

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.100
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Annex F3
(01/2015)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) – Specification and
Description Language (SDL)

 Specification and Description Language – Overview
of SDL-2010

Annex F3: SDL-2010 formal definition: Dynamic
semantics

Recommendation ITU-T Z.100 – Annex F3

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109

Application of formal description techniques Z.110–Z.119

Message Sequence Chart (MSC) Z.120–Z.129

User Requirements Notation (URN) Z.150–Z.159

Testing and Test Control Notation (TTCN) Z.160–Z.179

PROGRAMMING LANGUAGES

CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE

General principles Z.300–Z.309

Basic syntax and dialogue procedures Z.310–Z.319

Extended MML for visual display terminals Z.320–Z.329

Specification of the man-machine interface Z.330–Z.349

Data-oriented human-machine interfaces Z.350–Z.359

Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY

Quality of telecommunication software Z.400–Z.409

Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS

Methods for validation and testing Z.500–Z.519

MIDDLEWARE

Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Z.100/Annex F3 (01/2015) i

Recommendation ITU-T Z.100

Specification and Description Language – Overview of SDL-2010

Annex F3

SDL-2010 formal definition: Dynamic semantics

Summary

This annex defines the SDL-2010 dynamic semantics.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T Z.100 1984-10-19 11.1002/1000/2222

1.1 ITU-T Z.100 Annex A 1984-10-19 11.1002/1000/6664

1.2 ITU-T Z.100 Annex B 1984-10-19 11.1002/1000/6665

1.3 ITU-T Z.100 Annex C1 1984-10-19 11.1002/1000/6666

1.4 ITU-T Z.100 Annex C2 1984-10-19 11.1002/1000/6667

1.5 ITU-T Z.100 Annex D 1984-10-19 11.1002/1000/6668

2.0 ITU-T Z.100 1987-09-30 X 11.1002/1000/10954

2.1 ITU-T Z.100 Annex A 1988-11-25 11.1002/1000/6669

2.2 ITU-T Z.100 Annex B 1988-11-25 11.1002/1000/6670

2.3 ITU-T Z.100 Annex C1 1988-11-25 11.1002/1000/6671

2.4 ITU-T Z.100 Annex C2 1988-11-25 11.1002/1000/6672

2.5 ITU-T Z.100 Annex D 1988-11-25 X 11.1002/1000/3646

2.6 ITU-T Z.100 Annex E 1988-11-25 11.1002/1000/6673

2.7 ITU-T Z.100 Annex F1 1988-11-25 X 11.1002/1000/3647

2.8 ITU-T Z.100 Annex F2 1988-11-25 X 11.1002/1000/3648

2.9 ITU-T Z.100 Annex F3 1988-11-25 X 11.1002/1000/3649

3.0 ITU-T Z.100 1988-11-25 11.1002/1000/3153

3.1 ITU-T Z.100 Annex C 1993-03-12 X 11.1002/1000/3155

3.2 ITU-T Z.100 Annex D 1993-03-12 X 11.1002/1000/3156

3.3 ITU-T Z.100 Annex F1 1993-03-12 X 11.1002/1000/3157

3.4 ITU-T Z.100 Annex F2 1993-03-12 X 11.1002/1000/3158

3.5 ITU-T Z.100 Annex F3 1993-03-12 X 11.1002/1000/3159

3.6 ITU-T Z.100 App. I 1993-03-12 X 11.1002/1000/3160

3.7 ITU-T Z.100 App. II 1993-03-12 X 11.1002/1000/3161

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/2222
http://handle.itu.int/11.1002/1000/6664
http://handle.itu.int/11.1002/1000/6665
http://handle.itu.int/11.1002/1000/6666
http://handle.itu.int/11.1002/1000/6667
http://handle.itu.int/11.1002/1000/6668
http://handle.itu.int/11.1002/1000/10954
http://handle.itu.int/11.1002/1000/6669
http://handle.itu.int/11.1002/1000/6670
http://handle.itu.int/11.1002/1000/6671
http://handle.itu.int/11.1002/1000/6672
http://handle.itu.int/11.1002/1000/3646
http://handle.itu.int/11.1002/1000/6673
http://handle.itu.int/11.1002/1000/3647
http://handle.itu.int/11.1002/1000/3648
http://handle.itu.int/11.1002/1000/3649
http://handle.itu.int/11.1002/1000/3153
http://handle.itu.int/11.1002/1000/3155
http://handle.itu.int/11.1002/1000/3156
http://handle.itu.int/11.1002/1000/3157
http://handle.itu.int/11.1002/1000/3158
http://handle.itu.int/11.1002/1000/3159
http://handle.itu.int/11.1002/1000/3160
http://handle.itu.int/11.1002/1000/3161
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T Z.100/Annex F3 (01/2015)

4.0 ITU-T Z.100 1993-03-12 X 11.1002/1000/3154

4.1 ITU-T Z.100 (1993) Add. 1 1996-10-18 10 11.1002/1000/3917

5.0 ITU-T Z.100 1999-11-19 10 11.1002/1000/4764

5.1 ITU-T Z.100 (1999) Cor. 1 2001-10-29 17 11.1002/1000/5567

6.0 ITU-T Z.100 2002-08-06 17 11.1002/1000/6029

6.1 ITU-T Z.100 (2002) Amd. 1 2003-10-29 17 11.1002/1000/7091

6.2 ITU-T Z.100 (2002) Cor. 1 2004-08-29 17 11.1002/1000/356

7.0 ITU-T Z.100 2007-11-13 17 11.1002/1000/9262

8.0 ITU-T Z.100 2011-12-22 17 11.1002/1000/11387

8.1 ITU-T Z.100 Annex F1 2000-11-24 10 11.1002/1000/5239

8.2 ITU-T Z.100 Annex F2 2000-11-24 10 11.1002/1000/5576

8.3 ITU-T Z.100 Annex F3 2000-11-24 10 11.1002/1000/5577

8.4 ITU-T Z.100 Annex F1 2015-01-13 17 11.1002/1000/12354

8.5 ITU-T Z.100 Annex F2 2015-01-13 17 11.1002/1000/12355

8.6 ITU-T Z.100 Annex F3 2015-01-13 17 11.1002/1000/12356

http://handle.itu.int/11.1002/1000/3154
http://handle.itu.int/11.1002/1000/3917
http://handle.itu.int/11.1002/1000/4764
http://handle.itu.int/11.1002/1000/5567
http://handle.itu.int/11.1002/1000/6029
http://handle.itu.int/11.1002/1000/7091
http://handle.itu.int/11.1002/1000/356
http://handle.itu.int/11.1002/1000/9262
http://handle.itu.int/11.1002/1000/11387
http://handle.itu.int/11.1002/1000/5239
http://handle.itu.int/11.1002/1000/5576
http://handle.itu.int/11.1002/1000/5577
http://handle.itu.int/11.1002/1000/12354
http://handle.itu.int/11.1002/1000/12355
http://handle.itu.int/11.1002/1000/12356

 Rec. ITU-T Z.100/Annex F3 (01/2015) iii

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers are

cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB

patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2015

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

iv Rec. ITU-T Z.100/Annex F3 (01/2015)

Table of Contents

 Page

F3.1 General information .. 1

F3.1.1 Definitions from Annex F1 .. 1

F3.1.2 Definitions from Annex F2 .. 1

F3.1.3 Status of Annex F3 (this annex) ... 2

F3.2 Behaviour semantics ... 2

F3.2.1 SDL-2010 abstract machine definition (SAM) .. 2

F3.2.2 Compilation function .. 34

F3.2.3 SDL-2010 abstract machine programs ... 42

F3.3 Data semantics .. 77

F3.3.1 Predefined data ... 77

F3.3.2 Pid types ... 86

F3.3.3 Constructed types ... 86

F3.3.4 Variables with Aggregation-kind REF ... 89

F3.3.5 State access ... 89

F3.3.6 Specialization ... 92

F3.3.7 Operators and methods ... 92

F3.3.8 Syntypes ... 93

Appendix I to Annex F3 – List of abstract syntax grammar rules used................................... 95

 Rec. ITU-T Z.100/Annex F3 (01/2015) 1

Recommendation ITU-T Z.100

Specification and Description Language – Overview of SDL-2010

Annex F3

SDL-2010 formal definition: Dynamic semantics

F3.1 General information

An overview of the formal semantics is described in clause F1.2 (Annex F1).

F3.1.1 Definitions from Annex F1

The following definitions for the syntax and semantics of ASMs are used within Annex F3. The

domains and functions are defined in Annex F1 and listed here for cross-referencing reasons.

Keywords derived, domain, static, initially, controlled, monitored, shared, constraint, let, endlet, where,

endwhere, choose, endchoose, extend, with, endextend, case, of, endcase, do, forall, enddo, if, then, else, elseif, endif.

The domains TIME, AGENT, X, BOOLEAN, NAT, REAL, TOKEN, DEFINITIONAS1.

The functions take, program, Self, undefined, true, false, empty, head, tail, last, length, toSet,

parentAS1, parentAS1ofKind, rootNodeAS1.

The operation symbols *, +, -set, =, , , , , , , , , >, , <, , +, -, *, /, in, , ⁀, , , \, ,

, , , | |, U, , mk-, s-, s2-.

For more information about the ASM syntax, see Annex F1.

F3.1.2 Definitions from Annex F2

ENTITYDEFINITION1: the union of all the entity definitions in AS1. It is therefore a subset of

DEFINITIONAS1.

ENTITYDEFINITION1=def Agent-definition

  Agent-type-definition

  Channel-definition

  Composite-state-type-definition

  Data-type-definition

  Gate-definition

  Literal-signature

  Operation-signature

  Package-definition

  Procedure-definition

  Signal-definition

  State-node

  Syntype-definition

  Timer-definition

  Variable-definition

Given an Identifier, the corresponding ENTITYDEFINITION1 is retrieved using the function

idToNodeAS1:

idToNodeAS1(id: Identifier): [ENTITYDEFINITION1]=def

 getEntityDefinition1(id, idKind1(id))

where

function getEntityDefinition1 from Annex F2 gets the entity definition for an identifier:

2 Rec. ITU-T Z.100/Annex F3 (01/2015)

getEntityDefinition1: Identifier, ENTITYKIND1ENTITYDEFINITION1

and function idKind1 from Annex F2 is used determine the kind of the entity from the identifier:

idKind1:IdentifierENTITYKIND1

Given a ENTITYDEFINITION1, the corresponding Identifier is retrieved using the function identifier1

from Annex F2:

identifier1: ENTITYDEFINITION1 Identifier

Given two definitions, whether one is a supertype of the other is determined using the function

isSuperType from F2:

isSuperType: ENTITYDEFINITION1  ENTITYDEFINITION1  BOOLEAN

F3.1.3 Status of Annex F3 (this annex)

The ASM in this edition has been updated to correct errors in the previous edition (01/2000) and to

reflect the features of SDL-2010 compared with SDL-2000. The ASM was not complete in the

previous edition. For example, the previous edition mentions the function objectsAssign and the

macro SETOBJECTS, but the definitions of these items were not included. While this edition is an

improvement on the previous edition, some items still need further work, in particular adding the

treatment of an Aggregation-kind of REF (see [ITU-T Z.107]) that replaces object data types.

As noted in clause F1.2.4 (d) (Annex F1), the data semantics is separated from the rest of the dynamic

semantics, which allows the data model to be changed. The current document is based on the previous

edition (01/2000) that described the object data types of SDL-2000. The document has been

considerably reduced by the removal of object data types, user exception definitions, user exception

raising and exception handling.

The previous edition (01/2000) included a clause "4 Example", where an example specification and

its expansion into an abstract syntax tree were given, but the results of initialization and compilation

of the example had "TBD" sentences, meaning work was still to be done. In this state the example is

not useful for the illustrating application of the dynamic semantics, and it has been removed from this

edition.

F3.2 Behaviour semantics

This clause defines the following parts of the dynamic semantics:

• the SAM (SDL-2010 Abstract Machine): clause F3.2.1;

• the compilation function: clause F3.2.2; and

• SAM programs: clause F3.2.3.

An overview of the dynamic semantics is given in clause F1.2.4 (Annex F1).

F3.2.1 SDL-2010 abstract machine definition (SAM)

The SAM constitutes a generic behaviour model for SDL-2010 specifications. According to an

abstract operational view, the possible computations of a given SDL-2010 specification are defined

in terms of ASM runs. The underlying semantic model of distributed real-time ASMs is explained in

Annex F1. The SAM definition consists of the following four main building blocks:

• signal flow related definitions: clause F3.2.1.1;

• SDL-2010 agent-related definitions: clause F3.2.1.2;

• the interface to the data semantics: clause F3.2.1.3; and

• behaviour primitives: clause F3.2.1.4.

These definitions, in particular, also state explicitly the various constraints on initial SAM states

complementing the behaviour model.

 Rec. ITU-T Z.100/Annex F3 (01/2015) 3

F3.2.1.1 Signal flow model

This clause introduces the signal flow model as part of the SAM. The main focus here is on a uniform

treatment of signal flow aspects, in particular, on defining how agents communicate through signals

via gates. Also, timers (clause F3.2.1.1.5), which are modelled as special kinds of signals, are treated

here.

F3.2.1.1.1 Signals

PLAINSIGNAL represents the set of signal types as declared by an SDL-2010 specification.

PLAINSIGNAL =def Identifier  NONE

In an SDL-2010 specification, also timers (clause F3.2.1.1.5) are considered as signals; they are

contained in a common domain SIGNAL

SIGNAL =def PLAINSIGNAL  TIMER

Dynamically created plain signal instances (plain signals for short) are elements of a dynamic domain

PLAINSIGNALINST. Since plain signals can also be created and sent by the environment, this domain is

shared. The function plainSignalType gives the signal type for a given plain signal instance.

shared domain PLAINSIGNALINST

initially PLAINSIGNALINST = 

shared plainSignalType: PLAINSIGNALINST  PLAINSIGNAL

The domain SIGNALINST contains all kinds of signal instances (signals for short). Each element of

SIGNALINST is uniquely related to an element of SIGNAL, as defined by the derived function signalType.

SIGNALINST =def PLAINSIGNALINST  TIMERINST

signalType(si:SIGNALINST): SIGNAL =def

 if si  PLAINSIGNALINST then si.plainSignalType

 elseif si  TIMERINST then si.s-TIMER

 endif

The functions plainSignalSender (giving the sender process) and signalSender (giving the sender of

the signal or the agent for the timer) are defined:

shared plainSignalSender: PLAINSIGNALINST  PID

signalSender(si:SIGNALINST): PID =def

 if si  PLAINSIGNALINST then si.plainSignalSender

 elseif si  TIMERINST then si.s-PID

 endif

With each signal a (possibly empty) list of signal values is associated. Because the type information

and concrete value for signal values is immaterial to the dynamic aspects considered here, values are

abstractly represented in a uniform way as elements of the static domain VALUE (see clause F3.2.1.3):

shared plainSignalValues: PLAINSIGNALINST  VALUE*

SDL-2010 provides for two forms of indicating the receiver of a message, where the receiver may

also remain unspecified.

VIAARG =def Identifier-set

TOARG =def PID  Identifier

Additional functions on plain signals are toArg (giving the destination) and viaArg (giving optional

constraints on admissible communication paths).

4 Rec. ITU-T Z.100/Annex F3 (01/2015)

Signals received at an input gate of an agent set are appended to the input port of an agent instance

depending on the value of toArg. Signals are discarded whenever no matching receiver instance

exists.

The value of type PID is evaluated dynamically and associated with the label.

shared toArg: PLAINSIGNALINST  [TOARG]

shared viaArg: PLAINSIGNALINST VIAARG

F3.2.1.1.2 Gates

Exchange of signals between SDL-2010 agents (such as processes, blocks or a system) and the

environment is modelled by means of gates from a controlled domain GATE.

controlled domain GATE

 initially GATE = 

A gate forms an interface for serial and unidirectional communication between two or more agents.

Accordingly, gates are either classified as input gates or output gates (see clause F3.2.1.2.4).

DIRECTION =def { inDir, outDir }

controlled direction: GATE  DIRECTION

controlled myAgent: GATE  AGENT

Global system time

In SDL-2010, the global system time is represented by the expression now assuming that values of

now increase monotonically over system runs. In particular, SDL-2010 allows having the same value

of now in two or more consecutive system states. Building on the concept of distributed real-time

ASM, this behaviour is modelled using a nullary, dynamic, monitored function now. Intuitively, now

refers to internally observable values of the global system time.

monitored now:  TIME

There are two integrity constraints on the behaviour of now:

1. now values change monotonically, increasing over ASM runs;

2. now values do not increase as long as a signal is in transit on a non-delaying channel.

Discrete delay model

Signals need not reach their destination instantaneously, but may be subject to delays, which means,

it is possible to send signals to arrive in the future. Although those signals are not available at their

destination before their arrival time has come, they are to be associated with their destination gates.

A gate has to be capable of holding signals that are in transit (not yet arrived). Hence, to each gate a

possibly empty signal queue is assigned, as detailed below.

To model signal arrivals at specified destination gates, each signal instance si has an individual arrival

time (si.arrival) determining the time at which s eventually reaches a certain gate.

shared arrival: SIGNALINST  TIME

The relation between signals and gates in a given SAM state is represented by means of a dynamic

function schedule defined on gates:

shared schedule: GATE  SIGNALINST*

where schedule specifies, for each gate g in GATE, the corresponding signal arrivals at g.

 Rec. ITU-T Z.100/Annex F3 (01/2015) 5

An integrity constraint on g.schedule is that signals in g.schedule are linearly ordered by their arrival

times. That is, if g.schedule contains signals si, si', and si.arrival < si'.arrival, then si < si' in the order

as imposed by g.schedule. This condition is assured by the insert function below.

Waiting signals

A signal instance si in g.schedule does not arrive "physically" at gate g before now  si.arrival.

