself.

14 ITU-T Rec. Z.130 (07/2003)

5.3.4 Consume and produce

Metamodel

Container
(from IDL)

+definedIn

contains

+contents

Contained

Semantics

0.1

IDLType
(from IDL)

+type 1

0.n

Typed
(from IDL)

» (from IDL)

_—

InteractionElement

RN

ProduceDef ConsumeDef

Figure 14/Z.130 — Consume and produce

Z130_F14

Signals will be exchanged between functional entities at runtime via their interfaces. For that
reason, the interface types offer the necessary signatures. In the case of signal communication the
signature contains the type (signal definition), a name for the interaction element and the
indication whether the signal is produced or consumed via this interface. So, the concepts consume
and produce are interaction elements and are used to model the consumption or production of
signals (see Figure 14). They are elements of the signal interaction in the same sense as operations
and attributes are the elements of the operational interaction. As every interaction element,
consume and produce are identifiable elements. They are included in the metamodel with the
definition of the metaclasses ConsumeDef and ProduceDef, which inherit from the abstract
metaclass InteractionElement, which itself inherits from Contained. ConsumeDef and ProduceDef
are subclasses of Typed. This inheritance is used to establish the relation to the SignalDef, which is

addressed by produce or consume.

Note that SignalDef is a subclass of IDLType. 1t is required that the instance of /DL Type associated
to a produce or consume definition is a signal. The concept of signal is defined as a specialization
of IDLType for that purpose.

ITU-T Rec. Z.130 (07/2003) 15

5.3.5 Sink and Source
Metamodel

contains

+contents

Container Contained
(from IDL) “—p{ (from IDL)

IDLType
(from IDL) InteractionElement

Z.130_F15
1
“+type

SinkDef | | SourceDef

0.n

Typed
(from IDL

Figure 15/Z.130 — Sink and Source

Semantics

To complete the list of possible interaction elements which are used to specify interface type
signatures, interaction elements for continuous media interactions have to be defined. Analogous
to signal interactions, they are characterized by the information which is exchanged in case of an
interaction at runtime (media set), an identifier and the direction of the communication,
i.e., whether the interface is sink or source with respect to the interaction. Hence, the concepts
sink and source are interaction elements to model the consumption or production of media sets
(see Figure 15). They are elements of the continuous media interaction in the same sense as
operations and attributes are the elements of the operational interaction. As every interaction
element, sink and source are identifiable elements. They are included in the metamodel with the
definition of the metaclasses SinkDef and SourceDef, which inherit from the abstract metaclass
InteractionElement, which itself inherits from Contained. SinkDef and SourceDef are subclasses of
Typed. This inheritance is used to establish the relation to the MediasetDef, which is addressed by
the sink or the source concept.

Note that MediasetDef is a subclass of IDLType. The only concrete IDLType which is allowed to be
associated to a sink or source is medium type.

16 ITU-T Rec. Z.130 (07/2003)

5.3.6 Interface type

Metamodel
InterfaceDef +derived
EnhancedInterfaceDef (from IDL) 0..n
+base /\0..n
InterfaceDerivedfrom ;a0 46
Figure 16/Z.130 — Interface type
Semantics

The concept interface type is used to specify a subset of potential interactions of COs of
CO types. Interface types aggregate interaction elements of the interaction kinds operational,
signal and continuous media. With this, the semantics of an interface type is extended compared
to RM-ODP: interface types provide a common context for interaction elements of different
interaction kinds. For clients, which have a reference to such an interface, it is possible to use all of
the interaction elements independently of which interaction kind is used. It is a subject of the
runtime environment to handle this aspect.

In the metamodel, interface type is an instance of class, named EnhancedlnterfaceDef
(see Figure 16). Since the metamodel of IDL already contains a meaning of aggregation of
operational interaction elements, the class EnhancedlnterfaceDef inherits from InterfaceDef.
From this follows that the inheritance rules and constraints of InterfaceDef also apply to
EnhancedlnterfaceDef.

In addition, interface types are containers for the interaction elements produce, consume, sink
and source.

5.3.7 CO types, supports and requires relation
Metamodel

InterfaceDef
(from IDL)

+reqlfs

requires supports

+1reqCOs

COTypeDef

Z130_F17

Figure 17/2.130 — CO types, supports and requires

ITU-T Rec. Z.130 (07/2003) 17

Semantics

The concept of CO type is used to specify the functional decomposition of a system. Instances of a
CO type (COs) are autonomous interacting entities, which encapsulate state and behaviour. COs
interact with their environment via well-defined interfaces. These interfaces are specified using the
concept interface type described above.

A CO type may support (supports) or require (requires) an interface type. To support an
interface type means that COs of that CO type provide interfaces of that interface type. To
require an interface type means that COs of that CO type use interfaces of that interface type. A
CO type is an instance of class COTypeDef in the metamodel. The labels supports and requires
identify the associations between COTypeDef and InterfaceDef (see Figure 17).

In order to access COs at runtime, COTypeDef is derived from InterfaceDef (as shown in
Figure 17). By doing so, instances can be configured using attributes which are defined by this
CO type. It is important to note that it is only allowed for a CO type to contain interaction
elements of the attribute kind. No other interaction element is permitted. Furthermore, the
inheritance relations between CO types and interface types cannot be mixed, i.e., CO types can
only inherit from CO types and interface types from interface types.

5.3.8 Provided and Used Port Definition

Metamodel
contains
Container +definedin +contents Contained
(from IDL) Oun (from IDL)
0..1
InterfaceDef
(from IDL) +interfaceDef
1
PortDef
0.n multiple : boolean
EnhancedInterfaceDef
COTypeDef ProvidePortDef UsePortDef
Z.130_F18
Figure 18/Z.130 — Provided and used port
Semantics

COs are the functional entities in a distributed system that is specified by using this
Recommendation. They communicate via their supported and required interfaces. However, the
configuration of distributed systems is always a problem, especially how to obtain and exchange
interface references, which is a prerequisite for interaction. For this reason, this Recommendation
introduces the concept of port as a named interaction point, at which either a reference of a
supported interface of a CO can be obtained or a reference of a used interface can be registered at
runtime.

18 ITU-T Rec. Z.130 (07/2003)

The concepts provided and used port are used to model ports of a CO type, that are either used by
the environment to obtain a reference to an interface (provided port) or to store a reference to an
interface (used port) based on a name. With the concepts supports and requires, only the
potential provision or usage of interface types in a context of a CO type can be expressed, but not
the concrete mechanisms, how the environment of a CO gains access to these interaction contexts.
The concepts provided port and used port are defined as instances of class ProvidePortDef and
UsePortDef. Both classes inherit from the abstract class PortDef. The class PortDef inherits from
Contained, meaning that a COTypeDef instance may contain provided and used port definitions. A
provided and a used port definition are always associated to an interface definition
(see Figure 18).

Port definitions are only allowed within CO type definitions. An interface, for which a provided
port is defined, is automatically a supported interface. An interface, for which a used port is
defined, is automatically a required interface.

5.4 Implementation concepts

5.4.1 Artefact and instantiation pattern

Metamodel
Container /\ Contained
fi IDL
(from IDL) +definedIn +contents (from)
xl\contains 0..n
Propert
ArtefactDef =P y
- . 3 e ; value : string
instantiationPolicy : InstantiationPolicy
Z.130_F19
<<Enumeration>>
InstantiationPolicy
ARTEFACT PER REQUEST
ARTEFACT POOL
SINGLETON
USER_DEFINED
Figure 19/Z.130 — Artefact and instantiation pattern
Semantics

The concept artefact is used to describe a programming language context (such as a class of an
object-oriented programming language) in a model. Instances of the concept artefact realize the
behaviour of COs. They therefore provide the business logic of CO types. The relations between
the artefacts and the behavioural parts of the COs are defined by associations between artefacts
and interaction elements of interface types. The programming language contexts that are
modelled by instances of the concept artefact will be instantiated at runtime to process,
e.g., operation invocations, signal inputs or continuous media data. The policies to be used for the
instantiation are specified by instances of the concept instantiation pattern. Allowed patterns are to
be seen in Figure 19. If necessary, further patterns may be added. The separation of the concepts
artefact and CO type provides full flexibility when designing a distributed application:

ITU-T Rec. Z.130 (07/2003) 19

. The external view (how the environment can interact with a CO) is separated from the
internal view (how the behaviour of a CO is provided).

. Different inheritance trees can be used for the external and internal views.

. Reuse of existing behaviour and existing interface definitions are possible and independent
from each other.

The concept artefact is expressed in the metamodel by an instance of class named ArtefactDef.
The concept instantiation pattern is modelled as an attribute of that class of type enumeration with
the enumerators as depicted in Figure 19.

5.4.2 Implements relation

Metamodel

ArtefactDef implemented by COTypeDef
- (from Computational Structures)

instantiationPolicy : InstantiationPolicy

Z.130_F20

Figure 20/Z.130 — Implements relation

Semantics

Instances of the concept artefact describe the realization of the expected behaviour of interaction
elements of interface types that are supported or required by CO types. As described above, the
external and internal views on a CO are completely separated from each other. However, the
relation between them has to be described in order to choose the right behaviour when a CO gets
involved in a certain interaction. Therefore, the model describes which set of artefacts provide the
behaviour for the COs of that CO type. This relation is defined by an association implemented by
between COTypeDef and ArtefactDef in the metamodel (see Figure 20).

5.4.3 Implementation element

Metamodel
5 . 0..n C od
Container +definedIn contains +contents ontaine,
(from IDL) @ (from IDL)
Y 0..1
InteractionElement
(from Computational Structures)
1
+realizedElement
0..n
ArtefactDef ImplementationElementDef <<Enumera'tion>>
instantiationPolicy : InstantiationPolicy case : ImplementationCase ImplementationCase

use

supply

Z.130_F21

Figure 21/Z.130 — Implementation element

20 ITU-T Rec. Z.130 (07/2003)

Semantics

In the context of an instance of artefact, the concept implementation element is used to denote
that a behavioural part of an artefact (e.g., a method of a class that is modelled by an instance of
the concept artefact) realizes a particular interaction element of an interface type. This concept
is necessary to provide further details to the implemented by relation as explained above.
implemented by specifies that an artefact contributes to the behaviour of a CO without saying
which part of the artefact is responsible for what part of the CO behaviour. These details are
provided with the implementation elements of the artefact. This information is necessary to
associate the behaviour to an interaction at runtime.

The concept implementation element is specified as an instance of class with the name
ImplementationElementDef. This class inherits from Contained; instances of
ImplementationElementDef may be contained by instances of artefacts (see Figure 21). The
ImplementationCase defines the implementation direction of an implementation element: Either
the usage or the provision of the behaviour can be realized by an implementation element with
respect to a certain interaction element.

5.5 Deployment concepts

5.5.1 Software component and component dependency

Metamodel
dependent from
+supplier 0.n +supplierDependency
{ ..
COTypeDef realized in ComponentDependencyDef
h SoftwareComponentDef| =
(from Computational Structures) 5 0 < local_dependency : boolean
.0 .n

+client +clientDependency

dependencies Z.130_F22

Figure 22/Z.130 — Software component and component dependency

Semantics

The concept of software component reflects actual software in the design model. It identifies an
entity of deployment and allows further description by using properties. A software component
may, but does not have to, realize an arbitrary number of CO types. Therefore, it contains
sequences of instructions, which when executed on a node, incarnate COs, i.e., they provide
behaviour, state and identity of COs. In the metamodel, the concept is introduced by the metaclass
SoftwareComponentDef. To indicate which CO types are realized by a certain software
component, there is the concept of realize relation, which is introduced in the metamodel by an
association between the metaclass COTypeDef and SoftwareComponentDef (see Figure 22).

Software components may require other software components in order to be properly executed.
To reflect this in the model, the metaclass SoftwareDependencyDef is defined. It contains the
local dependency attribute which states whether the required software component has to be locally
available. A SoftwareComponentDef may contain an arbitrary number of SoftwareDependencyDefs,
where each SoftwareDependencyDef has an association to another SoftwareComponentDef
indicating the required software.

ITU-T Rec. Z.130 (07/2003) 21

5.5.2 Assembly and initial configuration

Metamodel
contains
+definedin “+contents
Container 0.1 0 Contained
(from IDL) - (from IDL)
AssemblyDef PortDef
(from Computational Structures)
+assembly 0.n multiple : boolean
used_co_types
1 | +port
+eoType 0.n ConnectionDef
+coType +coSet
COTypeDef . iated COSetDef
from Computational Structures) instantiated_from By i1
(from Comp initial _instances : short “+connection
1 0.n ports_to_connect
+coSet

+endPoint
+endPoint 0.n | O.n

ConnectionEndPoint

Z.130_F23
Figure 23/Z.130 — Assembly and initial configuration
Semantics

The concept of assembly is used to model software systems by specifying the CO types which are
involved in the system and to model the initial configuration of the system. The initial
configuration is the configuration which is established at the start of the execution time of the
software system and consists of initial COs and their initial connections. In the metamodel, the
concept of assembly is modelled by the metaclass AssemblyDef. The CO types are associated by
the introduction of an association between the metaclasses AssemblyDef and COTypeDef
(see Figure 23).

To model initial COs, the metamodel contains the metaclass COSetDef. A COSetDef defines the
creation of an arbitrary number of instances of the associated CO type. The number is determined
by the initial instances attribute. A COSetDefis contained in an AssemblyDef.

To model initial connections, the metamodel contains the metaclass ConnectionDef. A connection
is established between ports of the participating COs by the exchange of interface references of
the COs. These references are obtained from a CO where the CO type has a provided port
definition and is transferred to a CO whose type has a used port definition. In the metamodel, a
ConnectionDef consists of a set of ConnectionEndPoints. A ConnectionEndPoint is associated with
a PortDef of a COTypeDef and a COSetDef. Each CO of a COSetDef associated with a

22 ITU-T Rec. Z.130 (07/2003)

ConnectionEndPoint is connected with each CO of each COSetDef associated with other
ConnectionEndPoints aggregated to the same ConnectionDef.

5.5.3 Properties and constraints

Metamodel
Constraint - Property
- Contained (from Computational Structures)
& language : string (fromIDL) |« :
& body : string value : string
0.n +value
definition_association
1 +def
PropertyDef Dped
(from Computational Structures) »{ (from IDL)
Z.130_F24
Figure 24/7.130 — Properties and constraints
Semantics

The concept of properties, which can be attached to model elements is reflected in the metamodel
by the metaclasses PropertyDef and Property (see Figure 24). The metamodel distinguishes
between a property definition and a property value. A Property holds a value represented by the
string attribute value while a PropertyDef holds the data type specification for the value, as it is
inherited from the metaclass Typed. For example, a CO type may define the properties needed for
its configuration, while a CO may define the appropriate property values.

The concept of constraint is reflected in the metamodel by the metaclass Constraint. It has two
attributes. The language attribute determines the language in which the constraint is written, and
should be used for evaluation and the body attribute, which contains the actual string representation
of the constraint. The choice of a constraint language is left to the user and is not prescribed by this
Recommendation. This way, any appropriate language can be chosen and the semantics of
constraints are not defined here, but are left to the processing tools. A CO may define a set of
constraints to express the permitted combinations of property values. An assembly may define
collocation constraints on the running components. References property definitions or attributes are
qualified by their names.

5.6 Target environment concepts

The specification of distribution and deployment is achieved by modelling actual target
environments, logical target environments and by mapping logical entities to actual nodes of the
environments. In some cases the model of the actual target environment can be retrieved
automatically by a tool.

ITU-T Rec. Z.130 (07/2003) 23

5.6.1 Target Environment, Node and NodeLink

Metamodel
TargetEnvi t .
arge il Container | SoftwareComponentDef
logical : Boolean (fromIDL) [
A 0.n +component
installed software
0.n | “target
NodeLink O.n linked l.n Node
bidirectional : Boolean
+link +peer Z.130_F25
Figure 25/7Z.130 — Target Environment, Node and NodeLink
Semantics

A target environment models a physical distributed runtime environment, e.g., telecommunication
network consisting of nodes and links between nodes. In the metamodel, the metaclass
TargetEnvironment is a container for Node and NodeLink (see Figure 25). The logical attribute in
TargetEnvironment is used to indicate whether the model reflects an existing environment or a
potential one.

The metaclass Node represents the concept of node, which means an element of the target
environment that features at least a single or multiple processors, a memory unit and an operating
system. Note that a given physical machine may host more than just one logical Node. A node
refers to the installed software (software components, compilers, interpreters, etc.) and the
installed hardware (represented as driver software). Properties such as the operating system or the
processor are described as predefined properties listed below.

The concept of links between nodes is represented by the metaclass NodeLink as a physical link
between two or more Nodes (a shared bus, for instance). The bidirectional Boolean attribute in
NodeLink applies only in case the NodeLink is associated with exactly two Nodes. When
bidirectional is false, the order of the two Nodes associated with NodeLink is interpreted as follows:
the first Node instance corresponds to the source node, and the second Node instance represents the
destination node. Therefore, the association /inked is ordered.

A Node and a NodeLink are containers for PropertyDef and Property. This means predefined
properties and user-defined properties can be attached directly to node instances and node link
instances.

5.6.1.1 Node and NodeLinks predefined properties

There are some predefined properties for Node and NodeLink (see Table 1). For that purpose, the
following implicit data types are introduced using IDL:

struct ProcessorType {
string family;
string type;
integer frequency;

24 ITU-T Rec. Z.130 (07/2003)

struct OSType {
string name;
string version;

Table 1/Z.130 — Predefined properties

. Predefined o,
Entity Property name Type Description Mandatory
Node Processor ProcessorType | the processor on the node Yes
Memory Integer the maximum amount of memory of | No
the node (in kilobytes)
(0N OSType the node operating system Yes
identification
NodelLink Bandwidth Integer The maximum bitrate of the link (in | No

kilobytes per second)

5.6.2 InstallationMap

Metamodel
+installation +target
X 0 installations 1 TargetEnvironment
InstallationMap -1l
logical : Boolean
0.1
Container
SoftwareComponentDef »| (fromIDL)
1 +theSoftwareComponentDef
softwareAssignments
0.n | O.n +theComponentAssignment
ComponentAssignment componentToNode Node
0.n 1 Z.130_F26
+theComponentAssignment +theNode
Figure 26/Z.130 — InstallationMap
Semantics

Once a TargetEnvironment is modelled, appropriate entities can be assigned to its nodes. There are
two kinds of entities: software units, representing the needed software in a node, and CO sets,
representing concrete instances of the CO types.

An installation map represents the way implementations are distributed on a target environment. It
consists of a set of installation assignments, which each associates one software component with

one node. An installation map refers to the nodes of a target environment. The representation of

installation map is the metaclass InstallationMap. The representation of installation assignment is
the metaclass ComponentAssignment (see Figure 26).

ITU-T Rec. Z.130 (07/2003)

5.6.3 InstantiationMap

Metamodel
+instantiation +arget
InstantiationMap instantiations TargetEnvironment
<> 0.n 1
0.1 \
COSetDef Container
initial instances : short (from IDL)
1 +theCOSetDef
coSetAssignments
0.0 1 0.n " +theCOSetAssignment
COSetAssignment coSetToNode Node
0.n 1 Z.130_F27
+theCOSetAssignment +theNode
Figure 27/7Z.130 — InstantiationMap
Semantics

An instantiation map represents the way concrete instances of CO types are distributed on a target
environment. It consists of a set of instantiation assignments, which associate a set of COs with one
node of the target environment. An instantiation map refers to CO types defined in the context of
an assembly and to the nodes of a selected target environment. The metaclass representing the
concept of instantiation map is InstantiationMap. The assignment of COs is represented by the
metaclass COSetAssignment (see Figure 27).

26 ITU-T Rec. Z.130 (07/2003)

5.6.4 Deployment plan
Metamodel

InstantiationMap

+thelnstantiationMap 0..1

instantiation

+theDeploymentPlan 0.
DeploymentPlan
*theDeploymentPlan 0.n O.n +theDeploymentPlan
installationMaps components
+thelnstallationMap Ln l.n +theSoftwareComponent
InstallationMap SoftwareComponentDef

Z.130_F28

Figure 28/Z.130 — Deployment plan

Semantics

A deployment plan is defined by the selection of one or more software components, containing
implementations for CO types, one or more installation maps, determining where to install
software components and zero or one instantiation map, determining where to create COs
(see Figure 28). The instantiation map and all installation maps of an eODL model have to refer to
the same target environment and the same assembly.

