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ITU-T Recommendation Z.130 

Extended Object Definition Language (eODL): Techniques for 
distributed software component development – Conceptual 

foundation, notations and technology mappings 
 

Summary 
This Recommendation is intended for designers, implementers and managers of distributed systems, and tool 
developers that provide tools to support distributed systems. 

This Recommendation specifies the ITU Extended Object Definition Language (ITU-eODL). ITU-eODL is 
used for a component-oriented development of distributed systems from the perspectives of four different but 
related views: the computational, implementation, deployment, and target environment view. Each view is 
connected with a specific modelling goal expressed by dedicated abstraction concepts. Computational object 
types with (operational, stream, signal) interfaces and ports are the main computational view concepts which 
describe distributed software components abstractly in terms of their potential interfaces. Artefacts as 
abstractions of concrete programming language contexts and their relations to interfaces form the 
implementation view. The deployment view describes software entities (software components) in binary 
representation and the computational entities realized by them. The target environment view provides 
modelling concepts of  a physical network onto which the deployment of the software components shall be 
made. All concepts of the views are related to each other. These relations form an essential base for 
techniques and tools that support the software development process from design via implementation and 
integration to deployment. The test phase is not yet captured by this Recommendation.  

ITU-eODL is an extension of the ITU Object Definition Language ITU-ODL [1] and supersedes it. Originally 
ITU-ODL was designed as an extension of ODP-IDL [9] and defined computational concepts based on ODP 
[2], [3] terminology. eODL follows this principle. However, definitions are based on a metamodel rather 
than the traditional abstract syntax approach. One advantage of the metamodel approach is to allow use of 
MOF [4] related tools to support the automation of model transitions between the different software 
development phases. Another benefit is the ability to instantiate concrete models from the metamodel, which 
can be represented by existing languages, so an integration of different design approaches can be achieved.  

The readers of this Recommendation are expected to be familiar with IDL [5], UML [11], MOF. 

The definition of eODL is supported by the following annexes and appendices: 
• Annex A introduces a textual syntax for eODL, intended to be used for the representation of eODL 

specifications. The syntax is defined using the EBNF style. 
• Annex B defines the mapping between the eODL metamodel and the textual syntax defined in 

Annex A. 
• Annex C provides a mapping from eODL to ITU SDL-2000 that allows an eODL model to be 

automatically transformed to a SDL-2000 model.  
• Annex D contains a software reference to the XML representation [12] of the eODL metamodel 

according to the XML meta interchange format (XMI) [6]. It is provided in a separate file in order to 
allow import and processing of the eODL metamodel by UML tools. 

• Clause 1 provides an overview of how eODL is used by designers, implementers and managers of a 
distributed system. A concrete example of the use is given in Appendix I. 

• Appendix II describes the overall development process when using eODL and possible tool support. 

 

Source 
ITU-T Recommendation Z.130 was approved on 22 July 2003 by ITU-T Study Group 17 
(2001-2004) under the ITU-T Recommendation A.8 procedure. 
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FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of 
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing 
Recommendations on them with a view to standardizing telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, 
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on 
these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 
prepared on a collaborative basis with ISO and IEC. 

 

 

 

NOTE 

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a 
telecommunication administration and a recognized operating agency. 

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain 
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the 
Recommendation is achieved when all of these mandatory provisions are met.  The words "shall" or some 
other obligatory language such as "must" and the negative equivalents are used to express requirements. The 
use of such words does not suggest that compliance with the Recommendation is required of any party. 

 

 

 

 

INTELLECTUAL PROPERTY RIGHTS 

ITU draws attention to the possibility that the practice or implementation of this Recommendation may 
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, 
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others 
outside of the Recommendation development process. 

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, 
protected by patents, which may be required to implement this Recommendation. However, implementors 
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the 
TSB patent database. 

 

 

 

  ITU  2004 

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the 
prior written permission of ITU. 



 

  ITU-T Rec. Z.130 (07/2003) iii 

CONTENTS 
 Page 
1 Scope ............................................................................................................................  1 

2 References.....................................................................................................................  3 

3 Abbreviations................................................................................................................  3 

4 Definitions ....................................................................................................................  4 

5 Metamodel ....................................................................................................................  6 
5.1 Definitions and conventions ...........................................................................  7 
5.2 Naming and scoping .......................................................................................  8 
5.3 Computational concepts .................................................................................  9 
5.4 Implementation concepts................................................................................  19 
5.5 Deployment concepts .....................................................................................  21 
5.6 Target environment concepts .........................................................................  23 

6 Bibliography .................................................................................................................  27 

Annex A – Syntax of eODL.....................................................................................................  28 
A.1 Introduction ....................................................................................................  28 
A.2 Lexical conventions and grammar base .........................................................  28 
A.3 Computational view........................................................................................  28 
A.4 Configuration view.........................................................................................  30 
A.5 Implementation view......................................................................................  30 
A.6 Deployment view............................................................................................  31 
A.7 Target environment ........................................................................................  34 
A.8 Syntax of eODL..............................................................................................  34 

Annex B – Metamodel to syntax mapping...............................................................................  42 
B.1 Introduction ....................................................................................................  42 
B.2 Signal and Signal Parameter...........................................................................  43 
B.3 Medium Type, Medium, Media Set ...............................................................  44 
B.4 Consume and Produce ....................................................................................  45 
B.5 Sink and Source..............................................................................................  46 
B.6 Interface Type.................................................................................................  46 
B.7 CO Types, Supports and Requires..................................................................  47 
B.8 Provided and Used Port ..................................................................................  48 
B.9 Artefact and Instantiation Pattern...................................................................  49 
B.10 Implements Relation.......................................................................................  49 
B.11 Implementation Element ................................................................................  50 
B.12 Software Component ......................................................................................  51 
B.13 Assembly and Initial Configuration ...............................................................  52 
B.14 Constraints and Properties..............................................................................  53 
B.15 Target Environment, Node and NodeLink .....................................................  54 
B.16 InstallationMap...............................................................................................  55 



 

iv ITU-T Rec. Z.130 (07/2003) 

 Page 
B.17 InstantiationMap.............................................................................................  56 
B.18 Deployment Plan ............................................................................................  57 
B.19 Extern type......................................................................................................  57 

Annex C – Mapping to SDL-2000...........................................................................................  58 
C.1 Introduction ....................................................................................................  58 
C.2 The package eodl............................................................................................  58 
C.3 Structure .........................................................................................................  58 
C.4 Scoped names .................................................................................................  59 
C.5 Mapping of computational concepts ..............................................................  59 
C.6 Mapping of configuration view concepts .......................................................  65 
C.7 Mapping of implementation concepts ............................................................  66 
C.8 Omitting automatically generated behaviour .................................................  72 
C.9 Not mapped eODL concepts ..........................................................................  72 
C.10 Predefined eodl package.................................................................................  72 

Annex D – eODL metamodel XML representation.................................................................  75 

Appendix I – Example: Dining Philosophers ..........................................................................  75 
I.1  Introduction ....................................................................................................  75 
I.2  Description .....................................................................................................  76 
I.3  Example in eODL...........................................................................................  77 
I.4  Example in SDL-2000....................................................................................  79 

Appendix II – Information processing and tool support ..........................................................  100 
II.1 Introduction ....................................................................................................  100 
II.2 Modelling tool issues......................................................................................  101 
II.3 Generator tool issues ......................................................................................  101 
II.4 Deployment tool issues...................................................................................  102 

 

 



 

  ITU-T Rec. Z.130 (07/2003) 1 

ITU-T Recommendation Z.130 

Extended Object Definition Language (eODL): Techniques for 
distributed software component development – Conceptual 

foundation, notations and technology mappings 

1 Scope 
The provision of efficient techniques and of tool support for the development and engineering of 
distributed systems is a key enabling factor for the further evolution of Information Technology. 
Telecommunication systems are special distributed systems consisting of components which are 
distributed across networks and have to cope with concurrency, autonomy, synchronization, and 
communication aspects. The development of highly efficient and scalable systems is a complex and 
complicated task, where tools have to support all phases of the development process – from 
requirements capturing over design and implementation to integration, test and deployment.  

Code generation out of object-oriented design models leads to reusable, executable components. 
Such components integrate runtime environment and middleware platform technology dependent 
aspects with the enterprise specific object-oriented design model. Each software component has a 
physical representation (e.g., binary file), which has to be available for execution on a special node 
of a distributed system. The main focus of this Recommendation is the design of such components.  

Techniques for the development of distributed systems contribute significantly to a reduction of the 
time to market of distributed applications and telecommunication services. An appropriate treatment 
of all kinds of communication aspects lies in the very nature of the targeted application domain. 
These aspects span from transactional requirements on object interactions over quality of service 
issues to security policies. Taking into account the broad acceptance of object middleware 
technology, middleware platforms provide an ideal implementation environment for such designs. 
Of these are plain CORBA [5], CORBA Components [7] and other distributed processing 
platforms. 

This Recommendation is targeted to all software development processes addressing the following 
phases of the software life cycle: 
• design phase; 
• implementation phase; 
• integration phase; 
• operational phase. 

This Recommendation does not address the requirement capturing phase. 

The special emphasis of this Recommendation lies on the technological support of the transitions 
between phases to achieve their automation. The key technology is a model driven approach which 
is based on a well-defined metamodel (see [11]). This metamodel allows integration of several 
existing design languages like SDL [8], UML and CORBA-IDL. The metamodel is the definition of 
the concepts for the addressed phases of the software lifecycle. The models being instantiated on the 
basis of the metamodel can be represented using the existing languages. Since some concepts are 
not covered by an existing language, this Recommendation also defines a concrete syntax: eODL 
(Extended ODL). The metamodel-based approach replaces the well-known abstract syntax 
approach for the definition of languages. ITU-eODL is a revision of ITU-ODL. The syntax 
definition is given by Annex A. 

Consequently, the metamodel is independent of a specific design notation. Design models can be 
developed applying different notations, but are based on the same concepts. Design information can 
be exchanged on the basis of the metamodel. Both the notation and the metamodel are independent 
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of a specific runtime environment. The same design can be mapped onto different target 
environments. This enables high flexibility and is also important for the aspect of reuse of 
component design models.  

The integration of this Recommendation in software development processes is depicted in Figure 1. 
Starting with a precise requirements definition, a design model is specified. This Recommendation 
defines concepts which enable different views of the design model. Each view covers different 
aspects of the system to be developed. The concepts of the metamodel allow development of 
models powerful enough to derive software component skeletons automatically. The skeletons form 
the starting point of the implementation phase, where they have to be completed by the business 
logic. In the integration phase the completed software components have to be integrated in the 
target environment. 

Z.130_F01
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Figure 1/Z.130 – Software development 

This Recommendation also contains concepts that allow the description of the topology and 
properties of the target environment. Together with the automatically generated deployment and 
integration descriptions stemming from the design phase, the target environment description enables 
the automation of the deployment. After the integration phase, the developed software system can 
be put into operation. 
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2 References 
The following ITU-T Recommendations and other references contain provisions which, through 
reference in this text, constitute provisions of this Recommendation. At the time of publication, the 
editions indicated were valid. All Recommendations and other references are subject to revision; 
users of this Recommendation are therefore encouraged to investigate the possibility of applying the 
most recent edition of the Recommendations and other references listed below. A list of the 
currently valid ITU-T Recommendations is regularly published. The reference to a document within 
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation. 

[1] ITU-T Recommendation Z.130 (1999), ITU object definition language. 

[2] ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1996, Information technology – 
Open Distributed Processing – Reference Model: Foundations. 

[3] ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1996, Information technology – 
Open distributed processing – Reference Model: Architecture. 

[4] OMG Document formal/00-04-03, Meta Object Facility (MOF) Specification, Version 1.3. 

[5] OMG Document formal/01-02-33, The Common Object Request Broker Architecture and 
Specification, Revision 2.4.2. 

[6] OMG Document formal/00-11-02, XML Metadata Interchange (XMI) Specification, 
Version 1.1. 

[7] OMG Document formal/02-06-65, CORBA Component, Version 3.0. 

[8] ITU-T Recommendation Z.100 (2002), Specification and Description Language (SDL). 
[9] ITU-T Recommendation X.920 (1997) | ISO/IEC 14750:1999, Information technology – 

Open Distributed Processing – Interface Definition Language. 

[10] ITU-T Recommendation Z.600 (2000), Distributed processing environment architecture. 

3 Abbreviations 
This Recommendation uses the following abbreviations: 

API   Application Programming Interface 

ASN.1   Abstract Syntax Notation One 

CCM   CORBA Component Model 

CO   Computational Object 

COM   Component Object Model 

CORBA  Common Object Request Broker Architecture 

CWM   Common Warehouse Metamodel 

DTD   Document Type Definition for XML 

EBNF   Extended Backus-Naur Form 

EJB   Enterprise JavaBeans™ 

IDL   Interface Definition Language 

MDA   Model Driven Architecture 

MOF   Meta Object Facility 

OCL   Object Constraint Language 
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ODL   Object Definition Language 

OMG   Object Management Group 

OSD   Open Software Description 

RM-ODP  Reference Model for Open Distributed Processing 

SDL   Specification and Description Language 

TINA   Telecommunication Information Networking Architecture 

UML   Unified Modelling Language 

XMI   XML Metadata Interchange 

XML   eXtensible Markup Language 

4 Definitions 
This Recommendation defines the following terms: 

4.1 artefact: Abstraction of concrete programming language constructs, e.g., a class in case of 
object-oriented languages (realized in the form of code modules), enclosed by a software 
component. An artefact instance realizes (in a model sense) the state, behaviour and identity of 
a CO. 

4.2 assembly: Description of a distributed software system by the set of all participating 
CO types and the initial configuration. (Used by CCM.) 

4.3 exception: Special kind of operation termination in case of errors. (Defined by RM-ODP.) 

4.4 class: Concept for the classification of objects. On the basis of a class description, objects 
can be instantiated. (Defined by MOF.) 

4.5 connection: Concept for the exchange of interface references, which belong to port 
definitions according to their special definition kind (use or provide relation). (Defined as 
computational binding by RM-ODP; used by CCM.) 

4.6 component architecture: Distributed processing environment which supports the 
interaction of distributed software components. 

4.7 target platform: Component architecture with support of deployment and distributed 
execution, where components are intended to be deployed. 

4.8 computational object (CO): Functional unit that results from a functional decomposition 
of the software system being modelled. (Defined by RM-ODP.) 

4.9 computational object type (CO type): Template for the instantiation of computational 
objects. (Defined by RM-ODP; identified by CCM as CORBA component.) 

4.10 consume: Concept for modelling potential signal reception. (Used by CCM.) 

4.11 continuous medium, signal and operational interaction: Interaction between COs using 
operational-, signal- or continuous medium interaction elements: operation, attribute, consume, 
produce, sink, source. (Defined by RM-ODP and TINA (operational and continuous media 
interaction).) 

4.12 data type: A prescription of permissible structure, contents and behaviour of data; it is an 
element of a data type model (i.e., CORBA-IDL) which is a base of information models. (Defined 
by CORBA.) 

4.13 distributed processing environment: Technological base, supporting interactions between 
objects of a distributed system. (Defined by TINA.) 



 

  ITU-T Rec. Z.130 (07/2003) 5 

4.14 deployment: The process of making physical representations of software components 
available on nodes, installing them so that they are ready for execution and for setting up the initial 
configuration. 

4.15 implementation element: Relation between an interaction element and an artefact, 
where an artefact instance is responsible for behaviour of the interaction element. 
4.16 implements: Relation between artefacts and CO types, where artefact instances realize 
the behaviour of the CO type. 

4.17 initial CO: CO which is created at the beginning of the runtime of a distributed software 
system. 

4.18 initial configuration: Set of initial COs and initial connections. (Used by CCM.) 

4.19 initial connection: A binding which is established initially at the beginning of the runtime 
of a distributed software system. (Used by CCM.) 

4.20 instantiation policy: Policy-based description of instantiation of various implementation 
concepts modelled by artefacts. 

4.21 interaction: Action in which the environment of an object is involved. (Defined by 
RM-ODP.) 

4.22 interaction element: Generalization of the concepts operation, attribute, sink, source, 
consume and produce. 

4.23 interface: Referencible aggregation of possible interactions of a CO. (Defined by 
RM-ODP.) 

4.24 interface attribute: Special kind of operations as a shorthand for get and set operations for 
a given data type. (Used by CORBA.) 

4.25 interface reference: Reference to an interface. (Corresponds to CORBA object reference.) 

4.26 interface type: Description of a set of interaction elements as named and identifiable 
endpoints of possible communication. (Defined by RM-ODP; corresponds to OMG IDL interface.) 

4.27 media set: Aggregation of media. 

4.28 medium type: Declaration to be used for coding, transmission and decoding of the data on 
a medium. 

4.29 medium: Atomic unidirectional continuous stream of data. (Replaces the stream notation 
from ITU-T Rec. Z.600 [10].) 

4.30 metamodel: Definition of modelling concepts for the construction of models of a specific 
domain. (Defined by MOF.) 

4.31 meta-metamodel: Definition of modelling concepts for the construction of metamodels. 
(Defined by MOF.) 

4.32 multiple port: Port which dynamically supports registration and retrieval of multiple 
interface references. (Defined by CCM.) 

4.33 name space: Concept to structure identifiers of model elements. (Defined by RM-ODP.) 

4.34 node: Device used for interpretation of the code modules of a software component. 
(Defined by RM-ODP.) 

4.35 object: Model of an entity, where an entity is any phenomenon of interest in the examined 
domain; an object has an identity, state and behaviour. (Defined by RM-ODP.) 

4.36 operation: Element of an operational interaction, described by a set of parameters and 
possible terminations. (Defined by RM-ODP, CORBA.) 
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4.37 parameter: Element of the invocation of an operation, described by the direction of an 
information exchange and a data type. (Defined by CORBA.) 

4.38 port: Entity for registration and retrieval of interface references of a CO. (Defined by 
CCM.) 

4.39 produce: Interaction element to send signals. (Defined by CCM.) 

4.40 provided port: Port where interface references of the corresponding CO can be retrieved. 
(Defined by CCM.) 

4.41 realize: Correspondence of software components to CO types. (Defined by UML.) 

4.42 requires: Relation of an interface type and a CO type where the COs of this CO type 
require interface references of the interface type from the CO environment. (Defined by TINA.) 

4.43 runtime: The time when a software component is executed. 

4.44 signal: Interaction element for the asynchronous exchange of atomic messages. (Defined 
by RM-ODP.) 

4.45 single port: Port where only a single interface reference can be registered and retrieved. 
(Defined by CCM.) 

4.46 sink: Interaction element to receive a media set. (Defined by TINA.) 

4.47 software component: An entity which consists of sequences of instructions (code 
modules), which is physically represented (in form of special data format), and which can be 
assembled to structured software components or to a software system; to enable the composition of 
software components, their functionality is provided via well-defined interface types.  
During an execution of a software component, objects are incarnated as instances of classes 
(realized as code modules). (Defined by [16].) 

4.48 software package: Package of software components. (Defined by CCM.) 

4.49 source: Interaction element for sending a media set. (Defined by TINA.) 

4.50 supports: Relation of an interface type and a CO type, where the COs of this CO type 
support interface references of the interface type from the CO environment. (Defined by TINA.) 

4.51 termination: End of an invoked operation. (Defined by RM-ODP.) 

4.52 signal parameter: Element of a signal to carry information; refers to a data type. (Defined 
by SDL.) 

4.53 used port: Port where interface references can be registered. (Defined by CCM.) 

5 Metamodel 
A metamodel defines modelling concepts for the construction of models of a specific domain. The 
metamodel in this Recommendation is a Meta-Object Facility (MOF) compliant metamodel. The 
metamodel is described by means of UML class diagrams. The semantics is given in natural 
language. When needed, well-formedness rules are added. The MOF is the adopted standard for 
metamodelling in the OMG (Object Management Group). The MOF defines a generic framework 
for describing and representing meta-information. 

The MOF defines a four-level architecture, depicted in Figure 2: 
• In the M3 level, we find a single meta-metamodel (the MOF model) that defines the basic 

concepts needed to describe any metamodel in an object-oriented way. The basic 
constructs are: class, association, data type, class attribute and class inheritance. 
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• In the M2 level, we find metamodels (languages). A metamodel provides the abstractions 
that are needed to build models. It is described in terms of the M3 basic constructs (in 
practice the abstract syntax of a metamodel is provided as a collection of class diagrams). 
Examples of metamodels are UML, CWM (data warehouse), and the CCM metamodel. 

• In the M1 level, we find models. These are described in terms of one of the metamodels 
defined at the M2 level. An example of a model is a network level model in UML that 
defines what a trail is. 

• In the M0 level, we find data, which are instances of a model at the M1 level. A list of 
records representing trails is example data. 

Z.130_F02

M3

M0

MOF metamodel

M2

M1

model

model instances

UML

meta-metamodel

 

Figure 2/Z.130 – MOF levels 

In addition to basic language constructs for the object-oriented description of metamodels, the 
MOF standardizes the interface types (OMG IDL interfaces) that can be used to operate on model 
entities. Furthermore, the related XMI [6] standard standardizes the way a model can be 
externalized in an XML [12] stream format. The XML vocabulary used for externalization depends 
only on the metamodel entities. 

5.1 Definitions and conventions 
This clause defines concepts of the MOF model (meta-metamodel) which are used to define the 
eODL concepts (metamodel). The notation used for the visibility of attributes and operations is 
introduced in Figure 3. It is consistently used in all UML figures. For further information, please 
refer to [4]. 

Z.130_F03
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Figure 3/Z.130 – UML notation for MOF concepts 
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5.1.1 class and object: A class is the description of a set of objects all having the same distinct 
class characteristics. Class is used for classification and serves as the basic concept for construction. 
An object is an instance of a certain class. 

5.1.2 generalization: A generalization is a unidirectional relation between two classes. 
Generalization associates the special and the general class. The special class inherits all 
characteristics of the general class. 

5.1.3 association: An association is a relation between two classes. In case there are instances of 
the two classes, an association may or may not be instantiated between them. The association is 
navigable from one involved object to the other. 
5.1.4 aggregation: An aggregation is a directed relationship between classes where the instances 
of the aggregated classes (parts) are considered to be contained in instances of the container class 
(i.e., the aggregating class). Its semantics is that of a 'has-a' relation. There is a distinction between 
strong and weak aggregation in regard to the life cycle of the parts and their container. In this 
Recommendation, always strong aggregation is applied. It is used for the reflection of composition 
respective decomposition. 

The metamodel of eODL is defined using the UML notation for MOF (see Figure 4). The 
constraints and well-formedness rules which are part of this metamodel and essential for its 
semantics are provided as English text. The UML diagrams which appear as figures in the following 
clauses show only parts of the complete eODL metamodel. The explaining text and especially the 
constraints contained in the text have to be read in order to understand the semantics. Constraints 
which are already described as part of the metamodel of IDL are not mentioned again in this 
Recommendation. Please refer to [7] instead. 

The complete metamodel, including all constraints, is referenced as an XMI stream in Annex D. 

Z.130_F04
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Figure 4/Z.130 – Object-oriented concepts 

5.2 Naming and scoping 
Naming and scoping rules are defined to enable the unambiguous identification of model elements.  

The entire model forms a name scope. Each entity that forms a new scope is an instance of the 
abstract metaclass Container. Contained elements of a scope are instances of the abstract metaclass 
Contained. Defining the metaclasses Container and Contained as being abstract implies that all 
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instances are instances of derived non-abstract metaclasses. The Container-Contained relation is 
frequently used in the metamodel. 
Each named entity (instance of metaclass Contained) has an identifier to denote the name. The 
identifier is an attribute of the metaclass Contained. The identifiers of two different named entities, 
which belong to the same Container (definedIn points to the same model element) must be 
different. 

To allow pure scopes in a model, the metaclasses ModuleDef is introduced. ModuleDef is a part of 
the metamodel of CORBA-IDL on which the metamodel in this Recommendation is based. It is a 
concrete metaclass and can be instantiated. It has no further properties.  

Each instance of Container forms a namespace. The generalization from Contained to Container 
expresses the ability of nesting name scopes (see Figure 5). 

Z.130_F05

+definedIn

0..1

+contents

0..n

contains

ModuleDef
(from IDL)

Container
(from IDL)

Contained
(from IDL)

0..n0..1

 

Figure 5/Z.130 – Naming and scoping 

5.3 Computational concepts  

5.3.1 Used CORBA-IDL concepts 
In order to introduce data types, operations, attributes, exceptions and interface types as 
modelling concepts, the eODL metamodel is based on the metamodel of CORBA-IDL.  