Intuitively, that means that s remains "invisible" at g as long as it is in transit. Thus, in every given

SAM state, the visible part of g.schedule forms a possibly empty signal queue g.queue, where g.queue

represents those signal instances si in g.schedule that have already arrived at g but are still waiting to

be removed from g.schedule. The visible part of g is denoted as g.queue and formally defined as

follows.

queue(g: GATE): SIGNALINST* =def < si in g.schedule: (now  si.arrival) >

See also Figure F3-1 below for an overview of the functions on schedules.

Figure F3-1 – Signal instances at a gate

Operations on schedules

To ensure that the order on signals is preserved when new signals are added to the schedule of a gate,

there is a special insertion function insert on schedules.

insert(si:SIGNALINST, t:TIME, siSeq:SIGNALINST*): SIGNALINST* =def

 if siSeq = empty then

 < si > ⁀ siSeq

 elseif t < siSeq.head.arrival

 then < si > ⁀ siSeq

 else < siSeq.head > ⁀ insert(si, t, siSeq.tail)

 endif

The function insert defines the result of inserting some signal instance si with the intended arrival

time t into a finite signal instance list siSeq, representing (for example) the schedule of a gate.

Analogously, a function delete is used to remove a signal from a finite signal instance list siSeq.

delete(si:SIGNALINST, siSeq:SIGNALINST*): SIGNALINST* =def

 if siSeq = empty then empty

 elseif siSeq.head = si then siSeq.tail

 else < siSeq.head > ⁀ delete(si, siSeq.tail)

 endif

The macros INSERT and DELETE update the schedule of a gate g by assigning some new signal list to

g.schedule.

 t4 t3 t2 t1 ti  TIME

 signals in transit g.queue

 now

g

 j > i implies tj > ti

g  GATE

g.schedule

6 Rec. ITU-T Z.100/Annex F3 (01/2015)

INSERT(si:SIGNALINST, t:TIME, g:GATE) 

 g.schedule := insert(si,t,g.schedule)

 si.arrival := t+si.delay

DELETE(si:SIGNALINST, g:GATE) 

 g.schedule := delete(si,g.schedule)

The function nextSignal yields, for a sequence of signal instances and a signal instance, the next signal

instance of the sequence, or the value undefined, if the next signal instance is not determined.

nextSignal(si: SIGNALINST, siSeq:SIGNALINST*): [SIGNALINST] =def

 if siSeq = empty then undefined

 elseif siSeq.head = si then

 if siSeq.tail = empty then undefined

 else siSeq.tail.head

 endif
 else nextSignal(si, siSeq.tail)

 endif

The function selectContinuousSignal yields, for a set of continuous signal transitions and a set of

natural numbers, an element of the transition set with a priority not contained in the set of natural

numbers, such that this priority is the maximum priority of all transitions not having priorities in this

set of natural numbers.

selectContinuousSignal(tSet: SEMTRANSITION-set, nSet: NAT-set): [SEMTRANSITION] =def

 if t1  tSet: t1.s-NAT  nSet then undefined

 else take({t  tSet: t.s-NAT  nSet  t1  tSet: (t1.s-NAT  nSet  t.s-NAT  t1.s-NAT)})

 endif

F3.2.1.1.3 Channels

Channels, as declared in a given SDL-2010 specification, consist of either one or two unidirectional

channel paths. In the SAM model, each channel path is identified with an object of a derived domain

LINK. The elements of LINK are SAM agents, such that their behaviour is defined through LINK-

PROGRAM.

LINK =def AGENT

LINKSEQ =def LINK*

Intuitively, elements of LINK are considered as point-to-point connection primitives for the transport

of signals. More specifically, each l of LINK is able to convey certain signal types, as specified by

l.with, from an originating gate l.from to a destination gate l.to., and l.nodelay indicating if l is non-

delaying.

controlled with: LINK  SIGNAL-set

controlled from: LINK  [GATE] // need to have optional result here, because function is also called within

allConnections with general AGENT

controlled to: LINK  GATE

controlled noDelay: LINK  [NODELAY]

Signal delays

SDL-2010 considers channels as reliable and order-preserving communication links. A channel is

able to delay the transport of a signal for an indeterminate and non-constant time interval. Although

the exact delaying behaviour is not further specified, the fact that channels are reliable implies that

all delays are finite.

Signal delays are modelled through a monitored function delay stating the dependency on external

conditions and events. In a given SAM state, delay associates finite time intervals from a domain

 Rec. ITU-T Z.100/Annex F3 (01/2015) 7

DURATION to the elements of LINK, where the duration of a particular signal delay appears to be chosen

non-deterministically.

DURATION =def REAL

monitored delay: LINK  DURATION

Integrity constraints

There are two important integrity constraints on the function delay:

1. Taking into account that there are also non-delaying channels, the only admissible value for

non-delaying channel paths is 0.

2. For every link agent l, the value of (now + l.delay) increases monotonically (with respect to

now).

The second integrity constraint is needed in order to ensure that channel paths are order-preserving:

that is, signals transported via the same channel path (and therefore are inserted into the same

destination schedule) cannot overtake each other.

Channel behaviour

A link agent l performs a single operation: signals received at gate l.from are forwarded to gate l.to.

That means, l permanently watches l.from waiting for the next deliverable signal in l.from.queue.

Whenever l is applicable to a waiting signal si (as identified by the l.from.queue.head), it attempts to

remove si from l.from.queue in order to insert it into l.to.schedule. This attempt need not necessarily

be successful as, in general, there may be several link agents competing for the same signal si.

But, how does a link agent l know whether it is applicable to a signal si? Now, this decision does of

course depend on the values of si.toArg, si.viaArg, si.signalType and l.with. In other words, l is a legal

choice for the transportation of si only, if the following two conditions hold: (1) si.signalType  l.with

and (2) there exists an applicable path connecting l.to to some final destination that matches with the

address information and the path constraints of si. Abstractly, this decision can be expressed using a

predicate applicable, defined in clause F3.2.1.1.4. The domain TOARG is defined in clause F3.2.1.1.1.

F3.2.1.1.4 Reachability

When signals are sent, it has to be determined whether there currently is an applicable communication

path: a path consisting of a sequence of links that can transfer the signal, and that satisfies further

constraints as specified by the optional to- and via-arguments. The predicate applicable formally

states all conditions that must be satisfied.

applicable(s: SIGNAL, toArg: [TOARG], viaArg: VIAARG, g: GATE, l: [LINK]): BOOLEAN =def

  commPath allConnections (g):

 ( ll  commPath: s  ll.with  ll.owner  undefined) 

 if commPath = empty then

 l = undefined  ((g.direction = outDir) 

 (toArg = undefined  s  g.gateAS1.s-Out-signal-identifier-set)) 

 ((g.direction = inDir)  (validDestinationGate(g, toArg)  // to self

 s  g.gateAS1.s-In-signal-identifier-set))  viaArg = 

 else

 if l  undefined then commPath.head = l else true endif 

  ll  LINK: (ll.from = commPath.last.to  s  ll.with)  // the path is complete

 viaArg  commPath.commPathIds  validDestinationGate(commPath.last.to, toArg)

 endif

validDestinationGate(g: GATE, toArg: [TOARG]): BOOLEAN =def

 if toArg  Agent-identifier then

 g.myAgent.agentAS1.identifier1 = toArg else true endif 

 if toArg  PID  toArg  nullPid then

 sa  AGENT: (sa.owner = g.myAgent  sa.selfPid = toArg) else true

8 Rec. ITU-T Z.100/Annex F3 (01/2015)

 endif

allConnections(g: GATE): LINKSEQ-set =def

 U ({ { < l > ⁀ list | list  allConnections(l.to) } | l  LINK: l.from = g }) 

 { empty }

commPathIds(lSeq: LINK*): Identifier-set =def

 { g.gateAS1.identifier1 | g  GATE: l  lSeq: (g = l.from  g = l.to) } 

 { l.agentAS1.identifier1 | l LINK: (l  lSeq) }

F3.2.1.1.5 Timers

A particular concise way of modelling timers is by identifying timer objects with respective timer

signals. More precisely, each active timer is represented by a corresponding timer signal in the

schedule associated with the input port of the related process instance.

TIMER =def Identifier

TIMERINST =def PID  TIMER  VALUE*

The information associated with timers is accessed using the functions defined on SIGNAL.

Active timers

To indicate whether a timer instance tmi is active or not, there is a corresponding derived predicate

active:

active(tmi:TIMERINST): BOOLEAN =def tmi  Self.inport.schedule

Timer operations

The macros below model the SDL-2010 actions Set-node and Reset-node on timers as executed by a

corresponding SDL-2010 agent. A static function (duration) is used to represent default duration

values as defined by an SDL-2010 specification under consideration.

static duration: TIMER  DURATION

SETTIMER(tm:TIMER, vSeq :VALUE*, t:[TIME]) 

 let tmi = mk-TIMERINST(Self.selfPid, tm, vSeq) in

 if t = undefined then

 Self.inport.schedule := insert(tmi, now + tm.duration, delete(tmi, Self.inport.schedule))

 tmi.arrival := now + tm.duration

 else
 Self.inport.schedule := insert(tmi, t, delete(tmi, Self.inport.schedule))

 tmi.arrival := t

 endif

 endlet

RESETTIMER(tm:TIMER, vSeq :VALUE*) 

 let tmi = mk-TIMERINST(Self.selfPid, tm, vSeq) in

 if active(tmi) then

 DELETE(tmi, Self.inport)

 endif

 endlet

F3.2.1.1.6 Exceptions

Exceptions are identified dynamic conditions. How the system behaves when an exception occurs, is

not defined by SDL-2010. Each kind of exception has an identity that can be used in the

implementation to report or to handle the exception. The raise function (see clause F3.3.1.1) is called

for the dynamic conditions under which an exception occurs with the exception as a parameter. As

 Rec. ITU-T Z.100/Annex F3 (01/2015) 9

the further behaviour is undefined when an exception occurs, it is preferable if the SDL-2010 is

written to prevent the dynamic conditions arising (for example, checking on indexing bounds).

EXCEPTION =def Exception-identifier

F3.2.1.2 SDL-2010 agents

In this clause, the domain AGENT is further refined to consist of three basically different types of

agents, namely: link agent instances (modelled by the domain LINK, see clause F3.2.1.1.3), SDL-2010

agent instances, and SDL-2010 agent set instances (modelled by the derived domains SDLAGENT and

SDLAGENTSET, respectively).

SDLAGENT =def AGENT

SDLAGENTSET =def AGENT

Initially, there is only a single agent system denoting a distinguished SDL-2010 agent set instance of

the domain SDLAGENTSET.

static system:  SDLAGENTSET

 initially AGENT = { system }

F3.2.1.2.1 State machine

The structure of the agent's state machine is directly modelled, and built up during the agent

initialization. To represent the structure formally, several domains and functions are used. The state

machine structure is exploited in the execution phase, when transitions are selected, and states entered

and left.

controlled domain STATENODE

 initially STATENODE = 

The STATENODE domain is modified in clause F3.2.3.1 to contain entries for each basic node or

composite state type in the system.

STATENODEKIND =def { stateNode, statePartition, procedureNode}

STATENODEREFINEMENTKIND =def { compositeStateGraph, stateAggregationNode}

STATEENTRYPOINT =def [State-entry-point-name]

STATEEXITPOINT =def State-exit-point-name  DEFAULT

STATENODEWITHENTRYPOINT =def STATENODE  (STATEENTRYPOINT  HISTORY)

STATENODEWITHEXITPOINT =def STATENODE  STATEEXITPOINT

STATENODEWITHCONNECTOR =def STATENODE  Connector-name

The first group of declarations and definitions introduces a controlled domain STATENODE, and a

number of derived domains.

controlled stateNodeKind: STATENODE  STATENODEKIND

controlled stateNodeRefinement: STATENODE  [STATENODEREFINEMENTKIND]

controlled stateName: STATENODE  State-name

controlled stateId: STATENODE  STATEID

controlled inheritedStateNode: STATENODE  [STATENODE]

controlled parentStateNode: STATENODE  [STATENODE]

controlled stateTransitions: STATENODE  SEMTRANSITION-set

controlled startTransitions: STATENODE  STARTTRANSITION-set

controlled freeActions: STATENODE  FREEACTION-set

controlled statePartitionSet: STATENODE  STATENODE-set

The stateNodeRefinement of a STATENODE for a basic state is undefined.

10 Rec. ITU-T Z.100/Annex F3 (01/2015)

The parentStateNode of a STATENODE is either undefined for a basic state, or the STATENODE for the

composite state type of a composite state node, or undefined or the super type for a composite state

type.

The inheritedStateNode of a STATENODE is either undefined for a basic state or an unspecialized

composite state, or one of the specializations a composite state type.

The second group of declarations introduces controlled functions defined on the domain STATENODE,

they can be understood as a state node control block and are used to model the state machine by a

hierarchical inheritance state graph.

controlled currentSubStates: STATENODE  STATENODE-set

controlled previousSubStates: STATENODE  STATENODE-set

The currentSubStates function defines, for each state node, the current substates. If the state node is

refined into a composite state graph, this is at most one substate. In case of a state aggregation node,

this is a subset of the state partition set.

The previousSubStates function gives the set of state nodes to use when a composite state with

HISTORY is re-entered.

collectCurrentSubStates(sn: STATENODE): STATENODE-set =def

 {sn}  U ({collectCurrentSubStates(x) | x  sn.currentSubStates  sn.inheritedStateNodes})

The collectCurrentSubStates function collects, for a given state node, all current substates.

controlled currentExitPoints: STATENODE  STATEEXITPOINT-set

The currentExitPoints function defines, for each state aggregation node, the current exit points: the

exit points activated by exiting state partitions. The state aggregation is exited only if all state

partitions have exited.

inheritsFrom(sn1: STATENODE, sn2: STATENODE): BOOLEAN =def

 if sn2.parentStateNode = undefined then false

 elseif sn1.parentStateNode = undefined then false

 else

 sn2.parentStateNode  sn1.parentStateNode.inheritedStateNodes 

 sn1.stateName  sn2.stateName

 endif

The inheritsFrom predicate determines whether the composite state type of one state node (sn2)

inherits the composite state type of another state node (sn1).

directlyInheritsFrom(sn1: STATENODE, sn2: STATENODE): BOOLEAN =def

 inheritsFrom(sn1, sn2) 

 ( snx  STATENODE:

 inheritsFrom(sn1, snx) inheritsFrom(snx, sn2))

The directlyInheritsFrom predicate determines whether the composite state type of one state node

(sn2) directly inherits (in one step) the composite state type of another state node (sn1).

directlyRefinedBy(sn1: STATENODE, sn2: STATENODE): BOOLEAN =def

 sn2.parentStateNode = sn1

The directlyRefinedBy predicate determines whether a state node is refined by another state node by

a single refinement step.

directlyInheritsFromOrRefinedBy(sn1: STATENODE, sn2: STATENODE): BOOLEAN =def

 directlyRefinedBy(sn1, sn2)  directlyInheritsFrom(sn1, sn2)

 Rec. ITU-T Z.100/Annex F3 (01/2015) 11

The directlyInheritsFromOrRefinedBy predicate determines whether two state nodes are related by a

sequence of refinement or inheritance steps.

inheritsFromOrRefinedBy(sn1: STATENODE, sn2: STATENODE): BOOLEAN =def

 directlyInheritsFromOrRefinedBy(sn1, sn2) 

 ( sn3  { sn  STATENODE: directlyInheritsFromOrRefinedBy (sn1, sn) }:

 (inheritsFromOrRefinedBy(sn3, sn2)))

The inheritsFromOrRefinedBy predicate determines whether sn1 inherits from or is refined by sn2,

taking transitivity of this relationship into account.

selectNextStateNode(snSet: STATENODE-set): [STATENODE] =def

 let sn = take({sn1  snSet: ( sn2  snSet: inheritsFromOrRefinedBy(sn1, sn2))}) in

 if sn = undefined then undefined

 elseif sn1  snSet: directlyInheritsFrom(sn1, sn)  sn = sn1.inheritedStateNode then

 selectNextStateNode(snSet \ {sn})

 else sn

 endif

 endlet

The selectNextStateNode function returns a state node that may be checked next, provided snSet is a

valid set of current state nodes reduced by state nodes that have already been selected with this

function.

inheritedStateNodes(sn: STATENODE): STATENODE-set =def

 if sn.inheritedStateNode = undefined then 

 else {sn.inheritedStateNode}  sn.inheritedStateNode.inheritedStateNodes

 endif

The inheritedStateNodes function defines, for a given state node, the set of inherited state nodes.

parentStateNodes(sn: STATENODE): STATENODE-set =def

 if sn.parentStateNode = undefined then 

 else {sn.parentStateNode}  sn.parentStateNode.parentStateNodes

 endif

The parentStateNodes function defines, for a given state node, the set of parent state nodes.

mostSpecialisedStateNode(sn:STATENODE): STATENODE =def

 let sn1 = take({sn2  STATENODE: inheritsFrom(sn2, sn)}) in

 if sn1 = undefined then sn else sn1.mostSpecialisedStateNode endif

 endlet

The mostSpecialisedStateNode function returns, for a given state node, the most specialized state

node applied during the selection of transitions in order to obtain the correct sequence of state node

checks.

selectInheritedStateNode(sn: STATENODE, snSet: STATENODE-set): [STATENODE]=def

 take({sn1  snSet: directlyInheritsFrom(sn,sn1)})

The selectInheritedStateNode function yields a state node that may be left next, provided snSet is a

valid set of state nodes to be left.

getPreviousStatePartition(sn: STATENODE): STATENODE =def

 if sn.stateNodeKind = statePartition 

  sn1  sn.parentStateNodes: sn1.stateNodeKind = procedureNode

 then sn.mostSpecialisedStateNode

 else getPreviousStatePartition(sn.parentStateNode)

 endif

12 Rec. ITU-T Z.100/Annex F3 (01/2015)

The getPreviousStatePartition function determines, for a given state node, the innermost state

partition not belonging to a procedure.

controlled resultLabel: STATENODE  LABEL

The resultLabel function refers to the location of the return value, if the state node is a procedure state

node, i.e., a state node owning the procedure graph.

controlled callingProcedureNode: (AGENT  STATENODE)  [STATENODE]

The callingProcedureNode function refers to the root node of the calling procedure, if any, and is

associated with the state node owning the procedure graph. Thus, nested procedure calls are modelled.

controlled entryConnection: STATEENTRYPOINT  STATENODE  [STATEENTRYPOINT]

controlled exitConnection: STATEEXITPOINT  STATENODE  STATEEXITPOINT

Finally, the entryConnection and exitConnection functions model the entry and exit connections of

state nodes.

