

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.100
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(10/2019)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) – Specification and
Description Language (SDL)

 Specification and Description Language –
Overview of SDL-2010

Recommendation ITU-T Z.100

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109

Application of formal description techniques Z.110–Z.119

Message Sequence Chart (MSC) Z.120–Z.129

User Requirements Notation (URN) Z.150–Z.159

Testing and Test Control Notation (TTCN) Z.160–Z.179

PROGRAMMING LANGUAGES

CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE

General principles Z.300–Z.309

Basic syntax and dialogue procedures Z.310–Z.319

Extended MML for visual display terminals Z.320–Z.329

Specification of the man-machine interface Z.330–Z.349

Data-oriented human-machine interfaces Z.350–Z.359

Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY

Quality of telecommunication software Z.400–Z.409

Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS

Methods for validation and testing Z.500–Z.519

MIDDLEWARE

Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Z.100 (10/2019) i

Recommendation ITU-T Z.100

Specification and Description Language – Overview of SDL-2010

Summary

Recommendation ITU-T Z.100 introduces the Specification and Description Language, intended for

unambiguous specification and description of telecommunication systems. The scope of the

Specification and Description Language is elaborated in clause 1. The ITU-T Z.100 series for

SDL-2010 together form a reference manual for the language. The objective of this Recommendation

is to provide an introductory overview to the language and the rest of the reference manual contained

in the ITU-T Z.100 series for SDL-2010. The language introduced in this document is more fully

defined in other Recommendations in the ITU-T Z.100 series for SDL-2010.

Coverage

The Specification and Description Language has concepts for behaviour, data description and

(particularly for larger systems) structuring. The basis of behaviour description is extended finite state

machines communicating by messages. Data description is based on data types for values and objects.

The basis for structuring is hierarchical decomposition and type hierarchies. These foundations of the

Specification and Description Language are elaborated in the respective main clauses of

Recommendations ITU-T Z.101 to ITU-T Z.105 and ITU-T Z.107. A distinctive feature of the

Specification and Description Language is the graphical representation. This Recommendation covers

the conventions used to define the Specification and Description Language in the ITU-T Z.100 series,

rules for conformance and guidance for maintenance of the language.

Applications

Specification and Description Language is applicable within standard bodies and industry. The main

application areas for which the Specification and Description Language has been designed are stated

in clause 1.2, but the Specification and Description Language is generally suitable for describing

reactive systems. The range of application is from requirement description to implementation.

ii Rec. ITU-T Z.100 (10/2019)

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T Z.100 1984-10-19 11.1002/1000/2222

1.1 ITU-T Z.100 Annex A 1984-10-19 11.1002/1000/6664

1.2 ITU-T Z.100 Annex B 1984-10-19 11.1002/1000/6665

1.3 ITU-T Z.100 Annex C1 1984-10-19 11.1002/1000/6666

1.4 ITU-T Z.100 Annex C2 1984-10-19 11.1002/1000/6667

1.5 ITU-T Z.100 Annex D 1984-10-19 11.1002/1000/6668

2.0 ITU-T Z.100 1987-09-30 X 11.1002/1000/10954

2.1 ITU-T Z.100 Annex A 1988-11-25 11.1002/1000/6669

2.2 ITU-T Z.100 Annex B 1988-11-25 11.1002/1000/6670

2.3 ITU-T Z.100 Annex C1 1988-11-25 11.1002/1000/6671

2.4 ITU-T Z.100 Annex C2 1988-11-25 11.1002/1000/6672

2.5 ITU-T Z.100 Annex D 1988-11-25 X 11.1002/1000/3646

2.6 ITU-T Z.100 Annex E 1988-11-25 11.1002/1000/6673

2.7 ITU-T Z.100 Annex F1 1988-11-25 X 11.1002/1000/3647

2.8 ITU-T Z.100 Annex F2 1988-11-25 X 11.1002/1000/3648

2.9 ITU-T Z.100 Annex F3 1988-11-25 X 11.1002/1000/3649

3.0 ITU-T Z.100 1988-11-25 11.1002/1000/3153

3.1 ITU-T Z.100 Annex C 1993-03-12 X 11.1002/1000/3155

3.2 ITU-T Z.100 Annex D 1993-03-12 X 11.1002/1000/3156

3.3 ITU-T Z.100 Annex F1 1993-03-12 X 11.1002/1000/3157

3.4 ITU-T Z.100 Annex F2 1993-03-12 X 11.1002/1000/3158

3.5 ITU-T Z.100 Annex F3 1993-03-12 X 11.1002/1000/3159

3.6 ITU-T Z.100 App. I 1993-03-12 X 11.1002/1000/3160

3.7 ITU-T Z.100 App. II 1993-03-12 X 11.1002/1000/3161

4.0 ITU-T Z.100 1993-03-12 X 11.1002/1000/3154

4.1 ITU-T Z.100 (1993) Add. 1 1996-10-18 10 11.1002/1000/3917

5.0 ITU-T Z.100 1999-11-19 10 11.1002/1000/4764

5.1 ITU-T Z.100 (1999) Cor. 1 2001-10-29 17 11.1002/1000/5567

6.0 ITU-T Z.100 2002-08-06 17 11.1002/1000/6029

6.1 ITU-T Z.100 (2002) Amd. 1 2003-10-29 17 11.1002/1000/7091

6.2 ITU-T Z.100 (2002) Cor. 1 2004-08-29 17 11.1002/1000/356

7.0 ITU-T Z.100 2007-11-13 17 11.1002/1000/9262

8.0 ITU-T Z.100 2011-12-22 17 11.1002/1000/11387

8.1 ITU-T Z.100 Annex F1 2000-11-24 10 11.1002/1000/5239

8.2 ITU-T Z.100 Annex F2 2000-11-24 10 11.1002/1000/5576

8.3 ITU-T Z.100 Annex F3 2000-11-24 10 11.1002/1000/5577

8.4 ITU-T Z.100 Annex F1 2015-01-13 17 11.1002/1000/12354

8.5 ITU-T Z.100 Annex F2 2015-01-13 17 11.1002/1000/12355

8.6 ITU-T Z.100 Annex F3 2015-01-13 17 11.1002/1000/12356

9.0 ITU-T Z.100 2016-04-29 17 11.1002/1000/12846

9.1 ITU-T Z.100 Annex F1 2016-10-29 17 11.1002/1000/13040

9.2 ITU-T Z.100 Annex F2 2016-10-29 17 11.1002/1000/13041

9.3 ITU-T Z.100 Annex F3 2016-10-29 17 11.1002/1000/13042

http://handle.itu.int/11.1002/1000/2222
http://handle.itu.int/11.1002/1000/6664
http://handle.itu.int/11.1002/1000/6665
http://handle.itu.int/11.1002/1000/6666
http://handle.itu.int/11.1002/1000/6667
http://handle.itu.int/11.1002/1000/6668
http://handle.itu.int/11.1002/1000/10954
http://handle.itu.int/11.1002/1000/6669
http://handle.itu.int/11.1002/1000/6670
http://handle.itu.int/11.1002/1000/6671
http://handle.itu.int/11.1002/1000/6672
http://handle.itu.int/11.1002/1000/3646
http://handle.itu.int/11.1002/1000/6673
http://handle.itu.int/11.1002/1000/3647
http://handle.itu.int/11.1002/1000/3648
http://handle.itu.int/11.1002/1000/3649
http://handle.itu.int/11.1002/1000/3153
http://handle.itu.int/11.1002/1000/3155
http://handle.itu.int/11.1002/1000/3156
http://handle.itu.int/11.1002/1000/3157
http://handle.itu.int/11.1002/1000/3158
http://handle.itu.int/11.1002/1000/3159
http://handle.itu.int/11.1002/1000/3160
http://handle.itu.int/11.1002/1000/3161
http://handle.itu.int/11.1002/1000/3154
http://handle.itu.int/11.1002/1000/3917
http://handle.itu.int/11.1002/1000/4764
http://handle.itu.int/11.1002/1000/5567
http://handle.itu.int/11.1002/1000/6029
http://handle.itu.int/11.1002/1000/7091
http://handle.itu.int/11.1002/1000/356
http://handle.itu.int/11.1002/1000/9262
http://handle.itu.int/11.1002/1000/11387
http://handle.itu.int/11.1002/1000/5239
http://handle.itu.int/11.1002/1000/5576
http://handle.itu.int/11.1002/1000/5577
http://handle.itu.int/11.1002/1000/12354
http://handle.itu.int/11.1002/1000/12355
http://handle.itu.int/11.1002/1000/12356
http://handle.itu.int/11.1002/1000/12846
http://handle.itu.int/11.1002/1000/13040
http://handle.itu.int/11.1002/1000/13041
http://handle.itu.int/11.1002/1000/13042

 Rec. ITU-T Z.100 (10/2019) iii

9.4 ITU-T Z.100 Annex F1 2018-11-13 17 11.1002/1000/13732

9.5 ITU-T Z.100 Annex F2 2018-11-13 17 11.1002/1000/13733

9.6 ITU-T Z.100 Annex F3 2018-11-13 17 11.1002/1000/13734

10.0 ITU-T Z.100 2019-10-14 17 11.1002/1000/14048

10.1 ITU-T Z.100 Annex F1 2019-10-14 17 11.1002/1000/14049

10.2 ITU-T Z.100 Annex F2 2019-10-14 17 11.1002/1000/14050

10.3 ITU-T Z.100 Annex F3 2019-10-14 17 11.1002/1000/14051

Keywords

Specification and Description Language, SDL-2010, overview, conventions, grammars, type concept,

presentation, tool compliance, system behaviour, system data description, system structuring.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/13732
http://handle.itu.int/11.1002/1000/13733
http://handle.itu.int/11.1002/1000/13734
http://handle.itu.int/11.1002/1000/14048
http://handle.itu.int/11.1002/1000/14049
http://handle.itu.int/11.1002/1000/14050
http://handle.itu.int/11.1002/1000/14051
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

iv Rec. ITU-T Z.100 (10/2019)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers are

cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB

patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2019

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Z.100 (10/2019) v

Table of Contents

 Page

1 Scope ... 1

1.1 Objective ... 1

1.2 Application ... 1

1.3 System specification ... 2

2 References ... 2

3 Definitions .. 3

4 Abbreviations and acronyms .. 4

5 Conventions .. 5

5.1 Specification and Description Language grammars 5

5.2 Basic definitions ... 5

5.3 Presentation style .. 7

5.4 Choice of grammar rules and rule names ... 8

6 Tool compliance ... 8

6.1 Definitions of valid tools .. 8

6.2 Conformance .. 9

7 Allocation of features of SDL-2010 to Recommendations .. 9

7.1 Basic SDL-2010 – [ITU-T Z.101] .. 9

7.2 Comprehensive SDL-2010 – [ITU-T Z.102] .. 9

7.3 Shorthand notation and annotation in SDL-2010 – [ITU-T Z.103] 9

7.4 Data and action language in SDL-2010 – [ITU-T Z.104] 10

7.5 SDL-2010 combined with ASN.1 modules – [ITU-T Z.105] 10

7.6 Common Interchange Format for SDL-2010 – [ITU-T Z.106] 10

7.7 Object-oriented data in SDL-2010 – [ITU-T Z.107] 10

Annex A – Abstract syntax index .. 11

Annex B – BNF syntax index .. 17

Annex C – Compatibility ... 35

Annex D – Data defined in the package Predefined .. 36

D.1 Rules for "=" (equal), "/=" (not equal), comparison, data signatures and

literals ... 36

D.2 Package Predefined overview ... 36

Annex E – Reserved for examples ... 45

Annex F – Formal definition .. 46

Appendix I – Status of ITU-T Z.100, related documents and Recommendations 47

Appendix II – Guidelines for the maintenance of SDL-2010 .. 48

II.1 Maintenance of SDL-2010 ... 48

Appendix III – Evolution of the Specification and Description Language.............................. 51

III.1 Versions of the Specification and Description Language 51

vi Rec. ITU-T Z.100 (10/2019)

 Page

III.2 Differences between SDL-88 and SDL-92 ... 51

III.3 Differences between SDL-92 and SDL-2000 ... 52

III.4 Differences between SDL-2000 and SDL-2010 ... 54

Bibliography... 57

 Rec. ITU-T Z.100 (10/2019) vii

Introduction

Status/Stability

This Recommendation is an introduction to the ITU-T Z.100 series of Recommendations for

SDL-2010 that give the complete language reference manual for SDL-2010. The main text of this

Recommendation is stable. Appendix I records the status of the Recommendation series, and should

be updated as further studies are completed. The current language definition is based on wide user

experience, recent additional user needs, clarifications and corrections. SDL-2010 as defined in this

series of Recommendations should meet most user needs, and is based on a previous version called

SDL-2000.

SDL-2000 contained a reference data type (object type) feature, but these had a number of

complexities including dynamic binding, and tool support for these was lacking. It was therefore

decided that this feature should be removed and further study took place leading to a further

Recommendation in 2012 plus updates to other Recommendations in the ITU-T Z.100 series for a

revised object-oriented data in SDL-2010 using a reference data type feature.

The main text is accompanied by appendices and annexes:

– Appendix I Status of ITU-T Z.100, related documents and Recommendations;

– Appendix II Guidelines for the maintenance of SDL-2010;

– Appendix III Evolution of the Specification and Description Language;

– Annex A Abstract syntax index;

– Annex B BNF syntax index;

– Annex C Compatibility;

– Annex D Data defined in the package Predefined;

– Annex E Reserved for examples.

The following Annex is published separately:

– Annex F Formal definition.

Annex F is the formal definition for the language and provides a more formal definition for SDL-2010

that provides more detail on issues not covered by the rest of the ITU-T Z.100 series for SDL-2010.

If there is an inconsistency between Annex F and ITU-T Z.100 or other parts of the

ITU-T Z.100 series for SDL-2010, there is an error in the ITU-T Z.100 series Recommendations and

further study is needed to determine the correction.

The ITU-T Z.100 series has also an independently published supplement:

 ITU-T Z.Sup1: ITU-T Z.100 series - Supplement on SDL+ methodology: Use of ITU System

Design Languages.

ITU-T Z.Sup1 is based on a methodology for an earlier version of the language. The methodology is

still applicable because the earlier language features that are used all exist in SDL-2010. The current

language has some additional features that are not fully exploited by ITU-T Z.Sup1.

Associated work

One method for usage within standards is described in Recommendation ITU-T Q.65. A recommended

strategy for introducing a formal description technique like the Specification and Description Language

in standards is available in Recommendation ITU-T Z.110. The use of the Specification and Description

Language is also recommended in Recommendation ITU-T Z.450, Quality aspects of protocol-related

Recommendations. For references to additional material on the Specification and Description Language,

and information on industrial usage, see http://www.sdl-forum.org.

http://www.sdl-forum.org/

viii Rec. ITU-T Z.100 (10/2019)

Background

Different versions of the Specification and Description Language have been recommended by ITU-T

since 1976. The SDL-2010 version is a revision of SDL-2000, the last edition of which was published

in 2007. SDL-2000 was initially published in Recommendation ITU-T Z.100 (1999) as a revision of

Recommendation ITU-T Z.100 (1993) incorporating Addendum 1 to Recommendation

ITU-T Z.100 (1996) and parts of Recommendation ITU-T Z.105 (1995). Recommendation

ITU-T Z.100 (2002) was a technical update of Recommendation ITU-T Z.100 (1999) that

incorporated a number of technical corrections and amendments, and without the textual phrase

alternative syntax, which had been moved to Recommendation ITU-T Z.106 (2002).