All these modelling concepts allow the definition of basic building blocks for computational 
specifications. One purpose of a computational specification is to define the signatures of 
computational objects (CO) at their ports. Since this Recommendation introduces a type-based 
modelling, data types are essential to describe such signatures. 

5.3.1.1 Data types, Interface types, Operations, Attributes, Exceptions 
Data types in models are instances of metaclasses which are derived from the abstract metaclass 
IDLType. This implies the inclusion of the whole CORBA-IDL data type system. Through the 
usage of the abstract metaclass IDLType, it is ensured that the data type system can be exchanged to 
ensure the openness of this Recommendation. Figure 6 shows a subset of the CORBA-IDL 
metamodel for data types. The metamodel together with its description can be found in [7]. 
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Z.130_F06
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Figure 6/Z.130 – Data types 

The CORBA data type system contains all commonly used primitive data types such as long, float, 
char, string, etc. Furthermore, there are concepts to describe structured data types like array, 
struct, sequence, union, etc. The data type value is an additional type which is used to pass objects 
using a object by value semantic. Like classes in programming languages, an instance of type value 
can aggregate attributes and operations. 

In order to use other data type definitions different from those included in CORBA, the element 
ExternType is introduced. It is a specialization of the concept TypedefDef of CORBA. The attribute 
identifier refers here to an externally provided definition of the data type. See Figure 7. 
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Z.130_F07

ExternType
identifier : string

TypedefDef
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Figure 7/Z.130 – Extern type 

Attributes, operations, exceptions and parameters are concepts required for the definition of 
operational interactions. An operation defined in a model contains a list of parameters, a type for a 
possible return value and a list of non-successful terminations modelled by exceptions. Exceptions 
carry information and are defined in the same way as the data type StructDef. They contain a list of 
members for that information. An attribute is a shorthand notation for modelling operations used 
for getting and setting a named variable of a certain type. Also, exceptions can be added to 
attributes. In that case, it is distinguished between those exceptions which are possibly raised 
during a set-operation for that attribute and those being raised during a get-operation. The 
metamodel for exceptions is shown in Figure 8. 

Z.130_F08

Contained

OperationDef AttributeDef
isReadonly : Boolean

ExceptionDef

0..n

0..n

+exceptionDef

CanRaise

0..n

0..n +getException

GetRaises

0..n

0..n
+setException

SetRaises

identifier : CorbaString
repositoryId : CorbaString
version : CorbaString
/ absoluteName : CorbaString

isOneway : Boolean
parameters : CCMMetamodel::BaseIDL::ParameterDef
contexts : CorbaString

typeCode : CorbaString
members : CCMMetamodel::BaseIDL::Field

 

Figure 8/Z.130 – Exceptions 
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The metaclasses OperationDef, AttributeDef, ParameterDef and ExceptionDef are from the 
CORBA-IDL metamodel and are described in detail there. The metamodel for attributes and 
operations is shown below (see Figures 9 and 10). 

Z.130_F09
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Figure 9/Z.130 – Operations 
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Figure 10/Z.130 – Attributes 

Interface types are used to define signatures for possible interactions in a system. The concept of 
interface type is already known from OMG IDL, where it is named interface. In OMG IDL, 
interfaces only aggregate operational interaction elements. That means they are containers for 
attributes and operations. This is shown in Figure 11.  
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Z.130_F11
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Figure 11/Z.130 – Operational interfaces 

5.3.2 Signals and signal parameters 
Metamodel 
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Figure 12/Z.130 – Signal and signal parameter 

Semantics 
To enhance the modelling concepts offered by CORBA-IDL and to include other interaction kinds 
into the modelling of distributed systems further modelling concepts are necessary (see Figure 12). 

Signals are used to model signal-based interaction, that means the asynchronous decoupled 
message exchange between system entities. Signals carry information. Signals are modelled as 
instances of the metaclass SignalDef. The carried information (called signal parameters) is 
modelled as instances of CarryField, each referring to an instance of ValueDef, which is a special 
data type of CORBA-IDL. Each signal parameter is identifiable using a name in the context of a 
signal definition. The names have to be unique. 
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A signal definition prescribes the structure and the properties of the information which is carried in 
a concrete signal interaction between system entities. It is not yet associated to an interface type. 
Signal definitions can be reused in different interface type definitions. They play the same role as 
data types do for the definition of operations. They are building blocks for signal-based 
interaction. 

Signal definitions in models can only occur in name spaces which are either modules or which is 
the global name space formed by the specification itself.  

The IDL types which are used to specify the parameters of signals have to be instances of the type 
value.  

5.3.3 Medium type, medium, media set 
Metamodel 
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Figure 13/Z.130 – Medium, medium type, media set  

Semantics 
In addition to operational and signal-based interaction, the exchange of continuous media is also 
an important interaction kind in distributed systems. Modelling concepts for this interaction kind 
have to be provided. This is done in this Recommendation in exactly the same way as for 
operational and signal interaction. At first, the basic building blocks for the interaction elements 
have to be defined. These are medium, media set and medium type (see Figure 13).  

The concept media set is used to model the continuous media interaction. In the metamodel this is 
provided by the definition of the class MediasetDef. Instances of this class aggregate instances of 
the class MediumDef in a named list where each element has the type MediumField. The concept of 
medium is used to model one atomic data flow between two entities. A medium has the meaning 
of multimedia information like films or audio sequences. The exchange requires the presence of 
coding, decoding and transmission formats, which are modelled by instances of the class 
MediatypeDef. A medium can be realized by one or more media types. Media sets are necessary 
to model the exchange of two different media which belong together (like video and audio data of a 
film) and where the interactions for both should have the same properties.  

Definitions of media, media sets and media types in models can only occur in namespaces which 
are either modules or which is the global namespace formed by the specification itself.  
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5.3.4 Consume and produce 
Metamodel 
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Figure 14/Z.130 – Consume and produce 

Semantics 
Signals will be exchanged between functional entities at runtime via their interfaces. For that 
reason, the interface types offer the necessary signatures. In the case of signal communication the 
signature contains the type (signal definition), a name for the interaction element and the 
indication whether the signal is produced or consumed via this interface. So, the concepts consume 
and produce are interaction elements and are used to model the consumption or production of 
signals (see Figure 14). They are elements of the signal interaction in the same sense as operations 
and attributes are the elements of the operational interaction. As every interaction element, 
consume and produce are identifiable elements. They are included in the metamodel with the 
definition of the metaclasses ConsumeDef and ProduceDef, which inherit from the abstract 
metaclass InteractionElement, which itself inherits from Contained. ConsumeDef and ProduceDef 
are subclasses of Typed. This inheritance is used to establish the relation to the SignalDef, which is 
addressed by produce or consume.  

Note that SignalDef is a subclass of IDLType. It is required that the instance of IDLType associated 
to a produce or consume definition is a signal. The concept of signal is defined as a specialization 
of IDLType for that purpose. 
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5.3.5 Sink and Source 
Metamodel 
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Figure 15/Z.130 – Sink and Source 

Semantics 
To complete the list of possible interaction elements which are used to specify interface type 
signatures, interaction elements for continuous media interactions have to be defined. Analogous 
to signal interactions, they are characterized by the information which is exchanged in case of an 
interaction at runtime (media set), an identifier and the direction of the communication, 
i.e., whether the interface is sink or source with respect to the interaction. Hence, the concepts 
sink and source are interaction elements to model the consumption or production of media sets 
(see Figure 15). They are elements of the continuous media interaction in the same sense as 
operations and attributes are the elements of the operational interaction. As every interaction 
element, sink and source are identifiable elements. They are included in the metamodel with the 
definition of the metaclasses SinkDef and SourceDef, which inherit from the abstract metaclass 
InteractionElement, which itself inherits from Contained. SinkDef and SourceDef are subclasses of 
Typed. This inheritance is used to establish the relation to the MediasetDef, which is addressed by 
the sink or the source concept.  

Note that MediasetDef is a subclass of IDLType. The only concrete IDLType which is allowed to be 
associated to a sink or source is medium type. 
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5.3.6 Interface type 
Metamodel 
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Figure 16/Z.130 – Interface type 

Semantics 
The concept interface type is used to specify a subset of potential interactions of COs of 
CO types. Interface types aggregate interaction elements of the interaction kinds operational, 
signal and continuous media. With this, the semantics of an interface type is extended compared 
to RM-ODP: interface types provide a common context for interaction elements of different 
interaction kinds. For clients, which have a reference to such an interface, it is possible to use all of 
the interaction elements independently of which interaction kind is used. It is a subject of the 
runtime environment to handle this aspect. 

In the metamodel, interface type is an instance of class, named EnhancedInterfaceDef 
(see Figure 16). Since the metamodel of IDL already contains a meaning of aggregation of 
operational interaction elements, the class EnhancedInterfaceDef inherits from InterfaceDef. 
From this follows that the inheritance rules and constraints of InterfaceDef also apply to 
EnhancedInterfaceDef. 
In addition, interface types are containers for the interaction elements produce, consume, sink 
and source. 

5.3.7 CO types, supports and requires relation 
Metamodel 
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Figure 17/Z.130 – CO types, supports and requires 
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Semantics 
The concept of CO type is used to specify the functional decomposition of a system. Instances of a 
CO type (COs) are autonomous interacting entities, which encapsulate state and behaviour. COs 
interact with their environment via well-defined interfaces. These interfaces are specified using the 
concept interface type described above. 

A CO type may support (supports) or require (requires) an interface type. To support an 
interface type means that COs of that CO type provide interfaces of that interface type. To 
require an interface type means that COs of that CO type use interfaces of that interface type. A 
CO type is an instance of class COTypeDef in the metamodel. The labels supports and requires 
identify the associations between COTypeDef and InterfaceDef (see Figure 17). 

In order to access COs at runtime, COTypeDef is derived from InterfaceDef (as shown in 
Figure 17). By doing so, instances can be configured using attributes which are defined by this 
CO type. It is important to note that it is only allowed for a CO type to contain interaction 
elements of the attribute kind. No other interaction element is permitted. Furthermore, the 
inheritance relations between CO types and interface types cannot be mixed, i.e., CO types can 
only inherit from CO types and interface types from interface types. 

5.3.8 Provided and Used Port Definition 
Metamodel 
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Figure 18/Z.130 – Provided and used port 

Semantics 
COs are the functional entities in a distributed system that is specified by using this 
Recommendation. They communicate via their supported and required interfaces. However, the 
configuration of distributed systems is always a problem, especially how to obtain and exchange 
interface references, which is a prerequisite for interaction. For this reason, this Recommendation 
introduces the concept of port as a named interaction point, at which either a reference of a 
supported interface of a CO can be obtained or a reference of a used interface can be registered at 
runtime. 
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The concepts provided and used port are used to model ports of a CO type, that are either used by 
the environment to obtain a reference to an interface (provided port) or to store a reference to an 
interface (used port) based on a name. With the concepts supports and requires, only the 
potential provision or usage of interface types in a context of a CO type can be expressed, but not 
the concrete mechanisms, how the environment of a CO gains access to these interaction contexts. 
The concepts provided port and used port are defined as instances of class ProvidePortDef and 
UsePortDef. Both classes inherit from the abstract class PortDef. The class PortDef inherits from 
Contained, meaning that a COTypeDef instance may contain provided and used port definitions. A 
provided and a used port definition are always associated to an interface definition 
(see Figure 18). 

Port definitions are only allowed within CO type definitions. An interface, for which a provided 
port is defined, is automatically a supported interface. An interface, for which a used port is 
defined, is automatically a required interface. 

5.4 Implementation concepts 

5.4.1 Artefact and instantiation pattern 
Metamodel 
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Figure 19/Z.130 – Artefact and instantiation pattern 

Semantics 
The concept artefact is used to describe a programming language context (such as a class of an 
object-oriented programming language) in a model. Instances of the concept artefact realize the 
behaviour of COs. They therefore provide the business logic of CO types. The relations between 
the artefacts and the behavioural parts of the COs are defined by associations between artefacts 
and interaction elements of interface types. The programming language contexts that are 
modelled by instances of the concept artefact will be instantiated at runtime to process, 
e.g., operation invocations, signal inputs or continuous media data. The policies to be used for the 
instantiation are specified by instances of the concept instantiation pattern. Allowed patterns are to 
be seen in Figure 19. If necessary, further patterns may be added. The separation of the concepts 
artefact and CO type provides full flexibility when designing a distributed application: 
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• The external view (how the environment can interact with a CO) is separated from the 
internal view (how the behaviour of a CO is provided). 

• Different inheritance trees can be used for the external and internal views. 
• Reuse of existing behaviour and existing interface definitions are possible and independent 

from each other. 

The concept artefact is expressed in the metamodel by an instance of class named ArtefactDef. 
The concept instantiation pattern is modelled as an attribute of that class of type enumeration with 
the enumerators as depicted in Figure 19. 

5.4.2 Implements relation 
Metamodel 
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Figure 20/Z.130 – Implements relation 

Semantics 
Instances of the concept artefact describe the realization of the expected behaviour of interaction 
elements of interface types that are supported or required by CO types. As described above, the 
external and internal views on a CO are completely separated from each other. However, the 
relation between them has to be described in order to choose the right behaviour when a CO gets 
involved in a certain interaction. Therefore, the model describes which set of artefacts provide the 
behaviour for the COs of that CO type. This relation is defined by an association implemented_by 
between COTypeDef and ArtefactDef in the metamodel (see Figure 20). 

5.4.3 Implementation element 
Metamodel 
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Figure 21/Z.130 – Implementation element 
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Semantics 
In the context of an instance of artefact, the concept implementation element is used to denote 
that a behavioural part of an artefact (e.g., a method of a class that is modelled by an instance of 
the concept artefact) realizes a particular interaction element of an interface type. This concept 
is necessary to provide further details to the implemented_by relation as explained above. 
implemented_by specifies that an artefact contributes to the behaviour of a CO without saying 
which part of the artefact is responsible for what part of the CO behaviour. These details are 
provided with the implementation elements of the artefact. This information is necessary to 
associate the behaviour to an interaction at runtime. 

The concept implementation element is specified as an instance of class with the name 
ImplementationElementDef. This class inherits from Contained; instances of 
ImplementationElementDef may be contained by instances of artefacts (see Figure 21). The 
ImplementationCase defines the implementation direction of an implementation element: Either 
the usage or the provision of the behaviour can be realized by an implementation element with 
respect to a certain interaction element. 

5.5 Deployment concepts 

5.5.1 Software component and component dependency 
Metamodel 
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Figure 22/Z.130 – Software component and component dependency 

Semantics 
The concept of software component reflects actual software in the design model. It identifies an 
entity of deployment and allows further description by using properties. A software component 
may, but does not have to, realize an arbitrary number of CO types. Therefore, it contains 
sequences of instructions, which when executed on a node, incarnate COs, i.e., they provide 
behaviour, state and identity of COs. In the metamodel, the concept is introduced by the metaclass 
SoftwareComponentDef. To indicate which CO types are realized by a certain software 
component, there is the concept of realize relation, which is introduced in the metamodel by an 
association between the metaclass COTypeDef and SoftwareComponentDef (see Figure 22). 

Software components may require other software components in order to be properly executed. 
To reflect this in the model, the metaclass SoftwareDependencyDef is defined. It contains the 
local_dependency attribute which states whether the required software component has to be locally 
available. A SoftwareComponentDef may contain an arbitrary number of SoftwareDependencyDefs, 
where each SoftwareDependencyDef has an association to another SoftwareComponentDef 
indicating the required software. 
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5.5.2 Assembly and initial configuration 
Metamodel 
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Figure 23/Z.130 – Assembly and initial configuration 

Semantics 
The concept of assembly is used to model software systems by specifying the CO types which are 
involved in the system and to model the initial configuration of the system. The initial 
configuration is the configuration which is established at the start of the execution time of the 
software system and consists of initial COs and their initial connections. In the metamodel, the 
concept of assembly is modelled by the metaclass AssemblyDef. The CO types are associated by 
the introduction of an association between the metaclasses AssemblyDef and COTypeDef 
(see Figure 23). 

To model initial COs, the metamodel contains the metaclass COSetDef. A COSetDef defines the 
creation of an arbitrary number of instances of the associated CO type. The number is determined 
by the initial_instances attribute. A COSetDef is contained in an AssemblyDef. 
To model initial connections, the metamodel contains the metaclass ConnectionDef. A connection 
is established between ports of the participating COs by the exchange of interface references of 
the COs. These references are obtained from a CO where the CO type has a provided port 
definition and is transferred to a CO whose type has a used port definition. In the metamodel, a 
ConnectionDef consists of a set of ConnectionEndPoints. A ConnectionEndPoint is associated with 
a PortDef of a COTypeDef and a COSetDef. Each CO of a COSetDef associated with a 
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ConnectionEndPoint is connected with each CO of each COSetDef associated with other 
ConnectionEndPoints aggregated to the same ConnectionDef. 

5.5.3 Properties and constraints 
Metamodel 
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Figure 24/Z.130 – Properties and constraints 

Semantics 
The concept of properties, which can be attached to model elements is reflected in the metamodel 
by the metaclasses PropertyDef and Property (see Figure 24). The metamodel distinguishes 
between a property definition and a property value. A Property holds a value represented by the 
string attribute value while a PropertyDef holds the data type specification for the value, as it is 
inherited from the metaclass Typed. For example, a CO type may define the properties needed for 
its configuration, while a CO may define the appropriate property values. 

The concept of constraint is reflected in the metamodel by the metaclass Constraint. It has two 
attributes. The language attribute determines the language in which the constraint is written, and 
should be used for evaluation and the body attribute, which contains the actual string representation 
of the constraint. The choice of a constraint language is left to the user and is not prescribed by this 
Recommendation. This way, any appropriate language can be chosen and the semantics of 
constraints are not defined here, but are left to the processing tools. A CO may define a set of 
constraints to express the permitted combinations of property values. An assembly may define 
collocation constraints on the running components. References property definitions or attributes are 
qualified by their names. 

5.6 Target environment concepts 
The specification of distribution and deployment is achieved by modelling actual target 
environments, logical target environments and by mapping logical entities to actual nodes of the 
environments. In some cases the model of the actual target environment can be retrieved 
automatically by a tool. 
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5.6.1 Target Environment, Node and NodeLink 
Metamodel 
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Figure 25/Z.130 – Target Environment, Node and NodeLink 

Semantics 
A target environment models a physical distributed runtime environment, e.g., telecommunication 
network consisting of nodes and links between nodes. In the metamodel, the metaclass 
TargetEnvironment is a container for Node and NodeLink (see Figure 25). The logical attribute in 
TargetEnvironment is used to indicate whether the model reflects an existing environment or a 
potential one. 

The metaclass Node represents the concept of node, which means an element of the target 
environment that features at least a single or multiple processors, a memory unit and an operating 
system. Note that a given physical machine may host more than just one logical Node. A node 
refers to the installed software (software components, compilers, interpreters, etc.) and the 
installed hardware (represented as driver software). Properties such as the operating system or the 
processor are described as predefined properties listed below. 

The concept of links between nodes is represented by the metaclass NodeLink as a physical link 
between two or more Nodes (a shared bus, for instance). The bidirectional Boolean attribute in 
NodeLink applies only in case the NodeLink is associated with exactly two Nodes. When 
bidirectional is false, the order of the two Nodes associated with NodeLink is interpreted as follows: 
the first Node instance corresponds to the source node, and the second Node instance represents the 
destination node. Therefore, the association linked is ordered. 

A Node and a NodeLink are containers for PropertyDef and Property. This means predefined 
properties and user-defined properties can be attached directly to node instances and node link 
instances. 

5.6.1.1 Node and NodeLinks predefined properties 
There are some predefined properties for Node and NodeLink (see Table 1). For that purpose, the 
following implicit data types are introduced using IDL: 
 
struct ProcessorType { 
  string family; 
  string type; 
  integer frequency; 
} 
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struct OSType { 
  string name; 
  string version;  
} 
 

Table 1/Z.130 – Predefined properties 

Entity Predefined 
Property name Type Description Mandatory 

Processor ProcessorType the processor on the node Yes 
Memory Integer the maximum amount of memory of 

the node (in kilobytes) 
No 

Node 

OS OSType the node operating system 
identification 

Yes 

NodeLink Bandwidth Integer The maximum bitrate of the link (in 
kilobytes per second) 

No 

5.6.2 InstallationMap 
Metamodel 
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Figure 26/Z.130 – InstallationMap 

Semantics 
Once a TargetEnvironment is modelled, appropriate entities can be assigned to its nodes. There are 
two kinds of entities: software units, representing the needed software in a node, and CO sets, 
representing concrete instances of the CO types.  

An installation map represents the way implementations are distributed on a target environment. It 
consists of a set of installation assignments, which each associates one software component with 
one node. An installation map refers to the nodes of a target environment. The representation of 
installation map is the metaclass InstallationMap. The representation of installation assignment is 
the metaclass ComponentAssignment (see Figure 26). 
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5.6.3 InstantiationMap 
Metamodel 
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Figure 27/Z.130 – InstantiationMap 

Semantics 
An instantiation map represents the way concrete instances of CO types are distributed on a target 
environment. It consists of a set of instantiation assignments, which associate a set of COs with one 
node of the target environment. An instantiation map refers to CO types defined in the context of 
an assembly and to the nodes of a selected target environment. The metaclass representing the 
concept of instantiation map is InstantiationMap. The assignment of COs is represented by the 
metaclass COSetAssignment (see Figure 27). 
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5.6.4 Deployment plan 
Metamodel 
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Figure 28/Z.130 – Deployment plan 

Semantics 
A deployment plan is defined by the selection of one or more software components, containing 
implementations for CO types, one or more installation maps, determining where to install 
software components and zero or one instantiation map, determining where to create COs 
(see Figure 28). The instantiation map and all installation maps of an eODL model have to refer to 
the same target environment and the same assembly. 
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Annex A 
 

Syntax of eODL 

A.1 Introduction 
This annex provides the textual notation of eODL in EBNF style. The syntax for concepts 
originating from OMG CORBA IDL 2.4.2 is taken from [5]. 

A.2 Lexical conventions and grammar base 
The definitions found in clause 3.1 (lexical conventions for IDL) and clause 3.4 (grammar of IDL) 
of OMG CORBA 2.4.2 specification document are applied in the subsequent clauses. 

A.3 Computational view 

A.3.1 Name spaces, data types, exceptions, operations and attributes 
The metamodel is based on the CORBA-IDL data type system; the language eODL is based on 
CORBA-IDL. These foundations provide a canonical mapping of metamodel data types, name 
spaces and exceptions to eODL. Operational interaction elements of metamodel compliant 
models are mapped onto CORBA-IDL operations and attributes in the same canonical way. 

