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FOREWORD 
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telecommunications, information and communication technologies (ICTs). The ITU Telecommunication 

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, 

operating and tariff questions and issuing Recommendations on them with a view to standardizing 

telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes 

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 
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Annex F3 

 

SDL-2010 formal definition: Dynamic semantics 

F3.1 General information 

An overview of the formal semantics is described in clause F1.2 (Annex F1). 

F3.1.1 Definitions from Annex F1 

The following definitions for the syntax and semantics of ASMs are used within Annex F3. The 

domains and functions are defined in Annex F1 and listed here for cross-referencing reasons. 

Keywords derived, domain, static, initially, controlled, monitored, shared, constraint, let, endlet, where, 

endwhere, choose, endchoose, extend, with, endextend, case, of, endcase, do, forall, enddo, if, then, else, elseif, endif. 

The domains TIME, AGENT, X, BOOLEAN, NAT, REAL, TOKEN, DEFINITIONAS1. 

The functions take, program, Self, undefined, true, false, empty, head, tail, last, length, toSet, 

parentAS1, parentAS1ofKind, rootNodeAS1. 

The operation symbols *, +, -set, =, , , , , , , , , >, , <, , +, -, *, /, in, , ⁀, , , \, , 

, , , | |, U, , mk-, s-, s2-. 

For more information about the ASM syntax, see Annex F1. 

F3.1.2 Definitions from Annex F2 

ENTITYDEFINITION1: the union of all the entity definitions in AS1. It is therefore a subset of 

DEFINITIONAS1. 

ENTITYDEFINITION1=def Agent-definition 

  Agent-type-definition 

  Channel-definition 

  Composite-state-type-definition 

  Data-type-definition 

  Gate-definition 

  Literal-signature 

  Operation-signature 

  Package-definition 

  Procedure-definition 

  Signal-definition 

  State-node 

  Syntype-definition 

  Timer-definition 

  Variable-definition 

Given an Identifier, the corresponding ENTITYDEFINITION1 is retrieved using the function 

idToNodeAS1:  

idToNodeAS1(id: Identifier): [ENTITYDEFINITION1]=def 

 getEntityDefinition1(id, idKind1(id) ) 

where 

function getEntityDefinition1 from Annex F2 gets the entity definition for an identifier: 
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getEntityDefinition1: Identifier, ENTITYKIND1ENTITYDEFINITION1 

and function idKind1 from Annex F2 is used determine the kind of the entity from the identifier: 

idKind1:IdentifierENTITYKIND1 

Given a ENTITYDEFINITION1, the corresponding Identifier is retrieved using the function identifier1 

from Annex F2: 

identifier1: ENTITYDEFINITION1 Identifier 

Given two definitions, whether one is a supertype of the other is determined using the function 

isSuperType from F2: 

isSuperType: ENTITYDEFINITION1  ENTITYDEFINITION1  BOOLEAN 

F3.1.3 Status of Annex F3 (this annex) 

The ASM in this edition has been updated to correct errors in the previous edition (01/2000) and to 

reflect the features of SDL-2010 compared with SDL-2000. The ASM was not complete in the 

previous edition. For example, the previous edition mentions the function objectsAssign and the 

macro SETOBJECTS, but the definitions of these items were not included. While this edition is an 

improvement on the previous edition, some items still need further work, in particular adding the 

treatment of an Aggregation-kind of REF (see [ITU-T Z.107]) that replaces object data types. 

As noted in clause F1.2.4 (d) (Annex F1), the data semantics is separated from the rest of the dynamic 

semantics, which allows the data model to be changed. The current document is based on the previous 

edition (01/2000) that described the object data types of SDL-2000. The document has been 

considerably reduced by the removal of object data types, user exception definitions, user exception 

raising and exception handling. 

The previous edition (01/2000) included a clause "4 Example", where an example specification and 

its expansion into an abstract syntax tree were given, but the results of initialization and compilation 

of the example had "TBD" sentences, meaning work was still to be done. In this state the example is 

not useful for the illustrating application of the dynamic semantics, and it has been removed from this 

edition. 

F3.2 Behaviour semantics 

This clause defines the following parts of the dynamic semantics: 

• the SAM (SDL-2010 Abstract Machine): clause F3.2.1; 

• the compilation function: clause F3.2.2; and 

• SAM programs: clause F3.2.3. 

An overview of the dynamic semantics is given in clause F1.2.4 (Annex F1). 

F3.2.1 SDL-2010 abstract machine definition (SAM) 

The SAM constitutes a generic behaviour model for SDL-2010 specifications. According to an 

abstract operational view, the possible computations of a given SDL-2010 specification are defined 

in terms of ASM runs. The underlying semantic model of distributed real-time ASMs is explained in 

Annex F1. The SAM definition consists of the following four main building blocks: 

• signal flow related definitions: clause F3.2.1.1; 

• SDL-2010 agent-related definitions: clause F3.2.1.2; 

• the interface to the data semantics: clause F3.2.1.3; and 

• behaviour primitives: clause F3.2.1.4. 

These definitions, in particular, also state explicitly the various constraints on initial SAM states 

complementing the behaviour model. 
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F3.2.1.1 Signal flow model 

This clause introduces the signal flow model as part of the SAM. The main focus here is on a uniform 

treatment of signal flow aspects, in particular, on defining how agents communicate through signals 

via gates. Also, timers (clause F3.2.1.1.5), which are modelled as special kinds of signals, are treated 

here. 

F3.2.1.1.1 Signals 

PLAINSIGNAL represents the set of signal types as declared by an SDL-2010 specification. 

PLAINSIGNAL =def Identifier  NONE 

In an SDL-2010 specification, also timers (clause F3.2.1.1.5) are considered as signals; they are 

contained in a common domain SIGNAL 

SIGNAL =def PLAINSIGNAL  TIMER 

Dynamically created plain signal instances (plain signals for short) are elements of a dynamic domain 

PLAINSIGNALINST. Since plain signals can also be created and sent by the environment, this domain is 

shared. The function plainSignalType gives the signal type for a given plain signal instance. 

shared domain PLAINSIGNALINST 

initially PLAINSIGNALINST =  

shared plainSignalType: PLAINSIGNALINST  PLAINSIGNAL 

The domain SIGNALINST contains all kinds of signal instances (signals for short). Each element of 

SIGNALINST is uniquely related to an element of SIGNAL, as defined by the derived function signalType. 

SIGNALINST =def PLAINSIGNALINST  TIMERINST 

signalType(si:SIGNALINST): SIGNAL =def 

  if si  PLAINSIGNALINST then si.plainSignalType 

  elseif si  TIMERINST then si.s-TIMER 

  endif 

The functions plainSignalSender (giving the sender process) and signalSender (giving the sender of 

the signal or the agent for the timer) are defined: 

shared plainSignalSender: PLAINSIGNALINST  PID 

signalSender(si:SIGNALINST): PID =def 

 if si  PLAINSIGNALINST then si.plainSignalSender 

 elseif si  TIMERINST then si.s-PID 

 endif 

With each signal a (possibly empty) list of signal values is associated. Because the type information 

and concrete value for signal values is immaterial to the dynamic aspects considered here, values are 

abstractly represented in a uniform way as elements of the static domain VALUE (see clause F3.2.1.3): 

shared plainSignalValues: PLAINSIGNALINST  VALUE* 

SDL-2010 provides for two forms of indicating the receiver of a message, where the receiver may 

also remain unspecified. 

VIAARG =def Identifier-set 

TOARG =def PID  Identifier 

Additional functions on plain signals are toArg (giving the destination) and viaArg (giving optional 

constraints on admissible communication paths).  
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Signals received at an input gate of an agent set are appended to the input port of an agent instance 

depending on the value of toArg. Signals are discarded whenever no matching receiver instance 

exists. 

The value of type PID is evaluated dynamically and associated with the label. 

shared toArg: PLAINSIGNALINST  [TOARG] 

shared viaArg: PLAINSIGNALINST VIAARG 

F3.2.1.1.2 Gates 

Exchange of signals between SDL-2010 agents (such as processes, blocks or a system) and the 

environment is modelled by means of gates from a controlled domain GATE. 

controlled domain GATE 

 initially GATE =  

A gate forms an interface for serial and unidirectional communication between two or more agents. 

Accordingly, gates are either classified as input gates or output gates (see clause F3.2.1.2.4). 

DIRECTION =def { inDir, outDir } 

controlled direction: GATE  DIRECTION 

controlled myAgent: GATE  AGENT 

Global system time 

In SDL-2010, the global system time is represented by the expression now assuming that values of 

now increase monotonically over system runs. In particular, SDL-2010 allows having the same value 

of now in two or more consecutive system states. Building on the concept of distributed real-time 

ASM, this behaviour is modelled using a nullary, dynamic, monitored function now. Intuitively, now 

refers to internally observable values of the global system time. 

monitored now:  TIME 

There are two integrity constraints on the behaviour of now: 

1. now values change monotonically, increasing over ASM runs; 

2. now values do not increase as long as a signal is in transit on a non-delaying channel. 

Discrete delay model 

Signals need not reach their destination instantaneously, but may be subject to delays, which means, 

it is possible to send signals to arrive in the future. Although those signals are not available at their 

destination before their arrival time has come, they are to be associated with their destination gates. 

A gate has to be capable of holding signals that are in transit (not yet arrived). Hence, to each gate a 

possibly empty signal queue is assigned, as detailed below. 

To model signal arrivals at specified destination gates, each signal instance si has an individual arrival 

time (si.arrival) determining the time at which s eventually reaches a certain gate. 

shared arrival: SIGNALINST  TIME 

The relation between signals and gates in a given SAM state is represented by means of a dynamic 

function schedule defined on gates: 

shared schedule: GATE  SIGNALINST* 

where schedule specifies, for each gate g in GATE, the corresponding signal arrivals at g. 
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An integrity constraint on g.schedule is that signals in g.schedule are linearly ordered by their arrival 

times. That is, if g.schedule contains signals si, si', and si.arrival < si'.arrival, then si < si' in the order 

as imposed by g.schedule. This condition is assured by the insert function below. 

Waiting signals 

A signal instance si in g.schedule does not arrive "physically" at gate g before now  si.arrival. 

Intuitively, that means that s remains "invisible" at g as long as it is in transit. Thus, in every given 

SAM state, the visible part of g.schedule forms a possibly empty signal queue g.queue, where g.queue 

represents those signal instances si in g.schedule that have already arrived at g but are still waiting to 

be removed from g.schedule. The visible part of g is denoted as g.queue and formally defined as 

follows. 

queue(g: GATE): SIGNALINST* =def < si in g.schedule: (now  si.arrival) > 

See also Figure F3-1 below for an overview of the functions on schedules. 

 

Figure F3-1 – Signal instances at a gate 

Operations on schedules 

To ensure that the order on signals is preserved when new signals are added to the schedule of a gate, 

there is a special insertion function insert on schedules. 

insert(si:SIGNALINST, t:TIME, siSeq:SIGNALINST*): SIGNALINST* =def 

  if siSeq = empty then 

   < si > ⁀ siSeq 

  elseif t < siSeq.head.arrival 

  then < si > ⁀ siSeq 

  else < siSeq.head > ⁀ insert(si, t, siSeq.tail) 

  endif 

The function insert defines the result of inserting some signal instance si with the intended arrival 

time t into a finite signal instance list siSeq, representing (for example) the schedule of a gate. 

Analogously, a function delete is used to remove a signal from a finite signal instance list siSeq. 

delete(si:SIGNALINST, siSeq:SIGNALINST*): SIGNALINST* =def 

  if siSeq = empty then empty 

  elseif siSeq.head = si then siSeq.tail 

  else < siSeq.head > ⁀ delete(si, siSeq.tail) 

  endif 

The macros INSERT and DELETE update the schedule of a gate g by assigning some new signal list to 

g.schedule. 

           t4            t3        t2         t1         ti  TIME

 signals in transit       g.queue

                          now

g

 j > i  implies  tj > ti

g  GATE

g.schedule
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INSERT(si:SIGNALINST, t:TIME, g:GATE)  

  g.schedule := insert(si,t,g.schedule) 

  si.arrival := t+si.delay 

DELETE(si:SIGNALINST, g:GATE)  

  g.schedule := delete(si,g.schedule) 

The function nextSignal yields, for a sequence of signal instances and a signal instance, the next signal 

instance of the sequence, or the value undefined, if the next signal instance is not determined. 

nextSignal(si: SIGNALINST, siSeq:SIGNALINST*): [SIGNALINST] =def 

  if siSeq = empty then undefined 

  elseif siSeq.head = si then 

   if siSeq.tail = empty then undefined 

   else siSeq.tail.head 

   endif 
  else nextSignal(si, siSeq.tail) 

  endif 

The function selectContinuousSignal yields, for a set of continuous signal transitions and a set of 

natural numbers, an element of the transition set with a priority not contained in the set of natural 

numbers, such that this priority is the maximum priority of all transitions not having priorities in this 

set of natural numbers. 

selectContinuousSignal(tSet: SEMTRANSITION-set, nSet: NAT-set): [SEMTRANSITION] =def 

  if t1  tSet: t1.s-NAT  nSet then undefined 

  else take({t  tSet: t.s-NAT  nSet  t1  tSet: (t1.s-NAT  nSet  t.s-NAT  t1.s-NAT)}) 

  endif 

F3.2.1.1.3 Channels 

Channels, as declared in a given SDL-2010 specification, consist of either one or two unidirectional 

channel paths. In the SAM model, each channel path is identified with an object of a derived domain 

LINK. The elements of LINK are SAM agents, such that their behaviour is defined through LINK-

PROGRAM. 

LINK =def AGENT 

LINKSEQ =def LINK* 

Intuitively, elements of LINK are considered as point-to-point connection primitives for the transport 

of signals. More specifically, each l of LINK is able to convey certain signal types, as specified by 

l.with, from an originating gate l.from to a destination gate l.to., and l.nodelay indicating if l is non-

delaying. 

controlled with: LINK  SIGNAL-set 

controlled from: LINK  [ GATE ] // need to have optional result here, because function is also called within 

allConnections with general AGENT 

controlled to: LINK  GATE 

controlled noDelay: LINK  [NODELAY] 

Signal delays 

SDL-2010 considers channels as reliable and order-preserving communication links. A channel is 

able to delay the transport of a signal for an indeterminate and non-constant time interval. Although 

the exact delaying behaviour is not further specified, the fact that channels are reliable implies that 

all delays are finite. 

Signal delays are modelled through a monitored function delay stating the dependency on external 

conditions and events. In a given SAM state, delay associates finite time intervals from a domain 
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DURATION to the elements of LINK, where the duration of a particular signal delay appears to be chosen 

non-deterministically. 

DURATION =def REAL 

monitored delay: LINK  DURATION 

Integrity constraints 

There are two important integrity constraints on the function delay: 

1. Taking into account that there are also non-delaying channels, the only admissible value for 

non-delaying channel paths is 0. 

2. For every link agent l, the value of (now + l.delay) increases monotonically (with respect to 

now). 

The second integrity constraint is needed in order to ensure that channel paths are order-preserving: 

that is, signals transported via the same channel path (and therefore are inserted into the same 

destination schedule) cannot overtake each other. 

Channel behaviour 

A link agent l performs a single operation: signals received at gate l.from are forwarded to gate l.to. 

That means, l permanently watches l.from waiting for the next deliverable signal in l.from.queue. 

Whenever l is applicable to a waiting signal si (as identified by the l.from.queue.head), it attempts to 

remove si from l.from.queue in order to insert it into l.to.schedule. This attempt need not necessarily 

be successful as, in general, there may be several link agents competing for the same signal si. 

But, how does a link agent l know whether it is applicable to a signal si? Now, this decision does of 

course depend on the values of si.toArg, si.viaArg, si.signalType and l.with. In other words, l is a legal 

choice for the transportation of si only, if the following two conditions hold: (1) si.signalType  l.with 

and (2) there exists an applicable path connecting l.to to some final destination that matches with the 

address information and the path constraints of si. Abstractly, this decision can be expressed using a 

predicate applicable, defined in clause F3.2.1.1.4. The domain TOARG is defined in clause F3.2.1.1.1. 

F3.2.1.1.4 Reachability 

When signals are sent, it has to be determined whether there currently is an applicable communication 

path: a path consisting of a sequence of links that can transfer the signal, and that satisfies further 

constraints as specified by the optional to- and via-arguments. The predicate applicable formally 

states all conditions that must be satisfied. 

applicable(s: SIGNAL, toArg: [ TOARG ], viaArg: VIAARG, g: GATE, l: [LINK]): BOOLEAN =def 

   commPath allConnections (g): 

   ( ll  commPath: s  ll.with  ll.owner  undefined)  

   if commPath = empty then 

    l = undefined  ((g.direction = outDir)  

      (toArg = undefined  s  g.gateAS1.s-Out-signal-identifier-set))  

    ((g.direction = inDir)  (validDestinationGate(g, toArg)  // to self 

      s  g.gateAS1.s-In-signal-identifier-set))  viaArg =  

   else 

    if l  undefined then commPath.head = l else true endif  

     ll  LINK: (ll.from = commPath.last.to  s  ll.with)  // the path is complete 

    viaArg  commPath.commPathIds  validDestinationGate(commPath.last.to, toArg) 

   endif 

validDestinationGate(g: GATE, toArg: [ TOARG ]): BOOLEAN =def 

  if toArg  Agent-identifier then 

   g.myAgent.agentAS1.identifier1  = toArg else true endif  

  if toArg  PID  toArg  nullPid then 

   sa  AGENT: (sa.owner = g.myAgent  sa.selfPid = toArg) else true 
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  endif 

allConnections(g: GATE): LINKSEQ-set =def 

 U ({ { < l > ⁀ list | list  allConnections(l.to) } | l  LINK: l.from = g })  

 { empty } 

commPathIds(lSeq: LINK*): Identifier-set =def 

     { g.gateAS1.identifier1 | g  GATE: l  lSeq: (g = l.from  g = l.to) }  

     { l.agentAS1.identifier1 | l LINK: (l  lSeq) } 

F3.2.1.1.5 Timers 

A particular concise way of modelling timers is by identifying timer objects with respective timer 

signals. More precisely, each active timer is represented by a corresponding timer signal in the 

schedule associated with the input port of the related process instance. 

TIMER =def Identifier 

TIMERINST =def PID  TIMER  VALUE* 

The information associated with timers is accessed using the functions defined on SIGNAL. 

Active timers 

To indicate whether a timer instance tmi is active or not, there is a corresponding derived predicate 

active: 

active(tmi:TIMERINST): BOOLEAN =def tmi  Self.inport.schedule 

Timer operations 

The macros below model the SDL-2010 actions Set-node and Reset-node on timers as executed by a 

corresponding SDL-2010 agent. A static function (duration) is used to represent default duration 

values as defined by an SDL-2010 specification under consideration. 

static duration: TIMER  DURATION 

SETTIMER(tm:TIMER, vSeq :VALUE*, t:[TIME])  

  let tmi = mk-TIMERINST(Self.selfPid, tm, vSeq ) in 

   if t = undefined then 

    Self.inport.schedule := insert(tmi, now + tm.duration, delete(tmi, Self.inport.schedule)) 

    tmi.arrival := now + tm.duration 

   else 
    Self.inport.schedule := insert(tmi, t, delete(tmi, Self.inport.schedule)) 

    tmi.arrival := t 

   endif 

  endlet 

RESETTIMER(tm:TIMER, vSeq :VALUE*)  

  let tmi = mk-TIMERINST(Self.selfPid, tm, vSeq ) in 

   if active(tmi) then 

    DELETE(tmi, Self.inport) 

   endif 

  endlet 

F3.2.1.1.6 Exceptions 

Exceptions are identified dynamic conditions. How the system behaves when an exception occurs, is 

not defined by SDL-2010. Each kind of exception has an identity that can be used in the 

implementation to report or to handle the exception. The raise function (see clause F3.3.1.1) is called 

for the dynamic conditions under which an exception occurs with the exception as a parameter. As 
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the further behaviour is undefined when an exception occurs, it is preferable if the SDL-2010 is 

written to prevent the dynamic conditions arising (for example, checking on indexing bounds). 

EXCEPTION =def Exception-identifier 

F3.2.1.2 SDL-2010 agents 

In this clause, the domain AGENT is further refined to consist of three basically different types of 

agents, namely: link agent instances (modelled by the domain LINK, see clause F3.2.1.1.3), SDL-2010 

agent instances, and SDL-2010 agent set instances (modelled by the derived domains SDLAGENT and 

SDLAGENTSET, respectively). 

SDLAGENT =def AGENT 

SDLAGENTSET =def AGENT 

Initially, there is only a single agent system denoting a distinguished SDL-2010 agent set instance of 

the domain SDLAGENTSET. 

static system:  SDLAGENTSET 

 initially AGENT = { system } 

F3.2.1.2.1 State machine 

The structure of the agent's state machine is directly modelled, and built up during the agent 

initialization. To represent the structure formally, several domains and functions are used. The state 

machine structure is exploited in the execution phase, when transitions are selected, and states entered 

and left. 

controlled domain STATENODE 

 initially STATENODE =  

The STATENODE domain is modified in clause F3.2.3.1 to contain entries for each basic node or 

composite state type in the system. 

STATENODEKIND =def { stateNode, statePartition, procedureNode} 

STATENODEREFINEMENTKIND =def { compositeStateGraph, stateAggregationNode} 

STATEENTRYPOINT =def [ State-entry-point-name ] 

STATEEXITPOINT =def State-exit-point-name  DEFAULT 

STATENODEWITHENTRYPOINT =def STATENODE  (STATEENTRYPOINT  HISTORY) 

STATENODEWITHEXITPOINT =def STATENODE  STATEEXITPOINT 

STATENODEWITHCONNECTOR =def STATENODE  Connector-name 

The first group of declarations and definitions introduces a controlled domain STATENODE, and a 

number of derived domains. 

controlled stateNodeKind: STATENODE  STATENODEKIND 

controlled stateNodeRefinement: STATENODE  [STATENODEREFINEMENTKIND] 

controlled stateName: STATENODE  State-name 

controlled stateId: STATENODE  STATEID 

controlled inheritedStateNode: STATENODE  [STATENODE] 

controlled parentStateNode: STATENODE  [STATENODE] 

controlled stateTransitions: STATENODE  SEMTRANSITION-set 

controlled startTransitions: STATENODE  STARTTRANSITION-set 

controlled freeActions: STATENODE  FREEACTION-set 

controlled statePartitionSet: STATENODE  STATENODE-set 

The stateNodeRefinement of a STATENODE for a basic state is undefined. 
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The parentStateNode of a STATENODE is either undefined for a basic state, or the STATENODE for the 

composite state type of a composite state node, or undefined or the super type for a composite state 

type. 

The inheritedStateNode of a STATENODE is either undefined for a basic state or an unspecialized 

composite state, or one of the specializations a composite state type. 

The second group of declarations introduces controlled functions defined on the domain STATENODE, 

they can be understood as a state node control block and are used to model the state machine by a 

hierarchical inheritance state graph. 

controlled currentSubStates: STATENODE  STATENODE-set 

controlled previousSubStates: STATENODE  STATENODE-set 

The currentSubStates function defines, for each state node, the current substates. If the state node is 

refined into a composite state graph, this is at most one substate. In case of a state aggregation node, 

this is a subset of the state partition set. 

The previousSubStates function gives the set of state nodes to use when a composite state with 

HISTORY is re-entered. 

collectCurrentSubStates(sn: STATENODE): STATENODE-set =def 

  {sn}  U ({collectCurrentSubStates(x) | x  sn.currentSubStates  sn.inheritedStateNodes}) 

The collectCurrentSubStates function collects, for a given state node, all current substates. 

controlled currentExitPoints: STATENODE  STATEEXITPOINT-set 

The currentExitPoints function defines, for each state aggregation node, the current exit points: the 

exit points activated by exiting state partitions. The state aggregation is exited only if all state 

partitions have exited. 

inheritsFrom(sn1: STATENODE, sn2: STATENODE): BOOLEAN =def 

  if sn2.parentStateNode = undefined then false 

  elseif sn1.parentStateNode = undefined then false 

  else 

  sn2.parentStateNode  sn1.parentStateNode.inheritedStateNodes  

  sn1.stateName  sn2.stateName 

  endif 

The inheritsFrom predicate determines whether the composite state type of one state node (sn2) 

inherits the composite state type of another state node (sn1). 

directlyInheritsFrom(sn1: STATENODE, sn2: STATENODE): BOOLEAN =def 

  inheritsFrom(sn1, sn2)  

   ( snx  STATENODE: 

    inheritsFrom(sn1, snx) inheritsFrom(snx, sn2))  

The directlyInheritsFrom predicate determines whether the composite state type of one state node 

(sn2) directly inherits (in one step) the composite state type of another state node (sn1). 

directlyRefinedBy(sn1: STATENODE, sn2: STATENODE): BOOLEAN =def 

  sn2.parentStateNode = sn1 

The directlyRefinedBy predicate determines whether a state node is refined by another state node by 

a single refinement step. 

directlyInheritsFromOrRefinedBy(sn1: STATENODE, sn2: STATENODE): BOOLEAN =def 

 directlyRefinedBy(sn1, sn2)  directlyInheritsFrom(sn1, sn2) 
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The directlyInheritsFromOrRefinedBy predicate determines whether two state nodes are related by a 

sequence of refinement or inheritance steps. 

inheritsFromOrRefinedBy(sn1: STATENODE, sn2: STATENODE): BOOLEAN =def 

  directlyInheritsFromOrRefinedBy(sn1, sn2)  

   ( sn3  { sn  STATENODE: directlyInheritsFromOrRefinedBy (sn1, sn) }: 

    (inheritsFromOrRefinedBy(sn3, sn2))) 

The inheritsFromOrRefinedBy predicate determines whether sn1 inherits from or is refined by sn2, 

taking transitivity of this relationship into account. 

selectNextStateNode(snSet: STATENODE-set): [STATENODE] =def 

  let sn = take({sn1  snSet: ( sn2  snSet: inheritsFromOrRefinedBy(sn1, sn2))}) in 

   if sn = undefined then undefined 

   elseif sn1  snSet: directlyInheritsFrom(sn1, sn)  sn = sn1.inheritedStateNode then 

    selectNextStateNode(snSet \ {sn}) 

   else sn 

   endif 

  endlet 

The selectNextStateNode function returns a state node that may be checked next, provided snSet is a 

valid set of current state nodes reduced by state nodes that have already been selected with this 

function. 

inheritedStateNodes(sn: STATENODE): STATENODE-set =def 

  if sn.inheritedStateNode = undefined then  

  else {sn.inheritedStateNode}  sn.inheritedStateNode.inheritedStateNodes 

  endif 

The inheritedStateNodes function defines, for a given state node, the set of inherited state nodes. 

parentStateNodes(sn: STATENODE): STATENODE-set =def 

  if sn.parentStateNode = undefined then  

  else {sn.parentStateNode}  sn.parentStateNode.parentStateNodes 

  endif 

The parentStateNodes function defines, for a given state node, the set of parent state nodes. 

mostSpecialisedStateNode(sn:STATENODE): STATENODE =def 

  let sn1 = take({sn2  STATENODE: inheritsFrom(sn2, sn)}) in 

   if sn1 = undefined then sn else sn1.mostSpecialisedStateNode endif 

  endlet 

The mostSpecialisedStateNode function returns, for a given state node, the most specialized state 

node applied during the selection of transitions in order to obtain the correct sequence of state node 

checks. 

selectInheritedStateNode(sn: STATENODE, snSet: STATENODE-set): [STATENODE ]=def 

  take({sn1  snSet: directlyInheritsFrom(sn,sn1)}) 

The selectInheritedStateNode function yields a state node that may be left next, provided snSet is a 

valid set of state nodes to be left. 

getPreviousStatePartition(sn: STATENODE): STATENODE =def 

  if sn.stateNodeKind = statePartition  

    sn1  sn.parentStateNodes: sn1.stateNodeKind = procedureNode 

  then sn.mostSpecialisedStateNode 

  else getPreviousStatePartition(sn.parentStateNode) 

  endif 
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The getPreviousStatePartition function determines, for a given state node, the innermost state 

partition not belonging to a procedure. 

controlled resultLabel: STATENODE  LABEL 

The resultLabel function refers to the location of the return value, if the state node is a procedure state 

node, i.e., a state node owning the procedure graph. 

controlled callingProcedureNode: (AGENT  STATENODE)  [STATENODE] 

The callingProcedureNode function refers to the root node of the calling procedure, if any, and is 

associated with the state node owning the procedure graph. Thus, nested procedure calls are modelled. 

controlled entryConnection: STATEENTRYPOINT  STATENODE  [STATEENTRYPOINT] 

controlled exitConnection: STATEEXITPOINT  STATENODE  STATEEXITPOINT 

Finally, the entryConnection and exitConnection functions model the entry and exit connections of 

state nodes. 

F3.2.1.2.2 Agent modes 

To model the dynamic semantics of agents, several activity phases are distinguished. These phases 

are modelled by a hierarchy of agent modes. At this point, the agent modes are formally introduced; 

their usage is explained in clause F3.2.3. 

AGENTMODE =def { 

  initialisation,    // agent mode 1 

  execution,      // agent mode 1 

 

  selectingTransition,   // agent mode 2 

  firingTransition,    // agent mode 2 

  stopping,      // agent mode 2 

 

  initialising1,     // agent mode 2, 4 

  initialising2,     // agent mode 2 

  initialisingStateMachine, // agent mode 2 

  initialisingProcedureGraph, // agent mode 4 

  initialisationFinished,  // agent mode 2, 4 

 

  startSelection,     // agent mode 3 

  selectFreeAction,    // agent mode 3 

  selectExitTransition,   // agent mode 3 

  selectStartTransition,  // agent mode 3 

  selectPriorityInput,   // agent mode 3 

  selectInput,     // agent mode 3 

  selectContinuous,    // agent mode 3 

 

  startPhase,     // agent mode 2, 4 

  selectionPhase,    // agent mode 4, 5 

  evaluationPhase,    // agent mode 4, 5 

  selectSpontaneous,   // agent mode 4 

 

  leavingStateNode,   // agent mode 3 

  firingAction,     // agent mode 3, 4 

  enteringStateNode,   // agent mode 3 

  exitingCompositeState, // agent mode 3 

  initialisingProcedure,  // agent mode 3 

 

  enterPhase,     // agent mode 4 

  enteringFinished,    // agent mode 4 

  leavePhase,     // agent mode 4 

  leavingFinished}    // agent mode 4 
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The agent modes are grouped according to their usage and the level of the agent mode hierarchy 

where they are relevant. In cases no conflict arises, agent modes may be applied on more than one 

level of this hierarchy. 