6 Bibliography
[11] OMG Document formal/00-03-02, OMG Unified Modeling Language Specification,
Version 1.3.

[12] W3C Recommendation (2000), Extensible Markup Language (XML) 1.0 (Second edition).
[13] OMG Document ad/01-02-29, UML Profile for MOF.

[14] OMG Document omg/ 00-11-05, Model Driven Architecture.

[15] IEEE Std. 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.

[16] SZYPERSKI (C.): Component Software — Beyond Object-Oriented Programming,
Addison-Wesley, ISBN: 0-201-17888-5.

ITU-T Rec. Z.130 (07/2003) 27

Annex A

Syntax of eODL

A.l Introduction

This annex provides the textual notation of eODL in EBNF style. The syntax for concepts
originating from OMG CORBA IDL 2.4.2 is taken from [5].

A2 Lexical conventions and grammar base

The definitions found in clause 3.1 (lexical conventions for IDL) and clause 3.4 (grammar of IDL)

of OMG CORBA 2.4.2 specification document are applied in the subsequent clauses.

A3 Computational view

A.3.1 Name spaces, data types, exceptions, operations and attributes

The metamodel is based on the CORBA-IDL data type system; the language eODL is based on
CORBA-IDL. These foundations provide a canonical mapping of metamodel data types, name
spaces and exceptions to eODL. Operational interaction elements of metamodel compliant
models are mapped onto CORBA-IDL operations and attributes in the same canonical way.

A.3.2 Signals and carried values

One of the extensions of the metamodel compared to the conceptual foundation of ITU-ODL is the
introduction of signal interaction elements. These interaction elements are based on the
definition of signals. Signals in eODL are defined based on the following grammar:

<signal_dcl> = "signal" <identifier> "{" <member_list> "}"
<member_list> n= <member>+
<member> n= <type_spec> <declarators>";"

A.3.3 Medium type, medium and media set

The semantics of stream interactions is left open in the conceptual foundation of ITU-ODL. The
metamodel precisely defines the semantics of continuous media interactions that replaces stream
interaction in ITU-ODL. The representation of the concepts medium, medium type and media set
defined within the metamodel in eODL is given by the following grammar:

<mediaset_dcl> n= "mediaset" <identifier> "{"" <member_list> "}"

<mediatype_dcl> "mediatype™ <identifier>

"medium" <identifier> "(" <scoped_name> { "," <scoped_name> }* ")"

<medium_dcl>

A.3.4 Interface types and interaction elements

An interface type in the metamodel combines interaction elements of different interaction kinds
within a single interaction context. For the syntactical representation of this concept, the interface
construct is extended by the notion of source, sink, produce and consume interaction elements in
addition to operational interaction elements.

<interface> n= <interface_dcl>

| <forward_dcl>

<interface_dcl> = <interface_header> "{" <interface_body> "}"

<forward_dcl> n= ["abstract”] "interface™ <identifier>

<interface_header> ::= ["abstract"] "interface™ <identifier> [<interface_inheritance_spec>]
<interface_body> n= <export> *

28 ITU-T Rec. Z.130 (07/2003)

<export> u= <type_dcl>";"
<const_dcl>";"
<except_dcl>";"

<attr_dcl>";"

<produce_dcl>";"
<consume_dcl>";"

I

I

I

| <°p_dc|> ";ll
I

I

| <source_dcl>";"
I

<sink_dcl>";"
<produce_dcl> n= "produce" <scoped_name> <identifier>
<consume_dcl> = "consume" <scoped_name> <identifier>
<source_dcl> n= "source" <scoped_name> <identifier>
<sink_dcl> = "sink" <scoped_name> <identifier>

A.3.5 Computational object type

ITU-ODL already allows the notion of computational object type (CO type). Through the precise
definition of the configuration view onto a CO type, the concept of the initial interface is
deprecated. The grammar for CO types from ITU-ODL is changed in eODL, and is defined by the
following rules:

<object_template> <object_template_header> "{" <object_template_export> "}"

<object_template_header> n= "CO" <identifier> [<object_inheritance_spec>]
<object_inheritance_spec> ::= ":" <scoped_name> {"," <scoped_name> }*
<object_template_export> n= <object_export>*

<object_export> n= <export>

<reqrd_interf_templates>";"
<suptd_interf_templates> ";"
<use_dcl>";"

<provide_dcl>";"

I

I

I

I

| <implements_dcl>";"
| <state_def_dcl>";"
| <constraint_dcl>";"
I

<property_list>

<reqrd_interf_templates> n= "requires" <scoped_name> { "," <scoped_name> }*
<supd_interf_templates> = "supports" <scoped_name> { "," <scoped_name> }*
A.3.6 Property

A property is used to define available or needed properties of model elements. The property notion
is used for target environment and software unit definition.

<property_list> u= { <property_dcl>";" }*

<property_dcl> u= "property" <property _name> "=" <property_value>
<property_name> u= <identifier>

<property_value> = <simple_property_value>

| <structured_property_value>

| <sequence_property_value>

ITU-T Rec. Z.130 (07/2003) 29

<simple_property_value> n= <string_literal>
| <integer_literal>

| <boolean_literal>

<structured_property_value> ::= "{" <property_assign>* "}"

<sequence_property value > ::= "[" <property_value>* "1"

<property_assign> n= <property_name> "=" <property_value>";"
<constraint_dcl> n= "constraint” <identifier> "{" <constraint_body> "}"
<constraint_body> n= "language" "=" <string_literal> "body" "=" <string_literal> ";"

A.3.7 External type

An external type is used by an identifier to refer to an externally provided data type.

<extern_type> n= "extern" "type" <identifier> <string_literal>

A4 Configuration view

A.4.1 Ports

The main concept of the configuration view onto COs is the port concept. The notation for single
and dynamic ports is defined by the following rules:

<object_export> u= <export>
<reqrd_interf_templates> ";"
<suptd_interf_templates> ";"

<use_dcl>";"

I

I

I

| <provide_dcl>";"
| <implements_dcl> ";"

| <state_def_dcl>";"

| <constraint_dcl>";"

| <property_list>

<use_dcl> n= "use" ["multiple”] <scoped_name> <identifier>

<provide_dcl> = "provide" ["multiple"] <scoped_name> <identifier>

A5 Implementation view

A.5.1 Artefacts and implementation elements

Artefacts abstract from concrete programming language constructs that implement the behaviour of
COs. The representation of artefacts and implementation elements in eODL is given by the
following rules:

<artefact> n= <artefact_dcl>

<artefact_forward_dcl>

<artefact_forward_dcl> n= "artefact"” <identifier>

<artefact_dcl> n= <artefact_header> "{" <artefact_body> "}"

<artefact_header> n= "artefact” <identifier> [<artefact_inheritance_spec>]
<artefact_inheritance_spec> ::= ":" <scoped_name> {"," <scoped_name> }*

<artefact_body> = <impl_elem_dcl>*

<impl_elem_dcl> = <identifier> "implements" <impl_case_dcl> <scoped_name>";"
<impl_case_dcl> = "supply" | "use"

30 ITU-T Rec. Z.130 (07/2003)

A.5.2 Implements Relations and Instantiation Policies

The implemented_by relation defines which artefact is used for the realization of a CO type
behaviour. This relation is defined in eODL in the context of CO type definitions:

<object_export> n= <export>
<reqrd_interf_templates> ";"
<suptd_interf_templates>";"
<use_dcl>";"

<provide_dcl>";"

I

I

I

I

| <implements_dcl>";"
| <state_def_dcl>";"

| <constraint_dcl>";"

| <property_list>

<implements_dcl> n= "implemented” "by" <artefact_with_policy>

{"," <artefact_with_policy> }*

<artefact_with_policy> n= <scoped_name> ["with" <instantiation_policy_dcl>]
<instantiation_policy_dcl> n= "ArtefactPool"

| "ArtefactPerRequest"

| "Singleton”

| "UserDefined"

A.5.3 State types

In many implementation cases an artefact realization needs to access state information of the COs
that it implements. State information of COs is defined in CO types given by the following rules:

<object_export> u= <export>
<reqrd_interf_templates> ";"
<suptd_interf_templates> ";"

<use_dcl>";"

I
I
I
| <provide_dcl>";"
| <implements_dcl>";"
| <state_def_dcl>";"
| <constraint_dcl>";"
| <property_list>
<state_def_dcl> n= "state" <scoped_name>
["provided” "to" "(" <provided_to_dcl> ")"]

<provided_to_dcl> = <scoped_name> { "," <scoped_name> }*

A.6 Deployment view

A.6.1 Softwarecomponent

A concrete implementation of a CO type is represented by a Software Unit Definition. Within a
Software Unit Definition multiple CO types can be realized. Software Units may depend on other
Software Units and/or require other properties and services from the final execution environment.

ITU-T Rec. Z.130 (07/2003) 31

<softwarecomponent_dcl> <softwarecomponent_header>
"{" <softwarecomponent_body> "}"
<softwarecomponent_header> n= "softwarecomponent” <identifier>

"realizes” <cotype_identifier_list>

<cotype_identifier_list> <cotype_identifier> { "," <cotype_identifier> }*

<softwarecomponent_body> <softwarecomponent_stmt>*

<softwarecomponent_stmt> "dependent"” "{" <softwarecomponent_list> "}" ";"

| "requires" "{" <property_list> "}" ";"

<softwarecomponent_list> <softwarecomponent_identifier>
{ "," <softwarecomponent_identifier> }*

<softwarecomponent_identifier> = <scoped_name>
A.6.2 Assembly

An assembly describes a set of interconnected components, and has no relation to a concrete
distribution in a distributed processing environment.

A.6.2.1 Assembly definition

The assembly definition contains definitions for all instance set definitions belonging to the
assembly and connection definitions for instances in the assembly.

<assembly_dcl> <assembly_header> "{" <assembly_body> "}"

<assembly_header> n= "assembly" <identifier>
<assembly_body> n= <assembly_stmt>*
<assembly_stmt> n= <instance_set_dcl>";"

| <connect_dcl>";"

| <constraint_dcl>";"

| <property_list>
A.6.2.2 Instance set definition
The instance set definition describes a non-empty set of instances of a CO type.
<instance_set_dcl> n= <identifier> ["(" <integer_literal> ")"] ":" <cotype_identifier>
<cotype_identifier> n= <scoped_name>
A.6.2.3 Connection definition

Connections between instances and instance sets are expressed with the connection definition.
Here, ports according to the CO type definition are interconnected, where one port acts as source
and the other as sink.

<connect_dcl> n= "connect" [<identifier>] "{" <connection_list> "}"

<connection_list> n= { <connection>";" } +

<connection> = <instance_set_identifier> "." <port_identifier> "="
<instance_set_identifier> "." <port_identifier>

<instance_set_identifier> = <scoped_name>

<port_identifier> n= <scoped_name>

32 ITU-T Rec. Z.130 (07/2003)

A.6.3 Installation map definition

An installation map definition describes an assignment of CO types to nodes of a target
environment. In a later installation action, one can refer to the installation map definition and trigger
the installation of software units to nodes.

<installation_map_dcl> u= <installation_map_header> "{" <installation_map_body> "}"
<installation_map_header> ::= "installation" <identifier>

"uses" "environment" <environment_identifier>
<installation_map_body> u= <install_stmt> *
<install_stmt> n= <softwarecomponent_identifier> "->" <node_identifier> ";"
<environment_identifier> n= <scoped_name>

A.6.4 Instantiation map definition

An instantiation map definition describes a concrete assignment of instance sets to nodes of the
specified target environment and assembly.

<instantiation_map_dcl> == <instantiation_map_header> "{" <instantiation_map_body> "}"
<instantiation_map_header> ::= "instantiation" <identifier> <instantiation_map_header_env>

<instantiation_map_header_ass>

<instantiation_map_header_env> ::= "uses" "environment" <environment_identifier>
<instantiation_map_header_ass> ::= "uses" "assembly” <assembly_identifier>
<assembly_identifier> ;= <scoped_name>

<instantiation_map_body> <assign_instance_stmt>*

<assign_instance_stmt> <instance_set_identifier_list> "->" <node_identifier> ";"

<instance_set_identifier> { "," <instance_set_identifier> }*

<instance_set_identifier_list> ::
A.6.5 Deployment action

A deployment action is a sequence of installation and instantiation actions to be executed during
deployment.

<deployment_action>

"deploy" "{n <dep|oyment_body> u}u n;u

llinsta"ll Il{ll <insta"_|ist> ll}ll ll;ll

<deployment_body>

"instantiate" "{" <instantiation_list> "}" ";"

A.6.5.1 Installation action

An installation action specifies an installation of a software unit onto an execution node in a target
environment.

<install_list> n= <install_member>*

<install_member> ;== <installation_map_identifier> ";"
<qualified_install_stmt>

<qualified_install_stmt> = <softwarecomponent_identifier> "->"

<environment_identifier> "." <node_identifier> ";"

<installation_map_identifier> :: <scoped_name>

A.6.5.2 Instantiation action

An instantiation action specifies an instantiation of a CO set on an execution node in a target
environment.

<instantiation_list> 1= <instantiation_member>*

ITU-T Rec. Z.130 (07/2003) 33

<instantiation_member> = <instantiation_map_identifier> ";"

| <qualified_assign_instance_stmt> ";"

<instantiation_map_identifier> n= <identifier>
<qualified_assign_instance_stmt> ::= <assembly_identifier> "." <instance_set_identifier>
"->" <environment_identifier> "." <node_identifier>

A7 Target environment

A target environment serves as a possible execution environment for assemblies. It reflects
structure and properties of that environment. An eODL textual syntax may contain more than one
target environment specification.

A.7.1 Environment definition

The environment definition describes a possible execution environment in terms of available nodes
and communication links.

<environment_dcl> 1= <environment_header> "{" <environment_body> "}"
<environment_header> n= "environment" <identifier>
<environment_body> = <environment_stmt>+
<environment_stmt> 1= <node_dcl> ";"
| <link_dcl> ";"

A.7.2 Node definition

A node definition reflects an identifiable execution node in the target environment, which can be
target for installation of CO types and instantiation of instance sets. Properties in the node
definition characterize facilities of the execution node.

<node_dcl> = "node" <identifier> "{" <property_list> "}"
A.7.3 Link definition

Communication links between execution nodes in the target environment are represented as link
definitions. Properties in the link definition are related to the characteristics and the kind of the
communication link.

<link_dcl> ;= <link_header> "{" <link_body> "}"
<link_header> n= "link" <identifier>

<link_body> = "node" <node_list> ";" <property_list>";"
<node_list> 1= <node_identifier> { "," <node_identifier> }*
<node_identifier> 1= <scoped_name>

A.8 Syntax of eODL

This clause gives the complete set of the production rules for eODL. It also includes all rules
inherited from the base syntax of OMG IDL 2.4.2.

<specification> 1= <definition>+ [<deployment_action>]
<definition> n= <type_dcl>";"

<const_dcl>";"

<except_dcl> ";"

<interface>";"

<object_template> ";"

<artefact>";"

34 ITU-T Rec. Z.130 (07/2003)

<module> ";"

<value>";"

<signal_dcl> ";"
<mediaset_dcl> ";"
<mediatype_dcl> ";"
<medium_dcl>";"
<assembly_dcl>";"
<softwarecomponent_dcl> ";"
<environment_dcl> ";"

<installation_map_dcl> ";"

<instantiation_map_dcl> ";"

<module> n= "module" <identifier> "{" <definition> + "}"

<object_template> n= <object_template_header> "{" <object_template_export> "}"
<object_template_header> = "CO" <identifier> [<object_inheritance_spec>]
<object_inheritance_spec> ::= ":" <scoped_name> {"," <scoped_name> }*
<object_template_export> = <object_export>*

<object_export> n= <export>

<reqrd_interf_templates> ";"
<suptd_interf_templates> ";"
<use_dcl>";"

<provide_dcl> ";"
<implements_dcl>";"
<state_def_dcl>";"

<constraint_dcl>";"

<property_list>

<reqrd_interf_templates> = "requires” <scoped_name> {"," <scoped_name> }*
<supd_interf_templates> = "supports" <scoped_name> { "," <scoped_name> }*
<use_dcl> = "use" ["multiple”] <scoped_name> <identifier>

<provide_dcl> "provide" ["multiple"] <scoped_name> <identifier>

<artefact> = <artefact_dcl>

| <artefact_forward_dcl>
<artefact_forward_dcl> = "artefact" <identifier>
<artefact_dcl> ::= <artefact_header> "{" <artefact_body> "}"
<artefact_header> ;= "artefact” <identifier> [<artefact_inheritance_spec>]
<artefact_inheritance_spec> n= ":" <scoped_name> {"," <scoped_name> }*
<artefact_body> = <impl_elem_dcl>*

<impl_elem_dcl> <identifier> "implements" <impl_case_dcl> <scoped_name> ";"

<impl_case_dcl> "supply” | "use"

<implements_dcl> "implemented” "by" <artefact_with_policy>
{"," <artefact_with_policy> }*

<artefact_with_policy> ::= <scoped_name> ["with" <instantiation_policy_dcl>]

ITU-T Rec. Z.130 (07/2003) 35

<instantiation_policy_dcl> = "ArtefactPool"
| "ArtefactPerRequest"
| "Singleton™

| "UserDefined"

<state_def_dcl> "state"” <scoped_name> ["provided" "to" "(" <provided_to_dcl> ")"]

<scoped_name> { "," <scoped_name> }*

<provided_to_dcl>

<interface> ;:= <interface_dcl>
| <forward_dcl>
<interface_dcl> n= <interface_header> "{" <interface_body> "}"
<forward_dcl> ::= ["abstract"] "interface" <identifier>
<interface_header> ::= ["abstract"] "interface" <identifier> [<interface_inheritance_spec>]
<interface_body> := <export>*
<export> = <type_dcl>";"

<const_dcl>";"
<except_dcl>";"

<attr_dcl>";"

I

I

I

| <op_dcl>";"
| <produce_dcl>";"

| <consume_dcl>";"

| <source_dcl>";"

| <sink_dcl>";"

<produce_dcl> n= "produce" <scoped_name> <identifier>
<consume_dcl> = "consume" <scoped_name> <identifier>

<source_dcl>

"source" <scoped_name> <identifier>

<sink_dcl> 1= "sink" <scoped_name> <identifier>
<interface_inheritance_spec> ::= ":" <interface_name> {"," <interface_name> } *
<interface_name> ::= <scoped_name>
<scoped_name> = <identifier>

| "::" <identifier>

| <scoped_name> "::" <identifier>

<signal_dcl> 1= "signal" <identifier> "{" <member_list> "}"

<mediaset_dcl> "mediaset” <identifier> "{" <member_list> "}"

<mediatype_dcl> "mediatype” <identifier>

<medium_dcl> "medium” <identifier> "(" <scoped_name> {"," <scoped_name> }* ")"

<value> u= (<value_dcl> | <value_abs_dcl> | <value_box_dcl> | <value_forward_dcl>)
<value_forward_dcl> ::= ["abstract"] "valuetype" <identifier>

<value_box_dcl> n= "valuetype” <identifier> <type_spec>

<value_abs_dcl> n= "abstract” "valuetype” <identifier> [<value_inheritance_spec>]

ll{ll <exp°rt>* ll}ll

<value_dcl> <value_header> "{" <value_element>* "}"

<value_header> :: ["custom”] "valuetype” <identifier> [<value_inheritance_spec>]

<value_inheritance_spec> n= [":" ["truncatable"] <value_name>

36 ITU-T Rec. Z.130 (07/2003)

{"," <value_name> }*]
["supports" <interface_name>

{"," <interface_name> }*]

<value_name> ::= <scoped_name>

<value_element> n= <export> | <state_member> | <init_dcl>

<state_member> n= ("public” | "private”) <type_spec> <declarators> ";"

<init_dcl> ::= "factory" <identifier> "(" [<init_param_decls>]")" ";"

<init_param_decls> ::= <init_param_decl> { "," <init_param_decl>}

<init_param_decl> := <init_param_attribute> <param_type_spec> <simple_declarator>
<init_param_attribute> = "in"

<const_dcl> u= "const" <const_type> <identifier> "=" <const_exp>
<const_type> := <integer_type>