F3.2.1.2.2 Agent modes

To model the dynamic semantics of agents, several activity phases are distinguished. These phases

are modelled by a hierarchy of agent modes. At this point, the agent modes are formally introduced;

their usage is explained in clause F3.2.3.

AGENTMODE =def {

 initialisation, // agent mode 1

 execution, // agent mode 1

 selectingTransition, // agent mode 2

 firingTransition, // agent mode 2

 stopping, // agent mode 2

 initialising1, // agent mode 2, 4

 initialising2, // agent mode 2

 initialisingStateMachine, // agent mode 2

 initialisingProcedureGraph, // agent mode 4

 initialisationFinished, // agent mode 2, 4

 startSelection, // agent mode 3

 selectFreeAction, // agent mode 3

 selectExitTransition, // agent mode 3

 selectStartTransition, // agent mode 3

 selectPriorityInput, // agent mode 3

 selectInput, // agent mode 3

 selectContinuous, // agent mode 3

 startPhase, // agent mode 2, 4

 selectionPhase, // agent mode 4, 5

 evaluationPhase, // agent mode 4, 5

 selectSpontaneous, // agent mode 4

 leavingStateNode, // agent mode 3

 firingAction, // agent mode 3, 4

 enteringStateNode, // agent mode 3

 exitingCompositeState, // agent mode 3

 initialisingProcedure, // agent mode 3

 enterPhase, // agent mode 4

 enteringFinished, // agent mode 4

 leavePhase, // agent mode 4

 leavingFinished} // agent mode 4

 Rec. ITU-T Z.100/Annex F3 (01/2015) 13

The agent modes are grouped according to their usage and the level of the agent mode hierarchy

where they are relevant. In cases no conflict arises, agent modes may be applied on more than one

level of this hierarchy.

F3.2.1.2.3 Agent control block

The state information of an SDL-2010 agent instance is collected in an agent control block. The agent

control block is partially initialized when an SDL-2010 agent (set) instance is created, and

completed/modified during its initialization and execution. Since part of the state information is valid

only during certain activity phases, the agent control block is structured accordingly. Following is the

state information needed in all phases. Further control blocks that form part of the agent control block,

but are relevant during certain activity phases only, are defined subsequently.

controlled owner: AGENT  STATENODE  LINK  [AGENT]

Hierarchical system structure is modelled by means of a function owner defined on agents, and on

state nodes (see clause F3.2.1.2.1), expressing structural relations between them and their constituent

components. More specifically, an agent set instance is considered as owner of all those agent

instances currently contained in the set; an agent instance owns its substructure, consisting of agent

set instances. Similarly, a composite state node owns the state nodes or state partitions forming the

refinement.

controlled agentAS1: AGENT  Agent-definition

controlled channelAS1: AGENT  [Channel-definition]

controlled gateAS1: GATE  [Gate-definition]

controlled stateAS1: STATENODE  State-node

controlled procedureAS1: STATENODE  Procedure-definition

controlled stateDefinitionAS1: STATENODE  Composite-state-type-definition

controlled partitionAS1: STATENODE  [State-partition]

A series of unary functions (agentAS1 to partitionAS1, see above, defined on agents, gates and state

nodes) identify the corresponding AST definition. These definitions are needed during the

initialization phase and also during dynamic creation of agents.

isAgentSet(ag: AGENT): BOOLEAN =def ag.program = AGENT-SET-PROGRAM

To distinguish SDL-2010 agent sets from other agents, the predicate isAgentSet is defined.

controlled selfPid: SDLAGENT  PID

controlled sender: SDLAGENT  PID

controlled parent: SDLAGENT  [PID]

controlled offspring: SDLAGENT  PID

The above functions model the corresponding Pid expressions introduced in ITU-T Z.101.

controlled state: SDLAGENT  STATE

The values of the variables of an agent are collected in a state associated with some agent, modelled

by the function state. This function is changed dynamically whenever the variable values of an agent

or a procedure change. The data semantics provides the initial value for this function via

initAgentState and initProcedureState.

controlled stateAgent: SDLAGENT  SDLAGENT

14 Rec. ITU-T Z.100/Annex F3 (01/2015)

The values of the variables of an SDL-2010 agent are normally associated with the agent. However,

in case of nested process agents (i.e. process agents contained within a process agent), they are

associated with the outermost process agent. The function stateAgent yields, for a given SDL-2010

agent, the SDL-2010 agent to which the variable values are associated.

controlled topStateId: SDLAGENT  STATEID

The topStateId function associates the outermost scope with an agent. In case of nested process

agents, it is only defined for the outermost process agent.

controlled isActive: SDLAGENT  [SDLAGENT]

Nested process agents are to be executed in an interleaving manner. To model the required

synchronization, the function isActive of the outermost process agent is used.

monitored spontaneous: AGENT  BOOLEAN

The SDL-2010 concept of spontaneous transition is abstractly modelled by means of a monitored

predicate spontaneous associated with a particular SDL-2010 agent instance, which serves for

triggering spontaneous transition events. It is assumed that spontaneous transitions occur from time

to time without being aware of any causal dependence on external conditions and events. This view

reflects the indeterminate nature behind the concept of spontaneous transition.

controlled inport: SDLAGENT  GATE

Each SDL-2010 agent instance has its local input port at which arriving signals are stored until these

signals either are actively received, or until they are discarded. Input ports are modelled as a gate,

containing a finite sequence of signals.

controlled currentSignalInst: SDLAGENT  [SIGNALINST]

During the firing of input transitions, the signal instance removed from the input port is available

through the function currentSignalInst.

controlled topStateNode: SDLAGENT  STATENODE

The state nodes of an agent are rooted at a top state node modelling the state machine of the agent

instance.

controlled currentStartNodes: SDLAGENT  STATENODEWITHENTRYPOINT-set

Start transitions take precedence over regular transitions; they are identified by tuples consisting of a

state node and an entry point.

controlled currentExitStateNodes: SDLAGENT  STATENODEWITHEXITPOINT-set

Exit transitions take precedence over regular transitions; they are identified by tuples consisting of a

state node and an exit point.

controlled currentConnector: SDLAGENT  [STATENODEWITHCONNECTOR]

Free actions take precedence over regular transitions; they are identified by tuples consisting of a

state node and a connector name.

controlled scopeName: SDLAGENT  STATEID  Connector-name

controlled scopeContinueLabel: SDLAGENT  STATEID  CONTINUELABEL

controlled scopeStepLabel: SDLAGENT  STATEID  STEPLABEL

The functions scopeName, scopeContinueLabel and scopeStepLabel are used for Compound-node

interpretation (see Z.102).

 Rec. ITU-T Z.100/Annex F3 (01/2015) 15

INITSTATEMACHINE/INITPROCEDUREGRAPH control block

When the state machine of an agent is initialized, a hierarchical inheritance state graph is created.

Because this normally takes several steps, the intermediate status of the creation is kept in an

INITSTATEMACHINE/INITPROCEDUREGRAPH control block. Based on this information, it is, for

instance, possible to control the order of node creation as far as necessary. This control block is used

during the initialization of the agent instance, and also dynamically when a procedure call occurs.

controlled stateNodesToBeCreated: SDLAGENT  State-node-set

controlled statePartitionsToBeCreated: SDLAGENT  State-partition-set

controlled stateNodesToBeRefined: SDLAGENT  STATENODE-set

controlled stateNodesToBeSpecialised: SDLAGENT  STATENODE-set

In order to keep track of the state machine creation, a distinction is made between the state nodes and

the state partitions to be created. Also, the refinement and specialization of state nodes is taken into

account.

Selection control block

During the selection of a transition, additional information is needed to keep track of the selection

status. For instance, when the selection starts, the input port is "frozen", meaning that its state at the

beginning of the selection is the basis for this selection cycle. This does not prevent signal instances

arriving while the selection is active, but these signals are not considered before the next selection

cycle.

controlled inputPortChecked: SDLAGENT  SIGNALINST*

controlled stateNodesToBeChecked: SDLAGENT  STATENODE-set

controlled stateNodeChecked: SDLAGENT  [STATENODE]

controlled startNodeChecked: SDLAGENT  STATENODEWITHENTRYPOINT

controlled exitNodeChecked: SDLAGENT  STATENODEWITHEXITPOINT

controlled transitionsToBeChecked: SDLAGENT  SEMTRANSITION-set

controlled transitionChecked: SDLAGENT  SEMTRANSITION

controlled signalChecked: SDLAGENT  SIGNALINST

controlled SignalSaved: SDLAGENT  BOOLEAN

controlled continuousPriorities: SDLAGENT  NAT-set

Enter/Leave/ExitStateNode control block

Entering, leaving and exiting of state nodes in general requires a sequence of steps. In hierarchical

state graphs, entering a state node means to enter contained states, and to execute start transitions and

entry procedures. Likewise, leaving a state node means to leave the contained states and to execute

exit procedures. Exiting a composite state in addition means to fire an exit transition. During these

activity phases, the status information is maintained in the enter/leave/exitStateNode control block.

controlled stateNodesToBeEntered: SDLAGENT  STATENODEWITHENTRYPOINT-set

controlled stateNodesToBeLeft: SDLAGENT  STATENODE-set

controlled stateNodeToBeExited: SDLAGENT  [STATENODEWITHEXITPOINT]

Procedure control block

The procedure control block comprises the part of the agent control block that has to be stacked when

a procedure call occurs. This includes the agent modes, the current action label, and the state

identification. Once the procedure terminates, this state information has to be restored. The stacked

information is associated with the state node containing the procedure graph. Such a state node is

created dynamically for each procedure call.

During the execution of a procedure, other control blocks may be required, for instance, the

INITSTATEMACHINE control block or the selection control block. However, the corresponding phases

16 Rec. ITU-T Z.100/Annex F3 (01/2015)

do not lead to the execution of further procedures, and are not interrupted by other phases. Therefore,

it is not necessary to stack these parts of the agent control block.

controlled agentMode1: AGENT  STATENODE  AGENTMODE

controlled agentMode2: AGENT  STATENODE  AGENTMODE

controlled agentMode3: AGENT  STATENODE  AGENTMODE

controlled agentMode4: AGENT  STATENODE  AGENTMODE

controlled agentMode5: AGENT  STATENODE  AGENTMODE

To control the execution of agents, a control hierarchy is formed, which consists of up to five levels,

depending on the current execution phase. For each of these levels, a specific function agentMode is

defined.

controlled currentStateId: SDLAGENT  STATENODE  STATEID

In order to handle nested process agents and procedure calls, a state may contain substates. Every

substate is given an identification at the time of its creation; for example, when a procedure is called

or when a nested process agent is started. These identifications are taken from the domain STATEID.

A STATE contains associations between a number of STATEID values, a number of variable identifiers,

and their respective values.

controlled currentLabel: SDLAGENT  STATENODE  [LABEL]

The currentLabel function, which identifies the action currently executed or to be executed next,

controls the firing of transitions and the evaluation of expressions. When a sequence of steps is

completed, currentLabel is set to undefined.

controlled continueLabel: SDLAGENT  STATENODE  [CONTINUELABEL]

The continueLabel function is needed while a state node is left, which forms part of the firing of a

transition and may lead to the execution of further action sequences. When the state node is left, firing

of the transition is resumed. In particular, this value is needed when procedures are executed. Also,

this function records the label where execution is continued after a procedure call.

controlled currentParentStateNode: SDLAGENT  STATENODE  STATENODE

The currentParentStateNode function defines the correct ownership between state nodes, and

identifies states to be left and to be entered.

controlled previousStateNode: SDLAGENT  STATENODE  STATENODE

When a transition is fired, the previousStateNode function refers to the state node where the transition

started.

controlled currentProcedureStateNode: SDLAGENT  STATENODE  STATENODE

The currentProcedureStateNode function refers to the current procedure state node.

F3.2.1.2.4 Agent connections

SDL-2010 agents are organized in agent sets. All members of an agent set have the same sets of input

gates and output gates as defined for the agent set.

gateUnconnected(g:GATE):BOOLEAN =def

 let myDef: Agent-type-definition = g.myAgent.agentAS1.s-Agent-type-identifier.idToNodeAS1 in

 cd  myDef.s-Channel-definition-set: cp  cd.s-Channel-path-set:

 (g.gateAS1  cp.s-Originating-gate.idToNodeAS1 

 g.gateAS1  cp.s-Destination-gate.idToNodeAS1)

 endlet

The gateUnconnected is true if the gate is not linked to an inner gate by a channel path:

 Rec. ITU-T Z.100/Annex F3 (01/2015) 17

ingates(a: AGENT): GATE-set =def

 if a.isAgentSet then

 { g  GATE: g.myAgent = a  g.direction = inDir  g.gateUnconnected}

 else
 a.owner.ingates

 endif

outgates(a:AGENT): GATE-set =def

 if a.isAgentSet then

 { g  GATE: g.myAgent = a  g.direction = outDir  g.gateUnconnected}

 else
 a.owner.outgates

 endif

The derived function ingates and outgates collect all input gates and all output gates of an agent.

Input gates (output gates) are gates of an agent set or agent with direction inDir (outDir) that are not

connected to inner gates by a channel path.

F3.2.1.2.5 Agent behaviour

For the transitions of agents, a tuple domain is introduced, consisting of the signal type, the start label

for any firing conditions, a priority value, and the start label of the transition actions. Additionally,

state exit points may be given. Depending on the kind of transition, some of these components may

be unspecified. For instance, in case of an input transition, there is no firing transition and no priority.

SEMTRANSITION=def SIGNAL  [LABEL]  [NAT]  LABEL  [STATEEXITPOINT]

STARTTRANSITION =def LABEL  STATEENTRYPOINT

FREEACTION =def Connector-name  LABEL

Given a set of transitions, several derived functions are defined to select particular subsets:

priorityInputTransitions(tSet:SEMTRANSITION-set): SEMTRANSITION-set =def

 { t  tSet: t.s-SIGNAL  NONE  t.s-LABEL = undefined  t.s-NAT  undefined }

inputTransitions(tSet:SEMTRANSITION-set): SEMTRANSITION-set =def

 { t  tSet: t.s-SIGNAL  NONE  t.s-NAT = undefined }

continuousSignalTransitions(tSet:SEMTRANSITION-set): SEMTRANSITION-set =def

 { t  tSet: t.s-SIGNAL = NONE  t.s-LABEL  undefined  t.s-NAT  undefined }

spontaneousTransitions(tSet:SEMTRANSITION-set): SEMTRANSITION-set =def

 { t  tSet: t.s-SIGNAL = NONE  t.s-NAT = undefined  t.s-STATEEXITPOINT = undefined }

exitTransitions(tSet:SEMTRANSITION-set): SEMTRANSITION-set =def

 { t  tSet: t.s-STATEEXITPOINT  undefined }

F3.2.1.3 Interface to the data type part

The semantics of the data type part of SDL-2010 is handled separately from the concurrency related

aspects of the language. To make this splitting possible, an interface for the semantics definition is

defined.

NOTE – The data type part does not include the REF Aggregation-kind for reference variables defined in

SDL-2010, and therefore is inconsistent with SDL-2010. Further work needs to be done to update the data part

for reference variables defined in SDL-2010.

F3.2.1.3.1 Functions provided by the data type part

The data interface is grouped around a derived domain STATE. This domain is abstract from the

concurrency side, and concrete from the data type side. It represents the values of the variables of an

18 Rec. ITU-T Z.100/Annex F3 (01/2015)

agent, which are collected in the outermost process agent. This is achieved by a dynamic, controlled

function state defined on process instances (see clause F3.2.1.2.3).

derived domain STATE

The function state is changed dynamically whenever the state of a process or a procedure changes. It

is solely used within the concurrency semantics part. The data type semantics part provides the initial

value for the state function via the functions initAgentState and initProcedureState. In order to handle

recursion, a state might contain substates. Every substate is given an identification at the time of its

creation; for example, when a procedure is called or when a nested process agent is started. These

identifications are in the domain STATEID. A STATE contains associations between a number of

STATEID values, a number of variable identifiers, and their respective values.

The parameters of initAgentState are:

• State of the outermost process agent (undefined if the outermost process agent is being

created)

• State ID of the new state

• State ID of the super state of the new state (undefined for the outermost agent)

• Declarations of the agent

The additional parameter for initProcedureState is

• List of parameter values and variable names

controlled domain STATEID

DECLARATION=def Procedure-formal-parameter  Variable-definition

initAgentState: [STATE]  STATEID  [STATEID]  DECLARATION-set STATE

initProcedureState: STATE  STATEID STATEID  DECLARATION-set  DECLARATION*  VALUE*  Variable-

identifier*  STATE

The domain DECLARATION is used to create lists of variables for a state. Positional parameters are

guaranteed to come first in this list.

There is also a domain for values, called VALUE.

VALUE =def SDLINTEGER  SDLBOOLEAN  SDLREAL  SDLCHARACTER  SDLSTRING

  PID  SDLLITERALS  SDLSTRUCTURE  SDLARRAY  SDLPOWERSET

  SDLBAG  SDLTIME  SDLDURATION

Some operations invoked in the data part may raise an exception. In SDL-2010 there is no definition

of the handling of exceptions, so that if one occurs the further behaviour of the system is not defined.