Compared to the Specification and Description Language as defined in 1992, the versions defined in

SDL-2000 and SDL-2010 are extended in the areas of object-oriented data, harmonization of a

number of features to make the language simpler and features to enhance the usability of the

Specification and Description Language with other languages such as ASN.1 and UML. Other minor

modifications have been included. Though care has been taken not to invalidate existing documents

using the Specification and Description Language as defined in 1992, it is possible some changes

require some descriptions to be updated to use this version. Details on the evolution of the language

are in Appendix III.

 Rec. ITU-T Z.100 (10/2019) 1

Recommendation ITU-T Z.100

Specification and Description Language – Overview of SDL-2010

1 Scope

The purpose of recommending the Specification and Description Language is to provide a language

for unambiguous specification and description of the behaviour of telecommunication systems. The

specifications and descriptions using the language are intended to be formal in the sense that it is

possible to analyse and interpret them unambiguously.

The terms specification and description are used with the following meaning:

a) a specification of a system is the description of its required behaviour; and

b) a description of a system is the description of its actual behaviour (that is, its implementation).

A system specification, in a broad sense, is the specification of both the behaviour and a set of general

parameters of the system. However, the Specification and Description Language is intended to specify

the behavioural aspects of a system; the general parameters describing properties like capacity and

weight have to be described using different techniques.

This Recommendation gives an overview of the series of Recommendations that define SDL-2010,

defines terms, conventions including meta-languages, tool compliance and the basis of data for

SDL-2010.

NOTE Since there is no distinction between use for specification and its use for description, the term

specification is used in the SDL-2010 Recommendations for both required behaviour and actual behaviour.

1.1 Objective

The general objectives when defining the Specification and Description Language have been to

provide a language that:

a) is easy to learn, use and interpret;

b) provides unambiguous specification for ordering, tendering and design, while also allowing

some issues to be left open;

c) is able to be extended to cover new developments;

d) is able to support several methodologies of system specification and design.

1.2 Application

The Recommendations for SDL-2010 provide the reference manual for the Specification and

Description Language. This Recommendation provides an overview of the language and the

conventions used to define the language. A methodology framework document, which gives

examples of Specification and Description Language usage, is available as the Supplement to the

Recommendation ITU-T Z.100 series originally produced in the study period 1992-1996.

The main area of application for the language is the specification of the behaviour of aspects of

real-time systems, and the design of such systems. Applications in the field of telecommunications

include:

a) call and connection processing (for example, call handling, telephony signalling, metering)

in switching systems;

b) maintenance and fault treatment (for example, alarms, automatic fault clearance, routine

tests) in general telecommunication systems;

c) system control (for example, overload control, modification and extension procedures);

2 Rec. ITU-T Z.100 (10/2019)

d) operation and maintenance functions, network management;

e) data communication protocols;

f) telecommunication services.

The Specification and Description Language is, of course, usable for the functional specification of

the behaviour of any object whose behaviour is specifiable using a discrete model; that is, where the

object communicates with its environment by discrete messages.

The Specification and Description Language is a rich language and is usable for both high level

informal (and/or formally incomplete) specifications, semi-formal and detailed specifications. The

user chooses the appropriate parts of the Specification and Description Language for the intended

level of communication and the environment in which the language is being used. Depending on the

environment in which a specification is used, it is possible many aspects are left to the common

understanding between the provider and the user of the specification.

Thus the language is used for producing:

a) facility requirements;

b) system specifications;

c) ITU-T Recommendations, or other similar standards (international, regional or national);

d) system design specifications;

e) detailed specifications;

f) system design descriptions (both high level and detailed enough to directly produce

implementations);

g) system testing descriptions (in particular in combination with Message Sequence Chart

[MSC] and Testing and Test Control Notation [TTCN]).

The user organization is able to choose the appropriate level of application of SDL-2010.

1.3 System specification

A specification using the Specification and Description Language defines system behaviour in a

stimulus/response fashion, assuming that both stimuli and responses are discrete and carry

information. In particular, a system specification is seen as the sequence of responses to any given

sequence of stimuli.

The system specification model is based on the concept of communicating extended finite state

machines.

The Specification and Description Language also provides structuring concepts that facilitate the

specification of large and/or complex systems. These constructs allow the partitioning of the system

specification into manageable units that are capable of being handled and understood independently.

It is possible to perform partitioning in a number of steps resulting in a hierarchical structure of units

defining the system at different levels.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

 Rec. ITU-T Z.100 (10/2019) 3

[ITU-T T.50] Recommendation ITU-T T.50 (1992), International Reference Alphabet (IRA)

(Formerly International Alphabet No. 5 or IA5) Information technology

7-bit coded character set for information interchange.

[ITU-T Z.101] Recommendation ITU-T Z.101 (2019), Specification and Description

Language – Basic SDL-2010.

[ITU-T Z.102] Recommendation ITU-T Z.102 (2019), Specification and Description

Language – Comprehensive SDL-2010.

[ITU-T Z.103] Recommendation ITU-T Z.103 (2019), Specification and Description

Language – Shorthand notation and annotation in SDL-2010.

[ITU-T Z.104] Recommendation ITU-T Z.104 (2019), Specification and Description

Language – Data and action language in SDL-2010.

[ITU-T Z.105] Recommendation ITU-T Z.105 (2019), Specification and Description

Language – SDL-2010 combined with ASN.1 modules.

[ITU-T Z.106] Recommendation ITU-T Z.106 (2019), Specification and Description

Language – Common interchange format for SDL-2010.

[ITU-T Z.107] Recommendation ITU-T Z.107 (2019), Specification and Description

Language – Object-oriented data in SDL-2010.

[ITU-T Z.111] Recommendation ITU-T Z.111 (2016), Notations and guidelines for the

definition of ITU-T languages.

[ISO/IEC 10646] ISO/IEC 10646:2017, Information technology – Universal Coded Character

Set (UCS).

3 Definitions

There are numerous terms defined throughout this Recommendation and the rest of the ITU-T Z.100

series for SDL-2010 and a complete list of definitions in this clause or in each of these

Recommendations would be a repetition of much of the text of the Recommendations. Therefore,

only a few key terms are given in this clause.

This Recommendation defines the following terms:

3.1 agent: The term agent is used to denote a system, block or process that contains one or more

extended finite state machines.

3.2 block: A block is an agent that contains one or more concurrent blocks or processes and is

also permitted to contain an extended finite state machine that owns and handles data within the block.

3.3 body: A body is a state machine graph of an agent, procedure, composite state, or operation.

3.4 channel: A channel is a communication path between agents.

3.5 environment: The environment of the system is everything in the surroundings that

communicates with the system in a Specification and Description Language-like way.

3.6 gate: A gate represents a connection point for communication with an agent type, and when

the type is instantiated it determines the connection of the agent instance with other instances.

3.7 instance: An instance is an object created when a type is instantiated.

3.8 ITU-T Z.100 series for SDL-2010: This Recommendation and the associated

Recommendations [ITU-T Z.101], [ITU-T Z.102], [ITU-T Z.103], [ITU-T Z.104], [ITU-T Z.105],

[ITU-T Z.106], [ITU-T Z.107] and any further Recommendation subsequently added to this series.

3.9 pid: The term pid is used for the sort of data items that identify agent instances.

4 Rec. ITU-T Z.100 (10/2019)

3.10 procedure: A procedure is an encapsulation of part of the behaviour of an agent, which is

defined in one place but is able to be called from several places within the agent. Other agents are

able to call a remote procedure.

3.11 process: A process is an agent that contains an extended finite state machine, and possibly

contains other processes.

3.12 signal: The primary means of communication is by signals that are output by the sending

agent and input by the receiving agent.

3.13 sort: A sort is a set of data items that have common properties.

3.14 state: An extended finite state machine of an agent is in a state if it is waiting for a stimulus.

3.15 stimulus: A stimulus is an event that is able to cause an agent that is in a state to enter a

transition.

3.16 system: A system is the outermost agent that communicates with the environment.

3.17 timer: A timer is an item owned by an agent that causes a timer signal stimulus to occur at a

specified time.

3.18 transition: A transition is a sequence of actions an agent performs until it enters a transition

terminator such as the next state, a return from a composite state, a return from a procedure, or a

decision on the subsequent transition.

3.19 type: A type is a definition that is used for the creation of instances, or is inherited and

specialized to form other types. A parameterized type is a type that has parameters. When these

parameters are given different actual parameters, different unparameterized types are defined that,

when instantiated, give instance with different properties.

3.20 value: The term value is used for the class of data that is accessed directly. Values are allowed

to be freely passed between agents.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

BNF Backus-Naur Form

CIF Common Interchange Format

IRV International Reference Version of the International Reference Alphabet as defined in

[ITU-T T.50]

MSC Message Sequence Chart

SDL-88 Specification and Description Language as defined by Recommendation ITU-T Z.100

(1988)

SDL-92 Specification and Description Language as defined by Recommendation ITU-T Z.100

(1993) with Addendum 1 (1996)

SDL-2000 Specification and Description Language as defined by Recommendation ITU-T Z.100

(2007)

SDL-2010 Specification and Description Language as defined by the ITU-T Z.100 series for

SDL-2010

TTCN Testing and Test Control Notation

UCS Universal Character Set of [ISO/IEC 10646]

UML Unified Modelling Language

 Rec. ITU-T Z.100 (10/2019) 5

5 Conventions

The text of this clause defines the conventions used for describing the Specification and Description

Language. The meta-languages and conventions introduced are solely introduced for the purpose of

describing Specification and Description Language unambiguously.

The conventions of [ITU-T Z.111] apply to all the Recommendations in the ITU-T Z.100 series for

SDL-2010.

5.1 Specification and Description Language grammars

In the ITU-T Z.100 series for SDL-2010 the Abstract grammar and Concrete grammar

(see clause 5.3.2 below) define the Specification and Description Language. The syntax of the

Concrete grammar is in some cases supplemented by a Model (see clause 5.3.2 below). A system

specification only conforms to the language if it conforms to these grammars (see clause 5.1 of

[ITU-T Z.111]). The way a system specification behaves is defined by Semantics (see clause 5.3.2

below).

A formal definition is provided which defines how to transform a system specification into the

abstract syntax and defines how to interpret a specification, given in terms of the abstract grammar.

The formal definition given in Annex F (published separately) is for SDL-2000, so is not fully

applicable to SDL-2010. Further study leading to an update of Annex F is needed to produce a

comprehensive formal definition for SDL-2010.

5.2 Basic definitions

Some general concepts and conventions are used throughout the ITU-T Z.100 series for SDL-2010;

their definitions are given in the following subclauses.

5.2.1 Definition, type and instance

In the ITU-T Z.100 series for SDL-2010, the concepts of type and instance and their relationship are

fundamental. The schema and terminology defined below and shown in Figure 5-1 are used.

This subclause introduces the basic semantics of type definitions, instance definitions, parameterized

type definitions, parameterization, binding of context parameters, specialization and instantiation.

6 Rec. ITU-T Z.100 (10/2019)

Figure 5-1 The type concept

Definitions introduce named entities, which are types or instances with implied types or an instance

set that defines the behaviour instances. A definition of a type defines all properties associated with

that type. An example of an instance definition is a state definition. An example of a definition that

is a type definition is a signal definition. An example of an instance set definition is a process

definition. Block and process definitions introduce instance set definitions.

A type is allowed to be instantiated by any number of instances. An instance of a particular type has

all the properties defined for that type. An example of a type is a procedure, which is instantiated by

procedure calls.

A parameterized type is a type where some entities are represented as formal context parameters.

A formal context parameter of a type definition has a constraint. The constraints allow static analysis

of the parameterized type. Binding all the parameters of a parameterized type yields an ordinary type.

An example of a parameterized type is a parameterized signal definition where one of the sorts

conveyed by the signal is specified by a formal sort context parameter; this allows the parameter to

be of different sorts in different contexts.

An instance is defined either directly or by the instantiation of a type. An example of an instance is a

system instance, which is either defined by a system definition, or is an instantiation of a system type.

However, where an instance is defined directly (for example, a system definition), this is actually an

instantiation of the (anonymous) type for the direct definition.

Specialization allows one type, the subtype, to be based on another type, its supertype, by adding

properties to those of the supertype or by redefining virtual properties of the supertype. A virtual

property is allowed to be constrained in order to provide for analysis of general types.

Binding all context parameters of a parameterized type yields an unparameterized type. There is no

supertype/subtype relationship between a parameterized type and the type derived from it.

NOTE To avoid cumbersome text in the ITU-T Z.100 series for SDL-2010, the convention is used that the

term "instance" is often omitted. For example, "a system is interpreted..." means "a system instance is

interpreted...".

Z100(11)_F5-1

With some context parameters,
bound is

Parameterized type

Parameterizes
as

With all context parameters,
bound is

Type

Specializes as

Implied type

Instance set
definition

Implied type

Defines

Instance

Instantiates as
of

Definition

Instantiates as

of

 Rec. ITU-T Z.100 (10/2019) 7

5.2.2 Environment

Systems that are specified in the Specification and Description Language behave according to the

stimuli exchanged with the external world. This external world is called the environment of the

system being specified.

It is assumed that there are one or more agent instances in the environment, and therefore stimuli

flowing from the environment towards the system have associated identities of these agent instances.

These agents have pids that are distinguishable from any other pid within the system

(see clause D.2.16).

Although the behaviour of the environment is non-deterministic, it is assumed to obey the constraints

given by the system specification.

5.2.3 Validity and errors

A system specification is a valid Specification and Description Language system specification only

if it satisfies the syntactic rules and the static conditions defined in the ITU-T Z.100 series for

SDL-2010.

If a valid Specification and Description Language specification is interpreted and a dynamic condition

is violated, then an error occurs. Predefined exceptions (see clause D.2.20) will be raised when an

error is encountered during the interpretation of a system. SDL-2010 does not define the handling of

exceptions; therefore if an exception occurs the subsequent behaviour of the system cannot be derived

from the specification.

For most cases where an exception might be raised (for example, a range check or incorrect indexing),

it is possible to include actions to check before the error is encountered if the exception will be raised,

and take appropriate action to avoid the error occurring. Static analysis or dynamic interpretation of

a specification might also indicate that it is inevitable an exception is raised, leading to modification

of the specification to avoid the situation.

5.3 Presentation style

The conventions of [ITU-T Z.111] apply.

5.3.1 Division of text

The conventions of [ITU-T Z.111] apply.

5.3.2 Titled enumeration items

Abstract grammar

The abstract grammar is specified in the form defined in clause 5.4.1 of [ITU-T Z.111]. The textual

presentation of abstract syntax in clause 5.4.1.1 of [ITU-T Z.111] is used.

Concrete grammar

The concrete grammar is specified in the form defined in clause 5.4.2 of [ITU-T Z.111].

The metasymbol is followed by is used when the left-hand argument is followed by the right-hand

argument, and this is shown in diagrams by a <flow line symbol> (see further description in clause 6.5

of [ITU-T Z.101]).

The right-hand argument of the metasymbol is associated with shall be closer to the left-hand

argument than to any other graphical symbol. The syntactical elements of the right-hand argument

shall be distinguishable from each other.

Except graphical symbols that are line symbols (such as <flow line symbol>, see the Concrete

grammar description for the symbol), graphical symbol boundaries shall not overlay or cross.