<char_type>
<wide_char_type>
<boolean_type>

<floating_pt_type>

I

I

I

I

| <string_type>
| <wide_string_type>

| <fixed_pt_const_type>
| <scoped_name>

I

<octet_type>

<const_exp> n= <or_expr>

<or_expr> = <xor_expr> | <or_expr>"|" <xor_expr>
<xor_expr> u= <and_expr> | <xor_expr> "A" <and_expr>
<and_expr> u= <shift_expr> | <and_expr> "&" <shift_expr>
<shift_expr> n= <add_expr>

| <shift_expr> ">>" <add_expr>

| <shift_expr> "<<"<add_expr>
<add_expr> n= <mult_expr>

| <add_expr> "+" <mult_expr>

| <add_expr> "-" <mult_expr>
<mult_expr> n= <unary_expr>

| <mult_expr> "*" <unary_expr>

| <mult_expr>"/" <unary_expr>

| <mult_expr> "%" <unary_expr>

<unary_expr> <unary_operator> <primary_expr> | <primary_expr>

<unary_operator> b B o

<primary_expr> <scoped_name> | <literal> | "(" <const_exp> ")"

<literal> <integer_literal>
| <string_literal>
| <wide_string_literal>

| <character_literal>

ITU-T Rec. Z.130 (07/2003)

| <wide_character_literal>
| <fixed_pt_literal>

| <floating_pt_literal>
I

<boolean_literal>

<boolean_literal> ::= "TRUE"|"FALSE"
<positive_int_const> ::= <const_exp>
<type_dcl> ::= "typedef" <type_declarator>

| <struct_type>
| <union_type>
| <enum_type>
| "native" <simple_declarator>
<type_declarator> := <type_spec> <declarators>
<type_spec> ;1= <simple_type_spec>
| <constr_type_spec>
| <extern_type>
<extern_type> n= "extern" "type" <identifier> <string_literal>
<simple_type_spec> ::= <base_type_spec>
| <template_type_spec>
| <scoped_name>
<base_type_spec> ::= <floating_pt_type>
<integer_type>
<char_type>
<wide_char_type>

<boolean_type>

I
I
I
I
| <octet_type>
I <any_type>
| <object_type>
| <value_base_type>
<template_type_spec> ;:= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>
<constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

<declarators>

<declarator> { "," <declarator> } *

<declarator>

<simple_declarator> | <complex_declarator>

<simple_declarator> ::= <identifier>
<complex_declarator> 1= <array_declarator>
<floating_pt_type> ::= "float"

| "double"

38 ITU-T Rec. Z.130 (07/2003)

| "long" "double"

<integer_type> <signed_int> | <unsigned_int>

<signed_int> <signed_short_int>
| <signed_long_int>

| <signed_longlong_int>

<signed_short_int> ::= "short"
<signed_long_int> ::= "long"
<signed_longlong_int> = "long" "long"
<unsigned_int> = <unsigned_short_int>

| <unsigned_long_int>

| <unsigned_longlong_int>

<unsigned_short_int> "unsigned" "short"

<unsigned_long_int> == "unsigned” "long"
<unsigned_longlong_int> u= "unsigned" "long" "long"
<char_type> = "char"

<wide_char_type> := "wchar"

<boolean_type> n= "boolean”

<octet_type> = "octet"

<any_type> = "any"

<object_type> = "Object"

<struct_type> "struct” <identifier> "{" <member_list> "}"

<member_list> ::= <member>+
<member> := <type_spec> <declarators>";"
<union_type> ::= "union" <identifier> "switch" "(" <switch_type_spec> ")" "{" <switch_body> "}"
<switch_type_spec> 1= <integer_type>

| <char_type>

| <boolean_type>

| <enum_type>

| <scoped_name>
<switch_body> = <case>+
<case> n= <case_label>+ <element_spec> ";"
<case_label> = "case" <const_exp> ":"|"default" ":"

<element_spec> :: <type_spec> <declarator>

<enum_type> "enum” <identifier> "{" <enumerator> { "," <enumerator> } * "}"

<enumerator> = <identifier>

<sequence_type> n= "sequence" "<" <simple_type_spec>","
<positive_int_const> ">" | "sequence" "<" <simple_type_spec> ">"

<string_type> ::= "string" "<" <positive_int_const> ">" | "string"

<wide_string_type> ::= "wstring" "<" <positive_int_const> ">" | "wstring"

<array_declarator> <identifier> <fixed_array_size>+

<fixed_array_size> "[" <positive_int_const> "]"

ITU-T Rec. Z.130 (07/2003) 39

<attr_dcl> ::= ["readonly”] "attribute™
<param_type_spec> <simple_declarator> { "," <simple_declarator> }*
<except_dcl> ::= "exception” <identifier> "{" <member>* "}"
<op_dcl> ::= [<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls> [<raises_expr>] [<context_expr>]
<op_attribute> n= "oneway"

<op_type_spec> n= <param_type_spec> |"void"

<parameter_dcls> "(" <param_dcl> {"," <param_dcl>} * ")"|"(" ")"

<param_dcl> ::= <param_attribute> <param_type_spec> <simple_declarator>
<param_attribute> ::= "in"|"out"|"inout"
<raises_expr> := "raises" "(" <scoped_name>{"," <scoped_name>}*")"

<context_expr> :: "context" "(" <string_literal>{ "," <string_literal>} * ")"
<param_type_spec> ::= <base_type_spec>

| <string_type>

| <wide_string_type>

| <scoped_name>

<fixed_pt_type> n= "fixed" "<" <positive_int_const> ","<positive_int_const> ">"
<fixed_pt_const_type> = "fixed"
<value_base_type> ::= "ValueBase"

<assembly_dcl>::= <assembly_header> "{" <assembly_ body> "}"

<assembly_header> ::= "assembly" <identifier>

<assembly_body> <assembly_stmt>*

<assembly_stmt> <instance_set_dcI>";"
| <connect_dcl>";"
| <constraint_dcl>";"

| <property_list>

<instance_set_dcl> :: <identifier> ["(" <integer_literal> ")"] ":" <cotype_identifier>

<cotype_identifier> <scoped_name>

<connect_dcl> "connect" [<identifier>] "{" <connection_list> "}"

<connection_list> { <connection>";" } +

<connection> n= <instance_set_identifier> "." <port_identifier>
"=" <instance_set_identifier> "." <port_identifier>

<instance_set_identifier> 1= <scoped_name>

<port_identifier> u= <scoped_name>

<softwarecomponent_dcl> <softwarecomponent_header>
"{" <softwarecomponent_body> "}"
<softwarecomponent_header> n= "softwarecomponent” <identifier>

"realizes” <cotype_identifier_list>

<cotype_identifier_list> <cotype_identifier> { "," <cotype_identifier> }*

<softwarecomponent_body> <softwarecomponent_stmt>*

<softwarecomponent_stmt> "dependent" "{" <softwarecomponent_list> "}" ";"

40 ITU-T Rec. Z.130 (07/2003)

| "requireS" "{“ <property_|ist> u}u u;"

<softwarecomponent_list> ::= <softwarecomponent_identifier>

{ "," <softwarecomponent_identifier> }*
<softwarecomponent_identifier> u= <scoped_name>
<environment_dcl> ::= <environment_header> "{" <environment_body> "}"
<environment_header> n= "environment" <identifier>

<environment_body> :: <environment_stmt>+

<environment_stmt> ::= <node_dcl> ";"
| <link_dcl> ";"
<node_dcl> ::= "node"” <identifier> "{" <property_list> "}"

<pl'0perty_|ist> { <pr°perty_dc|> ";" }*

<property_dcl> <property_name> "=" <property_value>

<property_name> <identifier>

<property_value> <simple_property_value>

| <structured_property_value>

| <sequence_property_value>
<simple_property_value> ::= <string_literal>

| <integer_literal>

| <boolean_literal>
<structured_property_value> ::= "{" <property_assign>* "}"
<sequence_property value> := "[" <property_value>* "]"

<constraint_dcl>

"constraint" <identifier> "{" <constraint_body> "}"

<constraint_body> "language” "=" <string_literal> "body" "=" <string_literal> ";"
<property_assign> ::= <property_name> "=" <property_value>";"
<link_header> "{" <link_body> "}"

"link" <identifier>

<link_dcl>

<link_header>

<link_body> = "node" <node_list> ";" <property_list>";"
<node_list> = <node_identifier> { "," <node_identifier> }*
<node_identifier> ::= <scoped_name>
<installation_map_dcl> 1= <installation_map_header> "{" <installation_map_body> "}"
<installation_map_header> ::= "installation" <identifier>
"uses" "environment" <environment_identifier>

<installation_map_body> <install_stmt>*

<install_stmt> 1= <softwarecomponent_identifier> "->" <node_identifier> ";"
<environment_identifier> u= <scoped_name>

<instantiation_map_dcl> = <instantiation_map_header> "{" <instantiation_map_body> "}"
<instantiation_map_header> ::= "instantiation" <identifier>

<instantiation_map_header_env>

<instantiation_map_header_ass>

<instantiation_map_header_env> ::= "uses" "environment"” <environment_identifier>
<instantiation_map_header_ass> ::= "uses" "assembly” <assembly_identifier>
<assembly_identifier> n= <scoped_name>

ITU-T Rec. Z.130 (07/2003) 41

<instantiation_map_body>

<assign_instance_stmt>

<assign_instance_stmt>*

<instance_set_identifier_list> "->" <node_identifier> ";"

<instance_set_identifier_list> ::= <instance_set_identifier> { "," <instance_set_identifier> }*

<deployment_action> ::= "deploy” "{" <deployment_body> "}" ";

<deployment_body>

<install_list>

<install_member>

llinsta"ll ll{ll <inSta"_|iSt> Il}ll ll;ll

"instantiate" "{" <instantiation_list> "}" ";

;:= <install_member>*

n= <installation_map_identifier> ";

| <qualified_install_stmt>

<qualified_install_stmt> 1= <softwarecomponent_identifier> "->"
<environment_identifier> "." <node_identifier> ";"

<installation_map_identifier> ::= <scoped_name>

<instantiation_list> ::= <instantiation_member>*

<instantiation_member> n= <instantiation_map_identifier> ";"

| <qualified_assign_instance_stmt> ";"

<instantiation_map_identifier> n= <identifier>

<qualified_assign_instance_stmt>

B.1

<assembly_identifier>
<instance_set_identifier> "->"

<environment_identifier> <node_identifier>

Annex B

Metamodel to syntax mapping

Introduction

This annex describes the relation between the eODL metamodel and the concrete textual syntax of
eODL as defined in Annex A. The description is restricted to those metamodel concepts being
extensions of the CORBA metamodel. The relation between OMG IDL 2.4.2 textual syntax and
OMG CORBA metamodel are well defined by OMG and therefore not repeated here.

The metamodel is as specified in clause 5, and uses the graphical notation therein. The
corresponding alphanumeric syntax is provided in the box beneath the graph, followed by a textual

explanation.

42

ITU-T Rec. Z.130 (07/2003)

B.2 Signal and Signal Parameter

IDLType Container
(ﬁ.om IDL) (from IDL)
1 T+type
0..n
Typed
(from IDL)
CarryField ‘parameter SignalDef
identifier : string
0..n
Z.130_FB.1

Figure B.1/Z.130 — Signal and Signal Parameter

The (1), (2) and (3) in the concrete syntax are mapped to SignalDef/CarryField elements in the

model (see Figure B.1).

(1) <signal_dcl> =
(2) <member_list> := <member>+
(3) <member> =

The <identifier> from production (1) is the name of the SignalDef element in the model. Within the

<type_spec> <declarators>";"

"signal" <identifier> "{"" <member_list> "}"

<member_list> (2) all CarryField elements are listed, which take part in the parameter relation of
that SignalDef. The <member> (3) productions from concrete syntax are reflected as CarryField
elements in the model. <type_spec> here are the types in the model, which are bounded through the

Typed concept from IDL. For each declarator in <declarators> a CarryField element in the model

exists.

ITU-T Rec. Z.130 (07/2003)

43

B.3 Medium Type, Medium, Media Set

Contained
IDLType
(from IDL) / (from IDL)
+ype 1 MediumDef
0..n
0.n realized by
Typed thype 1.n
(from IDL)
MediatypeDef
A
MediumField ‘+media MediasetDef
identifier : string
l.n Z.130_FB2

Figure B.2/Z.130 — Medium, Media type, Mediaset

The productions (4), (5) and (6) in the concrete syntax are mapped to MediasetDef, MediatypeDef
and MediumDef elements in the model (see Figure B.2).

(4) <mediaset_dcl> ::= "mediaset” <identifier> "{" <member_list> "}"
(5) <mediatype_dcl>::= "mediatype” <identifier>
(6) <medium_dcl> := "medium” <identifier>

"(" <scoped_name> { "," <scoped_name> }* ")"

The <mediatype_dcl> (5) is represented as MediatypeDef element in the model; <identifier> is the
name for the Named concept of this element. With <medium_dcl> the concrete syntax express
MediumDef elements; here <identifier> again is the name for the Named concept. The
<scoped_name> listed in production (6) have to refer always to MediatypeDef and are represented in
the model as realized by relation to the MediumDef element. According to production
(4) <mediaset_dcl> is represented as MediasetDef element in the model with <identifier> as name.
Within the <member_list> in (4) all MediumField elements are listed, which take part in the media
relation of that MediasetDef. For the <member> in <member_list> (4) the <type_spec> has to refer to
MediatypeDef and all declarators in <declarators> should be simple.

44 ITU-T Rec. Z.130 (07/2003)

B.4 Consume and Produce

contains

+contents

+definedIn

Container Contained

(from IDL) o1 ~“— (from IDL)

IDLType .
(from IDL) InteractionElement

Z.130_FB.3
1
+type

ProduceDef| | ConsumeDef

0.n

Typed
(from IDL)

Figure B.3/Z.130 — Consume and Produce

The productions (7) and (8) in the concrete syntax are mapped to ProduceDef/ConsumeDef elements
in the model (see Figure B.3).

(7) <produce_dcl> ::= "produce” <scoped_name> <identifier>

(8) <consume_dcl> ::= "consume" <scoped_name> <identifier>

The <scoped_name> in both declarations refers to a SignalDef. This relation is reflected in the
model as the Typed/IDLType relation where ProduceDef/ConsumeDef are involved via inheritance
and the IDLType is a SignalDef according to the <signal_dcl>. ProduceDef/ConsumeDef are both
Named concepts from the metamodel and the <identifier> in (7)/(8) is mapped to the name attribute
of the model elements.

ITU-T Rec. Z.130 (07/2003) 45

B.5 Sink and Source

contains

+contents

- +definedIn
Container

(from IDL)

Contained
(from IDL)

\ J

0..1

IDLType :
(from IDL) InteractionElement

Z.130_FB.4
1
+type

SinkDef | | SourceDef

0.n

Typed
(from IDL)

Figure B.4/Z.130 — Sink and Source

The productions (10) and (9) in the concrete syntax are mapped to SinkDef/SourceDef elements in
the model (see Figure B.4).

(9) <source_dcl> := "source" <scoped_name> <identifier>

(10) <sink_dcl> n= "sink" <scoped_name> <identifier>

The <scoped_name> in both declarations refers to a MediasetDef. This relation is reflected in the
model as the Typed/IDLType relation where SinkDef/SourceDef are involved via inheritance and the
IDLType is a MediasetDef according to the <mediaset_dcl>. SinkDef/SourceDef are both Named

concepts from the metamodel and the <identifier> in (10)/(9) is mapped to the name attribute of the
model elements.

B.6 Interface Type

InterfaceDef +derived
EnhancedInterfaceDef (from IDL) 0..n

+base /\0..n

InterfaceDerivedfrom ;13 egs

Figure B.5/Z.130 — Interface Type

(11) <interface_dcl> ;== <interface_header> "{" <interface_body> "}"

(12) <interface_body>

<export> *

46 ITU-T Rec. Z.130 (07/2003)

(13) <export> <type_dcl>";"
| <const_dcl>";"

| <except_dcl>";"

| <attr_dcl>";"

| <op_dcl>"™;"

| <produce_dcl>";"
| <consume_dcl>";"
| <source_dcl>";"

| <sink_dcl>";"

The <interface_dcl> (11) production in concrete syntax is mapped to an EnhancedInterfaceDef
element in the model. <interface_body> (12) is handled in the same way as in IDL. In comparison to
InterfaceDef <export> (13) also allows <produce_dcl>, <consume_dcl>, <source_dcl> and
<sink_dcl> as contained elements. Mapping for this kind of declarations is defined above. If the
<interface_body> does not contain this kind of new elements, the <interface_dcl> is mapped to an
ordinary InterfaceDef (see Figure B.5).

B.7 CO Types, Supports and Requires

InterfaceDef
(from IDL)

supports

COTypeDef

Z.130_FB.6

Figure B.6/Z.130 — CO Types, Supports and Requires

The productions (14), (15), and (16) in the concrete syntax are mapped to COTypeDef elements in the
model (see Figure B.6).

(14) <object_template> ;1= <object_template_header> "{" <object_template_export> "}"
(15) <object_template_header>::= "CO" <identifier> [<object_inheritance_spec>]
(16) <object_inheritance_spec>::= ":" <scoped_name> { "," <scoped_name> }*

(17) <object_template_export> ::= <object_export>*
(18) <object_export> 1= <export>
<reqrd_interf_templates> ";"

<suptd_interf_templates> ";"

<provide_dcl>";"

I
I
| <use_dcl>";"
I
| <implements_dcl> ";
I

<state_def_dcl>";"

ITU-T Rec. Z.130 (07/2003) 47

| <constraint_dcl>";"

| <property_list>

(19) <reqrd_interf_templates> :: "requires” <scoped_name> { "," <scoped_name> }*

(20) <supd_interf_templates> :: "supports" <scoped_name> { "," <scoped_name> }*

Productions (14), (15) and (16) map to a COTypeDef element in the model, where <identifier> from
production (15) is the name for the Named concept of COTypeDef. As specialization of InterfaceDef
in production (16) all COTypeDef are listed which are in inheritance relation to the current
COTypeDef. Productions (17) and (18) express the contained concept for this COTypeDef. The use
of <export> in (18) is handled in the same way as for InterfaceDef in IDL. In addition
<reqrd_interf_templates> and <supd_interf_templates> are allowed contained elements for
COTypeDef. The <scoped_name> in productions (19) and (20) has to refer to InterfaceDef or
EnhancedlnterfaceDef elements in the model. These interface elements are in requires or supports
relation to the containing COTypeDef element.

B.8 Provided and Used Port

contains
Container +definedIn +contents Contained
(from IDL) Oon (from IDL)
0.1

InterfaceDef

(from IDL) +interfaceDef

1
PortDef
0.0 | multiple : boolean
EnhancedInterfaceDef

COTypeDef ProvidePortDef UsePortDef

Z130_FB.7

Figure B.7/Z.130 — Provided and Used Port

The productions (21)/(22) in the concrete syntax are mapped to UsePortDef/ProvidePortDef
elements in the model (see Figure B.7).

(21) <use_dcl> u= "use" ["multiple"] <scoped_name> <identifier>
(22) <provide_dcl> := "provide" ["multiple"] <scoped_name> <identifier>

Used and provided ports are expressed with productions (21) and (22). They result in UsedPortDef
and ProvidePortDef elements in the model. The <scoped_name> in both productions has to refer to
InterfaceDef or EnhancedInterfaceDef elements in the model. If "multiple" is used in the concrete
syntax, the multiple Boolean field in the current PortDef is true.

48 ITU-T Rec. Z.130 (07/2003)

B.9 Artefact and Instantiation Pattern

Con tainer /\ CO}'[tained

(from IDL) (from IDL)

+definedIn +contents
:\conmlns 0.n

value : string

Property

ArtefactDef

instantiationPolicy : InstantiationPolicy

Z130_FBS8

<<Enumeration>>
InstantiationPolicy

ARTEFACT PER REQUEST
ARTEFACT POOL
SINGLETON
USER_DEFINED

Figure B.8/Z.130 — Artefact and Instantiation Pattern

(23) <artefact> n= <artefact_dcl>

<artefact_forward_dcl>

(24) <artefact_forward_dcl> = "artefact" <identifier>

(25) <artefact_dcl> = <artefact_header> "{" <artefact_body> "}"

(26) <artefact_header> n= "artefact” <identifier> [<artefact_inheritance_spec>]
(27) <artefact_inheritance_spec> ::= ":" <scoped_name> { "," <scoped_name> }*

(28) <artefact_body> n= <impl_elem_dcl>*

Productions (23) and (24) are used to follow the syntax of IDL, where the <identifier> used in (24)
has a following ArtefactDef with this name. Productions (25), (26) and (27) are in relation to an
ArtefactDef element in model, where <identifier> from (26) is the name for the Named concept. All
listed <scoped_name> in (27) have to refer to ArtefactDef elements in the model, which are in
inheritance relation to the current ArtefactDef. As (28) shows, only ImplementationElementDef is
allowed to be contained in ArtefactDef (see Figure B.8).