Therefore, if an exception occurs in the operation the termination is not defined, so the formal

semantics is only given for the case of termination without an exception. The possibility of the

operation raising an exception is shown by the return being in one of the following domains:

STATEOREXCEPTION =def STATE  EXCEPTION

VALUEOREXCEPTION =def VALUE  EXCEPTION

The data type part has to provide functions that model how assignments are performed, namely

assign: Variable-identifier  VALUE  STATE  STATEID  STATEOREXCEPTION

 Rec. ITU-T Z.100/Annex F3 (01/2015) 19

The function eval (see below) retrieves the value associated with a variable for a given state and state

id. The function assign associates a new value with a given variable. There is an ASSIGN rule macro

using this function, which is doing the real assignment.

ASSIGN(variableName: Variable-identifier, value: VALUE, state: STATE, id: STATEID) 

 Self.stateAgent.state:= assign(variableName, value, state, id)

Assignments are the only way to change the state.

In order to get the current value of a variable, the data part provides the function eval to get it. It

returns undefined if the variable is not set.

eval: Variable-identifier  STATE  STATEID  VALUE

The semantics of these functions is given by the data semantics part.

In order to handle expressions, the concurrent semantics provides a domain for procedure bodies,

which is also used for method and operator bodies. The data part, in return, provides a static domain

PROCEDURE for procedures (definitions) and a function dispatch for procedure instances.

PROCEDURE =def Static-operation-signature  Literal-signature

For modelling the dynamic dispatch, a dispatch function is provided by the data part.

dispatch: PROCEDURE  VALUE*  Identifier

Finally, there are two functions to model the predefined functions that do not have a procedure body

because they are part of the predefined data. There is one function to check if the procedure is

functional (predefined), and one function to compute the result in this case.

functional: PROCEDURE  VALUE*  BOOLEAN

compute: PROCEDURE  VALUE*  VALUEOREXCEPTION

Moreover, the following domains and functions referring to the Predefined data are used.
derived domain SDLBOOLEAN

derived domain SDLINTEGER

derived semvalueBool: SDLBOOLEAN  BOOLEAN

derived semvalueInt: SDLINTEGER NAT

derived semvalueRealNum: SDLREAL NAT

derived semvalueRealDen: SDLREAL NAT

derived semvalueReal: SDLREAL  REAL

F3.2.1.3.2 Functions used by the data type part

The following special points are worth noting:

• If two processes have part of their state in common (which could be possible due to the

reference nature of the new data type part), there are no semantic problems in the concurrency

part, as all state changes are automatically synchronized by the underlying ASM semantics.

• The values for the predefined variables of a process such as SENDER, PARENT, OFFSPRING,

SELF, as well as the value of NOW are provided by the concurrency part.

F3.2.1.4 Behaviour primitives

This clause describes the SAM behaviour primitives and how these primitives are evaluated. It

describes how actions are evaluated, and gives for each primitive a short explanation of its intended

meaning. Together with the domains, functions and macros that are used to define the behaviour of a

primitive, an informal description of the intended meaning is provided as well. Additional reference

clauses for further explanations complement the description of behaviour primitives.

behaviour: BEHAVIOUR =def rootNodeAS1.compile

20 Rec. ITU-T Z.100/Annex F3 (01/2015)

The result of the compilation is accessible through the function behaviour. This function is static to

reflect the fact that SAM code cannot be modified during execution.

STARTLABEL =def LABEL

BEHAVIOUR =def PRIMITIVE-set

PRIMITIVE =def LABEL  ACTION

The behaviour consists of a start label and label-action pairs. The label is used to uniquely identify

the action and to represent the current state of the interpretation.

F3.2.1.4.1 Action evaluation

Explanation

Action evaluation is used within the execution phase of agents. Primitives are attached to labels. The

function currentLabel determines for each agent an action to be evaluated next. Actions have different

types. For example, there exists, beside others, a primitive for the evaluation of variables and one for

procedure calls. The evaluation of an action first determines the type of an action and then, depending

of this type, fires an appropriate rule.

Representation

The domain ACTION is defined as disjoint union of derived domains, which are explained in the

subsequent clauses. For example, there exists a domain VAR that contains actions for the evaluation

of variables.

ACTION =def VAR  OPERATIONAPPLICATION  CALL  RETURN  TASK  ASSIGNPARAMETERS  EQUALITY 

DECISION  OUTPUT  CREATE  SET  RESET  TIMERACTIVE  STOP  SYSTEMVALUE  ANYVALUE 

SETRANGECHECKVALUE  SCOPE  SKIP  BREAK  CONTINUE  ENTERSTATENODE  LEAVESTATENODE

Domains

During the execution phase and the evaluation of actions we use labels basically in two ways: as

jumps (continue labels) for modelling the corresponding control flow and as stores (value labels) for

intermediate results. For example, intermediate results arise during the evaluation of expressions. A

domain CONTINUELABEL represents labels where an agent continues execution after completing an

action. A domain VALUELABEL represents labels at which an agent can write or read values.

CONTINUELABEL =def LABEL

VALUELABEL =def LABEL

Functions

Values stored at value labels can be accessed by a dynamic controlled function value and a dynamic

derived function values.

controlled value: VALUELABEL  SDLAGENT  VALUE

values(lSeq: VALUELABEL*, sa: SDLAGENT): VALUE* =def

 if lSeq = empty then empty

 else < value(lSeq.head,sa) > ⁀ values(lSeq.tail,sa)

 endif

 Rec. ITU-T Z.100/Annex F3 (01/2015) 21

Figure F3-2 – Agents, labels and values

In Figure 3-2 there are two agents, a and b. The label of agent a, which determines the next action to

be evaluated within the execution phase, is k. Agent a has stored value 4 at label m, whereas Agent b

has a stored value 2 at the same label. In this way, different agents can write different values to the

same label.

Behaviour

The evaluation of an action is defined by macro EVAL. Macro EVAL takes as argument an action and

depending on the type of this action a specific macro is called. These macros are explained in the

subsequent clauses. The subdomains of ACTION are pairwise disjoint.

EVAL(a:ACTION) 

 if a  VAR then EVALVAR(a)

 elseif a  OPERATIONAPPLICATION then EVALOPERATIONAPPLICATION(a)

 elseif a  CALL then EVALCALL(a)

 elseif a  RETURN then EVALRETURN(a)

 elseif a  TASK then EVALTASK(a)

 elseif a  ASSIGNPARAMETERS then EVALASSIGNPARAMETERS(a)

 elseif a  EQUALITY then EVALEQUALITY(a)

 elseif a  DECISION then EVALDECISION(a)

 elseif a  OUTPUT then EVALOUTPUT(a)

 elseif a  CREATE then EVALCREATE(a)

 elseif a  SET then EVALSET(a)

 elseif a  RESET then EVALRESET(a)

 elseif a  TIMERACTIVE then EVALTIMERACTIVE(a)

 elseif a  STOP then EVALSTOP(a)

 elseif a  SYSTEMVALUE then EVALSYSTEMVALUE(a)

 elseif a  ANYVALUE then EVALANYVALUE(a)

 elseif a  SETRANGECHECKVALUE then EVALSETRANGECHECKVALUE(a)

 elseif a  SCOPE then EVALSCOPE(a)

 elseif a  SKIP then EVALSKIP(a)

 elseif a  BREAK then EVALBREAK(a)

 elseif a  CONTINUE then EVALCONTINUE(a)

 elseif a  ENTERSTATENODE then EVALENTERSTATENODE(a)

 elseif a  LEAVESTATENODE then EVALLEAVESTATENODE(a)

 endif

Agent

Label

4

a

b

l

m

2

value

k label

Value

22 Rec. ITU-T Z.100/Annex F3 (01/2015)

F3.2.1.4.2 Primitive Var

Explanation

The Var primitive models the evaluation of a variable. It is used within the evaluation of expressions.

An action of type VAR is a tuple consisting of a variable name and a so-called continue label. The

macro EVALVAR evaluates the given variable within the state of the executing agent and writes this

value at the current label of this agent. In this way the result of the evaluation can be used in

consecutive execution steps of this agent.

Representation

The domain VAR is defined as a Cartesian product of the domain Variable-identifier of variable names

and domain CONTINUELABEL of labels.

VAR =def Variable-identifier  CONTINUELABEL

Behaviour

If the value of a variable in the current state of the executing agent is undefined, the

UndefinedVariable exception is raised. Otherwise the value of a variable in the current state of the

executing agent is determined by function eval and is written at Self.currentLabel. In order to avoid

conflicts with other agents, the function value takes a further argument of type AGENT, which

identifies the owner of the value. Additionally, the label which determines the next rule to be fired is

set to the given continue label.

EVALVAR(a:VAR) 

 if eval(a.s-Variable-identifier, Self.stateAgent.state, Self.currentStateId) = undefined then

 raise(UndefinedVariable)

 else
 value(Self.currentLabel, Self) := eval(a.s-Variable-identifier,

 Self.stateAgent.state, Self.currentStateId)

 Self.currentLabel := a.s-CONTINUELABEL

 endif

Reference sections

For the definition of function value refer to clause F3.2.1.4.1. The definition of function eval can be

found in clause F3.2.1.3.1. Function currentLabel is defined in clause F3.2.1.2.3.

F3.2.1.4.3 Primitive OperationApplication

Explanation

The OperationApplication primitive models the application of operators. Procedures without

procedure body are called functional or predefined procedures. In this sense, all built-in operators

such as +, - on the set of integers are predefined procedures. A predefined procedure is executed by

function compute: a non-functional operation, which is handled with function dispatch that

determines (depending on the current values) the correct procedure identifier.

Representation

OPERATIONAPPLICATION =def PROCEDURE  VALUELABEL*  CONTINUELABEL

Behaviour

EVALOPERATIONAPPLICATION(a:OPERATIONAPPLICATION) 

 if functional(a.s-PROCEDURE, values(a.s-VALUELABEL-seq, Self)) then

 value(Self.currentLabel, Self):= compute(a.s-PROCEDURE, values(a.s-VALUELABEL-seq, Self))

 Self.currentLabel:= a.s-CONTINUELABEL

 else

 Rec. ITU-T Z.100/Annex F3 (01/2015) 23

 let pd: Procedure-definition = idToNodeAS1(

 dispatch(a.s-PROCEDURE, values(a.s-VALUELABEL-seq, Self))) in

 CREATEPROCEDURE(pd, Self.currentLabel, a.s-CONTINUELABEL)

 endlet

 endif

Reference sections

For the definition of function value refer to clause F3.2.1.4.1. The definition of predicate functional

and the definition of function compute can be found in clause F3.2.1.3.1.

F3.2.1.4.4 Primitive Call

Explanation

The call primitive models procedure calls, or method invocations. It is used within the evaluation of

expressions and actions. An action of type CALL is defined as a tuple consisting of an identifier of the

called procedure, a sequence of value labels and variable identifiers, and a continue label. In-

parameters are represented by value labels, in/out-parameters by variable identifiers. The macro

EVALCALL creates a new context (e.g., new local scope for variables, for names of its states and

connectors) and saves the old context, which in turn is restored by the corresponding return.

Representation

An action of type CALL is defined as a tuple consisting of an identifier of the called procedure, a

sequence of value labels and variable identifiers, and a continue label. In-parameters are represented

by value labels, in/out-parameters by variable identifiers.

CALLPARAM =def VALUELABEL  Variable-identifier

CALL =def Procedure-identifier  CALLPARAM*  VALUELABEL  CONTINUELABEL

Behaviour

EVALCALL(a:CALL) 

 let pd: Procedure-definition = a.s-Procedure-identifier.idToNodeAS1 in

 CREATEPROCEDURE(pd, a.s-VALUELABEL, a.s-CONTINUELABEL)

 endlet

A procedure call is evaluated with macro CREATEPROCEDURE, which basically performs a procedure

initialization and additionally creates a procedure state node.

SAVEPROCEDURECONTROLBLOCK(sn:STATENODE, cl:CONTINUELABEL) 

 sn.agentMode1 := Self.agentMode1

 sn.agentMode2 := Self.agentMode2

 sn.agentMode3 := Self.agentMode3

 sn.agentMode4 := Self.agentMode4

 sn.agentMode5 := Self.agentMode5

 sn.currentStateId := Self.currentStateId

 sn.currentLabel := Self.currentLabel

 sn.continueLabel := cl

 sn.currentParentStateNode := Self.currentParentStateNode

 sn.previousStateNode := Self.previousStateNode

 sn.callingProcedureNode := Self.callingProcedureNode

The parameter passing mechanism is realized by function initProcedureState. This function returns a

state, which contains Self.state as a substate. Furthermore, for all local and in-parameters

initProcedureState "creates" new locations. In-parameters are initialized with values stored in

resultLabel. Formal inout-parameters are unified with the corresponding actual inout-parameters.

24 Rec. ITU-T Z.100/Annex F3 (01/2015)

Reference sections

For the definition of macro CREATEPROCEDURE refer to clause F3.2.3.1.4. Information on procedure

control blocks is given in clause F3.2.1.2.3.

F3.2.1.4.5 Primitive Return

Explanation

The Return primitive is used to model a procedure, method or operator return, or the exit of a

composite state. In case of a procedure, method or operator return, it basically restores the old context

(e.g., local scope for names of its states and connectors) of the corresponding call. Since procedures

can return values, an action of type RETURN is modelled by a value label. The return value of the

procedure is stored at this label. In case of an exit, the state exit point name is given.

Representation

RETURN =def ()  (VALUELABEL  STATEEXITPOINT)

Behaviour

EVALRETURN(a: RETURN) 

 if a.s-implicit  VALUELABEL then

 EVALEXITPROCEDURE(a.s-implicit)

 else
 EVALEXITCOMPOSITESTATE(a.s-implicit)

 endif

EVALEXITPROCEDURE(vl: VALUELABEL) 

 value(Self.callingProcedureNode.resultLabel, Self) := value(vl, Self)

 RESTOREPROCEDURECONTROLBLOCK(Self.callingProcedureNode)

EVALEXITCOMPOSITESTATE(sep: STATEEXITPOINT) 

 Self.stateNodeToBeExited :=

 mk-STATENODEWITHEXITPOINT(Self.currentParentStateNode, sep)

 Self.agentMode3 := exitingCompositeState

RESTOREPROCEDURECONTROLBLOCK(sn:STATENODE) 

 Self.agentMode1 := sn.agentMode1

 Self.agentMode2 := sn.agentMode2

 Self.agentMode3 := sn.agentMode3

 Self.agentMode4 := sn.agentMode4

 Self.agentMode5 := sn.agentMode5

 Self.currentStateId := sn.currentStateId

 Self.currentLabel := sn.continueLabel

 Self.continueLabel := sn.continueLabel

 Self.currentParentStateNode := sn.currentParentStateNode

 Self.previousStateNode := sn.previousStateNode

 Self.callingProcedureNode := sn.callingProcedureNode

Reference sections

Information on procedure control blocks is given in clause F3.2.1.2.3.

F3.2.1.4.6 Primitive Task

Explanation

The Task primitive is used for the evaluation of assignments. An action of type TASK is defined as a

tuple consisting of a variable name, a value label and a continue label. The variable name becomes

as value within the state of the executing agent the value stored at value label.

 Rec. ITU-T Z.100/Annex F3 (01/2015) 25

Representation

An action of type TASK is defined as a tuple consisting of a variable name, a value label and a continue

label.

TASK =def Variable-identifier  VALUELABEL  BOOLEAN  CONTINUELABEL

Behaviour

The assignment is mainly realized by means of macro ASSIGN. Within the state of the executing agent

the corresponding variable is set to the value stored at value label.

EVALTASK(a:TASK) 

 ASSIGN(a.s-Variable-identifier, value(a.s-VALUELABEL, Self), Self.stateAgent.state,

 Self.currentStateId)

 Self.currentLabel := a.s-CONTINUELABEL

Reference Sections

The definition of macro ASSIGN can be found in clause F3.2.1.3.1.

F3.2.1.4.7 Primitive AssignParameters

Explanation

The AssignParameters primitive is used for the assignments of parameters. An action of type

ASSIGNPARAMETERS is defined as a tuple consisting of a variable identifier, a natural number, and a

continue label.

Representation

An action of type ASSIGNPARAMETERS is defined as a tuple consisting of a variable identifier, a natural

number, and a continue label.

ASSIGNPARAMETERS =def Variable-identifier  NAT  CONTINUELABEL

Behaviour

EVALASSIGNPARAMETERS(a:ASSIGNPARAMETERS) 

 let v = Self.currentSignalInst.plainSignalValues[a.s-NAT] in

 ASSIGN(a.s-Variable-identifier, v, Self.stateAgent.state, Self.currentStateId)

 endlet
 Self.currentLabel := a.s-CONTINUELABEL

Reference sections

The definition of macro ASSIGN can be found in clause F3.2.1.3.1.

F3.2.1.4.8 Primitive Equality

Explanation

The Equality primitive is used for the evaluation of equality tests. An action of type EQUALITY is

defined as a tuple consisting of two value labels and a continue label. The values associated with

these labels are compared. The result is stored at continue label.

Representation

EQUALITY =def VALUELABEL  VALUELABEL  CONTINUELABEL

Behaviour

EVALEQUALITY (a:EQUALITY) 

 if value(a.s-VALUELABEL, Self) = value(a.s2-VALUELABEL, Self) then

26 Rec. ITU-T Z.100/Annex F3 (01/2015)

 value(a.s-CONTINUELABEL, Self) := mk-SDLBOOLEAN(true, BooleanType)

 else
 value(a.s-CONTINUELABEL, Self) := mk-SDLBOOLEAN(false, BooleanType)

 endif
 Self.currentLabel := a.s-CONTINUELABEL

Reference sections

No references.