A.3.2 Signals and carried values 
One of the extensions of the metamodel compared to the conceptual foundation of ITU-ODL is the 
introduction of signal interaction elements. These interaction elements are based on the 
definition of signals. Signals in eODL are defined based on the following grammar: 
<signal_dcl>   ::=  "signal" <identifier> "{" <member_list> "}" 

<member_list>   ::=  <member>+ 

<member>    ::=  <type_spec> <declarators> ";" 

A.3.3 Medium type, medium and media set 
The semantics of stream interactions is left open in the conceptual foundation of ITU-ODL. The 
metamodel precisely defines the semantics of continuous media interactions that replaces stream 
interaction in ITU-ODL. The representation of the concepts medium, medium type and media set 
defined within the metamodel in eODL is given by the following grammar: 
<mediaset_dcl>   ::=  "mediaset" <identifier> "{" <member_list> "}" 

<mediatype_dcl>  ::=  "mediatype" <identifier> 

<medium_dcl>   ::=  "medium" <identifier>  "(" <scoped_name> { "," <scoped_name> }* ")" 

A.3.4 Interface types and interaction elements 
An interface type in the metamodel combines interaction elements of different interaction kinds 
within a single interaction context. For the syntactical representation of this concept, the interface 
construct is extended by the notion of source, sink, produce and consume interaction elements in 
addition to operational interaction elements. 
<interface>     ::= <interface_dcl> 

     | <forward_dcl> 

<interface_dcl>    ::= <interface_header> "{" <interface_body> "}" 

<forward_dcl>    ::= [ "abstract" ] "interface" <identifier> 

<interface_header>  ::= [ "abstract" ] "interface"  <identifier> [ <interface_inheritance_spec> ] 

<interface_body>  ::= <export> * 
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<export>    ::= <type_dcl> ";" 

     | <const_dcl> ";" 

     | <except_dcl> ";" 

     | <attr_dcl> ";" 

     | <op_dcl> ";" 

     |  <produce_dcl> ";" 

     | <consume_dcl> ";" 

     |  <source_dcl> ";" 

     | <sink_dcl> ";" 

<produce_dcl>   ::= "produce" <scoped_name> <identifier> 

<consume_dcl>   ::= "consume" <scoped_name> <identifier> 

<source_dcl>   ::= "source" <scoped_name> <identifier> 

<sink_dcl>    ::= "sink" <scoped_name> <identifier> 

A.3.5 Computational object type 
ITU-ODL already allows the notion of computational object type (CO type). Through the precise 
definition of the configuration view onto a CO type, the concept of the initial interface is 
deprecated. The grammar for CO types from ITU-ODL is changed in eODL, and is defined by the 
following rules: 
<object_template>    ::=  <object_template_header> "{" <object_template_export> "}" 

<object_template_header>  ::=  "CO" <identifier> [ <object_inheritance_spec> ] 

<object_inheritance_spec>  ::=  ":" <scoped_name> { "," <scoped_name> }* 

<object_template_export>  ::=  <object_export>* 

<object_export>    ::=  <export> 

      |  <reqrd_interf_templates> ";" 

      |  <suptd_interf_templates> ";" 

      |  <use_dcl> ";" 

      |  <provide_dcl> ";" 

      |  <implements_dcl> ";" 

      |  <state_def_dcl> ";" 

      |  <constraint_dcl> ";" 

      |  <property_list>  

<reqrd_interf_templates>  ::=  "requires" <scoped_name> { "," <scoped_name> }* 

<supd_interf_templates>  ::=  "supports" <scoped_name> { "," <scoped_name> }* 

A.3.6 Property 
A property is used to define available or needed properties of model elements. The property notion 
is used for target environment and software unit definition.  
<property_list>    ::= { <property_dcl> ";" }* 

<property_dcl>      ::= "property" <property_name> "=" <property_value> 

<property_name>     ::= <identifier> 

<property_value>    ::= <simple_property_value> 

      | <structured_property_value> 

      | <sequence_property_value> 
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<simple_property_value> ::= <string_literal> 

      | <integer_literal> 

      | <boolean_literal> 

<structured_property_value> ::= "{"  <property_assign>*  "}" 

<sequence_property_value > ::= "["  <property_value>*  "]" 

<property_assign>   ::= <property_name> "="  <property_value> ";" 

<constraint_dcl>   ::= "constraint" <identifier> "{" <constraint_body> "}" 

<constraint_body>   ::= "language" "=" <string_literal> "body" "=" <string_literal> ";" 

A.3.7 External type 
An external type is used by an identifier to refer to an externally provided data type. 
<extern_type>    ::= "extern" "type" <identifier> <string_literal> 

A.4 Configuration view 

A.4.1 Ports 
The main concept of the configuration view onto COs is the port concept. The notation for single 
and dynamic ports is defined by the following rules: 
<object_export>    ::=  <export> 

      |  <reqrd_interf_templates> ";" 

      |  <suptd_interf_templates> ";" 

      |  <use_dcl> ";" 

      |  <provide_dcl> ";" 

      |  <implements_dcl> ";" 

      |  <state_def_dcl> ";" 

      |  <constraint_dcl> ";" 

      |  <property_list>  

<use_dcl>     ::= "use" [ "multiple" ] <scoped_name> <identifier> 

<provide_dcl>    ::= "provide" [ "multiple" ] <scoped_name> <identifier> 

A.5 Implementation view 

A.5.1 Artefacts and implementation elements 
Artefacts abstract from concrete programming language constructs that implement the behaviour of 
COs. The representation of artefacts and implementation elements in eODL is given by the 
following rules: 
<artefact>      ::=  <artefact_dcl>  

      |  <artefact_forward_dcl> 

<artefact_forward_dcl>  ::=  "artefact"  <identifier> 

<artefact_dcl>     ::=  <artefact_header> "{" <artefact_body> "}" 

<artefact_header>    ::=  "artefact" <identifier> [ <artefact_inheritance_spec> ] 

<artefact_inheritance_spec>  ::=  ":" <scoped_name> { "," <scoped_name> }* 

<artefact_body>    ::=  <impl_elem_dcl>* 

<impl_elem_dcl>    ::=  <identifier> "implements" <impl_case_dcl> <scoped_name> ";" 

<impl_case_dcl>    ::=  "supply" | "use" 
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A.5.2 Implements Relations and Instantiation Policies 
The implemented_by relation defines which artefact is used for the realization of a CO type 
behaviour. This relation is defined in eODL in the context of CO type definitions: 
<object_export>    ::= <export> 

      | <reqrd_interf_templates> ";" 

      | <suptd_interf_templates> ";" 

      | <use_dcl> ";" 

      | <provide_dcl> ";" 

      | <implements_dcl> ";" 

      | <state_def_dcl> ";" 

      | <constraint_dcl> ";" 

      | <property_list>  

<implements_dcl>    ::= "implemented" "by" <artefact_with_policy>  

       { "," <artefact_with_policy> }* 

<artefact_with_policy>  ::=  <scoped_name> [ "with" <instantiation_policy_dcl> ] 

<instantiation_policy_dcl>  ::= "ArtefactPool" 

      | "ArtefactPerRequest" 

      | "Singleton" 

      | "UserDefined" 

A.5.3 State types 
In many implementation cases an artefact realization needs to access state information of the COs 
that it implements. State information of COs is defined in CO types given by the following rules: 
<object_export>    ::=  <export> 

      |  <reqrd_interf_templates> ";" 

      |  <suptd_interf_templates> ";" 

      |  <use_dcl> ";" 

      |  <provide_dcl> ";" 

      |  <implements_dcl> ";" 

      |  <state_def_dcl> ";" 

      |  <constraint_dcl> ";" 

      |  <property_list>  

<state_def_dcl>     ::=  "state" <scoped_name>  

       [ "provided" "to" "(" <provided_to_dcl> ")" ] 

<provided_to_dcl>    ::=  <scoped_name> { "," <scoped_name> }* 

A.6 Deployment view 

A.6.1 Softwarecomponent 
A concrete implementation of a CO type is represented by a Software Unit Definition. Within a 
Software Unit Definition multiple CO types can be realized. Software Units may depend on other 
Software Units and/or require other properties and services from the final execution environment. 
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<softwarecomponent_dcl>  ::= <softwarecomponent_header> 

        "{" <softwarecomponent_body> "}"  

<softwarecomponent_header> ::= "softwarecomponent"  <identifier> 

        "realizes"  <cotype_identifier_list>   

<cotype_identifier_list> ::= <cotype_identifier> { ","  <cotype_identifier> }* 

<softwarecomponent_body> ::= <softwarecomponent_stmt>* 

<softwarecomponent_stmt> ::= "dependent"  "{"  <softwarecomponent_list>  "}" ";" 

      | "requires"  "{"  <property_list>  "}"  ";" 

<softwarecomponent_list> ::= <softwarecomponent_identifier> 

        {  ","  <softwarecomponent_identifier>  }* 

<softwarecomponent_identifier> ::= <scoped_name> 

A.6.2 Assembly 
An assembly describes a set of interconnected components, and has no relation to a concrete 
distribution in a distributed processing environment.  

A.6.2.1 Assembly definition 
The assembly definition contains definitions for all instance set definitions belonging to the 
assembly and connection definitions for instances in the assembly.  
<assembly_dcl>    ::= <assembly_header> "{"  <assembly_body>  "}"  

<assembly_header>   ::= "assembly"  <identifier>   

<assembly_body>   ::= <assembly_stmt>* 

<assembly_stmt>   ::= <instance_set_dcl> ";" 

      | <connect_dcl> ";" 

      | <constraint_dcl> ";" 

      | <property_list> 

A.6.2.2 Instance set definition 
The instance set definition describes a non-empty set of instances of a CO type. 
<instance_set_dcl>   ::= <identifier> [ "(" <integer_literal> ")" ] ":" <cotype_identifier>  

<cotype_identifier>   ::= <scoped_name> 

A.6.2.3 Connection definition 
Connections between instances and instance sets are expressed with the connection definition. 
Here, ports according to the CO type definition are interconnected, where one port acts as source 
and the other as sink. 
<connect_dcl>    ::= "connect"  [ <identifier> ]  "{"  <connection_list>  "}" 

<connection_list>   ::= { <connection> ";" } + 

<connection>     ::=  <instance_set_identifier>  "."  <port_identifier> "=" 

        <instance_set_identifier>  "."  <port_identifier> 

<instance_set_identifier> ::= <scoped_name> 

<port_identifier>    ::= <scoped_name> 
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A.6.3 Installation map definition 
An installation map definition describes an assignment of CO types to nodes of a target 
environment. In a later installation action, one can refer to the installation map definition and trigger 
the installation of software units to nodes. 
<installation_map_dcl> ::= <installation_map_header>  "{" <installation_map_body> "}"  

<installation_map_header> ::= "installation" <identifier> 

       "uses"  "environment"  <environment_identifier> 

<installation_map_body> ::= <install_stmt> * 

<install_stmt>    ::= <softwarecomponent_identifier>  "->" <node_identifier> ";" 

<environment_identifier> ::= <scoped_name> 

A.6.4 Instantiation map definition 
An instantiation map definition describes a concrete assignment of instance sets to nodes of the 
specified target environment and assembly. 
<instantiation_map_dcl> ::= <instantiation_map_header> "{"  <instantiation_map_body>  "}"  

<instantiation_map_header> ::= "instantiation" <identifier> <instantiation_map_header_env> 

      <instantiation_map_header_ass> 

<instantiation_map_header_env> ::= "uses"  "environment"  <environment_identifier> 

<instantiation_map_header_ass> ::= "uses"  "assembly"  <assembly_identifier> 

<assembly_identifier> ::= <scoped_name> 

<instantiation_map_body> ::= <assign_instance_stmt>* 

<assign_instance_stmt> ::= <instance_set_identifier_list>  "->"  <node_identifier>  ";" 

<instance_set_identifier_list> ::= <instance_set_identifier> { "," <instance_set_identifier> }* 

A.6.5 Deployment action 
A deployment action is a sequence of installation and instantiation actions to be executed during 
deployment. 
<deployment_action> ::= "deploy"  "{"  <deployment_body>   "}"  ";" 

<deployment_body>  ::= "install"  "{"  <install_list>  "}" ";" 

      "instantiate"  "{"  <instantiation_list>  "}"  ";" 

A.6.5.1 Installation action 
An installation action specifies an installation of a software unit onto an execution node in a target 
environment. 
<install_list>   ::= <install_member>*  

<install_member>  ::= <installation_map_identifier>  ";" 

     | <qualified_install_stmt> 

<qualified_install_stmt> ::= <softwarecomponent_identifier>  "->"  

      <environment_identifier>  "."  <node_identifier>  ";" 

<installation_map_identifier> ::= <scoped_name> 

A.6.5.2 Instantiation action 
An instantiation action specifies an instantiation of a CO set on an execution node in a target 
environment. 
<instantiation_list>  ::= <instantiation_member>*  
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<instantiation_member> ::= <instantiation_map_identifier>  ";" 

     | <qualified_assign_instance_stmt> ";" 

<instantiation_map_identifier>  ::= <identifier> 

<qualified_assign_instance_stmt>  ::=  <assembly_identifier>  "."   <instance_set_identifier> 

        "->" <environment_identifier>  "."  <node_identifier>  

A.7 Target environment 
A target environment serves as a possible execution environment for assemblies. It reflects 
structure and properties of that environment. An eODL textual syntax may contain more than one 
target environment specification. 

A.7.1 Environment definition 
The environment definition describes a possible execution environment in terms of available nodes 
and communication links. 
<environment_dcl>  ::= <environment_header> "{"  <environment_body>  "}"  

<environment_header> ::= "environment"  <identifier> 

<environment_body> ::= <environment_stmt>+ 

<environment_stmt>  ::= <node_dcl>  ";" 

     | <link_dcl>  ";" 

A.7.2 Node definition 
A node definition reflects an identifiable execution node in the target environment, which can be 
target for installation of CO types and instantiation of instance sets. Properties in the node 
definition characterize facilities of the execution node. 
<node_dcl>    ::= "node"  <identifier>  "{"  <property_list>  "}"  

A.7.3 Link definition 
Communication links between execution nodes in the target environment are represented as link 
definitions. Properties in the link definition are related to the characteristics and the kind of the 
communication link.  
<link_dcl>     ::= <link_header> "{"  <link_body>  "}" 

<link_header>   ::= "link"  <identifier>   

<link_body>    ::= "node"  <node_list>  ";" <property_list> ";" 

<node_list>    ::= <node_identifier>  {  ","  <node_identifier>  }* 

<node_identifier>    ::= <scoped_name> 

A.8 Syntax of eODL 
This clause gives the complete set of the production rules for eODL. It also includes all rules 
inherited from the base syntax of OMG IDL 2.4.2. 
<specification>    ::=  <definition>+ [ <deployment_action> ] 

<definition>    ::=  <type_dcl> ";" 

    |  <const_dcl> ";" 

    |  <except_dcl> ";" 

    |  <interface> ";" 

    |  <object_template> ";" 

    |  <artefact> ";" 
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    |  <module> ";" 

    |  <value> ";" 

    |  <signal_dcl> ";" 

    |  <mediaset_dcl> ";" 

    |  <mediatype_dcl> ";" 

    |  <medium_dcl> ";" 

    |  <assembly_dcl> ";" 

    |  <softwarecomponent_dcl> ";" 

    |  <environment_dcl> ";" 

    |  <installation_map_dcl> ";" 

    |  <instantiation_map_dcl> ";" 

<module>    ::=  "module" <identifier> "{" <definition> + "}" 

<object_template>   ::=  <object_template_header> "{" <object_template_export> "}" 

<object_template_header>  ::=  "CO" <identifier> [ <object_inheritance_spec> ] 

<object_inheritance_spec>  ::=  ":" <scoped_name> { "," <scoped_name> }* 

<object_template_export>  ::=  <object_export>* 

<object_export>  ::=  <export> 

    |  <reqrd_interf_templates> ";" 

    |  <suptd_interf_templates> ";" 

    |  <use_dcl> ";" 

    |  <provide_dcl> ";" 

    |  <implements_dcl> ";" 

    |  <state_def_dcl> ";" 

    |  <constraint_dcl> ";" 

    |  <property_list>  
 

<reqrd_interf_templates>  ::=  "requires" <scoped_name> { "," <scoped_name> }* 

<supd_interf_templates>  ::=  "supports" <scoped_name> { "," <scoped_name> }* 

<use_dcl>   ::=  "use" [ "multiple" ] <scoped_name> <identifier> 

<provide_dcl>  ::=  "provide" [ "multiple" ] <scoped_name> <identifier> 

<artefact>   ::=  <artefact_dcl>  
   |  <artefact_forward_dcl> 

<artefact_forward_dcl>  ::=  "artefact"  <identifier> 

<artefact_dcl>  ::=   <artefact_header> "{" <artefact_body> "}" 

<artefact_header>   ::=  "artefact" <identifier> [ <artefact_inheritance_spec> ] 

<artefact_inheritance_spec>   ::=  ":" <scoped_name> { "," <scoped_name> }* 

<artefact_body>  ::=  <impl_elem_dcl>* 

<impl_elem_dcl>  ::=  <identifier> "implements" <impl_case_dcl> <scoped_name> ";" 

<impl_case_dcl>  ::=  "supply" | "use" 

<implements_dcl>  ::=  "implemented" "by" <artefact_with_policy>  

     { "," <artefact_with_policy> }* 

<artefact_with_policy>  ::=  <scoped_name> [ "with" <instantiation_policy_dcl> ] 
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<instantiation_policy_dcl>  ::=  "ArtefactPool" 

     |  "ArtefactPerRequest" 

     |  "Singleton" 

     |  "UserDefined" 

<state_def_dcl>   ::=  "state" <scoped_name> [ "provided" "to" "(" <provided_to_dcl> ")" ] 

<provided_to_dcl>  ::=  <scoped_name> { "," <scoped_name> }* 

<interface>   ::=  <interface_dcl> 
   |  <forward_dcl> 

<interface_dcl>   ::=  <interface_header> "{" <interface_body> "}" 

<forward_dcl>  ::=  [ "abstract" ] "interface" <identifier> 

<interface_header>  ::=  [ "abstract" ] "interface"  <identifier> [ <interface_inheritance_spec> ] 

<interface_body>  ::=  <export> * 

<export>  ::=  <type_dcl> ";" 

  |  <const_dcl> ";" 

  |  <except_dcl> ";"` 

  |  <attr_dcl> ";" 

  |  <op_dcl> ";" 

  |  <produce_dcl> ";" 

  |  <consume_dcl> ";" 

  |  <source_dcl> ";" 

  |  <sink_dcl> ";" 

<produce_dcl>   ::=  "produce" <scoped_name> <identifier> 

<consume_dcl>   ::=  "consume" <scoped_name> <identifier> 

<source_dcl>  ::=  "source" <scoped_name> <identifier> 

<sink_dcl>   ::=  "sink" <scoped_name> <identifier> 

<interface_inheritance_spec> ::= ":" <interface_name> { "," <interface_name> } * 

<interface_name>   ::=  <scoped_name> 

<scoped_name>   ::=  <identifier> 

     | "::" <identifier> 

     | <scoped_name> "::" <identifier> 

<signal_dcl>  ::=  "signal" <identifier> "{" <member_list> "}" 

<mediaset_dcl>   ::=  "mediaset" <identifier> "{" <member_list> "}" 

<mediatype_dcl>  ::=  "mediatype" <identifier> 

<medium_dcl>   ::=  "medium" <identifier> "(" <scoped_name> { "," <scoped_name> }* ")" 

<value>  ::=  ( <value_dcl> | <value_abs_dcl> | <value_box_dcl> | <value_forward_dcl>) 

<value_forward_dcl> ::=  [ "abstract" ] "valuetype" <identifier> 

<value_box_dcl>  ::=  "valuetype" <identifier> <type_spec> 

<value_abs_dcl>  ::=  "abstract" "valuetype" <identifier> [ <value_inheritance_spec> ] 
     "{" <export>* "}" 

<value_dcl>  ::=  <value_header> "{" <value_element>* "}" 

<value_header>  ::=   ["custom" ] "valuetype" <identifier> [ <value_inheritance_spec> ] 

<value_inheritance_spec>  ::=  [ ":" [ "truncatable" ] <value_name> 
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     { "," <value_name> }* ] 

     [ "supports" <interface_name> 

     { "," <interface_name> }* ] 

<value_name>  ::=  <scoped_name> 

<value_element>  ::=  <export> | <state_member> | <init_dcl> 

<state_member>  ::=  ( "public" | "private" ) <type_spec> <declarators> ";" 

<init_dcl>  ::=  "factory" <identifier> "(" [ <init_param_decls> ] ")" ";" 

<init_param_decls>  ::=  <init_param_decl> { "," <init_param_decl> } 

<init_param_decl>  ::=  <init_param_attribute> <param_type_spec> <simple_declarator> 

<init_param_attribute> ::=  "in" 

<const_dcl>  ::=  "const" <const_type> <identifier> "=" <const_exp> 

<const_type>  ::=   <integer_type> 

   |   <char_type> 

   |   <wide_char_type> 

   |   <boolean_type> 

   |   <floating_pt_type> 

   |   <string_type> 

   |   <wide_string_type> 

   |   <fixed_pt_const_type> 

   |   <scoped_name> 

   |   <octet_type> 

<const_exp>  ::=   <or_expr> 

<or_expr>   ::=   <xor_expr> | <or_expr> "|" <xor_expr> 

<xor_expr>   ::=   <and_expr> | <xor_expr> "^" <and_expr> 

<and_expr>   ::=   <shift_expr> | <and_expr> "&" <shift_expr> 

<shift_expr>  ::=   <add_expr> 
  |   <shift_expr> ">>" <add_expr>  

   |   <shift_expr> "<<"<add_expr> 

<add_expr>  ::=   <mult_expr> 

   |   <add_expr> "+" <mult_expr> 

   |   <add_expr> "-" <mult_expr> 

<mult_expr>  ::=   <unary_expr> 

   |   <mult_expr> "*" <unary_expr> 

   |   <mult_expr> "/" <unary_expr> 

   |   <mult_expr> "%" <unary_expr> 

<unary_expr>  ::=   <unary_operator> <primary_expr> | <primary_expr> 

<unary_operator>   ::=  "-"|"+"|"~" 

<primary_expr>    ::=  <scoped_name> | <literal> | "(" <const_exp> ")" 

<literal>   ::=   <integer_literal> 

   |  <string_literal> 

   |  <wide_string_literal> 

   |  <character_literal> 
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   |  <wide_character_literal> 

   |  <fixed_pt_literal> 

   |  <floating_pt_literal> 

   |  <boolean_literal> 

<boolean_literal>  ::=  "TRUE"|"FALSE" 

<positive_int_const> ::=  <const_exp> 

<type_dcl>  ::=   "typedef" <type_declarator>  

  |  <struct_type> 

  |  <union_type> 

  |  <enum_type> 

  |  "native" <simple_declarator> 

<type_declarator>  ::=  <type_spec> <declarators> 

<type_spec>  ::=  <simple_type_spec>  

   |  <constr_type_spec> 

   |  <extern_type> 

<extern_type>  ::= "extern" "type" <identifier> <string_literal> 

<simple_type_spec> ::=  <base_type_spec> 

    |  <template_type_spec> 

    |  <scoped_name> 

<base_type_spec>  ::=  <floating_pt_type> 

    |  <integer_type> 

    |  <char_type> 

    |  <wide_char_type> 

    |  <boolean_type> 

    |  <octet_type> 

    |  <any_type> 

    |  <object_type> 

    |  <value_base_type> 

<template_type_spec>  ::=  <sequence_type> 

     |  <string_type> 

     |  <wide_string_type> 

     |  <fixed_pt_type> 

<constr_type_spec> ::=  <struct_type> 

    |  <union_type> 

    |  <enum_type> 

<declarators>  ::=  <declarator> { "," <declarator> } * 

<declarator>  ::=  <simple_declarator> | <complex_declarator> 

<simple_declarator> ::=  <identifier> 

<complex_declarator>  ::=  <array_declarator> 

<floating_pt_type>  ::=  "float" 

    |  "double" 
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    |  "long" "double" 

<integer_type>  ::=  <signed_int> | <unsigned_int> 

<signed_int>  ::=  <signed_short_int> 

   |  <signed_long_int> 

   |  <signed_longlong_int> 

<signed_short_int>  ::=  "short" 

<signed_long_int>  ::=  "long" 

<signed_longlong_int>  ::=  "long" "long" 

<unsigned_int>   ::=  <unsigned_short_int> 

    |  <unsigned_long_int> 

    |  <unsigned_longlong_int> 

<unsigned_short_int>  ::=  "unsigned" "short" 

<unsigned_long_int>  ::=  "unsigned" "long" 

<unsigned_longlong_int>   ::=  "unsigned" "long" "long" 

<char_type>  ::=  "char" 

<wide_char_type>  ::=  "wchar" 

<boolean_type>   ::=  "boolean" 

<octet_type>  ::=  "octet" 

<any_type>   ::=  "any" 

<object_type>  ::=  "Object" 

<struct_type>  ::=  "struct" <identifier> "{" <member_list> "}" 

<member_list>  ::=  <member>+ 

<member>  ::=  <type_spec> <declarators> ";" 

<union_type>  ::=  "union" <identifier> "switch" "(" <switch_type_spec> ")" "{" <switch_body> "}" 

<switch_type_spec>  ::=  <integer_type> 

     |  <char_type> 

     |  <boolean_type> 

     |  <enum_type> 

     |  <scoped_name> 

<switch_body>    ::=  <case>+ 

<case>    ::=   <case_label>+ <element_spec> ";" 

<case_label>  ::=   "case" <const_exp> ":"|"default" ":" 

<element_spec> ::=   <type_spec> <declarator> 

<enum_type>  ::=   "enum" <identifier> "{" <enumerator> { "," <enumerator> } * "}" 

<enumerator>  ::=   <identifier> 

<sequence_type>   ::=  "sequence" "<" <simple_type_spec> "," 

     <positive_int_const> ">" | "sequence" "<" <simple_type_spec> ">" 

<string_type>  ::=  "string" "<" <positive_int_const> ">" | "string" 

<wide_string_type>  ::=  "wstring" "<" <positive_int_const> ">" | "wstring" 

<array_declarator>  ::=  <identifier> <fixed_array_size>+ 

<fixed_array_size>  ::=  "[" <positive_int_const> "]" 
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<attr_dcl>  ::=  [ "readonly" ] "attribute"  

    <param_type_spec> <simple_declarator> { "," <simple_declarator> }* 

<except_dcl>  ::=  "exception" <identifier> "{" <member>* "}" 