F3.2.1.2.3 Agent control block 

The state information of an SDL-2010 agent instance is collected in an agent control block. The agent 

control block is partially initialized when an SDL-2010 agent (set) instance is created, and 

completed/modified during its initialization and execution. Since part of the state information is valid 

only during certain activity phases, the agent control block is structured accordingly. Following is the 

state information needed in all phases. Further control blocks that form part of the agent control block, 

but are relevant during certain activity phases only, are defined subsequently. 

controlled owner: AGENT  STATENODE  LINK  [AGENT] 

Hierarchical system structure is modelled by means of a function owner defined on agents, and on 

state nodes (see clause F3.2.1.2.1), expressing structural relations between them and their constituent 

components. More specifically, an agent set instance is considered as owner of all those agent 

instances currently contained in the set; an agent instance owns its substructure, consisting of agent 

set instances. Similarly, a composite state node owns the state nodes or state partitions forming the 

refinement. 

controlled agentAS1: AGENT  Agent-definition 

controlled channelAS1: AGENT  [Channel-definition] 

controlled gateAS1: GATE  [Gate-definition] 

controlled stateAS1: STATENODE  State-node 

controlled procedureAS1: STATENODE  Procedure-definition 

controlled stateDefinitionAS1: STATENODE  Composite-state-type-definition 

controlled partitionAS1: STATENODE  [State-partition] 

A series of unary functions (agentAS1 to partitionAS1, see above, defined on agents, gates and state 

nodes) identify the corresponding AST definition. These definitions are needed during the 

initialization phase and also during dynamic creation of agents. 

isAgentSet(ag: AGENT): BOOLEAN =def ag.program = AGENT-SET-PROGRAM 

To distinguish SDL-2010 agent sets from other agents, the predicate isAgentSet is defined. 

controlled selfPid: SDLAGENT  PID 

controlled sender: SDLAGENT  PID 

controlled parent: SDLAGENT  [PID ] 

controlled offspring: SDLAGENT  PID 

The above functions model the corresponding Pid expressions introduced in ITU-T Z.101. 

controlled state: SDLAGENT  STATE 

The values of the variables of an agent are collected in a state associated with some agent, modelled 

by the function state. This function is changed dynamically whenever the variable values of an agent 

or a procedure change. The data semantics provides the initial value for this function via 

initAgentState and initProcedureState. 

controlled stateAgent: SDLAGENT  SDLAGENT 
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The values of the variables of an SDL-2010 agent are normally associated with the agent. However, 

in case of nested process agents (i.e. process agents contained within a process agent), they are 

associated with the outermost process agent. The function stateAgent yields, for a given SDL-2010 

agent, the SDL-2010 agent to which the variable values are associated. 

controlled topStateId: SDLAGENT  STATEID 

The topStateId function associates the outermost scope with an agent. In case of nested process 

agents, it is only defined for the outermost process agent. 

controlled isActive: SDLAGENT  [SDLAGENT] 

Nested process agents are to be executed in an interleaving manner. To model the required 

synchronization, the function isActive of the outermost process agent is used. 

monitored spontaneous: AGENT  BOOLEAN 

The SDL-2010 concept of spontaneous transition is abstractly modelled by means of a monitored 

predicate spontaneous associated with a particular SDL-2010 agent instance, which serves for 

triggering spontaneous transition events. It is assumed that spontaneous transitions occur from time 

to time without being aware of any causal dependence on external conditions and events. This view 

reflects the indeterminate nature behind the concept of spontaneous transition. 

controlled inport: SDLAGENT  GATE 

Each SDL-2010 agent instance has its local input port at which arriving signals are stored until these 

signals either are actively received, or until they are discarded. Input ports are modelled as a gate, 

containing a finite sequence of signals. 

controlled currentSignalInst: SDLAGENT  [SIGNALINST] 

During the firing of input transitions, the signal instance removed from the input port is available 

through the function currentSignalInst. 

controlled topStateNode: SDLAGENT  STATENODE 

The state nodes of an agent are rooted at a top state node modelling the state machine of the agent 

instance. 

controlled currentStartNodes: SDLAGENT  STATENODEWITHENTRYPOINT-set 

Start transitions take precedence over regular transitions; they are identified by tuples consisting of a 

state node and an entry point. 

controlled currentExitStateNodes: SDLAGENT  STATENODEWITHEXITPOINT-set 

Exit transitions take precedence over regular transitions; they are identified by tuples consisting of a 

state node and an exit point. 

controlled currentConnector: SDLAGENT  [STATENODEWITHCONNECTOR] 

Free actions take precedence over regular transitions; they are identified by tuples consisting of a 

state node and a connector name. 

controlled scopeName: SDLAGENT  STATEID  Connector-name 

controlled scopeContinueLabel: SDLAGENT  STATEID  CONTINUELABEL 

controlled scopeStepLabel: SDLAGENT  STATEID  STEPLABEL 

The functions scopeName, scopeContinueLabel and scopeStepLabel are used for Compound-node 

interpretation (see Z.102). 
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INITSTATEMACHINE/INITPROCEDUREGRAPH control block 

When the state machine of an agent is initialized, a hierarchical inheritance state graph is created. 

Because this normally takes several steps, the intermediate status of the creation is kept in an 

INITSTATEMACHINE/INITPROCEDUREGRAPH control block. Based on this information, it is, for 

instance, possible to control the order of node creation as far as necessary. This control block is used 

during the initialization of the agent instance, and also dynamically when a procedure call occurs. 

controlled stateNodesToBeCreated: SDLAGENT  State-node-set 

controlled statePartitionsToBeCreated: SDLAGENT  State-partition-set 

controlled stateNodesToBeRefined: SDLAGENT  STATENODE-set 

controlled stateNodesToBeSpecialised: SDLAGENT  STATENODE-set 

In order to keep track of the state machine creation, a distinction is made between the state nodes and 

the state partitions to be created. Also, the refinement and specialization of state nodes is taken into 

account. 

Selection control block 

During the selection of a transition, additional information is needed to keep track of the selection 

status. For instance, when the selection starts, the input port is "frozen", meaning that its state at the 

beginning of the selection is the basis for this selection cycle. This does not prevent signal instances 

arriving while the selection is active, but these signals are not considered before the next selection 

cycle. 

controlled inputPortChecked: SDLAGENT  SIGNALINST* 

controlled stateNodesToBeChecked: SDLAGENT  STATENODE-set 

controlled stateNodeChecked: SDLAGENT  [STATENODE] 

controlled startNodeChecked: SDLAGENT  STATENODEWITHENTRYPOINT 

controlled exitNodeChecked: SDLAGENT  STATENODEWITHEXITPOINT 

controlled transitionsToBeChecked: SDLAGENT  SEMTRANSITION-set 

controlled transitionChecked: SDLAGENT  SEMTRANSITION 

controlled signalChecked: SDLAGENT  SIGNALINST 

controlled SignalSaved: SDLAGENT  BOOLEAN 

controlled continuousPriorities: SDLAGENT  NAT-set 

Enter/Leave/ExitStateNode control block 

Entering, leaving and exiting of state nodes in general requires a sequence of steps. In hierarchical 

state graphs, entering a state node means to enter contained states, and to execute start transitions and 

entry procedures. Likewise, leaving a state node means to leave the contained states and to execute 

exit procedures. Exiting a composite state in addition means to fire an exit transition. During these 

activity phases, the status information is maintained in the enter/leave/exitStateNode control block. 

controlled stateNodesToBeEntered: SDLAGENT  STATENODEWITHENTRYPOINT-set 

controlled stateNodesToBeLeft: SDLAGENT  STATENODE-set 

controlled stateNodeToBeExited: SDLAGENT  [STATENODEWITHEXITPOINT] 

Procedure control block 

The procedure control block comprises the part of the agent control block that has to be stacked when 

a procedure call occurs. This includes the agent modes, the current action label, and the state 

identification. Once the procedure terminates, this state information has to be restored. The stacked 

information is associated with the state node containing the procedure graph. Such a state node is 

created dynamically for each procedure call. 

During the execution of a procedure, other control blocks may be required, for instance, the 

INITSTATEMACHINE control block or the selection control block. However, the corresponding phases 
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do not lead to the execution of further procedures, and are not interrupted by other phases. Therefore, 

it is not necessary to stack these parts of the agent control block. 

controlled agentMode1: AGENT  STATENODE  AGENTMODE 

controlled agentMode2: AGENT  STATENODE  AGENTMODE 

controlled agentMode3: AGENT  STATENODE  AGENTMODE 

controlled agentMode4: AGENT  STATENODE  AGENTMODE 

controlled agentMode5: AGENT  STATENODE  AGENTMODE 

To control the execution of agents, a control hierarchy is formed, which consists of up to five levels, 

depending on the current execution phase. For each of these levels, a specific function agentMode is 

defined. 

controlled currentStateId: SDLAGENT  STATENODE  STATEID 

In order to handle nested process agents and procedure calls, a state may contain substates. Every 

substate is given an identification at the time of its creation; for example, when a procedure is called 

or when a nested process agent is started. These identifications are taken from the domain STATEID. 

A STATE contains associations between a number of STATEID values, a number of variable identifiers, 

and their respective values. 

controlled currentLabel: SDLAGENT  STATENODE  [LABEL] 

The currentLabel function, which identifies the action currently executed or to be executed next, 

controls the firing of transitions and the evaluation of expressions. When a sequence of steps is 

completed, currentLabel is set to undefined. 

controlled continueLabel: SDLAGENT  STATENODE  [CONTINUELABEL] 

The continueLabel function is needed while a state node is left, which forms part of the firing of a 

transition and may lead to the execution of further action sequences. When the state node is left, firing 

of the transition is resumed. In particular, this value is needed when procedures are executed. Also, 

this function records the label where execution is continued after a procedure call. 

controlled currentParentStateNode: SDLAGENT  STATENODE  STATENODE 

The currentParentStateNode function defines the correct ownership between state nodes, and 

identifies states to be left and to be entered. 

controlled previousStateNode: SDLAGENT  STATENODE  STATENODE 

When a transition is fired, the previousStateNode function refers to the state node where the transition 

started. 

controlled currentProcedureStateNode: SDLAGENT  STATENODE  STATENODE 

The currentProcedureStateNode function refers to the current procedure state node. 

F3.2.1.2.4 Agent connections 

SDL-2010 agents are organized in agent sets. All members of an agent set have the same sets of input 

gates and output gates as defined for the agent set. 

gateUnconnected(g:GATE):BOOLEAN =def 

 let myDef: Agent-type-definition = g.myAgent.agentAS1.s-Agent-type-identifier.idToNodeAS1 in 

  cd  myDef.s-Channel-definition-set: cp  cd.s-Channel-path-set: 

   (g.gateAS1  cp.s-Originating-gate.idToNodeAS1  

    g.gateAS1  cp.s-Destination-gate.idToNodeAS1) 

 endlet 

The gateUnconnected is true if the gate is not linked to an inner gate by a channel path: 
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ingates(a: AGENT): GATE-set =def 

  if a.isAgentSet then 

   { g  GATE: g.myAgent = a  g.direction = inDir  g.gateUnconnected} 

  else 
   a.owner.ingates 

  endif 

outgates(a:AGENT): GATE-set =def 

 if a.isAgentSet then 

  { g  GATE: g.myAgent = a  g.direction = outDir  g.gateUnconnected} 

 else 
  a.owner.outgates 

 endif 

The derived function ingates and outgates collect all input gates and all output gates of an agent. 

Input gates (output gates) are gates of an agent set or agent with direction inDir (outDir) that are not 

connected to inner gates by a channel path. 

F3.2.1.2.5 Agent behaviour 

For the transitions of agents, a tuple domain is introduced, consisting of the signal type, the start label 

for any firing conditions, a priority value, and the start label of the transition actions. Additionally, 

state exit points may be given. Depending on the kind of transition, some of these components may 

be unspecified. For instance, in case of an input transition, there is no firing transition and no priority. 

SEMTRANSITION=def SIGNAL  [LABEL]  [NAT]  LABEL  [STATEEXITPOINT] 

STARTTRANSITION =def LABEL  STATEENTRYPOINT 

FREEACTION =def Connector-name  LABEL 

Given a set of transitions, several derived functions are defined to select particular subsets: 

priorityInputTransitions(tSet:SEMTRANSITION-set): SEMTRANSITION-set =def 

  { t  tSet: t.s-SIGNAL  NONE  t.s-LABEL = undefined  t.s-NAT  undefined } 

inputTransitions(tSet:SEMTRANSITION-set): SEMTRANSITION-set =def 

  { t  tSet: t.s-SIGNAL  NONE  t.s-NAT = undefined } 

continuousSignalTransitions(tSet:SEMTRANSITION-set): SEMTRANSITION-set =def 

  { t  tSet: t.s-SIGNAL = NONE  t.s-LABEL  undefined  t.s-NAT  undefined } 

spontaneousTransitions(tSet:SEMTRANSITION-set): SEMTRANSITION-set =def 

  { t  tSet: t.s-SIGNAL = NONE  t.s-NAT = undefined  t.s-STATEEXITPOINT = undefined } 

exitTransitions(tSet:SEMTRANSITION-set): SEMTRANSITION-set =def 

  { t  tSet: t.s-STATEEXITPOINT  undefined } 

F3.2.1.3 Interface to the data type part 

The semantics of the data type part of SDL-2010 is handled separately from the concurrency related 

aspects of the language. To make this splitting possible, an interface for the semantics definition is 

defined. 

NOTE – The data type part does not include the REF Aggregation-kind for reference variables defined in 

SDL-2010, and therefore is inconsistent with SDL-2010. Further work needs to be done to update the data part 

for reference variables defined in SDL-2010. 

F3.2.1.3.1 Functions provided by the data type part 

The data interface is grouped around a derived domain STATE. This domain is abstract from the 

concurrency side, and concrete from the data type side. It represents the values of the variables of an 
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agent, which are collected in the outermost process agent. This is achieved by a dynamic, controlled 

function state defined on process instances (see clause F3.2.1.2.3). 

derived domain STATE 

The function state is changed dynamically whenever the state of a process or a procedure changes. It 

is solely used within the concurrency semantics part. The data type semantics part provides the initial 

value for the state function via the functions initAgentState and initProcedureState. In order to handle 

recursion, a state might contain substates. Every substate is given an identification at the time of its 

creation; for example, when a procedure is called or when a nested process agent is started. These 

identifications are in the domain STATEID. A STATE contains associations between a number of 

STATEID values, a number of variable identifiers, and their respective values.  

The parameters of initAgentState are: 

• State of the outermost process agent (undefined if the outermost process agent is being 

created) 

• State ID of the new state 

• State ID of the super state of the new state (undefined for the outermost agent) 

• Declarations of the agent 

The additional parameter for initProcedureState is 

• List of parameter values and variable names 

controlled domain STATEID 

DECLARATION=def Procedure-formal-parameter  Variable-definition 

initAgentState: [STATE]  STATEID  [STATEID]  DECLARATION-set STATE 

initProcedureState: STATE  STATEID STATEID  DECLARATION-set  DECLARATION*  VALUE*  Variable-

identifier*  STATE 

The domain DECLARATION is used to create lists of variables for a state. Positional parameters are 

guaranteed to come first in this list. 

There is also a domain for values, called VALUE. 

VALUE =def SDLINTEGER  SDLBOOLEAN  SDLREAL  SDLCHARACTER  SDLSTRING 

     PID  SDLLITERALS  SDLSTRUCTURE  SDLARRAY  SDLPOWERSET 

     SDLBAG  SDLTIME  SDLDURATION 

Some operations invoked in the data part may raise an exception. In SDL-2010 there is no definition 

of the handling of exceptions, so that if one occurs the further behaviour of the system is not defined. 

Therefore, if an exception occurs in the operation the termination is not defined, so the formal 

semantics is only given for the case of termination without an exception. The possibility of the 

operation raising an exception is shown by the return being in one of the following domains: 

STATEOREXCEPTION =def STATE  EXCEPTION 

VALUEOREXCEPTION =def VALUE  EXCEPTION 

The data type part has to provide functions that model how assignments are performed, namely 

assign: Variable-identifier  VALUE  STATE  STATEID  STATEOREXCEPTION 
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The function eval (see below) retrieves the value associated with a variable for a given state and state 

id. The function assign associates a new value with a given variable. There is an ASSIGN rule macro 

using this function, which is doing the real assignment. 

ASSIGN(variableName: Variable-identifier, value: VALUE, state: STATE, id: STATEID)  

 Self.stateAgent.state:= assign(variableName, value, state, id) 

Assignments are the only way to change the state.  

In order to get the current value of a variable, the data part provides the function eval to get it. It 

returns undefined if the variable is not set. 

eval: Variable-identifier  STATE  STATEID  VALUE 

The semantics of these functions is given by the data semantics part. 

In order to handle expressions, the concurrent semantics provides a domain for procedure bodies, 

which is also used for method and operator bodies. The data part, in return, provides a static domain 

PROCEDURE for procedures (definitions) and a function dispatch for procedure instances. 

PROCEDURE =def Static-operation-signature  Literal-signature 

For modelling the dynamic dispatch, a dispatch function is provided by the data part. 

dispatch: PROCEDURE  VALUE*  Identifier 

Finally, there are two functions to model the predefined functions that do not have a procedure body 

because they are part of the predefined data. There is one function to check if the procedure is 

functional (predefined), and one function to compute the result in this case. 

functional: PROCEDURE  VALUE*  BOOLEAN 

compute: PROCEDURE  VALUE*  VALUEOREXCEPTION 

Moreover, the following domains and functions referring to the Predefined data are used. 
derived domain SDLBOOLEAN 

derived domain SDLINTEGER 

derived semvalueBool: SDLBOOLEAN  BOOLEAN 

derived semvalueInt: SDLINTEGER NAT 

derived semvalueRealNum: SDLREAL NAT 

derived semvalueRealDen: SDLREAL NAT 

derived semvalueReal: SDLREAL  REAL 

F3.2.1.3.2 Functions used by the data type part 

The following special points are worth noting: 

• If two processes have part of their state in common (which could be possible due to the 

reference nature of the new data type part), there are no semantic problems in the concurrency 

part, as all state changes are automatically synchronized by the underlying ASM semantics. 

• The values for the predefined variables of a process such as SENDER, PARENT, OFFSPRING, 

SELF, as well as the value of NOW are provided by the concurrency part. 

F3.2.1.4 Behaviour primitives 

This clause describes the SAM behaviour primitives and how these primitives are evaluated. It 

describes how actions are evaluated, and gives for each primitive a short explanation of its intended 

meaning. Together with the domains, functions and macros that are used to define the behaviour of a 

primitive, an informal description of the intended meaning is provided as well. Additional reference 

clauses for further explanations complement the description of behaviour primitives. 

behaviour: BEHAVIOUR =def rootNodeAS1.compile 
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The result of the compilation is accessible through the function behaviour. This function is static to 

reflect the fact that SAM code cannot be modified during execution. 

STARTLABEL =def LABEL 

BEHAVIOUR =def PRIMITIVE-set 

PRIMITIVE =def LABEL  ACTION 

The behaviour consists of a start label and label-action pairs. The label is used to uniquely identify 

the action and to represent the current state of the interpretation. 

F3.2.1.4.1 Action evaluation 

Explanation 

Action evaluation is used within the execution phase of agents. Primitives are attached to labels. The 

function currentLabel determines for each agent an action to be evaluated next. Actions have different 

types. For example, there exists, beside others, a primitive for the evaluation of variables and one for 

procedure calls. The evaluation of an action first determines the type of an action and then, depending 

of this type, fires an appropriate rule. 

Representation 

The domain ACTION is defined as disjoint union of derived domains, which are explained in the 

subsequent clauses. For example, there exists a domain VAR that contains actions for the evaluation 

of variables. 

ACTION =def VAR  OPERATIONAPPLICATION  CALL  RETURN  TASK  ASSIGNPARAMETERS  EQUALITY  

DECISION  OUTPUT  CREATE  SET  RESET  TIMERACTIVE  STOP  SYSTEMVALUE  ANYVALUE  

SETRANGECHECKVALUE  SCOPE  SKIP  BREAK  CONTINUE  ENTERSTATENODE  LEAVESTATENODE 

Domains 

During the execution phase and the evaluation of actions we use labels basically in two ways: as 

jumps (continue labels) for modelling the corresponding control flow and as stores (value labels) for 

intermediate results. For example, intermediate results arise during the evaluation of expressions. A 

domain CONTINUELABEL represents labels where an agent continues execution after completing an 

action. A domain VALUELABEL represents labels at which an agent can write or read values. 

CONTINUELABEL =def LABEL 

VALUELABEL =def LABEL 

Functions 

Values stored at value labels can be accessed by a dynamic controlled function value and a dynamic 

derived function values. 

controlled value: VALUELABEL  SDLAGENT  VALUE 

values(lSeq: VALUELABEL*, sa: SDLAGENT): VALUE* =def 

  if lSeq = empty then empty 

  else < value(lSeq.head,sa) > ⁀ values(lSeq.tail,sa) 

  endif 
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Figure F3-2 – Agents, labels and values 

 

In Figure 3-2 there are two agents, a and b. The label of agent a, which determines the next action to 

be evaluated within the execution phase, is k. Agent a has stored value 4 at label m, whereas Agent b 

has a stored value 2 at the same label. In this way, different agents can write different values to the 

same label. 

Behaviour 

The evaluation of an action is defined by macro EVAL. Macro EVAL takes as argument an action and 

depending on the type of this action a specific macro is called. These macros are explained in the 

subsequent clauses. The subdomains of ACTION are pairwise disjoint. 

EVAL(a:ACTION)  

  if a  VAR then EVALVAR(a) 

  elseif a  OPERATIONAPPLICATION then EVALOPERATIONAPPLICATION(a) 

  elseif a  CALL then EVALCALL(a) 

  elseif a  RETURN then EVALRETURN(a) 

  elseif a  TASK then EVALTASK(a) 

  elseif a  ASSIGNPARAMETERS then EVALASSIGNPARAMETERS(a) 

  elseif a  EQUALITY then EVALEQUALITY(a) 

  elseif a  DECISION then EVALDECISION(a) 

  elseif a  OUTPUT then EVALOUTPUT(a) 

  elseif a  CREATE then EVALCREATE(a) 

  elseif a  SET then EVALSET(a) 

  elseif a  RESET then EVALRESET(a) 

  elseif a  TIMERACTIVE then EVALTIMERACTIVE(a) 

  elseif a  STOP then EVALSTOP(a) 

  elseif a  SYSTEMVALUE then EVALSYSTEMVALUE(a) 

  elseif a  ANYVALUE then EVALANYVALUE(a) 

  elseif a  SETRANGECHECKVALUE then EVALSETRANGECHECKVALUE(a) 

  elseif a  SCOPE then EVALSCOPE(a) 

  elseif a  SKIP then EVALSKIP(a) 

  elseif a  BREAK then EVALBREAK(a) 

  elseif a  CONTINUE then EVALCONTINUE(a) 

  elseif a  ENTERSTATENODE then EVALENTERSTATENODE(a) 

  elseif a  LEAVESTATENODE then EVALLEAVESTATENODE(a) 

  endif 
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F3.2.1.4.2 Primitive Var 

Explanation 

The Var primitive models the evaluation of a variable. It is used within the evaluation of expressions. 

An action of type VAR is a tuple consisting of a variable name and a so-called continue label. The 

macro EVALVAR evaluates the given variable within the state of the executing agent and writes this 

value at the current label of this agent. In this way the result of the evaluation can be used in 

consecutive execution steps of this agent. 

Representation 

The domain VAR is defined as a Cartesian product of the domain Variable-identifier of variable names 

and domain CONTINUELABEL of labels. 

VAR =def Variable-identifier  CONTINUELABEL 

Behaviour 

If the value of a variable in the current state of the executing agent is undefined, the 

UndefinedVariable exception is raised. Otherwise the value of a variable in the current state of the 

executing agent is determined by function eval and is written at Self.currentLabel. In order to avoid 

conflicts with other agents, the function value takes a further argument of type AGENT, which 

identifies the owner of the value. Additionally, the label which determines the next rule to be fired is 

set to the given continue label. 

EVALVAR(a:VAR)  

 if eval(a.s-Variable-identifier, Self.stateAgent.state, Self.currentStateId) = undefined then 

  raise(UndefinedVariable) 

 else 
  value(Self.currentLabel, Self) := eval(a.s-Variable-identifier, 

     Self.stateAgent.state, Self.currentStateId) 

  Self.currentLabel := a.s-CONTINUELABEL 

 endif 

Reference sections 

For the definition of function value refer to clause F3.2.1.4.1. The definition of function eval can be 

found in clause F3.2.1.3.1. Function currentLabel is defined in clause F3.2.1.2.3. 

F3.2.1.4.3 Primitive OperationApplication 

Explanation 

The OperationApplication primitive models the application of operators. Procedures without 

procedure body are called functional or predefined procedures. In this sense, all built-in operators 

such as +, - on the set of integers are predefined procedures. A predefined procedure is executed by 

function compute: a non-functional operation, which is handled with function dispatch that 

determines (depending on the current values) the correct procedure identifier. 

Representation 

OPERATIONAPPLICATION =def PROCEDURE  VALUELABEL*  CONTINUELABEL 

Behaviour 

EVALOPERATIONAPPLICATION(a:OPERATIONAPPLICATION)  

 if functional(a.s-PROCEDURE, values(a.s-VALUELABEL-seq, Self)) then 

  value(Self.currentLabel, Self):= compute(a.s-PROCEDURE, values(a.s-VALUELABEL-seq, Self)) 

  Self.currentLabel:= a.s-CONTINUELABEL 

 else 
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  let pd: Procedure-definition = idToNodeAS1( 

    dispatch(a.s-PROCEDURE, values(a.s-VALUELABEL-seq, Self))) in 

   CREATEPROCEDURE(pd, Self.currentLabel, a.s-CONTINUELABEL) 

  endlet 

 endif 

Reference sections 

For the definition of function value refer to clause F3.2.1.4.1. The definition of predicate functional 

and the definition of function compute can be found in clause F3.2.1.3.1. 

F3.2.1.4.4 Primitive Call 

Explanation 

The call primitive models procedure calls, or method invocations. It is used within the evaluation of 

expressions and actions. An action of type CALL is defined as a tuple consisting of an identifier of the 

called procedure, a sequence of value labels and variable identifiers, and a continue label. In-

parameters are represented by value labels, in/out-parameters by variable identifiers. The macro 

EVALCALL creates a new context (e.g., new local scope for variables, for names of its states and 

connectors) and saves the old context, which in turn is restored by the corresponding return. 

Representation 

An action of type CALL is defined as a tuple consisting of an identifier of the called procedure, a 

sequence of value labels and variable identifiers, and a continue label. In-parameters are represented 

by value labels, in/out-parameters by variable identifiers. 

CALLPARAM =def VALUELABEL  Variable-identifier 

CALL =def Procedure-identifier  CALLPARAM*  VALUELABEL  CONTINUELABEL 

Behaviour 

EVALCALL(a:CALL)  

 let pd: Procedure-definition = a.s-Procedure-identifier.idToNodeAS1 in 

  CREATEPROCEDURE(pd, a.s-VALUELABEL, a.s-CONTINUELABEL) 

 endlet 

A procedure call is evaluated with macro CREATEPROCEDURE, which basically performs a procedure 

initialization and additionally creates a procedure state node. 

SAVEPROCEDURECONTROLBLOCK(sn:STATENODE, cl:CONTINUELABEL)  

  sn.agentMode1 := Self.agentMode1 

  sn.agentMode2 := Self.agentMode2 

  sn.agentMode3 := Self.agentMode3 

  sn.agentMode4 := Self.agentMode4 

  sn.agentMode5 := Self.agentMode5 

  sn.currentStateId := Self.currentStateId 

  sn.currentLabel := Self.currentLabel 

  sn.continueLabel := cl 

  sn.currentParentStateNode := Self.currentParentStateNode 

  sn.previousStateNode := Self.previousStateNode 

  sn.callingProcedureNode := Self.callingProcedureNode 

The parameter passing mechanism is realized by function initProcedureState. This function returns a 

state, which contains Self.state as a substate. Furthermore, for all local and in-parameters 

initProcedureState "creates" new locations. In-parameters are initialized with values stored in 

resultLabel. Formal inout-parameters are unified with the corresponding actual inout-parameters. 
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Reference sections 

For the definition of macro CREATEPROCEDURE refer to clause F3.2.3.1.4. Information on procedure 

control blocks is given in clause F3.2.1.2.3. 

F3.2.1.4.5 Primitive Return 

Explanation 

The Return primitive is used to model a procedure, method or operator return, or the exit of a 

composite state. In case of a procedure, method or operator return, it basically restores the old context 

(e.g., local scope for names of its states and connectors) of the corresponding call. Since procedures 

can return values, an action of type RETURN is modelled by a value label. The return value of the 

procedure is stored at this label. In case of an exit, the state exit point name is given. 