F3.2.1.4.9 Primitive Decision

Explanation

The Decision primitive is used for the evaluation of decisions. A decision in DECISION consists of a

value label and a set of answer. An answer in ANSWER is a tuple consisting of a value label and a

continue label. The action itself chooses an answer such that the decision-value given by the

corresponding value label coincides with the answer-value.

Representation

A decision in DECISION consists of a value label and a set of answer. An answer in ANSWER is a tuple

consisting of a value label and a continue label.

DECISION =def VALUELABEL  ANSWER-set  [CONTINUELABEL]

ANSWER =def VALUELABEL  CONTINUELABEL

Behaviour

Macro EVALDECISION chooses an answer such that the decision-value given by the corresponding

value label coincides with the answer-value.

EVALDECISION(d:DECISION) 

 if value(d.s-VALUELABEL, Self)  { value(an.s-VALUELABEL, Self) | an  d.s-ANSWER-set } then

 choose an: an  d.s-ANSWER-set 

 value(d.s-VALUELABEL, Self) = value(an.s-VALUELABEL, Self)

 Self.currentLabel := an.s-CONTINUELABEL

 endchoose

 elseif d.s-CONTINUELABEL  undefined then

 Self.currentLabel := d.s-CONTINUELABEL

 else raise(NoMatchingAnswer)

 endif

Reference sections

For the definition of function value refer to clause F3.2.1.4.1.

F3.2.1.4.10 Primitive Output

Explanation

The Output primitive is used for expressing a signal output. An action of type OUTPUT consists of a

signal, a sequence of value labels, an argument specifying the destination, an argument specifying a

path, and a continue label.

Representation

An action of type OUTPUT consists of a signal type, a sequence of value labels, an argument specifying

the destination, an argument specifying a path, and a continue label.

OUTPUT =def SIGNAL  VALUELABEL*  [VALUELABEL]  VIAARG  CONTINUELABEL

 Rec. ITU-T Z.100/Annex F3 (01/2015) 27

Behaviour

Macro EVALOUTPUT defines signal output by macro SIGNALOUTPUT, which takes the signal, a value

sequence, the destination and the path as arguments.

EVALOUTPUT(a:OUTPUT) 

 SIGNALOUTPUT(a.s-SIGNAL, values(a.s-VALUELABEL-seq, Self),

 if a.s-VALUELABEL = undefined then undefined else value(a.s-VALUELABEL, Self) endif,

 a.s-VIAARG)

 Self.currentLabel := a.s-CONTINUELABEL

A signal output operation causes the creation of a new signal instance. The process instance initiating

the output operation identifies itself as sender of the signal instance by setting a corresponding

function signalSender defined on signals. In general, there may be none, one or more output gates of

a process to which a signal can be delivered depending on the specified constraints on

• possible destinations,

• potential receivers and

• admissible paths,

as stated by the values of TOARG and VIAARG, which are obtained as parameters of an output operation

and are assigned to a signal by setting corresponding functions defined on signals. Possible

ambiguities are resolved by a non-deterministic choice for a gate that is connected to a path being

compatible with TOARG, VIAARG. In the rule below, this choice is stated in abstract terms using the

predicate applicable (cf. clause F3.2.1.1.4). If the constraints cannot be met, the signal instance is

discarded.

SIGNALOUTPUT(s:SIGNAL, vSeq:VALUE*, delay:DURATION, priority:NAT,

 toArg:[TOARG], viaArg:VIAARG) 

 let invReference = (if toArg  PID then

 s.idToNodeAS1  toArg.s-Interface-definition.s-Signal-definition-set

 else false endif)

 in
 if invReference then

 raise(InvalidReference)

 else

 choose g: g  (Self.outgates  Self.ingates)  applicable(s, toArg, viaArg, g, undefined)

 extend PLAINSIGNALINST with si

 si.plainSignalType:= s

 si.plainSignalValues := vSeq

 si.delay = delay

 si.priority = priority

 si.toArg := toArg

 si.viaArg := viaArg

 si.plainSignalSender := Self.selfPid

 INSERT(si, now, g)

 endextend

 endchoose

 endif

 endlet

Reference sections

Definitions of functions associated with signals can be found in clause F3.2.1.1.1.

F3.2.1.4.11 Primitive Create

Explanation

The Create primitive specifies the creation of an SDL-2010 agent. An action of type CREATE is defined

by a tuple consisting of an agent-definition, a sequence of value labels, and a continue label.

28 Rec. ITU-T Z.100/Annex F3 (01/2015)

Representation

An action of type CREATE is defined as tuple consisting of an agent-definition, a sequence of value

labels, and a continue label.

CREATE =def Agent-identifier  VALUELABEL*  CONTINUELABEL

Behaviour

EVALCREATE(a:CREATE) 

 let sas = take({sas  SDLAGENTSET: sas.agentAS1 = a.s-Agent-identifier.idToNodeAS1 }) in

 if sas.agentAS1.s-Number-of-instances.s-Maximum-number  undefined then

 let n = |{ sa  SDLAGENT: sa.owner = sas }| in

 if n < sas.agentAS1.s-Number-of-instances.s-Maximum-number then

 CREATEAGENT(sas, Self, sas.agentAS1)

 else
 Self.offspring := nullPid

 endif

 endlet

 else
 CREATEAGENT(sas, Self, sas.agentAS1)

 endif

 endlet
 Self.currentLabel := a.s-CONTINUELABEL

Reference sections

For the definition of the macro CREATEAGENT see clause F3.2.3.1.3.

F3.2.1.4.12 Primitive Set

Explanation

The Set primitive is used for expressing a timer set. An action of type SET is defined as tuple consisting

of a time label, a timer, a sequence of value labels, and a continue label. The action itself is mainly

defined by macro SETTIMER.

Representation

An action of type SET is defined as tuple consisting of a time label, a timer, a sequence of value labels,

and a continue label.

SET =def TIMELABEL  TIMER  VALUELABEL*  CONTINUELABEL

Domains

TIMELABEL =def VALUELABEL

Behaviour

Macro EVALSET defines the setting of a timer by macro SETTIMER.

EVALSET(a:SET) 

 SETTIMER(a.s-TIMER, values(a.s-VALUELABEL-seq, Self), semvalueReal(value(a.s-TIMELABEL,Self)))

 Self.currentLabel := a.s-CONTINUELABEL

Reference sections

The definition of macro SETTIMER can be found in clause F3.2.1.1.5.

 Rec. ITU-T Z.100/Annex F3 (01/2015) 29

F3.2.1.4.13 Primitive Reset

Explanation

The Reset primitive is used for expressing a timer reset. An action of type reset is defined as tuple

consisting of a timer, a sequence of value labels, and a continue label. The primitive specifies a reset

of a timer with macro RESETTIMER.

Representation

An action of type reset is defined as tuple consisting of a timer, a sequence of value labels, and a

continue label.

RESET =def TIMER  VALUELABEL*  CONTINUELABEL

Behaviour

Macro EVALRESET specifies a reset of a timer with macro RESETTIMER.

EVALRESET(a:RESET) 

 RESETTIMER(a.s-TIMER, values(a.s-VALUELABEL-seq, Self))

 Self.currentLabel := a.s-CONTINUELABEL

Reference sections

The definition of macro RESETTIMER can be found in clause F3.2.1.1.5.

F3.2.1.4.14 Primitive TimerActive

Explanation

The TimerActive primitive is used for expressing a timer active expression. The primitive specifies

the timer active check using the function active.

Representation

An action of type TIMERACTIVE is defined as tuple consisting of a timer, a sequence of value labels,

and a continue label.

TIMERACTIVE =def TIMER  VALUELABEL*  CONTINUELABEL

Behaviour

Macro EVALTIMERACTIVE specifies the evaluation of a timer active expression.

EVALTIMERACTIVE(t:TIMERACTIVE) 

 let tmi = mk-TIMERINST(Self.selfPid, t.s-TIMER, values(t.s-VALUELABEL-seq, Self)) in

 value(Self.currentLabel, Self) := mk-SDLBOOLEAN(active(tmi), BooleanType)

 Self.currentLabel := t.s-CONTINUELABEL

 endlet

Reference sections

The definition of function active can be found in clause F3.2.1.1.5.

F3.2.1.4.15 Primitive Raise (SDL-2000 feature)

Explanation

In SDL-2000 the Raise primitive is used for expressing the raising of exceptions. In SDL-2010,

exceptions cannot be explicitly raised, so there is no need for the RAISE primitive, the EVALRAISE or

RAISEEXCEPTION macros that were defined in the formal dynamic semantics for SDL-2000.

Predefined exceptions still occur for certain well-defined runs as indicated by the use of the raise

30 Rec. ITU-T Z.100/Annex F3 (01/2015)

function with the exception identifier as a parameter. When this occurs the further behaviour of the

system is not defined by SDL-2010.

Reference sections

The EXCEPTION domain is defined in clause F3.2.1.1.6. The raise function is defined in

clause F3.3.1.1.

F3.2.1.4.16 Primitive Stop

Explanation

The Stop primitive is used for initiating the stopping of an agent, which takes place in two phases. In

the first phase, the state machine of the agent goes into a stopping state, meaning that it no longer

selects and fires any transitions. The agent ceases to exist as soon as all contained agents have been

removed.

The Stop primitive is used for expressing the evaluation of stop conditions.

Representation

STOP =def ()

Behaviour

Macro EVALSTOP specifies all actions to be taken when an agent performs a stop.

EVALSTOP(a:STOP) 

 Self.agentMode2 := stopping

Reference sections

Clause F3.2.3.2.18.

F3.2.1.4.17 Primitive SystemValue

Explanation

The SystemValue primitive computes the values of the predefined imperative operators.

Representation

SYSTEMVALUE =def VALUEKIND  CONTINUELABEL

VALUEKIND =def { kNow, kSelf, kParent, kOffspring, kSender,kActiveAgents}

Behaviour

EVALSYSTEMVALUE(a: SYSTEMVALUE) 

 value(Self.currentLabel, Self) :=

 case a.s-VALUEKIND of

 | kNow => mk-SDLTIME(now, TimeType)

 | kSelf=> Self.selfPid

 | kParent=> Self.parent

 | kOffspring=> Self.offspring

 | kSender=> Self.sender

 | kActiveAgents=> mk-SDLINTEGER(|{ sa  SDLAGENT: sa. parent = Self }|, IntegerType)

 endcase
 Self.currentLabel := a.s-CONTINUELABEL

F3.2.1.4.18 Primitive AnyValue

Explanation

The AnyValue primitive computes the any expression.

 Rec. ITU-T Z.100/Annex F3 (01/2015) 31

Representation

ANYVALUE =def Sort-identifier  CONTINUELABEL

Behaviour

EVALANYVALUE(a: ANYVALUE) 

 value(Self.currentLabel, Self) := selectAnyValue(a.s-Sort-identifier)

 Self.currentLabel := a.s-CONTINUELABEL

The selectAnyValue function returns the nullPid for a pid sort, a random value of the sort for other

sorts and undefined if the sort has no values.

selectAnyValue(id: Sort-identifier): VALUE =def

 if id.idToNodeAS1  Interface-definition then nullPid

 else take({v | v  VALUE  v.sort =id })

 endif

F3.2.1.4.19 Primitive SetRangeCheckLabel

Explanation

The SetRangeCheckValue primitive is used to set the value to be used in a range check.

Representation

SETRANGECHECKVALUE =def VALUELABEL  CONTINUELABEL

static rangeCheckValue:  LABEL

The static function rangeCheckValue denotes a special label, which is different from all other labels

in the system. It is used to store the value to be used in the subsequent range check via the function

value.

Behaviour

EVALSETRANGECHECKVALUE(a: SETRANGECHECKVALUE) 

 value(rangeCheckValue, Self) := value(a.s-VALUELABEL, Self)

 Self.currentLabel := a.s-CONTINUELABEL

F3.2.1.4.20 Primitive Scope

Explanation

The Scope primitive creates a new scope for use in a compound node.

Representation

SCOPE =def Connector-name  Variable-definition-set  STARTLABEL  STEPLABEL  CONTINUELABEL

STEPLABEL =def LABEL

Behaviour

EVALSCOPE(a:SCOPE) 

 CREATECOMPOUNDNODEVARIABLES(Self, a)

 Self.currentLabel := a.s-STARTLABEL

Reference sections

See also clause F3.2.3.1.8.

32 Rec. ITU-T Z.100/Annex F3 (01/2015)

F3.2.1.4.21 Primitive Skip

Explanation

This is basically a no-op. It is used, for instance, to model joins.

Representation

SKIP =def ()  (Connector-name  CONTINUELABEL)

Behaviour

EVALSKIP(a:SKIP) 

 if a.s-implicit  Connector-name then

 Self.stateNodeChecked := Self.currentParentStateNode

 Self.currentConnector := mk-STATENODEWITHCONNECTOR(Self.currentParentStateNode, a.s-implicit)

 Self.agentMode2 := selectingTransition

 Self.agentMode3 := startSelection

 else
 Self.currentLabel := a.s-implicit

 endif

Reference sections

Clause F3.2.3.2.8.

F3.2.1.4.22 Primitive Break

Explanation

The Break primitive models the break operation, i.e., it leaves the current scope until the named scope

is found.

Representation

BREAK =def ()  (Connector-name)

Behaviour

EVALBREAK(a:BREAK) 

 if scopeName(Self, Self.currentStateId) = a.s-Connector-name then

 Self.currentLabel := scopeContinueLabel(Self, Self.currentStateId)

 endif
 Self.currentStateId := caller(Self.stateAgent.state, Self.currentStateId)

F3.2.1.4.23 Primitive Continue

Explanation

The Continue primitive is used for modelling the loop continue operation.

Representation

CONTINUE =def ()  (Connector-name)

Behaviour

EVALCONTINUE(a:CONTINUE) 

 if scopeName(Self, Self.currentStateId) = a.s-Connector-name then

 Self.currentLabel := scopeStepLabel(Self, Self.currentStateId)

 else
 Self.currentStateId := caller(Self.stateAgent.state, Self.currentStateId)

 endif

 Rec. ITU-T Z.100/Annex F3 (01/2015) 33

F3.2.1.4.24 Primitive EnterStateNode

Explanation

State nodes are entered when an SDL-2010 agent has been created, and at the end of each transition.

Also, state nodes are entered when a procedure is invoked. The evaluation of the primitive starts the

sequence of steps needed to enter a given state node, which may include the entering of composite

states and the execution of start transitions and entry procedures.

Representation

ENTERSTATENODE =def (State-name  HISTORY)  STATEENTRYPOINT  VALUELABEL*

Behaviour

EVALENTERSTATENODE(a:ENTERSTATENODE) 

 let enterName: (State-name  HISTORY) = a.s-implicit in

 if enterName = HISTORY then

 Self.stateNodesToBeEntered :=

 {mk-STATENODEWITHENTRYPOINT(Self.previousStateNode, HISTORY)}

 else

 choose sn: sn  STATENODE  sn.stateName = enterName 

 sn.stateNodeKind = stateNode  sn.parentStateNode = Self.currentParentStateNode

 Self.stateNodesToBeEntered :=

 {mk-STATENODEWITHENTRYPOINT(sn, a.s-STATEENTRYPOINT)}

 endchoose

 endif
 Self.agentMode3 := enteringStateNode

 Self.agentMode4 := startPhase

 Self.currentLabel := undefined

 Self.continueLabel := undefined

 endlet

Given the State-name and the currentParentStateNode, the state node to be entered is determined.

This has to be done at execution time, as the state node instance is not known during compilation.

Agent modes are set such that the sequence of steps needed to enter the state node is performed.

Reference sections

See also clause F3.2.3.2.15.

F3.2.1.4.25 Primitive LeaveStateNode

Explanation

State nodes are left at the start of transitions.

Representation

LEAVESTATENODE =def State-name  CONTINUELABEL

Behaviour

EVALLEAVESTATENODE(a:LEAVESTATENODE) 

 choose sn: sn  STATENODE  sn.stateName = a.s-State-name 

 sn.stateNodeKind = stateNode  sn.parentStateNode = Self.currentParentStateNode

 // assertion: sn = Self.previousStateNode

 Self.stateNodesToBeLeft := collectCurrentSubStates(sn)

 endchoose
 Self.agentMode3 := leavingStateNode

 Self.agentMode4 := leavePhase

 Self.currentLabel := undefined

 Self.continueLabel := a.s-CONTINUELABEL

34 Rec. ITU-T Z.100/Annex F3 (01/2015)

Given the State-name and the currentParentStateNode, the state node to be left is determined. This

has to be done at execution time, as the state node instance is not known during compilation. Agent

modes are set such that the sequence of steps needed to leave the state node is performed.

Reference sections

See also clause F3.2.3.2.16 for information on how state nodes are left.

F3.2.1.5 Undefined behaviour

Undefined behaviour is represented by the following program:

UNDEFINEDBEHAVIOUR 

 Self.program := UNDEFINED-BEHAVIOUR-PROGRAM

UNDEFINED-BEHAVIOUR-PROGRAM:

// the contents of this program is not defined

The content of the program UNDEFINED-BEHAVIOUR-PROGRAM is not specified. Whenever

the further behaviour of the system is undefined, the current agent is switched to this program.

This local undefinedness condition is in fact global as the program UNDEFINED-BEHAVIOUR-

PROGRAM could involve setting program for all agents.

F3.2.2 Compilation function

The following two functions form the interface between the compilation and the dynamic semantics.