8 Rec. ITU-T Z.100 (10/2019)

An exception to this rule applies for line symbols, which are allowed to cross each other. There is no

logical association between line symbols that cross.

A line symbol consists of a line (solid or dashed) possibly with some additional decorations (typically

an arrowhead) at one end or both ends of the line or on the line. The line of a line symbol consists of

one or more joined straight-line segments. These segments should normally be horizontal or vertical.

Semantics

All instances have an identity property, but unless this is formed in some unusual way, this identity

property is determined as defined by clause 6.6 of [ITU-T Z.101]. This is usually not mentioned as

an identity property. Also, it has not been necessary to mention sub-components of definitions

contained by the definition since the ownership of such sub-components is obvious from the abstract

syntax. For example, it is obvious that a block type definition "has" enclosed processes and/or blocks.

Model

Some constructs are considered to be "derived concrete syntax" (or a shorthand notation) for other

equivalent concrete syntax constructs. For example, omitting an input for a signal is derived concrete

syntax for an input for that signal followed by a null transition back to the same state

(see [ITU-T Z.103]).

Precise details of the order of transformation for SDL-2000 are found in Annex F; and if not

specifically mentioned in the ITU-T Z.100 series for SDL-2010, this order applies for SDL-2010.

5.4 Choice of grammar rules and rule names

The grammar given in the ITU-T Z.100 series for SDL-2010 has been written to aid the presentation

in this Recommendation so that the rule names are meaningful in the context they are given and are

readable in text. This means that there are a number of apparent ambiguities that are easily resolved

by systematic rewriting of the syntax rules or the application of semantic rules.

6 Tool compliance

This clause defines the compliance for tools that claim to support the Specification and Description

Language.

The validity of a specification is defined as in clause 5.2.3.

6.1 Definitions of valid tools

6.1.1 compliant SDL-2010 tool: A tool that detects non-compliance of a description with the

ITU-T Z.100 series for SDL-2010. If the tool handles a superset notation, it is allowed to categorize

non-compliance as a warning rather than a failure.

6.1.2 fully compliant SDL-2010 tool: A compliant SDL-2010 tool that supports the complete

grammar defined by the ITU-T Z.100 series for SDL-2010.

6.1.3 valid basic SDL-2010 tool: A compliant SDL-2010 tool that supports the graphical grammar

defined in this Recommendation in combination with [ITU-T Z.101].

6.1.4 valid SDL-2010 tool: A compliant SDL-2010 tool that supports the graphical grammar

defined in the ITU-T Z.100 series for SDL-2010.

6.1.5 valid SDL-2010 with ASN.1 tool: A valid SDL-2010 tool that also supports ASN.1 as

modules according to [ITU-T Z.105].

 Rec. ITU-T Z.100 (10/2019) 9

6.1.6 valid CIF SDL-2010 tool: A compliant SDL-2010 tool that supports the textual SDL-2010

grammar as defined in Level 0 CIF (see clause 5 of [ITU-T Z.106]), which (by definition) includes

the semantics and some concrete syntax of other Recommendations in the ITU-T Z.100 series for

SDL-2010.

6.1.7 valid CIF SDL-2010 with ASN.1 tool: A valid CIF SDL-2010 tool that also supports ASN.1

as modules according to [ITU-T Z.105].

6.2 Conformance

A conformance statement clearly identifying the language features and requirements not supported

should accompany any tool that handles a subset of the language defined by the ITU-T Z.100 series

for SDL-2010. If no conformance statement is provided, it shall be assumed that the tool is a fully

compliant SDL-2010 tool. It is therefore preferable to supply a conformance statement; otherwise,

any unsupported feature allows the tool to be rejected as not valid.

7 Allocation of features of SDL-2010 to Recommendations

The essential behaviour of a system defined using SDL-2010 depends on the extended finite state

machine model of [ITU-T Z.101] coupled with the behaviour of expressions of [ITU-T Z.104].

The other Recommendations [ITU-T Z.102], [ITU-T Z.103], [ITU-T Z.105], [ITU-T Z.107] and

[ITU-T Z.106] provide language features that (respectively): make the language more

comprehensive, make the language easier and more practical to use, provide the full data model and

action language (except object-oriented data), enable ASN.1 to be used, define object-oriented data,

and define the interchange format. The following outlines the content of [ITU-T Z.101] to

[ITU-T Z.107]. The content of Recommendations subsequently added to the ITU-T Z.100 series for

SDL-2010 will be described in each Recommendation.

7.1 Basic SDL-2010 – [ITU-T Z.101]

[ITU-T Z.101] is the ITU-T Recommendation containing the part of the specification of SDL-2010

that covers core features such as agent (block, process) type diagrams containing agent instance

structures with channels, diagrams for extended finite state machines and the associated semantics

for these basic features. The character set used is International Reference Version (IRV)

(see [ITU-T T.50]).

7.2 Comprehensive SDL-2010 – [ITU-T Z.102]

[ITU-T Z.102] is the ITU-T Recommendation containing the part of the specification of SDL-2010

that extends the semantics and syntax of the Basic SDL-2010 language in [ITU-T Z.101] to cover the

full abstract grammar and the corresponding canonical concrete notation. This includes features such

as continuous signals, enabling conditions, type inheritance and composite states. Also included are

features for generic systems, macros and the handling of Universal Character Set (UCS) (see

[ISO/IEC 10646]), though these do not need additional abstract grammar.

7.3 Shorthand notation and annotation in SDL-2010 – [ITU-T Z.103]

[ITU-T Z.103] is the ITU-T Recommendation containing the part of the specification of SDL-2010

that adds shorthand notations (such as asterisk state) that make the language easier to use and more

concise, and various annotations that make models easier to understand (such as comments or

create lines), but do not add to the formal semantics of the models. Models transform shorthand

notations from the concrete syntax of [ITU-T Z.103] into concrete syntax of [ITU-T Z.102] or

[ITU-T Z.101].

10 Rec. ITU-T Z.100 (10/2019)

7.4 Data and action language in SDL-2010 – [ITU-T Z.104]

[ITU-T Z.104] is the ITU-T Recommendation containing the part of the specification of SDL-2010

that adds the data and action language used to define data types and expressions. In SDL-2010 the

use of different concrete data notations is allowed, such as the SDL-2000 data notation or C, with

bindings to the abstract grammar and the predefined data package.

The underlying data model is fundamental to behaviour and provides sorts of data such as Boolean

and Integer that are used in other language features. For that reason this underlying model and an

overview of predefined data sorts and constructs is given in Annex D of this Recommendation.

[ITU-T Z.104] does not define general reference or object data types or creation of data items other

than as variables that are part of an agent, procedure or state instance. These issues are covered

by [ITU-T Z.107].

7.5 SDL-2010 combined with ASN.1 modules – [ITU-T Z.105]

[ITU-T Z.105] provides a mapping for ASN.1 modules to features defined in the rest of the

Specification and Description Language recommendations for SDL-2010, so that the ASN.1 modules

define data items that are used with the rest of SDL-2010.

7.6 Common Interchange Format for SDL-2010 – [ITU-T Z.106]

[ITU-T Z.106] provides alternative textual syntax for the graphical syntax items defined in

[ITU-T Z.101] to [ITU-T Z.105] that is used as a Common Interchange Format (CIF) between

SDL-2010 tools. The basic level of CIF provides only a textual equivalent of graphical items. The full

CIF is intended for the interchange of graphical SDL-2010 specifications (SDL-GR) so that the

drawings are recognizably the same.

7.7 Object-oriented data in SDL-2010 – [ITU-T Z.107]

[ITU-T Z.107] defines the object-oriented data features of the Specification and Description

Language building on the foundation of the data definitions and expressions defined

in [ITU-T Z.104].

 Rec. ITU-T Z.100 (10/2019) 11

Annex A

Abstract syntax index

(This annex forms an integral part of this Recommendation.)

The abstract syntax index consists of the following table that lists the abstract grammar syntax rules

of SDL-2010, where they are defined and redefined. Some abstract grammar syntax rules are defined

in only in [ITU-T Z.102] or [ITU-T Z.104] as shown in the table below, in which case the column for

[ITU-T Z.101] in the table below is shown blank. It is expected that users of the

SDL-2010 Recommendations have access to machine-readable copies of the Recommendation texts

and are therefore able to use computer software to locate the definitions and uses of the abstract

grammar syntax rules. An abstract grammar syntax rule name should always be in italics, and the

definition of a rule should start on a line in the original Microsoft Word text with the style "z.100 abs

syntax 1st line".

Abstract syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.104 ITU-T Z.107

Abstract definition

Action-return-node definition

Activation-delay definition

Active-agents-expression definition

Active-expression definition redefinition redefinition

Actual-parameters definition

Agent-definition definition

Agent-formal-parameter definition

Agent-identifier definition

Agent-instance definition

Agent-instance-pid-value definition

Agent-kind definition

Agent-name definition

Agent-qualifier definition

Agent-type-definition definition redefinition

Agent-type-identifier definition

Agent-type-name definition

Agent-type-qualifier definition

Aggregation-kind definition redefinition

Alternative-expression definition

Any-decision definition

Any-expression definition

Argument definition

Assignment definition

Boolean-expression definition

Break-node definition

Call-node definition redefinition

12 Rec. ITU-T Z.100 (10/2019)

Abstract syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.104 ITU-T Z.107

Channel-definition definition redefinition

Channel-endpoint definition

Channel-name definition

Channel-path definition

Closed-range definition

Composite-state-formal-parameter definition

Composite-state-graph definition redefinition

Composite-state-type-definition definition redefinition

Composite-state-type-identifier definition

Compound-node definition

Compound-node-name definition

Compound-node-qualifier definition

Condition-item definition

Conditional-expression definition

Connect-node definition redefinition

Connection-definition definition

Connector-name definition

Consequence-expression definition

Constant-expression definition redefinition redefinition

Continue-node definition

Continuous-expression definition

Continuous-signal definition

Create-request-node definition

Dash-nextstate definition

Data-type-definition definition

Data-type-identifier definition

Data-type-name definition

Data-type-qualifier definition

Decision-answer definition

Decision-body definition

Decision-node definition redefinition

Decision-question definition

Decode-procedure-identifier definition

Decoding-expression definition

Default-initialization definition

Destination-gate definition

Destination-number definition

Direct-via definition

Dynamic-operation-signature definition

Else-answer definition

Encoded-expression definition

 Rec. ITU-T Z.100 (10/2019) 13

Abstract syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.104 ITU-T Z.107

Encode-procedure-identifier definition

Encoding-expression definition

Encoding-path definition

Encoding-rules definition

Entry-connection-definition definition

Entry-procedure-definition definition

Equality-expression definition

Exit-connection-definition definition

Exit-procedure-definition definition

Expression definition

Finalization-node definition

First-operand definition

Formal-argument definition

Free-action definition

Gate-definition definition redefinition

Gate-identifier definition

Gate-name definition

Graph-node definition redefinition

Identifier definition

Imperative-expression definition redefinition

In-choice definition

In-parameter definition

In-signal-identifier definition

Informal-text definition

Init-graph-node definition

Initial-number definition

Inner-entry-point definition

Inner-exit-point definition

Inout-parameter definition

Input-node definition redefinition redefinition

Instance-number definition

Interface-definition definition

Interface-name definition

Interface-qualifier definition

Join-node definition

Literal definition

Literal-identifier definition

Literal-name definition

Literal-natural definition

Literal-signature definition

Lower-bound definition

14 Rec. ITU-T Z.100 (10/2019)

Abstract syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.104 ITU-T Z.107

Maximum-number definition

Name definition

Named-nextstate definition

Named-return-node definition

Named-start-node definition

Negative-equality-expression definition

Nextstate-node definition

Nextstate-parameters definition redefinition

Now-expression definition

Null-literal-signature definition

Number-of-instances definition

Offspring-expression definition

Open-range definition

Operation-application definition

Operation-identifier definition

Operation-name definition

Operation-result definition

Operation-signature definition

Originating-gate definition

Out-parameter definition

Out-signal-identifier definition

Outer-entry-point definition

Outer-exit-point definition

Output-node definition redefinition

Package-definition definition

Package-name definition

Package-qualifier definition

Parameter definition

Parameter-aggregation definition

Parent-expression definition

Parent-sort-identifier definition

Path-item definition

Pid-expression definition

Positive-equality-expression definition

Priority-name definition

Procedure-definition definition redefinition

Procedure-formal-parameter definition

Procedure-graph definition

Procedure-identifier definition

Procedure-name definition

Procedure-qualifier definition

 Rec. ITU-T Z.100 (10/2019) 15

Abstract syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.104 ITU-T Z.107

Procedure-start-node definition

Provided-expression definition

Qualifier definition

Range-check-expression definition

Range-condition definition

Reset-node definition

Result definition

Result-aggregation definition

Return-node definition redefinition

Rules-identifier definition

Save-item definition

Save-signalset definition

Sdl-specification definition

Second-operand definition

Self-expression definition

Sender-expression definition

Set-node definition

Signal-definition definition redefinition

Signal-destination definition

Signal-expression definition

Signal-identifier definition

Signal-name definition

Signal-parameter definition

Signal-priority definition

Signallist-expression definition

Size-constraint definition

Sort definition

Sort-identifier definition

Sort-reference-identifier definition

Spontaneous-transition definition

State-aggregation-node definition

State-entry-point-definition definition

State-entry-point-name definition

State-exit-point-definition definition

State-exit-point-name definition

State-expression definition

State-identifier definition

State-machine definition

State-name definition

State-node definition redefinition

State-partition definition

16 Rec. ITU-T Z.100 (10/2019)

Abstract syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.104 ITU-T Z.107

State-qualifier definition

State-start-node definition

State-timer definition

State-transition-graph definition redefinition

State-type-name definition

State-type-qualifier definition

Static-operation-signature definition

Step-graph-node definition

Stop-node definition

Syntype-definition definition

Syntype-identifier definition

Syntype-name definition

Task-node definition

Terminator definition redefinition

Time-expression definition

Timer-active-expression definition

Timer-default-initialization definition

Timer-definition definition

Timer-identifier definition

Timer-name definition

Timer-remaining-duration definition

Transition definition

Type-check-expression definition

Type-coercion definition

Value-data-type-definition definition redefinition redefinition

Value-return-node definition

Value-returning-call-node definition redefinition

Variable-access definition

Variable-definition definition

Variable-identifier definition

Variable-name definition

While-graph-node definition

Some abstract grammar syntax rules defined in [ITU-T Z.101] are extended by a redefinition in

[ITU-T Z.102] or [ITU-T Z.104] or [ITU-T Z.107] (no rules are extended in [ITU-T Z.103]) as shown

in the table above. For such rules the complete abstract grammar syntax of SDL-2010 is given by the

redefined rule, which replaces the abbreviated rule given in [ITU-T Z.101]. Constraints and semantics

given in [ITU-T Z.101] also apply to the redefined grammar, except if there is specific normative text

otherwise. Constraints and semantics given in [ITU-T Z.102] or [ITU-T Z.104] or [ITU-T Z.107] for

redefined rules are in addition to constraints and semantics in [ITU-T Z.101].

 Rec. ITU-T Z.100 (10/2019) 17

Annex B

BNF syntax index

(This annex forms an integral part of this Recommendation.)