Representation 

RETURN =def ()  (VALUELABEL  STATEEXITPOINT) 

Behaviour 

EVALRETURN(a: RETURN)  

  if a.s-implicit  VALUELABEL then 

   EVALEXITPROCEDURE(a.s-implicit ) 

  else 
   EVALEXITCOMPOSITESTATE(a.s-implicit) 

  endif 

EVALEXITPROCEDURE(vl: VALUELABEL)  

  value(Self.callingProcedureNode.resultLabel, Self) := value(vl, Self) 

  RESTOREPROCEDURECONTROLBLOCK(Self.callingProcedureNode) 

EVALEXITCOMPOSITESTATE(sep: STATEEXITPOINT)  

  Self.stateNodeToBeExited := 

   mk-STATENODEWITHEXITPOINT(Self.currentParentStateNode, sep) 

  Self.agentMode3 := exitingCompositeState 

RESTOREPROCEDURECONTROLBLOCK(sn:STATENODE)  

  Self.agentMode1 := sn.agentMode1 

  Self.agentMode2 := sn.agentMode2 

  Self.agentMode3 := sn.agentMode3 

  Self.agentMode4 := sn.agentMode4 

  Self.agentMode5 := sn.agentMode5 

  Self.currentStateId := sn.currentStateId 

  Self.currentLabel := sn.continueLabel 

  Self.continueLabel := sn.continueLabel 

  Self.currentParentStateNode := sn.currentParentStateNode 

  Self.previousStateNode := sn.previousStateNode 

  Self.callingProcedureNode := sn.callingProcedureNode 

Reference sections 

Information on procedure control blocks is given in clause F3.2.1.2.3. 

F3.2.1.4.6 Primitive Task 

Explanation 

The Task primitive is used for the evaluation of assignments. An action of type TASK is defined as a 

tuple consisting of a variable name, a value label and a continue label. The variable name becomes 

as value within the state of the executing agent the value stored at value label. 
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Representation 

An action of type TASK is defined as a tuple consisting of a variable name, a value label and a continue 

label. 

TASK =def Variable-identifier  VALUELABEL  BOOLEAN  CONTINUELABEL 

Behaviour 

The assignment is mainly realized by means of macro ASSIGN. Within the state of the executing agent 

the corresponding variable is set to the value stored at value label. 

EVALTASK(a:TASK)  

  ASSIGN(a.s-Variable-identifier, value(a.s-VALUELABEL, Self), Self.stateAgent.state, 

   Self.currentStateId) 

  Self.currentLabel := a.s-CONTINUELABEL 

Reference Sections 

The definition of macro ASSIGN can be found in clause F3.2.1.3.1. 

F3.2.1.4.7 Primitive AssignParameters 

Explanation 

The AssignParameters primitive is used for the assignments of parameters. An action of type 

ASSIGNPARAMETERS is defined as a tuple consisting of a variable identifier, a natural number, and a 

continue label. 

Representation 

An action of type ASSIGNPARAMETERS is defined as a tuple consisting of a variable identifier, a natural 

number, and a continue label. 

ASSIGNPARAMETERS =def Variable-identifier  NAT  CONTINUELABEL 

Behaviour 

EVALASSIGNPARAMETERS(a:ASSIGNPARAMETERS)  

  let v = Self.currentSignalInst.plainSignalValues[a.s-NAT] in 

   ASSIGN(a.s-Variable-identifier, v, Self.stateAgent.state, Self.currentStateId) 

  endlet 
  Self.currentLabel := a.s-CONTINUELABEL 

Reference sections 

The definition of macro ASSIGN can be found in clause F3.2.1.3.1. 

F3.2.1.4.8 Primitive Equality 

Explanation 

The Equality primitive is used for the evaluation of equality tests. An action of type EQUALITY is 

defined as a tuple consisting of two value labels and a continue label. The values associated with 

these labels are compared. The result is stored at continue label. 

Representation 

EQUALITY =def VALUELABEL  VALUELABEL  CONTINUELABEL 

Behaviour 

EVALEQUALITY (a:EQUALITY)  

  if value(a.s-VALUELABEL, Self) = value(a.s2-VALUELABEL, Self) then 
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   value(a.s-CONTINUELABEL, Self) := mk-SDLBOOLEAN(true, BooleanType) 

  else 
   value(a.s-CONTINUELABEL, Self) := mk-SDLBOOLEAN(false, BooleanType) 

  endif 
  Self.currentLabel := a.s-CONTINUELABEL 

Reference sections 

No references. 

F3.2.1.4.9 Primitive Decision 

Explanation 

The Decision primitive is used for the evaluation of decisions. A decision in DECISION consists of a 

value label and a set of answer. An answer in ANSWER is a tuple consisting of a value label and a 

continue label. The action itself chooses an answer such that the decision-value given by the 

corresponding value label coincides with the answer-value. 

Representation 

A decision in DECISION consists of a value label and a set of answer. An answer in ANSWER is a tuple 

consisting of a value label and a continue label. 

DECISION =def VALUELABEL  ANSWER-set  [CONTINUELABEL] 

ANSWER =def VALUELABEL  CONTINUELABEL 

Behaviour 

Macro EVALDECISION chooses an answer such that the decision-value given by the corresponding 

value label coincides with the answer-value. 

EVALDECISION(d:DECISION)  

 if value(d.s-VALUELABEL, Self)  { value(an.s-VALUELABEL, Self) | an  d.s-ANSWER-set } then 

  choose an: an  d.s-ANSWER-set  

   value(d.s-VALUELABEL, Self) = value(an.s-VALUELABEL, Self) 

   Self.currentLabel := an.s-CONTINUELABEL 

  endchoose 

 elseif d.s-CONTINUELABEL  undefined then 

  Self.currentLabel := d.s-CONTINUELABEL 

 else raise(NoMatchingAnswer) 

 endif 

Reference sections 

For the definition of function value refer to clause F3.2.1.4.1. 

F3.2.1.4.10 Primitive Output 

Explanation 

The Output primitive is used for expressing a signal output. An action of type OUTPUT consists of a 

signal, a sequence of value labels, an argument specifying the destination, an argument specifying a 

path, and a continue label. 

Representation 

An action of type OUTPUT consists of a signal type, a sequence of value labels, an argument specifying 

the destination, an argument specifying a path, and a continue label. 

OUTPUT =def SIGNAL  VALUELABEL*  [VALUELABEL]  VIAARG  CONTINUELABEL 
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Behaviour 

Macro EVALOUTPUT defines signal output by macro SIGNALOUTPUT, which takes the signal, a value 

sequence, the destination and the path as arguments. 

EVALOUTPUT(a:OUTPUT)  

  SIGNALOUTPUT(a.s-SIGNAL, values(a.s-VALUELABEL-seq, Self), 

    if a.s-VALUELABEL = undefined then undefined else value(a.s-VALUELABEL, Self) endif, 

   a.s-VIAARG) 

  Self.currentLabel := a.s-CONTINUELABEL 

A signal output operation causes the creation of a new signal instance. The process instance initiating 

the output operation identifies itself as sender of the signal instance by setting a corresponding 

function signalSender defined on signals. In general, there may be none, one or more output gates of 

a process to which a signal can be delivered depending on the specified constraints on 

• possible destinations, 

• potential receivers and 

• admissible paths, 

as stated by the values of TOARG and VIAARG, which are obtained as parameters of an output operation 

and are assigned to a signal by setting corresponding functions defined on signals. Possible 

ambiguities are resolved by a non-deterministic choice for a gate that is connected to a path being 

compatible with TOARG, VIAARG. In the rule below, this choice is stated in abstract terms using the 

predicate applicable (cf. clause F3.2.1.1.4). If the constraints cannot be met, the signal instance is 

discarded. 

SIGNALOUTPUT(s:SIGNAL, vSeq:VALUE*, delay:DURATION, priority:NAT, 

 toArg:[TOARG], viaArg:VIAARG)  

 let invReference =  (if toArg  PID then 

       s.idToNodeAS1  toArg.s-Interface-definition.s-Signal-definition-set 

       else false endif) 

 in 
 if invReference then 

  raise(InvalidReference) 

 else 

  choose g: g  (Self.outgates  Self.ingates)  applicable(s, toArg, viaArg, g, undefined) 

   extend PLAINSIGNALINST with si 

    si.plainSignalType:= s 

    si.plainSignalValues := vSeq 

    si.delay = delay 

    si.priority = priority 

    si.toArg := toArg 

    si.viaArg := viaArg 

    si.plainSignalSender := Self.selfPid 

    INSERT(si, now, g) 

   endextend 

  endchoose 

 endif 

 endlet 

Reference sections 

Definitions of functions associated with signals can be found in clause F3.2.1.1.1. 

F3.2.1.4.11 Primitive Create 

Explanation 

The Create primitive specifies the creation of an SDL-2010 agent. An action of type CREATE is defined 

by a tuple consisting of an agent-definition, a sequence of value labels, and a continue label. 
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Representation 

An action of type CREATE is defined as tuple consisting of an agent-definition, a sequence of value 

labels, and a continue label. 

CREATE =def Agent-identifier  VALUELABEL*  CONTINUELABEL 

Behaviour 

EVALCREATE(a:CREATE)  

  let sas = take({sas  SDLAGENTSET: sas.agentAS1 = a.s-Agent-identifier.idToNodeAS1 }) in 

   if sas.agentAS1.s-Number-of-instances.s-Maximum-number  undefined then 

    let n = |{ sa  SDLAGENT: sa.owner = sas }| in 

     if n < sas.agentAS1.s-Number-of-instances.s-Maximum-number then 

      CREATEAGENT(sas, Self, sas.agentAS1) 

     else 
      Self.offspring := nullPid 

     endif 

    endlet 

   else 
    CREATEAGENT(sas, Self, sas.agentAS1) 

   endif 

  endlet 
  Self.currentLabel := a.s-CONTINUELABEL 

 

Reference sections 

For the definition of the macro CREATEAGENT see clause F3.2.3.1.3. 

F3.2.1.4.12 Primitive Set 

Explanation 

The Set primitive is used for expressing a timer set. An action of type SET is defined as tuple consisting 

of a time label, a timer, a sequence of value labels, and a continue label. The action itself is mainly 

defined by macro SETTIMER. 

Representation 

An action of type SET is defined as tuple consisting of a time label, a timer, a sequence of value labels, 

and a continue label. 

SET =def TIMELABEL  TIMER  VALUELABEL*  CONTINUELABEL 

Domains 

TIMELABEL =def VALUELABEL 

Behaviour 

Macro EVALSET defines the setting of a timer by macro SETTIMER. 

EVALSET(a:SET)  

  SETTIMER(a.s-TIMER, values(a.s-VALUELABEL-seq, Self), semvalueReal(value(a.s-TIMELABEL,Self))) 

  Self.currentLabel := a.s-CONTINUELABEL 

Reference sections 

The definition of macro SETTIMER can be found in clause F3.2.1.1.5. 
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F3.2.1.4.13 Primitive Reset 

Explanation 

The Reset primitive is used for expressing a timer reset. An action of type reset is defined as tuple 

consisting of a timer, a sequence of value labels, and a continue label. The primitive specifies a reset 

of a timer with macro RESETTIMER. 

Representation 

An action of type reset is defined as tuple consisting of a timer, a sequence of value labels, and a 

continue label. 

RESET =def TIMER  VALUELABEL*  CONTINUELABEL 

Behaviour 

Macro EVALRESET specifies a reset of a timer with macro RESETTIMER. 

EVALRESET(a:RESET)  

  RESETTIMER(a.s-TIMER, values( a.s-VALUELABEL-seq, Self)) 

  Self.currentLabel := a.s-CONTINUELABEL 

Reference sections 

The definition of macro RESETTIMER can be found in clause F3.2.1.1.5. 

F3.2.1.4.14 Primitive TimerActive 

Explanation 

The TimerActive primitive is used for expressing a timer active expression. The primitive specifies 

the timer active check using the function active. 

Representation 

An action of type TIMERACTIVE is defined as tuple consisting of a timer, a sequence of value labels, 

and a continue label. 

TIMERACTIVE =def TIMER  VALUELABEL*  CONTINUELABEL 

Behaviour 

Macro EVALTIMERACTIVE specifies the evaluation of a timer active expression. 

EVALTIMERACTIVE(t:TIMERACTIVE)  

 let tmi = mk-TIMERINST(Self.selfPid, t.s-TIMER, values( t.s-VALUELABEL-seq, Self) ) in 

  value(Self.currentLabel, Self) := mk-SDLBOOLEAN(active(tmi), BooleanType) 

  Self.currentLabel := t.s-CONTINUELABEL 

 endlet 

Reference sections 

The definition of function active can be found in clause F3.2.1.1.5. 

F3.2.1.4.15 Primitive Raise (SDL-2000 feature) 

Explanation 

In SDL-2000 the Raise primitive is used for expressing the raising of exceptions. In SDL-2010, 

exceptions cannot be explicitly raised, so there is no need for the RAISE primitive, the EVALRAISE or 

RAISEEXCEPTION macros that were defined in the formal dynamic semantics for SDL-2000. 

Predefined exceptions still occur for certain well-defined runs as indicated by the use of the raise 
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function with the exception identifier as a parameter. When this occurs the further behaviour of the 

system is not defined by SDL-2010. 

Reference sections 

The EXCEPTION domain is defined in clause F3.2.1.1.6. The raise function is defined in 

clause F3.3.1.1. 

F3.2.1.4.16 Primitive Stop 

Explanation 

The Stop primitive is used for initiating the stopping of an agent, which takes place in two phases. In 

the first phase, the state machine of the agent goes into a stopping state, meaning that it no longer 

selects and fires any transitions. The agent ceases to exist as soon as all contained agents have been 

removed. 

The Stop primitive is used for expressing the evaluation of stop conditions. 

Representation 

STOP =def () 

Behaviour 

Macro EVALSTOP specifies all actions to be taken when an agent performs a stop. 

EVALSTOP(a:STOP)  

  Self.agentMode2 := stopping 

Reference sections 

Clause F3.2.3.2.18. 

F3.2.1.4.17 Primitive SystemValue 

Explanation 

The SystemValue primitive computes the values of the predefined imperative operators. 

Representation 

SYSTEMVALUE =def VALUEKIND  CONTINUELABEL 

VALUEKIND =def { kNow, kSelf, kParent, kOffspring, kSender,kActiveAgents} 

Behaviour 

EVALSYSTEMVALUE(a: SYSTEMVALUE)  

  value(Self.currentLabel, Self) := 

   case a.s-VALUEKIND of 

   | kNow => mk-SDLTIME(now, TimeType) 

   | kSelf=> Self.selfPid 

   | kParent=> Self.parent 

   | kOffspring=> Self.offspring 

   | kSender=> Self.sender 

   | kActiveAgents=> mk-SDLINTEGER(|{ sa  SDLAGENT: sa. parent = Self }|, IntegerType) 

   endcase 
  Self.currentLabel := a.s-CONTINUELABEL 

F3.2.1.4.18 Primitive AnyValue 

Explanation 

The AnyValue primitive computes the any expression. 
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Representation 

ANYVALUE =def Sort-identifier  CONTINUELABEL 

Behaviour 

EVALANYVALUE(a: ANYVALUE)  

  value(Self.currentLabel, Self) := selectAnyValue( a.s-Sort-identifier) 

  Self.currentLabel := a.s-CONTINUELABEL 

The selectAnyValue function returns the nullPid for a pid sort, a random value of the sort for other 

sorts and undefined if the sort has no values. 

selectAnyValue(id: Sort-identifier): VALUE =def 

 if id.idToNodeAS1  Interface-definition then nullPid 

 else take( {v | v  VALUE  v.sort =id } ) 

 endif 

F3.2.1.4.19 Primitive SetRangeCheckLabel 

Explanation 

The SetRangeCheckValue primitive is used to set the value to be used in a range check. 

Representation 

SETRANGECHECKVALUE =def VALUELABEL  CONTINUELABEL 

static rangeCheckValue:  LABEL 

The static function rangeCheckValue denotes a special label, which is different from all other labels 

in the system. It is used to store the value to be used in the subsequent range check via the function 

value. 

Behaviour 

EVALSETRANGECHECKVALUE(a: SETRANGECHECKVALUE)  

  value(rangeCheckValue, Self) := value(a.s-VALUELABEL, Self) 

  Self.currentLabel := a.s-CONTINUELABEL 

F3.2.1.4.20 Primitive Scope 

Explanation 

The Scope primitive creates a new scope for use in a compound node. 

Representation 

SCOPE =def Connector-name  Variable-definition-set  STARTLABEL  STEPLABEL  CONTINUELABEL 

STEPLABEL =def LABEL 

Behaviour 

EVALSCOPE(a:SCOPE)  

  CREATECOMPOUNDNODEVARIABLES(Self, a) 

  Self.currentLabel := a.s-STARTLABEL 

Reference sections 

See also clause F3.2.3.1.8. 
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F3.2.1.4.21 Primitive Skip 

Explanation 

This is basically a no-op. It is used, for instance, to model joins. 

Representation 

SKIP =def ()  (Connector-name  CONTINUELABEL) 

Behaviour 

EVALSKIP(a:SKIP)  

 if a.s-implicit  Connector-name then 

  Self.stateNodeChecked := Self.currentParentStateNode 

  Self.currentConnector := mk-STATENODEWITHCONNECTOR(Self.currentParentStateNode, a.s-implicit) 

  Self.agentMode2 := selectingTransition 

  Self.agentMode3 := startSelection 

 else 
  Self.currentLabel := a.s-implicit 

 endif 

Reference sections 

Clause F3.2.3.2.8. 

F3.2.1.4.22 Primitive Break 

Explanation 

The Break primitive models the break operation, i.e., it leaves the current scope until the named scope 

is found. 

Representation 

BREAK =def ()  (Connector-name) 

Behaviour 

EVALBREAK(a:BREAK)  

  if scopeName(Self, Self.currentStateId) = a.s-Connector-name then 

   Self.currentLabel := scopeContinueLabel(Self, Self.currentStateId) 

  endif 
  Self.currentStateId := caller(Self.stateAgent.state, Self.currentStateId) 

F3.2.1.4.23 Primitive Continue 

Explanation 

The Continue primitive is used for modelling the loop continue operation. 

Representation 

CONTINUE =def ()  (Connector-name) 

Behaviour 

EVALCONTINUE(a:CONTINUE)  

 if scopeName(Self, Self.currentStateId) = a.s-Connector-name then 

  Self.currentLabel := scopeStepLabel(Self, Self.currentStateId) 

 else 
  Self.currentStateId := caller(Self.stateAgent.state, Self.currentStateId) 

 endif 
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F3.2.1.4.24 Primitive EnterStateNode 

Explanation 

State nodes are entered when an SDL-2010 agent has been created, and at the end of each transition. 

Also, state nodes are entered when a procedure is invoked. The evaluation of the primitive starts the 

sequence of steps needed to enter a given state node, which may include the entering of composite 

states and the execution of start transitions and entry procedures. 

Representation 

ENTERSTATENODE =def ( State-name  HISTORY )  STATEENTRYPOINT  VALUELABEL* 

Behaviour 

EVALENTERSTATENODE(a:ENTERSTATENODE)  

 let enterName: (State-name  HISTORY) = a.s-implicit in 

  if enterName = HISTORY then 

   Self.stateNodesToBeEntered := 

    {mk-STATENODEWITHENTRYPOINT(Self.previousStateNode, HISTORY)} 

  else 

   choose sn: sn  STATENODE  sn.stateName = enterName  

    sn.stateNodeKind = stateNode  sn.parentStateNode = Self.currentParentStateNode 

    Self.stateNodesToBeEntered := 

     {mk-STATENODEWITHENTRYPOINT(sn, a.s-STATEENTRYPOINT)} 

   endchoose 

  endif 
  Self.agentMode3 := enteringStateNode 

  Self.agentMode4 := startPhase 

  Self.currentLabel := undefined 

  Self.continueLabel := undefined 

 endlet 

Given the State-name and the currentParentStateNode, the state node to be entered is determined. 

This has to be done at execution time, as the state node instance is not known during compilation. 

Agent modes are set such that the sequence of steps needed to enter the state node is performed. 

Reference sections 

See also clause F3.2.3.2.15. 

F3.2.1.4.25 Primitive LeaveStateNode 

Explanation 

State nodes are left at the start of transitions. 

Representation 

LEAVESTATENODE =def State-name  CONTINUELABEL 

Behaviour 

EVALLEAVESTATENODE(a:LEAVESTATENODE)  

  choose sn: sn  STATENODE  sn.stateName = a.s-State-name  

   sn.stateNodeKind = stateNode  sn.parentStateNode = Self.currentParentStateNode 

   // assertion: sn = Self.previousStateNode 

   Self.stateNodesToBeLeft := collectCurrentSubStates(sn) 

  endchoose 
  Self.agentMode3 := leavingStateNode 

  Self.agentMode4 := leavePhase 

  Self.currentLabel := undefined 

  Self.continueLabel := a.s-CONTINUELABEL 
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Given the State-name and the currentParentStateNode, the state node to be left is determined. This 

has to be done at execution time, as the state node instance is not known during compilation. Agent 

modes are set such that the sequence of steps needed to leave the state node is performed. 

Reference sections 

See also clause F3.2.3.2.16 for information on how state nodes are left. 

F3.2.1.5 Undefined behaviour 

Undefined behaviour is represented by the following program: 

UNDEFINEDBEHAVIOUR  

 Self.program := UNDEFINED-BEHAVIOUR-PROGRAM 

UNDEFINED-BEHAVIOUR-PROGRAM: 

// the contents of this program is not defined 

The content of the program UNDEFINED-BEHAVIOUR-PROGRAM is not specified. Whenever 

the further behaviour of the system is undefined, the current agent is switched to this program. 

This local undefinedness condition is in fact global as the program UNDEFINED-BEHAVIOUR-

PROGRAM could involve setting program for all agents. 

F3.2.2 Compilation function 

The following two functions form the interface between the compilation and the dynamic semantics. 

For all the behaviour parts that involve transitions, the corresponding runtime representation of the 

transitions is generated. 

getStateTransitions(s: State-node): SEMTRANSITION-set =def 

 { mk-SEMTRANSITION(i.s-Signal-identifier, 

  if i.s-Provided-expression = undefined then 

   undefined 

  else 
   i.s-Provided-expression.startLabel 

  endif, 

  if i.s-PRIORITY = undefined then undefined else 1 endif, 

  i.s-Transition.startLabel, 

  undefined) 

 | i  s.s-Input-node-set }  

 { mk-SEMTRANSITION(NONE, sp.s-Provided-expression.startLabel, 

  undefined, sp.s-Transition.startLabel, undefined) 

 | sp  s.s-Spontaneous-transition-set }  

 { mk-SEMTRANSITION(NONE, c.s-Continuous-expression.startLabel, 

  c.s-Priority-name,  c.s-Transition.startLabel, undefined) 

 | c  s.s-Continuous-signal-set }  

 { mk-SEMTRANSITION(NONE, undefined, undefined, c.s-Transition.startLabel, 

  if c.s-State-exit-point-name = undefined then DEFAULT else c.s-State-exit-point-name endif) 

 | c  s.s-Connect-node-set } 

getStateStartTransitions(sn: State-start-node): STARTTRANSITION=def 

 mk-STARTTRANSITION(sn.s-Transition.startLabel, sn.s-State-entry-point-name) 

getNamedStartTransitions(sn: Named-start-node): STARTTRANSITION=def 

 mk-STARTTRANSITION(sn.s-Transition.startLabel, sn.s-State-entry-point-name) 

getProcStartTransitions(sn: Procedure-start-node): STARTTRANSITION=def 

 mk-STARTTRANSITION(sn.s-Transition.startLabel, undefined) 

getStartTransitions(s: (State-start-node  Named-start-node  Procedure-start-node)-set): 

  STARTTRANSITION-set =def 
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 { if sn  State-start-node then getStateStartTransitions(sn) 

  elseif sn Named-start-node then getNamedStartTransitions(sn) 

  elseif sn  Procedure-start-node then getProcStartTransitions(sn) 

  endif | sn  s } 

getFreeActions(actions: Free-action-set): FREEACTION-set =def 

 { mk-FREEACTION(f.s-Connector-name, f.s-Transition.startLabel) | f  actions } 

Here we present the function that compiles an SDL-2010 state machine description into an ASM 

representation. A special labelling of graph nodes is used to model specific control-flow information. 

Intuitively, node labels relate individual operations of an SDL-2010 agent to transition rules in the 

resulting SAM model. The effect of state transitions of SDL-2010 agents is then modelled by firing 

the related transition rules in an analogous order. 

Labels are abstractly represented by a static domain LABEL. 

static domain LABEL 

To start with the compilation, we first need a function to find unique labels for a syntactic entity. The 

second argument is introduced to allow for more than one such label within the same SDL-2010 

pattern. 

monitored uniqueLabel: DEFINITIONAS1  NAT  LABEL 

For this function, it holds that 

constraint  d1, d2  DEFINITIONAS1:  i1, i2  NAT: 

  uniqueLabel(d1, i1) = uniqueLabel(d2, i2)  (d1=d2  i1=i2) 

Finally, to formalize the compilation, we also need an auxiliary function generating a sequence out 

of a set. This function is used when the sequence of events has to be computed but does not really 

matter. See for instance Decision-node and Range-condition. 

setToSeq(s: X-set): X* =def 

 if s =  then empty else 

  let el = c.take in 

   < el > ⁀ setToSeq(s \ { el }) 

  endlet 

 endif 

The compilation is formalized in terms of the following two compilation functions, one for transition 

behaviour and one for expression behaviour. 

compile: DEFINITIONAS1  BEHAVIOUR 

compileExpr: DEFINITIONAS1  LABEL  BEHAVIOUR 

The computed value of an expression e is always stored at value(uniqueLabel(e, 1), Self). 

The two compilation functions are gradually introduced by defining a series of compilation patterns 

and the corresponding results; each individual pattern is uniquely associated with a certain type of 

node in the AST to be compiled. Afterwards, the function startLabel is defined also with a series of 

patterns in clause F3.2.2.4. 

F3.2.2.1 States and triggers 

The following parts are considered to form the definition of the function compile if put together with 

the following header. The contents of the case expression are all the compilation cases as given below. 

compile(a: DEFINITIONAS1): BEHAVIOUR =def 

 case a of 
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All the contents of this function are given as patterns and what the result of the function is for these 

patterns. The default case when no pattern is matching is the collected set of all the results of all 

children nodes. 

The handling of inheritance is done in the dynamic part. What you find below is the compilation of 

the plain behaviour descriptions. 