<op_dcl>  ::=  [ <op_attribute> ] <op_type_spec> 

   <identifier> <parameter_dcls> [ <raises_expr> ] [ <context_expr> ] 

<op_attribute>   ::=  "oneway" 

<op_type_spec>  ::=  <param_type_spec> |"void" 

<parameter_dcls>  ::=  "(" <param_dcl> { "," <param_dcl> } * ")"|"(" ")" 

<param_dcl>  ::=  <param_attribute> <param_type_spec> <simple_declarator> 

<param_attribute>  ::=  "in"|"out"|"inout" 

<raises_expr>  ::=  "raises" "(" <scoped_name>{ "," <scoped_name> } * ")" 

<context_expr>  ::=   "context" "(" <string_literal>{ "," <string_literal> } * ")" 

<param_type_spec>  ::=  <base_type_spec> 

    |  <string_type> 

    |  <wide_string_type> 

    |  <scoped_name> 

<fixed_pt_type>   ::=  "fixed" "<" <positive_int_const> ","<positive_int_const> ">" 

<fixed_pt_const_type>  ::=  "fixed" 

<value_base_type>  ::=  "ValueBase" 

<assembly_dcl> ::= <assembly_header> "{"  <assembly_body>  "}"  

<assembly_header> ::= "assembly"  <identifier>   

<assembly_body> ::= <assembly_stmt>* 

<assembly_stmt> ::= <instance_set_dcl> ";" 

    | <connect_dcl> ";" 

    | <constraint_dcl> ";" 

    | <property_list> 

<instance_set_dcl> ::= <identifier> [ "(" <integer_literal> ")" ] ":" <cotype_identifier>  

<cotype_identifier> ::= <scoped_name> 

<connect_dcl>  ::= "connect"  [ <identifier> ]  "{"  <connection_list>  "}"  

<connection_list> ::= { <connection> ";" } + 

<connection>   ::=  <instance_set_identifier>  "."  <port_identifier>   

     "=" <instance_set_identifier>  "."  <port_identifier> 

<instance_set_identifier> ::= <scoped_name> 

<port_identifier>  ::= <scoped_name> 

<softwarecomponent_dcl> ::= <softwarecomponent_header>  

      "{" <softwarecomponent_body> "}" 

<softwarecomponent_header> ::= "softwarecomponent"  <identifier> 

        "realizes"  <cotype_identifier_list>   

<cotype_identifier_list> ::= <cotype_identifier> { ","  <cotype_identifier> }* 

<softwarecomponent_body> ::= <softwarecomponent_stmt>* 

<softwarecomponent_stmt> ::= "dependent"  "{"  <softwarecomponent_list>  "}" ";" 



 

  ITU-T Rec. Z.130 (07/2003) 41 

     | "requires"  "{"  <property_list>  "}"  ";" 

<softwarecomponent_list> ::= <softwarecomponent_identifier>  
      {  ","  <softwarecomponent_identifier>  }* 

<softwarecomponent_identifier> ::= <scoped_name> 

<environment_dcl> ::= <environment_header> "{"  <environment_body>  "}"  

<environment_header> ::= "environment"  <identifier> 

<environment_body> ::= <environment_stmt>+ 

<environment_stmt>  ::= <node_dcl>  ";" 

     | <link_dcl>  ";" 

<node_dcl> ::=   "node"  <identifier>  "{"  <property_list>  "}"  

<property_list>  ::= { <property_dcl> ";" }* 

<property_dcl>    ::= <property_name>  "="  <property_value> 

<property_name>   ::= <identifier> 

<property_value>  ::= <simple_property_value> 

    | <structured_property_value> 

    | <sequence_property_value> 

<simple_property_value> ::= <string_literal> 

    | <integer_literal> 

    | <boolean_literal> 

<structured_property_value> ::= "{"  <property_assign>*  "}" 

<sequence_property_value> ::= "["  <property_value>*  "]" 

<constraint_dcl> ::= "constraint" <identifier> "{" <constraint_body> "}" 

<constraint_body> ::= "language" "=" <string_literal> "body" "=" <string_literal> ";" 

<property_assign> ::= <property_name> "="  <property_value> ";" 

<link_dcl>   ::= <link_header> "{"  <link_body>  "}" 

<link_header> ::= "link"  <identifier>   

<link_body>  ::= "node" <node_list>  ";" <property_list> ";" 

<node_list>  ::= <node_identifier>  {  ","  <node_identifier>  }* 

<node_identifier> ::= <scoped_name> 

<installation_map_dcl> ::= <installation_map_header>  "{" <installation_map_body> "}"  

<installation_map_header> ::= "installation" <identifier> 

      "uses" "environment" <environment_identifier> 

<installation_map_body> ::= <install_stmt>* 

<install_stmt>   ::= <softwarecomponent_identifier> "->" <node_identifier> ";" 

<environment_identifier> ::= <scoped_name> 

<instantiation_map_dcl> ::= <instantiation_map_header> "{"  <instantiation_map_body>  "}"  

<instantiation_map_header> ::= "instantiation" <identifier> 

      <instantiation_map_header_env> 

      <instantiation_map_header_ass> 

<instantiation_map_header_env> ::= "uses"  "environment"  <environment_identifier> 

<instantiation_map_header_ass> ::= "uses" "assembly" <assembly_identifier> 

<assembly_identifier> ::= <scoped_name> 
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<instantiation_map_body> ::= <assign_instance_stmt>* 

<assign_instance_stmt> ::= <instance_set_identifier_list> "->" <node_identifier> ";" 

<instance_set_identifier_list> ::= <instance_set_identifier> { "," <instance_set_identifier> }* 

<deployment_action> ::= "deploy" "{" <deployment_body> "}" ";" 

<deployment_body>   ::= "install" "{" <install_list> "}" ";" 

     "instantiate" "{" <instantiation_list> "}" ";" 

<install_list> ::= <install_member>* 

<install_member> ::= <installation_map_identifier>  ";" 

    | <qualified_install_stmt> 

<qualified_install_stmt> ::= <softwarecomponent_identifier>  "->" 

      <environment_identifier>  "."  <node_identifier>  ";" 

<installation_map_identifier> ::= <scoped_name> 

<instantiation_list> ::= <instantiation_member>* 

<instantiation_member> ::= <instantiation_map_identifier>  ";" 

     | <qualified_assign_instance_stmt> ";" 

<instantiation_map_identifier>  ::= <identifier> 

<qualified_assign_instance_stmt>  ::=  <assembly_identifier>  "." 

        <instance_set_identifier>  "->" 

        <environment_identifier>  "."  <node_identifier>  

Annex B 
 

Metamodel to syntax mapping 

B.1 Introduction 
This annex describes the relation between the eODL metamodel and the concrete textual syntax of 
eODL as defined in Annex A. The description is restricted to those metamodel concepts being 
extensions of the CORBA metamodel. The relation between OMG IDL 2.4.2 textual syntax and 
OMG CORBA metamodel are well defined by OMG and therefore not repeated here. 

The metamodel is as specified in clause 5, and uses the graphical notation therein. The 
corresponding alphanumeric syntax is provided in the box beneath the graph, followed by a textual 
explanation. 
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B.2 Signal and Signal Parameter 

Z.130_FB.1

0..n

+type1

SignalDef
CarryField

identifier : string
0..n

+parameter

Typed
(from IDL)

Container
(from IDL)

IDLType
(from IDL)

 

Figure B.1/Z.130 – Signal and Signal Parameter 

The (1), (2) and (3) in the concrete syntax are mapped to SignalDef/CarryField elements in the 
model (see Figure B.1). 
(1) <signal_dcl> ::= "signal" <identifier> "{" <member_list> "}" 

(2) <member_list> ::= <member>+ 

(3) <member>  ::= <type_spec> <declarators> ";" 

The <identifier> from production (1) is the name of the SignalDef element in the model. Within the 
<member_list> (2) all CarryField elements are listed, which take part in the parameter relation of 
that SignalDef. The <member> (3) productions from concrete syntax are reflected as CarryField 
elements in the model. <type_spec> here are the types in the model, which are bounded through the 
Typed concept from IDL. For each declarator in <declarators> a CarryField element in the model 
exists. 
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B.3 Medium Type, Medium, Media Set 

Z.130_FB.2

+media

0..n

1+type MediumDef

MediatypeDef

0..n

1..n+type

realized_by

MediasetDef
MediumField

identifier : string
1..n

IDLType
(from IDL)

Contained
(from IDL)

Typed
(from IDL)

 

Figure B.2/Z.130 – Medium, Media type, Mediaset 

The productions (4), (5) and (6) in the concrete syntax are mapped to MediasetDef, MediatypeDef 
and MediumDef elements in the model (see Figure B.2). 
(4) <mediaset_dcl> ::= "mediaset" <identifier> "{" <member_list> "}" 

(5) <mediatype_dcl>::= "mediatype" <identifier> 

(6) <medium_dcl> ::= "medium" <identifier>  

      "(" <scoped_name> { "," <scoped_name> }* ")" 

The <mediatype_dcl> (5) is represented as MediatypeDef element in the model; <identifier> is the 
name for the Named concept of this element. With <medium_dcl> the concrete syntax express 
MediumDef elements; here <identifier> again is the name for the Named concept. The 
<scoped_name> listed in production (6) have to refer always to MediatypeDef and are represented in 
the model as realized_by relation to the MediumDef element. According to production 
(4) <mediaset_dcl> is represented as MediasetDef element in the model with <identifier> as name. 
Within the <member_list> in (4) all MediumField elements are listed, which take part in the media 
relation of that MediasetDef. For the <member> in <member_list> (4) the <type_spec> has to refer to 
MediatypeDef and all declarators in <declarators> should be simple. 
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B.4 Consume and Produce 

Z.130_FB.3

ConsumeDef

InteractionElement

0..n

1+type

0..1
0..n

+definedIn +contents

0..n

contains

ProduceDef

Container
(from IDL)

Contained
(from IDL)

IDLType
(from IDL)

Typed
(from IDL)

 

Figure B.3/Z.130 – Consume and Produce 

The productions (7) and (8) in the concrete syntax are mapped to ProduceDef/ConsumeDef elements 
in the model (see Figure B.3). 
(7) <produce_dcl> ::= "produce" <scoped_name> <identifier> 

(8) <consume_dcl> ::= "consume" <scoped_name> <identifier> 

The <scoped_name> in both declarations refers to a SignalDef. This relation is reflected in the 
model as the Typed/IDLType relation where ProduceDef/ConsumeDef are involved via inheritance 
and the IDLType is a SignalDef according to the <signal_dcl>. ProduceDef/ConsumeDef are both 
Named concepts from the metamodel and the <identifier> in (7)/(8) is mapped to the name attribute 
of the model elements. 
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B.5 Sink and Source 

Z.130_FB.4

SourceDef

InteractionElement

0..n

1+type

0..1
0..n

+definedIn +contents

0..n

contains

SinkDef

Container
(from IDL)

Contained
(from IDL)

IDLType
(from IDL)

Typed
(from IDL)

 

Figure B.4/Z.130 – Sink and Source 

The productions (10) and (9) in the concrete syntax are mapped to SinkDef/SourceDef elements in 
the model (see Figure B.4). 
(9) <source_dcl> ::= "source" <scoped_name> <identifier> 

(10) <sink_dcl>  ::= "sink" <scoped_name> <identifier> 

The <scoped_name> in both declarations refers to a MediasetDef. This relation is reflected in the 
model as the Typed/IDLType relation where SinkDef/SourceDef are involved via inheritance and the 
IDLType is a MediasetDef according to the <mediaset_dcl>. SinkDef/SourceDef are both Named 
concepts from the metamodel and the <identifier> in (10)/(9) is mapped to the name attribute of the 
model elements. 

B.6 Interface Type 

Z.130_FB.5

EnhancedInterfaceDef

0..n

0..n +derived

InterfaceDerivedfrom

+base

InterfaceDef
(from IDL)

 

Figure B.5/Z.130 – Interface Type 
 

(11) <interface_dcl>  ::= <interface_header> "{" <interface_body> "}" 

(12) <interface_body> ::= <export> * 
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(13) <export>  ::= <type_dcl> ";" 

     | <const_dcl> ";" 

     | <except_dcl> ";" 

     | <attr_dcl> ";" 

     | <op_dcl> ";" 

     | <produce_dcl> ";" 

     | <consume_dcl> ";" 

     | <source_dcl> ";" 

     | <sink_dcl> ";" 

The <interface_dcl> (11) production in concrete syntax is mapped to an EnhancedInterfaceDef 
element in the model. <interface_body> (12) is handled in the same way as in IDL. In comparison to 
InterfaceDef <export> (13) also allows <produce_dcl>, <consume_dcl>, <source_dcl> and 
<sink_dcl> as contained elements. Mapping for this kind of declarations is defined above. If the 
<interface_body> does not contain this kind of new elements, the <interface_dcl> is mapped to an 
ordinary InterfaceDef (see Figure B.5). 

B.7 CO Types, Supports and Requires 

Z.130_FB.6

COTypeDef

0..n

0..n

+supCOs

+supIfs

supports

0..n

0..n

+reqCOs

+reqIfs

requires

InterfaceDef
(from IDL)

 

Figure B.6/Z.130 – CO Types, Supports and Requires 

The productions (14), (15), and (16) in the concrete syntax are mapped to COTypeDef elements in the 
model (see Figure B.6). 

(14) <object_template>  ::= <object_template_header> "{" <object_template_export> "}" 

(15) <object_template_header>::= "CO" <identifier> [ <object_inheritance_spec> ] 

(16) <object_inheritance_spec>::= ":" <scoped_name> { "," <scoped_name> }* 

(17) <object_template_export> ::= <object_export>* 

(18) <object_export>   ::=  <export> 

      |  <reqrd_interf_templates> ";" 

      |  <suptd_interf_templates> ";" 

      |  <use_dcl> ";" 

      |  <provide_dcl> ";" 

      |  <implements_dcl> ";" 

      |  <state_def_dcl> ";" 
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      |  <constraint_dcl> ";" 

      |  <property_list>  

(19) <reqrd_interf_templates> ::= "requires" <scoped_name> { "," <scoped_name> }* 

(20) <supd_interf_templates> ::= "supports" <scoped_name> { "," <scoped_name> }* 

Productions (14), (15) and (16) map to a COTypeDef element in the model, where <identifier> from 
production (15) is the name for the Named concept of COTypeDef. As specialization of InterfaceDef 
in production (16) all COTypeDef are listed which are in inheritance relation to the current 
COTypeDef. Productions (17) and (18) express the contained concept for this COTypeDef. The use 
of <export> in (18) is handled in the same way as for InterfaceDef in IDL. In addition 
<reqrd_interf_templates> and <supd_interf_templates> are allowed contained elements for 
COTypeDef. The <scoped_name> in productions (19) and (20) has to refer to InterfaceDef or 
EnhancedInterfaceDef elements in the model. These interface elements are in requires or supports 
relation to the containing COTypeDef element. 

B.8 Provided and Used Port 

Z.130_FB.7

PortDef
multiple : boolean

EnhancedInterfaceDef

ProvidePortDef UsePortDef

0..1
0..n

+definedIn +contents

contains

COTypeDef

1

0..n

+interfaceDef
InterfaceDef
(from IDL)

Container
(from IDL)

Contained
(from IDL)

 

Figure B.7/Z.130 – Provided and Used Port 

The productions (21)/(22) in the concrete syntax are mapped to UsePortDef/ProvidePortDef 
elements in the model (see Figure B.7). 
(21) <use_dcl>  ::= "use" [ "multiple" ] <scoped_name> <identifier> 

(22) <provide_dcl> ::= "provide" [ "multiple" ] <scoped_name> <identifier> 

Used and provided ports are expressed with productions (21) and (22). They result in UsedPortDef 
and ProvidePortDef elements in the model. The <scoped_name> in both productions has to refer to 
InterfaceDef or EnhancedInterfaceDef elements in the model. If "multiple" is used in the concrete 
syntax, the multiple Boolean field in the current PortDef is true. 
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B.9 Artefact and Instantiation Pattern 

Z.130_FB.8

ArtefactDef
instantiationPolicy : InstantiationPolicy

0..1 0..n

+definedIn +contents

contains

Property
value : string

InstantiationPolicy
<<Enumeration>>

Container
(from IDL)

Contained
(from IDL)

ARTEFACT_PER_REQUEST
ARTEFACT_POOL
SINGLETON
USER_DEFINED

 

Figure B.8/Z.130 – Artefact and Instantiation Pattern 

(23) <artefact>     ::= <artefact_dcl> 

       | <artefact_forward_dcl> 

(24) <artefact_forward_dcl>  ::= "artefact" <identifier> 

(25) <artefact_dcl>   ::= <artefact_header> "{" <artefact_body> "}" 

(26) <artefact_header>  ::= "artefact" <identifier> [<artefact_inheritance_spec> ] 

(27) <artefact_inheritance_spec> ::= ":" <scoped_name> { "," <scoped_name> }* 

(28) <artefact_body>   ::= <impl_elem_dcl>* 

Productions (23) and (24) are used to follow the syntax of IDL, where the <identifier> used in (24) 
has a following ArtefactDef with this name. Productions (25), (26) and (27) are in relation to an 
ArtefactDef element in model, where <identifier> from (26) is the name for the Named concept. All 
listed <scoped_name> in (27) have to refer to ArtefactDef elements in the model, which are in 
inheritance relation to the current ArtefactDef. As (28) shows, only ImplementationElementDef is 
allowed to be contained in ArtefactDef (see Figure B.8). 

B.10 Implements Relation 
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ArtefactDef
instantiationPolicy : InstantiationPolicy

0..n 0..n

implemented_by COTypeDef
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Figure B.9/Z.130 – Implements Relation 

(29) <implements_dcl>  ::= "implemented" "by" <artefact_with_policy> 

        { "," <artefact_with_policy> }* 

(30) <artefact_with_policy>  ::= <scoped_name> [ "with" <instantiation_policy_dcl> ] 
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(31) <instantiation_policy_dcl> ::= "ArtefactPool" 

       |  "ArtefactPerRequest" 

       |  "Singleton" 

       |  "UserDefined" 

Productions (29) and (30) are in relation to an ArtefactDef element in the model (see Figure B.9). 
This expresses the implemented_by relation in the model. The <scoped_name> in (30) has to refer to 
an ArtefactDef element only. With production (31) in the concrete syntax, the instantiationPolicy 
field of the containing ArtefactDef element is expressed. The keywords directly relate to the 
enumeration values for the field. 

B.11 Implementation Element 
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Figure B.10/Z.130 – Implementation Element 

(32) <impl_elem_dcl>  ::= <identifier> "implements" <impl_case_dcl> <scoped_name> ";" 

(33) <impl_case_dcl>  ::=  "supply" | "use" 

Productions (32) and (33) are in relation to an ImplementationElementDef element in the model 
(see Figure B.10). The <identifier> in (32) is the name for the Named concept. 
ImplementationElementDef can only be containted in ArtefactDef. With production (33) in the 
concrete syntax, the case field of the containing ImplementationElementDef element is expressed. 
The keywords directly relate to the enumeration values for the field. 



 

  ITU-T Rec. Z.130 (07/2003) 51 

B.12 Software Component 
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Figure B.11/Z.130 – Software Component 

The production (34) in the concrete syntax is mapped to SoftwareComponentDef element in the 
model (see Figure B.11). 
(34) <softwarecomponent_dcl> ::= <softwarecomponent_header> 

        "{" <softwarecomponent_body> "}" 

(35) <softwarecomponent_header>::= "softwarecomponent" <identifier> "realizes" 

        <cotype_identifier_list> 

(36) <cotype_identifier_list> ::= <cotype_identifier> { "," <cotype_identifier> }* 

(37) <softwarecomponent_body> ::= <softwarecomponent_stmt>* 

(38) <softwarecomponent_stmt> ::= "dependent" "{" <softwarecomponent_list> "}" ";" 

       | "requires" "{" <property_list> "}" "; 

(39) <softwarecomponent_list> ::= <softwarecomponent_identifier> 
        { "," <softwarecomponent_identifier> }* 

Productions (34), (35) and (36) are in relation to a SoftwareComponentDef element in the model, 
where <identifier> from (35) is the name for the Named concept. All listed <scoped_name> in (36) 
have to refer to COTypeDef elements in the model, which are in realized_in relation to the current 
SoftwareComponentDef. Productions (37), (38) and (39) are in relation to a SoftwareComponentDef 
element in the model. All listed <scoped_name> in (36) have to refer to SoftwareComponentDef 
elements in the model. 

The <softwarecomponent_identifier> is a <scoped_name>, which refers only to 
SoftwareDependencyDef model element. 
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B.13 Assembly and Initial Configuration 

Z.130_FB.12

0..1 0..n
+definedIn +contents

contains

ConnectionDef

multiple : boolean

ConnectionEndPoint

1

1..n

+connection

+endPoint

ports_to_connect

1

0..n

+port

+endPoint

COSetDef

initial_instances : short

1

0..n

+coSet

+endPoint

AssemblyDef

0..n1

+coSet

0..n

+coType

1

instantiated_from

0..n

0..n

+assembly

+coType

used_co_types

COTypeDef
(from Computational Structures)

Container
(from IDL)

Contained
(from IDL)

PortDef
(from Computational Structures)

 

Figure B.12/Z.130 – Assembly and Initial Configuration 

(40) <assembly_dcl> ::= <assembly_header> "{" <assembly_body> "}" 

(41) <assembly_header> ::= "assembly" <identifier> 

(42) <assembly_body> ::= <assembly_stmt>* 

(43) <assembly_stmt> ::= <instance_set_dcl>";" 

      | <connect_dcl> ";" 

      | <constraint_dcl> ";" 

      | <property_list> 

(44) <instance_set_dcl> ::= <identifier> [ "(" <integer_literal> ")" ] ":" <cotype_identifier> 

(45) <connect_dcl> ::= "connect" [ <identifier> ] "{"  <connection_list> "}" 

(46) <connection_list> ::= { <connection> ";" } + 

(47) <connection>   ::= <instance_set_identifier> "."  <port_identifier> 

       "=" <instance_set_identifier> "." <port_identifier> 

Productions (40) and (41) are in relation to an AssemblyDef element in the model (see Figure B.12), 
where <identifier> from (41) is the name for the Named concept. All listed <scoped_name> in (44) 
have to refer to COTypeDef elements in the model, which are in realized_in relation to the current 
SoftwareComponentDef. The <cotype_identifier>, <instance_set_identifier> and <port_identifier> in 
(45), (46) and (47) are <scoped_name>s, which refer only to COTypeDef, InstanceSetDef and 
PortDef model elements. 
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B.14 Constraints and Properties 
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Figure B.13/Z.130 – Constraints and Properties 

(48) <property_dcl> ::= "property" <property_name> "=" <property_value> 

(49) <property_name> ::= <identifier> 

(50) <property_value> ::= <simple_property_value> 

     | <structured_property_value> 

     | <sequence_property_value> 

(51) <simple_property_value> ::= <string_literal> 

     | <integer_literal> 

     | <boolean_literal> 

(52) <structured_property_value>::= "{" <property_assign>* "}" 

(53) <sequence_property_value>::= "[" <property_value>* "]" 

(54) <property_assign> ::= <property_name> "=" <property_value> ";" 

(55) <constraint_dcl> ::= "constraint" <identifier> "{" <constraint_body> "}" 

(56) <constraint_body> ::= "language" "=" <string_literal> "body" "=" <string_literal> ";" 

Productions (48) and (49) are in relation to a PropertyDef element in the model (see Figure B.13), 
where the <identifier> from (49) is the name for the Named concept. Production (54) maps to a 
Property element in the model. Productions (50), (51), (52) and (53) in the concrete textual syntax are 
used to notate values for the value field. 