For all the behaviour parts that involve transitions, the corresponding runtime representation of the

transitions is generated.

getStateTransitions(s: State-node): SEMTRANSITION-set =def

 { mk-SEMTRANSITION(i.s-Signal-identifier,

 if i.s-Provided-expression = undefined then

 undefined

 else
 i.s-Provided-expression.startLabel

 endif,

 if i.s-PRIORITY = undefined then undefined else 1 endif,

 i.s-Transition.startLabel,

 undefined)

 | i  s.s-Input-node-set } 

 { mk-SEMTRANSITION(NONE, sp.s-Provided-expression.startLabel,

 undefined, sp.s-Transition.startLabel, undefined)

 | sp  s.s-Spontaneous-transition-set } 

 { mk-SEMTRANSITION(NONE, c.s-Continuous-expression.startLabel,

 c.s-Priority-name, c.s-Transition.startLabel, undefined)

 | c  s.s-Continuous-signal-set } 

 { mk-SEMTRANSITION(NONE, undefined, undefined, c.s-Transition.startLabel,

 if c.s-State-exit-point-name = undefined then DEFAULT else c.s-State-exit-point-name endif)

 | c  s.s-Connect-node-set }

getStateStartTransitions(sn: State-start-node): STARTTRANSITION=def

 mk-STARTTRANSITION(sn.s-Transition.startLabel, sn.s-State-entry-point-name)

getNamedStartTransitions(sn: Named-start-node): STARTTRANSITION=def

 mk-STARTTRANSITION(sn.s-Transition.startLabel, sn.s-State-entry-point-name)

getProcStartTransitions(sn: Procedure-start-node): STARTTRANSITION=def

 mk-STARTTRANSITION(sn.s-Transition.startLabel, undefined)

getStartTransitions(s: (State-start-node  Named-start-node  Procedure-start-node)-set):

 STARTTRANSITION-set =def

 Rec. ITU-T Z.100/Annex F3 (01/2015) 35

 { if sn  State-start-node then getStateStartTransitions(sn)

 elseif sn Named-start-node then getNamedStartTransitions(sn)

 elseif sn  Procedure-start-node then getProcStartTransitions(sn)

 endif | sn  s }

getFreeActions(actions: Free-action-set): FREEACTION-set =def

 { mk-FREEACTION(f.s-Connector-name, f.s-Transition.startLabel) | f  actions }

Here we present the function that compiles an SDL-2010 state machine description into an ASM

representation. A special labelling of graph nodes is used to model specific control-flow information.

Intuitively, node labels relate individual operations of an SDL-2010 agent to transition rules in the

resulting SAM model. The effect of state transitions of SDL-2010 agents is then modelled by firing

the related transition rules in an analogous order.

Labels are abstractly represented by a static domain LABEL.

static domain LABEL

To start with the compilation, we first need a function to find unique labels for a syntactic entity. The

second argument is introduced to allow for more than one such label within the same SDL-2010

pattern.

monitored uniqueLabel: DEFINITIONAS1  NAT  LABEL

For this function, it holds that

constraint  d1, d2  DEFINITIONAS1:  i1, i2  NAT:

 uniqueLabel(d1, i1) = uniqueLabel(d2, i2)  (d1=d2  i1=i2)

Finally, to formalize the compilation, we also need an auxiliary function generating a sequence out

of a set. This function is used when the sequence of events has to be computed but does not really

matter. See for instance Decision-node and Range-condition.

setToSeq(s: X-set): X* =def

 if s =  then empty else

 let el = c.take in

 < el > ⁀ setToSeq(s \ { el })

 endlet

 endif

The compilation is formalized in terms of the following two compilation functions, one for transition

behaviour and one for expression behaviour.

compile: DEFINITIONAS1  BEHAVIOUR

compileExpr: DEFINITIONAS1  LABEL  BEHAVIOUR

The computed value of an expression e is always stored at value(uniqueLabel(e, 1), Self).

The two compilation functions are gradually introduced by defining a series of compilation patterns

and the corresponding results; each individual pattern is uniquely associated with a certain type of

node in the AST to be compiled. Afterwards, the function startLabel is defined also with a series of

patterns in clause F3.2.2.4.

F3.2.2.1 States and triggers

The following parts are considered to form the definition of the function compile if put together with

the following header. The contents of the case expression are all the compilation cases as given below.

compile(a: DEFINITIONAS1): BEHAVIOUR =def

 case a of

36 Rec. ITU-T Z.100/Annex F3 (01/2015)

All the contents of this function are given as patterns and what the result of the function is for these

patterns. The default case when no pattern is matching is the collected set of all the results of all

children nodes.

The handling of inheritance is done in the dynamic part. What you find below is the compilation of

the plain behaviour descriptions.

The definition of the compilation function is done using a series of auxiliary derived functions.

| v=Variable-definition(name, *, init) =>

 if init  undefined then

 compileExpr(init, uniqueLabel(v,1)) 

 {mk-PRIMITIVE(uniqueLabel(v,1), mk-TASK(name, uniqueLabel(init,1), false, undefined)) }

 else 

 endif

| State-transition-graph(*, start, states, freeActions) =>

 compile(start) 

 U{ compile(s) | s  states } 

 U{ compile(f) | f  freeActions }

| Procedure-graph(start, states, freeActions) =>

 compile(start) 

 U{ compile(s) | s  states } 

 U{ compile(f) | f  freeActions }

| State-start-node(*, transition) => compile(transition)

| Procedure-start-node(transition) => compile(transition)

| Named-start-node(*, trans) => compile(trans)

| State-node(*, *, *, inputs, spontaneous, continuous, conns, *) =>

 U{ compile(i) | i  inputs } 

 U{ compile(s) | s  spontaneous } 

 U{ compile(c) | c  continuous } 

 U { compile(c) | c  conns }

| i = Input-node(*, *, vars, provided, transition) =>

 if provided = undefined then  else compileExpr(provided, undefined) endif 

 { mk-PRIMITIVE(uniqueLabel(i,idx),

 if vars[idx]  undefined then

 mk-ASSIGNPARAMETERS(vars[idx], idx,

 uniqueLabel(i,idx))

 else mk-SKIP(uniqueLabel(i,idx))

 endif)

 | idx  toSet(1..vars.length -1) } 

 { mk-PRIMITIVE(uniqueLabel(i, vars.length),

 if vars[vars.length]  undefined then

 mk-ASSIGNPARAMETERS(vars[vars.length], vars.length, transition.startLabel)

 else mk-SKIP(transition.startLabel)

 endif)

 } 

 compile(transition)

| Spontaneous-transition(provided, transition) =>

 if provided = undefined then  else compileExpr(provided, undefined) endif 

 compile(transition)

| Continuous-signal(*, condition, *, transition) =>

 compileExpr(condition, undefined) 

 compile(transition)

| Connect-node(*, transition) => compile(transition)

| Free-action(*, transition) => compile(transition)

 Rec. ITU-T Z.100/Annex F3 (01/2015) 37

| t=Transition(nodes, endnode) =>

 if t.parentAS1.parentAS1.s-State-name  undefined then

 {mk-PRIMITIVE(uniqueLabel(a,1),

 mk-LEAVESTATENODE(t.parentAS1.parentAS1.s-State-name,

 startLabel(if nodes = empty then endnode else nodes.head endif))) }

 else  endif 

 compileNodes 

 compile(endnode)

where

 compileNodes: BEHAVIOUR =def

 if nodes = empty then 

 else compileExpr(nodes.last, endnode. startLabel) 

 U{ compileExpr(nodes[i], nodes[i+1]. startLabel) | i  1..nodes.length - 1 }

 endif

endwhere

F3.2.2.2 Terminators

| Terminator(terminator) => compile(terminator)

| n=Named-nextstate(stateName, undefined) =>

 {mk-PRIMITIVE(uniqueLabel(n,1),

 mk-ENTERSTATENODE(stateName, undefined, empty)) }

| n=Named-nextstate(stateName, Nextstate-parameters(exprList, entry)) =>

 if exprList = empty then 

 else compileExpr(exprList.last, uniqueLabel(n,1)) 

 U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 }

 endif 
 {mk-PRIMITIVE(uniqueLabel(n,1),

 mk-ENTERSTATENODE(stateName, entry, <uniqueLabel(e,1) | e in exprList >)) }

| n= Dash-nextstate(HISTORY) =>

 {mk-PRIMITIVE(uniqueLabel(n,1), mk-ENTERSTATENODE(HISTORY, undefined, empty)) }

| s=Stop-node() =>

 {mk-PRIMITIVE(uniqueLabel(s,1), mk-STOP()) }

| a=Action-return-node() =>

 {mk-PRIMITIVE(uniqueLabel(a,1), mk-RETURN

 (if parentAS1ofKind(a,Composite-state-type-definition).parentAS1 

 Composite-state-type-definition then DEFAULT else undefined endif)) }

| v=Value-return-node(expr) =>

 compileExpr(expr, uniqueLabel(v,1)) 

 {mk-PRIMITIVE(uniqueLabel(v,1), mk-RETURN(uniqueLabel(expr,1))) }

| n=Named-return-node(name) =>

 {mk-PRIMITIVE(uniqueLabel(n,1), mk-RETURN(name)) }

| j= Join-node(connector) =>

 {mk-PRIMITIVE(uniqueLabel(j,1), mk-SKIP(connector)) }

| b= Break-node(connector) =>

 {mk-PRIMITIVE(uniqueLabel(b,1), mk-BREAK(connector)) }

| c= Continue-node(connector) =>

 {mk-PRIMITIVE(uniqueLabel(c,1), mk-CONTINUE(connector)) }

| d=Decision-node(question, answerset, elseanswer) =>

 (let aseq = answerset.setToSeq in

 compileExpr(question, aseq[1].startLabel) 

 { compileExpr(aseq[idx].s-implicit,

 if idx=aseq.length then uniqueLabel(d, 1) else aseq[idx+1].startLabel endif)

 | idx  toSet(1..aseq.length) } 

 { mk-PRIMITIVE(uniqueLabel(d, 1),

 mk-DECISION(uniqueLabel(question, 1),

38 Rec. ITU-T Z.100/Annex F3 (01/2015)

 { mk-ANSWER(uniqueLabel(ans.s-implicit, 1), ans.s-Transition.startLabel)

 | ans  answerset },

 if elseanswer=undefined then undefined else elseanswer.s-Transition endif)) }

 endlet) 

 U{ compile(ans.s-Transition) | ans  answerset } 

 compile(elseanswer.s-Transition)

This concludes the definition of the compile function.

endcase // end of the compile function definition

F3.2.2.3 Actions

The following compilation parts define the function compileExpr with the following header.

compileExpr(a: DEFINITIONAS1, next: LABEL): BEHAVIOUR =def

 case a of

All the contents of this function are given as patterns and what the result of the function for these

patterns is. The default result when no pattern is matching is the empty set. All the patterns given

below may use the variable next referring to the next label to process.

| Graph-node(action) => compileExpr(action, next)

| a=Assignment(id, expr) =>

 compileExpr(expr, uniqueLabel(a,1)) 

 {mk-PRIMITIVE(uniqueLabel(a,1), mk-TASK(id, uniqueLabel(expr,1), false, next))}

| o=Output-node(sig, exprList, delay, priority, dest, via) =>

 if dest  Identifier then

 if exprList = empty then 

 else compileExpr(exprList.last, uniqueLabel(o,1)) 

 U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 }

 endif 

 compileExpr(delay, uniqueLabel(o,1)) 

 compileExpr(priority, uniqueLabel(o,1)) 

 {mk-PRIMITIVE(uniqueLabel(o,1),

 mk-OUTPUT(sig, <uniqueLabel(e,1) | e in exprList >,

 uniqueLabel(delay,1), uniqueLabel(priority,1), dest, via, next)) }

 else

 if exprList = empty then 

 else compileExpr(exprList.last, dest.startLabel) 

 U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 }

 endif 

 compileExpr(dest, uniqueLabel(o,1)) 

 compileExpr(delay, uniqueLabel(o,1)) 

 compileExpr(priority, uniqueLabel(o,1)) 

 {mk-PRIMITIVE(uniqueLabel(o,1),

 mk-OUTPUT(sig, <uniqueLabel(e,1) | e in exprList >,

 uniqueLabel(delay,1), uniqueLabel(priority,1), uniqueLabel(dest,1), via, next)) }

 endif

| c=Create-request-node(agentId, exprList) =>

 if exprList = empty then 

 else compileExpr(exprList.last, uniqueLabel(c,1)) 

 U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 }

 endif 
 {mk-PRIMITIVE(uniqueLabel(c,1),

 mk-CREATE(agentId, <uniqueLabel(e,1) | e in exprList >, next)) }

| c=Call-node(*, procedureId, exprList) =>

 if exprList = empty then 

 else compileExpr(exprList.last, uniqueLabel(c,1)) 

 U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 }

 Rec. ITU-T Z.100/Annex F3 (01/2015) 39

 endif 
 (let paramDef = procedureId.idToNodeAS1.s-Procedure-formal-parameter-seq in

 {mk-PRIMITIVE(uniqueLabel(c,1),

 mk-CALL(procedureId,

 <(if paramDef[idx]  In-parameter

 then uniqueLabel(exprList[idx], 1)

 else exprList[idx]

 endif)

 | idx in (1..exprList.length) >, uniqueLabel(c,1),

 next)) }

 endlet)

| c=Compound-node(name, variables, eh, initNodes, trans, stepNodes) =>

 {mk-PRIMITIVE(uniqueLabel(c,1),

 mk-SCOPE(name, variables,

 if initNodes = empty then trans.startLabel else initNodes.head.startLabel endif,

 if stepNodes = empty then trans.startLabel else stepNodes.head.startLabel endif,

 next)) } 

 compile(eh) 

 compileExpr(trans, undefined) 

 if stepNodes = empty then 

 else compileExpr(stepNodes.last, trans.startLabel) 

 U{ compileExpr(stepNodes[i], stepNodes[i+1]. startLabel) | i  1..stepNodes.length - 1 }

 endif 

 if initNodes = empty then 

 else compileExpr(initNodes.last, trans.startLabel) 

 U{ compileExpr(initNodes[i], initNodes[i+1]. startLabel) | i  1..initNodes.length - 1 }

 endif

| s=Set-node(expr, timerId, exprList) =>

 if exprList = empty then 

 else compileExpr(exprList.last, expr.startLabel) 

 U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 }

 endif 

 compileExpr(expr, uniqueLabel(s,1)) 

 {mk-PRIMITIVE(uniqueLabel(s,1),

 mk-SET(uniqueLabel(expr,1), timerId, <uniqueLabel(e,1) | e in exprList >, next)) }

| r=Reset-node(timerId, exprList) =>

 if exprList = empty then 

 else compileExpr(exprList.last, uniqueLabel(r,1)) 

 U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 }

 endif 
 {mk-PRIMITIVE(uniqueLabel(r,1),

 mk-RESET(timerId, <uniqueLabel(e,1) | e in exprList >, next)) }

| r=Range-condition(items) =>

 (let iseq = items.setToSeq in

 {mk-PRIMITIVE(uniqueLabel(r,1),

 mk-OPERATIONAPPLICATION(sdlTrue.idToNodeAS1, empty,

 uniqueLabel(r, iseq.length+1))) } 

 { compileExpr(iseq[idx], uniqueLabel(r, idx)) | idx  toSet(1..iseq.length) } 

 { mk-PRIMITIVE(uniqueLabel(r, idx),

 mk-OPERATIONAPPLICATION(sdlOr,

 < uniqueLabel(r, idx+1), uniqueLabel(iseq[idx],1) >,

 if idx=1 then next else iseq[idx-1].startLabel endif))

 | idx  toSet(1..iseq.length) } 

 { mk-PRIMITIVE(uniqueLabel(r, 0), mk-BREAK(undefined)) }

 endlet)

The Range-condition above is computed as follows. First, a true value is evaluated. Then all items

are sequentialized and evaluated from the last to the first; the results are cumulated using AND.

Afterwards, the enclosing scope is left using a break.