The definition of the compilation function is done using a series of auxiliary derived functions. 

| v=Variable-definition( name, *, init) => 

 if init  undefined then 

  compileExpr(init, uniqueLabel(v,1))  

  {mk-PRIMITIVE(uniqueLabel(v,1), mk-TASK(name, uniqueLabel(init,1), false, undefined)) } 

 else  

 endif 

| State-transition-graph( *, start, states, freeActions) => 

  compile(start)  

 U{ compile(s) | s  states }  

 U{ compile(f) | f  freeActions } 

| Procedure-graph( start, states, freeActions) => 

  compile(start)  

 U{ compile(s) | s  states }  

 U{ compile(f) | f  freeActions } 

| State-start-node(*, transition) => compile(transition) 

| Procedure-start-node(transition) => compile(transition) 

| Named-start-node(*, trans) => compile(trans) 

| State-node(*, *, *, inputs, spontaneous, continuous, conns, *) => 

  U{ compile(i) | i  inputs }  

  U{ compile(s) | s  spontaneous }  

 U{ compile(c) | c  continuous }  

 U { compile(c) | c  conns } 

| i = Input-node(*, *, vars, provided, transition) => 

  if provided = undefined then  else compileExpr(provided, undefined) endif  

  { mk-PRIMITIVE(uniqueLabel(i,idx), 

   if vars[idx]  undefined then 

    mk-ASSIGNPARAMETERS(vars[idx], idx, 

     uniqueLabel(i,idx)) 

   else mk-SKIP( uniqueLabel(i,idx)) 

   endif) 

  | idx  toSet(1..vars.length -1) }  

  { mk-PRIMITIVE(uniqueLabel(i, vars.length), 

   if vars[vars.length]  undefined then 

    mk-ASSIGNPARAMETERS(vars[vars.length], vars.length, transition.startLabel) 

   else mk-SKIP(transition.startLabel) 

   endif) 

  }  

  compile(transition) 

| Spontaneous-transition(provided, transition) => 

  if provided = undefined then  else compileExpr(provided, undefined) endif  

  compile(transition) 

| Continuous-signal(*, condition, *, transition) => 

  compileExpr(condition, undefined)  

  compile(transition) 

| Connect-node(*, transition) => compile(transition) 

| Free-action(*, transition) => compile(transition) 
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| t=Transition(nodes, endnode) => 

 if t.parentAS1.parentAS1.s-State-name  undefined then 

  {mk-PRIMITIVE(uniqueLabel(a,1), 

  mk-LEAVESTATENODE(t.parentAS1.parentAS1.s-State-name, 

   startLabel(if nodes = empty then endnode else nodes.head endif))) } 

 else  endif  

 compileNodes  

 compile(endnode) 

where 

  compileNodes: BEHAVIOUR =def 

   if nodes = empty then  

   else compileExpr(nodes.last, endnode. startLabel)  

    U{ compileExpr(nodes[i], nodes[i+1]. startLabel) | i  1..nodes.length - 1 } 

   endif 

endwhere 

F3.2.2.2 Terminators 

| Terminator(terminator) => compile(terminator) 

| n=Named-nextstate(stateName, undefined) => 

  {mk-PRIMITIVE(uniqueLabel(n,1), 

   mk-ENTERSTATENODE(stateName, undefined, empty)) } 

| n=Named-nextstate(stateName, Nextstate-parameters(exprList, entry)) => 

  if exprList = empty then  

  else compileExpr(exprList.last, uniqueLabel(n,1))  

   U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 } 

  endif  
  {mk-PRIMITIVE(uniqueLabel(n,1), 

   mk-ENTERSTATENODE(stateName, entry, <uniqueLabel(e,1) | e in exprList >)) } 

| n= Dash-nextstate(HISTORY) => 

  {mk-PRIMITIVE(uniqueLabel(n,1), mk-ENTERSTATENODE(HISTORY, undefined, empty)) } 

| s=Stop-node() => 

  {mk-PRIMITIVE(uniqueLabel(s,1), mk-STOP()) } 

| a=Action-return-node() => 

  {mk-PRIMITIVE(uniqueLabel(a,1), mk-RETURN 

   (if parentAS1ofKind(a,Composite-state-type-definition).parentAS1  

   Composite-state-type-definition then DEFAULT else undefined endif)) } 

| v=Value-return-node(expr) => 

 compileExpr(expr, uniqueLabel(v,1))  

  {mk-PRIMITIVE(uniqueLabel(v,1), mk-RETURN(uniqueLabel(expr,1))) } 

| n=Named-return-node(name) => 

  {mk-PRIMITIVE(uniqueLabel(n,1), mk-RETURN(name)) } 

| j= Join-node(connector) => 

  {mk-PRIMITIVE(uniqueLabel(j,1), mk-SKIP(connector)) } 

| b= Break-node(connector) => 

  {mk-PRIMITIVE(uniqueLabel(b,1), mk-BREAK(connector)) } 

| c= Continue-node(connector) => 

  {mk-PRIMITIVE(uniqueLabel(c,1), mk-CONTINUE(connector)) } 

| d=Decision-node(question, answerset, elseanswer) => 

   (let aseq = answerset.setToSeq in 

   compileExpr(question, aseq[1].startLabel)  

   { compileExpr(aseq[idx].s-implicit, 

    if idx=aseq.length then uniqueLabel(d, 1) else aseq[idx+1].startLabel endif) 

   | idx  toSet(1..aseq.length) }  

   { mk-PRIMITIVE(uniqueLabel(d, 1), 

    mk-DECISION(uniqueLabel(question, 1), 
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     { mk-ANSWER(uniqueLabel(ans.s-implicit, 1), ans.s-Transition.startLabel) 

     | ans  answerset }, 

     if elseanswer=undefined then undefined else elseanswer.s-Transition endif)) } 

  endlet)  

  U{ compile(ans.s-Transition) | ans  answerset }  

  compile(elseanswer.s-Transition) 

This concludes the definition of the compile function. 

endcase // end of the compile function definition 

F3.2.2.3 Actions 

The following compilation parts define the function compileExpr with the following header. 

compileExpr(a: DEFINITIONAS1, next: LABEL): BEHAVIOUR =def 

 case a of 

All the contents of this function are given as patterns and what the result of the function for these 

patterns is. The default result when no pattern is matching is the empty set. All the patterns given 

below may use the variable next referring to the next label to process. 

| Graph-node(action) => compileExpr(action, next) 

| a=Assignment(id, expr) => 

 compileExpr(expr, uniqueLabel(a,1))  

 {mk-PRIMITIVE(uniqueLabel(a,1), mk-TASK(id, uniqueLabel(expr,1), false, next) )} 

| o=Output-node(sig, exprList, delay, priority, dest, via ) => 

 if dest  Identifier then 

  if exprList = empty then  

  else compileExpr(exprList.last, uniqueLabel(o,1))  

   U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 } 

  endif  

  compileExpr(delay, uniqueLabel(o,1))  

  compileExpr(priority, uniqueLabel(o,1))  

  {mk-PRIMITIVE(uniqueLabel(o,1), 

   mk-OUTPUT(sig, <uniqueLabel(e,1) | e in exprList >, 

     uniqueLabel(delay,1), uniqueLabel(priority,1), dest, via, next)) } 

 else 

  if exprList = empty then  

  else compileExpr(exprList.last, dest.startLabel)  

   U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 } 

  endif  

  compileExpr(dest, uniqueLabel(o,1))  

  compileExpr(delay, uniqueLabel(o,1))  

  compileExpr(priority, uniqueLabel(o,1))  

  {mk-PRIMITIVE(uniqueLabel(o,1), 

   mk-OUTPUT(sig, <uniqueLabel(e,1) | e in exprList >, 

     uniqueLabel(delay,1), uniqueLabel(priority,1), uniqueLabel(dest,1), via, next)) } 

 endif 

| c=Create-request-node(agentId, exprList) => 

  if exprList = empty then  

  else compileExpr(exprList.last, uniqueLabel(c,1))  

   U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 } 

  endif  
  {mk-PRIMITIVE(uniqueLabel(c,1), 

   mk-CREATE(agentId, <uniqueLabel(e,1) | e in exprList >, next)) } 

| c=Call-node(*, procedureId, exprList) => 

  if exprList = empty then  

  else compileExpr(exprList.last, uniqueLabel(c,1))  

   U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 } 
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  endif  
  (let paramDef = procedureId.idToNodeAS1.s-Procedure-formal-parameter-seq in 

   {mk-PRIMITIVE(uniqueLabel(c,1), 

    mk-CALL(procedureId, 

     <( if paramDef[idx]  In-parameter 

      then uniqueLabel(exprList[idx], 1) 

      else exprList[idx] 

      endif ) 

     | idx in (1..exprList.length ) >, uniqueLabel(c,1), 

     next)) } 

  endlet) 

| c=Compound-node(name, variables, eh, initNodes, trans, stepNodes) => 

  {mk-PRIMITIVE(uniqueLabel(c,1), 

   mk-SCOPE(name, variables, 

    if initNodes = empty then trans.startLabel else initNodes.head.startLabel endif, 

    if stepNodes = empty then trans.startLabel else stepNodes.head.startLabel endif, 

    next)) }  

  compile(eh)  

  compileExpr(trans, undefined)  

  if stepNodes = empty then  

  else compileExpr( stepNodes.last, trans.startLabel)  

   U{ compileExpr( stepNodes[i], stepNodes[i+1]. startLabel) | i  1..stepNodes.length - 1 } 

  endif  

  if initNodes = empty then  

  else compileExpr( initNodes.last, trans.startLabel)  

   U{ compileExpr( initNodes[i], initNodes[i+1]. startLabel) | i  1..initNodes.length - 1 } 

  endif 

| s=Set-node(expr, timerId, exprList) => 

  if exprList = empty then  

  else compileExpr(exprList.last, expr.startLabel)  

   U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 } 

  endif  

  compileExpr(expr, uniqueLabel(s,1))  

  {mk-PRIMITIVE(uniqueLabel(s,1), 

    mk-SET(uniqueLabel(expr,1), timerId, <uniqueLabel(e,1) | e in exprList >, next)) } 

| r=Reset-node(timerId, exprList) => 

  if exprList = empty then  

  else compileExpr(exprList.last, uniqueLabel(r,1))  

   U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 } 

  endif  
  {mk-PRIMITIVE(uniqueLabel(r,1), 

   mk-RESET(timerId, <uniqueLabel(e,1) | e in exprList >, next)) } 

| r=Range-condition(items) => 

 (let iseq = items.setToSeq in 

  {mk-PRIMITIVE(uniqueLabel(r,1), 

   mk-OPERATIONAPPLICATION(sdlTrue.idToNodeAS1, empty, 

    uniqueLabel(r, iseq.length+1))) }  

  { compileExpr(iseq[idx], uniqueLabel(r, idx)) | idx  toSet(1..iseq.length) }  

  { mk-PRIMITIVE(uniqueLabel(r, idx), 

   mk-OPERATIONAPPLICATION(sdlOr, 

    < uniqueLabel(r, idx+1), uniqueLabel(iseq[idx],1) >, 

    if idx=1 then next else iseq[idx-1].startLabel endif)) 

  | idx  toSet(1..iseq.length) }  

  { mk-PRIMITIVE(uniqueLabel(r, 0), mk-BREAK(undefined)) } 

 endlet) 

The Range-condition above is computed as follows. First, a true value is evaluated. Then all items 

are sequentialized and evaluated from the last to the first; the results are cumulated using AND. 

Afterwards, the enclosing scope is left using a break. 
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| o=Open-range(id, expr) => 

  compileExpr(expr, uniqueLabel(o, 1))  

  { mk-PRIMITIVE(uniqueLabel(o, 1), 

   mk-OPERATIONAPPLICATION(id.idToNodeAS1, 

    < rangeCheckValue, uniqueLabel(expr, 1) >, next)) } 

| c=Closed-range(r1, r2) => 

  compileExpr(r1, r2.startLabel)  

  compileExpr(r2, uniqueLabel(c, 1))  

  { mk-PRIMITIVE(uniqueLabel(c, 1), 

   mk-OPERATIONAPPLICATION(sdlAnd, < uniqueLabel(r1, 1), uniqueLabel(r2, 1) >, next)) } 

| l=Literal(id) => 

  {mk-PRIMITIVE(uniqueLabel(l,1), 

   mk-OPERATIONAPPLICATION(id.idToNodeAS1, empty, next)) } 

| c=Conditional-expression(boolExpr, consExpr, altExpr) => 

  compileExpr(boolExpr, uniqueLabel(c, 2))  

  compileExpr(consExpr, next)  

  compileExpr(altExpr, next)  

  {mk-PRIMITIVE(uniqueLabel(c,2), 

   mk-OPERATIONAPPLICATION(sdlTrue.idToNodeAS1, empty, uniqueLabel(c, 1))) }  

  { mk-PRIMITIVE(uniqueLabel(c, 1), 

   mk-DECISION(uniqueLabel(boolExpr, 1), 

    { mk-ANSWER(uniqueLabel(c, 2), consExpr.startLabel) }, altExpr.startLabel)) } 

| e=Equality-expression(first, second) => 

  compileExpr(first, second.startLabel)  

  compileExpr(second, uniqueLabel(e,1))  

  {mk-PRIMITIVE(uniqueLabel(e,1), 

   mk-EQUALITY(uniqueLabel(first,1), uniqueLabel(second,1), next)) } 

| o=Operation-application(id, exprList) => 

  if exprList = empty then  

  else compileExpr(exprList.last, uniqueLabel(o,1))  

   U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 } 

  endif  
  {mk-PRIMITIVE(uniqueLabel(o,1), 

   mk-OPERATIONAPPLICATION(id.idToNodeAS1, 

    < uniqueLabel(e, 1) | e in exprList >, 

    next)) } 

| r=Range-check-expression(range, expr) => 

  compileExpr(expr, uniqueLabel(r,2))  

  compileExpr(range, undefined)  

  {mk-PRIMITIVE(uniqueLabel(r,2), 

   mk-SETRANGECHECKVALUE(uniqueLabel(expr,1), uniqueLabel(r,1))) }  

  {mk-PRIMITIVE(uniqueLabel(r,1), 

   mk-SCOPE(undefined, , range.startLabel, undefined, next)) } 

| v=Variable-access(id) => 

  {mk-PRIMITIVE(uniqueLabel(v,1), mk-VAR(id, next)) } 

| n=Now-expression() => 

  {mk-PRIMITIVE(uniqueLabel(n,1), mk-SYSTEMVALUE(kNow, next)) } 

| p=Parent-expression() => 

  {mk-PRIMITIVE(uniqueLabel(p,1), mk-SYSTEMVALUE(kParent, next)) } 

| o=Offspring-expression() => 

  {mk-PRIMITIVE(uniqueLabel(o,1), mk-SYSTEMVALUE(kOffspring, next)) } 

| s=Self-expression() => 

  {mk-PRIMITIVE(uniqueLabel(s,1), mk-SYSTEMVALUE(kSelf, next)) } 

| s=Sender-expression() => 

  {mk-PRIMITIVE(uniqueLabel(s,1), mk-SYSTEMVALUE(kSender, next)) } 
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| t=Timer-active-expression(id, exprList) => 

  if exprList = empty then  

  else compileExpr(exprList.last, uniqueLabel(t,1))  

   U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 } 

  endif  
  {mk-PRIMITIVE(uniqueLabel(t,1), 

   mk-TIMERACTIVE(id, < uniqueLabel(e, 1) | e in exprList >, next)) } 

| a=Any-expression(id) => 

  {mk-PRIMITIVE(uniqueLabel(a,1), mk-ANYVALUE(id, next)) } 

| v=Value-returning-call-node(*, procedureId, exprList) => 

  if exprList = empty then  

  else compileExpr(exprList.last, uniqueLabel(v,1))  

   U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 } 

  endif  
  (let paramDef = procedureId.idToNodeAS1.s-Procedure-formal-parameter-seq in 

   {mk-PRIMITIVE(uniqueLabel(v,1), 

    mk-CALL(procedureId, 

     < ( if paramDef[idx]  In-parameter 

      then uniqueLabel(exprList[idx], 1) 

      else exprList[idx] 

      endif ) 

     | idx in (1..exprList.length )>, uniqueLabel(v,1), 

     next)) } 

  endlet) 

This concludes the definition of the expression compilation function. 

endcase // end of the compileExpr function definition 

F3.2.2.4 Start labels 

This clause introduces the function startLabel, which defines the start labels of all behavioural syntax 

constructs. 

startLabel(x: DEFINITIONAS1): LABEL =def 

 case x of 

 | v=Variable-definition(*, *, init) => 

  if init = undefined then undefined else init.startLabel endif 

 | s=State-start-node(*,*, trans) => startLabel(trans) 

 | p=Procedure-start-node(*, trans) => startLabel(trans) 

 | i=Input-node(*, *, *, *, *, trans) => startLabel(trans) 

 | s=Spontaneous-transition(*, *, trans) => startLabel(trans) 

 | c=Continuous-signal(*, *, *, trans) => startLabel(trans) 

 | c=Connect-node(*, *, trans) => startLabel(trans) 

 | f=Free-action(*, trans) => startLabel(trans) 

 | t=Transition(nodes, endnode) => 

  if t.parentAS1.parentAS1  State-node then uniqueLabel(t,1) // insert the Leavestatenode 

  elseif nodes = empty then startLabel(endnode) 

  else startLabel(nodes.head) 

  endif 
 | g=Graph-node(action, *) => startLabel(action) 

 | a=Assignment(*, expr) => startLabel(expr) 

 | o= Output-node(*, expr, dest, *) => 

  if dest  undefined then startLabel(dest) 

  elseif expr = empty then uniqueLabel(o,1) 

  else startLabel(expr.head) endif 

 | c=Create-request-node(*, exprList) => 

  if exprList = empty then uniqueLabel(c,1) else exprList.head.startLabel endif 

 | c=Call-node(*, *, exprList) => 

  if exprList = empty then uniqueLabel(c,1) else exprList.head.startLabel endif 

 | c=Compound-node(*, *, *, *, trans, *) => uniqueLabel(c,1) 

 | s= Set-node(when, *, *) => startLabel(when) 
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 | r=Reset-node(*, exprList) => 

  if exprList = empty then uniqueLabel(r,1) else exprList.head.startLabel endif 

 | t=Terminator(terminator, *) => startLabel(terminator) 

 | n=Named-nextstate(*, undefined) => uniqueLabel(n,1) 

 | n=Named-nextstate(*, Nextstate-parameters(exprList, *)) => 

  if exprList = empty then uniqueLabel(n,1) else exprList.head.startLabel endif 

 | n=Dash-nextstate(*) => uniqueLabel(n,1) 

 | s= Stop-node() => uniqueLabel(s,1) 

 | a=Action-return-node() => uniqueLabel(a,1) 

 | v=Value-return-node(expr) => uniqueLabel(v,1) 

 | n=Named-return-node(expr) => uniqueLabel(n,1) 

 | j= Join-node(*) => uniqueLabel(j,1) 

 | b= Break-node(*) => uniqueLabel(b,1) 

 | c= Continue-node(*) => uniqueLabel(c,1) 

 | d=Decision-node(question, *, *, *) => startLabel(question) 

 | a=Decision-answer (r, *) => startLabel(r) 

 | n=Named-start-node(*, *, trans) => startLabel(trans) 

 | o=Open-range(*, expr) => startLabel(expr) 

 | c=Closed-range(*, *) => uniqueLabel(c,1) 

 | l=Literal(*) => uniqueLabel(l,1) 

 | c=Conditional-expression(*, *, *) => uniqueLabel(c,1) 

 | Equality-expression(first, *) => first.startLabel 

 | r=Range-check-expression(*, expr) => expr.startLabel 

 | v=Variable-access(id) => uniqueLabel(v,1) 

 | o= Operation-application(*, exprList) => 

  if exprList = empty then uniqueLabel(o,1) else exprList.head.startLabel endif 

 | v=Identifier(*, *) => uniqueLabel(v,1) 

 | n=Now-expression() => uniqueLabel(n,1) 

 | s=Self-expression() => uniqueLabel(s,1) 

 | p=Parent-expression() => uniqueLabel(p,1) 

 | o=Offspring-expression() => uniqueLabel(o,1) 

 | s=Sender-expression() => uniqueLabel(s,1) 

 | t=Timer-active-expression(*, exprList) => 

  if exprList = empty then uniqueLabel(t,1) else exprList.head.startLabel endif 

 | a=Any-expression(*) => uniqueLabel(a,1) 

 | v=Value-returning-call-node(*, *, exprList) => 

  if exprList = empty then uniqueLabel(v,1) else exprList.head.startLabel endif 

 endcase 

F3.2.3 SDL-2010 abstract machine programs 

For each SDL-2010 specification, the set of legal system runs are built using the SDL-2010 abstract 

machine and the compilation in clause F3.2.2. 

F3.2.3.1 System initialization 

Starting from any pre-initial state of S0, the initialization rules describe a recursive unfolding of the 

specified system instance according to its initial hierarchical structure. For each SDL-2010 agent 

instance, a corresponding ASM agent is created and initialized. Furthermore, ASM agents are created 

to model links and SDL-2010 agent sets. 

 

Figure F3-3 – Activity phases of SDL-2010 agents and agent sets (level 1) 

executioninitialisation
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During its lifetime, an agent first is in mode "initialisation", where its internal structure is built up. 

Then, it enters the mode "execution" and remains in this mode unless it is terminated. 

F3.2.3.1.1 Pre-initial system state 

This clause states some constraints on the set of initial states S0 of the abstract state modelling a given 

SAM, i.e., the set of pre-initial states of the SAM. Further restrictions are defined in previous clauses, 

marked by the keyword initially. Usually, there is more than one pre-initial system state. It is only 

required that the system starts in one of these states. 

initially 

 if rootNodeAS1.s-Agent-definition  undefined then 

  system.agentAS1 = rootNodeAS1.s-Agent-definition  

  system.owner = undefined  

  system.agentMode1 = initialisation  

  system.program = AGENT-SET-PROGRAM 

 else 
  system.program = undefined 

 endif 

For a given SDL-2010 specification, the initial constraint distinguishes two cases. The first case 

applies when an agent definition is part of the SDL-2010 specification, i.e., when rootNodeAS1.s-

Agent-definition  undefined. Only then is the semantics defined to yield a dynamic behaviour. Since 

the system agent is the root of the agent hierarchy, it has no owner (system.owner = undefined). The 

SAM program of the agent system is the program applying to SDL-2010 agent sets in general. Further 

functions and domains are initialized when this program is executed, or are derived functions or 

derived domains. In the second case, no system agent is defined in the SDL-2010 specification; 

therefore, no behaviour is assigned via program. 

F3.2.3.1.2 Agent set creation, initialization, and removal 

ASM agents modelling SDL-2010 agent sets are created during system initialization and possibly 

dynamically, during system execution. They can be understood as containers that reflect certain 

structural aspects of SDL-2010 systems, in particular agent hierarchy and the connection structure. 

These structural aspects are crucial to the intelligibility of SDL-2010 specifications, and are therefore 

represented in the formal model, too. 

CREATEALLAGENTSETS(ow:AGENT, atd:Agent-type-definition)  

 do forall ad: ad  atd.collectAllAgentDefinitions 

  CREATEAGENTSET(ow, ad) 

 enddo 
 

 where 
   collectAllAgentDefinitions(atd: Agent-type-definition): Agent-definition-set =def 

    if atd.s-Agent-type-identifier = undefined then 

     atd.s-Agent-definition-set 

    else let typedef: Agent-type-definition = atd.s-Agent-type-identifier.idToNodeAS1 in 

      atd.s-Agent-definition-set  typedef.collectAllAgentDefinitions 

     endlet 

    endif 

 endwhere 

SDL-2010 agent sets are created when the surrounding SDL-2010 agent is initialized right after its 

creation. For each agent definition found via collectAllAgentDefinitions, an SDL-2010 agent set is 

created, taking inheritance into account. 

CREATEAGENTSET(ow:SDLAGENT, ad:Agent-definition)  

 let typedef: Agent-type-definition = ad.s-Agent-type-identifier.idToNodeAS1 in 

 extend AGENT with sas 

  sas.agentAS1 := ad 



 

44 Rec. ITU-T Z.100/Annex F3 (01/2015) 

  sas.owner := ow 

  CREATEALLGATES (sas, typedef) 

  sas.program := AGENT-SET-PROGRAM 

  sas.agentMode1 := initialisation 

 endextend 

 endlet 

Creation of an SDL-2010 agent set is modelled by creating an ASM agent and initializing its control 

block. In particular, the node Agent-definition of the AST is assigned to the function agentAS1, the 

owner is determined, and the initial program is set. To complete the creation of the agent set, its 

interface as given by all its gates is created. Thus, these gates are ready to be connected by the owner 

of the agent set, an SDL-2010 agent instance. Further functions and domains are initialized when 

AGENT-SET-PROGRAM is executed, or are derived functions or derived domains. The initial agent 

instances of the considered SDL-2010 agent set are created when this program is executed. Apart 

from the creation of gates, there are strong similarities between this rule macro and the initial 

constraint, because system is an SDL-2010 agent set too. 

The creation of SDL-2010 agent set instances relies on information of the abstract syntax tree. An 

element of domain Agent-definition defines the root from which this information can be accessed. In 

particular, there is an agent type identifier, which is a link to the agent type definition providing the 

internal structure of the agents, and their behaviour. 

AGENT-SET-PROGRAM: 

if Self.agentMode1 = initialisation then 

 INITAGENTSET 

endif 
if Self.agentMode1 = execution then 

 EXECAGENTSET 

endif 

Depending on the current agent mode, level 1, the activity phase is selected. After a single 

initialization step, the agent set is switched to the execution mode. 

INITAGENTSET  

 let typedef: Agent-type-definition = Self.agentAS1.s-Agent-type-identifier.idToNodeAS1 in 

 if typedef.s-Agent-kind = SYSTEM then 

  CREATEALLGATES(Self, typedef) 

 endif 
 CREATEALLAGENTS(Self, Self.agentAS1) 

 Self.agentMode1:= execution 

 endlet 

The initialization of agent sets (and hence also of the agent system) is given by the rule macro 

INITAGENTSET, which is applied in the program AGENT-SET-PROGRAM. During initialization, the 

initial agent instances – in the case of system a single agent instance – are created. After this 

initialization, the ASM agent is switched to the execution mode. 

In case of the SDL-2010 agent set system, the gates of the system instance are created. The reasons 

why this is done during initialization (and not at creation as for other agent sets) are technical. 

REMOVEALLAGENTSETS(ow:SDLAGENT)  

 do forall sas: sas  SDLAGENTSET  sas.owner = ow 

  REMOVEAGENTSET(sas) 

 enddo 

REMOVEAGENTSET(sas:SDLAGENTSET)  

 sas.owner := undefined 

 sas.program := undefined 

Removal of an agent set is modelled by resetting the program (and the owner) to undefined. 
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F3.2.3.1.3 Agent creation, initialization, and removal 

The creation of SDL-2010 agent instances happens during system initialization, and possibly 

dynamically, during system execution. The creation as defined by the rule macro CREATEAGENT 

leaves an agent in what is called "pre-initial state". The agent's "initial state" is reached after agent 

initialization, which is defined subsequently. 

 

Figure F3-4 – Activity phases of SDL-2010 agents: initialization (level 2) 

The initialization of an agent is decomposed into a sequence of phases, as shown in the state diagram 

above. In each of these phases, certain parts of the agent's structure are created. After agent 

initialization, the agent execution is started. 

CREATEALLAGENTS(ow:SDLAGENT, ad:Agent-definition)  

 do forall i: i  1..ad.s-Number-of-instances.s-Initial-number 

  CREATEAGENT(ow, undefined, ad) 

 enddo 

The initial number of agent instances of an agent set is defined in its Agent-definition. The macro 

CREATEALLAGENTS is used during system initialization, and possibly during system execution, when 

agent instances containing agent sets themselves are created dynamically. 

CREATEAGENT(ow:SDLAGENTSET, pa: [SDLAGENT], ad:Agent-type-definition)  

 extend AGENT with sa 

  INITAGENTCONTROLBLOCK(sa, ow, pa, ad) 

  CREATEINPUTPORT(sa) 

  sa.agentMode1 := initialisation 

  sa.agentMode2 := initialising1 

  sa.program := AGENT-PROGRAM 

 endextend 
 

 where 

   INITAGENTCONTROLBLOCK(sa: SDLAGENT, ow:SDLAGENTSET, pa: [SDLAGENT], 

    ad:Agent-type-definition)  

    sa.agentAS1 := ad 

    sa.owner := ow 

    sa.isActive := undefined 

    sa.currentStartNodes :=  

    sa.currentExitStateNodes :=  

    sa.currentConnector := undefined 

    sa.callingProcedureNode := undefined 

    sa.currentSignalInst := undefined 

    sa.parent := if pa  undefined then pa.selfPid else undefined endif 

    sa.sender := nullPid 

    sa.offspring := nullPid 

    sa.selfPid := mk-PID(sa, undefined) 

    if pa  undefined then 

     pa.offspring := mk-PID(sa, undefined) 

    endif 

    let ownerDef: Agent-type-definition = 

initialisation

initialisation

Finished

initialising
State

Machine

initialising2initialising1
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     ow.agentAS1.s-Agent-type-identifier. idToNodeAS1 in 

    if ownerDef. s-Agent-kind  {SYSTEM, BLOCK} then // containing agent set 

     sa.stateAgent := sa 

    elseif ownerDef.s-Agent-kind = PROCESS then // next level agent set 

      sa.stateAgent := ow.owner.stateAgent 

    else 
     sa.stateAgent := sa 

    endif 

    endlet 

 endwhere 

To create an agent, the controlled domain AGENT is extended. The control block of this new agent is 

initialized. An input port for receiving signals from other agents is created and attached to the new 

agent. The setting of agent modes and assignment of a program completes the creation of the agent. 

AGENT-PROGRAM: 

if Self.agentMode1 = initialisation then 

 INITAGENT 

elseif Self.agentMode1 = execution then 

 if Self.ExecRightPresent then 

  EXECAGENT 

 else 
  GETEXECRIGHT 

 endif 

endif 

Depending on the current agent mode level 1, the activity phase is selected. After initialization, the 

agent is switched to the execution mode. Additionally, the agent synchronizes in case it belongs to a 

set of nested agents, in order to obtain an interleaving execution amongst these agents. 

INITAGENT  

 let myDefinition: Agent-type-definition = Self.agentAS1.s-Agent-type-identifier. idToNodeAS1 in 

 if Self.agentMode2 = initialising1 then 

  CREATEAGENTVARIABLES(Self, myDefinition ) 

  CREATEALLAGENTSETS(Self, myDefinition ) 

  CREATESTATEMACHINE(myDefinition .s-State-machine) 

  Self.agentMode2 := initialising2 

 elseif Self.agentMode2 = initialising2 then 

  CREATEALLCHANNELS(Self, myDefinition ) 

   // no implicit links (done by DeliverSignals) 

  Self.agentMode2 := initialisingStateMachine 

 elseif Self.agentMode2 = initialisingStateMachine then 

  INITSTATEMACHINE 

 elseif Self.agentMode2 = initialisationFinished then 

  Self.agentMode1 := execution 

  Self.agentMode2 := startPhase 

 endif 

 endlet 

The initialization of agent instances starts in the "pre-initial state" and consists of four phases, 

triggered by agent modes. In the first phase, the inner "structure" of the agent is built up. This structure 

consists of the agent's local variable instances, its agent sets, and its state machine. A state machine 

is created even if it is not defined in the SDL-2010 specification; in this case, no behaviour is 

associated with the state machine. The information about this structure is drawn from the abstract 

syntax tree, in particular, from the part of tree representing the agent's type definition. 

Once the structure of the agent has been created, channels and links are established. Next, the state 

machine is initialized, i.e., a "hierarchical inheritance state graph" modelling the agent's state machine 

is unfolded in a sequence of steps. Finally, execution is triggered by setting the agent modes. 

REMOVEAGENT(sa:SDLAGENT)  
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 REMOVEALLLINKS(sa) 

 sa.program := undefined 

 sa.owner := undefined 

Removal of an agent is modelled by resetting the program (and the owner) to undefined, and by 

removing all owned link agents. 

F3.2.3.1.4 Procedure creation and initialization 

The creation of SDL-2010 procedure instances happens dynamically, during system execution. The 

creation as defined by the rule macro CREATEPROCEDURE leaves a procedure in what is called "pre-

initial" state. 

 

Figure F3-5 – Activity phases of SDL-2010 agents: firing of transitions (level 4) 

The initialization of a procedure is decomposed into a sequence of phases, as shown in the state 

diagram above. In each of these phases, certain parts of the procedure's structure are created. After 

procedure initialization, the agent execution is continued. 

CREATEPROCEDURE(pd:Procedure-definition, vl: [VALUELABEL], cl:[CONTINUELABEL])  

 CREATEPROCEDUREGRAPH(pd, vl, cl) 

 Self.agentMode3 := initialisingProcedure 

 Self.agentMode4 := initialisingProcedureGraph 

INITPROCEDURE  

 if Self.agentMode4 = initialisingProcedureGraph then 

  INITPROCEDUREGRAPH 

 elseif Self.agentMode4 = initialisationFinished then 

  Self.stateNodesToBeEntered := 

   {mk-STATENODEWITHENTRYPOINT (Self.currentProcedureStateNode, undefined)} 

  Self.agentMode3 := enteringStateNode 

  Self.agentMode4 := startPhase 

  Self.currentLabel := undefined 

 endif 

The initialization of procedure instances starts in the "pre-initial state" and consists of two phases, 

triggered by agent modes. In the first phase, the inner "structure" of the procedure is built up. This 

structure consists of the procedure's local variable instances, and its state machine. The information 

about this structure is drawn from the abstract syntax tree, in particular, from the part of tree 

representing the procedure's type definition. 

Once the structure of the procedure has been created, the state machine is initialized, i.e., a 

"hierarchical inheritance state graph" modelling the procedure's state machine is unfolded in a 

sequence of steps. Finally, execution is triggered by setting the agent modes, and by assigning the 

state node to be entered. 