B.10 Implements Relation

ArtefactDef implemented by COTypeDef
- (from Computational Structures)

instantiationPolicy : InstantiationPolicy

Z130_FB.9

Figure B.9/Z.130 — Implements Relation

(29) <implements_dcl> n= "implemented” "by" <artefact_with_policy>

{"," <artefact_with_policy> }*

(30) <artefact_with_policy> <scoped_name> ["with" <instantiation_policy_dcl>]

ITU-T Rec. Z.130 (07/2003) 49

(31) <instantiation_policy_dcl> := "ArtefactPool"

| "ArtefactPerRequest"

| "Singleton™

| "UserDefined"
Productions (29) and (30) are in relation to an ArtefactDef element in the model (see Figure B.9).
This expresses the implemented by relation in the model. The <scoped_name> in (30) has to refer to
an ArtefactDef element only. With production (31) in the concrete syntax, the instantiationPolicy

field of the containing ArtefactDef element is expressed. The keywords directly relate to the
enumeration values for the field.

B.11 Implementation Element

; . 0..n -
Container | | yofinedin contains +contents| Contained

(from IDL) @ (from IDL)

Y 0..1

InteractionElement
(from Computational Structures)

1
/ealizedElement
0..n

ArtefactDef ImplementationElementDef <<Enumeration>>
ImplementationCase

instantiationPolicy : InstantiationPolicy case : ImplementationCase

use
supply

Z.130_FB.10

Figure B.10/Z.130 — Implementation Element

(32) <impl_elem_dcl> <identifier> "implements" <impl_case_dcl> <scoped_name> ";"

(33) <impl_case_dcl> = "supply" | "use"

Productions (32) and (33) are in relation to an ImplementationElementDef element in the model
(see Figure B.10). The <identifier> in (32) is the name for the Named concept.
ImplementationElementDef can only be containted in ArtefactDef. With production (33) in the

concrete syntax, the case field of the containing ImplementationElementDef element is expressed.
The keywords directly relate to the enumeration values for the field.

50 ITU-T Rec. Z.130 (07/2003)

B.12 Software Component

dependent from
+supplier 0n +supplierDependency
| ..
COTypeDef realized_in ComponentDependencyDef
h SoftwareComponentDef] B
(from Computational Structures) 5 0 <> local_dependency : boolean
. .

+clientDependency

dependencies Z.130_FB.11

Figure B.11/Z.130 — Software Component

The production (34) in the concrete syntax is mapped to SoftwareComponentDef element in the
model (see Figure B.11).

(34) <softwarecomponent_dcl> ::= <softwarecomponent_header>
"{" <softwarecomponent_body> "}"
(35) <softwarecomponent_header>::= "softwarecomponent” <identifier> "realizes"

<cotype_identifier_list>

(36) <cotype_identifier_list> <cotype_identifier> { "," <cotype_identifier> }*

(37) <softwarecomponent_body> :: <softwarecomponent_stmt>*

(38) <softwarecomponent_stmt> :: "dependent” "{" <softwarecomponent_list> "}" ";"

| "I'equn'eS" Il{" <property_|ist> ll}ll u;

(39) <softwarecomponent_list> <softwarecomponent_identifier>

;" <softwarecomponent_identifier> }*

Productions (34), (35) and (36) are in relation to a SoftwareComponentDef element in the model,
where <identifier> from (35) is the name for the Named concept. All listed <scoped_name> in (36)
have to refer to COTypeDef elements in the model, which are in realized in relation to the current
SoftwareComponentDef. Productions (37), (38) and (39) are in relation to a SofiwareComponentDef
element in the model. All listed <scoped_name> in (36) have to refer to SoftwareComponentDef
elements in the model.

The <softwarecomponent_identifier> is a <scoped_name>, which refers only to
SoftwareDependencyDef model element.

ITU-T Rec. Z.130 (07/2003) 51

B.13

Assembly and Initial Configuration

contains

+assembly 0.n

+definedn +contents
Container 0.1 0n Contained
(from IDL) - (from IDL)
AssemblyDef PortDef

(from Computational Structures)

multiple : boolean

used_co_types
1 | +port
+coType 0..n ;
o +coType +coSet Cosune’ ConnectionDef
C . . eLLe]
(from Com uta}t,irc)mal Structures) instantiated_from - initial i
D! initial_instances : short +connection
1 0.n ports_to_connect
+coSet
+endPoint +endPoint
+endPoint 0.n [0.n/ 1.n
ConnectionEndPoint
Z.130_FB.12

Figure B.12/Z.130 — Assembly and Initial Configuration

(40) <assembly_dcl>
(41) <assembly_header>
(42) <assembly_body>

(43) <assembly_stmt>

(44) <instance_set_dcl>
(45) <connect_dcl>
(46) <connection_list>

(47) <connection>

<assembly_header> "{" <assembly_body> "}"
"assembly" <identifier>

<assembly_stmt>*

<instance_set_dcl>";"

<connect_dcl>";"

<constraint_dcl>";"

<property_list>

<identifier> ["(" <integer_literal> ")"] ":" <cotype_identifier>
"connect" [<identifier>] "{" <connection_list> "}"
{ <connection>";" } +

<instance_set_identifier> "." <port_identifier>

"=" <instance_set_identifier> "." <port_identifier>

Productions (40) and (41) are in relation to an AssemblyDef element in the model (see Figure B.12),
where <identifier> from (41) is the name for the Named concept. All listed <scoped_name> in (44)
have to refer to COTypeDef elements in the model, which are in realized in relation to the current
SoftwareComponentDef. The <cotype_identifier>, <instance_set_identifier> and <port_identifier> in
(45), (46) and (47) are <scoped_name>s, which refer only to COTypeDef, InstanceSetDef and

PortDef model elements.

52 ITU-T Rec. Z.130 (07/2003)

B.14

(48)
(49)
(50)

(1)

(52)
(53)
(54)
(55)
(56)

Constraints and Properties

Constraint

Property
Contained (from Computational Structures)

language : string
body : string

(fromIDL) |«

value : string

0.n +value

definition_association

1 +def
PropertyDef Typed
(from Computational Structures) (fromIDL)

Z.130_FB.13

Figure B.13/Z.130 — Constraints and Properties

<property_dcl> =
<property_name> n=
<property_value> n=
I
I
<simple_property_value>::=
I
I

<structured_property_value>

<sequence_property_value>::

<property_assign>
<constraint_dcl> n=

<constraint_body> n=

"property" <property_name> "=" <property_value>
<identifier>
<simple_property_value>
<structured_property_value>
<sequence_property_value>
<string_literal>
<integer_literal>
<boolean_literal>

n= "{" <property_assign>* "}"

= "[" <property_value>* "]"
<property_name> "=" <property_value>";"

"constraint" <identifier> "{" <constraint_body> "}"

"language" "=" <string_literal> "body" "=" <string_literal>";"

Productions (48) and (49) are in relation to a PropertyDef element in the model (see Figure B.13),

where the <identifier> from (49) is the name for the Named concept. Production (54) maps to a
Property element in the model. Productions (50), (51), (52) and (53) in the concrete textual syntax are

used to notate values for the value field.

Production (55) is in relation to a Constraint element in the model, where the <identifier> from (55)

is the name for the Named concept. Production (56) provides the values for the fields language and

body in the Constraint element.

ITU-T Rec. Z.130 (07/2003)

53

B.15 Target Environment, Node and NodeLink

TargetEnvironment

- _ | Comainer | SoftwareComponentDef
logical : Boolean (fromIDL) [

0.n +component

installed_software

0.n | ttarget

_ NodeLink 0.n linked 1.n
bidirectional : Boolean

Node

+ink +peer Z.130_FB.14

Figure B.14/Z.130 — Target Environment, Node and NodeLink

(57) <environment_dcl> = <environment_header> "{" <environment_body> "}"
(58) <environment_header> n= "environment" <identifier>
(59) <environment_body> n= <environment_stmt>+
(60) <environment_stmt> n= <node_dcl>";"
<link_dcl>";"
(61) <node_dcl> n= "node" <identifier> "{" <property_list> "}"
(62) <link_dcl> n= <link_header>"{" <link_body> "}"
(63) <link_header> = "link" <identifier>
(64) <link_body> n= "node" <node_list>";" <property_list>
(65) <node_list> = <node_identifier> { "," <node_identifier> }+

Productions (57), (58), (59) and (60) are in relation to a TargetEnvironment element in the model
(see Figure B.14), where the <identifier> in production (58) is the name for the Named concept.
Production (61) maps to a Node element in the model, where the <identifier> in production (61) is the
name for the Named concept. Productions (62), (63) and (64) are in relation to a NodeLink element in
the model, where the <identifier> in production (63) is the name for the Named concept. The
<node_identifier> in production (65) is a <scoped_name>, which has to refer to a Node model
element.

54 ITU-T Rec. Z.130 (07/2003)

B.16 InstallationMap

+installation +target
1 TargetEnvironment

InstallationMap | 07 installations

logical : Boolean

0.1
Container
Softwart eComponentDef (ﬁ‘om IDL)
1 +theSoftwareComponentDef
sofiwareAssignments
0.n |0O.n +theComponentAssignment
ComponentAssignment componentToNode Node
0.n 1 Z.130_FB.15
+theComponentAssignment +theNode

Figure B.15/7Z.130 — InstallationMap

(66) <installation_map_dcl>

<installation_map_header>

"{" <installation_map_body> "}"

(67) <installation_map_header> :: "installation" <identifier> "uses" "environment"

<environment_identifier>

(68) <installation_map_body> <install_stmt>*

(69) <install_stmt> 1= <softwarecomponent_identifier> "->" <node_identifier> ";"

Productions (66), (67) and (68) are in relation to an [ImstallationMap element in the model
(see Figure B.15), where the <identifier> in production (67) is the name for the Named concept. The
<environment_identifier> in production (67) is a <scoped_name>, which refers only to the
TargetEnvironment model element. The <softwarecomponent_identifier> and <node_identifier> in
production (69) are <scoped_name>s, which refer only to SofiwareComponentDef and Node
elements in the model.

ITU-T Rec. Z.130 (07/2003) 55

B.17 InstantiationMap

+instantiation +Harget
InstantiationMap instantiations TargetEnvironment
<> 0.n 1
0..1 |
COSetDef Container
@ initial instances : short (from IDL)
1 +theCOSetDef
coSetAssignments
0.n" 1 0.n " +theCOSetAssignment
COSetAssignment coSetToNode Node
0.n 1 Z.130_FB.16
+theCOSetAssignment +theNode

Figure B.16/Z.130 — InstantiationMap

(70) <instantiation_map_dcl> n= <instantiation_map_header>
"{" <instantiation_map_body> "}"
(71) <instantiation_map_header> n= "instantiation" <identifier>
<instantiation_map_header_env>

<instantiation_map_header_ass>

(72) <instantiation_map_header_env> := "uses" "environment" <environment_identifier>
(73) <instantiation_map_header_ass> u= "uses" "assembly" <assembly_identifier>

(74) <instantiation_map_body> n= <assign_instance_stmt>*

(75) <assign_instance_stmt> n= <instance_set_identifier_list> "->"

<node_identifier> ";"
(76) <instance_set_identifier_list> n= <instance_set_identifier>
{"," <instance_set_identifier> }*

Productions (70), (71), (72), (73) and (74) are in relation to an InstantiationMap element in the model
(see Figure B.16), where the <identifier> in production (71) is the name for the Named concept. The
<environment_identifier> in production (72) and <assembly_identifier> in production (73) are
<scoped_name>s, which refer only to TargetEnvironment and AssemblyDef elements in the model.
The <node_identifier> in production (75) is a <scoped_name>, which refers only to Node model
element, which is contained in the TargetEnvironment qualified by production (72). The
<instance_set_identifier>s in production (76) are <scoped_name>s, which refer only to COSetDef
model elements, which are contained in the AssemblyDef qualified by production (73).

56 ITU-T Rec. Z.130 (07/2003)

B.18 Deployment Plan

InstantiationMap
+thelnstantiationMap 0.1
instantiation
0..n
+theDeploymentPlan
DeploymentPlan
+theDeploymentPlan 0.n O.n +theDeploymentPlan
installationMaps components
+thelnstallationMap Ln l.n +theSoftwareComponent
InstallationMap SoftwareComponentDef
Z.130_FB.17
Figure B.17/Z.130 — Deployment Plan
(77) <deployment_action> n= "deploy" "{" <deployment_body> "}" ";"
(78) <deployment_body> u= "install" "{" <install_list> "}" ";" <instantiation_action>+
(79) <install_list> n= <install_member>*
(80) <install_member> n= <installation_map_identifier> ";"
(81) <instantiation_action> n= "instantiate" <instantiation_map_identifier> ";"

The production (77) <deployment_action> in concrete syntax maps to the DeploymentPlan element
in the model (see Figure B.17). The lists in the body of the <deployment_action>, which are built by
productions (78), (79), (80) and (81), express the InstallationMaps and instantiation relations in the
model. The <instantiation_map_identifier> and <installation_map_identifier> are <scoped_name>s,
which refer to InstallationMap and InstantiationMap model elements. Each of the listed identifiers
corresponds to a relation in the model.

B.19 Extern type

TypedefDef
(from IDL)

ExternType
© identifier : string

Z.130_FB.18

Figure B.18/Z.130 — Extern type

ITU-T Rec. Z.130 (07/2003) 57

(82) <extern_type> = "extern" "type" <identifier> <string_literal>";"

The production (82) <extern_type> in concrete syntax maps to the ExternType element in the model
(see Figure B.18). The value of the string literal is directly mapped onto the attribute identifier of
the model element. The <identifier> in production (82) is mapped onto the name attribute of the
concept Contained.

Annex C

Mapping to SDL-2000

Cl1 Introduction

The recommended ITU Extended Object Definition Language (ITU-eODL) provides the ability to
describe component-oriented distributed systems. In this annex, an ITU-eODL to SDL-2000
mapping is introduced. This mapping allows to generate SDL-2000 code based upon a description
given in ITU-eODL automatically. The textual phrase representation (SDL/PR) of SDL-2000 [8] is
used.

The mapping from ITU-eODL to SDL-2000 allows users to generate a SDL-2000 skeleton based on
a given eODL model automatically. The mapping supports almost all computational and
implementation concepts. The only significant exception is that the concept of continuous media is
not supported. Moreover, concepts of deployment and target environment are not supported.

The types of eODL are mapped to appropriate types in SDL-2000. Concepts that define aspects of
behaviour of types are mapped to automatically implemented SDL agents. Given a complete eODL
model, a mapping tool generates a SDL-2000 skeleton. The user has to implement the business
logic and is able to use COs defined in SDL-2000 as building blocks for a SDL-2000 system.

The mapping aims at supporting concepts as completely as possible even at the cost of producing
somewhat complicated structures in SDL-2000. For instance, multiple inheritance of COs is
supported at the cost of more complex structures and a less efficient behaviour, because SDL-2000
does not support multiple inheritance for agent types.

C.2 The package eodl

The mapping from ITU-eODL to SDL-2000 defines the SDL package eodl. It contains definitions
of data types that are used by models generated from eODL models. Types referred to as
predefined are defined in package eod1. See C.10 for a complete listing of package eod1.

The textual notation of eODL inherits its lexical rules from OMG CORBA-IDL. In CORBA-IDL,
unqualified identifiers begin with an alphabetic character followed by any number of alphabetic
characters, digits or underscores, where alphabetic characters are English characters 'A' to 'Z' in
both uppercase and lowercase. Moreover, identifiers in eODL are case-insensitive.

According to the lexical rules of SDL-2000, all (unqualified) eODL identifiers are SDL-2000
identifiers.

Qualified identifiers are dealt with in clause C.4 (Scoped names).

C3 Structure
Each ITU-eODL file is mapped onto two SDL packages:

. <name>_interface (referred to as "interface package"); and

. <name> definition (referred to as "definition package").

58 ITU-T Rec. Z.130 (07/2003)

where <name> is the name of the ITU-eODL specification (for instance, the file name), as depicted
in Figure C.1.

eODL
model
i transformed to !
v 4
SDL SDL
interface definition
package package
uses SDL uses
package
eodl
Z130_FC.1

Figure C.1/Z.130 — Transformation structure from an eODL model to SDL

The interface package contains all information that is relevant for both the client and the server side
of the system. In details, these are:

. data type definitions;
. constant definitions; and
. interface definitions representing regular interfaces and interfaces of COs.

The definition package contains skeletons for the server sides of the system. In fact, these are:
. block types representing CO types; and
i process types representing artefacts.

C4 Scoped names
Qualification is a concept that exists in both eODL and SDL-2000. Thus, the mapping is canonical:
qualified names in eODL are mapped onto qualified names in SDL.

CS5 Mapping of computational concepts
C.5.1 Modules

An eODL module is a container for all other eODL elements and opens a namespace. This concept
is mapped onto the package concept of SDL.

The SDL package an eODL module is mapped onto may be contained either in the SDL interface
package or in the SDL definition package or in both packages, depending on the entities that are
enclosed in the eODL module.

C.5.2 Type Definitions

The eODL typedef construct assigns a (different) name to a given type. The typedef construct is
mapped onto the syntype construct of SDL.

C.5.3 Predefined Data Types
C.5.3.1 Data Types for Integer Numbers

The eODL data types unsigned short, unsigned long and unsigned long long are mapped
onto the following SDL sorts. These sorts are defined in the package eodl.

ITU-T Rec. Z.130 (07/2003) 59

. The eODL type unsigned short is mapped onto an Integer sort ushort that ranges from

0to2'°—1.

. The eODL type unsigned long is mapped onto an Integer sort ulong that ranges from
0to2”—1.

. The eODL type unsigned long long is mapped onto an Integer sort ulong long that

ranges from 0 to 2%*— 1.

The eODL data types signed short, signed long and signed long long are mapped onto the
following SDL sorts.

. The eODL type signed short is mapped onto an Integer sort short that ranges from
2P 02"~ 1.

. The eODL type signed long is mapped onto an Integer sort long that ranges from —2°!
to 2’ — 1.

. The eODL type signed long long is mapped onto an Integer sort long long that

ranges from —2% to 28— 1.

C.5.3.2 Data Types for floating point numbers

The eODL floating point types float, double and long double are mapped onto the predefined
SDL sort Real. Note that Real is not IEEE 754 [15] complaint according to ITU-T Rec. Z.100,
whereas eODL floating point types are.

C.5.3.3 Data Types for characters

The eODL type char is mapped onto the predefined SDL sort Character. The eODL type wchar is
mapped onto the predefined SDL sort Natural.

C.5.3.4 Data Type boolean

The eODL type boolean is mapped onto SDL sort Boolean and the €ODL boolean constants TRUE
and FALSE are mapped onto the Boolean literals true and false, respectively.

C.5.3.5 Data Type octet
The eODL type octet is mapped onto SDL sort octet.

C.5.3.6 Data Type any

The eODL type any is mapped onto SDL sort any. It should be noted that the semantic of any in
eODL is the same as the semantics of any in SDL (see OMG IDL 2.4.2 section 3.10.1.7).

C.5.3.7 Type identification using the type attribute TypeCode

The attribute typecode of an instance of /DLType in the metamodel of eODL is not mapped onto
SDL. However, the type TypeCode is mapped onto SDL sort TypeCode in package SDL. The sort
TypeCode is an abstract data type. This means that there are no values of this data type according to
this mapping. It does not restrict implementations to use a derived concrete data type, though.

C.5.4 Constructed Data Types

C.5.4.1 Enumerations

Enumerations in eODL are mapped onto a SDL value data type that contains literals only.
C.5.4.2 Structures

Structures in eODL are mapped onto SDL value data types with a public structure data type
constructor. Members of the eODL structure are fields of the SDL data type.