The Backus-Naur Form (BNF) syntax index consists of the following table that lists the concrete

grammar syntax rules of SDL-2010, where they are defined and redefined. For a rule defined in only

in [ITU-T Z.104], the columns for [ITU-T Z.101], [ITU-T Z.102] and [ITU-T Z.103] in the table

below are blank. Similarly, for a rule defined in [ITU-T Z.103] the columns for [ITU-T Z.101] and

[ITU-T Z.102] are blank, and for a rule defined in [ITU-T Z.102], the columns for [ITU-T Z.101] is

blank. It is expected that users of the SDL-2010 Recommendations have access to machine-readable

copies of the Recommendation texts and are therefore able to use computer software to locate the

definitions and uses of the concrete grammar syntax rules. A concrete grammar syntax rule name

should always be of the form "<rule name>" and the definition of a rule should start "<rule name> ::="

at the start of a line that in the original Microsoft Word text has the style "z100 syntax 1st line".

Subsequent lines defining a rule should use the user-defined Microsoft Word style "z100 syntax"

except the last line of the rule definition which should use the style "z100 syntax last line".

Concrete syntax rule name ITU-T

Z.101

ITU-T

Z.102

ITU-T

Z.103

ITU-T

Z.104

ITU-T

Z.107

<abstract> defined

<action area> defined redefined

<activation delay> defined

<active agents expression> defined

<active primary> defined

<actual context parameter list> defined

<actual context parameter> defined

<actual parameter list> defined

<actual parameter> defined

<actual parameters> defined

<agent additional heading> defined redefined

<agent area> defined redefined redefined

<agent body area> defined

<agent constraint> defined

<agent context parameter> defined

<agent diagram> defined

<agent formal parameters> defined redefined

<agent instance pid value> defined

<agent instance> defined

<agent instantiation> defined

<agent reference area> defined

<agent signature> defined

<agent structure area> defined redefined

<agent text area> defined redefined redefined

18 Rec. ITU-T Z.100 (10/2019)

Concrete syntax rule name ITU-T

Z.101

ITU-T

Z.102

ITU-T

Z.103

ITU-T

Z.104

ITU-T

Z.107

<agent type additional heading> defined redefined

<agent type constraint> defined

<agent type context parameter> defined

<agent type diagram> defined

<agent type reference area> defined redefined

<agent type reference> defined

<aggregation kind> defined redefined

<aggregation structure area> defined

<algorithm answer part> defined

<algorithm else part> defined

<alphanumeric> defined

<alternative expression> defined

<alternative question> defined

<alternative statement> defined

<ampersand> defined

<anchored sort> defined

<answer part> defined

<answer> defined

<any expression> defined

<apostrophe> defined

<argument> defined

<arguments> defined

<as channel> defined

<as gate> defined

<as interface> defined

<as signal> defined

<as signallist> defined

<assignment statement> defined

<assignment> defined

<asterisk connect list> defined

<asterisk input list> defined

<asterisk save list> defined

<asterisk state list> defined

<asterisk> defined

<base type> defined

<basic sort> defined redefined

<basic state name> defined

<bit string> defined

<block diagram> defined

<block heading> defined

 Rec. ITU-T Z.100 (10/2019) 19

Concrete syntax rule name ITU-T

Z.101

ITU-T

Z.102

ITU-T

Z.103

ITU-T

Z.104

ITU-T

Z.107

<block page> defined

<block reference area> defined

<block reference> defined

<block symbol> defined

<block type diagram> defined redefined

<block type heading> defined

<block type page> defined

<block type reference area> defined redefined

<block type reference> defined

<block type symbol> defined

<break statement> defined

<call statement> defined

<channel definition area> defined redefined redefined

<channel symbol 1> defined

<channel symbol 2> defined

<character string> defined

<choice definition> defined redefined

<choice list> defined

<choice of sort> defined redefined

<circumflex accent> defined

<closed range> defined

<colon> defined

<comma> defined

<comment area> defined

<comment body> defined

<comment symbol> defined

<comment text> defined

<comment> defined

<commercial at> defined

<communication constraints> defined redefined

<composite begin sign> defined

<composite end sign> defined

<composite primary> defined

<composite special> defined

<composite state body area> defined redefined

<composite state diagram> defined

<composite state graph page> defined

<composite state heading> defined

<composite state list item> defined

<composite state name> defined

20 Rec. ITU-T Z.100 (10/2019)

Concrete syntax rule name ITU-T

Z.101

ITU-T

Z.102

ITU-T

Z.103

ITU-T

Z.104

ITU-T

Z.107

<composite state reference area> defined

<composite state text area> defined redefined redefined

<composite state type constraint> defined

<composite state type diagram> defined redefined redefined

<composite state type heading> defined redefined

<composite state type page> defined redefined

<composite state type reference area> defined redefined

<composite state type reference> defined

<composite state type signature> defined

<composite state type symbol> defined

<compositestate type context parameter> defined

<compound statement> defined

<concatenation sign> defined

<conditional expression> defined

<connect association area> defined redefined

<connect list> defined redefined

<connector name> defined

<consequence expression> defined redefined

<constant expression> defined

<constant> defined

<constraint> defined

<context parameters end> defined

<context parameters start> defined

<continuous expression> defined

<continuous signal area> defined

<continuous signal association area> defined

<create body> defined redefined

<create expression> defined

<create line area> defined

<create line endpoint area> defined

<create line symbol> defined

<create request area> defined

<create request symbol> defined

<create statement> defined

<dash nextstate> defined

<dashed association symbol> defined

<dashed block symbol> defined

<dashed line symbol> defined

<dashed process symbol> defined

<dashed state symbol> defined

 Rec. ITU-T Z.100 (10/2019) 21

Concrete syntax rule name ITU-T

Z.101

ITU-T

Z.102

ITU-T

Z.103

ITU-T

Z.104

ITU-T

Z.107

<data binding> defined

<data definition> defined

<data type constructor> defined

<data type definition body> defined

<data type definition> defined redefined

<data type heading> defined redefined

<data type specialization> defined redefined

<decimal digit> defined

<decision area> defined redefined

<decision statement body> defined

<decision statement> defined redefined

<decision symbol> defined

<decoding expression> defined

<default initialization> defined redefined

<definition selection list> defined

<definition selection> defined

<definition> defined redefined

<delaying channel symbol 1> defined

<delaying channel symbol 2> defined

<destination number> defined

<destination> defined

<diagram in package> defined redefined redefined

<diagram> defined redefined

<dollar sign> defined

<else part> defined

<enabling condition area> defined

<enabling condition association area> defined

<enabling condition symbol> defined

<encoded input> defined

<encoded output> defined

<encoding expression> defined

<encoding path> defined

<encoding rules> defined

<end> defined

<endpoint constraint> defined

<entity in agent diagram> defined

<entity in composite state area> defined

<entity in data type> defined redefined

<entity in interface> defined redefined

<entity in operation> defined

22 Rec. ITU-T Z.100 (10/2019)

Concrete syntax rule name ITU-T

Z.101

ITU-T

Z.102

ITU-T

Z.103

ITU-T

Z.104

ITU-T

Z.107

<entity in procedure> defined redefined redefined

<equality expression> defined

<equals sign> defined

<exclamation mark> defined

<exit transition area> defined

<export body> defined

<export statement> defined

<exported variable> defined

<exported variables of sort> defined

<exported> defined

<expression list> defined

<expression output> defined

<expression statement> defined

<expression> defined redefined

<expression0> defined redefined

<extended primary> defined

<extended variable> defined

<external channel identifiers> defined

<external operation definition> defined

<external procedure definition> defined

<external synonym definition item> defined

<field default initialization> defined

<field list> defined

<field name> defined

<field number> defined

<field of kind> defined

<field primary> defined redefined

<field sort> defined

<field variable> defined redefined

<field> defined

<fields of sort> defined redefined

<finalization statement> defined

<flow line symbol with arrowhead> defined

<flow line symbol without arrowhead> defined

<flow line symbol> defined redefined

<formal context parameter list> defined

<formal context parameter> defined

<formal context parameters> defined

<formal name> defined

<formal operation parameters> defined redefined

 Rec. ITU-T Z.100 (10/2019) 23

Concrete syntax rule name ITU-T

Z.101

ITU-T

Z.102

ITU-T

Z.103

ITU-T

Z.104

ITU-T

Z.107

<formal parameter> defined

<formal variable parameters> defined

<frame symbol> defined

<full stop> defined

<gate constraint> defined

<gate context parameter> defined

<gate definition> defined redefined redefined redefined

<gate on diagram> defined redefined

<gate property area> defined

<gate symbol 1> defined

<gate symbol 2> defined

<gate> defined

<general text character> defined

<graphical answer> defined redefined

<grave accent> defined

<greater than or equals sign> defined

<greater than sign> defined

<hex string> defined

<history dash nextstate> defined

<history dash sign> defined

<hyphen> defined

<identifier> defined

<if statement> defined

<imperative expression> defined redefined

<implies sign> defined

<import expression> defined

<imported procedure specification> defined

<imported variable specification> defined

<in choice> defined

<in connector area> defined

<in connector symbol> defined

<indexed primary> defined

<indexed variable> defined

<infix operation name> defined

<informal text> defined

<inherited agent definition> defined

<inherited block definition> defined redefined

<inherited gate symbol 1> defined

<inherited gate symbol 2> defined

<inherited process definition> defined redefined

24 Rec. ITU-T Z.100 (10/2019)

Concrete syntax rule name ITU-T

Z.101

ITU-T

Z.102

ITU-T

Z.103

ITU-T

Z.104

ITU-T

Z.107

<inherited state machine> defined

<inherited state partition definition> defined

<initial number> defined

<inline data type definition> defined

<inline syntype definition> defined

<inner entry point> defined

<inner exit points> defined

<input area> defined redefined

<input association area> defined

<input list> defined redefined redefined

<input symbol> defined redefined

<integer name> defined

<interaction area> defined redefined

<interface constraint> defined

<interface context parameter list> defined

<interface context parameter name> defined

<interface definition> defined redefined

<interface gate definition> defined redefined

<interface heading> defined redefined

<interface procedure definition> defined

<interface specialization> defined

<interface use list> defined

<interface variable definition> defined

<internal input symbol> defined

<internal output symbol> defined

<internal procedure definition> defined

<internal synonym definition item> defined

<is assigned sign> defined

<keyword> defined

<left curly bracket> defined

<left parenthesis> defined

<left square bracket> defined

<legacy data inheritance> defined

<legacy data type definition> defined

<legacy external operator definition> defined

<legacy generator actual> defined

<legacy generators> defined

<legacy inheritance list> defined

<legacy inherited operator> defined

<legacy literal renaming> defined

 Rec. ITU-T Z.100 (10/2019) 25

Concrete syntax rule name ITU-T

Z.101

ITU-T

Z.102

ITU-T

Z.103

ITU-T

Z.104

ITU-T

Z.107

<legacy operator definition> defined

<legacy operator reference> defined

<legacy operator signature> defined

<legacy operator signatures> defined

<legacy procedure signature> defined

<legacy syntype definition> defined

<legacy task body> defined

<less than or equals sign> defined

<less than sign> defined

<letter> defined

<lexical unit> defined

<literal identifier> defined

<literal list> defined redefined

<literal name> defined

<literal signature> defined

<literal> defined

<local variables of sort> defined

<loop alternative statement> defined

<loop answer part> defined

<loop body statement> defined

<loop break statement> defined

<loop clause> defined

<loop compound statement> defined

<loop consequence statement> defined

<loop continue statement> defined

<loop decision statement body> defined

<loop decision statement> defined redefined

<loop else part> defined

<loop if statement> defined

<loop statement> defined

<loop statements> defined

<loop step> defined

<loop terminating statement> defined

<loop variable definition> defined

<loop variable indication identifier> defined

<loop variable indication> defined

<lower bound> defined

<lowercase letter> defined

<macro actual parameter> defined

<macro body> defined

26 Rec. ITU-T Z.100 (10/2019)

Concrete syntax rule name ITU-T

Z.101

ITU-T

Z.102

ITU-T

Z.103

ITU-T

Z.104

ITU-T

Z.107

<macro call body> defined

<macro call> defined

<macro definition> defined

<macro formal parameter> defined

<macro formal parameters> defined

<macro parameter> defined

<macro symbol> defined

<mandatory field> defined

<maximum number> defined

<merge area> defined

<merge symbol> defined

<method application> defined

<method list> defined

<monadic operation name> defined

<name or number> defined

<name> defined

<named fields sort list> defined

<named number> defined

<nextstate area> defined

<nextstate body> defined

<nextstate body name> defined

<nextstate parameters> defined redefined

<non terminating statement> defined redefined redefined

<non terminating statements> defined redefined

<nondelaying channel symbol 1> defined

<nondelaying channel symbol 2> defined

<not asterisk or solidus> defined

<not equals sign> defined

<not number or solidus> defined

<note text> defined

<note> defined

<now expression> defined

<number of instances> defined

<number of pages> defined

<number sign> defined

<offspring expression> defined

<open range with operator> defined

<open range> defined

<operand> defined

<operand0> defined

 Rec. ITU-T Z.100 (10/2019) 27

Concrete syntax rule name ITU-T

Z.101

ITU-T

Z.102

ITU-T

Z.103

ITU-T

Z.104

ITU-T

Z.107

<operand1> defined

<operand2> defined

<operand3> defined

<operand4> defined

<operand5> defined

<operation application> defined redefined

<operation body area> defined

<operation definition item> defined redefined

<operation definition> defined

<operation definitions> defined

<operation diagram> defined redefined

<operation heading> defined redefined

<operation identifier> defined

<operation kind> defined redefined

<operation name> defined

<operation page> defined

<operation preamble> defined redefined

<operation reference> defined

<operation result> defined redefined

<operation signature> defined redefined

<operation signatures> defined redefined

<operation text area> defined redefined

<operations> defined

<operator application> defined

<operator list> defined

<option area> defined redefined

<option symbol> defined

<optional field> defined

<other character> defined

<other special> defined

<out connector area> defined

<out connector symbol> defined

<outer entry points> defined

<outer exit point> defined

<output area> defined

<output body item> defined redefined

<output body> defined redefined

<output statement> defined

<output symbol> defined redefined

<package diagram> defined redefined

28 Rec. ITU-T Z.100 (10/2019)

Concrete syntax rule name ITU-T

Z.101

ITU-T

Z.102

ITU-T

Z.103

ITU-T

Z.104

ITU-T

Z.107

<package heading> defined

<package page> defined

<package public> defined

<package reference area> defined redefined

<package reference> defined

<package symbol> defined

<package text area> defined redefined redefined

<package use area> defined

<package use clause> defined redefined

<page number area> defined

<page number> defined

<parameter aggregation> defined

<parameter kind> defined redefined

<parameters of sort> defined

<parent expression> defined

<parent sort identifier> defined

<path item> defined

<percent sign> defined

<pid expression> defined

<pid sort> defined

<plain input symbol> defined

<plain output symbol> defined

<plus sign> defined

<primary> defined redefined

<priority clause> defined redefined

<priority input area> defined

<priority input association area> defined

<priority input list> defined redefined

<priority input symbol> defined

<priority name> defined

<priority stimulus> defined redefined

<procedure body area> defined

<procedure call area> defined

<procedure call body> defined redefined

<procedure call symbol> defined

<procedure constraint> defined