F3.2.3.1.5 Gate creation 

Exchange of signals between SDL-2010 agents is modelled by means of gates from a controlled 

domain GATE. A gate forms an interface for serial and unidirectional communication between two or 

more agents. 

initialisingProcedure

initialisation

Finished

initialising
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Graph
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CREATEALLGATES(ow:AGENT, atd: Agent-type-definition)  

 do forall gd: gd  atd.collectAllGateDefinitions 

  CREATEGATE(ow, gd) 

 enddo 
 

 where 
   collectAllGateDefinitions(atd: Agent-type-definition): Gate-definition-set =def 

    if atd.s-Agent-type-identifier = undefined then 

     atd.s-Gate-definition-set 

    else 

     let typedef: Agent-type-definition = atd.s-Agent-type-identifier.idToNodeAS1 in 

     atd.s-Gate-definition-set  

     typedef.collectAllGateDefinitions 

     endlet 

    endif 

 endwhere 

SDL-2010 agent sets are created when the surrounding SDL-2010 agent is initialized right after its 

creation. For each gate definition found via collectAllGateDefinitions, a gate is created, taking 

inheritance into account. 

CREATEGATE(ow:AGENT, gd:Gate-definition)  

 if gd.s-In-signal-identifier-set   then 

  extend GATE with g 

   g.myAgent := ow 

   g.gateAS1 := gd 

   g.schedule := empty 

   g.direction := inDir 

  endextend 

 endif 

 if gd.s-Out-signal-identifier-set   then 

  extend GATE with g 

   g.myAgent := ow 

   g.gateAS1 := gd 

   g.schedule := empty 

   g.direction := outDir 

  endextend 

 endif 

For each SDL-2010 gate, one or two elements of the controlled domain GATE (also called "gates") 

are added, depending on whether the gate is uni-directional or bi-directional. The decision of which 

gates to create is based upon the signal identifier sets in the inward and outward direction, 

respectively. For each gate, the owning agent, the AST node representing the gate definition, and the 

direction are assigned to the corresponding functions. Furthermore, the schedule, i.e., the sequence 

of signals waiting to be forwarded, is initialized to be empty. 

CREATEINPUTPORT(ow:AGENT)  

 extend GATE with g 

  g.myAgent := ow 

  g.gateAS1 := undefined 

  g.schedule := empty 

  g.direction := inDir 

  ow.inport := g 

 endextend 

As it has turned out, input ports have strong similarities with elements of the domain GATE (called 

"gates"). Therefore, input ports are modelled as gates, and the same functions are defined and 

initialized. In addition, the created gate explicitly becomes the input port of the owning agent. 

F3.2.3.1.6 Channel creation 

Channels are modelled through unidirectional channel paths connecting a pair of gates. 
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CREATEALLCHANNELS(ow:AGENT, atd:Agent-type-definition)  

 do forall cd: cd  atd.collectAllChannelDefinitions 

  CREATECHANNEL(ow, cd) 

 enddo 
 

 where 
  collectAllChannelDefinitions(atd: Agent-type-definition): Channel-definition-set =def 

   if atd.s-Agent-type-identifier = undefined then 

    atd.s-Channel-definition-set 

   else 

    let typedef: Agent-type-definition = atd.s-Agent-type-identifier.idToNodeAS1 in 

    atd.s-Channel-definition-set  

    typedef .collectAllChannelDefinitions 

    endlet 

   endif 

 endwhere 

Channels are created by agents during the second phase of their initialization. For each element found 

via collectAllChannelDefinitions, a channel is created, taking inheritance into account. 

CREATECHANNEL(ow:AGENT, cd:Channel-definition)  

 do forall cp: cp  cd.s-Channel-path-set 

  CREATECHANNELPATH(ow, cd.s-NODELAY, cp, cd) 

Creating a channel amounts to creating the specified channel paths. 

CREATECHANNELPATH(ow:AGENT, nd:[NODELAY], cp:Channel-path, cd:Channel-definition)  

 let origDef: Gate-definition = cp.s-Originating-gate.idToNodeAS1 in 

 let destDef: Gate-definition = cp.s-Destination-gate.idToNodeAS1 in 

 choose fromGate: fromGate  GATE  fromGate.gateAS1= origDef  

  (OuterGate(ow, fromGate, inDir)  InnerGate(ow, fromGate, outDir) ) 

  choose toGate: toGate  GATE  toGate.gateAS1 = destDef  

    (OuterGate(ow, toGate, outDir)  InnerGate(ow, toGate, inDir) ) 

   CREATELINK(ow,fromGate, toGate, nd, cp.s-Signal-identifier-set, cd) 

  endchoose 

 endchoose 
 

 where 

  OuterGate(ow: AGENT, g: GATE, dir: DIRECTION): BOOLEAN =def 

   g.myAgent = ow.owner  g.direction = dir 

  InnerGate(ow: AGENT, g: GATE, dir: DIRECTION): BOOLEAN =def 

   g.myAgent.owner = ow  g.direction = dir 

 endwhere 

A channel path is modelled as a link between two gates. The gates to be connected have already been 

created together with their agent sets. Originating and destination gates are distinguished, which 

defines the direction of the channel path. The correspondence between gate identifiers (referring to 

the AST) and gate instances is obtained by exploiting the functions myAgent and direction defined 

on gates. 

F3.2.3.1.7 Link creation and removal 

Agents of type LINK model the transport of signals. The behaviour of link agents is defined by the 

ASM program LINK-PROGRAM. 

In addition to modelling explicit channel paths, links are used to model implicit channel paths that 

connect input gates (as defined by the derived function ingates) with the input port of an agent. 

CREATELINK(ow:AGENT, fromGate:GATE, toGate:GATE, nd:[NODELAY], w:In-signal-identifier-set, 

 cd:[Channel-definition])  
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 extend LINKwith l 

  l.channelAS1 := cd 

  l.owner := ow 

  l.from := fromGate 

  l.to := toGate 

  l.noDelay := nd 

  l.with := w 

  l.program := LINK-PROGRAM 

 endextend 

LINK-PROGRAM: 

  if Self.from.queue  empty then 

   let si = Self.from.queue.head in 

    if applicable(si.signalType,si.toArg,si.viaArg,Self.from,Self) then 

     DELETE(si,Self.from) 

     INSERT(si,now+Self.delay,Self.to) 

     si.viaArg : si.viaArg \ 

      Self.from.gateAS1.identifier1, 

       Self.channelAS1.identifier1 

    endif 

   endlet 

  endif 

A link agent models the connection between a pair of gates. Since links are finally combined into 

channel paths and channels, respectively, a delay characteristic is associated with them. Also, the 

signals that can be transported by the link are determined. LINK-PROGRAM defines the dynamic 

behaviour of link agents. 

REMOVEALLLINKS(ow:AGENT)  

 do forall l: l  LINK l.owner = ow 

  REMOVELINK(l) 

 enddo 

REMOVELINK(l:LINK)  

 l.program := undefined 

 l.owner := undefined 

Removal of a link agent is modelled by deleting the program and the owner. 

F3.2.3.1.8 Variable creation 

For each agent, composite state, procedure, and compound node instance, a set of local variables may 

be declared in an SDL-2010 specification. This leads to nested scopes, where a scope is associated 

with each refined state node. 

CREATEAGENTVARIABLES(sa:SDLAGENT, atd:Agent-type-definition)  

 extend STATEID with sid 

  sa.topStateId := sid 

  if sa.stateAgent = sa then 

   sa.state := initAgentState(undefined, sid, undefined, atd.collectAllVariableDefinitions) 

  else 
   sa.stateAgent.state := initAgentState(sa.stateAgent.state, 

    sid, sa.owner.owner.topStateId, atd.collectAllVariableDefinitions) 

  endif 

 endextend 
 

 where 
  collectAllVariableDefinitions(atd: Agent-type-definition): Variable-definition-set =def 

   if atd.s-Agent-type-identifier = undefined then 

    atd.s-Variable-definition-set 

   else 

    let typedef: Agent-type-definition = atd.s-Agent-type-identifier.idToNodeAS1 in 
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    atd.s-Variable-definition-set  

    typedef.collectAllVariableDefinitions 

    endlet 

   endif 

 endwhere 

The outermost scope is associated with the top-level state node of an agent. It is created together with 

that state node. In case of nested process agents, the scopes of contained agents are added to the scope 

of the outermost agent. 

CREATECOMPOSITESTATEVARIABLES(sa:SDLAGENT, sn:STATENODE, 

 cstd:Composite-state-type-definition)  

 extend STATEID with sid 

  sn.stateId := sid 

  sa.stateAgent.state := initAgentState(sa.stateAgent.state, sid, 

   if sn.parentStateNode  undefined then sn.parentStateNode.stateId else undefined endif, 

    cstd.collectAllVariableDefinitions1) 

 endextend 
 

 where 
  collectAllVariableDefinitions1(cstd: Composite-state-type-definition): 

   Variable-definition-set =def 

   if cstd.s-Composite-state-type-identifier = undefined then 

    cstd.s-Variable-definition-set 

   else 

    let typedef: Composite-state-type-definition = 

     cstd.s-Composite-state-type-identifier.idToNodeAS1 in 

    cstd.s-Variable-definition-set  

    typedef .collectAllVariableDefinitions1 

   endlet 

   endif 

 endwhere 

With each composite state, a new scope is associated, which is located below the scope of the parent 

state node. 

CREATEPROCEDUREVARIABLES(sa:SDLAGENT, sn:STATENODE, pd:Procedure-definition)  

 extend STATEID with sid 

  sn.stateId := sid 

  let outParams: Out-parameter* = < p in pd.collectAllProcedureFPars: 

           (p  Out-parameter)> in 

  sa.stateAgent.state := initProcedureState(sa.stateAgent.state, sid, 

   sn.parentStateNode.stateId, pd.collectAllVariableDefinitions2, 

   pd.collectAllProcedureFPars, empty, 

   < p.s-Parameter.identifier1 | p in outParams>) 

  endlet 

 endextend 
 

 where 
  collectAllVariableDefinitions2(pd: Procedure-definition): Variable-definition-set =def 

   if pd.s-Procedure-identifier = undefined then 

    pd.s-Variable-definition-set 

   else 
    let procdef: Procedure-definition = pd.s-Procedure-identifier.idToNodeAS1 in 

    pd.s-Variable-definition-set  

    procdef.collectAllVariableDefinitions2 

    endlet 

   endif 

  collectAllProcedureFPars(pd:Procedure-definition): Procedure-formal-parameter* =def 

   if pd.s-Procedure-identifier = undefined then 

    pd.s-Procedure-formal-parameter-seq 
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   else 
    let procdef: Procedure-definition = pd.s-Procedure-identifier.idToNodeAS1 in 

    procdef.collectAllProcedureFPars ⁀  

    pd.s-Procedure-formal-parameter-seq 

    endlet 

   endif 

 endwhere 

With each procedure state, a new scope is associated, which is located below the scope of the parent 

state node. 

CREATECOMPOUNDNODEVARIABLES(sa:SDLAGENT, scope: SCOPE)  

 extend STATEID with sid 

  sa.currentStateId := sid 

  scopeName(Self, sid) := scope.s-Connector-name 

  scopeContinueLabel(Self, sid) := scope.s-CONTINUELABEL 

  scopeStepLabel(Self, sid) := scope.s-STEPLABEL 

  sa.stateAgent.state := initAgentState(sa.stateAgent.state, sid, 

   sa.currentStateId, scope.s-Variable-definition-set) 

 endextend 

With each compound node, a new scope is associated, which is located below the current scope. 

F3.2.3.1.9 State machine creation and initialization 

The behaviour of an SDL-2010 agent is given by a state machine, which may be omitted if the agent 

is passive. This state machine is modelled as a "hierarchical inheritance graph", which is unfolded 

recursively. 

CREATESTATEMACHINE(smd:[State-machine])  

 CREATETOPSTATEPARTITION(smd) 

When an SDL-2010 agent is created, the macro CREATESTATEMACHINE is applied with the effect 

that the root node (topStateNode) of the "hierarchical inheritance state graph" is created. If the 

SDL-2010 agent has behaviour, the root node is refined (and possibly specialized) subsequently. If 

the agent is passive, no refinement is made. The unfolding of the graph is treated by the macro 

INITSTATEMACHINE. 

If an SDL-2010 agent has behaviour, a "hierarchical inheritance state graph" modelling the agent's 

state machine is built, node-by-node. This graph forms the basis for entering and leaving states, and 

for selecting transitions. Inheritance is taken into account during execution, and is not handled by 

transformations. The unfolding of the graph is controlled by the following macro. 

INITSTATEMACHINE  

 if Self.stateNodesToBeCreated   then 

  CREATESTATENODE 

 elseif Self.statePartitionsToBeCreated   then 

  CREATESTATEPARTITION 

 elseif Self.stateNodesToBeSpecialised   then // these are composite states! 

  CREATEINHERITEDSTATE 

 elseif Self.stateNodesToBeRefined   then 

  CREATESTATEREFINEMENT 

 else 
  Self.agentMode2 := initialisationFinished 

 endif 

Nodes to be created are kept in the agent's state components stateNodesToBeCreated, 

statePartitionsToBeCreated, stateNodesToBeSpecialised, and stateNodesToBeRefined, and are 

treated in that order. Unfolding of the graph updates these state components and ends with the graph 

being completed, i.e., no further nodes to be created. 
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F3.2.3.1.10 Procedure graph creation and initialization 

The behaviour of a procedure is given by a procedure graph. This procedure graph is modelled as a 

"hierarchical inheritance graph", which is unfolded recursively. 

CREATEPROCEDUREGRAPH(pd:Procedure-definition, vl:[VALUELABEL], cl:CONTINUELABEL)  

 CREATEPROCEDURESTATENODE(pd, vl, cl) 

When a procedure is called, the macro CREATEPROCEDUREGRAPH is applied with the effect that the 

root node of the "hierarchical inheritance state graph" modelling the procedure is created. The 

unfolding of the graph is treated by the macro INITPROCEDUREGRAPH. 

INITPROCEDUREGRAPH  

 if Self.stateNodesToBeCreated   then 

  CREATESTATENODE 

 elseif Self.statePartitionsToBeCreated   then 

  CREATESTATEPARTITION 

 elseif Self.stateNodesToBeSpecialised   then // these are composite states! 

  CREATEINHERITEDSTATE 

 elseif Self.stateNodesToBeRefined   then 

  CREATESTATEREFINEMENT 

 else 
  Self.agentMode4 := initialisationFinished 

 endif 

Nodes to be created are kept in the agent's state components stateNodesToBeCreated, 

statePartitionsToBeCreated, stateNodesToBeSpecialised and stateNodesToBeRefined, and are 

treated in that order. Unfolding of the graph updates these state components and ends with the graph 

being completed, i.e., no further nodes to be created. 

F3.2.3.1.11 State node creation 

The creation of state nodes is modelled by extending the controlled domain STATENODE. A macro is 

defined to handle the creation of state nodes. State partitions are also modelled as elements of the 

domain STATENODE, but are not treated in this clause. 

CREATESTATENODE  

 choose snd: snd  Self.stateNodesToBeCreated 

  Self.stateNodesToBeCreated := Self.stateNodesToBeCreated \ {snd} 

  extend STATENODE with sn 

   sn.stateAS1 := snd // used, e.g., as argument for startLabel 

   sn.owner := Self 

   sn.parentStateNode := Self.currentParentStateNode 

   sn.stateNodeKind := stateNode 

   sn.stateName := snd.s-State-name 

   sn.stateTransitions := snd.getStateTransitions 

   sn.startTransitions :=  // updated if the state node is refined 

   if snd.s-Composite-state-type-identifier  undefined then 

    Self.stateNodesToBeRefined := Self.stateNodesToBeRefined  {sn} 

    Self.stateNodesToBeSpecialised := Self.stateNodesToBeSpecialised  {sn} 

    let parent: Composite-state-type-definition = 

     snd.s-Composite-state-type-identifier.idToNodeAS1 in 

      sn.stateDefinitionAS1 := parent 

    endlet 

    endif 

  endextend 

 endchoose 
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State nodes are created as part of a state transition graph, which is unfolded node by node. The nodes 

to be created are kept in the agent's state component stateNodesToBeCreated. If that set is not empty, 

this means that the unfolding of a state transition graph is currently in progress, and some element of 

the set is chosen. When a state node is created, its bookkeeping information is initialized. Since being 

a regular state node, the created state node may have a substructure; it is included in the set of state 

nodes to be refined. 

CREATEPROCEDURESTATENODE(pd:Procedure-definition, vl:[VALUELABEL], cl:CONTINUELABEL)  

 extend STATENODE with sn 

  sn.procedureAS1 := pd 

  sn.owner := Self 

  sn.parentStateNode := Self.currentParentStateNode 

  sn.stateNodeKind := procedureNode 

  sn.stateName := mk-Name("") 

  sn.stateTransitions :=  

  sn.startTransitions :=  // updated if the state node is refined 

  sn.resultLabel := vl 

  Self.stateNodesToBeRefined := {sn} 

  Self.stateNodesToBeCreated :=  

  Self.statePartitionsToBeCreated :=  

  Self.stateNodesToBeSpecialised := {sn} 

  Self.currentProcedureStateNode := sn 

  Self.callingProcedureNode := sn 

  CREATEPROCEDUREVARIABLES(Self,sn,pd) 

  SAVEPROCEDURECONTROLBLOCK(sn,cl) 

 endextend 

Procedure state nodes are the top-level nodes of a procedure graph, which is unfolded node by node 

subsequently. These nodes are created dynamically, when a procedure call is made. Thus, recursive 

procedure calls can be handled in a uniform way. 

F3.2.3.1.12 State partition creation 

The creation of state partitions is modelled by extending the controlled domain STATENODE. Several 

macros are defined to handle the creation of various kinds of state partitions, namely the top state 

partition, (regular) state partitions, and state partitions introduced to model inheritance. 

CREATETOPSTATEPARTITION(smd:[State-machine])  

 extend STATENODE with sn 

  sn.owner := Self 

  Self.topStateNode := sn 

  sn.parentStateNode := undefined 

  sn.stateNodeKind := statePartition 

  sn.stateTransitions :=  

  sn.startTransitions :=   // updated if the state partition is refined 

  if smd  undefined then 

   let parent: Composite-state-type-definition = 

    smd.s-Composite-state-type-identifier.idToNodeAS1 in 

    sn.stateDefinitionAS1 := parent 

   endlet 
   sn.stateName := smd.s-State-name 

   Self.stateNodesToBeRefined := {sn} 

   Self.stateNodesToBeSpecialised := {sn} 

  else 
   sn.stateName := mk-Name("^pdummy^p") 

   Self.stateNodesToBeRefined :=  

   Self.stateNodesToBeSpecialised :=  

  endif 

  Self.stateNodesToBeCreated :=  

  Self.statePartitionsToBeCreated :=  

 endextend 
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The unfolding of the "hierarchical inheritance state graph" modelling an agent's state machine starts 

with the creation of the root node, as defined by the macro CREATETOPSTATEPARTITION. When a root 

node is created, its bookkeeping information is initialized. In particular, the root node is classified as 

a state partition. If the agent has behaviour, the root node has a substructure, and is therefore included 

in the set of state nodes to be refined. Further state components of the agent are reset before starting 

the unfolding of the graph. 

CREATESTATEPARTITION  

 choose spd: spd  Self.statePartitionsToBeCreated 

  Self.statePartitionsToBeCreated := Self.statePartitionsToBeCreated \ {spd} 

  extend STATENODE with sn 

   sn.partitionAS1 := spd // used, e.g., as argument for startLabel 

   sn.owner := Self 

   sn.parentStateNode := Self.currentParentStateNode 

   sn.stateNodeKind := statePartition 

   sn.stateName := spd.s-Name 

   sn.stateTransitions :=  

   sn.startTransitions :=   // updated if the state partition is refined 

   do forall cd: cd  spd.s-Connection-definition-set 

    if cd  Entry-connection-definition then 

     entryConnection(cd.s-Outer-entry-point.adaptEntryPoint, sn) := 

      adaptEntryPoint(cd.s-Inner-entry-point) 

    elseif cd  Exit-connection-definition then 

     exitConnection(cd.s-Inner-exit-point, sn) := cd.s-Outer-exit-point 

    endif 

   enddo 
   Self.currentParentStateNode.statePartitionSet := 

   Self.currentParentStateNode.statePartitionSet  {sn} 

   Self.stateNodesToBeRefined := Self.stateNodesToBeRefined  {sn} 

   Self.stateNodesToBeSpecialised := Self.stateNodesToBeSpecialised  {sn} 

  endextend 

 endchoose 
 

 where 

  adaptEntryPoint(entry: Name  DEFAULT): STATEENTRYPOINT =def 

   if entry = DEFAULT then undefined else entry endif 

 endwhere 

(Regular) state partitions are created as part of a state aggregation node, which is unfolded node by 

node. The partitions to be created are kept in the agent's state component statePartitionsToBeCreated. 

If that set is not empty, this means that the unfolding of a state aggregation node is currently in 

progress, and some element of the set is chosen. When a state partition is created, its bookkeeping 

information is initialized. Modelling a state partition, the created state node may have a substructure, 

and is therefore included in the set of state nodes to be refined. 

CREATEINHERITEDSTATE  

 choose sns: sns  Self.stateNodesToBeSpecialised 

  Self.stateNodesToBeSpecialised := Self.stateNodesToBeSpecialised \ {sns} 

  let cstd: Composite-state-type-definition = 

   sns.stateDefinitionAS1 in 

   if cstd.s-Composite-state-type-identifier  undefined then 

    let parent: State-node = cstd.s-Composite-state-type-identifier.idToNodeAS1 in 

    extend STATENODE with sn 

     sn.stateAS1 := parent 

     sn.owner := Self 

     sn.parentStateNode := sns.parentStateNode 

     sn.stateNodeKind := sns.stateNodeKind 

     sn.stateName := sns.stateName 

     sn.stateTransitions :=  

     sn.startTransitions :=  // updated if the state node is refined 
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     sns.inheritedStateNode := sn 

     Self.stateNodesToBeRefined := Self.stateNodesToBeRefined  {sn} 

     Self.stateNodesToBeSpecialised := Self.stateNodesToBeSpecialised  {sn} 

    endextend 

    endlet 

   else 
    sns.inheritedStateNode := undefined 

   endif 

  endlet 

 endchoose 

Specialization of composite state types is modelled by adding another dimension to the hierarchical 

state graph, yielding a "hierarchical inheritance state graph". Formally, specialization is a relation 

between composite state types. In the state graph, it is modelled by an inheritance relation among 

state node instances. More specifically, if a state node is refined, and the refinement is defined using 

specialization, then a root node that is inherited by the refined state node, and has the composite state 

type being specialized, is created. By adding the root node to the set of state nodes to be refined, a 

"hierarchical inheritance state graph" modelling the specialization is subsequently attached to this 

root node. 

F3.2.3.1.13 Composite state creation 

All (regular) state nodes, state partitions, and procedure nodes are candidates for refinement and, if 

refined, for specialization. Refinements are defined by a composite state type, which includes another 

composite state type in case of specialization. In this clause, several macros treating these aspects are 

introduced. 

CREATESTATEREFINEMENT  

 choose snr: snr  Self.stateNodesToBeRefined 

  Self.stateNodesToBeRefined := Self.stateNodesToBeRefined \ {snr} 

  Self.currentParentStateNode := snr 

  if snr.stateNodeKind = procedureNode then 

   CREATEPROCEDUREVARIABLES(Self, snr, snr.procedureAS1) 

   CREATEPROCEDUREGRAPHNODES(snr, snr.procedureAS1.s-Procedure-graph) 

  else 

   let parent: Composite-state-type-definition = snr.stateDefinitionAS1 in 

   CREATECOMPOSITESTATEVARIABLES(Self, snr, 

    parent) 

   CREATECOMPOSITESTATE(snr, 

    parent) 

   endlet 

  endif 

 endchoose 

When a state node, state partition, or procedure node is created, it is added to a set of state nodes to 

be refined. In the macro CREATESTATEREFINEMENT, an arbitrary element of this set is selected, and 

it is checked whether a refinement applies. Refinements are then treated by the macro 

CREATECOMPOSITESTATE. 

CREATECOMPOSITESTATE(sn:STATENODE, cstd:Composite-state-type-definition)  

 let sr = cstd.s-implicit in 

  if sr  Composite-state-graph then 

   CREATECOMPOSITESTATEGRAPH(sn,sr) 

  elseif sr  State-aggregation-node then 

   CREATESTATEAGGREGATIONNODE(sn,sr) 

  endif 

 endlet 

If a state is structured, it is refined into either a composite state graph or a state aggregation node. 

Based on this distinction, further rule macros are applied. 
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CREATECOMPOSITESTATEGRAPH(psn:STATENODE, csgd:Composite-state-graph)  

 psn.stateNodeRefinement := compositeStateGraph 

 psn.startTransitions := getStartTransitions({csgd.s-State-transition-graph.s-State-start-node})  

         getStartTransitions(csgd.s-Named-start-node-set) 

 psn.freeActions := getFreeActions(csgd.s-State-transition-graph.s-Free-action-set) 

 CREATESTATETRANSITIONGRAPH(psn,csgd.s-State-transition-graph.s-State-node-set) 

Creating a composite state graph means creating its state transition graph. 

CREATESTATETRANSITIONGRAPH(psn:STATENODE, nodes: State-node-set )  

 Self.stateNodesToBeCreated := nodes 

 Self.currentParentStateNode := psn 

Creating a state transition graph means creating its state nodes. Creation of state nodes is performed 

in a series of subsequent ASM steps. These steps are triggered by assigning the state node definitions 

to the agent's state component stateNodesToBeCreated. 

CREATEPROCEDUREGRAPHNODES(psn:STATENODE, pg:Procedure-graph)  

 psn.stateNodeRefinement := compositeStateGraph 

 psn.startTransitions := getStartTransitions({pg.s-Procedure-start-node}) 

 psn.freeActions := getFreeActions(pg.s-Free-action-set) 

 CREATESTATETRANSITIONGRAPH(psn, pg.s-State-node-set) 

 Self.stateNodesToBeCreated := pg.s-State-node-set 

 Self.currentParentStateNode := psn 

Creating a procedure graph means creating its state nodes. 

CREATESTATEAGGREGATIONNODE(psn:STATENODE, sand:State-aggregation-node)  

 psn.stateNodeRefinement := stateAggregationNode 

 Self.statePartitionsToBeCreated := sand.s-State-partition-seq.toSet 

 Self.currentParentStateNode := psn 

 psn.statePartitionSet :=  

Creating a state aggregation node means creating its state partitions, which is performed in a series 

of subsequent ASM steps. These steps are triggered by assigning the state partition definitions to the 

agent's state component statePartitionsToBeCreated. 

F3.2.3.2 System execution 

After initialization, SDL-2010 agents start their execution. The execution of the system is modelled 

by the concurrent execution of all its agents. 

F3.2.3.2.1 Agent set execution 

EXECAGENTSET  

  let child = take({ag  SDLAGENT: ag.owner = Self  ag.agentMode1 = initialisation}) in 

   if child = undefined then 

    DELIVERSIGNALS 

   endif 

  endlet 
 

The behaviour of agent sets is formalized below. 

DELIVERSIGNALS  

  choose g: g  Self.ingates  g.queue  empty 

   let si = g.queue.head in 

    DELETE(si,g) 

    if si.toArg  PID  si.toArg  undefined then 

     choose sa: sa  SDLAGENT  sa.owner = Self  sa.selfPid = si.toArg 

      INSERT(si, si.arrival, sa.inport) 

     endchoose 

    else 
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     choose sa: sa  SDLAGENT  sa.owner = Self 

      INSERT(si, si.arrival, sa.inport) 

     endchoose 

    endif 

   endlet 

  endchoose 

F3.2.3.2.2 Agent execution 

The execution of SDL-2010 agents is modelled by a start phase followed by alternating phases, 

namely transition selection and transition firing. To distinguish between these phases, corresponding 

agent modes are defined. When in agent mode selectingTransition (agentMode2), the agent attempts 

to select a transition, obeying a number of constraints. In agent mode firingTransition, a previously 

selected transition is fired. 

 

Figure F3-6 – Activity phases of SDL-2010 agents: execution (level 2) 

An agent reaches the execution phase after it has completed its initialization. The execution phase 

consists of three sub-phases as shown in the state diagram. Two of these sub-phases will in turn be 

refined, which is indicated by the double line. 

EXECAGENT  

 if Self.agentMode2 = startPhase then 

  EXECUTIONSTARTPHASE 

 elseif Self.agentMode2 = firingTransition then 

  FIRETRANSITION 

 elseif Self.agentMode2 = selectingTransition then 

  SELECTTRANSITION 

 elseif Self.agentMode2 = stopping then 

  STOPPHASE 

 endif 

The execution of agents is given by the rule macro EXECAGENT. Depending on the current agent 

mode, the corresponding execution phases are selected. 

GETEXECRIGHT  

 if Self.stateAgent.isActive = undefined then 

  Self.stateAgent.isActive := Self 

 endif 

RETURNEXECRIGHT  

 Self.stateAgent.isActive := undefined 

ExecRightPresent(sa:SDLAGENT): BOOLEAN =def 

 let myDef: Agent-type-definition = sa.owner.agentAS1.s-Agent-type-identifier.idToNodeAS1 in 

 sa.stateAgent.isActive = sa  myDef.s-Agent-kind  {BLOCK, SYSTEM} 

 endlet 
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F3.2.3.2.3 Starting agent execution 

When the execution phase starts, several initializations are made: the set of state nodes to be entered 

is initialized to consist of the top state node; furthermore, the execution is switched to entering state 

nodes. 

EXECUTIONSTARTPHASE  

 Self.isActive := undefined 

 Self.stateNodesToBeEntered := 

  {mk-STATENODEWITHENTRYPOINT (Self.topStateNode,undefined)} 

 Self.agentMode2 := firingTransition 

 Self.agentMode3 := enteringStateNode 

 Self.agentMode4 := startPhase 

 Self.currentLabel := undefined 

F3.2.3.2.4 Transition selection 

In agent mode selectingTransition (agentMode2), an SDL-2010 agent searches for a fireable 

transition. SDL-2010 imposes certain rules on the search order. For instance, priority input signals 

have to be checked before ordinary input signals, and these have in turn to be checked before 

continuous signals can be consumed. Furthermore, a transition emanating from a substate has higher 

priority than a conflicting transition emanating from any of the containing states. Finally, redefined 

transitions take precedence over conflicting inherited transitions. These and some more constraints 

have to be observed when formalizing the transition selection. 