60 ITU-T Rec. Z.130 (07/2003)

C.5.4.3 Unions

Unions in eODL are mapped onto SDL nested value data types. The outer value data type in SDL
has a public structure data type constructor with two fields:

1) a field tag that represents the discriminator of the eODL-union; and

2) a field union that represents the union itself.

The field union is of value data type <name-of-eODL-union> union. This type is declared within
the scope of the outer SDL union type. It has a public choice data type constructor and its choice list
represents the members of the eODL union.

C.5.44 Arrays
Arrays in eODL are mapped onto a SDL sort that inherits from predefined SDL sort vector.

Multidimensional arrays are mapped onto a SDL value data type that supports the operators Make,
Modify and Extract.

C.5.5 Value Types

Value types in eODL are mapped onto SDL object data types with a structure data type constructor.
All data members of the eODL value type are fields of the SDL data types.

If an eODL value type is declared abstract, the according SDL object data is declared abstract, too.
It has no data type constructor.

Single inheritance of value types in eODL is mapped onto single inheritance of data types in SDL.
Multiple inheritance is allowed for abstract value types in eODL. In SDL, this is accomplished by
copying the operation declaration from the base data types to the derived data type.

Value types in eODL can have factories (initialization elements). These are mapped onto operators
in SDL that return a value of the data type. If exactly one factory is declared, the Make operator is
automatically implemented by calling this factory. Otherwise, it is not exactly implemented.

If the eODL value type supports an interface, the operations of that interface become operations of
the SDL data type. Attributes in a supported interface are mapped onto a get/set-pair of operations
and a field carrying the attribute.

Boxed value types are mapped in the same manner as (concrete) value types.
C.5.6 Parameterized Data Types
C.5.6.1 Sequences

Sequences in eODL are mapped onto SDL sort vector if bounded or onto SDL sort Array
otherwise.

C.5.6.2 Character Strings
The eODL type string is mapped to the predefined SDL sort Charstring.

The eODL type wstring is mapped to the SDL sort wstring in package eodl. This sort inherits
from string<Naturals. It also adds an operation from Charstring to convert a Charstring
value to wstring value.

C.5.6.3 Fixed-point Numbers

The SDL package eodl contains a type fixedpt that is parameterized by a width and a scale
parameter. Both of these are of sort Natural. The semantics of the parameters are equal to the
semantics of the parameters in eODL.

ITU-T Rec. Z.130 (07/2003) 61

The type fixedpt defines operators "+","-","*""/" that adds, subtracts, multiplies and divides two
values of type fixedpt and returns a value of type fixedpt. Moreover, the operator "=" compares
to fixedpt values and returns a Boolean value: true, if both operands represent the same number
and false if both operands represent different numbers.

To convert a fixedpt value to a Real value, there is a method toreal. It is possible to construct a
fixedpt value from a Real value using a Make operator.

C.5.7 Constants, Data Type Literals and Constant Expressions
C.5.7.1 Constants

eODL constants are mapped onto SDL synonyms.

C.5.7.2 Data Type Literals
This clause lists literals of data types that are not mapped onto predefined SDL sorts.

C.5.7.2.1 Literals of Integer Types

Decimal and hexadecimal integer literals are supported in the SDL mapping: decimal literals are
supported by SDL Integer sort and hexadecimal integer literals can be written as literals of SDL
type Bitstring and then be converted to Integer. Octal integer literals have to be converted to
either decimal or hexadecimal literals.

C.5.7.2.2 Literals of character types

A literal of eODL type char is mapped such that it forms a legal literal of the predefined SDL sort
Character. If the eODL literal is a character with a value greater than 127, it cannot be mapped. It
is recommended to use the wchar type instead.

A literal of eODL type wchar is mapped such that it forms a legal Natural literal.

C.5.7.2.3 Literals of character strings

A literal of eODL type string is mapped such that it forms a legal literal of the predefined SDL
sort Charstring. If the eODL literal contains a character with a value greater than 127, it cannot be
mapped. It is recommended to use the wstring type instead.

A literal of eODL type wstring is mapped such that it forms a legal literal of SDL sort wchar. This
includes the possibility to convert a Charstring literal into a SDL wstring value.

C.5.7.2.4 Literals of fixed point number type
Fixed point values can only be created by converting real numbers.

C.5.7.3 Constant Expressions

Constant expressions in eODL are mapped to constant expressions in SDL. Both expressions have
to represent the same values.

C.5.8 Signal Types
Signal types are mapped onto value data types.
C.5.9 Exceptions

Both ITU-eODL and SDL support exceptions. The only difference is that SDL exceptions do not
name exception members. Exceptions are defined in the interface package.

62 ITU-T Rec. Z.130 (07/2003)

C.5.10 Interfaces and Interaction Elements

C.5.10.1 Interfaces
An eODL interface groups:

. operations;

. signal flows;

. continuous media interactions (streams);
. attributes.

Continuous media interactions are not mapped onto SDL.

An eODL interface 1 is mapped onto SDL interfaces exported I and imported I. These
interfaces are defined within a SDL package 1 in the interface package. The interface exported I
contains

. all operations; and

. consumed signal.
whereas the interface imported_ I contains produced signals.

This mapping is such that the exported <interface-name> interface type contains everything an
interface's client needs to invoke a service that the interface represents.

This mapping is detailed in the following clauses.

C.5.10.2 Operational interaction elements

An eODL operation is mapped onto a remote procedure that is declared in SDL in the interface
exported <interface names. Both concepts support at most one return type, parameters that can
be in, out and inout as well as exceptions. Instances of the concept "context" are not mapped.

C.5.10.3 Signal interaction elements

If an eODL interface declares an interaction element for consumption of a signal &, the
corresponding SDL interface exported <interface-names declares the use of signal A.

If an eODL interface declares an interaction element for production of a signal a, the
corresponding SDL interface imported <interface-names declares the use of signal a.

C.5.10.4 Attribute interaction elements

Attributes in eODL are mapped onto a pair of set/get remote procedures in the
exported <interface-name> SDL interface. If the attribute is read-only, the set remote procedure
is not generated.

C.5.10.5 Interface References

A SDL interface type implicitly defines a special sort of p1d. An instance of this p1d sort serves as
an interface reference. Moreover, this concept provides type safety: a client that has got such a p1d
can send signals to and invoke remote procedures on an agent that implements this interface. The
SDL interface type that serves as the interface reference type is exported <interface names.

C.5.10.6 Inheritance
Both ITU-eODL and SDL support multiple inheritance of interfaces. So, the mapping is canonical.

C.5.11 Computational Objects

In eODL, COs capsule state and behaviour. They provide interfaces (as interface references) to the
environment and may use interfaces (references) of other COs themselves.

ITU-T Rec. Z.130 (07/2003) 63

In SDL, a CO is a process type agent. Every CO has three gates: one incoming called initial, one
called provides and one called uses. These gates support several interfaces as discussed in the
following clauses. All three gates are connected to the environment of the process because they
constitute the interface between CO and environment.

The CO process type itself is defined in the definition package.

To create CO processes, a CO factory is defined. The CO factory is represented as a process type
defined in the same scope as the CO process type. Both the CO type itself and its factory are
process types defined within an agent type of kind block. This block is called SDL component. Note
that SDL. component as defined in this mapping is a concept of the computational view whereas
component as defined in this Recommendation is a deployment view concept. A SDL component
represents a block type with a well-defined interface.

C.5.11.1 The interface of a CO

Apart from providing and using interfaces, a CO type exposes its own interface. This interface is
made up of three components: the user-defined interface, the implicit component identifying
interface and the configuration interface.

The metamodel defines a CO type as an interface kind and restricts the contained interaction
elements to instances of AttributeDef. When regarding the CO type as an interface only, this is
called "user-defined interface".

To identify COs, every CO type has an implicit read-only attribute key of predefined type
ComponentKey. This attribute is the only interaction element in the predefined interface
ComponentBase.

The interface componentBase defines access procedure to the key of a CO. The key of a CO
implements its identity and needs to be unique at least with respect to the SDL component that the
CO is contained in. In package eodl there is declared an external procedure compute co key that
returns such a unique key. An implementation of this mapping has either to provide an
implementation of that procedure or to generate code that computes a unique key in another way.

The configuration interface defines procedures to support port operations. This interface is further
detailed in the clause on the mapping of ports. The configuration interface inherits from the
predefined interface configBase. ConfigBase declares generic port operations.

All these interfaces are defined in the interface package. They are contained within a package of the
name of the CO. The user-defined interface is called <CO-name> attributes. It inherits from the
predefined interface ComponentBase. The configuration interface is called <CO-name> config and
inherits from the predefined interface configBase. Finally, the interface <co-name> is defined that
simply inherits from <CO-name> attributes and <CO-name> config.

The interface <Co-name> is supported by the gate initial. A channel from the environment to the
CO process type is defined.

C.5.11.2 Supported interfaces

The provides gate references all interfaces that the CO supports. Through this gate, clients can
use the CO. The SDL interface exported <name> is supported in the direction from the
environment to the process type and the SDL interface imported <names> is supported in the
direction from the process type to the environment.

C.5.11.3 Required Interfaces

The uses gate references all interfaces that the CO requires and uses. Through this gate, the CO
(in the role of a client) can use other COs. The SDL interface imported <names is supported in

64 ITU-T Rec. Z.130 (07/2003)

the direction from the environment to the process type and the SDL interface exported <names is
supported in the direction from the process type to the environment.

C.5.11.4 Inheritance

Since SDL does not support multiple inheritance, inheritance is realized by delegation. This is
realized as follows:

1) The CO type user-defined interface and the CO type configuration interface inherits from
the corresponding interfaces of the super CO(s).

2) The gate provides supports all interfaces that are supported by the super CO(s). It also
supports all interfaces supported by the CO type itself.

3) The gate uses supports all interfaces that are required by the super CO(s). It also supports
all interfaces required by the CO type itself.

For the behaviour aspects of multiple inheritance, see C.7.2.5.

C.5.11.5 CO factories

To every CO type there is an associated CO factory <CO-name> factory. It implements the
factory interface. This interface is defined in a package <coO-name> factory that in turn is defined
in the same package where the interfaces of the CO are defined. The factory interface inherits the
predefined interface CoFactoryBase.

The interface CoFactoryBase contains the following procedures. The procedure get co type
returns the fully qualified name of the CO type. Qualification character is the decimal point. The
procedure generic_create instantiates the associated CO type. The procedure 1list cos returns
a list of values of cComponentkey of instantiated CQOs. The procedure resolve co takes a
ComponentKey value and returns the associated CO.

The factory interface declares a procedure create <CO-name> that creates the associated CO type.
The factory agent has a gate factory that supports the CoFactoryBase interface in incoming
direction.

C.5.11.6 Encapsulation of CO type and CO factory — SDL component

Both the CO type and CO factory type are defined in a block type <co-name>_co. This block type
is called SDL component. In every SDL component, there is an instance set factory of type
<CO-name> factory as well as an instance set cos of type <co-name>. The instance set factory
contains exactly one instance. The instance set cos contains initially no instance and no restriction
regarding the maximum number of instances. The initial, provides and uses gates of the CO
type are duplicated by the SDL component as well as the factory gate of the factory type and
those gates are connected by channels.

The SDL component is defined in the definition package. It represents a CO type.

C.6 Mapping of configuration view concepts

C.6.1 Provided ports

The concept of provided ports in eODL is a mechanism to hand out interface references that are
provided by a CO to the clients of this CO.

This concept is mapped onto a set of remote procedures that are declared in the configuration
interface of the CO.

A provided port foo of type bar is mapped onto the remote procedure provide foo that returns a
reference (P1d) to bar. If foo is of attribute single, every call to provide foo is required to return

ITU-T Rec. Z.130 (07/2003) 65

the same p1d. If foo is of attribute multiple, the user has to implement the semantic himself (see
C.7.4.3 on port management).

The configuration interface inherits from the predefined interface configBase. This interface
declares a procedure provide. It takes a string as an argument. The actual parameter in the
procedure call designates a port. If this port exists, a reference is returned in the form of a p1d. If
the port does not exist, a NoSuchPort exception is raised. The exception NoSuchPort is
predefined.

C.6.2 Used ports

The concept of used port in eODL is a mechanism that enables a CO to store interface references
of other COs.

This concept is mapped onto a set of remote procedures that are declared in the configuration
interface of the CO.

A used port foo of type bar is mapped onto the remote procedure 1ink foo that takes a reference
to bar as parameter. If the port is of attribute single and there is already a reference stored at this
port, the predefined exception AlreadyConnected is raised. Moreover, a remote procedure
unlink foo is declared that removes the stored reference from port foo. If there is no reference
stored at foo, the predefined exception NotConnected is raised. If the port is of attribute multiple,
a sequence of references is stored. The exception is AlreadyConnected never raised.

The predefined interface configBase that the configuration interface is inheriting from declares a
procedure 1ink and a procedure unlink. These procedures can be used in a generic way to store or
delete a reference at a used port. As their counterpart for provided ports, they take a string
argument that designates the port name. Again, if the port with the designated name does not exist,
a NoSuchPort exception is raised. The generic connect procedure takes a p1d as a second argument
and stores it at the designated port if possible or raises an AlreadyConnected otherwise. It uses
the same semantics as the port specific connect procedure to decide whether storing the reference is
possible. The generic disconnect procedure raises a NotConnected exception if there is no
reference stored at the designated port.

C.6.3 A SDL naming service

For a CO to dynamically discover other SDL components, a naming service is defined. The naming
service is implemented by the process type SDL Component Register Type in package eodl.
Each SDL system derived from an eODL model is required to have an instance set
SDL_Component Registry that contains exactly one instance of type
SDL_Component Register Type.

As soon as a SDL component is instantiated, it registers itself using the exported procedure
register SDLComponent. Any CO can query the naming service using query SDLComponent.
The key to look up a SDL component is the fully qualified name using the period character as
qualification character. The query procedure returns a reference to an SDL component instance of
the requested type. Using this reference, any client can request the factory of the SDL. component
for COs.

C.7 Mapping of implementation concepts

Figure C.2 depicts the internal structure of a SDL process representing a CO type in the form of an
overview with different optional SDL representations.

66 ITU-T Rec. Z.130 (07/2003)

S CO type
initial O—» Port management access yp
Interaction mgmt. Artefact mgmt.
provides (¢—»
A4
4 access
IMR X forwards > Data_access
interaction
P ! » Artefact access
uses (¢—> A 1
IMRY
Artefact Super Super
B co4 COB
Z.130_FC.2

IMR Interaction Management Representation

Figure C.2/Z.130 — SDL process representing CO type

A rectangle represents a SDL process. A dotted rectangle represents a concept rather than a process.
For instance, "interaction management" represents the concept of interaction management and
contains concrete interaction management processes as SDL processes.

In Figure C.3, a concrete example of a CO process type is presented in SDL graphical notation. The
procedures get key, provide SamplePort and provide make up the port management. The
processes interaction interfaceX and interaction interfacey correspond to "IMR X" and
"IMR Y" in Figure C.2. The process instance sets A and B are instances of artefacts. The instance
set base correspond to the box "Super CO A" in Figure C.2.

Process Type CO . .
get key provide SamplePort provide
(base : BaseCOType j

. v [B : ArtefactTypeB j
provides N
> (interaction_interfaceX j

A4
uses

> Interaction_interfaceY [ArtefactManagement j

Z130_FC.3

Figure C.3/Z.130 — Example of a CO process type

C.7.1 Data Access

Data of a CO is stored in a process data access that implements get/set procedures to allow
artefacts access to these data. The data consists of references used by port management and
interaction management.

ITU-T Rec. Z.130 (07/2003) 67

To provide a typed access to that data, a package <Cco-Name> data is declared in the definition
package. This data package contains an interface internal data that declares all get/set
procedures.

C.7.2 Artefacts and implementation elements

Artefacts are programming language constructs that contain implementation elements. In
SDL-2000 they are mapped onto referenced process types that are defined in the definition
packages. Artefacts are instantiated as an instance set within the CO process type it implements.

To access data in a CO, a channel from artefact instance set to the data access process is
defined. It carries all procedure calls to the data access process.

Implementation elements associate artefacts and interaction elements that the artefact
implements. They have no representation in SDL.

The implementation of an interaction element depends on its implementation case. There are two
implementation cases:

. supply case;
. use case.

Table C.1 gives the semantics of the interaction element kinds and implementation cases.

Table C.1/Z.130 — Semantics of interaction element kinds and implementation cases

Type of interaction element . Case deﬁl.ntlon of Semantic of implementation
. . implementation element
in design model . . elements
in design model
operation/attribute supply Implementation of operation
behaviour/supply access operations to
attribute
operation/attribute use Call to operation explicit possible
consume supply Implementation of signal consumption
consume use Implementation of signal sending
produce supply Implementation of signal sending
produce use Implementation of signal consumption

Similar to the mapping of interfaces as described in C.5.10 about interfaces and interaction
elements, each eODL interface is additionally mapped in the definition package onto a package of
the same name as the interface containing two SDL interfaces: exported <Interface-name> and
imported <Interface-name>. The mapping of the interaction elements is exactly such as
described in C.5.10 except for procedure and signal. Every procedure and every signal bear an
additional formal parameter of type p1d. This parameter is used to carry sender respectively
receiver information. See C.7.4 for further information. The signal types that these interfaces refer
to (bearing an additional formal parameter of type p1d) are defined in the definition package.

The following clauses contain further details on implementing interaction elements.

C.7.2.1 Implementing operation

In order to implement an operational interaction element of an interface, the artefact has to
contain an exported procedure that implements the procedure defined in the SDL interface
exported <Interface-Name> of the corresponding interface in the definition package (see last
clause). It therefore implements a procedure that contains an additional parameter of type p1d. The
artefact can use this parameter to get information about the original sender of the procedure call.

68 ITU-T Rec. Z.130 (07/2003)

C.7.2.2 Calling an operation from an artefact

Operation calls to other COs are realized as follows: the artefact sends a procedure call to that
interaction management representation which implements the imported <interface-name> of the
interface that contains the operation to call. This procedure is defined in the definition package and
contains an additional formal parameter of type p1d. The actual p1d parameter is used to
designate the receiver of the procedure call. The interaction management representation is
responsible for forwarding the procedure call to its receiver.

C.7.2.3 Sending a signal

Similar to the calling of a procedure, an artefact does not send a signal directly to its receiver, but
to the interaction management representation. The signal contains an additional formal parameter
that designates the receiver of the signal and is defined in the definition package. The interaction
management representation is responsible for forwarding the signal to its receiver.

C.7.2.4 Consuming a signal

In order to implement the consumption of a signal, the artefact needs to implement a signal handler
that accepts the corresponding signal defined in the definition package.

C.7.2.5 Inheritance of artefacts

Multiple inheritance is allowed for artefacts. Since in SDL there is no multiple inheritance allowed
for agent types, this is realized by delegation. Base artefacts are contained in the derived artefact
and the corresponding gates of each base artefact and the derived artefact are connected by a
channel. All procedure calls and signals that go to implementation elements that are not redefined
are directly passed from the environment of the derived artefact to the appropriate base artefact. If
a certain implementation element is being redefined in the derived artefact, the redefined
implementation element is defined in the derived artefact.

C.7.3 Artefact management and instantiation pattern

Artefact management is responsible for creating and managing instances of an artefact. Within a
CO, there is an instance set artefact <CO-name> for every artefact that implements the CO.
However, the instantiation pattern that is annotated in the model defines what artefact instance is
used in an interaction. The artefact management implements the instantiation pattern.

The artefact management is realized as a process artefactmanagement contained in the CO
process type. The instance set of that process contains exactly one instance. For every artefact type
that implements the given CO, there is an exported remote procedure get artefact <artefact-
name> that returns a reference to an instance of that artefact type. These procedures are
automatically implemented. Their implementation depends upon the instantiation pattern to be
used:

. Artefact by request: During every procedure call, a new instance is created and a reference
to it is returned;

. Artefact-Pool: A limited number of instances (a "pool") is created and a reference to one of
these instances is returned;

. Singleton: There is only one instance of the artefact, and a reference to it is returned;

. Userdefined: Since the semantics is defined by the user, the procedure cannot be

automatically implemented. Instead, a referenced procedure is declared and the user has to
implement it himself.