<procedure context parameter> defined

<procedure definition> defined

<procedure diagram> defined

<procedure formal parameters> defined redefined

 Rec. ITU-T Z.100 (10/2019) 29

Concrete syntax rule name ITU-T

Z.101

ITU-T

Z.102

ITU-T

Z.103

ITU-T

Z.104

ITU-T

Z.107

<procedure heading> defined redefined

<procedure page> defined

<procedure preamble> defined redefined

<procedure reference area> defined

<procedure reference heading> defined redefined

<procedure reference> defined

<procedure result> defined redefined

<procedure signature in constraint> defined

<procedure signature> defined

<procedure start area> defined redefined

<procedure start symbol> defined

<procedure symbol> defined

<procedure text area> defined

<process diagram> defined

<process heading> defined

<process page> defined

<process reference area> defined

<process reference> defined

<process symbol> defined

<process type diagram> defined redefined

<process type heading> defined

<process type page> defined

<process type reference area> defined redefined

<process type reference> defined

<process type symbol> defined

<provided expression> defined

<qualifier begin sign> defined

<qualifier end sign> defined

<qualifier> defined

<question mark> defined

<question> defined

<quotation mark> defined

<quoted operation name> defined

<range check constrained sort> defined

<range check expression> defined redefined

<range condition> defined

<range sign> defined

<range> defined

<real name> defined

<referenced definition> defined redefined

30 Rec. ITU-T Z.100 (10/2019)

Concrete syntax rule name ITU-T

Z.101

ITU-T

Z.102

ITU-T

Z.103

ITU-T

Z.104

ITU-T

Z.107

<remote procedure call area> defined

<remote procedure call body> defined

<remote procedure context parameter> defined

<remote procedure definition> defined

<remote variable definition> defined

<remote variables of sort> defined

<remotevariable context parameter list> defined

<remotevariable contextparameter names> defined

<rename list> defined

<rename pair literal name> defined

<rename pair operation name> defined

<rename pair> defined

<renaming> defined

<reset body> defined redefined

<reset clause> defined redefined

<reset statement> defined

<result aggregation> defined

<result sign> defined

<result> defined

<return area> defined redefined

<return body> defined

<return statement> defined

<return symbol> defined

<reverse solidus> defined

<right curly bracket> defined

<right parenthesis> defined

<right square bracket> defined

<rules identifier> defined

<save area> defined redefined

<save association area> defined

<save item> defined

<save list> defined redefined

<save symbol> defined

<scope unit kind> defined

<sdl specification> defined

<select definition> defined redefined

<selected entity kind> defined redefined

<self expression> defined

<semicolon> defined

<sender expression> defined

 Rec. ITU-T Z.100 (10/2019) 31

Concrete syntax rule name ITU-T

Z.101

ITU-T

Z.102

ITU-T

Z.103

ITU-T

Z.104

ITU-T

Z.107

<set body> defined redefined

<set clause> defined

<set statement> defined

<signal constraint> defined

<signal context parameter list> defined

<signal context parameter name> defined

<signal definition list> defined

<signal definition> defined redefined redefined

<signal expression> defined

<signal list area> defined

<signal list definition> defined

<signal list item> defined redefined redefined

<signal list symbol> defined

<signal list> defined

<signal priority> defined

<signal signature> defined

<signallist expression> defined

<simple expression> defined

<size constraint> defined

<solid association symbol> defined

<solidus> defined

<sort constraint> defined

<sort context parameter> defined

<sort list> defined

<sort signature> defined

<sort> defined redefined

<space> defined

<special> defined

<specialization> defined

<spontaneous association area> defined

<spontaneous designator> defined

<spontaneous transition area> defined

<start area> defined redefined

<start symbol> defined

<start timer area> defined

<start timer symbol> defined

<start> defined

<state aggregation body area> defined

<state aggregation heading> defined

<state aggregation page> defined

32 Rec. ITU-T Z.100 (10/2019)

Concrete syntax rule name ITU-T

Z.101

ITU-T

Z.102

ITU-T

Z.103

ITU-T

Z.104

ITU-T

Z.107

<state aggregation type heading> defined

<state aggregation type page> defined

<state area> defined redefined

<state connection point area> defined

<state connection point symbol 1> defined

<state connection point symbol 2> defined

<state entry point> defined

<state entry points> defined

<state exit point list> defined redefined

<state exit point> defined

<state exit points> defined

<state expression> defined

<state list> defined redefined

<state machine area> defined redefined redefined

<state partition area> defined redefined

<state partition connection area> defined

<state symbol> defined

<state timer area> defined

<state timer association area> defined

<state timer> defined

<statement in loop> defined

<statement> defined redefined redefined

<statements> defined redefined

<stimulus> defined

<stop statement> defined

<stop symbol> defined

<stop timer area> defined

<stop timer symbol> defined

<string name> defined

<structure definition> defined redefined

<synonym constraint> defined

<synonym context parameter list> defined

<synonym context parameter name> defined

<synonym definition item> defined

<synonym definition> defined

<synonym> defined

<syntype definition data type> defined

<syntype definition syntype> defined

<syntype definition> defined redefined

<syntype> defined

 Rec. ITU-T Z.100 (10/2019) 33

Concrete syntax rule name ITU-T

Z.101

ITU-T

Z.102

ITU-T

Z.103

ITU-T

Z.104

ITU-T

Z.107

<system diagram> defined

<system heading> defined

<system page> defined

<system specification> defined redefined

<system type diagram> defined redefined

<system type heading> defined

<system type page> defined

<system type reference area> defined redefined

<system type reference> defined

<system type symbol> defined

<task area> defined redefined

<task body> defined redefined

<task symbol> defined

<terminating statement> defined

<terminator area> defined redefined redefined

<text extension area> defined

<text extension symbol> defined

<text symbol> defined

<text> defined

<textual endpoint constraint> defined

<tilde> defined

<timer active expression> defined

<timer communication constraint> defined

<timer constraint> defined

<timer context parameter list> defined

<timer context parameter name> defined

<timer default initialization> defined

<timer definition item> defined

<timer definition> defined

<timer remaining duration> defined

<transition area> defined

<transition option area> defined

<transition option symbol> defined

<transition string area> defined

<type coercion> defined

<type expression> defined redefined

<type preamble> defined redefined

<typebased agent definition> defined

<typebased block definition> defined

<typebased block heading> defined

34 Rec. ITU-T Z.100 (10/2019)

Concrete syntax rule name ITU-T

Z.101

ITU-T

Z.102

ITU-T

Z.103

ITU-T

Z.104

ITU-T

Z.107

<typebased composite state> defined redefined redefined

<typebased process definition> defined

<typebased process heading> defined

<typebased state partition definition> defined

<typebased state partition heading> defined

<typebased system definition> defined

<typebased system heading> defined

<underline> defined

<uppercase letter> defined

<valid input signal set> defined

<value returning procedure call> defined redefined

<variable access> defined redefined redefined

<variable constraint> defined

<variable context parameter list> defined

<variable context parameter names> defined

<variable definition statement> defined

<variable definition> defined redefined

<variable definitions> defined

<variable> defined

<variables of sort> defined

<vertical line> defined

<via path> defined redefined

<virtuality constraint> defined

<virtuality> defined

<visibility> defined

<word> defined

Some concrete grammar syntax rules defined in [ITU-T Z.101], [ITU-T Z.102], [ITU-T Z.103] or

[ITU-T Z.104] are extended by a redefinition in [ITU-T Z.102], [ITU-T Z.103], [ITU-T Z.104] or

[ITU-T Z.107] as shown in the table above. Sometimes a redefined rule in [ITU-T Z.102] is further

redefined. For redefined rules the complete concrete grammar syntax of SDL-2010 is given by

redefinitions of the rule. A redefinition in [ITU-T Z.107] replaces the rule in [ITU-T Z.101] or

[ITU-T Z.104] ([ITU-T Z.107] rules do not redefine rules in [ITU-T Z.102] or [ITU-T Z.103]). A

redefinition in [ITU-T Z.104] replaces the rule in [ITU-T Z.101], [ITU-T Z.102] or [ITU-T Z.103].

A redefinition in [ITU-T Z.103] replaces the rule in [ITU-T Z.101] or [ITU-T Z.102] and redefinition

in [ITU-T Z.102] replaces the rule in [ITU-T Z.101]. Constraints and semantics are cumulative so

that those in [ITU-T Z.101], [ITU-T Z.102], [ITU-T Z.103] or [ITU-T Z.104] also apply to any

redefined grammar in [ITU-T Z.102], [ITU-T Z.103] or [ITU-T Z.104], except if there is specific

normative text otherwise.

Any construct that is valid for a rule before redefinition should also be valid with the redefined rule.

If this is not the case, there is an error in the ITU-T Z.100 series of SDL-2010 that needs to be

corrected.

 Rec. ITU-T Z.100 (10/2019) 35

Annex C

Compatibility

(This annex forms an integral part of this Recommendation.)

SDL-2010 introduces some changes that could invalidate descriptions written for older versions of

the Specification and Description Language that were available prior to SDL-2010 being approved.

The intention is that SDL-2010 is compatible with most uses of the SDL-2000 versions as supported

by tools. This annex documents how legacy descriptions are handled.

The Recommendation for SDL-2000 allowed many existing valid Specification and Description

Language descriptions using SDL-92 to remain valid Specification and Description Language

descriptions. Most (if not all) of these Specification and Description Language descriptions using

SDL-92 should remain valid SDL-2010 descriptions.

Existing valid Specification and Description Language descriptions using SDL-2000 are not valid

SDL-2010 descriptions if they use features of SDL-2000 deleted in SDL-2010, but it is expected the

number of such cases is small because the deleted features (see clause III.4) have not been widely

implemented or used.

In the concrete grammar of SDL-2010 there are a number of syntax rules introduced of the form

<legacy …>. These rules define alternative syntax for features from older versions of the

Specification and Description Language. New descriptions should avoid using such legacy syntax,

but it is recognized that the use of legacy syntax is possibly impractical for existing descriptions,

updating parts of existing descriptions or when the tool available only supports the legacy syntax.

Similarly, there are a number of concrete syntax rule alternatives containing the keywords

endnewtype, fpar, newtype and returns that define alternative syntax from older versions of the

Specification and Description Language. The concrete grammar defined by alternative syntax from

older versions of the Specification and Description Language extends the notation allowed for

SDL-2010 without extending the semantics. This grammar allows SDL-2010 tools to provide

backwards compatibility for older descriptions and allows older tools to be used as tools for a subset

of the SDL-2010 language. Where the alternative with the keyword occurs in Basic SDL-2010

[ITU-T Z.101] or Comprehensive SDL-2010 [ITU-T Z.102], this is the canonical form because it

should be compatible with most tools, although an alternative without these keywords is preferred for

new descriptions. The alternatives without the keywords are sometimes added in Shorthand

SDL-2010 [ITU-T Z.103] or in [ITU-T Z.104].

36 Rec. ITU-T Z.100 (10/2019)

Annex D

Data defined in the package Predefined

(This annex forms an integral part of this Recommendation.)

This annex provides an overview of the predefined data items that are defined in an implicitly used

package Predefined, which is fully defined in [ITU-T Z.104]. The overview here provides an

intuitive understanding of data and expressions for understanding [ITU-T Z.101], [ITU-T Z.102] and

[ITU-T Z.103] without reference to [ITU-T Z.104]. The overview provided here should be consistent

with [ITU-T Z.104], but any inconsistency should be assumed to be an error in this Annex that needs

to be corrected.

D.1 Rules for "=" (equal), "/=" (not equal), comparison, data signatures and literals

The operators "=" (equal) and "/=" (not equal) are valid for every sort of data. The result is a Boolean.

The operators "<", "<=", ">", ">=" for comparisons are valid when the sort of data is based on

ordered literals, for example, Character. If the name of the sort of data is S, it has the following

operators:

 "<" (this S, this S) -> Boolean;

 ">" (this S, this S) -> Boolean;

 "<=" (this S, this S) -> Boolean;

 ">=" (this S, this S) -> Boolean;

 first -> this S;

 last -> this S;

 succ (this S) -> this S;

 pred (this S) -> this S;

 num (this S) -> Natural;

NOTE – The quoted operators such as "<" are used as prefix operators, for example, in the expression

"<"(a, b) but the quoted operator signs (in this case the less than sign) are also defined as infix operators so

"<"(a, b) has the same meaning as a < b.

The keyword this before the name of the sort of data in signatures is relevant only when a sort of

data is inherited.

Certain operators given below are able to raise an exception rather than return a result as indicated by

raise and the name of the exception in the operator signature.

Where different sorts of data have literals that are lexically the same, the sort of data is usually

determined by context. If this is not possible, the literal has to be qualified by the sort of data.

D.2 Package Predefined overview

The <<package Predefined>> is defined fully in [ITU-T Z.104]. This overview lists the sorts and

the operations for each sort.

D.2.1 Boolean

literals true, false;

operators

 "not" (this Boolean) -> this Boolean;

 "and" (this Boolean, this Boolean) -> this Boolean;

 "or" (this Boolean, this Boolean) -> this Boolean;

 "xor" (this Boolean, this Boolean) -> this Boolean;

 "=>" (this Boolean, this Boolean) -> this Boolean;

Boolean is used to represent true and false values. Often it is used as the result of a comparison.

Boolean is used widely throughout the Specification and Description Language.

 Rec. ITU-T Z.100 (10/2019) 37

D.2.2 Character

literals

 NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,

 BS, HT, LF, VT, FF, CR, SO, SI,

 DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,

 CAN, EM, SUB, ESC, IS4, IS3, IS2, IS1,

 ' ', '!', '"', '#', '$', '%', '&', '''',

 '(', ')', '*', '+', ',', '-', '.', '/',

 '0', '1', '2', '3', '4', '5', '6', '7',

 '8', '9', ':', ';', '<', '=', '>', '?',

 '@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',

 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',

 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',

 'X', 'Y', 'Z', '[', '\', ']', '^', '_',

 '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g',

 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',

 'p', 'q', 'r', 's', 't', 'u', 'v', 'w',

 'x', 'y', 'z', '{', '|', '}', '~', DEL;

/* '''' is an apostrophe, ' ' is a space, '~' is a tilde */

operators

 chr (Integer) -> this Character;

The Character sort is used to represent characters of the International Reference Alphabet

(Recommendation [ITU-T T.50]).

D.2.3 String

String is a parameterized sort of data that takes another sort of data as a parameter. For example,

String < Integer > is a string of integers. In particular, the Charstring sort is defined as

String < Character >.

In the following operators the sort of data given as the parameter is the Itemsort.

operators

 emptystring -> this String;

 mkstring (Itemsort) -> this String; /* same as Make */

 Make (Itemsort) -> this String;

 length (this String) -> Integer;

 first (this String) -> Itemsort;

 last (this String) -> Itemsort;

 "//" (this String, this String) -> this String; /* concatenation */

 Extract (this String, Integer) -> Itemsort raise InvalidIndex;

 Modify (this String, Integer, Itemsort) -> this String;

 substring (this String, Integer, Integer) -> this String raise InvalidIndex;

 /* substring (s,i,j) gives a string of length j starting from the ith element */

 remove (this String, Integer, Integer) -> this String;

 /* remove (s,i,j) gives a string with a substring of length j starting from

 the ith element removed */

Where the value of a String is needed, the notation

 (. item .)

has the same meaning as

 Make(item)

and makes a string of length 1 from the item value.

The notation where s is a string variable and i is an Integer

 s [i]

has the same meaning as

 Extract(s, i) if it appears in an expression

and means there is an assignment to the element i of the string (using Modify) if it is the target of

assignment.