Production (55) is in relation to a Constraint element in the model, where the <identifier> from (55) 
is the name for the Named concept. Production (56) provides the values for the fields language and 
body in the Constraint element. 
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B.15 Target Environment, Node and NodeLink 
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Figure B.14/Z.130 – Target Environment, Node and NodeLink 

(57) <environment_dcl>  ::= <environment_header> "{" <environment_body> "}" 

(58) <environment_header> ::= "environment" <identifier> 

(59) <environment_body> ::= <environment_stmt>+ 

(60) <environment_stmt> ::= <node_dcl> ";" 

      |  <link_dcl> ";" 

(61) <node_dcl>   ::= "node" <identifier> "{" <property_list> "}" 

(62) <link_dcl>    ::= <link_header> "{"  <link_body> "}" 

(63) <link_header>  ::= "link" <identifier> 

(64) <link_body>   ::= "node" <node_list> ";" <property_list> 

(65) <node_list>   ::= <node_identifier> { "," <node_identifier> }+ 

Productions (57), (58), (59) and (60) are in relation to a TargetEnvironment element in the model 
(see Figure B.14), where the <identifier> in production (58) is the name for the Named concept. 
Production (61) maps to a Node element in the model, where the <identifier> in production (61) is the 
name for the Named concept. Productions (62), (63) and (64) are in relation to a NodeLink element in 
the model, where the <identifier> in production (63) is the name for the Named concept. The 
<node_identifier> in production (65) is a <scoped_name>, which has to refer to a Node model 
element. 
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B.16 InstallationMap 
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Figure B.15/Z.130 – InstallationMap 

(66) <installation_map_dcl> ::= <installation_map_header>  

     "{" <installation_map_body> "}" 

(67) <installation_map_header>  ::= "installation" <identifier> "uses" "environment" 

       <environment_identifier> 

(68) <installation_map_body> ::= <install_stmt>* 

(69) <install_stmt>  ::= <softwarecomponent_identifier> "->" <node_identifier> ";" 

Productions (66), (67) and (68) are in relation to an InstallationMap element in the model 
(see Figure B.15), where the <identifier> in production (67) is the name for the Named concept. The 
<environment_identifier> in production (67) is a <scoped_name>, which refers only to the 
TargetEnvironment model element. The <softwarecomponent_identifier> and <node_identifier> in 
production (69) are <scoped_name>s, which refer only to SoftwareComponentDef and Node 
elements in the model. 
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B.17 InstantiationMap 
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Figure B.16/Z.130 – InstantiationMap 

(70) <instantiation_map_dcl>   ::= <instantiation_map_header> 

         "{"  <instantiation_map_body> "}" 

(71) <instantiation_map_header>  ::= "instantiation" <identifier> 

         <instantiation_map_header_env> 

         <instantiation_map_header_ass> 

(72) <instantiation_map_header_env> ::= "uses" "environment" <environment_identifier> 

(73) <instantiation_map_header_ass> ::= "uses" "assembly" <assembly_identifier> 

(74) <instantiation_map_body>   ::= <assign_instance_stmt>* 

(75) <assign_instance_stmt>   ::= <instance_set_identifier_list> "->"  

         <node_identifier> ";"  

(76) <instance_set_identifier_list>  ::= <instance_set_identifier>  

         { "," <instance_set_identifier> }* 

Productions (70), (71), (72), (73) and (74) are in relation to an InstantiationMap element in the model 
(see Figure B.16), where the <identifier> in production (71) is the name for the Named concept. The 
<environment_identifier> in production (72) and <assembly_identifier> in production (73) are 
<scoped_name>s, which refer only to TargetEnvironment and AssemblyDef elements in the model. 
The <node_identifier> in production (75) is a <scoped_name>, which refers only to Node model 
element, which is contained in the TargetEnvironment qualified by production (72). The 
<instance_set_identifier>s in production (76) are <scoped_name>s, which refer only to COSetDef 
model elements, which are contained in the AssemblyDef qualified by production (73). 
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B.18 Deployment Plan 
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Figure B.17/Z.130 – Deployment Plan 

(77) <deployment_action> ::= "deploy" "{" <deployment_body> "}" ";" 

(78) <deployment_body>  ::= "install" "{" <install_list> "}" ";" <instantiation_action>+ 

(79) <install_list>  ::= <install_member>* 

(80) <install_member>  ::= <installation_map_identifier> ";" 

(81) <instantiation_action> ::= "instantiate" <instantiation_map_identifier> ";" 

The production (77) <deployment_action> in concrete syntax maps to the DeploymentPlan element 
in the model (see Figure B.17). The lists in the body of the <deployment_action>, which are built by 
productions (78), (79), (80) and (81), express the InstallationMaps and instantiation relations in the 
model. The <instantiation_map_identifier> and <installation_map_identifier> are <scoped_name>s, 
which refer to InstallationMap and InstantiationMap model elements. Each of the listed identifiers 
corresponds to a relation in the model. 

B.19 Extern type 
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TypedefDef
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Figure B.18/Z.130 – Extern type 
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(82) <extern_type> ::= "extern" "type" <identifier> <string_literal>";" 
The production (82) <extern_type> in concrete syntax maps to the ExternType element in the model 
(see Figure B.18). The value of the string literal is directly mapped onto the attribute identifier of 
the model element. The <identifier> in production (82) is mapped onto the name attribute of the 
concept Contained. 

Annex C 
 

Mapping to SDL-2000 

C.1 Introduction 
The recommended ITU Extended Object Definition Language (ITU-eODL) provides the ability to 
describe component-oriented distributed systems. In this annex, an ITU-eODL to SDL-2000 
mapping is introduced. This mapping allows to generate SDL-2000 code based upon a description 
given in ITU-eODL automatically. The textual phrase representation (SDL/PR) of SDL-2000 [8] is 
used. 

The mapping from ITU-eODL to SDL-2000 allows users to generate a SDL-2000 skeleton based on 
a given eODL model automatically. The mapping supports almost all computational and 
implementation concepts. The only significant exception is that the concept of continuous media is 
not supported. Moreover, concepts of deployment and target environment are not supported.  

The types of eODL are mapped to appropriate types in SDL-2000. Concepts that define aspects of 
behaviour of types are mapped to automatically implemented SDL agents. Given a complete eODL 
model, a mapping tool generates a SDL-2000 skeleton. The user has to implement the business 
logic and is able to use COs defined in SDL-2000 as building blocks for a SDL-2000 system. 

The mapping aims at supporting concepts as completely as possible even at the cost of producing 
somewhat complicated structures in SDL-2000. For instance, multiple inheritance of COs is 
supported at the cost of more complex structures and a less efficient behaviour, because SDL-2000 
does not support multiple inheritance for agent types.  

C.2 The package eodl 

The mapping from ITU-eODL to SDL-2000 defines the SDL package eodl. It contains definitions 
of data types that are used by models generated from eODL models. Types referred to as 
predefined are defined in package eodl. See C.10 for a complete listing of package eodl. 

The textual notation of eODL inherits its lexical rules from OMG CORBA-IDL. In CORBA-IDL, 
unqualified identifiers begin with an alphabetic character followed by any number of alphabetic 
characters, digits or underscores, where alphabetic characters are English characters 'A' to 'Z' in 
both uppercase and lowercase. Moreover, identifiers in eODL are case-insensitive. 

According to the lexical rules of SDL-2000, all (unqualified) eODL identifiers are SDL-2000 
identifiers. 

Qualified identifiers are dealt with in clause C.4 (Scoped names). 

C.3 Structure 
Each ITU-eODL file is mapped onto two SDL packages: 
• <name>_interface (referred to as "interface package"); and 
• <name>_definition (referred to as "definition package"). 
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where <name> is the name of the ITU-eODL specification (for instance, the file name), as depicted 
in Figure C.1. 

Z.130_FC.1

transformed to

usesuses

eODL 
model

SDL
interface
package

SDL
definition
package

SDL
package

eodl
 

Figure C.1/Z.130 – Transformation structure from an eODL model to SDL 

The interface package contains all information that is relevant for both the client and the server side 
of the system. In details, these are: 
• data type definitions; 
• constant definitions; and 
• interface definitions representing regular interfaces and interfaces of COs. 

The definition package contains skeletons for the server sides of the system. In fact, these are: 
• block types representing CO types; and 
• process types representing artefacts. 

C.4 Scoped names 
Qualification is a concept that exists in both eODL and SDL-2000. Thus, the mapping is canonical: 
qualified names in eODL are mapped onto qualified names in SDL. 

C.5 Mapping of computational concepts 

C.5.1 Modules 
An eODL module is a container for all other eODL elements and opens a namespace. This concept 
is mapped onto the package concept of SDL. 

The SDL package an eODL module is mapped onto may be contained either in the SDL interface 
package or in the SDL definition package or in both packages, depending on the entities that are 
enclosed in the eODL module. 

C.5.2 Type Definitions 
The eODL typedef construct assigns a (different) name to a given type. The typedef construct is 
mapped onto the syntype construct of SDL. 

C.5.3 Predefined Data Types 

C.5.3.1 Data Types for Integer Numbers 
The eODL data types unsigned short, unsigned long and unsigned long long are mapped 
onto the following SDL sorts. These sorts are defined in the package eodl. 
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• The eODL type unsigned short is mapped onto an Integer sort ushort that ranges from 
0 to 216 – 1. 

• The eODL type unsigned long is mapped onto an Integer sort ulong that ranges from 
0 to 232 – 1.  

• The eODL type unsigned long long is mapped onto an Integer sort ulong_long that 
ranges from 0 to 264 – 1. 

The eODL data types signed short, signed long and signed long long are mapped onto the 
following SDL sorts.  
• The eODL type signed short is mapped onto an Integer sort short that ranges from 

–215 to 215 – 1. 
• The eODL type signed long is mapped onto an Integer sort long that ranges from –231 

to 231 – 1.  
• The eODL type signed long long is mapped onto an Integer sort long_long that 

ranges from –263 to 263 – 1. 

C.5.3.2 Data Types for floating point numbers 

The eODL floating point types float, double and long double are mapped onto the predefined 
SDL sort Real. Note that Real is not IEEE 754 [15] complaint according to ITU-T Rec. Z.100, 
whereas eODL floating point types are. 

C.5.3.3 Data Types for characters 
The eODL type char is mapped onto the predefined SDL sort Character. The eODL type wchar is 
mapped onto the predefined SDL sort Natural. 

C.5.3.4 Data Type boolean 
The eODL type boolean is mapped onto SDL sort Boolean and the eODL boolean constants TRUE 
and FALSE are mapped onto the Boolean literals true and false, respectively. 

C.5.3.5 Data Type octet 
The eODL type octet is mapped onto SDL sort Octet.  

C.5.3.6 Data Type any 

The eODL type any is mapped onto SDL sort Any. It should be noted that the semantic of any in 
eODL is the same as the semantics of any in SDL (see OMG IDL 2.4.2 section 3.10.1.7). 

C.5.3.7 Type identification using the type attribute TypeCode 
The attribute typeCode of an instance of IDLType in the metamodel of eODL is not mapped onto 
SDL. However, the type TypeCode is mapped onto SDL sort TypeCode in package SDL. The sort 
TypeCode is an abstract data type. This means that there are no values of this data type according to 
this mapping. It does not restrict implementations to use a derived concrete data type, though. 

C.5.4 Constructed Data Types 

C.5.4.1 Enumerations 
Enumerations in eODL are mapped onto a SDL value data type that contains literals only. 

C.5.4.2 Structures 
Structures in eODL are mapped onto SDL value data types with a public structure data type 
constructor. Members of the eODL structure are fields of the SDL data type. 
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C.5.4.3 Unions 
Unions in eODL are mapped onto SDL nested value data types. The outer value data type in SDL 
has a public structure data type constructor with two fields:  
1) a field tag that represents the discriminator of the eODL-union; and 
2) a field union that represents the union itself. 

The field union is of value data type <name-of-eODL-union>_union. This type is declared within 
the scope of the outer SDL union type. It has a public choice data type constructor and its choice list 
represents the members of the eODL union. 

C.5.4.4 Arrays 
Arrays in eODL are mapped onto a SDL sort that inherits from predefined SDL sort Vector. 

Multidimensional arrays are mapped onto a SDL value data type that supports the operators Make, 
Modify and Extract. 

C.5.5 Value Types 
Value types in eODL are mapped onto SDL object data types with a structure data type constructor. 
All data members of the eODL value type are fields of the SDL data types. 

If an eODL value type is declared abstract, the according SDL object data is declared abstract, too. 
It has no data type constructor. 

Single inheritance of value types in eODL is mapped onto single inheritance of data types in SDL. 
Multiple inheritance is allowed for abstract value types in eODL. In SDL, this is accomplished by 
copying the operation declaration from the base data types to the derived data type. 

Value types in eODL can have factories (initialization elements). These are mapped onto operators 
in SDL that return a value of the data type. If exactly one factory is declared, the Make operator is 
automatically implemented by calling this factory. Otherwise, it is not exactly implemented. 

If the eODL value type supports an interface, the operations of that interface become operations of 
the SDL data type. Attributes in a supported interface are mapped onto a get/set-pair of operations 
and a field carrying the attribute. 

Boxed value types are mapped in the same manner as (concrete) value types. 

C.5.6 Parameterized Data Types 

C.5.6.1 Sequences 
Sequences in eODL are mapped onto SDL sort Vector if bounded or onto SDL sort Array 
otherwise. 

C.5.6.2 Character Strings 
The eODL type string is mapped to the predefined SDL sort Charstring. 

The eODL type wstring is mapped to the SDL sort wstring in package eodl. This sort inherits 
from String<Natural>. It also adds an operation from Charstring to convert a Charstring 
value to wstring value. 

C.5.6.3 Fixed-point Numbers 
The SDL package eodl contains a type fixedpt that is parameterized by a width and a scale 
parameter. Both of these are of sort Natural. The semantics of the parameters are equal to the 
semantics of the parameters in eODL. 
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The type fixedpt defines operators "+","–","*","/" that adds, subtracts, multiplies and divides two 
values of type fixedpt and returns a value of type fixedpt. Moreover, the operator "=" compares 
to fixedpt values and returns a Boolean value: true, if both operands represent the same number 
and false if both operands represent different numbers. 

To convert a fixedpt value to a Real value, there is a method toReal. It is possible to construct a 
fixedpt value from a Real value using a Make operator. 

C.5.7 Constants, Data Type Literals and Constant Expressions 

C.5.7.1 Constants 
eODL constants are mapped onto SDL synonyms. 

C.5.7.2 Data Type Literals 
This clause lists literals of data types that are not mapped onto predefined SDL sorts.  

C.5.7.2.1 Literals of Integer Types 
Decimal and hexadecimal integer literals are supported in the SDL mapping: decimal literals are 
supported by SDL Integer sort and hexadecimal integer literals can be written as literals of SDL 
type Bitstring and then be converted to Integer. Octal integer literals have to be converted to 
either decimal or hexadecimal literals. 

C.5.7.2.2 Literals of character types 
A literal of eODL type char is mapped such that it forms a legal literal of the predefined SDL sort 
Character. If the eODL literal is a character with a value greater than 127, it cannot be mapped. It 
is recommended to use the wchar type instead. 

A literal of eODL type wchar is mapped such that it forms a legal Natural literal. 

C.5.7.2.3 Literals of character strings 
A literal of eODL type string is mapped such that it forms a legal literal of the predefined SDL 
sort Charstring. If the eODL literal contains a character with a value greater than 127, it cannot be 
mapped. It is recommended to use the wstring type instead. 

A literal of eODL type wstring is mapped such that it forms a legal literal of SDL sort wchar. This 
includes the possibility to convert a Charstring literal into a SDL wstring value. 

C.5.7.2.4 Literals of fixed point number type 
Fixed point values can only be created by converting real numbers. 

C.5.7.3 Constant Expressions 
Constant expressions in eODL are mapped to constant expressions in SDL. Both expressions have 
to represent the same values. 

C.5.8 Signal Types 
Signal types are mapped onto value data types. 

C.5.9 Exceptions 
Both ITU-eODL and SDL support exceptions. The only difference is that SDL exceptions do not 
name exception members. Exceptions are defined in the interface package. 
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C.5.10 Interfaces and Interaction Elements 

C.5.10.1 Interfaces 
An eODL interface groups: 
• operations; 
• signal flows; 
• continuous media interactions (streams); 
• attributes. 

Continuous media interactions are not mapped onto SDL. 

An eODL interface I is mapped onto SDL interfaces exported_I and imported_I. These 
interfaces are defined within a SDL package I in the interface package. The interface exported_I 
contains 
• all operations; and 
• consumed signal.  

whereas the interface imported_I contains produced signals. 

This mapping is such that the exported_<interface-name> interface type contains everything an 
interface's client needs to invoke a service that the interface represents. 

This mapping is detailed in the following clauses. 

C.5.10.2 Operational interaction elements 
An eODL operation is mapped onto a remote procedure that is declared in SDL in the interface 
exported_<interface name>. Both concepts support at most one return type, parameters that can 
be in, out and inout as well as exceptions. Instances of the concept "context" are not mapped. 

C.5.10.3 Signal interaction elements 
If an eODL interface declares an interaction element for consumption of a signal A, the 
corresponding SDL interface exported_<interface-name> declares the use of signal A. 

If an eODL interface declares an interaction element for production of a signal A, the 
corresponding SDL interface imported_<interface-name> declares the use of signal A. 

C.5.10.4 Attribute interaction elements 
Attributes in eODL are mapped onto a pair of set/get remote procedures in the 
exported_<interface-name> SDL interface. If the attribute is read-only, the set remote procedure 
is not generated. 

C.5.10.5 Interface References 
A SDL interface type implicitly defines a special sort of PId. An instance of this PId sort serves as 
an interface reference. Moreover, this concept provides type safety: a client that has got such a PId 
can send signals to and invoke remote procedures on an agent that implements this interface. The 
SDL interface type that serves as the interface reference type is exported_<interface name>. 

C.5.10.6 Inheritance 
Both ITU-eODL and SDL support multiple inheritance of interfaces. So, the mapping is canonical. 

C.5.11 Computational Objects 
In eODL, COs capsule state and behaviour. They provide interfaces (as interface references) to the 
environment and may use interfaces (references) of other COs themselves. 
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In SDL, a CO is a process type agent. Every CO has three gates: one incoming called initial, one 
called provides and one called uses. These gates support several interfaces as discussed in the 
following clauses. All three gates are connected to the environment of the process because they 
constitute the interface between CO and environment. 

The CO process type itself is defined in the definition package. 

To create CO processes, a CO factory is defined. The CO factory is represented as a process type 
defined in the same scope as the CO process type. Both the CO type itself and its factory are 
process types defined within an agent type of kind block. This block is called SDL component. Note 
that SDL component as defined in this mapping is a concept of the computational view whereas 
component as defined in this Recommendation is a deployment view concept. A SDL component 
represents a block type with a well-defined interface. 

C.5.11.1 The interface of a CO 
Apart from providing and using interfaces, a CO type exposes its own interface. This interface is 
made up of three components: the user-defined interface, the implicit component identifying 
interface and the configuration interface.  

The metamodel defines a CO type as an interface kind and restricts the contained interaction 
elements to instances of AttributeDef. When regarding the CO type as an interface only, this is 
called "user-defined interface". 

To identify COs, every CO type has an implicit read-only attribute key of predefined type 
ComponentKey. This attribute is the only interaction element in the predefined interface 
ComponentBase. 

The interface ComponentBase defines access procedure to the key of a CO. The key of a CO 
implements its identity and needs to be unique at least with respect to the SDL component that the 
CO is contained in. In package eodl there is declared an external procedure compute_co_key that 
returns such a unique key. An implementation of this mapping has either to provide an 
implementation of that procedure or to generate code that computes a unique key in another way. 

The configuration interface defines procedures to support port operations. This interface is further 
detailed in the clause on the mapping of ports. The configuration interface inherits from the 
predefined interface ConfigBase. ConfigBase declares generic port operations. 

All these interfaces are defined in the interface package. They are contained within a package of the 
name of the CO. The user-defined interface is called <CO-name>_attributes. It inherits from the 
predefined interface ComponentBase. The configuration interface is called <CO-name>_config and 
inherits from the predefined interface ConfigBase. Finally, the interface <CO-name> is defined that 
simply inherits from <CO-name>_attributes and <CO-name>_config. 

The interface <CO-name> is supported by the gate initial. A channel from the environment to the 
CO process type is defined. 

C.5.11.2 Supported interfaces 

The provides gate references all interfaces that the CO supports. Through this gate, clients can 
use the CO. The SDL interface exported_<name> is supported in the direction from the 
environment to the process type and the SDL interface imported_<name> is supported in the 
direction from the process type to the environment. 

C.5.11.3 Required Interfaces 
The uses gate references all interfaces that the CO requires and uses. Through this gate, the CO 
(in the role of a client) can use other COs. The SDL interface imported_<name> is supported in 
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the direction from the environment to the process type and the SDL interface exported_<name> is 
supported in the direction from the process type to the environment. 

C.5.11.4 Inheritance 
Since SDL does not support multiple inheritance, inheritance is realized by delegation. This is 
realized as follows: 
1) The CO type user-defined interface and the CO type configuration interface inherits from 

the corresponding interfaces of the super CO(s). 
2) The gate provides supports all interfaces that are supported by the super CO(s). It also 

supports all interfaces supported by the CO type itself. 
3) The gate uses supports all interfaces that are required by the super CO(s). It also supports 

all interfaces required by the CO type itself. 

For the behaviour aspects of multiple inheritance, see C.7.2.5. 

C.5.11.5 CO factories 

To every CO type there is an associated CO factory <CO-name>_factory. It implements the 
factory interface. This interface is defined in a package <CO-name>_factory that in turn is defined 
in the same package where the interfaces of the CO are defined. The factory interface inherits the 
predefined interface CoFactoryBase. 

The interface CoFactoryBase contains the following procedures. The procedure get_co_type 
returns the fully qualified name of the CO type. Qualification character is the decimal point. The 
procedure generic_create instantiates the associated CO type. The procedure list_cos returns 
a list of values of ComponentKey of instantiated COs. The procedure resolve_co takes a 
ComponentKey value and returns the associated CO. 

The factory interface declares a procedure create_<CO-name> that creates the associated CO type. 
The factory agent has a gate factory that supports the CoFactoryBase interface in incoming 
direction.  

C.5.11.6 Encapsulation of CO type and CO factory – SDL component 
Both the CO type and CO factory type are defined in a block type <CO-name>_CO. This block type 
is called SDL component. In every SDL component, there is an instance set factory of type 
<CO-name>_factory as well as an instance set cos of type <CO-name>. The instance set factory 
contains exactly one instance. The instance set cos contains initially no instance and no restriction 
regarding the maximum number of instances. The initial, provides and uses gates of the CO 
type are duplicated by the SDL component as well as the factory gate of the factory type and 
those gates are connected by channels. 

The SDL component is defined in the definition package. It represents a CO type. 

C.6 Mapping of configuration view concepts 

C.6.1 Provided ports 
The concept of provided ports in eODL is a mechanism to hand out interface references that are 
provided by a CO to the clients of this CO.  

This concept is mapped onto a set of remote procedures that are declared in the configuration 
interface of the CO. 

A provided port foo of type bar is mapped onto the remote procedure provide_foo that returns a 
reference (PId) to bar. If foo is of attribute single, every call to provide_foo is required to return 
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the same PId. If foo is of attribute multiple, the user has to implement the semantic himself (see 
C.7.4.3 on port management). 

The configuration interface inherits from the predefined interface ConfigBase. This interface 
declares a procedure provide. It takes a string as an argument. The actual parameter in the 
procedure call designates a port. If this port exists, a reference is returned in the form of a PId. If 
the port does not exist, a NoSuchPort exception is raised. The exception NoSuchPort is 
predefined. 

C.6.2 Used ports 
The concept of used port in eODL is a mechanism that enables a CO to store interface references 
of other COs. 

This concept is mapped onto a set of remote procedures that are declared in the configuration 
interface of the CO. 

A used port foo of type bar is mapped onto the remote procedure link_foo that takes a reference 
to bar as parameter. If the port is of attribute single and there is already a reference stored at this 
port, the predefined exception AlreadyConnected is raised. Moreover, a remote procedure 
unlink_foo is declared that removes the stored reference from port foo. If there is no reference 
stored at foo, the predefined exception NotConnected is raised. If the port is of attribute multiple, 
a sequence of references is stored. The exception is AlreadyConnected never raised. 

The predefined interface ConfigBase that the configuration interface is inheriting from declares a 
procedure link and a procedure unlink. These procedures can be used in a generic way to store or 
delete a reference at a used port. As their counterpart for provided ports, they take a string 
argument that designates the port name. Again, if the port with the designated name does not exist, 
a NoSuchPort exception is raised. The generic connect procedure takes a PId as a second argument 
and stores it at the designated port if possible or raises an AlreadyConnected otherwise. It uses 
the same semantics as the port specific connect procedure to decide whether storing the reference is 
possible. The generic disconnect procedure raises a NotConnected exception if there is no 
reference stored at the designated port. 

C.6.3 A SDL naming service 
For a CO to dynamically discover other SDL components, a naming service is defined. The naming 
service is implemented by the process type SDL_Component_Register_Type in package eodl. 
Each SDL system derived from an eODL model is required to have an instance set 
SDL_Component_Registry that contains exactly one instance of type 
SDL_Component_Register_Type. 

As soon as a SDL component is instantiated, it registers itself using the exported procedure 
register_SDLComponent. Any CO can query the naming service using query_SDLComponent. 
The key to look up a SDL component is the fully qualified name using the period character as 
qualification character. The query procedure returns a reference to an SDL component instance of 
the requested type. Using this reference, any client can request the factory of the SDL component 
for COs. 