ITU-T Rec. Z.130 (07/2003) 69

C.7.4 Interaction management representation

In the mapping to SDL, the interaction management representation acts as a proxy between the
implementation elements and the environment of a CO. Each interaction element representation
handles both incoming and outgoing interactions (referred to the CQO).

Each interface that is required or supported by a CO is represented by a process in the scope of the
CO process type. This process implements each interaction element cither by forwarding the
interaction request:

. from the environment of the CO to the appropriate implementation element, thereby
respecting the artefact instantiating pattern by wusing the artefact management
representation; or

. from the implementation element to the environment of the CO.

There is one and only one process instance per interface. However, if there is a multiple port of
this type, then there is an exception to this rule. In this case, there is a certain number of instances.
The concrete number is subject to the implementation. Moreover, for each interaction management
process, there is an implicit CO-internal variable <process-name> reference that holds the p1d
of that process. If there is more than one instance reference to hold, a string of p1ds is used.

C.7.4.1 Interaction management representation implementing interaction from CO to
environment

For interactions to the environment the interaction management representation implements:
. all operation calls (only for required interfaces); and

. all signals that might be sent.

It supports the interface imported <interface-name> of the definition package in the incoming
direction (from artefacts) and imported <interface-name> of the interface definition in the
outgoing direction (to environment).

An operation (more specifically, the use of an operation) is implemented as follows:

1) The value of sender is saved to a temporary variable.

2) The reference to an artefact instance is acquired by calling the appropriate procedure of the
artefact management representation.

3) The procedure is called (the saved value of sender is added to the list of parameters) with
the reference to the artefact instance as destination.

4) If the operation has exceptions declared, those exceptions have to be catched and raised
again.

A sending of a signal is implemented as follows: when the interaction element representation
receives the specified signal (with an additional parameter that specifies the destination), it sends
the specified signal (without the additional parameter) to the destination.

C.7.4.2 Interaction management representation from environment to CO
For interactions in this direction, the interaction management representation implements:
. all operations declared in the interface; and

. all produced and consumed signals.

It supports the interface exported <interface-name> of interface package in the incoming
direction (from environment) and exported <interface-name> of definition package in the
outgoing direction (to artefacts).

An operation (more specifically, the supply of an operation to the environment) is implemented as
follows. When the procedure call is received, an artefact instance reference is acquired by calling

70 ITU-T Rec. Z.130 (07/2003)

artefact management. Then, a procedure call to that instance is made, supplying the value of the
sender variable as an additional parameter. If the operation has a return parameter, the return
value is returned to the sender. If an operation is raised, the interaction management representation
is raised again.

Consuming a signal is implemented as follows: when the interaction element representation
receives the signal from the environment, it sends the corresponding signal (with an additional
parameter that contains the value of the sender variable) to the artefact.

C.7.4.3 Port management

Port management is responsible for:

. creating interaction element representations;

. managing references to interfaces;

. implementing port-specific accessor operations; and
. implementing generic port accessor operations.

All these responsibilities are automatically implemented.

C.7.4.4 Port management representation

The port management is implemented by several exported procedures and the start transition of the
state machine of the CO type process.

C.7.4.5 Creating interaction management representations

The port management is responsible for creating processes representing interaction management.
This is realized in the start transition of the CO type process. After creation of the interaction
management process, the port management stores the references to each process in the data access
process using the variable interaction <interface-names.

C.7.4.6 Managing references to interfaces

For each port, there is an implicit CO-local variable port <port-names. The type of this variable
is either the reference type of the interface typing the port (when port attribute is single) or
string-of-PId (when port attribute is multiple). Port operations directly manipulate these internal
variables.

C.7.4.7 Implementing port-specific accessor operations
The particular operations are implemented as follows.
Single provided port: This operation returns the reference that is stored in the internal variable.

Multiple provided port: One reference out of a set of references has to be chosen. The procedure
choose provide <port-name> (defined within the port management process) is called to make
this decision. This procedure has to be implemented by the user and is therefore referenced.

Single used port: The operation 1ink stores a given reference in the data access process using the
variable port <port-names>. If there is already a reference stored there, an exception
AlreadyConnected is raised. The operation unlink assigns the Null value to the CO-local
variable. If the null value is already assigned to it, the operation raises an exception
NotConnected.

Multiple used port: The operation 1ink stores a given reference in a sequence of references. To
determine where exactly to place the reference within the sequence, the user has to implement the
procedure choose link <port-name> (defined within the port management process) that takes
the reference and has to store it somewhere in the sequence. Likewise, the disconnect operation
calls choose link <port-names to remove an appropriate reference.

ITU-T Rec. Z.130 (07/2003) 71

C.8 Omitting automatically generated behaviour

The eODL-SDL mapping presented so far is driven by the idea that the user only wants to
implement the business logic. However, if the user wants to generate production code out of SDL,
he or she might want to avoid automatically generated code and want to implement it on their own.

To enable this, the mapping provides the option to omit automatically generated code. In detail, this
means that the following entities are not generated:

. artefact management and artefact instance sets;
. interaction management representations; and
. port management.

In short, the CO process type does not contain any entities. The user can implement the CO process
type in any way he or she wants to.

C.9 Not mapped eODL concepts
The following eODL concepts are not mapped onto SDL-2000:

. any-type runtime identification;
. continuous media interaction;

. software components;

. assemblies;

. constraints and properties;

. target environment concepts;

. deployment plan.

C.10 Predefined eodl package

This is the complete contents of the package eodl.

package eODL;
syntype unsigned short = Integer constants (0:65535) ;
endsyntype;

syntype unsigned long = Integer constants (0:4294967295) ;
endsyntype;

syntype unsigned long long = Integer constants (0:18446744073709551615) ;
endsyntype;

syntype short = Integer constants (-32768:32767) ;

endsyntype;

syntype long = Integer constants (-2147483648:2147483647) ;

endsyntype;

syntype long long = Integer constants
(9223372036854775808:9223372036854775807) ;

endsyntype;

syntype char = Character endsyntype;
syntype wchar = Natural endsyntype;

syntype float = Real endsyntype;

syntype double = Real endsyntype;
syntype long double = Real endsyntype;

72 ITU-T Rec. Z.130 (07/2003)

value type wstring
inherits String < wchar >;
endvalue type wstring;

value type wstring bounded < synonym length Natural >
inherits Vector < wchar, lengths;
endvalue type wstring bounded;

abstract value type TypeCode;
endvalue type;

value type fixedpt < synonym Width Natural; synonym scale Natural

struct
private unscaled int Integer;
operators
Make (Real) -> this fixedpt;
Make (Integer) -> this fixedpt;
"+" (this fixedpt, this fixedpt) -> this fixedpt;
"-m (this fixedpt, this fixedpt) -> this fixedpt;
"k (this fixedpt, this fixedpt) -> this fixedpt;
v/"m (this fixedpt, this fixedpt) -> this fixedpt;
"=" (this fixedpt, this fixedpt) -> Boolean;
"s>" (this fixedpt, this fixedpt) -> Boolean;
methods

toReal -> Real;

OPERATOR Make (r Real) -> this fixedpt {
DCL retVal this fixedpt;
r := r * power(1l0,scale);
retVal.unscaled int := fix(r);
return retVal;

}

OPERATOR Make (n Integer) -> this fixedpt
DCL retVal this fixedpt;
retVal.unscaled int := n * power (10, scale);

return retval;

}

OPERATOR "+" (a this fixedpt, b this fixedpt) -> this fixedpt

DCL retVal this fixedpt;

retVal.unscaled int := a.unscaled int + b.unscaled int;

return retvVal;

}

OPERATOR "-" (a this fixedpt, b this fixedpt) -> this fixedpt

DCL retVal this fixedpt;

retVal.unscaled int := a.unscaled int - b.unscaled int;

return retVal;

}

OPERATOR "*" (a this fixedpt, b this fixedpt) -> this fixedpt
DCL retVal this fixedpt,
t Real;
t := float(a.unscaled int * b.unscaled int);
t := t / float(power(10,2*scale)) ;
retVal.unscaled int := Make(t);
return retVal;
}
OPERATOR "/" (a this fixedpt, b this fixedpt) -> this fixedpt
DCL retVal this fixedpt,
t Real;
t := float(a.unscaled int)/float (a.unscaled int);
retVal.unscaled int := Make(t);

return retVal;

ITU-T Rec. Z.130 (07/2003)

73

OPERATOR "=" (a this fixedpt, b this fixedpt) -> Boolean ({
return a.unscaled int = b.unscaled int;
}

OPERATOR ">" (a this fixedpt, b this fixedpt) -> Boolean ({
return a.unscaled int > b.unscaled int;
}

METHOD toReal -> Real {
return float (unscaled int)/float (power (10, scale));
}

endvalue type;

package ComponentModel;
value type ComponentKey;
struct
the key string;
methods
virtual equal (this ComponentKey) -> Boolean;
endvalue type;
interface ComponentBase;
procedure get key -> ComponentKey;
endinterface ComponentBase;

procedure generate CO_key -> ComponentKey external;

value type ComponentKeySeq
inherits String < ComponentKey >;
endvalue type;
interface CoFactoryBase;
procedure get co typ -> string;
procedure generic create -> ComponentBase;
procedure resolve CO (ComponentKey) -> ComponentBase;
procedure list cos -> ComponentKeySeq;
endinterface CoFactoryBase;

exception NotConnected;
interface ConfigBase;
procedure provide (in string) -> PId
raise NoSuchPort;
procedure link(in string, in PId)
raise AlreadyConnected, NoSuchPort;
procedure unlink (in string, in ComponentBase)
raise NotConnected, NoSuchPort;
endinterface ConfigBase;

endpackage ComponentModel;

interface SDLComponent Registry IF;
procedure register SDLComponent (in string, in PId);
procedure query SDLComponent (in string) -> PId;
endinterface;

process type SDLComponent Registry Type;
gate registry in with SDLComponent Registry IF;
channel nodelay
from env to this via registry;
endchannel;

value type registry store
inherits Array < string, Pid »>;
endvalue type registry store;

dcl store registry store := Make;

exported as <<package eodl>>register SDLComponent

74 ITU-T Rec. Z.130 (07/2003)

procedure register SDLComponent (in key string, in item Pid);
start;
task registry store := Modify(store,key,item);
return;

endprocedure;

exported as <<package eodl>>query SDLComponent
procedure register SDLComponent (in key string) -> Pid
raise InvalidIndex;

decl retval Pid;

start;

task retval := Extract (store,key);

return retval;
endprocedure;

endprocess type SDLComponent Registry Type;

endpackage eODL;

Annex D
e¢ODL metamodel XML representation

The metamodel was defined using UML. Its XML representation according to OMG XMI [6] is
intended to be read by tools and constitutes Annex D. The actual data is available with the software
package "Z.130 Annex D.xml".

NOTE - Z.130 Annex D.xml software package is available for free on the ITU-T formal language database
at http://www.itu.int/ITU-T/formal-language/xml/database/itu-t/z/z130/2003/.

Appendix I

Example: Dining Philosophers

1.1 Introduction

The purpose of this appendix is to show an example of how eODL can be used for design,
implementation and deployment of a distributed system.

The Dining Philosophers problem was first described by Edsger W. Dijkstra in 1965. It is a model
and universal method for testing and comparing theories on resource allocation. Dijkstra hoped to
use it to help create a layered operating system, by creating a machine which could be considered to
be an entirely deterministic automaton.

A configurable number of philosophers (processes) are sitting on a round table; a finite number of
forks (resources) are on the table. Philosophers perform actions — thinking, eating and sleeping.
They do not need any resources in order to think or sleep, but they need two forks each in order to
eat, one for the left hand and one for the right hand. Therefore, before starting to eat, a philosopher
tries to get the two forks, which are to be available next to him. This means that two neighbour
philosophers cannot eat at the same time.

ITU-T Rec. Z.130 (07/2003) 75

http://www.itu.int/ITU-T/formal-language/xml/database/itu-t/z/z130/2003/

An observer will be notified by all philosophers in the case of an activity change, i.e., at the time a
philosopher starts eating, starts thinking or starts sleeping. Furthermore, the critical state of getting
hungry is notified to the observer, as well.

1.2 Description

The problem consists of a finite set of processes which share a finite set of resources, each of which
can be used by only one process at a time, thus leading to potential deadlock and lifelock situations.

The finite set of processes, resources and the dynamic interactions between these make up a
distributed system. The task is to distribute the implementations of the resources and processes
across the target network. Furthermore, resources have to be connected with the processes.

The example scenario includes three different CO types:

. Philosopher.
. Fork.
. Observer.

The following steps have to be performed in order to design, implement and deploy the example:

Design phase

. Definition of a model of the example elements, comprising CO types, ports and interfaces.

. Definition of a model of the implementation structure.

Implementation phase

. Implementation of the artefacts according to the model (provide the business logic).

. Generation of software components according to the model.

. Definition of a model of the initial system structure (initial configuration) by the
definition of an assembly.

. Packaging of the software components and their related model information in order to
allow shipment of the implementation to customers.

Integration phase

. Delivery of the package to a customer.

. Modelling of the target environment of the customers premise.

. Determination of a proper assignment of software components contained in the package to
the target environment.

. Installation of assigned software components on identified target nodes.

. Establishment of the initial configuration by interconnection of all initial COs according

to the initial configuration.

In 1.3 the "Dining Philosophers" example is specified with eODL. In the specification, three
CO types are defined:

. The o_Philosopher object type represents a philosopher.
. The o_Fork object type represents a fork.
. The o _Observer object type represents an observer.

Clause 1.4 contains the mapping of the eODL model according to the mapping rules given in
Annex C. Only the concepts of computational, configuration and implementation views are mapped
as there is no mapping for concepts of the deployment view. The SDL model consists of the two
main packages:

76 ITU-T Rec. Z.130 (07/2003)

. the SDL interface package phil interface; and
. the SDL definition package phil definition.

1.3 Example in eODL

module DiningPhilosophers {
CO o Philosopher;
CO o_Fork;

interface i Fork;
interface i Philosopher;
interface i Observer;

exception ForkNotAvailable {};
exception NotTheEater {};

enum e ForkState {
UNUSED,
USED,
WASHED

}i

enum e Pstate {
EATING,
THINKING,
SLEEPING,
DEAD,
CREATED,
HUNGRY

}i

interface i Fork ({
void obtain fork (in o Philosopher eater)
raises (ForkNotAvailable) ;
void release fork (in o Philosopher eater) raises (NotTheEater);

}i

artefact a ForkImpl {
obtain fork implements supply i Fork::obtain fork;
release fork implements supply i Fork::release fork;

}i

CO o Fork {
supports i Fork;
provide i Fork fork;
implemented by a ForkImpl with ArtefactPool (2);

}i

interface i Philosopher ({
void set name (in string name) ;

artefact a PhilosopherImpl {
set name impl implements supply i Philosopher::set name;
pstate impl implements use i Observer::pstate;

}i

CO o Philosopher {
implemented by a PhilosopherImpl with Singleton;
supports 1 Philosopher;
requires i Fork, i Observer;
use I _observer observer;
use i Fork left;

ITU-T Rec. Z.130 (07/2003)

use i Fork right;

}i

valuetype Pstate {
public e PState state;
public string name;

public i Philosopher philosoph;

factory create (
in e PState state,
in string name,

ini Philosopher philo) ;

}i

signal PhilosopherState {
PState carry pstate;
}i

interface i Observer {

consume PhilosopherState pstate;

}i

artefact a_ Observer ({

pstate Impl implements supply i Observer::pstate;

}i

CO o Observer {

implemented by a Observer with Singleton;

supports i Observer;

provide i Observer observer;

Vi
}i

softwarecomponent Philosopher
realizes o_Philosopher, o_Observer
requires {
property os = [

{ name
{ name
1;
}i
}i
softwarecomponent Fork
realizes o_Fork;
{
requires {
property os = [
{ name
{ name

1;
}i
}i

assembly assl

p (3) o_Philosopher;
f1 o_Fork;
f2 o_Fork;

o : o_Observer;

connect cl {
p-left
p.right

fl.fork;
f2.fork;

78 ITU-T Rec. Z.130 (07/2003)

"WINNT"; version = "4,0,0,0"; },
"WIN98"; }
"WINNT"; version = "4,0,0,0"; },
"WIN98"; }

connect c2 { o.observer = p.observer;

}i

environment myenv 1 {
node nl

property os = { name = "WINNT";
property memory = 256;
node n2
property os = { name = "WINNT";
property memory = 128;
link 11 { node nl, n2; };
}i
installation installl
uses environment myenv 1 {
Philosopher ->n2;
Fork ->nl;
instantiation instantiatel
uses environment myenv 1
uses assembly assl
P, o -> n2;
£1, f2 -> nil;
deploy {
install { installl; };
instantiate { instantiatel; };
1.4 Example in SDL-2000
use eODL;
[* [\ */
/* data types and interface * /
/* needed by clients */

package phil interface;
package DiningPhilosophers;

/* exceptions */
exception ForkNotAvailable;
exception NotTheEater;

/* enumerations */
value type e ForkState;
literals
UNUSED, USED;
endvalue type;

value type e ForkState;
literals
EATING, THINKING, SLEEPING,
DEAD, CREATED, HUNGRY;
endvalue type;

/* interface i1 _Fork */
package i Fork;

}i

version =

version =

"4,0,0,0"; };

"4,0,0,0"; };

ITU-T Rec. Z.130 (07/2003)

79

/* declaration of exported procedures */
interface exported i Fork;
procedure obtain fork(in o_Philosopher)
raise ForkNotAvailable;
procedure release fork(in o Philosopher)
raise NoTheEater;
endinterface;

/* declaration of consumed signals */
interface imported i Fork;

/* no consumed signals declared */
endinterface;

endpackage;

/* definition of CO type o Fork */
use 1 Fork;
package o Fork;

/* contains attributes defined in CO type o Fork */
interface o Fork attributes

inherits <<package eODL/package ComponentModels>>ComponentBase;
endinterface;

/* port operations */
interface o Fork config
inherits <<package eODL/package ComponentModel>>ConfigBase adding;
/* provided port "fork" */
procedure provide_ fork -> exported_ i Fork;
endinterface;

/* combine config and attributes interfaces */
interface o Fork

inherits o Fork attributes, o Fork config;
endinterface;

/* declaration of interface of CO factory */
package factory;
interface o _Fork factory
inherits <<package eODL/package ComponentModels>>CoFactoryBase adding;
procedure create o Fork -> o Fork;
endinterface;
endpackage;

endpackage o Fork;

package i Philosopher;

80

interface exported_ i Philosopher;
procedure set name (in string);
endinterface;

interface imported i Philosopher;
endinterface;

endpackage;

use i1 Philosopher;
use o _Philosopher;
object type Pstate;

struct
public eodl state e PState; /* state -> eodl state ! */
public name string;
public philosoph exported i Philosopher;

operators

ITU-T Rec. Z.130 (07/2003)

/* create -> eodl create) */
eodl create(e PState, string, exported i Philosopher) -> Pstate;
make (e_PState, string, exported i Philosopher) -> PState;

operator eodl create(eodl state e PState,
name string,
philo exported i Philosopher) {
dcl retval Pstate;
retval.eodl state := eodl_state;
retval .name := name;
retval.philosoph := philo;
return retval;
}
operator make (eodl state e PState,
name string,
philo exported i Philosopher)
return eold create(eodl state,name,philo);

}

endobject type;

use i Philosopher;
package o Philosopher;

/* contains attributes defined in CO type o Fork */
interface o Philosopher attributes

inherits <<package eODL/package ComponentModels>>ComponentBase;
endinterface;

interface o _Philosopher config

inherits <<package eODL/package ComponentModel>>ConfigBase adding;
procedure link observer (exported i Observer) raise AlreadyConnected;
procedure link left (exported i Fork) raise AlreadyConnected;
procedure link right (exported i Fork) raise AlreadyConnected;
procedure unlink observer raise NotConnected;
procedure unlink left raise NotConnected;
procedure unlink right raise NotConnected;

endinterface;

interface o _Philosopher
inherits o Philosopher attributes, o Philosopher config;
endinterface;

use eODL / package ComponentModel;
package factory;
interface o Fork factory
inherits <<package eODL/package ComponentModel>>CoFactoryBase adding;
procedure create o Philosopher -> o Philosopher;
endinterface;
endpackage factory;

endpackage;
signal PhilosopherState (PState) ;
package i Observer;
interface exported i Observer;
use PhilosopherState;

endinterface;

interface imported i Observer;
endinterface;

endpackage;