38 Rec. ITU-T Z.100 (10/2019)

D.2.4 Charstring

Charstring is String parameterized with Character and has the operators defined for String.

Comparison operators and num are not defined for Charstring.

Charstring has literals that are defined by the regular expression

 '''' ((' ':'&') or '''''' or ('(': '~'))+ ''''

That is, the Charstring literal starts with an apostrophe, followed by one or more characters that are

characters from space to ampersand or a pair of apostrophes (representing a single apostrophe) or a

character from an open round bracket to a tilde and followed by an apostrophe. For example,

'aB%b 7cd'.

A double apostrophe not in a Charstring literal represents an empty Charstring.

'A' could be a Character or a Charstring depending on context. Non-printing characters are made

into character strings by the use of the Make construct, so a character string for linefeed with carriage

return and some prompt characters is constructed by

 (. LF .) // (. CR .) // '+>'

D.2.5 Integer

A notation for an Integer value is a sequence of one or more of the numbers 0 to 9. Negative integers

are represented by applying the unary "-" operator to a positive Integer. The ordering of integers is

defined independently from the notation so that 0034 is ordered in the same place and has the same

value as 034. The comparison operators are defined to give the usual mathematical integer ordering.

operators

 "-" (this Integer) -> this Integer;

 "+" (this Integer, this Integer) -> this Integer;

 "-" (this Integer, this Integer) -> this Integer;

 "*" (this Integer, this Integer) -> this Integer;

 "/" (this Integer, this Integer) -> this Integer raise DivisionByZero;

 "mod" (this Integer, this Integer) -> this Integer raise DivisionByZero;

 "rem" (this Integer, this Integer) -> this Integer;

 "<" (this Integer, this Integer) -> Boolean;

 ">" (this Integer, this Integer) -> Boolean;

 "<=" (this Integer, this Integer) -> Boolean;

 ">=" (this Integer, this Integer) -> Boolean;

 power (this Integer, this Integer) -> this Integer;

 integer(<< package Predefined>> Integer) -> this Integer;

 num (this Integer) -> << package Predefined>> Integer;

Integer is used for mathematical integers with decimal 12, hex '0C'H, or binary '1100'B notation,

where the examples given here all represent the same value (twelve).

There is no theoretical limit to the maximum size of an Integer, but in practice there will be some

limit so some additional checks might be needed to ensure the limit is not reached. Using a syntype

based on Integer with limits on the range of values instead of Integer provides such checks.

D.2.6 Natural

Natural is used when positive integers only are required. All operators will be the Integer operators,

but the value is checked when a value is used as a parameter or assigned. A negative value will be an

error.

 Rec. ITU-T Z.100 (10/2019) 39

D.2.7 Real

The notation for a Real value is a sequence of one or more of the numbers 0 to 9 followed by a

decimal point (represented by a full stop) followed by one or more of the numbers 0 to 9. Examples

are: 42.0; 10.3; 0.79 and .001.

The leading zeros before the decimal point do not have any meaning for the value, so that 001.4 has

the same value as 1.4 and 000001.4. Similarly, trailing zeros after the decimal point do not change

the value.

Negative values are represented by applying the unary "-" operator to a positive Real.

operators

 "-" (this Real) -> this Real;

 "+" (this Real, this Real) -> this Real;

 "-" (this Real, this Real) -> this Real;

 "*" (this Real, this Real) -> this Real;

 "/" (this Real, this Real) -> this Real raise DivisionByZero;

 "<" (this Real, this Real) -> Boolean;

 ">" (this Real, this Real) -> Boolean;

 "<=" (this Real, this Real) -> Boolean;

 ">=" (this Real, this Real) -> Boolean;

 float (Integer) -> this Real;

 fix (this Real) -> Integer;

Real represents all numbers that are able to be represented as one integer divided by another (known

as rational numbers). Numbers that cannot be represented in this way (irrational numbers – for

example, the square root of 2) are not part of the Real. However, for practical engineering a

sufficiently accurate approximation is usually used.

There is no theoretical limit to the maximum size of a Real, but in practice there will be some limit

so some additional checks might be needed to ensure the limit is not reached. Similarly, there is no

theoretical limit to the precision, so in theory values are infinitely precise but in practice there will be

some limit so additional checks might be needed to allow for the precision of the implemented system.

For example, the expression (1/9)*9=1.0 should always be true, but in an actual system it is possible

the calculation of (1/9)*9 produces a value that is not precisely equal to 1.0.

D.2.8 The mapping called Array

Array is a mapping where a value of one sort of data is used as a key index to access element items

of the mapping.

NOTE – The use of the name Array for this sort of data sometimes causes confusion, because in many

computer languages the index of any data called an Array is limited to values of an ordered sort of data that

has a finite number of elements such as Character or a bounded Integer. For an Array in the Specification

and Description Language the index sort of data does not have to be ordered, nor does it need to be bounded.

For example, the index is allowed to be Integer (which has no upper or lower bound), or a structured value.

Vector is more similar to what is called an Array in other computer languages where the index is an Integer

greater than zero with a maximum upper bound.

Array is a parameterized sort of data that takes two other sorts of data as parameters, in the following named

the Index and the Itemsort.

operators

 Make -> this Array ;

 Make (Itemsort) -> this Array ;

 Modify (this Array,Index,Itemsort) -> this Array ;

 Extract(this Array,Index) -> Itemsort raise InvalidIndex;

40 Rec. ITU-T Z.100 (10/2019)

The Make notation produces an Array value as a result. If no parameter is given no element of the

Array is initialized. Where a value of an Array is needed (determined by context), normally the

notation

 (. item .)

has the same meaning as

 Make(item)

and makes an Array where every element is initialized to the item value. If the index is unbounded

the Array is of a theoretically infinite size, but implementation is possible noting this item value once

only for the Array and noting specifically {index, item value} pairs for elements that are given other

item values. In this way only a finite amount of information is needed even for an Array of

theoretically infinite size such as one indexed with Real.

The notation where a is an array variable and i is an index value

 a [i]

has the same meaning as

 Extract(a, i) if it appears in an expression where it gives the value of the element

and means there is an assignment to the element i of the array (using Modify) if it is the target of

assignment.

D.2.9 Vector

Vector is a parameterized sort of data that is an Array constrained to have an Integer index sort of

data where the lower bound is 1 and the upper bound is the maximum index value given as the

parameter of Vector.

D.2.10 Powerset

Powerset is a mathematical set. Every element item of a Powerset has the same sort of data. No item

value appears more than once in the Powerset. If an item value is added to Powerset (using incl to

include it), and the item value is already in the Powerset there is no change to the Powerset. There

is no order to the elements of a Powerset.

operators

 empty -> this Powerset;

 "in" (Itemsort, this Powerset) -> Boolean; /* is member of */

 incl (Itemsort, this Powerset) -> this Powerset; /* include item in set */

 del (Itemsort, this Powerset) -> this Powerset; /* delete item from set */

 "<" (this Powerset, this Powerset) -> Boolean; /* is proper subset of */

 ">" (this Powerset, this Powerset) -> Boolean; /* is proper superset of */

 "<=" (this Powerset, this Powerset) -> Boolean; /* is subset of */

 ">=" (this Powerset, this Powerset) -> Boolean; /* is superset of */

 "and" (this Powerset, this Powerset) -> this Powerset; /* intersection of sets */

 "or" (this Powerset, this Powerset) -> this Powerset; /* union of sets */

 length (this Powerset) -> Integer;

 take (this Powerset) -> Itemsort raise Empty;

The take operator removes and returns an arbitrary element item from the Powerset.

D.2.11 Duration

Duration is used for the values to be added to timers and as the result of the difference between Time

values (see Time). The notation for Duration values is the same as for Real. Whether a value

denotation is a Real or Duration (or Time) value is usually determined by context. The unit of

Duration is the same as the unit of Time, and unless otherwise specified is 1 second.

 Rec. ITU-T Z.100 (10/2019) 41

operators

 "+" (this Duration, this Duration) -> this Duration;

 "-" (this Duration) -> this Duration;

 "-" (this Duration, this Duration) -> this Duration;

 ">" (this Duration, this Duration) -> Boolean;

 "<" (this Duration, this Duration) -> Boolean;

 ">=" (this Duration, this Duration) -> Boolean;

 "<=" (this Duration, this Duration) -> Boolean;

 "*" (this Duration, Real) -> this Duration;

 "*" (Real, this Duration) -> this Duration;

 "/" (this Duration, Real) -> Duration;

Duration values are allowed to be added and subtracted from one another, and multiplied and divided

by Real values.

D.2.12 Time

Accessing the system clock returns a Time value. The origin of Time is system dependent. Time values

are used to set the expiry time of timers.

The notation for Time values is the same as for Real. It is usually determined by context whether a

value is a Time value or Real value or Duration value. The unit of Time is the same as the unit of

Duration, and therefore unless otherwise specified is 1 second.

operators

 protected time (Duration) -> this Time;

 "<" (this Time, this Time) -> Boolean;

 "<=" (this Time, this Time) -> Boolean;

 ">" (this Time, this Time) -> Boolean;

 ">=" (this Time, this Time) -> Boolean;

 "+" (this Time, Duration) -> this Time;

 "+" (Duration, this Time) -> this Time;

 "-" (this Time, Duration) -> this Time;

 "-" (this Time, this Time) -> Duration;

A Time value that has a Duration added or subtracted from it gives another Time value. A Time value

subtracted from another Time value gives a Duration.

D.2.13 Bag

Bag is an unordered collection of items. Every element item of a Bag has the same sort of data. By

comparison with a Powerset, if an item value is added to Bag (using incl to include it), there is

always a change to the Bag increasing the number of elements items that have the given value by one.

Similarly, deleting an item of a particular value from a Bag (using del) reduces the number of

elements items that have the given value by one (except if the count is already zero). Deleting an item

of a given value is not an error if there are no items of that value in the Bag. There is no order to the

elements of a Bag.

Bag is used to represent the SET OF construction of ASN.1.

operators

 empty -> this Bag;

 "in" (Itemsort, this Bag) -> Boolean; /* is member of */

 incl (Itemsort, this Bag) -> this Bag; /* increase items of this value in Bag */

 del (Itemsort, this Bag) -> this Bag; /* delete an item of this value from Bag

 */

 "<" (this Bag, this Bag) -> Boolean; /* is proper subbag of */

 ">" (this Bag, this Bag) -> Boolean; /* is proper superbag of */

 "<=" (this Bag, this Bag) -> Boolean; /* is subbag of */

 ">=" (this Bag, this Bag) -> Boolean; /* is superbag of */

 "and" (this Bag, this Bag) -> this Bag; /* intersection of bags */

 "or" (this Bag, this Bag) -> this Bag; /* union of bags */

 length (this Bag) -> Integer; /* number of items in Bag */

 count (Itemsort, this Bag) -> Integer; /* number of this item value in Bag */

 take (this Bag) -> Itemsort raise Empty;

The take operator removes and returns an arbitrary element item from the Bag.

42 Rec. ITU-T Z.100 (10/2019)

D.2.14 Bit and Bitstring

Bit has the literals 0 and 1, and the same operators as Boolean plus operators for changing a Bit to

an Integer and an Integer to a Bit.

operators

 "not" (this Bit) -> this Boolean;

 "and" (this Bit, this Bit) -> this Bit;

 "or" (this Bit, this Bit) -> this Bit;

 "xor" (this Bit, this Bit) -> this Bit;

 "=>" (this Bit, this Bit) -> this Bit;

 num (this Bit) -> Integer;

 bit (Integer) -> this Bit raise OutOfRange;

endvalue type Bit;

Bitstring is a string of each element of which is a Bit. To be compatible with ASN.1, the index of

the first element is zero (unlike Charstring and other sorts of data based on String where indexing

starts from 1). The values of Bitstring are denoted by the binary form '0101'B and/or the

hexadecimal '12AF'H.

operators

 mkstring (Bit) -> this Bitstring;

 Make (Bit) -> this Bitstring;

 length (this Bitstring) -> Integer;

 first (this Bitstring) -> Bit;

 last (this Bitstring) -> Bit;

 "//" (this Bitstring, this Bitstring) ->

 this Bitstring;/*concatenation*/

 Extract (this Bitstring, Integer) -> Bit raise InvalidIndex;

 Modify (this Bitstring, Integer, Bit) -> this Bitstring;

 substring (this Bitstring, Integer, Integer) -> this Bitstring raise InvalidIndex;

 /* substring (s,i,j) gives a string of length j starting from the ith element */

 remove (this Bitstring, Integer, Integer) -> this Bitstring;

 /* remove (s,i,j) gives a string with a substring of length j starting from

 the ith element removed */

/*The following operators are specific to Bitstrings*/

 "not" (this Bitstring) -> this Bitstring;

 "and" (this Bitstring, this Bitstring) -> this Bitstring;

 "or" (this Bitstring, this Bitstring) -> this Bitstring;

 "xor" (this Bitstring, this Bitstring) -> this Bitstring;

 "=>" (this Bitstring, this Bitstring) -> this Bitstring

 num (this Bitstring) -> Integer;

 bitstring (Integer) -> this Bitstring raise OutOfRange;

 octet (Integer) -> this Bitstring raise OutOfRange;

D.2.15 Octet and Octetstring

Octet is a Bitstring of exactly 8 bits, and therefore has the same notation as a Bitstring but with

exactly 8 binary digits such as '10101010'B or 2 hexadecimal digits such as '1F'H.

Octetstring is a String of each element of which is an Octet. The index of the first element is one

(like Charstring and other sorts of data based on String, but in contrast to Bitstring where

indexing starts from zero). The values of Octetstring are multiples of 8 binary digits such as

'0101010110101010'B or multiples of 2 hexadecimal digits such as 'FE12A7'H.

operators

 bitstring (this Octetstring) -> Bitstring;

 octetstring (Bitstring) -> this Octetstring;

D.2.16 Process interface data (pid and Pid)

An interface defines a pid sort of data, which has elements that are identities of agents. The sort of

data Pid is a supertype of all pid sorts of data. When a variable is declared to be of sort Pid, data

items belonging to any pid sort are valid for assignment to that variable. Other pid sorts are

constrained to reference only agents that offer the interface of the pid. Certain actions (such as

creating a process instance) produce a Pid value. The notation Null denotes a reference that is not

 Rec. ITU-T Z.100 (10/2019) 43

associated with a value; that is the Pid value that is used when there is no instance to reference. Apart

from equal and not equal, there are no language-defined operators for pid sorts of data. If there is an

attempt to use Null as a reference the exception InvalidReference is raised.

D.2.17 Enumerated data

It is allowed to define a sort of data, the elements of which are named values. If the data sort is to be

used in more than one place it is given a name. An example of introducing such a type named enumabc

with values a, b and c is:

 value type enumabc literals a, b, c;

D.2.18 Structure data

The keyword struct is used to introduce a composite structure sort of data that has named fields each

of which is associated with a field sort of data. The fields have any sort of data, including a structure,

an array, a vector or a string or a choice (see below). An example of a structure definition in a sort

named astruct is:

 value type astruct { struct f1 Integer; f2 Boolean; f3 Pid; }

The definition has make, extract and modify operators (similar to String and Array). Where a value

for the above structure is needed (determined by context), the notation

 (. ie1, be2, pe3 .)

is used to produce a structure value where ie1, be2 and pe3 are Integer, Boolean and Pid expressions

respectively. This construct has the same meaning as

 make(ie1, be2, pe3)

If there is a variable vs declared with the structure above, the notations

 vs.f1

 vs.f2

 vs.f3

are used to assign to, or access field f1, f2 and f3 respectively.