C.7 Mapping of implementation concepts 
Figure C.2 depicts the internal structure of a SDL process representing a CO type in the form of an 
overview with different optional SDL representations. 
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Figure C.2/Z.130 – SDL process representing CO type 

A rectangle represents a SDL process. A dotted rectangle represents a concept rather than a process. 
For instance, "interaction management" represents the concept of interaction management and 
contains concrete interaction management processes as SDL processes. 

In Figure C.3, a concrete example of a CO process type is presented in SDL graphical notation. The 
procedures get_key, provide_SamplePort and provide make up the port management. The 
processes interaction_interfaceX and interaction_interfaceY correspond to "IMR X" and 
"IMR Y" in Figure C.2. The process instance sets A and B are instances of artefacts. The instance 
set base correspond to the box "Super CO A" in Figure C.2. 

Z.130_FC.3

Process Type CO
get_key provide_SamplePort provide

base : BaseCOType

data_accessA : ArtefactTypeA

B : ArtefactTypeB

interaction_interfaceX

Interaction_interfaceY ArtefactManagement
uses

provides

 

Figure C.3/Z.130 – Example of a CO process type 

C.7.1 Data Access 

Data of a CO is stored in a process data_access that implements get/set procedures to allow 
artefacts access to these data. The data consists of references used by port management and 
interaction management. 
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To provide a typed access to that data, a package <CO-Name>_data is declared in the definition 
package. This data package contains an interface internal_data that declares all get/set 
procedures. 

C.7.2 Artefacts and implementation elements 
Artefacts are programming language constructs that contain implementation elements. In 
SDL-2000 they are mapped onto referenced process types that are defined in the definition 
packages. Artefacts are instantiated as an instance set within the CO process type it implements. 

To access data in a CO, a channel from artefact instance set to the data_access process is 
defined. It carries all procedure calls to the data_access process.  

Implementation elements associate artefacts and interaction elements that the artefact 
implements. They have no representation in SDL. 

The implementation of an interaction element depends on its implementation case. There are two 
implementation cases: 
• supply case; 
• use case. 

Table C.1 gives the semantics of the interaction element kinds and implementation cases. 

Table C.1/Z.130 – Semantics of interaction element kinds and implementation cases 

Type of interaction element 
in design model 

Case definition of 
implementation element 

in design model 

Semantic of implementation 
elements 

operation/attribute supply Implementation of operation 
behaviour/supply access operations to 
attribute 

operation/attribute use Call to operation explicit possible 
consume supply Implementation of signal consumption 
consume use Implementation of signal sending 
produce supply Implementation of signal sending 
produce use Implementation of signal consumption 

Similar to the mapping of interfaces as described in C.5.10 about interfaces and interaction 
elements, each eODL interface is additionally mapped in the definition package onto a package of 
the same name as the interface containing two SDL interfaces: exported_<Interface-name> and 
imported_<Interface-name>. The mapping of the interaction elements is exactly such as 
described in C.5.10 except for procedure and signal. Every procedure and every signal bear an 
additional formal parameter of type PId. This parameter is used to carry sender respectively 
receiver information. See C.7.4 for further information. The signal types that these interfaces refer 
to (bearing an additional formal parameter of type PId) are defined in the definition package. 

The following clauses contain further details on implementing interaction elements. 

C.7.2.1 Implementing operation 
In order to implement an operational interaction element of an interface, the artefact has to 
contain an exported procedure that implements the procedure defined in the SDL interface 
exported_<Interface-Name> of the corresponding interface in the definition package (see last 
clause). It therefore implements a procedure that contains an additional parameter of type PId. The 
artefact can use this parameter to get information about the original sender of the procedure call. 
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C.7.2.2 Calling an operation from an artefact 
Operation calls to other COs are realized as follows: the artefact sends a procedure call to that 
interaction management representation which implements the imported_<interface-name> of the 
interface that contains the operation to call. This procedure is defined in the definition package and 
contains an additional formal parameter of type PId. The actual PId parameter is used to 
designate the receiver of the procedure call. The interaction management representation is 
responsible for forwarding the procedure call to its receiver. 

C.7.2.3 Sending a signal 
Similar to the calling of a procedure, an artefact does not send a signal directly to its receiver, but 
to the interaction management representation. The signal contains an additional formal parameter 
that designates the receiver of the signal and is defined in the definition package. The interaction 
management representation is responsible for forwarding the signal to its receiver. 

C.7.2.4 Consuming a signal 
In order to implement the consumption of a signal, the artefact needs to implement a signal handler 
that accepts the corresponding signal defined in the definition package. 

C.7.2.5 Inheritance of artefacts 
Multiple inheritance is allowed for artefacts. Since in SDL there is no multiple inheritance allowed 
for agent types, this is realized by delegation. Base artefacts are contained in the derived artefact 
and the corresponding gates of each base artefact and the derived artefact are connected by a 
channel. All procedure calls and signals that go to implementation elements that are not redefined 
are directly passed from the environment of the derived artefact to the appropriate base artefact. If 
a certain implementation element is being redefined in the derived artefact, the redefined 
implementation element is defined in the derived artefact. 

C.7.3 Artefact management and instantiation pattern 
Artefact management is responsible for creating and managing instances of an artefact. Within a 
CO, there is an instance set artefact_<CO-name> for every artefact that implements the CO. 
However, the instantiation pattern that is annotated in the model defines what artefact instance is 
used in an interaction. The artefact management implements the instantiation pattern. 

The artefact management is realized as a process artefactmanagement contained in the CO 
process type. The instance set of that process contains exactly one instance. For every artefact type 
that implements the given CO, there is an exported remote procedure get_artefact_<artefact-
name> that returns a reference to an instance of that artefact type. These procedures are 
automatically implemented. Their implementation depends upon the instantiation pattern to be 
used: 
• Artefact by request: During every procedure call, a new instance is created and a reference 

to it is returned; 
• Artefact-Pool: A limited number of instances (a "pool") is created and a reference to one of 

these instances is returned; 
• Singleton: There is only one instance of the artefact, and a reference to it is returned; 
• Userdefined: Since the semantics is defined by the user, the procedure cannot be 

automatically implemented. Instead, a referenced procedure is declared and the user has to 
implement it himself. 
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C.7.4 Interaction management representation 
In the mapping to SDL, the interaction management representation acts as a proxy between the 
implementation elements and the environment of a CO. Each interaction element representation 
handles both incoming and outgoing interactions (referred to the CO). 

Each interface that is required or supported by a CO is represented by a process in the scope of the 
CO process type. This process implements each interaction element either by forwarding the 
interaction request: 
• from the environment of the CO to the appropriate implementation element, thereby 

respecting the artefact instantiating pattern by using the artefact management 
representation; or  

• from the implementation element to the environment of the CO. 

There is one and only one process instance per interface. However, if there is a multiple port of 
this type, then there is an exception to this rule. In this case, there is a certain number of instances. 
The concrete number is subject to the implementation. Moreover, for each interaction management 
process, there is an implicit CO-internal variable <process-name>_reference that holds the PId 
of that process. If there is more than one instance reference to hold, a string of PIds is used. 

C.7.4.1 Interaction management representation implementing interaction from CO to 
environment 

For interactions to the environment the interaction management representation implements: 
• all operation calls (only for required interfaces); and 
• all signals that might be sent. 

It supports the interface imported_<interface-name> of the definition package in the incoming 
direction (from artefacts) and imported_<interface-name> of the interface definition in the 
outgoing direction (to environment). 

An operation (more specifically, the use of an operation) is implemented as follows:  
1) The value of sender is saved to a temporary variable. 
2) The reference to an artefact instance is acquired by calling the appropriate procedure of the 

artefact management representation. 
3) The procedure is called (the saved value of sender is added to the list of parameters) with 

the reference to the artefact instance as destination. 
4) If the operation has exceptions declared, those exceptions have to be catched and raised 

again. 

A sending of a signal  is implemented as follows: when the interaction element representation 
receives the specified signal (with an additional parameter that specifies the destination), it sends 
the specified signal (without the additional parameter) to the destination. 

C.7.4.2 Interaction management representation from environment to CO 
For interactions in this direction, the interaction management representation implements: 
• all operations declared in the interface; and 
• all produced and consumed signals. 

It supports the interface exported_<interface-name> of interface package in the incoming 
direction (from environment) and exported_<interface-name> of definition package in the 
outgoing direction (to artefacts). 

An operation (more specifically, the supply of an operation to the environment) is implemented as 
follows. When the procedure call is received, an artefact instance reference is acquired by calling 
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artefact management. Then, a procedure call to that instance is made, supplying the value of the 
sender variable as an additional parameter. If the operation has a return parameter, the return 
value is returned to the sender. If an operation is raised, the interaction management representation 
is raised again. 

Consuming a signal is implemented as follows: when the interaction element representation 
receives the signal from the environment, it sends the corresponding signal (with an additional 
parameter that contains the value of the sender variable) to the artefact. 

C.7.4.3 Port management 
Port management is responsible for: 
• creating interaction element representations; 
• managing references to interfaces; 
• implementing port-specific accessor operations; and 
• implementing generic port accessor operations. 

All these responsibilities are automatically implemented. 

C.7.4.4 Port management representation 
The port management is implemented by several exported procedures and the start transition of the 
state machine of the CO type process. 

C.7.4.5 Creating interaction management representations 
The port management is responsible for creating processes representing interaction management. 
This is realized in the start transition of the CO type process. After creation of the interaction 
management process, the port management stores the references to each process in the data access 
process using the variable interaction_<interface-name>. 

C.7.4.6 Managing references to interfaces 
For each port, there is an implicit CO-local variable port_<port-name>. The type of this variable 
is either the reference type of the interface typing the port (when port attribute is single) or 
string-of-PId (when port attribute is multiple). Port operations directly manipulate these internal 
variables. 

C.7.4.7 Implementing port-specific accessor operations 
The particular operations are implemented as follows. 

Single provided port: This operation returns the reference that is stored in the internal variable. 

Multiple provided port: One reference out of a set of references has to be chosen. The procedure 
choose_provide_<port-name> (defined within the port management process) is called to make 
this decision. This procedure has to be implemented by the user and is therefore referenced. 

Single used port: The operation link stores a given reference in the data access process using the 
variable port_<port-name>. If there is already a reference stored there, an exception 
AlreadyConnected is raised. The operation unlink assigns the Null value to the CO-local 
variable. If the Null value is already assigned to it, the operation raises an exception 
NotConnected. 

Multiple used port: The operation link stores a given reference in a sequence of references. To 
determine where exactly to place the reference within the sequence, the user has to implement the 
procedure choose_link_<port-name> (defined within the port management process) that takes 
the reference and has to store it somewhere in the sequence. Likewise, the disconnect operation 
calls choose_link_<port-name> to remove an appropriate reference. 
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C.8 Omitting automatically generated behaviour 
The eODL-SDL mapping presented so far is driven by the idea that the user only wants to 
implement the business logic. However, if the user wants to generate production code out of SDL, 
he or she might want to avoid automatically generated code and want to implement it on their own. 

To enable this, the mapping provides the option to omit automatically generated code. In detail, this 
means that the following entities are not generated: 
• artefact management and artefact instance sets; 
• interaction management representations; and 
• port management. 

In short, the CO process type does not contain any entities. The user can implement the CO process 
type in any way he or she wants to. 

C.9 Not mapped eODL concepts 
The following eODL concepts are not mapped onto SDL-2000: 
• any-type runtime identification; 
• continuous media interaction; 
• software components; 
• assemblies; 
• constraints and properties; 
• target environment concepts; 
• deployment plan. 

C.10 Predefined eodl package 
This is the complete contents of the package eodl. 
 
package eODL; 
  syntype unsigned_short = Integer constants (0:65535); 
  endsyntype; 
 
  syntype unsigned_long = Integer constants (0:4294967295); 
  endsyntype; 
 
  syntype unsigned_long_long = Integer constants (0:18446744073709551615); 
  endsyntype; 
 
  syntype short = Integer constants (-32768:32767); 
  endsyntype; 
 
  syntype long = Integer constants (-2147483648:2147483647); 
  endsyntype; 
 
  syntype long_long = Integer constants  
    (9223372036854775808:9223372036854775807); 
  endsyntype; 
 
  syntype char = Character endsyntype; 
  syntype wchar = Natural endsyntype; 
 
  syntype float = Real endsyntype;  
  syntype double = Real endsyntype;  
  syntype long_double = Real endsyntype;  
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  value type wstring 
    inherits String < wchar >; 
  endvalue type wstring; 
 
  value type wstring_bounded < synonym length Natural > 
 inherits Vector < wchar, length>; 
  endvalue type wstring_bounded; 
 
  abstract value type TypeCode; 
  endvalue type; 
 
  value type fixedpt < synonym Width Natural; synonym scale Natural >; 
    struct 
      private unscaled_int Integer; 
    operators 
      Make ( Real ) -> this fixedpt; 
      Make ( Integer ) -> this fixedpt; 
   "+"  ( this fixedpt, this fixedpt ) -> this fixedpt; 
   "-"  ( this fixedpt, this fixedpt ) -> this fixedpt; 
   "*"  ( this fixedpt, this fixedpt ) -> this fixedpt; 
   "/"  ( this fixedpt, this fixedpt ) -> this fixedpt;  
   "="  ( this fixedpt, this fixedpt ) -> Boolean; 
   ">"  ( this fixedpt, this fixedpt ) -> Boolean; 
    methods 
      toReal -> Real; 
 
    OPERATOR Make (r Real ) -> this fixedpt  { 
      DCL retVal this fixedpt; 
      r := r * power(10,scale); 
      retVal.unscaled_int := fix(r); 
      return retVal; 
    } 
    OPERATOR Make (n Integer ) -> this fixedpt  { 
      DCL retVal this fixedpt; 
      retVal.unscaled_int := n * power(10,scale); 
      return retVal; 
    } 
    OPERATOR  "+"  (a this fixedpt, b this fixedpt ) -> this fixedpt { 
      DCL retVal this fixedpt; 
      retVal.unscaled_int := a.unscaled_int + b.unscaled_int; 
      return retVal; 
    } 
    OPERATOR  "-"  (a this fixedpt, b this fixedpt ) -> this fixedpt { 
      DCL retVal this fixedpt; 
      retVal.unscaled_int := a.unscaled_int - b.unscaled_int; 
      return retVal; 
    } 
    OPERATOR  "*"  (a this fixedpt, b this fixedpt ) -> this fixedpt { 
      DCL retVal this fixedpt, 
          t Real; 
      t := float(a.unscaled_int * b.unscaled_int); 
   t := t / float(power(10,2*scale)); 
      retVal.unscaled_int := Make( t ); 
      return retVal; 
    } 
    OPERATOR  "/"  (a this fixedpt, b this fixedpt ) -> this fixedpt { 
      DCL retVal this fixedpt, 
       t Real; 
      t := float(a.unscaled_int)/float(a.unscaled_int); 
      retVal.unscaled_int := Make( t ); 
      return retVal; 
    } 
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    OPERATOR  "="  (a this fixedpt, b this fixedpt ) -> Boolean { 
      return a.unscaled_int = b.unscaled_int; 
    } 
    OPERATOR  ">"  (a this fixedpt, b this fixedpt ) -> Boolean { 
      return a.unscaled_int > b.unscaled_int; 
    } 
    METHOD toReal -> Real { 
      return float(unscaled_int)/float(power(10,scale)); 
    } 
  endvalue type; 
 
  package ComponentModel; 
    value type ComponentKey; 
       struct 
         the_key string; 
       methods 
         virtual equal (this ComponentKey) -> Boolean; 
    endvalue type; 
    interface ComponentBase; 
      procedure get_key -> ComponentKey; 
    endinterface ComponentBase; 
 
    procedure generate_CO_key -> ComponentKey external; 
 
    value type ComponentKeySeq 
      inherits String < ComponentKey >; 
    endvalue type; 
    interface CoFactoryBase; 
      procedure get_co_typ -> string; 
      procedure generic_create -> ComponentBase; 
      procedure resolve_CO (ComponentKey) -> ComponentBase; 
      procedure list_cos -> ComponentKeySeq; 
    endinterface CoFactoryBase; 
 
    exception NotConnected; 
    interface ConfigBase; 
      procedure provide(in string) -> PId 
           raise NoSuchPort; 
      procedure link(in string, in PId)  
           raise AlreadyConnected, NoSuchPort; 
      procedure unlink(in string, in ComponentBase)  
           raise NotConnected, NoSuchPort; 
    endinterface ConfigBase; 
 
  endpackage ComponentModel; 
 
  interface SDLComponent_Registry_IF; 
    procedure register_SDLComponent(in string, in PId); 
    procedure query_SDLComponent(in string) -> PId; 
  endinterface; 
 
  process type SDLComponent_Registry_Type; 
    gate registry in with SDLComponent_Registry_IF; 
    channel nodelay 
      from env  to this via registry; 
    endchannel; 
 
    value type registry_store 
      inherits Array < string, Pid >; 
    endvalue type registry_store; 
 
    dcl store registry_store := Make; 
     
    exported as <<package eodl>>register_SDLComponent 
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    procedure register_SDLComponent(in key string, in item Pid); 
      start; 
      task registry_store := Modify(store,key,item); 
      return; 
    endprocedure; 
    
    exported as <<package eodl>>query_SDLComponent 
    procedure register_SDLComponent(in key string) ->  Pid 
           raise InvalidIndex; 
      dcl retval Pid; 
      start; 
      task retval := Extract(store,key); 
      return retval; 
    endprocedure; 
 
  endprocess type SDLComponent_Registry_Type; 
 
 
endpackage eODL; 

Annex D 
 

eODL metamodel XML representation 

The metamodel was defined using UML. Its XML representation according to OMG XMI [6] is 
intended to be read by tools and constitutes Annex D. The actual data is available with the software 
package "Z.130 Annex D.xml". 
NOTE – Z.130 Annex D.xml software package is available for free on the ITU-T formal language database 
at http://www.itu.int/ITU-T/formal-language/xml/database/itu-t/z/z130/2003/. 

Appendix I 
 

Example: Dining Philosophers 

I.1 Introduction 
The purpose of this appendix is to show an example of how eODL can be used for design, 
implementation and deployment of a distributed system.  

The Dining Philosophers problem was first described by Edsger W. Dijkstra in 1965. It is a model 
and universal method for testing and comparing theories on resource allocation. Dijkstra hoped to 
use it to help create a layered operating system, by creating a machine which could be considered to 
be an entirely deterministic automaton.  

A configurable number of philosophers (processes) are sitting on a round table; a finite number of 
forks (resources) are on the table. Philosophers perform actions – thinking, eating and sleeping. 
They do not need any resources in order to think or sleep, but they need two forks each in order to 
eat, one for the left hand and one for the right hand. Therefore, before starting to eat, a philosopher 
tries to get the two forks, which are to be available next to him. This means that two neighbour 
philosophers cannot eat at the same time.  

http://www.itu.int/ITU-T/formal-language/xml/database/itu-t/z/z130/2003/
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An observer will be notified by all philosophers in the case of an activity change, i.e., at the time a 
philosopher starts eating, starts thinking or starts sleeping. Furthermore, the critical state of getting 
hungry is notified to the observer, as well. 

I.2 Description 
The problem consists of a finite set of processes which share a finite set of resources, each of which 
can be used by only one process at a time, thus leading to potential deadlock and lifelock situations. 

The finite set of processes, resources and the dynamic interactions between these make up a 
distributed system. The task is to distribute the implementations of the resources and processes 
across the target network. Furthermore, resources have to be connected with the processes. 

The example scenario includes three different CO types: 
• Philosopher. 
• Fork. 
• Observer. 

The following steps have to be performed in order to design, implement and deploy the example: 

Design phase 
• Definition of a model of the example elements, comprising CO types, ports and interfaces. 
• Definition of a model of the implementation structure. 

Implementation phase 
• Implementation of the artefacts according to the model (provide the business logic). 
• Generation of software components according to the model. 
• Definition of a model of the initial system structure (initial configuration) by the 

definition of an assembly. 
• Packaging of the software components and their related model information in order to 

allow shipment of the implementation to customers. 

Integration phase 
• Delivery of the package to a customer. 
• Modelling of the target environment of the customers premise. 
• Determination of a proper assignment of software components contained in the package to 

the target environment. 
• Installation of assigned software components on identified target nodes. 
• Establishment of the initial configuration by interconnection of all initial COs according 

to the initial configuration. 

In I.3 the "Dining Philosophers" example is specified with eODL. In the specification, three 
CO types are defined: 
• The o_Philosopher object type represents a philosopher. 
• The o_Fork object type represents a fork. 
• The o_Observer object type represents an observer. 

Clause I.4 contains the mapping of the eODL model according to the mapping rules given in 
Annex C. Only the concepts of computational, configuration and implementation views are mapped 
as there is no mapping for concepts of the deployment view. The SDL model consists of the two 
main packages: 
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• the SDL interface package phil_interface; and  
• the SDL definition package phil_definition. 