 

Figure F3-7 – Activity phases of SDL-2010 agents: selecting transition (level 3) 

In order to structure the transition selection, several agent mode levels are defined. The uppermost 

level is shown in the diagram, where the agent mode selectingTransition is refined into four 

sub-modes (agentMode3). Some of these sub-modes will in turn be refined later. 

SELECTTRANSITION  

 if Self.agentMode3 = startSelection then 

  SELECTTRANSITIONSTARTPHASE 

 elseif Self.agentMode3 = selectStartTransition then 

  SELECTSTARTTRANSITION 

 elseif Self.agentMode3 = selectExitTransition then 

  SELECTEXITTRANSITION 
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 elseif Self.agentMode3 = selectFreeAction then 

  SELECTFREEACTION 

 elseif Self.agentMode3 = selectPriorityInput then 

  SELECTPRIORITYINPUT 

 elseif Self.agentMode3 = selectInput then 

  SELECTINPUT 

 elseif Self.agentMode3 = selectContinuous then 

  SELECTCONTINUOUS 

 endif 

Transition selection starts with an attempt to select a start transition, free action, priority input, an 

ordinary input, and finally, a continuous signal (in that order). If no transition has been selected, the 

selection process is repeated/aborted. The evaluation of provided expressions and continuous 

expressions may alter the local state of the process, which may lead to different results depending on 

the evaluation order. 

TRANSITIONFOUND(t:SEMTRANSITION)  

 Self.currentParentStateNode := Self.stateNodeChecked.parentStateNode 

 Self.previousStateNode := Self.stateNodeChecked 

 Self.currentStateId := Self.stateNodeChecked.parentStateNode.stateId 

 Self.currentLabel := t.s2-LABEL // second label 

 Self.agentMode2 := firingTransition 

 Self.agentMode3 := firingAction 

 RETURNEXECRIGHT 

As soon as a selectable transition is found, the start label of the transition is assigned, and the agent 

modes are set to firingTransition and firingAction, respectively. Also, the current parent state node is 

set, which determines the current state name scope. This scope information is used when an 

ENTERSTATENODE-primitive is evaluated. 

STARTTRANSITIONFOUND(t:STARTTRANSITION, psn:STATENODE)  

 Self.currentParentStateNode := psn 

 Self.currentStateId := psn.stateId 

 Self.currentLabel := t.s-LABEL 

 Self.agentMode2 := firingTransition 

 Self.agentMode3 := firingAction 

 RETURNEXECRIGHT 

As soon as a selectable start transition is found, the start label of the transition is assigned, and the 

agent modes are set to firingTransition and firingAction, respectively. Also, the current parent state 

node is set, which determines the current state name scope. This scope information is used when an 

ENTERSTATENODE-primitive is evaluated. 

EXITTRANSITIONFOUND(et:SEMTRANSITION, psn:STATENODE)  

 Self.currentParentStateNode := psn 

 Self.currentStateId := psn.stateId 

 Self.currentLabel := et.s-LABEL 

 Self.agentMode2 := firingTransition 

 Self.agentMode3 := firingAction 

 RETURNEXECRIGHT 

As soon as a selectable exit transition is found, the start label of the transition is assigned, and the 

agent modes are set to firingTransition and firingAction, respectively. Also, the current parent state 

node is set, which determines the current state name scope. This scope information is used when a 

LEAVESTATENODE-primitive is evaluated. 

FREEACTIONFOUND(fa:FREEACTION, psn:STATENODE)  

 Self.currentParentStateNode := psn 

 Self.currentStateId := psn.stateId 

 Self.currentLabel := fa.s-LABEL 

 Self.agentMode2 := firingTransition 
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 Self.agentMode3 := firingAction 

 RETURNEXECRIGHT 

As soon as a free action is found, the start label of the transition is assigned, and the agent modes are 

set to firingTransition and firingAction, respectively. Also, the current parent state node is set, which 

determines the current state name scope. 

F3.2.3.2.5 Starting selection of transitions 

When the selection of transition starts, several initializations are made: the input port is "frozen", 

meaning that its state at the beginning of the selection is the basis for this selection cycle. This does 

not prevent signal instances to arrive while the selection is active; however, these signals will not be 

considered before the next selection cycle. Furthermore, the selection is switched to checking priority 

signals. 

SELECTTRANSITIONSTARTPHASE  

 if Self.currentStartNodes   then 

  Self.stateNodeChecked := undefined 

  Self.agentMode3 := selectStartTransition 

 elseif Self.currentExitStateNodes   then 

  Self.stateNodeChecked := undefined 

  Self.agentMode3 := selectExitTransition 

 elseif Self.currentConnector  undefined then 

  Self.agentMode3 := selectFreeAction 

 else 
  Self.inputPortChecked := Self.inport.queue 

  Self.agentMode3 := selectPriorityInput 

  Self.agentMode4 := startPhase 

 endif 

F3.2.3.2.6 Start transition selection 

Selection of a start transition is performed by checking, for all current start nodes, whether a start 

transition can be selected. 

SELECTSTARTTRANSITION  

 if Self.stateNodeChecked = undefined then 

  let snwen = take(Self.currentStartNodes) in 

   if snwen  undefined then 

    Self.currentStartNodes := Self.currentStartNodes \ {snwen} 

    Self.startNodeChecked := snwen 

    Self.stateNodeChecked := snwen.s-STATENODE 

   endif 

  endlet 

 else 

  let t = take({tr  Self.stateNodeChecked.startTransitions: 

   tr.s-STATEENTRYPOINT = Self.startNodeChecked.s-implicit}) in 

   if t  undefined then 

    STARTTRANSITIONFOUND(t, Self.startNodeChecked.s-STATENODE) 

   else 
    Self.stateNodeChecked := 

     take({sn1  Self.stateNodesToBeChecked: 

       directlyInheritsFrom(Self.stateNodeChecked,sn1)}) 

   endif 

  endlet 

 endif 

Start transitions are associated directly with the refined node, and are distinguished by their state entry 

point. 
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F3.2.3.2.7 Exit transition selection 

SELECTEXITTRANSITION  

 let snwex = take(Self.currentExitStateNodes) in 

 if Self.stateNodeChecked = undefined then 

   if snwex  undefined then 

    Self.currentExitStateNodes := Self.currentExitStateNodes \ {snwex} 

    Self.exitNodeChecked := snwex 

    Self.stateNodeChecked := snwex.s-STATENODE 

   endif 

 else 

  let t = take({tr  Self.stateNodeChecked.stateTransitions.exitTransitions: 

   tr.s-STATEEXITPOINT = Self.exitNodeChecked.s-STATEEXITPOINT}) in 

   if t  undefined then 

    EXITTRANSITIONFOUND(t,snwex.s-STATENODE) 

   else 
    Self.stateNodeChecked := 

     take({sn1  Self.stateNodesToBeChecked: 

       directlyInheritsFrom(Self.stateNodeChecked,sn1)}) 

   endif 

  endlet 

 endif 

 endlet 
 

Exit transitions are associated with the containing node, and are distinguished by their state exit point. 

F3.2.3.2.8 Free action selection 

SELECTFREEACTION  

  let fa = take({elem  Self.stateNodeChecked.freeActions: 

   elem.s-Connector-name = Self.currentConnector.s-Connector-name}) in 

   if fa  undefined then 

    Self.currentConnector := undefined 

    FREEACTIONFOUND(fa, Self.currentParentStateNode) 

   else 
    Self.stateNodeChecked := 

     take({sn1  Self.stateNodesToBeChecked: 

       directlyInheritsFrom(Self.stateNodeChecked,sn1)}) 

   endif 

  endlet 

Free actions are associated directly with the refined node, and are distinguished by their connector 

name. 

F3.2.3.2.9 Priority input selection 

Selection of a priority input is performed by checking, for each signal instance of the agent's input 

port, all current state nodes. Inheritance is taken into account by checking, for each state node, the 

inherited state nodes. 
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Figure F3-8 – Activity phases of SDL-2010 agents: selecting priority inputs (level 4) 

The selection of a priority input consists of the sub-phases (agentMode4) shown in the diagram. At 

any time during the selection phase, an attempt to select a spontaneous signal may be made, depending 

on the value of the monitored predicate Self.spontaneous. 

SELECTPRIORITYINPUT  

 if Self.agentMode4 = startPhase then 

  SELPRIORITYINPUTSTARTPHASE 

 elseif Self.agentMode4 = selectionPhase then 

  SELPRIORITYINPUTSELECTIONPHASE 

 elseif Self.agentMode4 = selectSpontaneous then 

  SELECTSPONTANEOUS 

 endif 

This ASM macro defines the upper level control structure of the priority input selection. Depending 

on the agent mode agentMode4, further action is defined in the corresponding ASM macro. This 

control structure is part of the previous state diagram. 

SELPRIORITYINPUTSTARTPHASE  

 if Self.inputPortChecked  empty then 

  Self.signalChecked := Self.inputPortChecked.head 

  Self.SignalSaved := false 

  Self.stateNodesToBeChecked := collectCurrentSubStates(Self.topStateNode) 

  Self.stateNodeChecked := undefined 

  Self.agentMode4 := selectionPhase 

 else 
  Self.agentMode3 := selectContinuous 

  Self.agentMode4 := startPhase 

  RETURNEXECRIGHT 

 endif 

When the selection starts, it is checked whether the input port carries signals. If so, several 

initializations are made: the first signal instance to be checked is determined, the state nodes to be 

checked are set, and the selection is activated. If the input port is empty, the selection of continuous 

signals is triggered. 

SELPRIORITYINPUTSELECTIONPHASE  

 if Self.stateNodeChecked = undefined then 

  NEXTSTATENODETOBECHECKED 

 elseif Self.spontaneous then 

  Self.agentMode4 := selectSpontaneous 

  Self.agentMode5 := selectionPhase 

 else 

  let t = take({tr  Self.stateNodeChecked.stateTransitions.priorityInputTransitions: 

   tr.s-SIGNAL = Self.signalChecked.signalType}) in 

   if t  undefined then 

    Self.currentSignalInst := Self.signalChecked 

    Self.sender := Self.signalChecked.signalSender 
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    DELETE(Self.signalChecked, Self.inport) 

    TRANSITIONFOUND(t) 

   else 
    Self.stateNodeChecked := undefined 

   endif 

  endlet 

 endif 
 

 where 

  NEXTSTATENODETOBECHECKED  

   if Self.stateNodesToBeChecked     Self.SignalSaved then 

    SELECTNEXTSTATENODE 

   else 
    NEXTSIGNALTOBECHECKED 

    Self.stateNodesToBeChecked := collectCurrentSubStates(Self.topStateNode) 

    Self.stateNodeChecked := undefined 

   endif 

  SELECTNEXTSTATENODE  

   let sn = Self.stateNodesToBeChecked.selectNextStateNode in 

    if sn = undefined then 

     UNDEFINEDBEHAVIOUR 

    elseif sn.stateNodeKind = procedureNode then 

     Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \ 

      collectCurrentSubStates(sn.getPreviousStatePartition) 

     // only state partitions of the state machine to be considered here 

    elseif sn.stateNodeKind = statePartition then 

     Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \ {sn} 

    elseif sn.stateNodeKind = stateNode then 

     let curSigId: Identifier = Self.signalChecked.signalType in 

      Self.stateNodeChecked := sn 

      Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \ {sn} 

Self.transitionsToBeChecked := 

 {t  sn.stateTransitions.inputTransitions: t.s-SIGNAL = curSigId} 

      if Self.signalChecked.signalType  

       sn.stateAS1.s-Save-signalset.s-Signal-identifier-set then 

        Self.SignalSaved := true 

      endif 

     endlet 

    endif 

   endlet 

  NEXTSIGNALTOBECHECKED  

   let si = nextSignal(Self.signalChecked, Self.inputPortChecked) in 

    if si  undefined then 

     Self.signalChecked := si 

     Self.SignalSaved := false 

    else 
     Self.agentMode3 := selectInput 

     Self.agentMode4 := startPhase 

     RETURNEXECRIGHT 

    endif 

   endlet 

 endwhere 

For a given signal instance in the input port, all current state nodes of the agent are checked in an 

arbitrary order, beginning, for each state partition, with the innermost state node. The latter reflects 

the priority among conflicting transitions. Furthermore, when a particular state node is being checked, 

the inherited state nodes are checked next, i.e., inheritance is taken into account at execution time and 

not handled by transformations. As a redefinition takes precedence over the redefined transition, the 
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inherited nodes are to be checked only if the current signal instance is neither saved nor consumed in 

the current state. 

If the given signal instance is not a priority input in the current states of the agent, the next signal 

instance of the input port is checked. This is repeated until either all signals have been checked, or a 

priority input has been found. In the former case, the selection of an input transition is triggered. 

F3.2.3.2.10 Input selection 

Selection of an input is performed by checking, for each signal instance of the agent's input port, all 

current state nodes until a signal instance satisfying certain conditions is found. If no such signal 

instance is found, the selection of a continuous signal is triggered. 

 

Figure F3-9 – Activity phases of SDL-2010 agents: selecting inputs (level 4) 

The selection of an ordinary input consists of the sub-phases shown in the state diagram. In 

comparison to the selection of a priority input, an evaluation phase is added. This phase is entered 

when a provided expression has to be evaluated. At any time during the selection phase, an attempt 

to select a spontaneous signal may be made, depending on the value of the monitored predicate 

Self.spontaneous. 

SELECTINPUT  

 if Self.agentMode4 = startPhase then 

  SELINPUTSTARTPHASE 

 elseif Self.agentMode4 = selectionPhase then 

  SELINPUTSELECTIONPHASE 

 elseif Self.agentMode4 = evaluationPhase then 

  SELINPUTEVALUATIONPHASE 

 elseif Self.agentMode4 = selectSpontaneous then 

  SELECTSPONTANEOUS 

 endif 

This ASM macro defines the upper level control structure of the input selection. Depending on the 

agent mode agentMode3, further action is defined in the corresponding ASM macro. This control 

structure is part of the previous state diagram. 

SELINPUTSTARTPHASE  

 if Self.inputPortChecked  empty then 

  Self.signalChecked := Self.inputPortChecked.head 

  Self.SignalSaved := false 

  Self.stateNodesToBeChecked := collectCurrentSubStates(Self.topStateNode) 

  Self.stateNodeChecked := undefined 

  Self.transitionsToBeChecked :=  

  Self.agentMode4 := selectionPhase 

 else 
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  Self.agentMode3 := selectContinuous 

  Self.agentMode4 := startPhase 

  RETURNEXECRIGHT 

 endif 

When the selection starts, it is checked whether the input port contains signals. If so, several 

initializations are made: the first signal instance to be checked is determined, the state nodes to be 

checked are set, the transitions to be checked are reset, and the selection is activated. If the input port 

is empty, the selection of a continuous signal is triggered. 

SELINPUTSELECTIONPHASE  

 if Self.stateNodeChecked = undefined then 

  NEXTSTATENODETOBECHECKED1 

 elseif Self.spontaneous then 

  Self.agentMode4 := selectSpontaneous 

  Self.agentMode5 := selectionPhase 

 elseif Self.transitionsToBeChecked   then 

  choose t: t  Self.transitionsToBeChecked 

   Self.transitionsToBeChecked := Self.transitionsToBeChecked \ {t} 

   if t.s-LABEL  undefined then 

    EVALUATEENABLINGCONDITION(t) 

   else 
    Self.currentSignalInst := Self.signalChecked 

    Self.sender := Self.signalChecked.signalSender 

    DELETE(Self.signalChecked,Self.inport) 

    TRANSITIONFOUND(t) 

   endif 

  endchoose 

 else 
  Self.stateNodeChecked := undefined 

 endif 
 

 where 

  EVALUATEENABLINGCONDITION(t:SEMTRANSITION)  

   Self.transitionChecked := t 

   Self.currentStateId := Self.stateNodeChecked.parentStateNode.stateId 

   Self.currentLabel := t.s-LABEL 

   Self.agentMode4 := evaluationPhase 

  NEXTSTATENODETOBECHECKED1  

   if Self.stateNodesToBeChecked     Self.SignalSaved then 

    SELECTNEXTSTATENODE1 

   else 

    if  Self.SignalSaved then  // implicit transition 

     DELETE(Self.signalChecked,Self.inport) 

    endif 
    NEXTSIGNALTOBECHECKED1 

    Self.stateNodesToBeChecked := collectCurrentSubStates(Self.topStateNode) 

    Self.stateNodeChecked := undefined 

   endif 

  SELECTNEXTSTATENODE1  

   let sn = Self.stateNodesToBeChecked.selectNextStateNode in 

    if sn = undefined then 

     UNDEFINEDBEHAVIOUR 

    elseif sn.stateNodeKind = procedureNode then 

     Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \ 

      collectCurrentSubStates(sn.getPreviousStatePartition) 

     // only state partitions of the state machine to be considered here 

    elseif sn.stateNodeKind = statePartition then 

     Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \ {sn} 
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    elseif sn.stateNodeKind = stateNode then 

     Self.stateNodeChecked := sn 

     Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \ {sn} 

     Self.transitionsToBeChecked := {t sn.stateTransitions.inputTransitions: 

      t.s-SIGNAL = Self.signalChecked.signalType} 

     if Self.signalChecked.signalType  

      sn.stateAS1.s-Save-signalset.s-Signal-identifier-set then 

      Self.SignalSaved := true 

     endif 

    endif 

   endlet 

  NEXTSIGNALTOBECHECKED1  

   let si = nextSignal(Self.signalChecked,Self.inputPortChecked) in 

    if si  undefined then 

     Self.signalChecked := si 

     Self.SignalSaved := false 

    else 
     Self.agentMode3 := selectContinuous 

     Self.agentMode4 := startPhase 

     RETURNEXECRIGHT 

    endif 

   endlet 

 endwhere 

For a given signal instance in the input port, all current state nodes of the agent are checked in an 

arbitrary order, beginning, for each state partition, with the innermost state node. The latter reflects 

the priority among conflicting transitions. Furthermore, when a particular state node is being checked, 

the inherited state nodes are checked next, i.e., inheritance is taken into account at execution time and 

not handled by transformations. As a redefinition takes precedence over the redefined transition, the 

inherited nodes are to be checked only if the current signal instance is neither saved nor consumed in 

the current state. 

If the given signal instance is saved in the current states of the agent, the next signal instance of the 

input port is checked. This is repeated until either all signals have been checked, or an input has been 

selected. In the former case, the selection of a continuous signal is triggered. 

SELINPUTEVALUATIONPHASE  

 if Self.currentLabel  undefined then 

  choose b: b  behaviour  b.s-LABEL = Self.currentLabel 

   EVAL(b.s-ACTION) 

  endchoose 
 elseif semvalueBool(value(Self.transitionChecked.s-LABEL,Self)) then 

   Self.currentSignalInst := Self.signalChecked 

   Self.sender := Self.signalChecked.signalSender 

   DELETE(Self.signalChecked,Self.inport) 

   TRANSITIONFOUND(Self.transitionChecked) 

 else 
  Self.agentMode4 := selectionPhase 

 endif 

If an input transition has a provided expression, this expression has to be evaluated before continuing 

with the selection. As this evaluation consists of several actions in general, another agent mode, 

evaluationPhase, is entered. After completion of the evaluation, either the considered input signal is 

consumed, or the selection continues. 

F3.2.3.2.11 Continuous signal selection 

Selection of an input is performed by checking, for each signal instance of the agent's input port, all 

current state nodes until a signal instance satisfying certain conditions is found. If no such signal 

instance is found, this cycle of transition selection ends, and another cycle is started. 



 

68 Rec. ITU-T Z.100/Annex F3 (01/2015) 

 

Figure F3-10 – Activity phases of SDL-2010 agents: selecting continuous signals (level 4) 

The selection of a continuous signal consists of the sub-phases shown in the state diagram. The control 

is identical to the selection of an ordinary input. 

SELECTCONTINUOUS  

 if Self.agentMode4 = startPhase then 

  SELCONTINUOUSSTARTPHASE 

 elseif Self.agentMode4 = selectionPhase then 

  SELCONTINUOUSSELECTIONPHASE 

 elseif Self.agentMode4 = evaluationPhase then 

  SELCONTINUOUSEVALUATIONPHASE 

 elseif Self.agentMode4 = selectSpontaneous then 

  SELECTSPONTANEOUS 

 endif 

This ASM macro defines the upper level control structure of the continuous signal selection. 

Depending on the agent mode agentMode4, further action is defined in the corresponding ASM 

macro. This control structure is part of the previous state diagram. 

SELCONTINUOUSSTARTPHASE  

 Self.stateNodesToBeChecked := collectCurrentSubStates(Self.topStateNode) 

 Self.stateNodeChecked := undefined 

 Self.transitionsToBeChecked :=  

 Self.agentMode4 := selectionPhase 

When the selection starts, several initializations are made: the state nodes to be checked are set, the 

transitions to be checked are reset, and the selection is activated. 

SELCONTINUOUSSELECTIONPHASE  

 if Self.stateNodeChecked = undefined then 

  NEXTSTATENODETOBECHECKED2 

 elseif Self.spontaneous then 

  Self.agentMode4 := selectSpontaneous 

  Self.agentMode5 := selectionPhase 

 else 
  let t = selectContinuousSignal(Self.transitionsToBeChecked, Self.continuousPriorities) in 

   if t  undefined then 

    Self.transitionsToBeChecked := Self.transitionsToBeChecked \ {t} 

    if t.s-LABEL  undefined then 

     EVALUATEENABLINGCONDITION1(t) 

    else 
     TRANSITIONFOUND(t) 

    endif 

   else 
    NEXTSTATENODETOBECHECKED2 
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   endif 

  endlet 

 endif 
 

 where 

  EVALUATEENABLINGCONDITION1(t:SEMTRANSITION)  

   Self.transitionChecked := t 

   Self.currentStateId := Self.stateNodeChecked.parentStateNode.stateId 

   Self.currentLabel := t.s-LABEL 

   Self.agentMode4 := evaluationPhase 

  NEXTSTATENODETOBECHECKED2  

   if Self.stateNodesToBeChecked   then 

    if Self.stateNodeChecked = undefined then 

     SELECTNEXTSTATENODE2 

    else 
     CHECKFORINHERITEDSTATENODES 

    endif 

   else 
    Self.agentMode3 := startSelection 

    RETURNEXECRIGHT 

   endif 

  SELECTNEXTSTATENODE2  

   let sn = Self.stateNodesToBeChecked.selectNextStateNode in 

    if sn = undefined then 

     UNDEFINEDBEHAVIOUR 

    elseif sn.stateNodeKind = procedureNode then 

     Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \ 

      collectCurrentSubStates(sn.getPreviousStatePartition) 

     // only state partitions of the state machine to be considered here 

    elseif sn.stateNodeKind = statePartition then 

     Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \ {sn} 

    elseif sn.stateNodeKind = stateNode then 

     Self.stateNodeChecked := sn 

     Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \ {sn} 

     Self.transitionsToBeChecked := sn.stateTransitions.continuousSignalTransitions 

     Self.continuousPriorities :=  

    endif 

   endlet 

  CHECKFORINHERITEDSTATENODES  

   let sn = Self.stateNodeChecked in 

    let sn1 = selectInheritedStateNode(sn, Self.stateNodesToBeChecked) in 

     if sn1  undefined then 

      Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \ {sn1} 

      Self.stateNodeChecked := sn1 

      Self.transitionsToBeChecked := 

       sn1.stateTransitions.continuousSignalTransitions 

      Self.continuousPriorities := Self.continuousPriorities  

       { t.s-NAT | t  sn.stateTransitions.continuousSignalTransitions} 

     else 
      Self.stateNodeChecked := undefined 

     endif 

    endlet 

   endlet 

 endwhere 

All current state nodes of the agent are checked in an arbitrary order, beginning, for each state 

partition, with the innermost state node. The latter reflects the priority among conflicting transitions. 

Furthermore, when a particular state node is being checked, the inherited state nodes are checked. 
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Finally, redefined transitions take precedence over conflicting inherited transitions also in case of 

continuous signals. If no continuous signal is found, another cycle of the transition selection is started. 

SELCONTINUOUSEVALUATIONPHASE  

 if Self.currentLabel  undefined then 

  choose b: b  behaviour  b.s-LABEL = Self.currentLabel 

   EVAL(b.s-ACTION) 

  endchoose 
 elseif semvalueBool(value(Self.transitionChecked.s-LABEL,Self)) then 

  TRANSITIONFOUND(Self.transitionChecked) 

 else 
  Self.agentMode4 := selectionPhase 

 endif 

For each continuous signal, the continuous expression has to be evaluated. As this evaluation consists 

of several actions in general, another agent mode, evaluationPhase, is entered. After completion of 

the evaluation, either the considered continuous signal is consumed, or the selection continues. 

F3.2.3.2.12 Spontaneous transition selection 

Selection of a spontaneous transition is performed by checking, at any time during the selection 

process, a single spontaneous transition. 

 

Figure F3-11 – Activity phases of SDL-2010 agents: selecting spontaneous transitions (level 5) 

Since any time the agent mode selectSpontaneous is entered, only one spontaneous transition is 

checked, there are only two sub-modes (agentMode5), as shown in the diagram. 

SELECTSPONTANEOUS  

 if Self.agentMode5 = selectionPhase then 

  SELSPONTANEOUSSELECTIONPHASE 

 elseif Self.agentMode5 = evaluationPhase then 

  SELSPONTANEOUSEVALUATIONPHASE 

 endif 

This ASM macro defines the upper level control structure of the spontaneous transition selection. 

Depending on the agent modeagentMode5, further action is defined in the corresponding ASM macro. 

This control structure is part of the previous state diagram. 

SELSPONTANEOUSSELECTIONPHASE  

 if Self.stateNodeChecked.stateTransitions.spontaneousTransitions   then 

  choose t: t  Self.stateNodeChecked.stateTransitions.spontaneousTransitions 

   if t.s-LABEL  undefined then 

    EVALUATEENABLINGCONDITION2(t) 

   else 
    Self.sender := Self.selfPid 

    TRANSITIONFOUND(t) 

   endif 

  endchoose 

 else 

  Self.agentMode4 := selectionPhase 
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 endif 
 

where 

 EVALUATEENABLINGCONDITION2(t:SEMTRANSITION)  

  Self.transitionChecked := t 

  Self.currentStateId := Self.stateNodeChecked.parentStateNode.stateId 

  Self.currentLabel := t.s-LABEL 

  Self.agentMode5 := evaluationPhase 

endwhere 

For a given state node, an arbitrary spontaneous transition is selected, and it is checked whether this 

transition is fireable. 

SELSPONTANEOUSEVALUATIONPHASE  

 if Self.currentLabel  undefined then 

  choose b: b  behaviour  b.s-LABEL = Self.currentLabel 

   EVAL(b.s-ACTION) 

  endchoose 
 elseif semvalueBool(value(Self.transitionChecked.s-LABEL,Self)) then 

  Self.sender := Self.selfPid 

  TRANSITIONFOUND(Self.transitionChecked) 

 else 
   Self.agentMode4 := selectionPhase 

 endif 

If a spontaneous transition has a provided expression, this expression has to be evaluated before 

continuing with the selection. As this evaluation consists of several actions in general, another agent 

mode, evaluationPhase, is entered. After completion of the evaluation, either the considered 

spontaneous transition is selected, or the selection of priority input, input or continuous signals is 

resumed. 

F3.2.3.2.13 Transition firing 

The firing of a transition is decomposed into the firing of individual actions, which may in turn consist 

of a sequence of steps. At the beginning of a transition, the current state node is left; at the end, either 

a state node is entered, or a termination takes place. 

 

Figure F3-12 – Activity phases of SDL-2010 agents: firing transitions (level 3) 
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  LEAVESTATENODES 

 elseif Self.agentMode3 = enteringStateNode then 

  ENTERSTATENODES 

 elseif Self.agentMode3 = exitingCompositeState then 

  EXITCOMPOSITESTATE 

 elseif Self.agentMode3 = initialisingProcedure then 

  INITPROCEDURE 

 endif 

Firing of a transition consists of firing a sequence of actions. Once started, transitions are completely 

executed. 

F3.2.3.2.14 Firing of actions 

FIREACTION  

 if Self.currentLabel  undefined then 

  choose b: b  behaviour  b.s-LABEL = Self.currentLabel 

   EVAL(b.s-ACTION) 

  endchoose 

 else 
  Self.agentMode2 := selectingTransition 

  Self.agentMode3 := startSelection 

  RETURNEXECRIGHT 

 endif 

Firing of actions is defined by the selection and evaluation of the corresponding SAM primitives. 

Once started, the firing of actions continues until either a transition is completed (i.e., the current 

label has the value undefined) or until the agent mode is changed during the evaluation of a primitive. 

This is, for instance, the case when a state node is entered. The function currentLabel uniquely 

identifies a behaviour primitive. 

F3.2.3.2.15 Entering of state nodes 

ENTERSTATENODES  

 if Self.agentMode4 = startPhase then 

  ENTERSTATENODESSTARTPHASE 

 elseif Self.agentMode4 = enterPhase then 

  ENTERSTATENODESENTERPHASE 

 elseif Self.agentMode4 = enteringFinished then 

  ENTERSTATENODESENTERINGFINISHED 

 endif 

State nodes are entered when the execution of an agent starts, and possibly when a next state action 

is executed. When this phase is started, a single state node with an entry point has already been 

selected. Depending on the structure of the hierarchical graph, further state nodes to be entered may 

be encountered when this single state node is entered. 

 

Figure F3-13 – Activity phases of SDL-2010 agents: entering state node (level 4) 
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ENTERSTATENODESSTARTPHASE  

 Self.agentMode4 := enterPhase 

At the beginning of this phase, the set of entered state nodes is initialized. This set is updated every 

time another state node is entered, and evaluated at the end of the phase to determine the set of current 

state nodes of the agent. 