D.2.19 Choice

The keyword choice is used to introduce a composite sort of data that has named fields, only one of

which is present at any time. If there is a variable defined with the choice sort of data, assigning to

one of the fields means that all other fields lose the data value associated with them. An example of

a choice definition in a sort named achoice is:

 value type achoice { choice f1 Char; f2 Boolean; f3 Integer; }

If there is a variable vc declared with the choice above, the notations

 vc.f1

 vc.f2

 vc.f3

are used to assign to, or access field f1, f2 and f3 respectively. To access a field to obtain a value of

the field sort of data, the choice variable has to contain that field. If the choice variable does not

contain the field when the access is made, the UndefinedField exception is raised. There is an

operator PresentExtract with a parameter that is the choice sort the result of which is the name of

the field that is present and is normally denoted by

 vc.PresentExtract

44 Rec. ITU-T Z.100 (10/2019)

For each field there is an operator with a parameter that is the choice sort, the result of which is a

Boolean and has the value true if the choice value contains a value of that field. The name of the

operator is the field name concatenated with Present, and the usual notation to apply the operator to

a variable vc for a field f1 is

 vc.f1Present

Choice is used to represent the CHOICE construction of ASN.1.

D.2.20 Exceptions for language defined sorts of data

The following exceptions are mentioned in this annex:

 OutOfRange, /* A range check has failed. For example, assigning a negative

Integer value to a Natural, or applying the Bit operator or

Bitstring operator or Octetstring operator to negative Integer.

*/

 InvalidIndex, /* A String or Array was accessed with an incorrect index. */

 Empty; /* No element could be returned. For example when applying the

take operator to a Powerset or Bag that is empty. */

 DivisionByZero; /* An Integer or Real division by zero was attempted. */

 InvalidReference, /* Null was used incorrectly. Wrong Pid for this signal. */

 UndefinedField, /* An undefined field was accessed. */

D.2.21 Support for ASN.1 character, symbol string and NULL types

The following items are defined in the package Predefined and support the combination of ASN.1

modules with SDL-2010: syntype NumericChar, value type NumericString, syntype

PrintableChar, value type PrintableString, syntype TeletexChar, syntype VideotexChar,

value type VideotexString, syntype IA5Char, syntype IA5String, value type

GeneralChar, value type UniversalChar, value type UniversalCharString, syntype

UTF8String, value type GeneralCharString, syntype GraphicChar, syntype VisibleChar,

value type VisibleString, syntype BMPChar, value type BMPCharString and value type

NULL.

 Rec. ITU-T Z.100 (10/2019) 45

Annex E

Reserved for examples

(This annex forms an integral part of this Recommendation.)

46 Rec. ITU-T Z.100 (10/2019)

Annex F

Formal definition

(This annex forms an integral part of this Recommendation.)

Published separately. The status of Annex F is described in the Introduction and in Appendix I.

 Rec. ITU-T Z.100 (10/2019) 47

Appendix I

Status of ITU-T Z.100, related documents and Recommendations

(This appendix does not form an integral part of this Recommendation.)

This appendix contains a list of the status of Recommendations related to the Specification and

Description Language issued by ITU-T. The list includes all parts of this Recommendation and of

[ITU-T Z.101], [ITU-T Z.102], [ITU-T Z.103], [ITU-T Z.104], [ITU-T Z.105], [ITU-T Z.106],

[ITU-T Z.107], [b-ITU-T Z.109], Recommendations subsequently added to the ITU-T Z.100 series

for SDL-2010 and any related methodology documents. It also lists other relevant Recommendations

such as Recommendations [b-ITU-T Z.110] and [ITU-T Z.111].

This list shall be updated by appropriate means (for example, a corrigendum) whenever changes to

the Specification and Description Language are agreed and new Recommendations approved.

SDL-2010 is defined by or related to the following Recommendations approved by ITU-T listed

below:

– Recommendation ITU-T Z.100.

– Annex A to Recommendation ITU-T Z.100.

– Annex B to Recommendation ITU-T Z.100.

– Annex C to Recommendation ITU-T Z.100.

– Annex D to Recommendation ITU-T Z.100.

– There were no specific plans at the time of approval for Annex E, but this is reserved for

examples.

– Annex F to Recommendation ITU-T Z.100.

– Tools for the formal semantics reference model of SDL-2000 (ITU-T Specification and

Description Language) are found at http://sourceforge.net/projects/sdlc (the files themselves

are accessible either through CVS, or through the CVS web front end, at

http://sdlc.cvs.sourceforge.net/viewvc/sdlc/).

– ITU-T Z.Sup1: ITU-T Z.100 series - Supplement on SDL+ methodology: Use of ITU System

Design Languages.

– [ITU-T Z.101].

– [ITU-T Z.102].

– [ITU-T Z.103].

– [ITU-T Z.104].

– [ITU-T Z.105].

– [ITU-T Z.106].

– [ITU-T Z.107].

– [b-ITU-T Z.109].

– [b-ITU-T Z.110]. This is not part of the ITU-T Z.100-series of Recommendations for

SDL-2010, but refers to ITU-T Z.100.

– [ITU-T Z.111]. This is not part of the ITU-T Z.100-series of Recommendations for

SDL-2010, but included by reference.

Further information on the Specification and Description Language including information on books

and other publications is available via: http://www.sdl-forum.org/.

http://sourceforge.net/projects/sdlc
http://sdlc.cvs.sourceforge.net/viewvc/sdlc/
http://www.sdl-forum.org/

48 Rec. ITU-T Z.100 (10/2019)

Appendix II

Guidelines for the maintenance of SDL-2010

(This appendix does not form an integral part of this Recommendation.)

II.1 Maintenance of SDL-2010

This appendix describes the terminology and rules for maintenance of the Specification and

Description Language agreed at the Study Group 10 meeting in November 1993, and the associated

"change request procedure".

In the following text, references to Recommendation ITU-T Z.100 shall be considered to include

annexes, appendices and supplements of this Recommendation, as well as any addenda, amendments,

corrigenda or implementors' guides. This shall also apply for [ITU-T Z.101], [ITU-T Z.102],

[ITU-T Z.103], [ITU-T Z.104], [ITU-T Z.105], [ITU-T Z.106], [ITU-T Z.107] and any

Recommendation subsequently added to the ITU-T Z.100 series for SDL-2010 and [b-ITU-T Z.109].

II.1.1 Terminology

a) An error is an internal inconsistency within Recommendation ITU-T Z.100.

b) A textual correction is a change to text or diagrams of Recommendation ITU-T Z.100 that

corrects clerical or typographical errors.

c) An open item is a concern identified but not resolved. An open item is identified either by a

change request, or by agreement of the Study Group or Working Party.

d) A deficiency is an issue identified where the semantics of the Specification and Description

Language is not (clearly) defined by Recommendation ITU-T Z.100.

e) A clarification is a change to the text or diagrams of Recommendation ITU-T Z.100 that

clarifies previous text or diagrams that could be ambiguously understood without the

clarification. The clarification should attempt to make Recommendation ITU-T Z.100

correspond to the semantics of the Specification and Description Language as understood by

the Study Group or Working Party.

f) A modification is a change to the text or diagrams of Recommendation ITU-T Z.100 that

changes the semantics of the Specification and Description Language.

g) A decommitted feature is a feature of the Specification and Description Language that is to

be removed from the Specification and Description Language in the next revision of

Recommendation ITU-T Z.100.

h) An extension is a new feature, which shall not change the semantics of features defined in

Recommendation ITU-T Z.100.

II.1.2 Rules for maintenance

a) When an error or deficiency is detected in Recommendation ITU-T Z.100, it shall be

corrected or clarified. The correction of an error should imply as small a change as possible.

Error corrections and clarifications will be put into the master list of changes for

Recommendation ITU-T Z.100 and come into effect immediately.

b) Except for error corrections and resolution of open items from the previous study period,

modifications and extensions should only be considered as the result of a request for change

that is supported by a substantial user community. A request for change should be followed

by investigation by the Study Group or Working Party in collaboration with representatives

of the user group, so that the need and benefit are clearly established and it is certain that an

existing feature of the Specification and Description Language is unsuitable.

 Rec. ITU-T Z.100 (10/2019) 49

c) Modifications and extensions not resulting from error correction shall be widely publicized

and the views of users and toolmakers canvassed before the change is adopted. Unless there

are special circumstances requiring such changes to be implemented as soon as possible, such

changes will not be recommended until Recommendation ITU-T Z.100 is revised.

d) Until a revised Recommendation ITU-T Z.100 is published, a master list of changes to

Recommendation ITU-T Z.100 will be maintained covering Recommendation ITU-T Z.100

and all annexes except the formal definition. It is suggested the master list of changes is

prepared as a draft version of an implementor's guide. Appendices, addenda, corrigenda,

implementor's guides or supplements will be issued as decided by the Study Group. To ensure

effective distribution of the master list of changes to Recommendation ITU-T Z.100, it will

be published as COM Reports and by appropriate electronic means.

e) For deficiencies in Recommendation ITU-T Z.100, the formal definition should be consulted.

This should lead to either a clarification or correction that is recorded in the master list of

changes to Recommendation ITU-T Z.100. If there is an inconsistency between

Recommendation ITU-T Z.100 and the formal definition, and it is decided that the formal

definition is out of date or otherwise incorrect, it is permitted to document the inconsistency

rather than update the formal definition.

II.1.3 Change request procedure

The change request procedure is designed to enable the Specification and Description Language users

from within and outside ITU-T to ask questions about the precise meaning of Recommendation

ITU-T Z.100, make suggestions for changes to the Specification and Description Language or

Recommendation ITU-T Z.100, and to provide feedback on proposed changes to the Specification

and Description Language. The Specification and Description Language experts' group shall publish

proposed changes to the Specification and Description Language before they are implemented.

Requests for changes should either use the Change Request Form (see below) or provide the

information listed by the form. The kind of request should be clearly indicated (error correction,

clarification (or question), simplification, extension, modification or decommitted feature). It is also

important that, for any change other than an error correction, the amount of user support for the

request is indicated.

Meetings of the ITU-T Study Group responsible for Recommendation ITU-T Z.100 should treat all

change requests. For corrections or clarifications, it is allowed that the changes are put on the list of

corrections without consulting users. Otherwise, a list of open items shall be compiled. The

information should be distributed to users:

– as ITU-T white contribution reports;

– by electronic mail to Specification and Description Language mailing lists (such as an ITU-T

informal list for maintenance of the language, and sdlnews@sdl-forum.org);

– other means as agreed by the experts in the Study Group responsible for the Specification

and Description Language.

Study group experts should determine the level of support and opposition for each change and

evaluate reactions from users. A change will only be put on the accepted list of changes if there is

substantial user support and no serious objections to the proposal from more than just a few users.

Finally, all accepted changes will be incorporated into a revised Recommendation ITU-T Z.100.

Users should be aware that until changes have been incorporated and approved by the Study Group

responsible for Recommendation ITU-T Z.100, they are not recommended by ITU-T.

50 Rec. ITU-T Z.100 (10/2019)

Change Request Form

Please supply the following details.

Type of change: error correction clarification (or

question)

 simplification extension

 modification decommission

Short summary of change request

Short justification of the change request

Is this view shared in your organization? yes no

Have you consulted other users? yes no

How many users do you represent? 1-5 6-10

 11-100 over 100

Your name and address

Please attach further sheets with details if necessary.

SDL (ITU-T Z.100) Rapporteur, c/o ITU-T,

Place des Nations, CH-1211 Geneva 20, Switzerland.

Fax: +41 22 730 5853,

E-mail: SDL.rapporteur@itu.int.

mailto:SDL.rapporteur@itu.int

 Rec. ITU-T Z.100 (10/2019) 51

Appendix III

Evolution of the Specification and Description Language

(This appendix does not form an integral part of this Recommendation.)

III.1 Versions of the Specification and Description Language

The Specification and Description Language was first Recommended in 1976. Since then it has had

several major enhancements reflecting both changes in user needs and changes in techniques and

tools, while retaining the state machine model of the original language.

It was first practical to make software tools for the language defined in Recommendation

ITU-T Z.100 as published in the 1988 Blue Book. The language defined in the Blue Book is known

as SDL-88, and the language defined in the next version of the Recommendation was called SDL-92.

Every effort had been made to make SDL-92 a pure extension of SDL-88, without invalidating the

syntax or changing the semantics of any existing SDL-88 usage. In addition, enhancements were only

accepted based on need as supported by several ITU-T member-bodies. The SDL-92 language was

quite successful, but some need for more significant change was established in the period 1996-2000,

which resulted in the definition of SDL-2000, which was first published in 1999. Tools were already

supporting some features of SDL-2000 at this time, but the legacy investment in SDL-92 of both tools

and models coupled with some significant changes in business outlook meant that full migration of

major tools to SDL-2000 was never achieved.

In the period 2000-2008 there was a need to integrate UML with ITU-T languages, which led to a

UML profile for the Specification and Description Language in Recommendation ITU-T Z.109

in 2007. In the 2004 period to 2010 it was appropriate to review the language after a period of

stability, in particular with respect to SDL-2000 features not supported by tools. At the same time

SDL-2000 was maintained and incorporated changes were issued in 2007 consistent with the

Recommendation ITU-T Z.109 of 2007. However, work on the profile in Recommendation

ITU-T Z.109 (2007) also identified some desirable changes to SDL-2000 to better align the

Specification and Description Language and UML. The changes made are documented in more detail

in clause III.4.

III.2 Differences between SDL-88 and SDL-92

The major extensions were in the area of object orientation. While SDL-88 is object-based in its

underlying model, some language constructs had been added to allow SDL-92 to more completely

and uniformly support the object paradigm:

a) packages;

b) system, block, process and service types;

c) system, block, process and service (set of) instances based on types;

d) parameterization of types by means of context parameters;

e) specialization of types, and redefinition of virtual types and transitions.

The other extensions were: spontaneous transition, non-deterministic choice, internal input and output

symbol for compatibility with existing diagrams, a non-deterministic imperative operator any,

non-delaying channel, remote procedure call and value returning procedure, input of variable field,

operator definition, combination with external data descriptions, extended addressing capabilities in

output, free action in transition, continuous transitions in same state with same priority and m:n

connections of channels and signal routes at structure boundaries. In addition, a number of minor

relaxations to the syntax have been introduced.

52 Rec. ITU-T Z.100 (10/2019)

In a few cases, changes were made to SDL-88 where the definition of SDL-88 was not consistent. It

was possible to overcome the restrictions and changes introduced by an automatic translation

procedure. This procedure was also necessary to convert an SDL-88 document into SDL-92 that

contained names consisting of words that are keywords of SDL-92.

For the output construct, the semantics were simplified between SDL-88 and SDL-92, and this

possibly invalidated some special usage of output (when no to clause is given and there exist several

possible paths for the signal) in SDL-88 specifications. Also, some properties of the equality property

of sorts were changed.

For the export/import construct, an optional remote variable definition was introduced, in order to

align export of variables with the introduced export of procedures (remote procedure). This

necessitated a change to any SDL-88 document that contained qualifiers in import expressions or

introduced several imported names in the same scope with different sorts. In the (rare) cases where it

was necessary to qualify import variables to resolve resolution by context, the change to make

SDL-88 into SDL-92 is to introduce <remote variable definition>s and to qualify them with the

identifier of the introduced remote variable name.