ITU-T Rec. Z.130 (07/2003) 81

/* CO o Observer */
use i_Observer;
package o_Observer;

interface o Observer attributes
inherits <<package eODL/package ComponentModels>>ComponentBase adding;
endinterface;

interface o Observer config
inherits <<package eODL/package ComponentModel>>ConfigBase adding;
endinterface;

interface o Observer inherits o Observer attributes, o Observer config;
endinterface;

package factory;
interface o_Observer factory
inherits <<package eODL/package ComponentModels>>CoFactoryBase adding;
procedure create o Observer -> o _Observer;
endinterface;
endpackage;

endpackage;
endpackage DiningPhilosophers;

endpackage phil interface;

R Y
[* [\ %/
/* implementation package * /
use eODL;

package phil definition;

package DiningPhilosophers;

/* used to define operations implemented or */
/* used by artefacts */
package i Fork;
/* operations implemented by artefacts */
interface exported i Fork;
procedure obtain fork(in o Philosopher, in Pid)
raise ForkNotAvailable;
procedure release fork(in o Philosopher, in Pid)
raise NoTheEater;
endinterface;

/* operations used by artefacts */
interface imported i Fork;
endinterface;

endpackage;

/* state attributes */
package o Fork data;

interface internal data;
procedure get port fork -> exported i Fork;
procedure get interaction i Fork -> exported i Fork;
procedure set port fork (exported i Fork) ;
procedure set_interaction i Fork (exported i Fork) ;

82 ITU-T Rec. Z.130 (07/2003)

endinterface;
endpackage;

signallist a ForkImpl in =

procedure <<package phil definition/package DiningPhilosophers/

package i Forks>obain fork,

procedure <<package phil definition/package DiningPhilosophers/

package i Forks>release fork;

/* artefact: referenced definition */
use a_ PhilosopherImpl;
use o_Fork state;
process type a_ ForkImpl with
use (a_ForkImpl in);;
referenced;

/* SDL component o Fork CO */
use a_PhilosopherImpl;

use o_Fork state;

use a_ForkImpl;

block type o Fork CO;

/* gate definitions */
gate factory
in with <<package phil interface/package DiningPhilosopher/
package o Fork/package factory>>o Fork factory;
gate initial
in with (<<package phil interface/
package DiningPhilosopher/package o Forks>o Fork) ;
gate provides
in with <<package phil interface/
package DiningPhilosopher/package i1 Forkssexported i Fork;
out with <<package phil interface/
package DiningPhilosopher/package i Forks>imported i Fork;

/* defines the factory process */
process type o_Fork factory;
gate factory
in with <<package phil interface/package DiningPhilosopher/
package o Fork/package factorysso Fork factory; /* ; zuviel
channel nodelay
from this via factory to env;
endchannel;

/* stores component keys here */
dcl keys ComponentKeysSeq;

/* creates a CO and returns a reference to it */
exported as <<package phil interface/package DiningPhilosopher/
package o Fork/package factory>s>generic create
procedure generic create -> ComponentBase;
dcl key ComponentKey;
start;
create co_instance;
task key := call get key to offspring;
task keys := Modify(keys, key, offspring);
return offspring;
endprocedure;

/* creates a CO and returns a reference to it */

exported as <<package phil interface/package DiningPhilosopher/
package o Fork/package factorys>create o Fork

procedure create o Fork -> o Fork;

*/

ITU-T Rec. Z.130 (07/2003)

83

84

dcl key ComponentKey;
start;
create co_instance;
task key := call get key to offspring;
task keys := Modify(keys, key, offspring);
return offspring;
endprocedure;

/* returns name of CO type */

exported as <<package phil interface/package DiningPhilosopher/
package o Fork/package factorys>get co type

procedure get co type -> string;

start;
return 'DiningPhilosophers.o_Fork';
endprocedure;

/* returns reference to a CO */
exported as <<package phil interface/package DiningPhilosophers/
package o Fork/package factory>>resolve co
procedure resolve co(in key ComponentKey) -> ComponentBase
raise InvalidIndex;
dcl returnValue Pid;
dcl i Integer := 1;
start;
task returnvValue := Extract (keys, key);
return returnValue;
endprocedure;

/* returns a list of CO keys */
exported as <<package phil interface/package DiningPhilosophers/
package o Fork/package factorys>>list co
procedure list co -> ComponentKeySeq;
start;
return keys;
endprocedure;

endprocess type o Fork factory;

/% Nmmmmmmmm e Y

/* defines the CO type itself */
process type o_Fork;

/* gates used for comm. with environment */
gate initial
in with (<<package phil interface/package DiningPhilosopher
/package o Forks>o_ Fork) ;
gate provides
in with <<package phil interface/package DiningPhilosopher
/package i1 Forkssexported i Fork; /* NOS */
out with <<package phil interface/package DiningPhilosopher
/package i1 Forkss>imported i Fork;

/* encapsules state variables */
process data_access(1,1);

dcl reference interaction i Fork exported i Fork;
dcl reference port_ fork exported_ i_Fork;
dcl the key string;

exported as <<package philo definition/package DiningPhilosopher/
package o_Fork datas>get port fork
procedure get port fork -> exported i Fork;

ITU-T Rec. Z.130 (07/2003)

start;
return reference port fork;
endprocedure;
exported as <<package philo definition/package DiningPhilosopher/
package o Fork datas>get interaction i Fork
procedure get interaction i fork -> exported i Fork;
start;
return reference_interaction_ i Fork;
endprocedure;
exported as <<package philo definition/package DiningPhilosopher/
package o Fork datas>>set port fork
procedure set port fork(in ref exported i Fork);
start;
reference port_ fork := ref;
endprocedure;
exported as <<package philo definition/package DiningPhilosopher/
package o Fork datas>>set interaction i Fork
procedure set interaction i fork(in ref exported i Fork) ;
start;
reference interaction i Fork := ref;
endprocedure;

endprocess data_access;

/% Nmmmmmmmm e / */

/* channel artefact <--> state access */
channel nodelay
from artefact_a_ ForkImpl to data_accessor
with internal state;
endchannel;

/* in case of CO type inheritance an instance of this type */
/* is contained in an "eODL-inherited" type. The following */
/* gate is used to interface with the state access process */
/* of the inherited type. */
gate data accessor

in with internal data;
channel route state_ access nodelay

from
env via data accessor to data access;
endchannel;
J* [\ %/
/* manages artefact instances */

process artefactmanagement (1,1);

/* signals for delegation of artefact creations */
signal create a ForkImpl req;
signal create a ForkImpl res(Pid) ;
/* Artefact-Pool and pointer in pool */
dcl a ForkImpl seq PIdSeq := (. .);
dcl a_ForkImpl ptr Integer := 0;
/* returns an artefact instance reference */
/* implements a pool of size POOLSIZE */
/* creates a new artefact if pool is not yet of */
/* size POOLSIZE, otherwise returns the "next" */
/* artefact. */
exported procedure get artefact a ForkImpl -> PId;

dcl new _pid PId;

start;

decision length(a ForkImpl seq) ;

(0:1) -
/* delegate creation of artefact */

ITU-T Rec. Z.130 (07/2003) 85

86

output create a ForkImpl;
nextstate wait4response;

else:
task a ForkImpl ptr := a ForkImpl ptr+l;
task { if (a_ForkImpl ptr>length(a ForkImpl seq))

a_ForkImpl ptr := 1;
}i
return extract (a_ForkImpl seq, a ForkImpl ptr);
enddecision;
/* delegation continued ... */
state wait4response;
input create a ForkImpl res(new pid) ;
task a_ForkImpl seq := a ForkImpl seqg // new pid;
return offspring;
endprocedure;
start;
nextstate wait for signal;
/* create artefact instance for procedure */
state wait_for signal;
input create a ForkImpl req;
create artefact a ForkImpl;
output create a ForkImpl res (offspring) to sender;
nextstate -;
endprocess;

/% e Y

/* this is the interactionmanagementrepresentation */
/* for interface i fork. handles procedure calls */
/* from the environment */
process interaction i Fork(0,1);
exported as <<interface exported i Forks>>obtain Fork
procedure obtain fork(in eater o Philosopher)
raise ForkNotAvailable;

dcl p PId;

start;

task p := get artefact a ForkImpl;
call obtain Fork(who, sender) to p;
return;

exceptionhandler defhandler;
handle ForkNotAvailable;
ralise ForkNotAvailable;
endexceptionhandler defhandler;
endprocedure;
exported as <<interface exported i Fork>>release Fork
procedure release fork(in eater o Philosopher)
raise NotTheEater;

dcl p PId4;

start;

task p := get artefact a ForkImpl;
call obtain Fork (who,sender) to p;
return;

exceptionhandler defhandler;
handle NotTheEater;
raise NotTheEater;
endexceptionhandler defhandler;
endprocedure;
endprocess;

/* portmanagement */
exported as <<package phil interface/
package DiningPhilosophers>>provide fork
procedure provide fork -> exported i Fork;
start;
return call provide fork;

ITU-T Rec. Z.130 (07/2003)

endprocedure;
exported as <<package philo interface/
package DiningPhilosopher/package o Forks>>provide

procedure provide(s string) -> PId
raise NoSuchPort;
start;
decision s;
(='fork'): return call provide fork;
else: raise NoSuchPort;
enddecision;
endprocedure;

exported as <<package philo interface/
package DiningPhilosopher/package o Forks>>port connect

procedure port connect (s string) -> PId
raise NoSuchPort,AlreadyConnected;
start;
raise NoSuchPort;

endprocedure;

exported as <<package philo interface/
package DiningPhilosopher/package o Forks>sport disconnect
procedure port disconnect (s string) -> PId
raise NoSuchPort,NotConnected;
start;
raise NoSuchPort;
endprocedure;
/* get/set for internal variables */
exported as <<package philo definition/package DiningPhilosopher/
package o_Fork datas>get key
procedure get key -> ComponentKey;

start;
return the key;
endprocedure;
/* computes key and instantiates */
/* interactionmanagementrepresentations */
start;
task the key := <<package eODL>>generate key;

create interaction_ i Fork;

call set interaction i Fork (offspring) ;
task reference port fork := offspring;
nextstate initial state;

/* process instance set of artefact a ForkImpl */
process artefact a ForkImpl(0,2): a ForkImpl;

/* connects artefact and imr */
channel interaction i fork a fork impl nodelay
from interaction i Fork to artefact_a_ ForkImpl
with procedure <<package phil definition/package DiningPhilosophers

/package i Forks>obtain fork,
procedure <<package phil definition/package DiningPhilosophers
/package 1 Forks>release fork;

endchannel;

channel ch i Fork nodelay
from env via provides to interaction i Fork
with exported_i_Fork;
from interaction_ i Fork to env via provides
with imported i Fork;
endchannel;

channel ch initial nodelay
from env via initial to this

ITU-T Rec. Z.130 (07/2003)

87

with config o Fork;
endchannel;

endprocess type o Fork;

/% \mmmmmmmm e T Y
/* instance sets for factory and co type */
process factory(l,1): o Fork factory;
process cos(0,): o _Fork;

channel factory to co nodelay

from factory to co via initial;
endchannel;
channel initial_to_env nodelay

from env via initial to co via initial;
endchannel;
channel provides to _env nodelay

from cos via provides to env via provides;

from env via provides to cos via provides;
endchannel;
channel uses to env nodelay

from cos via uses to env via uses;

from env via uses to cos via uses;
endchannel;

endblock type o Fork CO;
JH \mmm / */

package i Philosopher;

interface exported i Philosoper;
procedure set name(in string, in Pid) ;
endinterface;

interface imported i Philosoper;
endinterface;

endpackage i_Philosopher;
package o Philosopher data;

interface internal data;
procedure get port observer -> i Observer;
procedure get port left -> i Fork;
procedure get port right -> i Fork;
procedure get interaction i Fork -> imported i Fork;
procedure get interaction i Observer -> imported i Observer;
procedure get interaction i Philosopher -> exported i Philosopher;
procedure set port observer (i Observer) ;
procedure set port left (i Fork) ;
procedure set port right (i Fork) ;
procedure set interaction i Fork (imported i Fork) ;
procedure set interaction i Observer (imported i Observer) ;
procedure set interaction i Philosopher (exported i Philosopher) ;
endinterface;

endpackage;
signallist a PhilosopherImpl :=

procedure <<package phil definition/package DiningPhilosophers/
package i Philosopher>>set name;

88 ITU-T Rec. Z.130 (07/2003)

process type a PhilosopherImpl with
use (a_PhilosopherImpl in);;
referenced;

block type o Philosopher CO;

gate factory
in with <<package phil interface/package DiningPhilosophers/
package o Philosopher/package factory>>o Philosopher factory;
gate initial
in with <<package phil interface/package DiningPhilosophers/
package o Philosopher>>o0 Philosopher;
gate provides
in with <<package phil interface/package DiningPhilosophers/
package i Philosophers>exported i Philosopher;
out with <<package phil interface/package DiningPhilosophers/
package i_Philosophers>>imported i Philosopher;
gate uses
out with <<package phil interface/package DiningPhilosophers/
package i Forkssexported i Fork,
<<package phil interface/package DiningPhilosophers
/package 1 _Observerssexported i1 Observer;

process type o Philosopher factory;
gate factory
in with <<package phil interface/package DiningPhilosophers/
package o Philosopher/package factory>>o Philosopher factory;
channel nodelay
from this via factory to env;
endchannel;

dcl keys ComponentKeysSeq;

exported as <<package phil interface/package DiningPhilosophers/
package o Philosopher/package factoryss>generic create
procedure generic create -> ComponentBase;
dcl key ComponentKey;
start;
create co_instance;
task key := call get key to offspring;

task keys := keys // key;
return offspring;
endprocedure;

exported as <<package phil interface/package DiningPhilosophers/
package o Philosopher/package factorys>create o Philosopher
procedure create o Philosopher -> o Philosopher;
dcl key ComponentKey;
start;
create co_instance;
task key := call get key to offspring;

task keys := keys // key;
return offspring;
endprocedure;

exported as <<package phil interface/package DiningPhilosophers/
package o Philosopher/package factorys>get co type
procedure get co type -> string;

start;
return 'o_ Philosopher';
endprocedure;

/* returns reference to a CO */

ITU-T Rec. Z.130 (07/2003)

&9

90

exported as <<package phil interface/package DiningPhilosophers/
package o Fork/package factoryssresolve co
procedure resolve co(in key ComponentKey) -> ComponentBase
raise InvalidIndex;
dcl returnValue Pid;
dcl i Integer := 1;
start;
task returnvalue := Extract (keys, key) ;
return returnValue;
endprocedure;

/* returns a list of CO keys */
exported as <<package phil interface/package DiningPhilosophers/
package o Fork/package factory>>list co
procedure list co -> ComponentKeySedq;
start;
return keys;
endprocedure;

endprocess type;

process type o_Philosopher;
gate initial
in with <<package phil interface/package DiningPhilosophers/
package o Philosopher>>o Philosopher;

channel ch initial nodelay
from env via initial to this with o Philosopher;
endchannel;

gate provides
in with <<package phil interface/package DiningPhilosophers/
package i_Philosophers>>exported i Philosopher;
out with <<package phil interface/package DiningPhilosophers/
package i Philosophers>>imported i Philosopher;
channel ch provides nodelay
from env via provides to interaction i Philosopher
with exported i Philosopher;
from interaction i Philosopher via provides to env
with imported i Philosopher;
endchannel;

gate uses
out with <<package phil interface/package DiningPhilosophers/
package i Forkssexported i Fork,
<<package phil interface/package DiningPhilosophers/
package i_Observers>sexported i Observer;

dcl the key string;

process data access(1,1);

dcl reference interaction i Philosopher exported i Philosopher;
dcl reference interaction i Fork imported i Fork;

dcl reference interaction i Observer imported i Observer;

dcl reference port observer exported i Observer := Null;
dcl reference port left exported i Fork := Null;
dcl reference_port_right exported i Fork := Null;

exported as <<package philo definition/package DiningPhilosophers/
package o Philosopher datas>>get port observer
procedure get port observer -> i Observer;
start;
return reference_ port observer;

ITU-T Rec. Z.130 (07/2003)

endprocedure;
exported as <<package philo definition/package DiningPhilosophers/
package o Philosopher data>>set port observer
procedure set port observer (ref i Observer) ;
start;
task reference port observer := ref;
endprocedure;
exported as <<package philo definition/package DiningPhilosophers/
package o Philosopher data>>get port left
procedure get port left -> i Fork;
start;
return reference port left;
endprocedure;
exported as <<package philo definition/package DiningPhilosophers/
package o Philosopher data>>set port left
procedure set port left(ref i Fork);
start;
task reference port_ left := ref;
endprocedure;
exported as <<package philo definition/package DiningPhilosophers/
package o Philosopher datas>get port right
procedure get port right -> i Fork;
start;
return reference port right;
endprocedure;
exported as <<package philo definition/package DiningPhilosophers/
package o Philosopher datas>>set port right
procedure set port right (ref i Fork);
start;
task reference port right := ref;
endprocedure;
exported as <<package philo definition/package DiningPhilosophers/
package o Philosopher datas>get_interaction i Fork
procedure get_interaction req i Fork -> imported i Fork;
start;
return reference interaction i Fork;
endprocedure;
exported as <<package philo definition/package DiningPhilosophers/
package o Philosopher datas>set_interaction i Fork
procedure set interaction i Fork(ref imported i Fork) ;
start;
task reference interaction i Fork := ref;
endprocedure;
exported as <<package philo definition/package DiningPhilosophers/
package o Philosopher data>>get interaction i Observer
procedure get interaction i Observer -> imported i Observer;
start;
return reference_interaction_i_ Observer;
endprocedure;
exported as <<package philo definition/package DiningPhilosophers/
package o Philosopher data>>set interaction i Observer
procedure set interaction i Observer (ref imported i Observer) ;
start;
task reference interaction i Observer := ref;
endprocedure;
exported as <<package philo definition/package DiningPhilosophers/
package o Philosopher data>>get interaction i Philosopher
procedure get interaction i Philosopher -> exported i Philosopher;
start;
return reference interaction i Philosopher;
endprocedure;
exported as <<package philo definition/package DiningPhilosophers/
package o Philosopher data>>set interaction i Philosopher
procedure set interaction i Philosopher (ref exported i Philosopher) ;

ITU-T Rec. Z.130 (07/2003)

91

start;
task reference interaction i Philosopher := ref;
endprocedure;

endprocess;

/* channel artefact <--> state access */
channel nodelay
from artefact a ForkImpl to data_ accessor
with internal state;
endchannel;

/* in case of CO type inheritance an instance of this type */
/* 1s contained in an "eODL-inherited" type. The following */
/* gate is used to interface with the state access process */
/* of the inherited type. */
gate data_ accessor

in with internal data;
channel route state access nodelay

from

env via data accessor to data_ access;

endchannel;

process artefactmanagement (1,1) ;
signal create a PhilosopherImpl regq;
signal create a_ PhilosopherImpl res (Pid) ;
dcl a_ PhilosopherImpl ptr PId := Null;
exported procedure get artefact a PhilosopherImpl;
dcl new pid PId;
start;
decision a PhilosopherImpl ptr;
(Null) :
output create a PhilosopherImpl;
nextstate wait4response;
else:
return a_ PhilosopherImpl ptr;
enddecision;

state wait4response;
input create_a PhilosopherImpl res(new pid) ;
task a PhilosopherImpl ptr := new pid;
return offspring;

endprocedure;

start;

nextstate wait for signal;

state wait_for signal;

input create a PhilosopherImpl;

create artefact a PhilosopherImpl;

nextstate -;

endprocess;

channel nodelay

from
artefact a PhilosopherImpl
to state accessor
with internal state;

endchannel;

process interaction i Philosopher(0,1);
exported as <<package phil definition/package DiningPhilosophers/
package i Philosopher>>set name
procedure set name (in name string);