ENTERSTATENODESENTERPHASE  

 if Self.stateNodesToBeEntered   then 

  choose snwen: snwen  Self.stateNodesToBeEntered 

   snwen.s-STATENODE.currentSubStates :=  

   snwen.s-STATENODE.currentExitPoints :=  

   snwen.s-STATENODE.previousSubStates :=  

   if snwen.s-STATENODE.parentStateNode  undefined then 

    snwen.s-STATENODE.parentStateNode.currentSubStates := 

     snwen.s-STATENODE.parentStateNode.currentSubStates  {snwen.s-STATENODE} 

   endif 
   if snwen.s-STATENODE.stateNodeRefinement = undefined then 

    REFINEMENTUNDEF(snwen) 

   elseif snwen.s-STATENODE.stateNodeRefinement = stateAggregationNode then 

    REFINEMENTSTATEAGGRNODE(snwen) 

   elseif snwen.s-STATENODE.stateNodeRefinement = compositeStateGraph then 

    REFINEMENTCOMPSTATENODE(snwen) 

   endif 

  endchoose 

 else 
  Self.agentMode4 := enteringFinished 

 endif 
 

where 

 REFINEMENTUNDEF(snwen:STATENODEWITHENTRYPOINT)  

  let sn:[STATENODE] = 

    take({sn1  STATENODE: directlyInheritsFrom(snwen.s-STATENODE,sn1)}) in 

   if sn  undefined then 

    // refinement possibly inherited 

    Self.stateNodesToBeEntered := Self.stateNodesToBeEntered \ {snwen}  

     {mk-STATENODEWITHENTRYPOINT(sn, 

     snwen.s-implicit)} 

   else 
    Self.stateNodesToBeEntered := Self.stateNodesToBeEntered \ {snwen} 

   endif 

  endlet 

 REFINEMENTSTATEAGGRNODE(snwen:STATENODEWITHENTRYPOINT)  

  if snwen.s-implicit = HISTORY then 

   Self.stateNodesToBeEntered := Self.stateNodesToBeEntered \ {snwen}  

    { mk-STATENODEWITHENTRYPOINT(s, HISTORY) | 

      s  snwen.s-STATENODE.previousSubStates } 

  else 

   Self.stateNodesToBeEntered := Self.stateNodesToBeEntered \ {snwen}  

    { mk-STATENODEWITHENTRYPOINT(sp, 

    entryConnection(snwen.s-implicit, sp)) | 

    sp  snwen.s-STATENODE.statePartitionSet} 

  endif 

  let cstd: Composite-state-type-definition = 

    snwen.s-STATENODE. stateDefinitionAS1 in 

   let aggr: State-aggregation-node = cstd.s-implicit in 

   if aggr.s-Entry-procedure-definition  undefined then 

    CREATEPROCEDURE(aggr.s-Entry-procedure-definition, undefined, 

     undefined) 
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   endif 

  endlet 

 REFINEMENTCOMPSTATENODE(snwen:STATENODEWITHENTRYPOINT)  

  Self.stateNodesToBeEntered := Self.stateNodesToBeEntered \ {snwen} 

  let cstd: Composite-state-type-definition = snwen.s-STATENODE.stateDefinitionAS1 in 

   let comp: Composite-state-graph = cstd.s-implicit in 

   if comp.s-Entry-procedure-definition  undefined then 

    CREATEPROCEDURE(comp.s-Entry-procedure-definition, undefined, 

     undefined) 

   endif 

  endlet 
  if snwen.s-implicit = HISTORY then 

   Self.stateNodesToBeEntered := Self.stateNodesToBeEntered \ {snwen}  

    { mk-STATENODEWITHENTRYPOINT(s, HISTORY) | 

      s  snwen.s-STATENODE.previousSubStates } 

  else 

   Self.currentStartNodes := Self.currentStartNodes  {snwen} 

  endif 

endwhere 

Entering of state nodes continues until the set stateNodesToBeEntered is empty. A distinction is made 

between state nodes with and without a refinement. If there is a refinement into a state aggregation 

node, then the entry procedure of that node is to be executed, and all state partitions are to be entered. 

If there is a refinement into a composite state graph, then a start transition has to be selected and 

executed, which determines a substate to be entered. Finally, if the state node is not refined, it may 

be belong to a composite state with a state type inheriting from another state type, where it is refined. 

ENTERSTATENODESENTERINGFINISHED  

 Self.agentMode2 := selectingTransition 

 Self.agentMode3 := startSelection 

 RETURNEXECRIGHT 

When the set stateNodesToBeEntered is empty, the transition selection is activated by setting the 

agent modes accordingly. 

F3.2.3.2.16 Leaving of state nodes 

LEAVESTATENODES  

 if Self.agentMode4 = leavePhase then 

  LEAVESTATENODESLEAVEPHASE 

 elseif Self.agentMode4 = leavingFinished then 

  LEAVESTATENODESLEAVINGFINISHED 

 endif 

State nodes are left when transitions are fired. The set of state nodes to be left has already been 

determined when this rule macro is applied. 

 

Figure F3-14 – Activity phases of SDL-2010 agents: leaving state node (level 4) 
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LEAVESTATENODESLEAVEPHASE  

 let sn = Self.stateNodesToBeLeft.selectNextStateNode in 

  if sn = undefined then 

   Self.agentMode4 := leavingFinished 

  else 
   Self.stateNodesToBeLeft := Self.stateNodesToBeLeft \ {sn} 

   sn.parentStateNode.currentSubStates := sn.parentStateNode.currentSubStates \ {sn} 

   sn.parentStateNode.previousSubStates := sn.parentStateNode.previousSubStates  {sn} 

   if sn.stateNodeRefinement = compositeStateGraph then 

    let cstd : Composite-state-type-definition = 

     sn.stateAS1.s-Composite-state-type-identifier.idToNodeAS1 in 

    let comp : Composite-state-graph = cstd.s-implicit in 

     if comp.s-Exit-procedure-definition  undefined then 

      CREATEPROCEDURE(comp.s-Exit-procedure-definition,undefined, 

       undefined) 

     endif 

    endlet 
   elseif sn.stateNodeRefinement = stateAggregationNode then 

    let cstd: Composite-state-type-definition = 

     sn.stateAS1.s-Composite-state-type-identifier.idToNodeAS1 in 

    let aggr: State-aggregation-node = cstd.s-implicit in 

     if aggr.s-Exit-procedure-definition  undefined then 

      CREATEPROCEDURE(aggr.s-Exit-procedure-definition, undefined, 

       undefined) 

     endif 

    endlet 

   endif 

  endif 

 endlet 

In the leave phase, state nodes that have been collected are left, from bottom to top, with possible 

synchronization at state aggregation nodes. If defined, exit procedures are executed. 

LEAVESTATENODESLEAVINGFINISHED  

  if Self.stateNodeToBeExited  undefined then 

   Self.currentExitStateNodes := {Self.stateNodeToBeExited} 

   Self.stateNodeToBeExited := undefined 

   Self.agentMode3 := exitingCompositeState 

  else 
   Self.agentMode3 := firingAction 

   Self.currentLabel := Self.continueLabel 

   Self.continueLabel := undefined 

  endif 

When the leaving of a state node has been completed, either the exiting of a state node or firing of 

the current transition has to be continued. 

F3.2.3.2.17 Exiting of composite states 

EXITCOMPOSITESTATE  

  if Self.stateNodeToBeExited  undefined then 

   let sn = Self.stateNodeToBeExited.s-STATENODE in 

    if sn.stateNodeKind = stateNode then 

     Self.currentExitStateNodes := {Self.stateNodeToBeExited} 

     Self.stateNodeToBeExited := undefined 

     Self.agentMode2 := selectingTransition 

     Self.agentMode3 := startPhase 

    elseif sn.stateNodeKind = statePartition then 

     sn.parentStateNode.currentExitPoints := sn.parentStateNode.currentExitPoints 

       {Self.stateNodeToBeExited.s-STATEEXITPOINT} 

     Self.stateNodesToBeLeft := {sn} 

     Self.agentMode3 := leavingStateNode 
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     Self.agentMode4 := leavePhase 

    endif 

   endlet 

  elseif Self.currentExitStateNodes   then 

   let snwex = take(Self.currentExitStateNodes) in 

    let sn = snwex.s-STATENODE in 

     if sn.parentStateNode.currentSubStates =  then 

      let ep = take(sn.parentStateNode.currentExitPoints) in 

       Self.stateNodeToBeExited := mk-STATENODEWITHEXITPOINT( 

        sn.parentStateNode, exitConnection(ep,sn)) 

       Self.currentExitStateNodes :=  

      endlet 

     else 

      Self.currentExitStateNodes :=  

      Self.agentMode2 := selectingTransition 

      Self.agentMode3 := startPhase 

     endif 

    endlet 

   endlet 

  endif 

F3.2.3.2.18 Stopping agent execution 

An agent ceases to exist as soon as all contained agents have been removed. 

STOPPHASE  

 if sas  SDLAGENTSET: (sas.owner = Self   sa  SDLAGENT: sa.owner = sas) then 

  REMOVEALLAGENTSETS(Self) 

  REMOVEAGENT(Self) 

 endif 

F3.2.3.3 Interface between execution and compilation 

The execution of agents requires certain behaviour parts (called "compilation units") to be treated 

during compilation. Compilation units are sequences of actions of an agent that, once started, are 

executed without being interleaved by other actions of this agent or an agent belonging to the same 

set of nested agents: 

• (Regular) transitions: Each transition starts with the evaluation of input parameters (if any), 

followed by an action "leaveStateNode", followed by Transition as defined in the abstract 

syntax. If the terminator of the transition is a Nextstate-node, the transition ends with an 

action "enterStateNode". 

• Start transitions (Named-start-node, State-start-node, Procedure-start-node): These are 

associated with the containing state node. 

• Exit transitions (Named-return-node): These are associated with the set of transitions of the 

containing state node. 

• Expressions: During the selection phase, enabling conditions and continuous signals have to 

be evaluated. In these cases, the evaluation of an expression is a compilation unit. 

Each compilation unit has a start label. Once a start label is assigned to the function currentLabel of 

an agent, the sequence of actions that begins with this label – the evaluation of an expression or the 

firing of a transition – is sequentially executed. This means that whenever an action has been 

executed, the compilation determines the continue label such that the next action follows. The 

termination of this sequence is "signalled" by having the continue label set to undefined after the last 

action of the sequence. 

During compilation, a function uniqueLabel: DEFINITIONAS1  NAT LABEL associates unique labels 

with each node of the AST. The unique labels of nodes corresponding to compilation units are used 

as starting labels. Furthermore, labels are used to retrieve the result of the evaluation of expressions. 
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F3.3 Data semantics 

F3.3.1 Predefined data 

An operator is functional if it is predefined. The built-in procedures for structures and literals are 

treated as predefined. 

functional(procedure: PROCEDURE, values: VALUE*): BOOLEAN =def 

  ( procedure.identifier1.s-Qualifier.head  Package-qualifier  

   procedure.identifier1.s-Qualifier.head.s-Package-name.s-TOKEN = "Predefined") 

  isSpecialStructOp(procedure) 

  isSpecialLiteralOp(procedure) 

intype(procedure: PROCEDURE, name: Name): BOOLEAN =def 

 procedure.identifier1.s-Qualifier.last.s-Data-type-name = name 

compute (procedure: PROCEDURE, values: VALUE* ): VALUEOREXCEPTION =def 

  if intype (procedure, IntegerType.s-Name) then computeInteger(procedure, values) 

  elseif intype (procedure, BooleanType.s-Name) then computeBoolean(procedure, values) 

  elseif intype (procedure, CharacterType.s-Name) then computeChar(procedure, values) 

  elseif intype (procedure, RealType.s-Name) then computeReal(procedure, values) 

  elseif intype (procedure, DurationType.s-Name) then computeDuration(procedure, values) 

  elseif intype (procedure, TimeType.s-Name) then computeTime(procedure, values) 

  elseif intype (procedure, StringType.s-Name) then computeString(procedure, values) 

  elseif intype (procedure, ArrayType.s-Name) then computeArray(procedure, values) 

  elseif intype (procedure, PowersetType.s-Name) then computePowerset(procedure, values) 

  elseif intype (procedure, BagType.s-Name) then computeBag(procedure, values) 

  elseif isSpecialStructOp(procedure) then computeStruct(procedure, values) 

  elseif isSpecialLiteralOp (procedure) then computeLiteral(procedure, values) 

  else 

   raise(OutOfRange) 

  endif 

The TOKEN domain consists of character strings. The function emptyToken is therefore an empty 

character string. 

emptyToken: TOKEN =def 

 ""  

The function definingSort computes the scope in which an operator was defined. 

definingSort(p: PROCEDURE): Identifier =def 

 p.parentAS1.identifier1 

The function procName computes the token of an operator. 

procName(p: PROCEDURE): TOKEN =def 

 p.s-Operation-name.s-TOKEN 

F3.3.1.1 Well-known definitions 

A set of functions refers to well-known Data-type-definition nodes from the package Predefined. 

BooleanType: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Boolean")) 

CharacterType: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Character")) 

StringType: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("String")) 

IntegerType: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Integer")) 

RealType: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Real")) 
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ArrayType: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Array")) 

PowersetType: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Powerset")) 

DurationType: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Duration")) 

TimeType: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Time")) 

BagType: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Bag")) 

PidType: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Pid")) 

Furthermore, there are a number of well-known identifiers for exceptions. 

OutOfRange: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("OutOfRange")) 

InvalidReference: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>,mk-Name("InvalidReference")) 

NoMatchingAnswer: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>,mk-Name("NoMatchingAnswer ")) 

UndefinedVariable: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>,mk-Name("UndefinedVariable")) 

UndefinedField: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("UndefinedField")) 

InvalidIndex: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("InvalidIndex")) 

DivisionByZero: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("DivisionByZero")) 

EmptyException: Identifier =def 

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Empty")) 

To raise an exception, the function raise is used. Each Predefined exception is an Identifier and is a 

member of the EXCEPTION domain (see clause F3.2.1.1.6). If raise is invoked the further behaviour 

of the system is not defined by SDL-2010. 

The further study of handling the Aggregation-kind REF requires exceptions "InvalidCall" and 

"InvalidSort" to be added to the above list (see clause 12.2.7 of [ITU-T Z.107] and clause 12.2.8.1 of 

[ITU-T Z.107]). 

raise(ex:Identifier): Identifier =def 

 UNDEFINEDBEHAVIOUR 

There are also the following well-known operation signatures: 

sdlAnd: Static-operation-signature =def 

 mk-Operation-signature(mk-Name("and"), 

  < (BooleanType), (BooleanType)>) 

sdlOr: Static-operation-signature =def 

 mk-Operation-signature(mk-Name("or"), 

  < (BooleanType), (BooleanType)>) 

sdlTrue: Literal-signature =def 

 mk-Literal-signature (mk-Name("true"), mk-Result(BooleanType), undefined)  

F3.3.1.2 Boolean 

The function computeBoolean determines the value of an application of a Predefined Boolean 

operator. 
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SDLBOOLEAN =def BOOLEAN  Identifier 

computeBoolean(procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def 

 let restype = definingSort(procedure) in 

 case procedure.procName of 

 | "not" => mk-SDLBOOLEAN( values.head.semvalueBool, restype)  

 | "and" => mk-SDLBOOLEAN(values.head.semvalueBool  values.tail.head.semvalueBool, restype)  

 | "or" => mk-SDLBOOLEAN(values.head.semvalueBool  values.tail.head.semvalueBool, restype)  

 | "xor" => mk-SDLBOOLEAN( (values. head.semvalueBool  values.tail.head.semvalueBool), 

    restype)  

 | "=>" => mk-SDLBOOLEAN(values.head.semvalueBool  values.tail.head.semvalueBool, 

    restype) 

 endcase 

 endlet 

semvalueBool(v:SDLBOOLEAN): BOOLEAN =def v.s-BOOLEAN 

F3.3.1.3 Integer 

SDLINTEGER =def NAT  Identifier 

semvalueInt(v:SDLINTEGER): NAT=def v.s-NAT 

computeInteger(procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def 

 let restype = definingSort(procedure) in 

 if procedure  Literal-signature then 

  integerLiteral(0,procedure.procName, restype) 

 elseif procedure.procName = "-"  values.length = 1 then 

  mk-SDLINTEGER(0 - values.head.semvalueInt, restype) 

 elseif procedure.procName  {"+", "-", "*", "/", "mod", "rem", "<", ">", "<=", ">=", "power"} 

 then 
  let val1 = values[1]. semvalueInt, val2 = values[2]. semvalueInt in 

   case procedure.procName of 

   | "+" => mk-SDLINTEGER (val1+val2, restype) 

   | "-"=> mk-SDLINTEGER (val1 – val2, restype) 

   | "*"=> mk-SDLINTEGER (val1 * val2, restype) 

   | "/"=> 

    if val2 = 0 then 

     raise(DivisionByZero) 

    else 
      mk-SDLINTEGER (intDiv(val1,val2), restype) 

    endif 
   | "mod"=> 

    if val2 = 0 then 

     raise(DivisionByZero) 

    else 
     mk-SDLINTEGER (intMod(val1,val2), restype) 

    endif 
   | "rem"=> 

    if val2 = 0 then 

     raise(DivisionByZero) 

    else 
     mk-SDLINTEGER (intRem(val1,val2), restype) 

    endif 
   | "power"=> mk-SDLINTEGER (intPower(val1,val2), restype) 

   | "<" => mk-SDLBOOLEAN(val1 < val2, BooleanType) 

   | "<=" => mk-SDLBOOLEAN(val1  val2, BooleanType) 

   | ">" => mk-SDLBOOLEAN(val1 > val2, BooleanType) 

   | ">="=> mk-SDLBOOLEAN(val1  val2, BooleanType) 

   endcase 

  endlet 

  else raise(OutOfRange) 
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 endif 

 endlet 

The function numberValue determines the NAT associated with a single character in the range "0" to 

"9". 

numberValue(c:TOKEN): NAT =def 

 case c of 

 | "0" => 0 

 | "1" => 1 

 | "2" => 2 

 | "3" => 3 

 | "4" => 4 

 | "5" => 5 

 | "6" => 6 

 | "7" => 7 

 | "8" => 8 

 | "9" => 9 

 endcase 

The function integerLiteral returns the SDLINTEGER value for a real literal. 

integerLiteral(num: NAT, proc: TOKEN, type: Identifier): SDLINTEGER =def 

 if proc = emptyToken then 

  mk-SDLINTEGER (num, type) 

 else 
  integerLiteral(num*10 + numberValue(proc.head), proc.tail, type) 

 endif 

The function intDiv returns the result of integer-dividing its arguments. 

intDiv(a: NAT, b: NAT):NAT =def 

 if a  0  b > a then     0 

 elseif a  0  b  a  b > 0 then 1 + intDiv(a - b, b) 

 elseif a  0  b < 0 then   - intDiv(a, -b) 

 elseif a < 0  b < 0 then   intDiv (-a, -b) 

 elseif a < 0  b > 0 then   - intDiv (-a, b) 

 else raise(DivisionByZero) 

 endif 

The function intMod returns the result of the integer-modulo operation. 

intMod(a: NAT, b: NAT):NAT =def 

 if a  0  b > 0 then     intRem(a,b) 

 elseif b < 0 then      intMod(a, -b) 

 elseif a < 0  b > 0  intRem(a,b) = 0 then  intRem(a,b) 

 elseif a < 0  b >0  intRem(a,b) < 0 then  b + intRem(a,b) 

 else raise(DivisionByZero) 

 endif 

The function intRem returns the result of the integer-remainder operation. 

intRem(a: NAT, b: NAT):NAT =def 

 a - b * intDiv(a,b) 

The function intPower returns the result of the integer-power operation. 

intPower(a: NAT, b: NAT):NAT =def 

 if  b = 0  then 1 

 elseif a = 0 then 0 

 elseif b > 0 then a * intPower(a, b-1) 

 else     intDiv(intPower(a, b+1), a) 

 endif 
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F3.3.1.4 Character 

Character values are represented by their name. 

SDLCHARACTER =def Name  Identifier 

computeChar(procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def 

 let restype = definingSort(procedure) in 

 if procedure  Literal-signature then 

  mk-SDLCHARACTER(procedure.s-Literal-name, restype) 

 elseif procedure.procName = "num" then 

  mk-SDLINTEGER(charValue(values.head.s-Name), IntegerType) 

 elseif procedure.procName = "chr" then 

  mk-SDLCHARACTER( values.head.semvalueInt.charChr, restype) 

 else raise(OutOfRange) 

 endif 

 endlet 

The function charValue returns the numerical value of the character. 

charValue(ch: Name): NAT =def 

 let myDef: Value-data-type-definition = CharacterType.idToNodeAS1 in 

 let literals = myDef.s-Literal-signature-set in 

  take({L.s-Literal-natural | L  literals: L.s-Literal-name = ch}) 

 endlet 

The function charChr returns the character for a given Integer. 

charChr(a: NAT): Name =def 

 if a > 128 then charChr(a - 128) 

 elseif a < 0 then charChr(a+128) 

 else 
  let char: Value-data-type-definition = CharacterType.idToNodeAS1 in 

  let literals = char.s-Literal-signature-set in 

   take({L.s-Literal-name | L  literals: L.Literal-natural = a}) 

 endif 

F3.3.1.5 Real 

The Predefined type Real is represented as a rational number, with numerator and denominator. 

SDLREAL =def NAT  NAT  Identifier 

semvalueRealNum(v: SDLREAL): NAT =def v.s-NAT 

semvalueRealDen(v: SDLREAL): NAT =def v.s2-NAT 

semvalueReal(v: SDLREAL): REAL=def 

 let res: REAL = v.semvalueRealNum / v.semvalueRealDen in 

  res 

 endlet 

computeReal(procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def 

 let restype = definingSort(procedure) in 

 if procedure  Literal-signature then 

  realLiteral(0,1,procedure.procName, restype) 

 elseif procedure.procName = "-"  values.length = 1 then 

  mk-SDLREAL(0 - values.head.semvalueRealNum, values.head.semvalueRealDen, restype) 

 elseif procedure.procName  {"+", "-", "*", "/", "<", ">", "<=", ">="} then 

  let num1 = values[1].semvalueRealNum in 

  let den1 = values[1]. semvalueRealDen in 

  let num2 = values[2]. semvalueRealNum in 

  let den2 = values[2]. semvalueRealDen in 
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   case procedure.procName of 

   | "+" => mk-SDLREAL(num1*den2 + num2*den1, den1*den2, restype) 

   | "-"=> mk-SDLREAL(num1*den2 - num2*den1, den1*den2, restype) 

   | "*"=> mk-SDLREAL(num1*num2, den1*den2, restype) 

   | "/"=> 

    if num2 = 0 then 

     raise(DivisionByZero) 

    else 
     mk-SDLREAL(num1*num2, den1*den2, restype) 

    endif 
   | "<" => mk-SDLBOOLEAN(num1*den2 < num2*den1, BooleanType) 

   | "<=" => mk-SDLBOOLEAN(num1*den2  num2*den1, BooleanType) 

   | ">" => mk-SDLBOOLEAN(num1*den2  num2*den1, BooleanType) 

   | ">="=> mk-SDLBOOLEAN(num1*den2  num2*den1, BooleanType) 

   endcase 

  endlet 
 elseif procedure.procName = "float" then 

  mk-SDLREAL(semvalueInt(values.head), 1, restype) 

 elseif procedure.procName = "fix" then 

  mk-SDLINTEGER(computeFix(values.head.semvalueRealNum, 

   values.head.semvalueRealDen), IntegerType) 

 else raise(OutOfRange) 

 endif 

 endlet 

The function realLiteral returns the SDLREAL value for a real literal. 

realLiteral(num: NAT, den: NAT, proc: TOKEN, type: Identifier): SDLREAL =def 

 if proc = emptyToken then 

  mk-SDLREAL(num, den, type) 

 elseif proc.head = "." then 

  realLiteral(num*10,den*10, proc.tail, type ) 

 elseif den = 1 then 

  realLiteral(num*10 + numberValue(proc.head), den, proc.tail, type) 

 else 
  realLiteral(num*10 + numberValue(proc.head), den, proc.tail, type) 

 endif 

The function computeFix returns the NAT value given numerator and denominator. 

computeFix(num: NAT, den: NAT): NAT =def 

 if num < 0 then 

  - computeFix(- num, den) - 1 

 elseif num < den then 

  0 

 else 
  computeFix (num - den, den) + 1 

 endif 

F3.3.1.6 Duration 

The domain SDLDURATION is based on the domain SDLREAL. 

SDLDURATION =def DURATION  Identifier 

computeDuration(procedure: PROCEDURE, values: VALUE*): VALUE =def 

 computeReal(procedure, values) 

F3.3.1.7 Time 

The domain SDLTIME is based on the domain SDLREAL. 

SDLTIME=def TIME  Identifier 
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computeTime(procedure: PROCEDURE, values: VALUE*): VALUE =def 

 let restype = definingSort(procedure) in 

 if procedure  Literal-signature then 

  realLiteral(0,1,procedure.procName, restype) 

 else 

 case procedure.procName of 

  | "time"=> 

   let val: SDLREAL = values.head in 

    mk-SDLREAL(val.s-NAT, val.s2-NAT, RealType) 

   endlet 
  | "<" => computeReal(procedure, values) 

  | "<=" => computeReal(procedure, values) 

  | ">" => computeReal(procedure, values) 

  | ">=" => computeReal(procedure, values) 

  | "+" => computeReal(procedure, values) 

  | "-" => 

   if values.head  SDLTIME  values.tail.head  SDLDURATION then 

    computeReal(procedure, values) 

   else 
    let res: SDLREAL = computeReal(procedure,values) in 

     mk-SDLREAL(res.s-NAT, res.s2-NAT, RealType) 

    endlet 

   endif 

 endcase 

 endif 

 endlet 

F3.3.1.8 String 

A string type is defined as a sequence of its element type. 

SDLSTRING =def VALUE *  Identifier 

computeString (procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def 

let restype = definingSort(procedure) in 

 case procedure.procName of 

 | "emptystring"=> mk-SDLSTRING(empty, restype) 

 | "mkstring"=> mk-SDLSTRING(<values.head>, restype) 

 | "make"=> mk-SDLSTRING(<values.head>, restype) 

 | "length"=> mk-SDLINTEGER (values.head. s-VALUE-seq.length, IntegerType) 

 | "first"=> values.head. s-VALUE-seq.head 

 | "last"=> values.head. s-VALUE-seq.last 

 | "//"=> mk-SDLSTRING(values[1]. s-VALUE-seq ⁀ values[2].s-VALUE-seq, restype) 

 | "extract"=> 

  let string = values[1]. s-VALUE-seq in 

  let intval: SDLINTEGER = values[2] in 

  let index = intval.s-NAT in 

   if index < 0  index > string.length then 

     raise(InvalidIndex) 

   else 
    string[index] 

   endif 

  endlet 
 | "modify"=> 

   let intval: SDLINTEGER = values[2] in 

   let index = intval.s-NAT in 

   let front = substr(values[1].s-VALUE-seq, 1, index-1) in 

   let back = substr(values[1].s-VALUE-seq, index+1, values[1].s-VALUE-seq.length - index) in 

    if InvalidIndex = front  InvalidIndex = back then raise(InvalidIndex) 

    else 

     mk-SDLSTRING(front ⁀ <values[3]> ⁀ back, restype) 

    endif 
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   endlet 
 | "substring"=> 

     let from: SDLINTEGER = values[2] in 

     let to: SDLINTEGER = values[3] in 

     let val = substr(values[1].s-VALUE-seq, from.s-NAT, to.s-NAT) in 

      if InvalidIndex = val then raise(InvalidIndex) 

      else mk-SDLSTRING(val, restype) endif 

      endlet 
 | "remove"=> 

   let intval: SDLINTEGER = values[2] in 

   let index = intval.s-NAT in 

   let front = substr(values[1].s-VALUE-seq, 1, index-1) in 

   let back = substr(values[1].s-VALUE-seq, index+1, values[1].s-VALUE-seq.length - index) in 

    if InvalidIndex = front  InvalidIndex = back then raise(InvalidIndex) else 

     mk-SDLSTRING(front ⁀ back, restype) 

    endif 

   endlet 

 endcase 

endlet 

The function substr computes the substring of a string value. 

substr(str: VALUE*,start: NAT, len: NAT): VALUE*  EXCEPTION =def 

 if start  0  len  0  start+len-1 > str.length then 

  raise(InvalidIndex) 

 elseif len = 0 then 

  empty 

 else 

  substr(str,start,len-1) ⁀ <str[start+len-1] > 

 endif 

F3.3.1.9 Array 

An array is represented as a set of index/itemsort pairs, with an optional default value. 

SDLARRAY =def VALUEPAIR-set  [VALUE]  Identifier 

VALUEPAIR =def VALUE  VALUE 

computeArray(procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def 

 let restype = definingSort(procedure) in 

 if procedure.procName = "Make" then 

  if values.length = 0 then 

   mk-SDLARRAY(, undefined, restype) 

  else 

   mk-SDLARRAY(,values.head, restype) 

  endif 
 elseif procedure.procName = "Modify" then 

  let a = values[1], index = values[2], value = values[3] in 

   mk-SDLARRAY(modifyArray(a.s-VALUEPAIR-set, index, value), a.s-VALUE, restype) 

  endlet 
 elseif procedure.procName = "Extract" then 

  let v = take({ f.s2-VALUE | f  values[1].s-VALUEPAIR-set: f.s-VALUE = values[2]}) in 

   if v = undefined then 

    if values[1].s-VALUE = undefined then 

     raise(InvalidIndex) 

    else 
     values[1].s-VALUE 

   else 
    v 

  endlet 

 else raise(OutOfRange) 
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 endif 

 endlet 

modifyArray(a: VALUEPAIR-set, index: VALUE, value: VALUE): VALUEPAIR-set =def 

 { item | item  a: item.s-VALUE  index }  { mk-VALUEPAIR(index,value)} 

F3.3.1.10 Powerset 

A Powerset is represented as a set. 