40 Rec. ITU-T Z.100/Annex F3 (01/2015)

| o=Open-range(id, expr) =>

 compileExpr(expr, uniqueLabel(o, 1)) 

 { mk-PRIMITIVE(uniqueLabel(o, 1),

 mk-OPERATIONAPPLICATION(id.idToNodeAS1,

 < rangeCheckValue, uniqueLabel(expr, 1) >, next)) }

| c=Closed-range(r1, r2) =>

 compileExpr(r1, r2.startLabel) 

 compileExpr(r2, uniqueLabel(c, 1)) 

 { mk-PRIMITIVE(uniqueLabel(c, 1),

 mk-OPERATIONAPPLICATION(sdlAnd, < uniqueLabel(r1, 1), uniqueLabel(r2, 1) >, next)) }

| l=Literal(id) =>

 {mk-PRIMITIVE(uniqueLabel(l,1),

 mk-OPERATIONAPPLICATION(id.idToNodeAS1, empty, next)) }

| c=Conditional-expression(boolExpr, consExpr, altExpr) =>

 compileExpr(boolExpr, uniqueLabel(c, 2)) 

 compileExpr(consExpr, next) 

 compileExpr(altExpr, next) 

 {mk-PRIMITIVE(uniqueLabel(c,2),

 mk-OPERATIONAPPLICATION(sdlTrue.idToNodeAS1, empty, uniqueLabel(c, 1))) } 

 { mk-PRIMITIVE(uniqueLabel(c, 1),

 mk-DECISION(uniqueLabel(boolExpr, 1),

 { mk-ANSWER(uniqueLabel(c, 2), consExpr.startLabel) }, altExpr.startLabel)) }

| e=Equality-expression(first, second) =>

 compileExpr(first, second.startLabel) 

 compileExpr(second, uniqueLabel(e,1)) 

 {mk-PRIMITIVE(uniqueLabel(e,1),

 mk-EQUALITY(uniqueLabel(first,1), uniqueLabel(second,1), next)) }

| o=Operation-application(id, exprList) =>

 if exprList = empty then 

 else compileExpr(exprList.last, uniqueLabel(o,1)) 

 U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 }

 endif 
 {mk-PRIMITIVE(uniqueLabel(o,1),

 mk-OPERATIONAPPLICATION(id.idToNodeAS1,

 < uniqueLabel(e, 1) | e in exprList >,

 next)) }

| r=Range-check-expression(range, expr) =>

 compileExpr(expr, uniqueLabel(r,2)) 

 compileExpr(range, undefined) 

 {mk-PRIMITIVE(uniqueLabel(r,2),

 mk-SETRANGECHECKVALUE(uniqueLabel(expr,1), uniqueLabel(r,1))) } 

 {mk-PRIMITIVE(uniqueLabel(r,1),

 mk-SCOPE(undefined, , range.startLabel, undefined, next)) }

| v=Variable-access(id) =>

 {mk-PRIMITIVE(uniqueLabel(v,1), mk-VAR(id, next)) }

| n=Now-expression() =>

 {mk-PRIMITIVE(uniqueLabel(n,1), mk-SYSTEMVALUE(kNow, next)) }

| p=Parent-expression() =>

 {mk-PRIMITIVE(uniqueLabel(p,1), mk-SYSTEMVALUE(kParent, next)) }

| o=Offspring-expression() =>

 {mk-PRIMITIVE(uniqueLabel(o,1), mk-SYSTEMVALUE(kOffspring, next)) }

| s=Self-expression() =>

 {mk-PRIMITIVE(uniqueLabel(s,1), mk-SYSTEMVALUE(kSelf, next)) }

| s=Sender-expression() =>

 {mk-PRIMITIVE(uniqueLabel(s,1), mk-SYSTEMVALUE(kSender, next)) }

 Rec. ITU-T Z.100/Annex F3 (01/2015) 41

| t=Timer-active-expression(id, exprList) =>

 if exprList = empty then 

 else compileExpr(exprList.last, uniqueLabel(t,1)) 

 U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 }

 endif 
 {mk-PRIMITIVE(uniqueLabel(t,1),

 mk-TIMERACTIVE(id, < uniqueLabel(e, 1) | e in exprList >, next)) }

| a=Any-expression(id) =>

 {mk-PRIMITIVE(uniqueLabel(a,1), mk-ANYVALUE(id, next)) }

| v=Value-returning-call-node(*, procedureId, exprList) =>

 if exprList = empty then 

 else compileExpr(exprList.last, uniqueLabel(v,1)) 

 U{ compileExpr(exprList[i], exprList[i+1]. startLabel) | i  1..exprList.length - 1 }

 endif 
 (let paramDef = procedureId.idToNodeAS1.s-Procedure-formal-parameter-seq in

 {mk-PRIMITIVE(uniqueLabel(v,1),

 mk-CALL(procedureId,

 < (if paramDef[idx]  In-parameter

 then uniqueLabel(exprList[idx], 1)

 else exprList[idx]

 endif)

 | idx in (1..exprList.length)>, uniqueLabel(v,1),

 next)) }

 endlet)

This concludes the definition of the expression compilation function.

endcase // end of the compileExpr function definition

F3.2.2.4 Start labels

This clause introduces the function startLabel, which defines the start labels of all behavioural syntax

constructs.

startLabel(x: DEFINITIONAS1): LABEL =def

 case x of

 | v=Variable-definition(*, *, init) =>

 if init = undefined then undefined else init.startLabel endif

 | s=State-start-node(*,*, trans) => startLabel(trans)

 | p=Procedure-start-node(*, trans) => startLabel(trans)

 | i=Input-node(*, *, *, *, *, trans) => startLabel(trans)

 | s=Spontaneous-transition(*, *, trans) => startLabel(trans)

 | c=Continuous-signal(*, *, *, trans) => startLabel(trans)

 | c=Connect-node(*, *, trans) => startLabel(trans)

 | f=Free-action(*, trans) => startLabel(trans)

 | t=Transition(nodes, endnode) =>

 if t.parentAS1.parentAS1  State-node then uniqueLabel(t,1) // insert the Leavestatenode

 elseif nodes = empty then startLabel(endnode)

 else startLabel(nodes.head)

 endif
 | g=Graph-node(action, *) => startLabel(action)

 | a=Assignment(*, expr) => startLabel(expr)

 | o= Output-node(*, expr, dest, *) =>

 if dest  undefined then startLabel(dest)

 elseif expr = empty then uniqueLabel(o,1)

 else startLabel(expr.head) endif

 | c=Create-request-node(*, exprList) =>

 if exprList = empty then uniqueLabel(c,1) else exprList.head.startLabel endif

 | c=Call-node(*, *, exprList) =>

 if exprList = empty then uniqueLabel(c,1) else exprList.head.startLabel endif

 | c=Compound-node(*, *, *, *, trans, *) => uniqueLabel(c,1)

 | s= Set-node(when, *, *) => startLabel(when)

42 Rec. ITU-T Z.100/Annex F3 (01/2015)

 | r=Reset-node(*, exprList) =>

 if exprList = empty then uniqueLabel(r,1) else exprList.head.startLabel endif

 | t=Terminator(terminator, *) => startLabel(terminator)

 | n=Named-nextstate(*, undefined) => uniqueLabel(n,1)

 | n=Named-nextstate(*, Nextstate-parameters(exprList, *)) =>

 if exprList = empty then uniqueLabel(n,1) else exprList.head.startLabel endif

 | n=Dash-nextstate(*) => uniqueLabel(n,1)

 | s= Stop-node() => uniqueLabel(s,1)

 | a=Action-return-node() => uniqueLabel(a,1)

 | v=Value-return-node(expr) => uniqueLabel(v,1)

 | n=Named-return-node(expr) => uniqueLabel(n,1)

 | j= Join-node(*) => uniqueLabel(j,1)

 | b= Break-node(*) => uniqueLabel(b,1)

 | c= Continue-node(*) => uniqueLabel(c,1)

 | d=Decision-node(question, *, *, *) => startLabel(question)

 | a=Decision-answer (r, *) => startLabel(r)

 | n=Named-start-node(*, *, trans) => startLabel(trans)

 | o=Open-range(*, expr) => startLabel(expr)

 | c=Closed-range(*, *) => uniqueLabel(c,1)

 | l=Literal(*) => uniqueLabel(l,1)

 | c=Conditional-expression(*, *, *) => uniqueLabel(c,1)

 | Equality-expression(first, *) => first.startLabel

 | r=Range-check-expression(*, expr) => expr.startLabel

 | v=Variable-access(id) => uniqueLabel(v,1)

 | o= Operation-application(*, exprList) =>

 if exprList = empty then uniqueLabel(o,1) else exprList.head.startLabel endif

 | v=Identifier(*, *) => uniqueLabel(v,1)

 | n=Now-expression() => uniqueLabel(n,1)

 | s=Self-expression() => uniqueLabel(s,1)

 | p=Parent-expression() => uniqueLabel(p,1)

 | o=Offspring-expression() => uniqueLabel(o,1)

 | s=Sender-expression() => uniqueLabel(s,1)

 | t=Timer-active-expression(*, exprList) =>

 if exprList = empty then uniqueLabel(t,1) else exprList.head.startLabel endif

 | a=Any-expression(*) => uniqueLabel(a,1)

 | v=Value-returning-call-node(*, *, exprList) =>

 if exprList = empty then uniqueLabel(v,1) else exprList.head.startLabel endif

 endcase

F3.2.3 SDL-2010 abstract machine programs

For each SDL-2010 specification, the set of legal system runs are built using the SDL-2010 abstract

machine and the compilation in clause F3.2.2.

F3.2.3.1 System initialization

Starting from any pre-initial state of S0, the initialization rules describe a recursive unfolding of the

specified system instance according to its initial hierarchical structure. For each SDL-2010 agent

instance, a corresponding ASM agent is created and initialized. Furthermore, ASM agents are created

to model links and SDL-2010 agent sets.

Figure F3-3 – Activity phases of SDL-2010 agents and agent sets (level 1)

executioninitialisation

 Rec. ITU-T Z.100/Annex F3 (01/2015) 43

During its lifetime, an agent first is in mode "initialisation", where its internal structure is built up.

Then, it enters the mode "execution" and remains in this mode unless it is terminated.

F3.2.3.1.1 Pre-initial system state

This clause states some constraints on the set of initial states S0 of the abstract state modelling a given

SAM, i.e., the set of pre-initial states of the SAM. Further restrictions are defined in previous clauses,

marked by the keyword initially. Usually, there is more than one pre-initial system state. It is only

required that the system starts in one of these states.

initially

 if rootNodeAS1.s-Agent-definition  undefined then

 system.agentAS1 = rootNodeAS1.s-Agent-definition 

 system.owner = undefined 

 system.agentMode1 = initialisation 

 system.program = AGENT-SET-PROGRAM

 else
 system.program = undefined

 endif

For a given SDL-2010 specification, the initial constraint distinguishes two cases. The first case

applies when an agent definition is part of the SDL-2010 specification, i.e., when rootNodeAS1.s-

Agent-definition  undefined. Only then is the semantics defined to yield a dynamic behaviour. Since

the system agent is the root of the agent hierarchy, it has no owner (system.owner = undefined). The

SAM program of the agent system is the program applying to SDL-2010 agent sets in general. Further

functions and domains are initialized when this program is executed, or are derived functions or

derived domains. In the second case, no system agent is defined in the SDL-2010 specification;

therefore, no behaviour is assigned via program.

F3.2.3.1.2 Agent set creation, initialization, and removal

ASM agents modelling SDL-2010 agent sets are created during system initialization and possibly

dynamically, during system execution. They can be understood as containers that reflect certain

structural aspects of SDL-2010 systems, in particular agent hierarchy and the connection structure.

These structural aspects are crucial to the intelligibility of SDL-2010 specifications, and are therefore

represented in the formal model, too.

CREATEALLAGENTSETS(ow:AGENT, atd:Agent-type-definition) 

 do forall ad: ad  atd.collectAllAgentDefinitions

 CREATEAGENTSET(ow, ad)

 enddo

 where
 collectAllAgentDefinitions(atd: Agent-type-definition): Agent-definition-set =def

 if atd.s-Agent-type-identifier = undefined then

 atd.s-Agent-definition-set

 else let typedef: Agent-type-definition = atd.s-Agent-type-identifier.idToNodeAS1 in

 atd.s-Agent-definition-set  typedef.collectAllAgentDefinitions

 endlet

 endif

 endwhere

SDL-2010 agent sets are created when the surrounding SDL-2010 agent is initialized right after its

creation. For each agent definition found via collectAllAgentDefinitions, an SDL-2010 agent set is

created, taking inheritance into account.

CREATEAGENTSET(ow:SDLAGENT, ad:Agent-definition) 

 let typedef: Agent-type-definition = ad.s-Agent-type-identifier.idToNodeAS1 in

 extend AGENT with sas

 sas.agentAS1 := ad

44 Rec. ITU-T Z.100/Annex F3 (01/2015)

 sas.owner := ow

 CREATEALLGATES (sas, typedef)

 sas.program := AGENT-SET-PROGRAM

 sas.agentMode1 := initialisation

 endextend

 endlet

Creation of an SDL-2010 agent set is modelled by creating an ASM agent and initializing its control

block. In particular, the node Agent-definition of the AST is assigned to the function agentAS1, the

owner is determined, and the initial program is set. To complete the creation of the agent set, its

interface as given by all its gates is created. Thus, these gates are ready to be connected by the owner

of the agent set, an SDL-2010 agent instance. Further functions and domains are initialized when

AGENT-SET-PROGRAM is executed, or are derived functions or derived domains. The initial agent

instances of the considered SDL-2010 agent set are created when this program is executed. Apart

from the creation of gates, there are strong similarities between this rule macro and the initial

constraint, because system is an SDL-2010 agent set too.

The creation of SDL-2010 agent set instances relies on information of the abstract syntax tree. An

element of domain Agent-definition defines the root from which this information can be accessed. In

particular, there is an agent type identifier, which is a link to the agent type definition providing the

internal structure of the agents, and their behaviour.

AGENT-SET-PROGRAM:

if Self.agentMode1 = initialisation then

 INITAGENTSET

endif
if Self.agentMode1 = execution then

 EXECAGENTSET

endif

Depending on the current agent mode, level 1, the activity phase is selected. After a single

initialization step, the agent set is switched to the execution mode.

INITAGENTSET 

 let typedef: Agent-type-definition = Self.agentAS1.s-Agent-type-identifier.idToNodeAS1 in

 if typedef.s-Agent-kind = SYSTEM then

 CREATEALLGATES(Self, typedef)

 endif
 CREATEALLAGENTS(Self, Self.agentAS1)

 Self.agentMode1:= execution

 endlet

The initialization of agent sets (and hence also of the agent system) is given by the rule macro

INITAGENTSET, which is applied in the program AGENT-SET-PROGRAM. During initialization, the

initial agent instances – in the case of system a single agent instance – are created. After this

initialization, the ASM agent is switched to the execution mode.

In case of the SDL-2010 agent set system, the gates of the system instance are created. The reasons

why this is done during initialization (and not at creation as for other agent sets) are technical.

REMOVEALLAGENTSETS(ow:SDLAGENT) 

 do forall sas: sas  SDLAGENTSET  sas.owner = ow

 REMOVEAGENTSET(sas)

 enddo

REMOVEAGENTSET(sas:SDLAGENTSET) 

 sas.owner := undefined

 sas.program := undefined

Removal of an agent set is modelled by resetting the program (and the owner) to undefined.

 Rec. ITU-T Z.100/Annex F3 (01/2015) 45

F3.2.3.1.3 Agent creation, initialization, and removal

The creation of SDL-2010 agent instances happens during system initialization, and possibly

dynamically, during system execution. The creation as defined by the rule macro CREATEAGENT

leaves an agent in what is called "pre-initial state". The agent's "initial state" is reached after agent

initialization, which is defined subsequently.

Figure F3-4 – Activity phases of SDL-2010 agents: initialization (level 2)

The initialization of an agent is decomposed into a sequence of phases, as shown in the state diagram

above. In each of these phases, certain parts of the agent's structure are created. After agent

initialization, the agent execution is started.

CREATEALLAGENTS(ow:SDLAGENT, ad:Agent-definition) 

 do forall i: i  1..ad.s-Number-of-instances.s-Initial-number

 CREATEAGENT(ow, undefined, ad)

 enddo

The initial number of agent instances of an agent set is defined in its Agent-definition. The macro

CREATEALLAGENTS is used during system initialization, and possibly during system execution, when

agent instances containing agent sets themselves are created dynamically.

CREATEAGENT(ow:SDLAGENTSET, pa: [SDLAGENT], ad:Agent-type-definition) 

 extend AGENT with sa

 INITAGENTCONTROLBLOCK(sa, ow, pa, ad)

 CREATEINPUTPORT(sa)

 sa.agentMode1 := initialisation

 sa.agentMode2 := initialising1

 sa.program := AGENT-PROGRAM

 endextend

 where

 INITAGENTCONTROLBLOCK(sa: SDLAGENT, ow:SDLAGENTSET, pa: [SDLAGENT],

 ad:Agent-type-definition) 

 sa.agentAS1 := ad

 sa.owner := ow

 sa.isActive := undefined

 sa.currentStartNodes := 

 sa.currentExitStateNodes := 

 sa.currentConnector := undefined

 sa.callingProcedureNode := undefined

 sa.currentSignalInst := undefined

 sa.parent := if pa  undefined then pa.selfPid else undefined endif

 sa.sender := nullPid

 sa.offspring := nullPid

 sa.selfPid := mk-PID(sa, undefined)

 if pa  undefined then

 pa.offspring := mk-PID(sa, undefined)

 endif

 let ownerDef: Agent-type-definition =

initialisation

initialisation

Finished

initialising
State

Machine

initialising2initialising1

46 Rec. ITU-T Z.100/Annex F3 (01/2015)

 ow.agentAS1.s-Agent-type-identifier. idToNodeAS1 in

 if ownerDef. s-Agent-kind  {SYSTEM, BLOCK} then // containing agent set

 sa.stateAgent := sa

 elseif ownerDef.s-Agent-kind = PROCESS then // next level agent set

 sa.stateAgent := ow.owner.stateAgent

 else
 sa.stateAgent := sa

 endif

 endlet

 endwhere

To create an agent, the controlled domain AGENT is extended. The control block of this new agent is

initialized. An input port for receiving signals from other agents is created and attached to the new

agent. The setting of agent modes and assignment of a program completes the creation of the agent.

AGENT-PROGRAM:

if Self.agentMode1 = initialisation then

 INITAGENT

elseif Self.agentMode1 = execution then

 if Self.ExecRightPresent then

 EXECAGENT

 else
 GETEXECRIGHT

 endif

endif

Depending on the current agent mode level 1, the activity phase is selected. After initialization, the

agent is switched to the execution mode. Additionally, the agent synchronizes in case it belongs to a

set of nested agents, in order to obtain an interleaving execution amongst these agents.

INITAGENT 

 let myDefinition: Agent-type-definition = Self.agentAS1.s-Agent-type-identifier. idToNodeAS1 in

 if Self.agentMode2 = initialising1 then

 CREATEAGENTVARIABLES(Self, myDefinition)

 CREATEALLAGENTSETS(Self, myDefinition)

 CREATESTATEMACHINE(myDefinition .s-State-machine)

 Self.agentMode2 := initialising2

 elseif Self.agentMode2 = initialising2 then

 CREATEALLCHANNELS(Self, myDefinition)

 // no implicit links (done by DeliverSignals)

 Self.agentMode2 := initialisingStateMachine

 elseif Self.agentMode2 = initialisingStateMachine then

 INITSTATEMACHINE

 elseif Self.agentMode2 = initialisationFinished then

 Self.agentMode1 := execution

 Self.agentMode2 := startPhase

 endif

 endlet

The initialization of agent instances starts in the "pre-initial state" and consists of four phases,

triggered by agent modes. In the first phase, the inner "structure" of the agent is built up. This structure

consists of the agent's local variable instances, its agent sets, and its state machine. A state machine

is created even if it is not defined in the SDL-2010 specification; in this case, no behaviour is

associated with the state machine. The information about this structure is drawn from the abstract

syntax tree, in particular, from the part of tree representing the agent's type definition.