I.3 Example in eODL 
 
module DiningPhilosophers { 
 CO o_Philosopher; 
 CO o_Fork; 
 
 interface i_Fork; 
 interface i_Philosopher; 
 interface i_Observer; 
 
 exception ForkNotAvailable {}; 
 exception NotTheEater {}; 
 
 enum e_ForkState { 
  UNUSED, 
  USED, 
  WASHED 
 }; 
 
 enum e_Pstate { 
  EATING, 
  THINKING, 
  SLEEPING, 
  DEAD, 
  CREATED, 
  HUNGRY 
 }; 
 
 interface i_Fork { 
  void obtain_fork ( in o_Philosopher eater ) 
  raises ( ForkNotAvailable ); 
  void release_fork ( in o_Philosopher eater ) raises ( NotTheEater ); 
 }; 
 
 artefact a_ForkImpl { 
  obtain_fork implements supply i_Fork::obtain_fork; 
  release_fork implements supply i_Fork::release_fork; 
 }; 
 
 CO o_Fork { 
  supports i_Fork; 
  provide i_Fork fork; 
  implemented by a_ForkImpl with ArtefactPool(2); 
 }; 
 
 interface i_Philosopher { 
  void set_name ( in string name); 
 }; 
 
 artefact a_PhilosopherImpl { 
  set_name_impl implements supply i_Philosopher::set_name; 
  pstate_impl implements use i_Observer::pstate; 
 }; 
 
 CO o_Philosopher { 
  implemented by a_PhilosopherImpl with Singleton; 
  supports i_Philosopher; 
  requires i_Fork, i_Observer; 
  use I_observer observer; 
  use i_Fork left; 
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  use i_Fork right;  
 }; 
 
 valuetype Pstate { 
  public e_PState state; 
  public string name; 
  public i_Philosopher philosoph; 
  factory create (  
   in e_PState state, 
   in string name, 
   ini_Philosopher philo); 
 }; 
 
 signal PhilosopherState { 
  PState carry_pstate; 
 }; 
 
 interface i_Observer { 
  consume PhilosopherState pstate; 
 }; 
 
 artefact a_Observer { 
  pstate_Impl implements supply i_Observer::pstate; 
 }; 
 
 CO o_Observer { 
  implemented by a_Observer with Singleton; 
  supports i_Observer; 
  provide i_Observer observer; 
 }; 
}; 
softwarecomponent Philosopher 
realizes o_Philosopher, o_Observer 
{ 
 requires {  
  property os =  [  
      { name = "WINNT"; version = "4,0,0,0"; }, 
      { name = "WIN98"; } 
  ]; 
 }; 
}; 
 
softwarecomponent Fork 
realizes o_Fork; 
{ 
 requires {  
  property os =  [  
      { name = "WINNT"; version = "4,0,0,0"; }, 
      { name = "WIN98"; } 
  ]; 
 }; 
}; 
 
assembly ass1 { 
 p (3) : o_Philosopher; 
 f1 : o_Fork;  
 f2 : o_Fork;  
 o : o_Observer;  
 connect c1 {  
  p.left  = f1.fork;  
  p.right = f2.fork;   
 }; 
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 connect c2 { o.observer = p.observer; }; 
}; 
 
environment myenv_1 { 
 node n1 { 
  property os =  { name = "WINNT"; version = "4,0,0,0"; }; 
  property memory = 256; 
 }; 
 
 node n2 { 
  property os =  { name = "WINNT"; version = "4,0,0,0"; }; 
  property memory = 128; 
 }; 
 
 link l1 { node n1, n2; }; 
}; 
 
installation install1 
uses environment myenv_1 { 
 Philosopher ->n2; 
 Fork ->n1; 
}; 
 
instantiation instantiate1 
uses environment myenv_1 
uses assembly ass1 { 
 p,  o  -> n2; 
 f1, f2 ->  n1; 
}; 
 
deploy { 
 install { install1; }; 
 instantiate { instantiate1; }; 
}; 
 

I.4 Example in SDL-2000 
 
use eODL; 
/* /--------------------------------\ */ 
/*     data types and interface       */ 
/*     needed by clients              */ 
package phil_interface; 
 
package DiningPhilosophers; 
 
  /* exceptions */ 
  exception ForkNotAvailable; 
  exception NotTheEater; 
 
  /* enumerations */ 
  value type e_ForkState; 
    literals  
      UNUSED, USED; 
  endvalue type; 
 
  value type e_ForkState; 
    literals  
      EATING, THINKING, SLEEPING, 
      DEAD, CREATED, HUNGRY; 
  endvalue type; 
 
  /* interface i_Fork */ 
  package i_Fork; 
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    /* declaration of exported procedures */ 
    interface exported_i_Fork; 
      procedure obtain_fork(in o_Philosopher) 
         raise ForkNotAvailable; 
      procedure release_fork(in o_Philosopher) 
                raise NoTheEater; 
    endinterface; 
 
 /* declaration of consumed signals */ 
    interface imported_i_Fork; 
       /* no consumed signals declared */ 
    endinterface; 
  endpackage; 
 
  /* definition of CO type o_Fork */ 
  use i_Fork; 
  package o_Fork; 
 
    /* contains attributes defined in CO type o_Fork */ 
    interface o_Fork_attributes 
    inherits <<package eODL/package ComponentModel>>ComponentBase; 
    endinterface; 
 
    /* port operations */ 
    interface o_Fork_config 
    inherits <<package eODL/package ComponentModel>>ConfigBase adding; 
      /* provided port "fork" */ 
      procedure provide_fork -> exported_i_Fork; 
    endinterface; 
 
    /* combine config and attributes interfaces */ 
    interface o_Fork 
      inherits o_Fork_attributes, o_Fork_config; 
    endinterface; 
 
    /* declaration of interface of CO factory */ 
    package factory; 
      interface o_Fork_factory 
   inherits <<package eODL/package ComponentModel>>CoFactoryBase adding; 
        procedure create_o_Fork -> o_Fork; 
      endinterface; 
    endpackage; 
 
  endpackage o_Fork; 
 
package i_Philosopher; 
 
    interface exported_i_Philosopher; 
      procedure set_name(in string); 
    endinterface; 
 
    interface imported_i_Philosopher; 
    endinterface; 
  
  endpackage; 
 
  use i_Philosopher; 
  use o_Philosopher; 
  object type Pstate; 
    struct 
      public eodl_state e_PState; /* state -> eodl_state ! */ 
      public name string; 
   public philosoph exported_i_Philosopher; 
    operators 
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   /* create -> eodl_create) */ 
      eodl_create(e_PState, string, exported_i_Philosopher) -> Pstate; 
      make(e_PState, string, exported_i_Philosopher) -> PState; 
 
    operator eodl_create(eodl_state e_PState,  
       name string, 
       philo exported_i_Philosopher) { 
      dcl retval Pstate; 
   retval.eodl_state := eodl_state; 
      retval.name := name; 
      retval.philosoph := philo; 
   return retval; 
    } 
    operator make(eodl_state e_PState,  
      name string, 
      philo exported_i_Philosopher) { 
   return eold_create(eodl_state,name,philo); 
    } 
  endobject type; 
 
  use i_Philosopher; 
  package o_Philosopher; 
 
    /* contains attributes defined in CO type o_Fork */ 
    interface o_Philosopher_attributes 
    inherits <<package eODL/package ComponentModel>>ComponentBase; 
    endinterface; 
 
    interface o_Philosopher_config 
     inherits <<package eODL/package ComponentModel>>ConfigBase adding; 
      procedure link_observer(exported_i_Observer) raise AlreadyConnected; 
      procedure link_left(exported_i_Fork) raise AlreadyConnected; 
      procedure link_right(exported_i_Fork) raise AlreadyConnected; 
      procedure unlink_observer raise NotConnected; 
      procedure unlink_left raise NotConnected; 
      procedure unlink_right raise NotConnected; 
    endinterface; 
 
    interface o_Philosopher  
  inherits o_Philosopher_attributes, o_Philosopher_config; 
    endinterface; 
 
    use eODL / package ComponentModel; 
    package factory; 
      interface o_Fork_factory 
     inherits <<package eODL/package ComponentModel>>CoFactoryBase adding; 
          procedure create_o_Philosopher -> o_Philosopher; 
      endinterface; 
    endpackage factory; 
   
  endpackage; 
 
  signal PhilosopherState(PState); 
 
package i_Observer; 
     
    interface exported_i_Observer; 
      use PhilosopherState; 
    endinterface; 
 
    interface imported_i_Observer; 
    endinterface; 
 
  endpackage; 
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  /* CO o_Observer */ 
  use i_Observer; 
  package o_Observer; 
 
    interface o_Observer_attributes 
    inherits <<package eODL/package ComponentModel>>ComponentBase adding; 
    endinterface; 
 
    interface o_Observer_config 
    inherits <<package eODL/package ComponentModel>>ConfigBase adding; 
    endinterface; 
 
    interface o_Observer inherits o_Observer_attributes, o_Observer_config; 
    endinterface; 
 
    package factory; 
      interface o_Observer_factory 
   inherits <<package eODL/package ComponentModel>>CoFactoryBase adding; 
        procedure create_o_Observer -> o_Observer; 
      endinterface; 
    endpackage; 
 
  endpackage; 
 
endpackage DiningPhilosophers; 
 
endpackage phil_interface; 
/* \--------------------------------/ */ 
 
/* /--------------------------------\ */ 
/*     implementation package         */ 
use eODL; 
package phil_definition; 
 
package DiningPhilosophers; 
 
 
  /* used to define operations implemented or */ 
  /* used by artefacts */ 
  package i_Fork; 
    /* operations implemented by artefacts */ 
    interface exported_i_Fork; 
      procedure obtain_fork(in o_Philosopher, in Pid) 
         raise ForkNotAvailable; 
      procedure release_fork(in o_Philosopher, in Pid) 
                raise NoTheEater; 
    endinterface; 
 
    /* operations used by artefacts */ 
    interface imported_i_Fork; 
    endinterface; 
  endpackage; 
 
 
  /* state attributes */ 
  package o_Fork_data; 
 
    interface internal_data; 
      procedure get_port_fork -> exported_i_Fork; 
      procedure get_interaction_i_Fork -> exported_i_Fork; 
      procedure set_port_fork(exported_i_Fork); 
      procedure set_interaction_i_Fork(exported_i_Fork); 
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    endinterface; 
  endpackage; 
 
  signallist a_ForkImpl_in =  
       procedure <<package phil_definition/package DiningPhilosophers/ 
          package i_Fork>>obain_fork,  
    procedure <<package phil_definition/package DiningPhilosophers/ 
             package i_Fork>>release_fork; 
 
  /* artefact: referenced definition */ 
  use a_PhilosopherImpl; 
  use o_Fork_state; 
  process type a_ForkImpl with  
 use (a_ForkImpl_in);;  
    referenced; 
 
  /* /--------------------------------\ */ 
  /*     SDL component o_Fork_CO        */ 
  use a_PhilosopherImpl; 
  use o_Fork_state; 
  use a_ForkImpl; 
  block type o_Fork_CO; 
 
    /* gate definitions */ 
    gate factory 
      in with <<package phil_interface/package DiningPhilosopher/ 
  package o_Fork/package factory>>o_Fork_factory;  
    gate initial 
      in with  (<<package phil_interface/ 
  package DiningPhilosopher/package o_Fork>>o_Fork); 
    gate provides 
      in with <<package phil_interface/ 
  package DiningPhilosopher/package i_Fork>>exported_i_Fork; 
      out with <<package phil_interface/ 
  package DiningPhilosopher/package i_Fork>>imported_i_Fork; 
   
    /* defines the factory process */ 
    process type o_Fork_factory; 
      gate factory 
        in with <<package phil_interface/package DiningPhilosopher/ 
  package o_Fork/package factory>>o_Fork_factory; /* ; zuviel  */ 
      channel nodelay 
        from this via factory to env; 
      endchannel; 
   
      /* stores component keys here */ 
      dcl keys ComponentKeysSeq; 
 
      /* creates a CO and returns a reference to it */ 
      exported as <<package phil_interface/package DiningPhilosopher/ 
  package o_Fork/package factory>>generic_create  
      procedure generic_create -> ComponentBase; 
     dcl key ComponentKey; 
      start; 
        create co_instance; 
     task key := call get_key to offspring; 
  task keys := Modify(keys, key, offspring); 
        return offspring; 
      endprocedure; 
 
      /* creates a CO and returns a reference to it */ 
      exported as <<package phil_interface/package DiningPhilosopher/ 
  package o_Fork/package factory>>create_o_Fork 
      procedure create_o_Fork -> o_Fork; 
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  dcl key ComponentKey; 
   start; 
        create co_instance; 
  task key := call get_key to offspring; 
  task keys := Modify(keys, key, offspring); 
        return offspring; 
      endprocedure; 
 
      /* returns name of CO type */ 
      exported as <<package phil_interface/package DiningPhilosopher/ 
  package o_Fork/package factory>>get_co_type 
      procedure get_co_type -> string; 
        start; 
        return 'DiningPhilosophers.o_Fork'; 
      endprocedure; 
 
      /* returns reference to a CO */  
   exported as <<package phil_interface/package DiningPhilosophers/ 
   package o_Fork/package factory>>resolve_co 
   procedure resolve_co(in key ComponentKey) -> ComponentBase 
            raise InvalidIndex; 
  dcl returnValue Pid; 
  dcl i Integer := 1; 
  start; 
  task returnValue := Extract(keys,key); 
  return returnValue; 
   endprocedure; 
 
      /* returns a list of CO keys */ 
   exported as <<package phil_interface/package DiningPhilosophers/ 
   package o_Fork/package factory>>list_co 
   procedure list_co -> ComponentKeySeq; 
  start; 
  return keys; 
   endprocedure; 
 
    endprocess type o_Fork_factory; 
    /* \--------------------------------/ */ 
 
    /* defines the CO type itself */ 
    process type o_Fork; 
 
      /* gates used for comm. with environment */ 
      gate initial 
        in with  (<<package phil_interface/package DiningPhilosopher 
   /package o_Fork>>o_Fork);  
      gate provides 
        in with <<package phil_interface/package DiningPhilosopher 
     /package i_Fork>>exported_i_Fork; /* NOS */ 
        out with <<package phil_interface/package DiningPhilosopher 
   /package i_Fork>>imported_i_Fork; 
 
      /* /--------------------------------\ */ 
      /*     encapsules state variables     */ 
      process data_access(1,1); 
 
        dcl reference_interaction_i_Fork exported_i_Fork; 
        dcl reference_port_fork exported_i_Fork; 
        dcl the_key string; 
 
 
      exported as <<package philo_definition/package DiningPhilosopher/ 
   package o_Fork_data>>get_port_fork 
      procedure get_port_fork -> exported_i_Fork; 
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        start; 
        return reference_port_fork; 
      endprocedure; 
      exported as <<package philo_definition/package DiningPhilosopher/ 
   package o_Fork_data>>get_interaction_i_Fork 
      procedure get_interaction_i_fork -> exported_i_Fork; 
        start; 
        return reference_interaction_i_Fork; 
      endprocedure; 
      exported as <<package philo_definition/package DiningPhilosopher/ 
   package o_Fork_data>>set_port_fork 
      procedure set_port_fork(in ref exported_i_Fork); 
        start; 
        reference_port_fork := ref; 
      endprocedure; 
      exported as <<package philo_definition/package DiningPhilosopher/ 
   package o_Fork_data>>set_interaction_i_Fork 
      procedure set_interaction_i_fork(in ref exported_i_Fork); 
        start; 
        reference_interaction_i_Fork := ref; 
      endprocedure; 
 
    endprocess data_access;   
    /* \--------------------------------/ */ 
 
    /* channel artefact <--> state_access */ 
    channel nodelay  
      from artefact_a_ForkImpl to data_accessor 
        with internal_state; 
    endchannel; 
 
 
    /* in case of CO type inheritance an instance of this type */ 
    /* is contained in an "eODL-inherited" type. The following */  
    /* gate is used to interface with the state_access process */ 
    /* of the inherited type. */ 
    gate data_accessor 
      in with internal_data; 
    channel route_state_access nodelay 
      from  
        env via data_accessor to data_access; 
    endchannel;   
 
 
    /* /--------------------------------\ */ 
    /*     manages artefact instances     */ 
    process artefactmanagement(1,1); 
      /* signals for delegation of artefact creations */ 
      signal create_a_ForkImpl_req; 
      signal create_a_ForkImpl_res(Pid); 
      /* Artefact-Pool and pointer in pool */ 
      dcl a_ForkImpl_seq PIdSeq := (. .); 
      dcl a_ForkImpl_ptr Integer := 0; 
      /* returns an artefact instance reference */ 
      /* implements a pool of size POOLSIZE */ 
      /* creates a new artefact if pool is not yet of */ 
      /* size POOLSIZE, otherwise returns the "next" */ 
      /* artefact. */ 
      exported procedure get_artefact_a_ForkImpl -> PId; 
        dcl new_pid PId; 
        start;      
     decision length(a_ForkImpl_seq); 
          (0:1):  
            /* delegate creation of artefact */ 



 

86 ITU-T Rec. Z.130 (07/2003) 

         output create_a_ForkImpl; 
   nextstate wait4response; 
          else:  
            task a_ForkImpl_ptr := a_ForkImpl_ptr+1; 
            task { if (a_ForkImpl_ptr>length(a_ForkImpl_seq))  
                   a_ForkImpl_ptr := 1;              
                 };             
            return extract(a_ForkImpl_seq, a_ForkImpl_ptr); 
        enddecision; 
        /* delegation continued ... */ 
        state wait4response; 
        input create_a_ForkImpl_res(new_pid);    
        task a_ForkImpl_seq := a_ForkImpl_seq // new_pid; 
        return offspring;  
      endprocedure; 
      start; 
      nextstate wait_for_signal; 
      /* create artefact instance for procedure */ 
      state wait_for_signal; 
      input create_a_ForkImpl_req; 
      create artefact_a_ForkImpl; 
   output create_a_ForkImpl_res(offspring) to sender; 
      nextstate -; 
    endprocess; 
    /* \--------------------------------/ */ 
 
    /* this is the interactionmanagementrepresentation */ 
    /* for interface i_fork. handles procedure calls   */ 
    /* from the environment */ 
    process interaction_i_Fork(0,1); 
      exported as <<interface exported_i_Fork>>obtain_Fork 
      procedure obtain_fork(in eater o_Philosopher) 
              raise ForkNotAvailable; 
        dcl p PId; 
        start; 
        task p := get_artefact_a_ForkImpl; 
        call obtain_Fork(who, sender) to p; 
        return;    
  exceptionhandler defhandler; 
          handle ForkNotAvailable; 
          raise ForkNotAvailable; 
        endexceptionhandler defhandler; 
      endprocedure; 
      exported as <<interface exported_i_Fork>>release_Fork 
      procedure release_fork(in eater o_Philosopher) 
        raise NotTheEater; 
        dcl p PId; 
        start; 
        task p := get_artefact_a_ForkImpl; 
        call obtain_Fork(who,sender) to p; 
        return;    
  exceptionhandler defhandler; 
          handle NotTheEater; 
          raise NotTheEater; 
        endexceptionhandler defhandler; 
      endprocedure; 
    endprocess; 
 
    /* portmanagement */ 
    exported as <<package phil_interface/ 
    package DiningPhilosopher>>provide_fork 
    procedure provide_fork -> exported_i_Fork; 
      start; 
      return call provide_fork; 
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    endprocedure; 
    exported as <<package philo_interface/ 
   package DiningPhilosopher/package o_Fork>>provide 
    procedure provide(s string) -> PId 
     raise NoSuchPort; 
      start; 
      decision s; 
     (='fork'): return call provide_fork; 
        else: raise NoSuchPort; 
      enddecision; 
    endprocedure; 
    exported as <<package philo_interface/ 
     package DiningPhilosopher/package o_Fork>>port_connect 
    procedure port_connect(s string) -> PId  
   raise NoSuchPort,AlreadyConnected; 
      start; 
      raise NoSuchPort; 
    endprocedure; 
    exported as <<package philo_interface/ 
     package DiningPhilosopher/package o_Fork>>port_disconnect 
    procedure port_disconnect(s string) -> PId  
    raise NoSuchPort,NotConnected; 
      start; 
      raise NoSuchPort; 
    endprocedure; 
      /* get/set for internal variables */ 
      exported as <<package philo_definition/package DiningPhilosopher/ 
   package o_Fork_data>>get_key 
      procedure get_key -> ComponentKey; 
        start; 
        return the_key; 
      endprocedure; 
 
 
    /* computes key and instantiates        */ 
    /* interactionmanagementrepresentations */ 
    start; 
    task the_key := <<package eODL>>generate_key; 
    create interaction_i_Fork; 
    call set_interaction_i_Fork(offspring); 
    task reference_port_fork := offspring; 
    nextstate initial_state; 
 
    /* process instance set of artefact a_ForkImpl */ 
    process  artefact_a_ForkImpl(0,2): a_ForkImpl; 
 
    /* connects artefact and imr */ 
    channel interaction_i_fork_a_fork_impl nodelay 
   from interaction_i_Fork to artefact_a_ForkImpl 
  with procedure <<package phil_definition/package DiningPhilosophers 
             /package i_Fork>>obtain_fork, 
             procedure <<package phil_definition/package DiningPhilosophers 
             /package i_Fork>>release_fork; 
    endchannel; 
 
    channel ch_i_Fork nodelay 
   from env via provides to interaction_i_Fork 
  with exported_i_Fork; 
   from interaction_i_Fork to env via provides 
  with imported_i_Fork; 
    endchannel; 
 
 channel ch_initial nodelay 
      from env via initial to this 
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     with config_o_Fork; 
    endchannel; 
 
  endprocess type o_Fork; 
  /* \--------------------------------/ */ 
 
  /* instance sets for factory and co type */ 
  process factory(1,1): o_Fork_factory; 
  process cos(0,): o_Fork; 
 
  channel factory_to_co nodelay 
    from factory to co via initial; 
  endchannel; 
  channel initial_to_env nodelay 
    from env via initial to co via initial; 
  endchannel; 
  channel provides_to_env nodelay 
    from cos via provides to env via provides; 
    from env via provides to cos via provides; 
  endchannel; 
  channel uses_to_env nodelay 
    from cos via uses to env via uses; 
    from env via uses to cos via uses; 
  endchannel; 
   
 
endblock type o_Fork_CO; 
/* \--------------------------------/ */ 
 
package i_Philosopher; 
 
    interface exported_i_Philosoper; 
      procedure set_name(in string, in Pid); 
    endinterface; 
 
    interface imported_i_Philosoper; 
    endinterface; 
 
  endpackage i_Philosopher; 
 
  package o_Philosopher_data; 
 
    interface internal_data; 
      procedure get_port_observer -> i_Observer; 
      procedure get_port_left -> i_Fork; 
      procedure get_port_right -> i_Fork; 
      procedure get_interaction_i_Fork -> imported_i_Fork; 
      procedure get_interaction_i_Observer -> imported_i_Observer;  
      procedure get_interaction_i_Philosopher -> exported_i_Philosopher; 
      procedure set_port_observer(i_Observer); 
      procedure set_port_left(i_Fork); 
      procedure set_port_right(i_Fork); 
      procedure set_interaction_i_Fork(imported_i_Fork); 
      procedure set_interaction_i_Observer(imported_i_Observer);  
      procedure set_interaction_i_Philosopher(exported_i_Philosopher); 
    endinterface; 
 
  endpackage; 
 
  signallist a_PhilosopherImpl := 
    procedure <<package phil_definition/package DiningPhilosophers/ 
             package i_Philosopher>>set_name; 
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  process type a_PhilosopherImpl with  
 use (a_PhilosopherImpl_in);;  
    referenced; 
 
 
  block type o_Philosopher_CO; 
 
    gate factory 
      in with <<package phil_interface/package DiningPhilosophers/ 
   package o_Philosopher/package factory>>o_Philosopher_factory;  
    gate initial 
      in with  <<package phil_interface/package DiningPhilosophers/ 
   package o_Philosopher>>o_Philosopher; 
    gate provides 
      in with <<package phil_interface/package DiningPhilosophers/ 
   package i_Philosopher>>exported_i_Philosopher; 
      out with <<package phil_interface/package DiningPhilosophers/ 
   package i_Philosopher>>imported_i_Philosopher; 
    gate uses 
      out with <<package phil_interface/package DiningPhilosophers/ 
   package i_Fork>>exported_i_Fork,  
           <<package phil_interface/package DiningPhilosophers 
   /package i_Observer>>exported_i_Observer;  
 
    process type o_Philosopher_factory; 
      gate factory 
        in with <<package phil_interface/package DiningPhilosophers/ 
   package o_Philosopher/package factory>>o_Philosopher_factory; 
      channel nodelay 
        from this via factory to env; 
   endchannel; 
  
   dcl keys ComponentKeysSeq; 
 
      exported as <<package phil_interface/package DiningPhilosophers/ 
   package o_Philosopher/package factory>>generic_create  
   procedure generic_create -> ComponentBase; 
        dcl key ComponentKey; 
      start; 
        create co_instance; 
     task key := call get_key to offspring; 
     task keys := keys // key; 
        return offspring; 
      endprocedure; 
 
      exported as <<package phil_interface/package DiningPhilosophers/ 
   package o_Philosopher/package factory>>create_o_Philosopher 
   procedure create_o_Philosopher -> o_Philosopher; 
     dcl key ComponentKey; 
      start; 
        create co_instance; 
     task key := call get_key to offspring; 
     task keys := keys // key; 
        return offspring; 
      endprocedure; 
 
      exported as <<package phil_interface/package DiningPhilosophers/ 
   package o_Philosopher/package factory>>get_co_type 
      procedure get_co_type -> string; 
        start; 
        return 'o_Philosopher'; 
      endprocedure; 
 
      /* returns reference to a CO */  
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   exported as <<package phil_interface/package DiningPhilosophers/ 
   package o_Fork/package factory>>resolve_co 
   procedure resolve_co(in key ComponentKey) -> ComponentBase 
        raise InvalidIndex; 
  dcl returnValue Pid; 
  dcl i Integer := 1; 
  start; 
  task returnValue := Extract(keys,key); 
  return returnValue; 
   endprocedure; 
 