SDLPOWERSET =def VALUE-set  Identifier 

computePowerset (procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def 

 let restype = definingSort(procedure) in 

 case procedure.procName of 

 | "empty"=> mk-SDLPOWERSET(,restype) 

 | "in"=> mk-SDLBOOLEAN(values[1]  values[2].s-VALUE-set, BooleanType) 

 | "incl"=> mk-SDLPOWERSET(values[2].s-VALUE-set  {values[1] }, restype) 

 | "del"=> mk-SDLPOWERSET(values[2].s-VALUE-set \ {values[1] }, restype) 

 | "<"=> mk-SDLBOOLEAN(values[1].s-VALUE-set  values[2].s-VALUE-set, BooleanType) 

 | "<="=> mk-SDLBOOLEAN(values[1].s-VALUE-set  values[2].s-VALUE-set, BooleanType) 

 | ">"=> mk-SDLBOOLEAN(values[2].s-VALUE-set  values[1].s-VALUE-set, BooleanType) 

 | ">="=> mk-SDLBOOLEAN(values[2].s-VALUE-set  values[1].s-VALUE-set, BooleanType) 

 | "and"=> mk-SDLPOWERSET(values[1].s-VALUE-set  values[2].s-VALUE-set, restype) 

 | "or"=> mk-SDLPOWERSET(values[1].s-VALUE-set  values[2].s-VALUE-set, restype) 

 | "length"=> mk-SDLINTEGER( | values[1].s-VALUE-set |, IntegerType) 

 | "take"=> if values[1].s-VALUE-set =  then 

     raise(EmptyException) 

    else 
     values[1]. s-VALUE-set.take 

    endif 

 endcase 

 endlet 

F3.3.1.11 Bag 

A Bag is represented as a set of value-frequency pairs. 

SDLBAG =def FREQUENCY-set  Identifier 

FREQUENCY =def VALUE  NAT 

computeBag (procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def 

 let restype = definingSort(procedure) in 

 case procedure.procName of 

 | "empty"=> mk-SDLBAG(,restype) 

 | "in"=> mk-SDLBOOLEAN(bagcount(values[1], values[2])  0, BooleanType) 

 | "incl"=> mk-SDLBAG(bagincl(values[1], values[2]), restype) 

 | "del"=> mk-SDLBAG(bagdel(values[1], values[2]), restype) 

 | "<"=> mk-SDLBOOLEAN(baginbag(values[1], values[2]), BooleanType) 

 | "<="=> mk-SDLBOOLEAN( baginbag(values[2], values[1]), BooleanType) 

 | ">"=> mk-SDLBOOLEAN(baginbag(values[2], values[1]), BooleanType) 

 | ">="=> mk-SDLBOOLEAN( baginbag(values[1], values[2]), BooleanType) 

 | "and"=> mk-SDLBAG(bagand(values[1], values[2]), restype) 

 | "or"=> mk-SDLBAG(bagor(values[1], values[2]), restype) 

 | "length"=> mk-SDLINTEGER(baglength(values[1].s-FREQUENCY-set), IntegerType) 

 | "take"=> values[1].s-FREQUENCY-set.take.s-VALUE 

 endcase 

 endlet 

bagcount(item: VALUE, bag: SDLBAG): NAT =def 

 let elem1 = {elem.s-NAT | elem  bag.s-FREQUENCY-set: elem.s-VALUE = item } in 
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  if elem1 =  then 0 else elem1.take endif 

 endlet 

bagincl(item: VALUE, bag: SDLBAG): FREQUENCY-set =def 

 if bagcount(item, bag)  0 then 

  {if elem.s-VALUE = item then mk-FREQUENCY(item, elem.s-NAT+1) else elem endif | 

   elem  bag.s-FREQUENCY-set} 

 else 

  bag.s-FREQUENCY-set  {mk-FREQUENCY (item, 1)} 

 endif 

bagdel(item: VALUE, bag: SDLBAG): FREQUENCY-set =def 

 if bagcount(item, bag)  1 then 

  {if elem.s-VALUE = item then mk-FREQUENCY(item, elem.s-NAT - 1) else elem endif | 

   elem  bag.s-FREQUENCY-set} 

 else 
  bag.s-FREQUENCY-set \ { mk-FREQUENCY(item, 1)} 

 endif 

baginbag(smaller: SDLBAG, larger: SDLBAG): BOOLEAN =def 

  elem  smaller.s-FREQUENCY-set: bagcount(elem.s-VALUE, larger) < elem.s-NAT 

bagand(a: SDLBAG,b: SDLBAG): FREQUENCY-set =def 

 { mk-FREQUENCY (x.s-VALUE, min(bagcount(x.s-VALUE,a),bagcount(x.s-VALUE,b))) | 

  x  a.s-FREQUENCY-set: bagcount(x.s-VALUE, b) > 0} 

min(a: NAT,b: NAT ): NAT =def if a>b then a else b endif 

bagor(a: SDLBAG,b: SDLBAG): FREQUENCY-set =def 

 { mk-FREQUENCY(x.s-VALUE, bagcount(x.s-VALUE,a) + bagcount(x.s-VALUE, b) ) 

  | x  a.s-FREQUENCY-set } 

  { x | x  b.s-FREQUENCY-set: bagcount(x.s-VALUE, a) = 0} 

baglength(a: FREQUENCY-set):NAT =def 

 if a =  then 0 

 else let x = a.take in 

  x.s-NAT + baglength(a \ {x}) 

  endlet 

 endif 

F3.3.2 Pid types 

A PID value is represented by an agent and an interface. 

PID =def VALIDPID  NULLPID 

NULLPID =def { mk-Null-literal-signature(mk-Name("null"), Pidtype, undefined) } 

VALIDPID =def SDLAGENT  [Interface-definition] 

static nullPid: PID =def take(NULLPID) 

The static function nullPid is the special PID value for the unique named element of the Pid sort 

(denoted by "null") that does not identify any agent and is the unique element of NULLPID. 

F3.3.3 Constructed types 

F3.3.3.1 Structures 

A structure value is identified by its type name, and the field list. The field names are a list, rather 

than a set because Make operator uses the order of the fields rather than the field names. 

SDLSTRUCTURE =def FIELD*  Identifier 

FIELD =def Name  VALUE 
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isSpecialStructOp(procedure: PROCEDURE): BOOLEAN =def 

 let procsort = procedure.definingSort, pn = procedure.procName in 

 ( str  SDLSTRUCTURE: (procsort = str.s-Identifier ))  

 ( (pn = "Make") 

  (pn = "Undefined") 

  ( fld  procsort.s-FIELD-seq: (pn = fld.s-Name ⁀ "Modify")) 

  ( fld  procsort.s-FIELD-seq: (pn = fld.s-Name ⁀ "Extract")) 

  ( fld  procsort.s-FIELD-seq: (pn = fld.s-Name ⁀ "Present")) 

The function computeStruct gives the value of applying the language-defined operators for structures. 

computeStruct(procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def 

 let structsort = definingSort(procedure), pn = procedure.procName in 

 if pn = "Undefined" then 

  structUndefined(structsort) 

 elseif pn = "Make " then 

  structMake(structsort, empty, structsort.s-FIELD-seq, values) 

 elseif ( fld  structsort.s-FIELD-seq: (pn = fld.s-Name ⁀ "Modify") then 

  let fn ⁀ "Modify" = pn in 

   structModify(fn, structsort, values.head, empty, structsort.s-FIELD-seq) 

  endlet 

 elseif ( fld  structsort.s-FIELD-seq: (pn = fld.s-Name ⁀ "Extract") then 

  let fn ⁀ "Extract" = pn in 

   structExtract(fn, structsort) 

  endlet 

 elseif ( fld  structsort.s-FIELD-seq: (pn = fld.s-Name ⁀ "Present")) then 

  let fn ⁀ "Present" = pn in 

   structFieldPresent(fn, structsort) 

  endlet 
 else raise(OutOfRange) 

 endif 

 endlet 

The function structMake creates a structure value with the fields initialized to the list of values. It 

should be called externally (internally it is recursive) with a structure value, an empty list of new 

fields (newflds) and a list of old fields (oldflds) that each has a field name defined, and a list of one 

or more values. The new fields (newflds) and old fields (oldflds) are used in the internal recursion. 

structMake(st: SDLSTRUCTURE, newflds: FIELD*, oldflds: FIELD*, values: VALUE*): VALUE =def 

 if values.length < oldflds.length then structMake(st, newflds, oldflds, values ⁀ undefined) 

 elseif values.length = 0  oldflds.length = 0 then 

  mk-SDLSTRUCTURE(newflds, st.s-Identifier) 

 else  

  structMake(st, newflds ⁀ mk-FIELD( oldflds.head.s-Name, values.head), 

    oldflds.tail, values.tail ) 

 endif 

The function structUndefined returns the true if (and only if) all the fields are undefined.  

structUndefined(st: SDLSTRUCTURE): SDLBOOLEAN =def 

 mk-SDLBOOLEAN(semvalueBool(value  st.s-FIELD.s-VALUE: (value = undefined)), BooleanType) 

The function structExtract returns the field with a given name from a list of fields.  

structExtract(fieldname:Name, structtype: SDLSTRUCTURE): VALUE =def 

 let valueset = { f.s-VALUE | f  structtype.s-FIELD-seq: f.s-Name = fieldname} in 

  if valueset =  then raise(UndefinedField) 
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  else valueset.take 

  endif 

 endlet 

The function structModify returns a new structure with one field changed. It should be called 

externally (internally it is recursive) with the field name, a structure value, the new value for the field, 

an empty list of new fields (newflds) and a list of old fields (oldflds) that each have a field name 

defined. The new fields (newflds) and old fields (oldflds) are used in the internal recursion. 

structModify(fn: Name, struct: SDLSTRUCTURE, val: VALUE, newflds: FIELD*, oldflds: FIELD*):  

  SDLSTRUCTURE =def 

 if oldflds.length = 0 then  

  mk-SDLSTRUCTURE(newflds, struct.s-Identifier) 

 else 
  structModify(fn, struct, val,  

   newflds ⁀ 

    mk-FIELD(oldflds.head.s-Name, 

     if oldflds.head.s-Name  fieldname then val else oldflds.head.s-VALUE endif), 

   oldflds.tail) 

 endif 

The function structFieldPresent returns the true if the specified field has a value. 

structFieldPresent(fn: Name, st: SDLSTRUCTURE): SDLBOOLEAN =def 

 mk-SDLBOOLEAN(semvalueBool(fn.parentAS1.s-FIELD.s-VALUE  undefined), BooleanType) 

F3.3.3.2 Literals 

Values of a literal sort are represented by the type in which the literal is defined, and the literal 

signatures: 

SDLLITERALS =def Literal-signature  Identifier 

isSpecialLiteralOp(procedure: PROCEDURE): BOOLEAN =def 

 let procsort = procedure.definingSort, pn = procedure.procName in 

 ( lit  SDLLITERALS: (procsort = lit.s-Identifier ))  

 ( pn  { "<", ">","<=",">=", "first", "last", "succ", "pred", "num" }) 

The function computeLiteral gives the value of applying the language-defined operators for 

structures. 

computeLiteral(procedure:PROCEDURE, values:VALUE*): [VALUE ]=def 

 let restype = definingSort(procedure) in 

 let defi: Value-data-type-definition = restype.idToNodeAS1 in 

 if procedure.procName  { "<", ">","<=",">=" } then 

  let v1 = values.head.s-Literal-signature.literalNum in 

  let v2 = values.tail.head.s-Literal-signature.literalNum in 

  case procedure.procName of 

  | ">" => mk-SDLBOOLEAN(v1 > v2, BooleanType) 

  | ">=" => mk-SDLBOOLEAN(v1  v2, BooleanType) 

  | "<" => mk-SDLBOOLEAN(v1 < v2, BooleanType) 

  | "<=" => mk-SDLBOOLEAN(v1  v2, BooleanType) 

  endcase 

  endlet 
 elseif procedure.procName = "first" then 

  literalMinimum (defi.s-Literal-signature-set) 

 elseif procedure.procName = "last" then 

  literalMaximum (defi.s-Literal-signature-set) 

 elseif procedure. procName = "succ" then 

  literalSucc(defi.s-Literal-signature-set, values.head) 

 elseif procedure. procName = "pred" then 

  literalPred(defi.s-Literal-signature-set, values.head) 
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 elseif procedure. procName = "num" then 

  mk-SDLINTEGER(literalNum(values.head).semvalueInt, IntegerType) 

 else 

  undefined 

 endif 

 endlet 

literalNum(s: Literal-signature): NAT =def 

 s.s-Literal-natural 

literalValue(s: Literal-signature): VALUE =def 

 mk-SDLLITERALS(s, s.s-Result) 

literalMinimum(s: Literal-signature-set): VALUE =def 

 take({s1.literalValue 

   | s1  s:  s2s:s2.literalNum> s1.literalNum}) 

literalMaximum(s: Literal-signature-set): VALUE =def 

 take({s1.literalValue 

   | s1  s:  s2s:s2.literalNum < s1.literalNum}) 

literalSucc(s: Literal-signature-set, val: SDLLITERALS): VALUE =def 

 if val = literalMaximum (s, val.s-Identifier) then literalMinimum(s, val.s-Identifier) 

 else  

  take({s1.literalValue | s1  s  

   (s1.literalNum > val.s-NAT)  

   (s2  s: ( s2.literalNum  s.literalNum )  (s1.literalNum  s2.literalNum ))} 

 endif 

literalPred(s: Literal-signature-set, val: SDLINTEGER): VALUE =def 

 if val = literalMinimum(s, val.s-Identifier) then literalMaximum (s, val.s-Identifier) 

 else  

  take({s1.literalValue | s1  s  

   (s1.literalNum < val.s-NAT)  

   (s2  s: ( s2.literalNum  s1.literalNum )  (s.literalNum  s2.literalNum ))} 

 endif 

F3.3.3.2 Choice 

Further study is required for this subject. 

F3.3.4 Variables with Aggregation-kind REF 

Further study is required for this subject. 

F3.3.5 State access 

The STATE domain consists of substates (associations of values for a specific STATEID), and super 

states (associations between super state and substate). In case a certain variable is bound to an in/out 

parameter in a substate, it refers to the variable in the caller's state. 

STATE =def NAMEDVALUE-set  SUPERSTATE-set 

NAMEDVALUE =def STATEID  Variable-identifier  [BOUNDVALUE] 

BOUNDVALUE =def VALUE  Variable-identifier 

SUPERSTATE =def STATEID  STATEID 

initAgentState(state: [STATE], newid: STATEID, id: [STATEID], declarations: DECLARATION-set): STATE =def 

 let newsub = initDeclarations(newid, declarations) in 

 if state = undefined then 



 

90 Rec. ITU-T Z.100/Annex F3 (01/2015) 

  mk-STATE(newsub, , ) 

 else 

 let newsuper = if id = undefined then  else { mk-SUPERSTATE(id, newid)} endif in 

  mk-STATE(state.s-NAMEDVALUE-set  newsub, state.s-SUPERSTATE-set  newsuper) 

 endif 

 endlet 

initProcedureState(state: STATE, newid: STATEID, id: STATEID, vars: DECLARATION-set, 

 declarations: DECLARATION*, 

 values:VALUE*, variables: Variable-identifier*): STATE =def 

 let newsub = assignValues(initDeclarations(newid, vars  declarations.toSet), 

         newid,declarations, 

         values, variables) in 

 let newsuper = mk-SUPERSTATE(id, newid) in 

  mk-STATE(state.s-NAMEDVALUE-set  newsub, state.s-SUPERSTATE-set  { newsuper }) 

 endlet 

initDeclarations(newid: STATEID, decls: DECLARATION-set): NAMEDVALUE-set =def 

 { mk-NAMEDVALUE(newid, d.identifier1, d.s-Constant-expression) 

  | d  decls: d  Variable-definition}  

 { mk-NAMEDVALUE(newid, d.identifier1, 

   undefined) 

  | d  decls: d  Procedure-formal-parameter} 

The function assignValues puts a sequence of parameter values into a named values set for a given 

state id. 

assignValues(namedvalues:NAMEDVALUE-set, id: STATEID, decls:DECLARATION*, 

 values:VALUE*, variables:Variable-identifier*): NAMEDVALUE-set =def 

 if values = empty then 

  namedvalues 

 else 

 if decls.head  In-parameter then 

  assignValues(setValue(namedvalues, id, variables.head, values.head), 

        id, decls.tail, values.tail, variables.tail) 

 else 
  assignValues(namedvalues, id, decls.tail, values.tail, variables.tail) 

 endif 

The function setValue puts a single value into a named values set for a given state id. 

setValue(namedvalues: NAMEDVALUE-set, id: STATEID, varname:Identifier, value:VALUE): 

 NAMEDVALUE-set =def 

 { binding | binding  namedvalues: 

  binding.s-Variable-identifier  varname  binding.s-STATEID  id}  

 { mk-NAMEDVALUE(id, varname, value) } 

The function getValue returns the association between id and varname in namedvalues. 

getValue(namedvalues: NAMEDVALUE-set, id: STATEID, varname:Identifier): NAMEDVALUE-set =def 

 { b  namedvalues: 

  b.s-STATEID = id  b.s-Variable-identifier = varname} 

The function eval returns the value associated with a state, a state id, and a name. If there is named 

value for the state and identified variable, there can be at most one. If this named value has a bound 

value that is a value, this is the result. Otherwise, if the bound value is a variable identifier, this bound 

variable must be a variable in the caller (the state id that caused this state id to exist), because static 

semantics ensures each variable exists. In this case eval is called recursively to return the value (in 

the named values for the state) for the bound variable and the caller (the state id that caused this state 

id to exist). Otherwise the bound value is undefined, and undefined returned. If no named value is 

associated, the static semantics ensures the variable exists, so the identified variable must be 
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associated with the caller (the state id that caused this state id to exist). In this case eval is called 

recursively to return the value (in the named values for the state) for the given variable and the caller 

state. 

eval(varname:Identifier, state:STATE, id:STATEID): VALUEOREXCEPTION =def 

 let callerid = caller(state, id) in 

  let namedval = getValue(state.s-NAMEDVALUE-set, id, varname) in 

   if namedval   then 

    if namedval.take.s-BOUNDVALUE  VALUE then 

     namedval.take.s-BOUNDVALUE 

    elseif namedval.take.s-BOUNDVALUE  Variable-identifier then 

     eval(namedval.take.s-BOUNDVALUE, state, callerid)  

    else // the BOUNDVALUE is undefined 

     raise(UndefinedVariable) 

    endif 

   else 
    eval(varname, state, callerid) 

   endif 

  endlet 

 endlet 

The function update modifies a binding of a name to a value. 

update(name:Identifier, value:VALUE, state:STATE, id:STATEID): STATE =def 

 let val = getValue(state.s-NAMEDVALUE-set, id, name) in 

  if val =  then 

   update(name, value, state, caller(state, id)) 

  elseif val.take  NAMEDVALUE then 

   mk-STATE(setValue(state.s-NAMEDVALUE-set, id, name, value), 

      state.s-SUPERSTATE-set) 

  else 
   update(val.take.s-Variable-identifier, value, state, id) 

  endif 

 endlet 

The function assign modifies the variable with the given name in the state/id association to the given 

value. 

assign (variablename:Variable-identifier, value:VALUE, state:STATE, id:STATEID): STATEOREXCEPTION =def 

 if isValueVariable(variablename) then 

  if isSyntypeVariable(variablename)  rangeCheck(variablename.variableSort, value ) then 

   raise(OutOfRange) 

  else update(variablename, value, state, id) 

  endif 

 else 
  // pid variable, sort of variable is an Interface-definition 

  if variablename.variableSort = value.interface  

   isSuperType(variablename.variableSort, value.interface) then 

   update(variablename, value, state, id) 

  else 
   update(variablename, nullPid, state, id) 

  endif 

 endif 

The function caller returns the state id that caused this state id to exist. 

caller(state: STATE, id: STATEID): STATEID =def 

 take({ s.s-STATEID | s  state.s-SUPERSTATE-set: s.s2-STATEID = id}) 

The function variableSort returns the sort for a given variable identifier. 

variableSort(variableid: Variable-identifier): Data-type-definition =def 
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 variableid.idToNodeAS1.s-Sort-reference-identifier.idToNodeAS1  

The predicate isValueVariable holds if the variablename refers to a variable of a value type. 

isValueVariable(variableid: Variable-identifier): BOOLEAN =def 

 variableid.variableSort  Value-data-type-definition 

The predicate isSyntypeVariable holds if the variablename refers to a variable with a syntype. 

isSyntypeVariable(variableid: Variable-identifier): BOOLEAN =def 

 variableid.idToNodeAS1.s-Sort-reference-identifier  Syntype-identifier 

interface(val: VALUE): Interface-definition =def 

 if val.sort  Interface-definition then val.sort else undefined endif 

The function sort gives the sort of a value, which for most domains (such as SDLBOOLEAN or 

SDLSTRUCTURE that form part of the VALUE domain) is found from the Identifier element of the 

domain. The exception is the PID domain, which instead is either a NULLPID that has the value nullPid, 

and is a PidType value, or is a VALIDPID with an optional Interface-definition. In the case of a 

VALIDPID without an Interface-definition, the value is a PidType value; otherwise the data type 

definition is the Interface-definition. 

sort(val: VALUE): Data-type-definition =def 

if   val  NULLPID then PidType.idToNodeAS1 

elseif val  VALIDPID then 

 if val.s-Interface-definition = undefined then PidType.idToNodeAS1 

 else val.s-Interface-definition 

 endif 
else val.s-Identifier.idToNodeAS1 

endif 

F3.3.6 Specialization 

The function dynamicType determines the identity of the dynamic type of a value. 

dynamicType(v: VALUE): Identifier =def 

if v = nullPid then raise(OutOfRange) else 

 case v of 

 | SDLBOOLEAN(*,t)  => t 

 | SDLINTEGER(*, t)  => t 

 | SDLCHARACTER(*, t) => t 

 | SDLREAL(*,*, t)   => t 

 | SDLSTRING(*,t)   => t 

 | SDLLITERALS(*,t)  => t 

 | SDLSTRUCTURE(*,t)  => t 

 | PID(*, t)   => t 

 endcase 

endif 

F3.3.7 Operators and methods 

The function dispatch determines the procedure to select given a set of actual parameters. 

dispatch(procedure:PROCEDURE, values:VALUE*): Identifier =def 

 if procedure  Static-operation-signature then 

  procedure.s-Identifier 

 else 
  let c = allDynamicCandidates(procedure) in 

  let c1 = matchingCandidates(c, values) in 

    bestMatch(c1) 

  endlet 

 endif 
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The function allDynamicCandidates returns the set of all signatures with the same name as the given 

signature. 

allDynamicCandidates(procedure:PROCEDURE): PROCEDURE-set =def 

 { p | p Operation-signature: 

  p.s-Operation-name = procedure.s-Operation-name } 

The function matchingCandidates returns the set of all signatures that are compatible with the 

arguments. 

matchingCandidates(procedures: PROCEDURE-set, values: VALUE*): PROCEDURE-set =def 

 { p | p  procedures: isSignatureCompatible(p.s-Formal-argument-seq, dynamicTypes(values)) } 

The function matchingCandidates returns the most specialized signature. 

bestMatch(procedures:PROCEDURE-set): Identifier =def 

 take({ p.s-Identifier | p  procedures: 

   q  procedures: isSignatureCompatible(p.s-Formal-argument-seq, 

    q.s-Formal-argument-seq) }) 

The predicate isSignatureCompatible holds if p is compatible with q. 

isSignatureCompatible(p:Formal-argument*, q:Formal-argument*): BOOLEAN =def 

 if p = empty then 

  true 

 else 

  isSortCompatible(p.head.s-Argument, q.head.s-Argument)  

  isSignatureCompatible(p.tail, q.tail) 

 endif 

isSortCompatible(p: Sort-reference-identifier, r: Sort-reference-identifier): BOOLEAN =def 

 (p = r )  

 isDirectlySortCompatible(p, r)  

 (r.idToNodeAS1  Interface-definition  

 ( q  Sort-reference-identifier: (isSortCompatible(p, q)  isSortCompatible(q, r)))) 

isDirectlySortCompatible(y: Sort-reference-identifier, z: Sort-reference-identifier): BOOLEAN =def 

 if isSuperSort(z, y) then 

  if y.idToNodeAS1  Value-data-type-definition then 

   // true if y is <anchored sort> of the form this z 

   y.idToNodeAS1.s-Data-type-identifier = z 

  else // y is a pid sort (because not a value dat type) – and z is super sort of y 

   true 

  endif 

 else  false 

 endif 

isSuperSort(z Sort-reference-identifier, y: Sort-reference-identifier): BOOLEAN =def 

 isSuperType(z, y) // see clause F2.2.1.6.4. 

dynamicTypes(values:VALUE*): Formal-argument* =def 

 <mk-Formal-argument(dynamicType(v)) | v in values > 

F3.3.8 Syntypes 

The predicate rangeCheck holds if the range check for a value of a syntype passes. 

rangeCheck(syntype: Syntype-definition, value: VALUE): BOOLEAN =def 

  cond  syntype.s-Range-condition.s-Condition-item-set: 

  conditionItemCheck(cond, value, syntype.s-Parent-sort-identifier) 
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The predicate conditionItemCheck holds if the condition is true for the value of the given type. If the 

condition is a size constraint, rewriting the concrete grammar creates an anonymous operation 

identified by the Operation-identifier of the Size-constraint that embodies the ranges specified, so the 

Open-range or Closed-range items in the abstract grammar of Size-constraint are redundant. An 

alternative would be to construct an anonymous procedure here based on the Open-range or Closed-

range items of Size-constraint, in which case the Operation-identifier of Size-constraint is redundant. 

conditionItemCheck(cond: Condition-item, value: VALUE, type: Identifier): BOOLEAN =def 

 if cond  Open-range then 

  semvalueBool(compute(cond.s-Open-range.s-Operation-identifier,  

   < cond.s-Open-range.s-Constant-expression >)) 

 elseif cond  Closed-range then 

  choose lessthaneq: lessthaneq  type.s-Static-operation-signature-set  lessthaneq.procName = "<=" 

   semvalueBool(compute(lessthaneq, < cond.s-Closed-range.s-Constant-expression, value > ))  

   semvalueBool(compute(lessthaneq, < value, cond.s-Closed-range.s2-Constant-expression >)) 

  endchoose 

 else //size constraint and cond  Size-constraint 

  semvalueBool(compute(cond.s-Size-constraint.s-Operation-identifier, < value >)) 

 endif 
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Appendix I to Annex F3 

  

List of abstract syntax grammar rules used 

This list contains the Specification and Description Language abstract syntax grammar rules that are 

used in this annex (Annex F3). The complete list of abstract syntax grammar rules can be found in 

Annex A of Recommendation ITU-T Z.100, which also identifies the Recommendation 

([ITU-T Z.101], [ITU-T Z.102] or [ITU-T Z.104]) where the grammar rule is defined. 

Action-return-node 

Agent-definition 

Agent-identifier 

Agent-kind 

Agent-type-definition 

Agent-type-identifier 

Any-expression 

Argument 

Assignment 

Break-node 

Call-node 

Channel-definition 

Channel-path 

Closed-range 

Composite-state-graph 

Composite-state-type-definition 

Composite-state-type-identifier 

Compound-node 

Condition-item 

Conditional-expression 

Connect-node 

Connection-definition 

Connector-name 

Constant-expression 

Continue-node 

Continuous-expression 

Continuous-signal 

Create-request-node 

Dash-nextstate 

Data-type-definition 

Data-type-name 

Decision-answer 

Decision-node 

Destination-gate 

Entry-connection-definition 

Entry-procedure-definition 

Equality-expression 

Exception-identifier 

Exit-connection-definition 

Exit-procedure-definition 

Formal-argument 

Free-action 

Gate-definition 

Graph-node 

Identifier 

In-parameter 

In-signal-identifier 

Initial-number 

Inner-entry-point 

Inner-exit-point 

Input-node 

Interface-definition 

Join-node 
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Literal 

Literal-name 

Literal-natural 

Literal-signature 

Maximum-number 

Name 

Named-nextstate 

Named-return-node 

Named-start-node 

Nextstate-parameters 

Now-expression 

Number-of-instances 

Null-literal-signature 

Offspring-expression 

Open-range 

Operation-application 

Operation-identifier 

Operation-name 

Operation-signature 

Originating-gate 

Out-parameter 

Out-signal-identifier 

Outer-entry-point 

Outer-exit-point 

Output-node 

Package-name 

Package-qualifier 

Parameter 

Parent-expression 

Parent-sort-identifier 

Priority-name 

Procedure-definition 

Procedure-formal-parameter 

Procedure-graph 

Procedure-identifier 

Procedure-start-node 

Provided-expression 

Qualifier 

Range-check-expression 

Range-condition 

Reset-node 

Result 

Save-signalset 

Self-expression 

Sender-expression 

Set-node 

Signal-definition 

Signal-identifier 

Size-constraint 

Sort 

Sort-identifier 

Sort-reference-identifier 

Spontaneous-transition 

State-aggregation-node 

State-entry-point-name 

State-exit-point-name 

State-machine 

State-name 

State-node 

State-partition 

State-start-node 

State-transition-graph 

Static-operation-signature 
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Stop-node 

Syntype-identifier 

Syntype-definition 

Terminator 

Timer-active-expression 

Transition 

Value-data-type-definition 

Value-return-node 

Value-returning-call-node 

Variable-access 

Variable-definition 

Variable-identifier 
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Series H Audiovisual and multimedia systems 

Series I Integrated services digital network 

Series J Cable networks and transmission of television, sound programme and other multimedia 

signals 

Series K Protection against interference 

Series L Construction, installation and protection of cables and other elements of outside plant 

Series M Telecommunication management, including TMN and network maintenance 

Series N Maintenance: international sound programme and television transmission circuits 

Series O Specifications of measuring equipment 

Series P Terminals and subjective and objective assessment methods 

Series Q Switching and signalling 

Series R Telegraph transmission 

Series S Telegraph services terminal equipment 

Series T Terminals for telematic services 

Series U Telegraph switching 

Series V Data communication over the telephone network 

Series X Data networks, open system communications and security 

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks 

Series Z Languages and general software aspects for telecommunication systems 
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