92 ITU-T Rec. Z.130 (07/2003)

dcl p PId4;
start;
task p := get_artefact a PhilosopherImpl;
call set name (name,sender) to p;
return;
endprocedure;
endprocess;

process interaction i Fork(0,1) ;
exported as <<package phil definition/package DiningPhilosophers/
package i Forks>>release fork

procedure obtain fork(in eater o Philosopher, in server PId);
start;
call obtain fork(eater) to server;
return;

endprocedure;

exported as <<package phil definition/package DiningPhilosophers/
package i Forks>release fork
procedure release fork(in eater o Philosopher, in server PId);
start;
call obtain fork(eater) to server;
return;
endprocedure;
endprocess;

process interaction i Observer(0,1) ;
dcl carry PhilosopherState PhilosopherState;
dcl consumer PId;
start;
nextstate signal handler;
state signal handler;
input PhilosopherState (carry PhilosopherState, consumer) ;
output PhilosopherState(carry PhilosopherState) to consumer;
nextstate -;
endprocess;

process artefact a PhilosopherImpl(0,1): a PhilosopherImpl;

exported as <<package philo interface/package DiningPhilosophers/
package o Philosopher>>link observer
procedure link observer -> exported i_Observer;
start;
decision call get port observer;
(Null) : call set port observer (ref);
else: raise AlreadyConnected;
enddecision;
endprocedure;
exported as <<package philo interface/package DiningPhilosophers/
package o Philosophers>>unlink observer
procedure unlink observer -> exported i Observer;
start;
decision call get port observer;
(Null) : raise NotConnected;
else: call set port observer (ref) ;
enddecision;
endprocedure;
exported as <<package philo_ interface/package DiningPhilosophers/
package o Philosophers>>link left
procedure link left (ref imported i Fork)
raise AlreadyConnected;
start;
decision call get port left;

ITU-T Rec. Z.130 (07/2003) 93

94

(Null) : call set port left (ref);
else: raise AlreadyConnected;
enddecision;
endprocedure;
exported as <<package philo_ interface/package DiningPhilosophers/
package o Philosophers>>unlink left
procedure unlink left
raise NotConnected;

start;
decision call get port left;
(Null) : raise NotConnected;
else: call set port left (Null);
enddecision;
endprocedure;

exported as <<package philo interface/package DiningPhilosophers/
package o Philosopher>>link right
procedure link right (ref imported i Fork)
raise AlreadyConnected;
start;
decision call get port right;
(Null) : call set port right (ref);
else: raise AlreadyConnected;
enddecision;
endprocedure;
exported as <<package philo interface/package DiningPhilosophers/
package o Philosophers>>unlink right
procedure unlink right
raise NotConnected;

start;
decision call get port right;
(Null) : raise NotConnected;
else: call set port right (Null);
enddecision;
endprocedure;

exported as <<package philo interface/package DiningPhilosophers/
package o Philosopher>>link observer
procedure link observer (ref imported i Observer)
raise AlreadyConnected;
start;
decision call get port observer;
(Null) : call set port observer (ref) ;
else: raise AlreadyConnected;
enddecision;
endprocedure;
exported as <<package philo interface/package DiningPhilosophers/
package o Philosophers>>unlink observer
procedure unlink observer
raise NotConnected;

start;
decision call get port observer;
(Null) : raise NotConnected;
else: call set port observer (Null) ;
enddecision;
endprocedure;

exported as <<package philo interface/

package DiningPhilosopher/package o Philosopherss>provide

procedure provide(s string) -> PId

raise NoSuchPort;
start;
enddecision;

endprocedure;
exported as <<package philo interface/

package DiningPhilosopher/package o Philosopher>>port connect

procedure link (ref Pid, s string)

ITU-T Rec. Z.130 (07/2003)

raise NoSuchPort,AlreadyConnected;

start;

decision s;
(='observer'): call link observer (ref) ;
(='left'): return call link left (ref);
(='right'): return call link right (ref);
else: raise NoSuchPort;

return ;

endprocedure;

exported as <<package philo interface/
package DiningPhilosopher/package o Philosophers>port disconnect
procedure unlink (s string) -> PId
raise NoSuchPort,NotConnected;

start;
decision s;
(='observer'): call unlink observer;
(='left'): return call unlink left;
='right'): return call unlink right;
else: raise NoSuchPort;
return ;
endprocedure;
start;
task the key := <<package eODL>>generate key;

create interaction i Fork;

call set interaction i Fork(offspring) ;
create interaction i Philosopher;
call set interaction i Philosopher (offspring) ;
create interaction_ i_Observer;
call set interaction i Observer (offspring) ;
nextstate initial state;

exported as <<package phil interface/package DiningPhilosophers/
package o Philosophers>>get key
procedure get key -> ComponentKey;
start;
return the key;
endprocedure;

endprocess type;

process factory(l,1): o Fork factory;
process cos(0,): o Fork;

channel factory to co nodelay
from factory to co via initial;
endchannel;

channel initial to env nodelay
from co via initial to env via initial;
endchannel;

channel provides to env nodelay
from co via provides to env via provides;
endchannel;

channel uses_to_env nodelay
from co via uses to env via uses;
endchannel;

channel factory to env nodelay

from env via factory to factory;
endchannel;

ITU-T Rec. Z.130 (07/2003)

endblock type;

package o Observer data;

interface internal data;
procedure get interaction i Observer -> exported i Observer;
procedure get port observer -> exported i Observer;
procedure set interaction i Observer (exported i Observer) ;
procedure set port observer (exported i Observer) ;

endinterface;

endpackage;

signal PhilosopherState (PState, Pid) ;

signallist a Observer in =
<<package phil definition/package DiningPhilosopherss>>PhilosopherState;

/* artefact: referenced definition */
process type a_ ForkImpl with

use (a_Observer in);;

referenced;

block type o Observer CO;

gate factory
in with <<package phil interface/package DiningPhilosophers/
package o Observer/package factorys>o Observer factory;
gate initial
in with <<package phil interface/package DiningPhilosophers/
package o_Observer>>0_Observer;
gate provides
in with <<package phil interface/package DiningPhilosophers/
package i_Observer>s>exported i Observer;
out with <<package phil interface/package DiningPhilosophers/
package i Observer>>imported i Observer;

process type o Observer factory;
gate factory
in with <<package phil interface/package DiningPhilosophers/
package o Observer/package factory>>o Observer factory;
channel nodelay
from this via factory to env;
endchannel;

dcl keys ComponentKeysSeq;

exported as <<package phil interface/package DiningPhilosophers/
package o Observer/package factorys>generic create
procedure generic create -> ComponentBase;
dcl key ComponentKey;
start;
create co_instance;
task key := call get key to offspring;

task keys := keys // key;
return offspring;
endprocedure;

exported as <<package phil interface/package DiningPhilosophers/
package o Observer/package factorys>create o Observer
procedure create o Observer -> o_Observer;

96 ITU-T Rec. Z.130 (07/2003)

dcl key ComponentKey;

start;
create co_instance;
task key := call get key to offspring;

task keys := keys // key;
return offspring;
endprocedure;

exported as <<package phil interface/package DiningPhilosophers/
package o Observer/package factorys>get co type
procedure get co type -> string;

start;
return 'o Observer';
endprocedure;

exported as <<package phil interface/package DiningPhilosophers/
package o Observer/package factorys>resolve co
procedure resolve co(in key ComponentKey) raise InvalidIndex;
dcl returnvValue Pid;
dcl i Integer := 1;
start;
task returnvalue := Extract (keys, key) ;
return returnValue;
endprocedure;

exported as <<package phil interface/package DiningPhilosophers/
package o Observer/package factorys>list co
procedure list co -> ComponentKeySedq;
start;
return keys;
endprocedure;

endprocess type;

process type o _Observer;
gate initial
in with <<package phil interface/
package DiningPhilosopher/package o Observers>>o Observer;
gate provides
in with <<package phil interface/
package DiningPhilosopher/package o Observerssexported i Observer;
out with <<package phil interface/package DiningPhilosopher/
package o Observer>>imported i Observer;

dcl reference interaction i Observer exported i Fork;
dcl reference port observer exported i Fork;
dcl the key string;

process data_access(1,1);
exported as <<package philo definition/
package DiningPhilosopher/package o Fork datas>get port observer

procedure get port fork -> exported i Observer;
start;
return reference port observer;

endprocedure;

exported as <<package philo definition/

package DiningPhilosopher/package
o_Fork state>>get interaction i Observer

procedure get interaction i Observer -> exported i Observer;
start;
return reference interaction i Observer;

endprocedure;

endprocess;

ITU-T Rec. Z.130 (07/2003)

exported as <<package philo definition/
package DiningPhilosopher/package o Fork datas>set port observer
procedure set port fork(in ref exported i Observer) ;
start;
reference port observer := ref;
endprocedure;
exported as <<package philo definition/
package DiningPhilosopher/package
o_Fork state>>set interaction i Observer
procedure set interaction i Observer (exported i Observer) ;
start;
reference interaction i Observer := ref;
endprocedure;
endprocess;

gate state accessor
in with internal state;
channel route state_access nodelay
from
state accessor via state accessor to env;
endchannel;
channel nodelay
from artefact a Observer to state_accessor
with internal state;
endchannel;

process artefactmanagement (1,1);
signal create a Observer req;
signal create a Observer res(Pid) ;
dcl a Observer Pid := Null;
exported procedure get artefact a Observer;

dcl new pid PId;
start;
decision a ForkImpl;
(Null) :
output create a ForkImpl;
nextstate wait4response;
else:
return a Observer;
enddecision;

state wait4response;
input create a ForkImpl res(new pid);
task a ForkImpl seq := a ForkImpl seq // new pid;
return offspring;

endprocedure;

start;

nextstate wait_ for signal;

state wait for signal;

input create a Observerl;

create artefact a Observer;

nextstate -;

endprocess;

process interaction i Observer(0,1) ;

dcl p PId4;
dcl e PState pstate;
start;

nextstate wait4signal;

state wait4signal;

input PhilosopherState (pstate) ;

task p := get artefact_a Observer;

output PhilosopherState (pstate, sender) to p;

98 ITU-T Rec. Z.130 (07/2003)

nextstate -;
endprocess;

process artefact a Observer(0,1): a Observer;

exported as <<package philo interface/
package DiningPhilosopher/package o Observerss>provide observer
procedure provide observer -> exported i Observer;
start;
return call get provide observer to data_ access;
endprocedure;
exported as <<package philo interface/
package DiningPhilosopher/package o Observerss>provide

procedure provide(s string) -> PId
raise NoSuchPort;
start;
decision s;
='observer'): return reference port_observer;
else: raise NoSuchPort;
enddecision;
endprocedure;

exported as <<package philo interface/
package DiningPhilosopher/package o Observers>port connect

procedure port connect (s string) -> PId
raise NoSuchPort,AlreadyConnected;
start;
raise NoSuchPort;
endprocedure;

exported as <<package philo_ interface/
package DiningPhilosopher/package o Observerssport disconnect
procedure port disconnect (s string) -> PId
raise NoSuchPort,NotConnected;
start;
raise NoSuchPort;
endprocedure;

start;

task the key := <<package eODL>>generate key;

create interaction i Observer;

call set interaction i Observer (offspring) to data access;
call set port observer (offspring) to data_ access;
nextstate initial state;

channel ch provides nodelay
from env via provides to interaction i Observer
with exported i Observer;
from interaction_ i Fork to env via provides
with imported i Observer;
endchannel;

channel ch initial port nodelay
from env via initial to portmanagement
with config o Observer;
endchannel;

channel ch initial nodelay
from env via initial to this with imported o Observer;
from this via initial to env with exported o Observer;
endchannel;

exported as <<package phil interface/package DiningPhilosophers/

package o_Observer>>get key
procedure get key -> ComponentKey;

ITU-T Rec. Z.130 (07/2003) 99

start;
return the key;
endprocedure;
endprocess type;

process factory(l,1): o Observer factory;
process co(0,): o Observer;

channel factory to co nodelay
from factory to co via initial;
endchannel;

channel initial to_ env nodelay
from co via initial to env wvia initial;
endchannel;

channel provides_ to_env nodelay
from co via provides to env via provides;
endchannel;

channel uses to env nodelay
from co via uses to env via uses;
endchannel;

endblock type;
endpackage;
endpackage DiningPhilosophers;

endpackage phil definition;

Appendix 11

Information processing and tool support

1I.1 Introduction

The existence of a simple and complete metamodel provides a stable basis for software
development, even in complex application areas. In order to make the technique usable and in
particular to provide ease of use to developers, appropriate tool support is needed. In general, such
tools may support the modelling process itself, like an editor or/and simulator, or they may cover
more phases, like implementation and deployment on target platforms.

Due to the widespread variety of tasks to be supported by tools processing a single model from
beginning of specification to deployment to instantiation, it is expected that different tools will be
used in a tool chain. Thus, the issue of having an interchange format from one tool to another arises.
For this purpose at least one standardized notation exists by default. Due to the appliance of OMG
MOF, a XML-based representation is implied for the metamodel and thus can be used as an
interchange format between different tools.

The concrete definition of tools and their functionality cannot be subject to standardization.
Although, in practice, single tools may be arbitrarily designed or actually consist of tool chains, the
subsequent clauses subdivide tool issues that focus on certain aspects. Actual tools may span
several of those aspects.

100 ITU-T Rec. Z.130 (07/2003)

11.2 Modelling tool issues

Tools dealing with manipulation of model information may use an arbitrary representation of the
model with the only restriction that each representation has to have an appropriate metamodel
mapping. Such representations may range from programmatic languages to graphical notations, like
UML. Any tool supporting the processing of such a representation can be used and no restrictions
are made.

Since the metamodel covers almost the entire life cycle of software, there is a variety of possible
modelling issues, each certainly done with tool support. A model may be stepwise enlarged by
adding additional information in several iterations of modelling at different points of time. Thus, a
collection of already existing CO types may be used to specify an assembly later on, and a concrete
assignment of this assembly to a target platform may be given thereafter. In general, the
modelling issues are the following, ordered by time of application:

. CO type specification;

. assembly specification;

. implementation packaging (of software components);

. environment modelling;

. assignment of software components on a target platform,;
. instantiation of CO types' respective assemblies.

The specification of CO types according to the metamodel is the first step to take. After having
such types, assemblies may be defined. Each type may be used in an arbitrary number of
assemblies. The next step is to provide the implementation for the whole assembly containing the
implementation code for used CO types grouped in software components. The packaging of
implementations may be done by archive tools, like zip. After having all these provided, the model
in combination with the assembly implementation package can be shipped to be deployed at
customers' platforms. In order to deploy an assembly, the distribution of COs has first to be
determined. During this process, the model is enriched by additional information, which is mainly
related to the concrete environment and the special business case of a customer. The model of the
target environment and the model of the assembly are compared to find a proper assignment for
each CO to a node of the platform. This can be done manually, preferably by the system
administrator or semi-automatically by an automatic function providing a solution for the initial
configuration of the assembly. In either case, the requirements of each CO of the assembly on the
target environment have to be fulfilled. Where to get the environment model is not specified. It
could be obtained directly from the target environment, in which case a special architecture would
be required. As a result of the assignment step, the model contains information about where to
install which software component. The actual instantiation of CO types or assemblies may be part
of the model. An appropriate tool would have to keep the model up to date during runtime.

11.3 Generator tool issues

Tools providing support for the implementation of model entities may save a lot of efforts
compared to doing implementations manually. Code generation may be done for all implementation
languages which have a mapping from the metamodel. In general, the following information may
be generated from the model:

. skeletons for CO types;

. code for Quality of Service specifications.

The generated code may offer a framework for the implementer to serve as a basis for CO type
implementations. As long as no behavioural aspects are contained in the metamodel, no business
logic implementation may be generated automatically. Instead it has to be inserted by hand.

ITU-T Rec. Z.130 (07/2003) 101

114 Deployment tool issues

Deployment including instantiation of assemblies on a customer's target platform requires support
by proper tools, but also depends on appropriate support by the platform itself. Therefore, actual
tools for deployment are tightly coupled to concrete platform architectures that they have to
interact with. Tools cannot be independent as long as there is no standardized platform architecture
which they can collaborate with.

In general terms, the process of deployment comprises several tasks beginning from the
determination of a proper distribution, to the installation and instantiation of software. The common
deployment tasks may be handled by tools:

. environment modelling;

. assignment of software components on a target platform,;
. installation of software components on a target platform;
. assembly respective CO type instantiation;

. constraint and action processing.

The tasks of environment modelling and of assignment of software components to a target
platform were already mentioned in the context of modelling tool issues. In fact, during these tasks,
models are extended, which is the reason why they were handled there. Actually, these tasks are in
most cases expected to be performed as part of the deployment of an assembly. As already
mentioned, a platform may support tools to gain environment modelling information. Having done
these tasks and determined a proper assignment of software components to a target platform, the
next step is to upload and install the software on the specified node. After this, the assembly or
CO types may be instantiated with the help of another tool or platform capability. Lastly, at
runtime, constraints and actions contained in the model have to be processed by some means.

In Figure I1.1, the chain of tool issues is depicted from modelling to deployment.

102 ITU-T Rec. Z.130 (07/2003)

modelling
Editor

Code

code generation

generator

C++

i
Programming

Busines Logic

SDL

[
Specification
Busines Logic

planned
component
assembly

o)

)

instance of
CO Type A } ‘ CO Type A]

instance of
CO Type B J ‘ CO Type B

assembly specification (¢ODL)

modelling

{7

7
7

{7

generated user-provided
code code
packaging

Packaging tool

actual
platform

assembly
description

7
7

7

7

T

SDL-target
compilation
is platform-

dependent

environment specification .
Package (i.e., ZIP file
(cODL) ge ()
v
Deployment tool (assignment,
deployment installation, instantiation, ...)

Figure 11.1/Z.130 — Information processing

C++

Z.130_FIl1

ITU-T Rec. Z.130 (07/2003)

103

Series A
Series B
Series C
Series D
Series E
Series F
Series G
Series H
Series I

Series J

Series K
Series L

Series M

Series N
Series O
Series P
Series Q
Series R
Series S
Series T
Series U
Series V
Series X
Series Y

Series Z

SERIES OF ITU-T RECOMMENDATIONS

Organization of the work of ITU-T

Means of expression: definitions, symbols, classification

General telecommunication statistics

General tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant

TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks and open system communications

Global information infrastructure and Internet protocol aspects

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2004

	ITU-T Rec. Z.130 (07/2003) Extended Object Definition Language (eODL): Techniques for distributed software component...
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	3 Abbreviations
	4 Definitions
	5 Metamodel
	5.1 Definitions and conventions
	5.2 Naming and scoping
	5.3 Computational concepts
	5.4 Implementation concepts
	5.5 Deployment concepts
	5.6 Target environment concepts

	6 Bibliography
	Annex A – Syntax of eODL
	A.1 Introduction
	A.2 Lexical conventions and grammar base
	A.3 Computational view
	A.4 Configuration view
	A.5 Implementation view
	A.6 Deployment view
	A.7 Target environment
	A.8 Syntax of eODL
	Annex B – Metamodel to syntax mapping
	B.1 Introduction
	B.2 Signal and Signal Parameter
	B.3 Medium Type, Medium, Media Set
	B.4 Consume and Produce
	B.5 Sink and Source
	B.6 Interface Type
	B.7 CO Types, Supports and Requires
	B.8 Provided and Used Port
	B.9 Artefact and Instantiation Pattern
	B.10 Implements Relation
	B.11 Implementation Element
	B.12 Software Component
	B.13 Assembly and Initial Configuration
	B.14 Constraints and Properties
	B.15 Target Environment, Node and NodeLink
	B.16 InstallationMap
	B.17 InstantiationMap
	B.18 Deployment Plan
	B.19 Extern type
	Annex C – Mapping to SDL-2000
	C.1 Introduction
	C.2 The package eodl
	C.3 Structure
	C.4 Scoped names
	C.5 Mapping of computational concepts
	C.6 Mapping of configuration view concepts
	C.7 Mapping of implementation concepts
	C.8 Omitting automatically generated behaviour
	C.9 Not mapped eODL concepts
	C.10 Predefined eodl package
	Annex D – eODL metamodel XML representation
	Appendix I – Example: Dining Philosophers
	I.1 Introduction
	I.2 Description
	I.3 Example in eODL
	I.4 Example in SDL-2000
	Appendix II – Information processing and tool support
	II.1 Introduction
	II.2 Modelling tool issues
	II.3 Generator tool issues
	II.4 Deployment tool issues