      /* returns a list of CO keys */ 
   exported as <<package phil_interface/package DiningPhilosophers/ 
   package o_Fork/package factory>>list_co 
   procedure list_co -> ComponentKeySeq; 
  start; 
  return keys; 
   endprocedure; 
 
    endprocess type; 
  
 
    process type o_Philosopher; 
      gate initial 
        in with  <<package phil_interface/package DiningPhilosophers/ 
   package o_Philosopher>>o_Philosopher; 
 
      channel ch_initial nodelay 
        from env via initial to this with o_Philosopher; 
      endchannel; 
 
      gate provides 
        in with <<package phil_interface/package DiningPhilosophers/ 
   package i_Philosopher>>exported_i_Philosopher; 
        out with <<package phil_interface/package DiningPhilosophers/ 
   package i_Philosopher>>imported_i_Philosopher; 
      channel ch_provides nodelay 
        from env via provides to interaction_i_Philosopher 
   with exported_i_Philosopher; 
        from interaction_i_Philosopher via provides to env 
   with imported_i_Philosopher; 
      endchannel; 
 
      gate uses 
        out with <<package phil_interface/package DiningPhilosophers/ 
   package i_Fork>>exported_i_Fork, 
       <<package phil_interface/package DiningPhilosophers/ 
   package i_Observer>>exported_i_Observer; 
 
      dcl the_key string; 
 
      process data_access(1,1); 
   dcl reference_interaction_i_Philosopher exported_i_Philosopher; 
   dcl reference_interaction_i_Fork imported_i_Fork; 
   dcl reference_interaction_i_Observer imported_i_Observer; 
   dcl reference_port_observer exported_i_Observer := Null; 
   dcl reference_port_left exported_i_Fork := Null; 
    dcl reference_port_right exported_i_Fork := Null; 
 
 exported as <<package philo_definition/package DiningPhilosophers/ 
   package o_Philosopher_data>>get_port_observer 
        procedure get_port_observer -> i_Observer; 
    start; 
    return reference_port_observer; 
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  endprocedure; 
 exported as <<package philo_definition/package DiningPhilosophers/ 
   package o_Philosopher_data>>set_port_observer 
        procedure set_port_observer(ref i_Observer); 
   start; 
   task reference_port_observer := ref; 
 endprocedure; 
 exported as <<package philo_definition/package DiningPhilosophers/ 
  package o_Philosopher_data>>get_port_left 
        procedure get_port_left -> i_Fork; 
   start; 
   return reference_port_left; 
 endprocedure; 
 exported as <<package philo_definition/package DiningPhilosophers/ 
  package o_Philosopher_data>>set_port_left 
        procedure set_port_left(ref i_Fork); 
   start; 
   task reference_port_left := ref; 
 endprocedure; 
 exported as <<package philo_definition/package DiningPhilosophers/ 
   package o_Philosopher_data>>get_port_right 
        procedure get_port_right -> i_Fork; 
   start; 
   return reference_port_right; 
 endprocedure; 
 exported as <<package philo_definition/package DiningPhilosophers/ 
   package o_Philosopher_data>>set_port_right 
        procedure set_port_right(ref i_Fork); 
   start; 
   task reference_port_right := ref; 
 endprocedure; 
 exported as <<package philo_definition/package DiningPhilosophers/ 
   package o_Philosopher_data>>get_interaction_i_Fork 
 procedure get_interaction_req_i_Fork -> imported_i_Fork; 
   start; 
   return reference_interaction_i_Fork; 
 endprocedure; 
 exported as <<package philo_definition/package DiningPhilosophers/ 
   package o_Philosopher_data>>set_interaction_i_Fork 
 procedure set_interaction_i_Fork(ref imported_i_Fork); 
   start; 
   task reference_interaction_i_Fork := ref; 
 endprocedure; 
 exported as <<package philo_definition/package DiningPhilosophers/ 
  package o_Philosopher_data>>get_interaction_i_Observer 
        procedure get_interaction_i_Observer -> imported_i_Observer;  
   start; 
   return reference_interaction_i_Observer; 
 endprocedure; 
 exported as <<package philo_definition/package DiningPhilosophers/ 
  package o_Philosopher_data>>set_interaction_i_Observer 
        procedure set_interaction_i_Observer(ref imported_i_Observer); 
   start; 
   task reference_interaction_i_Observer := ref; 
 endprocedure; 
 exported as <<package philo_definition/package DiningPhilosophers/ 
  package o_Philosopher_data>>get_interaction_i_Philosopher 
        procedure get_interaction_i_Philosopher -> exported_i_Philosopher; 
   start; 
   return reference_interaction_i_Philosopher; 
 endprocedure; 
 exported as <<package philo_definition/package DiningPhilosophers/ 
  package o_Philosopher_data>>set_interaction_i_Philosopher 
        procedure set_interaction_i_Philosopher(ref exported_i_Philosopher); 
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   start; 
   task reference_interaction_i_Philosopher := ref; 
 endprocedure; 
 
      endprocess; 
 
 
    /* channel artefact <--> state_access */ 
    channel nodelay  
      from artefact_a_ForkImpl to data_accessor 
        with internal_state; 
    endchannel; 
 
 
    /* in case of CO type inheritance an instance of this type */ 
    /* is contained in an "eODL-inherited" type. The following */  
    /* gate is used to interface with the state_access process */ 
    /* of the inherited type. */ 
    gate data_accessor 
      in with internal_data; 
    channel route_state_access nodelay 
      from  
        env via data_accessor to data_access; 
    endchannel;   
 
      process artefactmanagement(1,1); 
        signal create_a_PhilosopherImpl_req; 
        signal create_a_PhilosopherImpl_res(Pid); 
        dcl a_PhilosopherImpl_ptr PId := Null; 
        exported procedure get_artefact_a_PhilosopherImpl; 
          dcl new_pid PId; 
          start;      
       decision a_PhilosopherImpl_ptr; 
            (Null):  
           output create_a_PhilosopherImpl; 
        nextstate wait4response; 
            else:  
              return a_PhilosopherImpl_ptr; 
          enddecision; 
 
          state wait4response; 
       input create_a_PhilosopherImpl_res(new_pid);    
          task a_PhilosopherImpl_ptr := new_pid; 
          return offspring;  
        endprocedure; 
        start; 
        nextstate wait_for_signal; 
        state wait_for_signal; 
        input create_a_PhilosopherImpl; 
        create artefact_a_PhilosopherImpl; 
        nextstate -; 
      endprocess; 
       
      channel nodelay  
      from  
        artefact_a_PhilosopherImpl  
        to state_accessor  
        with internal_state; 
      endchannel; 
 
      process interaction_i_Philosopher(0,1); 
     exported as <<package phil_definition/package DiningPhilosophers/ 
   package i_Philosopher>>set_name 
        procedure set_name(in name string); 
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          dcl p PId; 
          start; 
       task p := get_artefact_a_PhilosopherImpl; 
       call set_name(name,sender) to p; 
       return;    
     endprocedure; 
   endprocess; 
 
      process interaction_i_Fork(0,1); 
     exported as <<package phil_definition/package DiningPhilosophers/ 
   package i_Fork>>release_fork 
        procedure obtain_fork(in eater o_Philosopher, in server PId); 
          start;     
       call obtain_fork(eater) to server; 
       return;    
     endprocedure; 
 
        exported as <<package phil_definition/package DiningPhilosophers/ 
  package i_Fork>>release_fork 
        procedure release_fork(in eater o_Philosopher, in server PId); 
          start;     
       call obtain_fork(eater) to server; 
       return;    
     endprocedure; 
   endprocess; 
 
   process interaction_i_Observer(0,1); 
   dcl carry_PhilosopherState PhilosopherState; 
  dcl consumer PId; 
  start; 
  nextstate signal_handler; 
  state signal_handler; 
  input PhilosopherState(carry_PhilosopherState, consumer); 
  output PhilosopherState(carry_PhilosopherState) to consumer; 
  nextstate -; 
   endprocess; 
 
 
      process artefact_a_PhilosopherImpl(0,1): a_PhilosopherImpl; 
 
        exported as <<package philo_interface/package DiningPhilosophers/ 
   package o_Philosopher>>link_observer 
        procedure link_observer -> exported_i_Observer; 
       start; 
    decision call get_port_observer; 
          (Null): call set_port_observer(ref); 
    else: raise AlreadyConnected; 
    enddecision; 
        endprocedure; 
        exported as <<package philo_interface/package DiningPhilosophers/ 
   package o_Philosopher>>unlink_observer 
        procedure unlink_observer -> exported_i_Observer; 
       start; 
    decision call get_port_observer; 
          (Null): raise NotConnected; 
    else: call set_port_observer(ref); 
    enddecision; 
        endprocedure; 
        exported as <<package philo_interface/package DiningPhilosophers/ 
   package o_Philosopher>>link_left 
        procedure link_left(ref imported_i_Fork)  
   raise AlreadyConnected; 
       start; 
    decision call get_port_left; 
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          (Null): call set_port_left(ref); 
    else: raise AlreadyConnected; 
    enddecision; 
        endprocedure; 
        exported as <<package philo_interface/package DiningPhilosophers/ 
   package o_Philosopher>>unlink_left 
        procedure unlink_left  
   raise NotConnected; 
       start; 
    decision call get_port_left; 
          (Null): raise NotConnected; 
    else: call set_port_left(Null); 
    enddecision; 
        endprocedure; 
        exported as <<package philo_interface/package DiningPhilosophers/ 
   package o_Philosopher>>link_right 
        procedure link_right(ref imported_i_Fork)  
   raise AlreadyConnected; 
       start; 
    decision call get_port_right; 
          (Null): call set_port_right ( ref ); 
    else: raise AlreadyConnected; 
    enddecision; 
        endprocedure; 
        exported as <<package philo_interface/package DiningPhilosophers/ 
   package o_Philosopher>>unlink_right 
        procedure unlink_right  
   raise NotConnected; 
       start; 
    decision call get_port_right; 
          (Null): raise NotConnected; 
    else: call set_port_right(Null); 
    enddecision; 
        endprocedure; 
        exported as <<package philo_interface/package DiningPhilosophers/ 
   package o_Philosopher>>link_observer 
        procedure link_observer(ref imported_i_Observer)  
   raise AlreadyConnected; 
       start; 
    decision call get_port_observer; 
          (Null): call set_port_observer(ref); 
    else: raise AlreadyConnected; 
    enddecision; 
        endprocedure; 
        exported as <<package philo_interface/package DiningPhilosophers/ 
   package o_Philosopher>>unlink_observer 
        procedure unlink_observer  
   raise NotConnected; 
       start; 
    decision call get_port_observer; 
          (Null): raise NotConnected; 
    else: call set_port_observer(Null); 
    enddecision; 
        endprocedure; 
      exported as <<package philo_interface/ 
    package DiningPhilosopher/package o_Philosopher>>provide 
      procedure provide(s string) -> PId 
    raise NoSuchPort; 
        start; 
  enddecision; 
      endprocedure; 
      exported as <<package philo_interface/ 
    package DiningPhilosopher/package o_Philosopher>>port_connect 
      procedure link(ref Pid, s string)  
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  raise NoSuchPort,AlreadyConnected; 
        start; 
        decision s; 
  (='observer'): call link_observer(ref); 
  (='left'): return call link_left(ref); 
  (='right'): return call link_right(ref); 
  else: raise NoSuchPort; 
        return ; 
      endprocedure; 
      exported as <<package philo_interface/ 
    package DiningPhilosopher/package o_Philosopher>>port_disconnect 
      procedure unlink(s string) -> PId  
  raise NoSuchPort,NotConnected; 
        start; 
        decision s; 
  (='observer'): call unlink_observer; 
  (='left'): return call unlink_left; 
  (='right'): return call unlink_right; 
  else: raise NoSuchPort; 
        return ; 
      endprocedure; 
 
 start; 
        task the_key := <<package eODL>>generate_key; 
     create interaction_i_Fork; 
        call set_interaction_i_Fork(offspring); 
 create interaction_i_Philosopher; 
 call set__interaction_i_Philosopher(offspring); 
 create interaction_i_Observer; 
 call set__interaction_i_Observer(offspring); 
 nextstate initial_state; 
   
      exported as <<package phil_interface/package DiningPhilosophers/ 
       package o_Philosophers>>get_key 
      procedure get_key -> ComponentKey; 
        start; 
        return the_key; 
      endprocedure; 
 
    endprocess type; 
 
    process factory(1,1): o_Fork_factory; 
    process cos(0,): o_Fork; 
 
 
    channel factory_to_co nodelay 
      from factory to co via initial; 
    endchannel; 
 
    channel initial_to_env nodelay 
      from co via initial to env via initial; 
    endchannel; 
 
    channel provides_to_env nodelay 
      from co via provides to env via provides; 
    endchannel; 
 
    channel uses_to_env nodelay 
      from co via uses to env via uses; 
    endchannel; 
 
    channel factory_to_env nodelay 
      from env via factory to  factory; 
    endchannel; 
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  endblock type; 
 
package o_Observer_data;  
    interface internal_data; 
      procedure get_interaction_i_Observer -> exported_i_Observer; 
      procedure get_port_observer -> exported_i_Observer; 
      procedure set_interaction_i_Observer(exported_i_Observer); 
      procedure set_port_observer(exported_i_Observer); 
    endinterface; 
  endpackage; 
 
  signal PhilosopherState(PState, Pid); 
 
  signallist a_Observer_in =  
       <<package phil_definition/package DiningPhilosophers>>PhilosopherState; 
 
  /* artefact: referenced definition */ 
  process type a_ForkImpl with  
 use (a_Observer_in);;  
    referenced; 
 
 
 
  block type o_Observer_CO; 
 
  
    gate factory 
      in with <<package phil_interface/package DiningPhilosophers/ 
   package o_Observer/package factory>>o_Observer_factory;  
    gate initial 
      in with  <<package phil_interface/package DiningPhilosophers/ 
   package o_Observer>>o_Observer;  
    gate provides 
      in with <<package phil_interface/package DiningPhilosophers/ 
   package i_Observer>>exported_i_Observer;  
      out with <<package phil_interface/package DiningPhilosophers/ 
   package i_Observer>>imported_i_Observer; 
 
    process type o_Observer_factory; 
      gate factory 
        in with <<package phil_interface/package DiningPhilosophers/ 
   package o_Observer/package factory>>o_Observer_factory; 
      channel nodelay 
        from this via factory to env; 
   endchannel; 
  
   dcl keys ComponentKeysSeq; 
 
      exported as <<package phil_interface/package DiningPhilosophers/ 
   package o_Observer/package factory>>generic_create  
   procedure generic_create -> ComponentBase; 
        dcl key ComponentKey; 
      start; 
        create co_instance; 
     task key := call get_key to offspring; 
     task keys := keys // key; 
        return offspring; 
      endprocedure; 
 
      exported as <<package phil_interface/package DiningPhilosophers/ 
   package o_Observer/package factory>>create_o_Observer 
   procedure create_o_Observer -> o_Observer; 
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     dcl key ComponentKey; 
      start; 
        create co_instance; 
     task key := call get_key to offspring; 
     task keys := keys // key; 
        return offspring; 
      endprocedure; 
 
      exported as <<package phil_interface/package DiningPhilosophers/ 
   package o_Observer/package factory>>get_co_type 
      procedure get_co_type -> string; 
        start; 
        return 'o_Observer'; 
      endprocedure; 
 
   exported as <<package phil_interface/package DiningPhilosophers/ 
   package o_Observer/package factory>>resolve_co 
   procedure resolve_co(in key ComponentKey) raise InvalidIndex; 
  dcl returnValue Pid; 
  dcl i Integer := 1; 
  start; 
  task returnValue := Extract(keys,key); 
  return returnValue; 
   endprocedure; 
 
   exported as <<package phil_interface/package DiningPhilosophers/ 
   package o_Observer/package factory>>list_co 
   procedure list_co -> ComponentKeySeq; 
  start; 
  return keys; 
   endprocedure; 
 
    endprocess type; 
  
    process type o_Observer; 
      gate initial 
        in with  <<package phil_interface/ 
    package DiningPhilosopher/package o_Observer>>o_Observer; 
      gate provides 
        in with <<package phil_interface/ 
       package DiningPhilosopher/package o_Observer>>exported_i_Observer; 
        out with <<package phil_interface/package DiningPhilosopher/ 
    package o_Observer>>imported_i_Observer; 
 
 
    dcl reference_interaction_i_Observer exported_i_Fork; 
    dcl reference_port_observer exported_i_Fork; 
    dcl the_key string; 
 
    process data_access(1,1); 
      exported as <<package philo_definition/ 
  package DiningPhilosopher/package o_Fork_data>>get_port_observer 
      procedure get_port_fork -> exported_i_Observer; 
        start; 
        return reference_port_observer; 
      endprocedure; 
      exported as <<package philo_definition/ 
  package DiningPhilosopher/package 
o_Fork_state>>get_interaction_i_Observer 
      procedure get_interaction_i_Observer -> exported_i_Observer; 
        start; 
        return reference_interaction_i_Observer; 
      endprocedure; 
    endprocess;   
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      exported as <<package philo_definition/ 
  package DiningPhilosopher/package o_Fork_data>>set_port_observer 
      procedure set_port_fork(in ref exported_i_Observer); 
        start; 
        reference_port_observer := ref; 
      endprocedure; 
      exported as <<package philo_definition/ 
  package DiningPhilosopher/package 
o_Fork_state>>set_interaction_i_Observer 
      procedure set_interaction_i_Observer(exported_i_Observer); 
        start; 
        reference_interaction_i_Observer := ref; 
      endprocedure; 
    endprocess;   
 
    gate state_accessor 
      in with internal_state; 
    channel route_state_access nodelay 
      from  
        state_accessor via state_accessor to env; 
    endchannel;   
    channel nodelay  
      from artefact_a_Observer to state_accessor  
        with internal_state; 
    endchannel; 
 
 
    process artefactmanagement(1,1); 
      signal create_a_Observer_req; 
      signal create_a_Observer_res(Pid); 
      dcl a_Observer Pid := Null; 
      exported procedure get_artefact_a_Observer; 
        dcl new_pid PId; 
        start;      
     decision a_ForkImpl; 
          (Null):  
         output create_a_ForkImpl; 
   nextstate wait4response; 
          else:  
            return a_Observer; 
        enddecision; 
 
        state wait4response; 
        input create_a_ForkImpl_res(new_pid);    
        task a_ForkImpl_seq := a_ForkImpl_seq // new_pid; 
        return offspring;  
      endprocedure; 
      start; 
      nextstate wait_for_signal; 
      state wait_for_signal; 
      input create_a_Observerl; 
      create artefact_a_Observer; 
      nextstate -; 
    endprocess; 
 
    process interaction_i_Observer(0,1); 
      dcl p PId; 
   dcl e_PState pstate; 
      start; 
      nextstate wait4signal; 
   state wait4signal;  
      input PhilosopherState(pstate); 
      task p := get_artefact_a_Observer;  
      output PhilosopherState(pstate, sender) to p;  
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      nextstate -; 
    endprocess; 
 
  process  artefact_a_Observer(0,1): a_Observer; 
  
      exported as <<package philo_interface/ 
    package DiningPhilosopher/package o_Observer>>provide_observer 
      procedure provide_observer -> exported_i_Observer; 
        start; 
        return call get_provide_observer to data_access; 
      endprocedure; 
      exported as <<package philo_interface/ 
    package DiningPhilosopher/package o_Observer>>provide 
      procedure provide(s string) -> PId 
    raise NoSuchPort; 
        start; 
        decision s; 
  (='observer'): return reference_port_observer; 
  else: raise NoSuchPort; 
  enddecision; 
      endprocedure; 
      exported as <<package philo_interface/ 
    package DiningPhilosopher/package o_Observer>>port_connect 
      procedure port_connect(s string) -> PId  
  raise NoSuchPort,AlreadyConnected; 
        start; 
        raise NoSuchPort; 
      endprocedure; 
      exported as <<package philo_interface/ 
    package DiningPhilosopher/package o_Observer>>port_disconnect 
      procedure port_disconnect(s string) -> PId  
  raise NoSuchPort,NotConnected; 
        start; 
        raise NoSuchPort; 
      endprocedure; 
    
 
    start; 
    task the_key := <<package eODL>>generate_key; 
    create interaction_i_Observer; 
    call set_interaction_i_Observer(offspring) to data_access; 
    call set_port_observer(offspring) to data_access; 
    nextstate initial_state; 
 
    channel ch_provides nodelay 
   from env via provides to interaction_i_Observer 
  with exported_i_Observer; 
   from interaction_i_Fork to env via provides 
  with imported_i_Observer; 
    endchannel; 
 
 channel ch_initial_port nodelay 
      from env via initial to portmanagement 
     with config_o_Observer; 
    endchannel; 
 
 channel ch_initial nodelay 
   from env via initial to this with imported_o_Observer; 
   from this via initial to env with exported_o_Observer; 
 endchannel; 
 
    exported as <<package phil_interface/package DiningPhilosophers/ 
  package o_Observer>>get_key 
    procedure get_key -> ComponentKey; 
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      start; 
      return the_key; 
    endprocedure; 
  endprocess type; 
 
  process factory(1,1): o_Observer_factory; 
  process co(0,): o_Observer; 
 
  channel factory_to_co nodelay 
    from factory to co via initial; 
  endchannel; 
 
  channel initial_to_env nodelay 
    from co via initial to env via initial; 
  endchannel; 
 
  channel provides_to_env nodelay 
    from co via provides to env via provides; 
  endchannel; 
 
  channel uses_to_env nodelay 
    from co via uses to env via uses; 
  endchannel; 
   
 
  endblock type; 
   
endpackage; 
 
endpackage DiningPhilosophers; 
 
endpackage phil_definition; 

Appendix II 
 

Information processing and tool support 

II.1 Introduction 
The existence of a simple and complete metamodel provides a stable basis for software 
development, even in complex application areas. In order to make the technique usable and in 
particular to provide ease of use to developers, appropriate tool support is needed. In general, such 
tools may support the modelling process itself, like an editor or/and simulator, or they may cover 
more phases, like implementation and deployment on target platforms. 

Due to the widespread variety of tasks to be supported by tools processing a single model from 
beginning of specification to deployment to instantiation, it is expected that different tools will be 
used in a tool chain. Thus, the issue of having an interchange format from one tool to another arises. 
For this purpose at least one standardized notation exists by default. Due to the appliance of OMG 
MOF, a XML-based representation is implied for the metamodel and thus can be used as an 
interchange format between different tools. 

The concrete definition of tools and their functionality cannot be subject to standardization. 
Although, in practice, single tools may be arbitrarily designed or actually consist of tool chains, the 
subsequent clauses subdivide tool issues that focus on certain aspects. Actual tools may span 
several of those aspects. 
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II.2 Modelling tool issues 
Tools dealing with manipulation of model information may use an arbitrary representation of the 
model with the only restriction that each representation has to have an appropriate metamodel 
mapping. Such representations may range from programmatic languages to graphical notations, like 
UML. Any tool supporting the processing of such a representation can be used and no restrictions 
are made. 

Since the metamodel covers almost the entire life cycle of software, there is a variety of possible 
modelling issues, each certainly done with tool support. A model may be stepwise enlarged by 
adding additional information in several iterations of modelling at different points of time. Thus, a 
collection of already existing CO types may be used to specify an assembly later on, and a concrete 
assignment of this assembly to a target platform may be given thereafter. In general, the 
modelling issues are the following, ordered by time of application: 
• CO type specification; 
• assembly specification; 
• implementation packaging (of software components); 
• environment modelling; 
• assignment of software components on a target platform; 
• instantiation of CO types' respective assemblies. 

The specification of CO types according to the metamodel is the first step to take. After having 
such types, assemblies may be defined. Each type may be used in an arbitrary number of 
assemblies. The next step is to provide the implementation for the whole assembly containing the 
implementation code for used CO types grouped in software components. The packaging of 
implementations may be done by archive tools, like zip. After having all these provided, the model 
in combination with the assembly implementation package can be shipped to be deployed at 
customers' platforms. In order to deploy an assembly, the distribution of COs has first to be 
determined. During this process, the model is enriched by additional information, which is mainly 
related to the concrete environment and the special business case of a customer. The model of the 
target environment and the model of the assembly are compared to find a proper assignment for 
each CO to a node of the platform. This can be done manually, preferably by the system 
administrator or semi-automatically by an automatic function providing a solution for the initial 
configuration of the assembly. In either case, the requirements of each CO of the assembly on the 
target environment have to be fulfilled. Where to get the environment model is not specified. It 
could be obtained directly from the target environment, in which case a special architecture would 
be required. As a result of the assignment step, the model contains information about where to 
install which software component. The actual instantiation of CO types or assemblies may be part 
of the model. An appropriate tool would have to keep the model up to date during runtime. 

II.3 Generator tool issues 
Tools providing support for the implementation of model entities may save a lot of efforts 
compared to doing implementations manually. Code generation may be done for all implementation 
languages which have a mapping from the metamodel. In general, the following information may 
be generated from the model: 
• skeletons for CO types; 
• code for Quality of Service specifications. 

The generated code may offer a framework for the implementer to serve as a basis for CO type 
implementations. As long as no behavioural aspects are contained in the metamodel, no business 
logic implementation may be generated automatically. Instead it has to be inserted by hand.  



 

102 ITU-T Rec. Z.130 (07/2003) 

II.4 Deployment tool issues 
Deployment including instantiation of assemblies on a customer's target platform requires support 
by proper tools, but also depends on appropriate support by the platform itself. Therefore, actual 
tools for deployment are tightly coupled to concrete platform architectures that they have to 
interact with. Tools cannot be independent as long as there is no standardized platform architecture 
which they can collaborate with. 

In general terms, the process of deployment comprises several tasks beginning from the 
determination of a proper distribution, to the installation and instantiation of software. The common 
deployment tasks may be handled by tools:  
• environment modelling; 
• assignment of software components on a target platform; 
• installation of software components on a target platform; 
• assembly respective CO type instantiation; 
• constraint and action processing. 

The tasks of environment modelling and of assignment of software components to a target 
platform were already mentioned in the context of modelling tool issues. In fact, during these tasks, 
models are extended, which is the reason why they were handled there. Actually, these tasks are in 
most cases expected to be performed as part of the deployment of an assembly. As already 
mentioned, a platform may support tools to gain environment modelling information. Having done 
these tasks and determined a proper assignment of software components to a target platform, the 
next step is to upload and install the software on the specified node. After this, the assembly or 
CO types may be instantiated with the help of another tool or platform capability. Lastly, at 
runtime, constraints and actions contained in the model have to be processed by some means. 

In Figure II.1, the chain of tool issues is depicted from modelling to deployment. 
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