For the view construct, the view definition had been made local to the viewing process or service.

This necessitated a change to SDL-88 documents that contained qualifiers in view definitions or in

view expressions. To make SDL-88 into SDL-92 requires removal of these qualifiers. This did not

change the semantics of the view expressions, since these are decided by their (unchanged) pid

expressions.

The service construct was defined as a primitive concept, instead of being a shorthand form, without

extending its properties. The use of service was not affected by this change, since it has been used

anyway as if it were a primitive concept. The reason for the change is to simplify the language

definition and align it with the actual use, and to reduce the number of restrictions on service, caused

by the transformation rules in SDL-88. As a consequence of this change, the service signal route

construct was deleted; signal routes could be used instead. This was only a minor conceptual change,

and had no implications for concrete use (the syntax of SDL-88 service signal route and SDL-92

signal route were the same).

The priority output construct has been removed from the language. This construct is replaced by

output to self with an automatic translation procedure.

Some of the definitions of the basic Specification and Description Language were extended

considerably, e.g., signal definition. It should be noted that the extensions were optional, but were

used for utilizing the power introduced by the object-oriented extensions, e.g., to use parameterization

and specialization for signals.

Keywords of SDL-92 that are not keywords of SDL-88 are:

 any, as, atleast, connection, endconnection, endoperator, endpackage, finalized, gate,

interface, nodelay, noequality, none, package, redefined, remote, returns, this, use,

virtual.

III.3 Differences between SDL-92 and SDL-2000

A strategic decision was made to keep the language stable for the period 1992 to 1996, so that at the

end of this period only a limited number of changes were made. These were published as Addendum

1 to Recommendation ITU-T Z.100 (1996) rather than updating the SDL-92 document. Although this

version was sometimes called SDL-96, there were relatively few changes compared with those from

SDL-88 to SDL-92. The changes were:

a) harmonizing signals with remote procedures and remote variables;

b) harmonizing channels and signal routes;

c) adding external procedures and operations;

 Rec. ITU-T Z.100 (10/2019) 53

d) allowing a block or process to be used as a system;

e) state expressions;

f) allowing packages on blocks and processes;

g) parameterless operators.

These were incorporated into Recommendation ITU-T Z.100, together with a number of other

changes to produce a version known as SDL-2000 initially published as Recommendation

ITU-T Z.100 (1999). In this Recommendation, the language defined by Recommendation

ITU-T Z.100 (1993) with Addendum 1 to Recommendation ITU-T Z.100 (1996) is still called

SDL-92. The 2002 version of SDL-2000 (the name was not changed) consolidated into

Recommendation ITU-T Z.100 (1999) a number of technical changes made to correct errors or to

improve the description of the language and to make a few minor extensions. Recommendation

ITU-T Z.100 (2002) no longer included the alternative textual syntax of SDL-2000 that was instead

defined in Recommendation ITU-T Z.106 (2002).

The advantages of language stability, which was maintained over the period from 1992 to 1996, began

to be outweighed by the need to update the Specification and Description Language to support and

better match other languages that are frequently used in combination with the Specification and

Description Language. Also, improvements in tools and techniques had made it practical to generate

software more directly from Specification and Description Language models, and incorporating better

support for this use would provide further significant gains. While SDL-2000 is largely an upgrade

of SDL-92, it was agreed that some incompatibility with SDL-92 was justified; otherwise the resulting

language would have been too large, too complex and too inconsistent. This subclause provides

information about the changes from SDL-92 to SDL-2000.

Changes were made in a number of areas, with a focus on simplification of the language and

adjustment made to newer application areas:

a) adjustment of syntactical conventions to other languages with which the Specification and

Description Language is used;

b) harmonization of the concepts of system, block and process to be based on "agent", and

merging of the concept of signal route into the concept channel;

c) interface descriptions;

d) exception handling;

e) support for textual notation of algorithms;

f) composite states;

g) replacement of the service construct with the state aggregation construct;

h) new model for data;

i) constructs to support the use of ASN.1 with the Specification and Description Language

previously in Recommendation ITU-T Z.105 (1995).

Other changes were: nested packages, direct containment of blocks and processes in blocks, out-only

parameters.

On the syntactic level, SDL-2000 is case-sensitive. Keywords are available in two spellings: all

uppercase or all lowercase. Keywords of SDL-2000 that are not keywords of SDL-92 are:

 abstract, aggregation, association, break, choice, composition, continue,

endexceptionhandler, endmethod, endobject, endvalue, exception, exceptionhandler,

handle, method, loop, object, onexception, ordered, private, protected, public, raise,

value.

54 Rec. ITU-T Z.100 (10/2019)

The following keywords of SDL-92 are not keywords in SDL-2000:

 all, axioms, constant, endgenerator, endrefinement, endservice, error, for, generator,

literal, map, noequal, ordering, refinement, reveal, reverse, service, signalroute, view,

viewed.

The following keywords of SDL-92 are keywords of SDL-2000 to support backwards compatibility:

 endnewtype, fpar, imported, newtype, returns

A small number of constructs of SDL-92 were not available in SDL-2000: view expression,

generators, block substructures, channel substructures, signal refinement, axiomatic definition of

data, and macro diagrams. These constructs were rarely (if ever) used in SDL-92, and the overhead

of keeping them in the language and tools did not justify their retention.

How most SDL-92 descriptions might be systematically transformed into SDL-2000 was given in

Appendix III of Recommendation ITU-T Z.100 (1999) and subsequent versions up to

Recommendation ITU-T Z.100 (2007), the last edition for SDL-2000.

III.4 Differences between SDL-2000 and SDL-2010

SDL-2010 supports Unicode for identifiers and annotations.

In SDL-2010 it is not allowed for a diagram to contain another diagram in the concrete syntax; instead

the item that is included in another higher level item (for example, a process type in a block type) is

shown as a reference symbol in the container diagram and the contained diagram is drawn separately.

In SDL-2000 the change from a reference to an included item is theoretically done by transformations

to a nested concrete syntax and then this concrete syntax is mapped to the abstract syntax. However,

in reality such nesting of diagrams was not fully supported by tools, nor is it practical for any but the

simplest systems. In SDL-2010 the change from references to the hierarchy is done by mapping

referenced diagrams directly to the abstract grammar. In the concrete syntax the nested graphical form

is no longer part of the language, with several simplifications to the concrete syntax because only one

form of inclusion is provided. It is easy to redraw without nesting any existing diagrams that use

nesting, and probably if a tool has been used to draw the diagrams, the tool will produce a version

without nesting.

SDL-2010 does not include the UML-like concrete syntax of SDL-2000 for type references that look

like UML class symbols. These had limited support in tools, but were a significant amount of

additional concrete syntax in the language definition. The rationale at the time was that providing this

syntax would aid the integration of SDL-2000 and UML descriptions. Since SDL-2000 was

published, the UML profile for the Specification and Description Language [b-ITU-T Z.109] has been

significantly improved, and it is now considered that tools provide the best way of integrating

descriptions, so that additional complication of type reference syntax was not justified.

SDL-2010 does not include the optional <specification area>. Though such a mechanism is needed

to collect all the diagrams together for a complete description, the approach taken is tool dependent

and it does not need to be standardized. Related to the optional <specification area> and to the use of

UML-like type references, the package dependency annotation is no longer part of SDL-2010.

SDL-2010 does not include the UML-like associations introduced in SDL-2000. These were not well

supported and added nothing to the semantics of the language: they just made the language

Recommendation more complex and difficult to understand. It is possible to present the information

in auxiliary diagrams or in other annotation without defining a strict concrete syntax with constraints

in the language Recommendations.

 Rec. ITU-T Z.100 (10/2019) 55

SDL-2010 does not include the object data type of SDL-2000. This was not widely supported by

tools, and had a number of complications. However, the need for some of the benefits (in particular

avoiding copying large data items, or multiple copying of data items) are still needed, and further

study was progressed to provide these benefits as defined in [ITU-T Z.107].

The nameclass and spelling of SDL-2000 are not supported as user features in SDL-2010.

SDL-2010 includes predefined exceptions, but does not provide the exception handling mechanisms

defined in SDL-2000. It is therefore well-defined when exceptions occur. If an exception occurs and

is not handled, how the system subsequently behaves is not defined by the language (the same as

SDL-2000). In most cases, language features or language-defined operations allow a check to be

made before an exception might occur so that the situation is avoided. It is possible to replace

user-defined exceptions by Boolean items. Exception handling pervaded many other features of the

language, and removing it is a significant simplification.

Because exceptions are not handled, remote procedure call timers in SDL-2010 are managed in a way

that differs from that of SDL-2000, as it is no longer possible to use an exception handler with the

same name as the timer. Instead, if the timer expires, control is transferred to a connector that by

default has the same name as the timer or is specifically named.

The SDL-2010 construct <agent instance pid value> enables initialization of values to denote the Pid

values of the agent instances that exist when the system is initialized. Without such language defined

initialization either the system has to be designed so that the Pid values of the agent instances are

dynamically communicated between agents before normal handling of external signals commences,

or some tool initialization of the values has to be used.

In SDL-2010, all timers of an agent are reset by the construct reset *, and all timers of an agent

with the given timer name timername are reset by the construct reset timername *.

SDL-2010 has timer supervised states, where a state timer is optionally specified for a state and

leads to a transition if the timer expires before another transition (other than an empty transition back

to the same state) is taken. The timer is set on entering the state and reset for transition except an

empty transition back to the same state.

The semantics of synonym is changed so that in principle it is a read-only variable, though the syntax

is unchanged and it is not expected that tools will need changing. The change was made so that a

synonym is equivalent to a read-only variable in [b-ITU-T Z.109].

SDL-2010 allows the optional specification of a lower bound on the number of instances for an agent

instance set. A Stop-node in an instance set that is already at the Lower-bound causes the exception

OutOfRange to be raised. The number of active instances is returned by the integer built-in expression

active(this) or active(aid) where aid is the name of an agent instance set definition. If

Lower-bound is the same as Maximum-number, the number of instances is static and fixed when the

agent instance set is created.

The signals that are available for input are placed in the input port of the agent instance to receive the

signal. In SDL-2010, when a signal is placed in the input port, the retained information includes the

identity of the gate on which it arrived at the SDL-2010 destination agent, which allows the taken

transition to be determined by the gate as well as the signal identity by use of a via path. This enables

the differentiation of instances of the same signal on different paths, rather than having to define a

signal name for each path.

In SDL-2010, the values of unconsumed signals available in the input port can be examined through

the signallist variable. The signallist variable has a string sort that is denoted as signallist,

so that signallist[n] (where n is an integer) provides a choice value for an available signal. The

string is ordered so that signallist[1] is the first available signal and the remaining string elements

are in the availability order of the corresponding signals. The name of signal n is given by

56 Rec. ITU-T Z.100 (10/2019)

signallist[n]!Present, and is used to access the values conveyed by the signal in the choice value

signallist[n].

Priority input in SDL-2010 has multiple levels of input priority. A signal instance in the input port

for an input with a higher priority is considered before those with lower priority.

In SDL-2010 a signallist definition has the same meaning as defining an interface that uses the

listed signals.

In SDL-2010, it is possible to specify the delay between output of signal and the signal being available

for consumption in the destination input port.

In SDL-2010, there are alternatives to specifying the name of signal to use in an output: an expression

can be given where the sort of the expression is a choice sort that corresponds to a choice of signals

that can be output; or if encoding rules are specified for a communication path and the output is

directed via that path, an expression can be given that corresponds to the data type (Charstring,

Octetstring or Bitstring) for that encoding. When a signal is input as an alternative to assigning

each of the signal parameters to variables, the signal can be assigned to a variable with choice data

type that corresponds to a choice of signals that can be input. The signal keyword denotes a variable

that can hold any of the signals that can be received. The signal variable can be used in an input, the

choice value of the signal variable can be accessed in expressions, and the signal variable can be

used in an output to send a signal instance.

SDL-2010 allows an optional natural expression after the <agent identifier> of a <destination> to

select a specific agent instance when there is more than one instance of the identified agent set,

otherwise any existing instance of the set of agent instances is selected.

 Rec. ITU-T Z.100 (10/2019) 57

Bibliography

[b-ITU-T Z.109] Recommendation ITU-T Z.109 (2012), Specification and Description

Language – Unified modeling language profile for SDL-2010.

[b-ITU-T Z.110] Recommendation ITU-T Z.110 (2008), Criteria for use of formal description

techniques by ITU-T.

Printed in Switzerland
Geneva, 2019

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	1 Scope
	1.1 Objective
	1.2 Application
	1.3 System specification

	2 References
	3 Definitions
	4 Abbreviations and acronyms
	5 Conventions
	5.1 Specification and Description Language grammars
	5.2 Basic definitions
	5.2.1 Definition, type and instance
	5.2.2 Environment
	5.2.3 Validity and errors

	5.3 Presentation style
	5.3.1 Division of text
	5.3.2 Titled enumeration items

	5.4 Choice of grammar rules and rule names

	6 Tool compliance
	6.1 Definitions of valid tools
	6.2 Conformance

	7 Allocation of features of SDL-2010 to Recommendations
	7.1 Basic SDL-2010 – [ITU-T Z.101]
	7.2 Comprehensive SDL-2010 – [ITU-T Z.102]
	7.3 Shorthand notation and annotation in SDL-2010 – [ITU-T Z.103]
	7.4 Data and action language in SDL-2010 – [ITU-T Z.104]
	7.5 SDL-2010 combined with ASN.1 modules – [ITU-T Z.105]
	7.6 Common Interchange Format for SDL-2010 – [ITU-T Z.106]
	7.7 Object-oriented data in SDL-2010 – [ITU-T Z.107]

	Annex A Abstract syntax index
	Annex B BNF syntax index
	Annex C Compatibility
	Annex D Data defined in the package Predefined
	D.1 Rules for "=" (equal), "/=" (not equal), comparison, data signatures and literals
	D.2 Package Predefined overview
	D.2.1 Boolean
	D.2.2 Character
	D.2.3 String
	D.2.4 Charstring
	D.2.5 Integer
	D.2.6 Natural
	D.2.7 Real
	D.2.8 The mapping called Array
	D.2.9 Vector
	D.2.10 Powerset
	D.2.11 Duration
	D.2.12 Time
	D.2.13 Bag
	D.2.14 Bit and Bitstring
	D.2.15 Octet and Octetstring
	D.2.16 Process interface data (pid and Pid)
	D.2.17 Enumerated data
	D.2.18 Structure data
	D.2.19 Choice
	D.2.20 Exceptions for language defined sorts of data
	D.2.21 Support for ASN.1 character, symbol string and NULL types

	Annex E Reserved for examples
	Annex F Formal definition
	Appendix I Status of ITU-T Z.100, related documents and Recommendations
	Appendix II Guidelines for the maintenance of SDL-2010
	II.1 Maintenance of SDL-2010
	II.1.1 Terminology
	II.1.2 Rules for maintenance
	II.1.3 Change request procedure

	Appendix III Evolution of the Specification and Description Language
	III.1 Versions of the Specification and Description Language
	III.2 Differences between SDL-88 and SDL-92
	III.3 Differences between SDL-92 and SDL-2000
	III.4 Differences between SDL-2000 and SDL-2010

	Bibliography