Once the structure of the agent has been created, channels and links are established. Next, the state

machine is initialized, i.e., a "hierarchical inheritance state graph" modelling the agent's state machine

is unfolded in a sequence of steps. Finally, execution is triggered by setting the agent modes.

REMOVEAGENT(sa:SDLAGENT) 

 Rec. ITU-T Z.100/Annex F3 (01/2015) 47

 REMOVEALLLINKS(sa)

 sa.program := undefined

 sa.owner := undefined

Removal of an agent is modelled by resetting the program (and the owner) to undefined, and by

removing all owned link agents.

F3.2.3.1.4 Procedure creation and initialization

The creation of SDL-2010 procedure instances happens dynamically, during system execution. The

creation as defined by the rule macro CREATEPROCEDURE leaves a procedure in what is called "pre-

initial" state.

Figure F3-5 – Activity phases of SDL-2010 agents: firing of transitions (level 4)

The initialization of a procedure is decomposed into a sequence of phases, as shown in the state

diagram above. In each of these phases, certain parts of the procedure's structure are created. After

procedure initialization, the agent execution is continued.

CREATEPROCEDURE(pd:Procedure-definition, vl: [VALUELABEL], cl:[CONTINUELABEL]) 

 CREATEPROCEDUREGRAPH(pd, vl, cl)

 Self.agentMode3 := initialisingProcedure

 Self.agentMode4 := initialisingProcedureGraph

INITPROCEDURE 

 if Self.agentMode4 = initialisingProcedureGraph then

 INITPROCEDUREGRAPH

 elseif Self.agentMode4 = initialisationFinished then

 Self.stateNodesToBeEntered :=

 {mk-STATENODEWITHENTRYPOINT (Self.currentProcedureStateNode, undefined)}

 Self.agentMode3 := enteringStateNode

 Self.agentMode4 := startPhase

 Self.currentLabel := undefined

 endif

The initialization of procedure instances starts in the "pre-initial state" and consists of two phases,

triggered by agent modes. In the first phase, the inner "structure" of the procedure is built up. This

structure consists of the procedure's local variable instances, and its state machine. The information

about this structure is drawn from the abstract syntax tree, in particular, from the part of tree

representing the procedure's type definition.

Once the structure of the procedure has been created, the state machine is initialized, i.e., a

"hierarchical inheritance state graph" modelling the procedure's state machine is unfolded in a

sequence of steps. Finally, execution is triggered by setting the agent modes, and by assigning the

state node to be entered.

F3.2.3.1.5 Gate creation

Exchange of signals between SDL-2010 agents is modelled by means of gates from a controlled

domain GATE. A gate forms an interface for serial and unidirectional communication between two or

more agents.

initialisingProcedure

initialisation

Finished

initialising

Procedure

Graph

48 Rec. ITU-T Z.100/Annex F3 (01/2015)

CREATEALLGATES(ow:AGENT, atd: Agent-type-definition) 

 do forall gd: gd  atd.collectAllGateDefinitions

 CREATEGATE(ow, gd)

 enddo

 where
 collectAllGateDefinitions(atd: Agent-type-definition): Gate-definition-set =def

 if atd.s-Agent-type-identifier = undefined then

 atd.s-Gate-definition-set

 else

 let typedef: Agent-type-definition = atd.s-Agent-type-identifier.idToNodeAS1 in

 atd.s-Gate-definition-set 

 typedef.collectAllGateDefinitions

 endlet

 endif

 endwhere

SDL-2010 agent sets are created when the surrounding SDL-2010 agent is initialized right after its

creation. For each gate definition found via collectAllGateDefinitions, a gate is created, taking

inheritance into account.

CREATEGATE(ow:AGENT, gd:Gate-definition) 

 if gd.s-In-signal-identifier-set   then

 extend GATE with g

 g.myAgent := ow

 g.gateAS1 := gd

 g.schedule := empty

 g.direction := inDir

 endextend

 endif

 if gd.s-Out-signal-identifier-set   then

 extend GATE with g

 g.myAgent := ow

 g.gateAS1 := gd

 g.schedule := empty

 g.direction := outDir

 endextend

 endif

For each SDL-2010 gate, one or two elements of the controlled domain GATE (also called "gates")

are added, depending on whether the gate is uni-directional or bi-directional. The decision of which

gates to create is based upon the signal identifier sets in the inward and outward direction,

respectively. For each gate, the owning agent, the AST node representing the gate definition, and the

direction are assigned to the corresponding functions. Furthermore, the schedule, i.e., the sequence

of signals waiting to be forwarded, is initialized to be empty.

CREATEINPUTPORT(ow:AGENT) 

 extend GATE with g

 g.myAgent := ow

 g.gateAS1 := undefined

 g.schedule := empty

 g.direction := inDir

 ow.inport := g

 endextend

As it has turned out, input ports have strong similarities with elements of the domain GATE (called

"gates"). Therefore, input ports are modelled as gates, and the same functions are defined and

initialized. In addition, the created gate explicitly becomes the input port of the owning agent.

F3.2.3.1.6 Channel creation

Channels are modelled through unidirectional channel paths connecting a pair of gates.

 Rec. ITU-T Z.100/Annex F3 (01/2015) 49

CREATEALLCHANNELS(ow:AGENT, atd:Agent-type-definition) 

 do forall cd: cd  atd.collectAllChannelDefinitions

 CREATECHANNEL(ow, cd)

 enddo

 where
 collectAllChannelDefinitions(atd: Agent-type-definition): Channel-definition-set =def

 if atd.s-Agent-type-identifier = undefined then

 atd.s-Channel-definition-set

 else

 let typedef: Agent-type-definition = atd.s-Agent-type-identifier.idToNodeAS1 in

 atd.s-Channel-definition-set 

 typedef .collectAllChannelDefinitions

 endlet

 endif

 endwhere

Channels are created by agents during the second phase of their initialization. For each element found

via collectAllChannelDefinitions, a channel is created, taking inheritance into account.

CREATECHANNEL(ow:AGENT, cd:Channel-definition) 

 do forall cp: cp  cd.s-Channel-path-set

 CREATECHANNELPATH(ow, cd.s-NODELAY, cp, cd)

Creating a channel amounts to creating the specified channel paths.

CREATECHANNELPATH(ow:AGENT, nd:[NODELAY], cp:Channel-path, cd:Channel-definition) 

 let origDef: Gate-definition = cp.s-Originating-gate.idToNodeAS1 in

 let destDef: Gate-definition = cp.s-Destination-gate.idToNodeAS1 in

 choose fromGate: fromGate  GATE  fromGate.gateAS1= origDef 

 (OuterGate(ow, fromGate, inDir)  InnerGate(ow, fromGate, outDir))

 choose toGate: toGate  GATE  toGate.gateAS1 = destDef 

 (OuterGate(ow, toGate, outDir)  InnerGate(ow, toGate, inDir))

 CREATELINK(ow,fromGate, toGate, nd, cp.s-Signal-identifier-set, cd)

 endchoose

 endchoose

 where

 OuterGate(ow: AGENT, g: GATE, dir: DIRECTION): BOOLEAN =def

 g.myAgent = ow.owner  g.direction = dir

 InnerGate(ow: AGENT, g: GATE, dir: DIRECTION): BOOLEAN =def

 g.myAgent.owner = ow  g.direction = dir

 endwhere

A channel path is modelled as a link between two gates. The gates to be connected have already been

created together with their agent sets. Originating and destination gates are distinguished, which

defines the direction of the channel path. The correspondence between gate identifiers (referring to

the AST) and gate instances is obtained by exploiting the functions myAgent and direction defined

on gates.

F3.2.3.1.7 Link creation and removal

Agents of type LINK model the transport of signals. The behaviour of link agents is defined by the

ASM program LINK-PROGRAM.

In addition to modelling explicit channel paths, links are used to model implicit channel paths that

connect input gates (as defined by the derived function ingates) with the input port of an agent.

CREATELINK(ow:AGENT, fromGate:GATE, toGate:GATE, nd:[NODELAY], w:In-signal-identifier-set,

 cd:[Channel-definition]) 

50 Rec. ITU-T Z.100/Annex F3 (01/2015)

 extend LINKwith l

 l.channelAS1 := cd

 l.owner := ow

 l.from := fromGate

 l.to := toGate

 l.noDelay := nd

 l.with := w

 l.program := LINK-PROGRAM

 endextend

LINK-PROGRAM:

 if Self.from.queue  empty then

 let si = Self.from.queue.head in

 if applicable(si.signalType,si.toArg,si.viaArg,Self.from,Self) then

 DELETE(si,Self.from)

 INSERT(si,now+Self.delay,Self.to)

 si.viaArg : si.viaArg \

 Self.from.gateAS1.identifier1,

 Self.channelAS1.identifier1

 endif

 endlet

 endif

A link agent models the connection between a pair of gates. Since links are finally combined into

channel paths and channels, respectively, a delay characteristic is associated with them. Also, the

signals that can be transported by the link are determined. LINK-PROGRAM defines the dynamic

behaviour of link agents.

REMOVEALLLINKS(ow:AGENT) 

 do forall l: l  LINK l.owner = ow

 REMOVELINK(l)

 enddo

REMOVELINK(l:LINK) 

 l.program := undefined

 l.owner := undefined

Removal of a link agent is modelled by deleting the program and the owner.

F3.2.3.1.8 Variable creation

For each agent, composite state, procedure, and compound node instance, a set of local variables may

be declared in an SDL-2010 specification. This leads to nested scopes, where a scope is associated

with each refined state node.

CREATEAGENTVARIABLES(sa:SDLAGENT, atd:Agent-type-definition) 

 extend STATEID with sid

 sa.topStateId := sid

 if sa.stateAgent = sa then

 sa.state := initAgentState(undefined, sid, undefined, atd.collectAllVariableDefinitions)

 else
 sa.stateAgent.state := initAgentState(sa.stateAgent.state,

 sid, sa.owner.owner.topStateId, atd.collectAllVariableDefinitions)

 endif

 endextend

 where
 collectAllVariableDefinitions(atd: Agent-type-definition): Variable-definition-set =def

 if atd.s-Agent-type-identifier = undefined then

 atd.s-Variable-definition-set

 else

 let typedef: Agent-type-definition = atd.s-Agent-type-identifier.idToNodeAS1 in

 Rec. ITU-T Z.100/Annex F3 (01/2015) 51

 atd.s-Variable-definition-set 

 typedef.collectAllVariableDefinitions

 endlet

 endif

 endwhere

The outermost scope is associated with the top-level state node of an agent. It is created together with

that state node. In case of nested process agents, the scopes of contained agents are added to the scope

of the outermost agent.

CREATECOMPOSITESTATEVARIABLES(sa:SDLAGENT, sn:STATENODE,

 cstd:Composite-state-type-definition) 

 extend STATEID with sid

 sn.stateId := sid

 sa.stateAgent.state := initAgentState(sa.stateAgent.state, sid,

 if sn.parentStateNode  undefined then sn.parentStateNode.stateId else undefined endif,

 cstd.collectAllVariableDefinitions1)

 endextend

 where
 collectAllVariableDefinitions1(cstd: Composite-state-type-definition):

 Variable-definition-set =def

 if cstd.s-Composite-state-type-identifier = undefined then

 cstd.s-Variable-definition-set

 else

 let typedef: Composite-state-type-definition =

 cstd.s-Composite-state-type-identifier.idToNodeAS1 in

 cstd.s-Variable-definition-set 

 typedef .collectAllVariableDefinitions1

 endlet

 endif

 endwhere

With each composite state, a new scope is associated, which is located below the scope of the parent

state node.

CREATEPROCEDUREVARIABLES(sa:SDLAGENT, sn:STATENODE, pd:Procedure-definition) 

 extend STATEID with sid

 sn.stateId := sid

 let outParams: Out-parameter* = < p in pd.collectAllProcedureFPars:

 (p  Out-parameter)> in

 sa.stateAgent.state := initProcedureState(sa.stateAgent.state, sid,

 sn.parentStateNode.stateId, pd.collectAllVariableDefinitions2,

 pd.collectAllProcedureFPars, empty,

 < p.s-Parameter.identifier1 | p in outParams>)

 endlet

 endextend

 where
 collectAllVariableDefinitions2(pd: Procedure-definition): Variable-definition-set =def

 if pd.s-Procedure-identifier = undefined then

 pd.s-Variable-definition-set

 else
 let procdef: Procedure-definition = pd.s-Procedure-identifier.idToNodeAS1 in

 pd.s-Variable-definition-set 

 procdef.collectAllVariableDefinitions2

 endlet

 endif

 collectAllProcedureFPars(pd:Procedure-definition): Procedure-formal-parameter* =def

 if pd.s-Procedure-identifier = undefined then

 pd.s-Procedure-formal-parameter-seq

52 Rec. ITU-T Z.100/Annex F3 (01/2015)

 else
 let procdef: Procedure-definition = pd.s-Procedure-identifier.idToNodeAS1 in

 procdef.collectAllProcedureFPars ⁀

 pd.s-Procedure-formal-parameter-seq

 endlet

 endif

 endwhere

With each procedure state, a new scope is associated, which is located below the scope of the parent

state node.

CREATECOMPOUNDNODEVARIABLES(sa:SDLAGENT, scope: SCOPE) 

 extend STATEID with sid

 sa.currentStateId := sid

 scopeName(Self, sid) := scope.s-Connector-name

 scopeContinueLabel(Self, sid) := scope.s-CONTINUELABEL

 scopeStepLabel(Self, sid) := scope.s-STEPLABEL

 sa.stateAgent.state := initAgentState(sa.stateAgent.state, sid,

 sa.currentStateId, scope.s-Variable-definition-set)

 endextend

With each compound node, a new scope is associated, which is located below the current scope.

F3.2.3.1.9 State machine creation and initialization

The behaviour of an SDL-2010 agent is given by a state machine, which may be omitted if the agent

is passive. This state machine is modelled as a "hierarchical inheritance graph", which is unfolded

recursively.

CREATESTATEMACHINE(smd:[State-machine]) 

 CREATETOPSTATEPARTITION(smd)

When an SDL-2010 agent is created, the macro CREATESTATEMACHINE is applied with the effect

that the root node (topStateNode) of the "hierarchical inheritance state graph" is created. If the

SDL-2010 agent has behaviour, the root node is refined (and possibly specialized) subsequently. If

the agent is passive, no refinement is made. The unfolding of the graph is treated by the macro

INITSTATEMACHINE.

If an SDL-2010 agent has behaviour, a "hierarchical inheritance state graph" modelling the agent's

state machine is built, node-by-node. This graph forms the basis for entering and leaving states, and

for selecting transitions. Inheritance is taken into account during execution, and is not handled by

transformations. The unfolding of the graph is controlled by the following macro.

INITSTATEMACHINE 

 if Self.stateNodesToBeCreated   then

 CREATESTATENODE

 elseif Self.statePartitionsToBeCreated   then

 CREATESTATEPARTITION

 elseif Self.stateNodesToBeSpecialised   then // these are composite states!

 CREATEINHERITEDSTATE

 elseif Self.stateNodesToBeRefined   then

 CREATESTATEREFINEMENT

 else
 Self.agentMode2 := initialisationFinished

 endif

Nodes to be created are kept in the agent's state components stateNodesToBeCreated,

statePartitionsToBeCreated, stateNodesToBeSpecialised, and stateNodesToBeRefined, and are

treated in that order. Unfolding of the graph updates these state components and ends with the graph

being completed, i.e., no further nodes to be created.

 Rec. ITU-T Z.100/Annex F3 (01/2015) 53

F3.2.3.1.10 Procedure graph creation and initialization

The behaviour of a procedure is given by a procedure graph. This procedure graph is modelled as a

"hierarchical inheritance graph", which is unfolded recursively.

CREATEPROCEDUREGRAPH(pd:Procedure-definition, vl:[VALUELABEL], cl:CONTINUELABEL) 

 CREATEPROCEDURESTATENODE(pd, vl, cl)

When a procedure is called, the macro CREATEPROCEDUREGRAPH is applied with the effect that the

root node of the "hierarchical inheritance state graph" modelling the procedure is created. The

unfolding of the graph is treated by the macro INITPROCEDUREGRAPH.

INITPROCEDUREGRAPH 

 if Self.stateNodesToBeCreated   then

 CREATESTATENODE

 elseif Self.statePartitionsToBeCreated   then

 CREATESTATEPARTITION

 elseif Self.stateNodesToBeSpecialised   then // these are composite states!

 CREATEINHERITEDSTATE

 elseif Self.stateNodesToBeRefined   then

 CREATESTATEREFINEMENT

 else
 Self.agentMode4 := initialisationFinished

 endif

Nodes to be created are kept in the agent's state components stateNodesToBeCreated,

statePartitionsToBeCreated, stateNodesToBeSpecialised and stateNodesToBeRefined, and are

treated in that order. Unfolding of the graph updates these state components and ends with the graph

being completed, i.e., no further nodes to be created.

F3.2.3.1.11 State node creation

The creation of state nodes is modelled by extending the controlled domain STATENODE. A macro is

defined to handle the creation of state nodes. State partitions are also modelled as elements of the

domain STATENODE, but are not treated in this clause.

CREATESTATENODE 

 choose snd: snd  Self.stateNodesToBeCreated

 Self.stateNodesToBeCreated := Self.stateNodesToBeCreated \ {snd}

 extend STATENODE with sn

 sn.stateAS1 := snd // used, e.g., as argument for startLabel

 sn.owner := Self

 sn.parentStateNode := Self.currentParentStateNode

 sn.stateNodeKind := stateNode

 sn.stateName := snd.s-State-name

 sn.stateTransitions := snd.getStateTransitions

 sn.startTransitions :=  // updated if the state node is refined

 if snd.s-Composite-state-type-identifier  undefined then

 Self.stateNodesToBeRefined := Self.stateNodesToBeRefined  {sn}

 Self.stateNodesToBeSpecialised := Self.stateNodesToBeSpecialised  {sn}

 let parent: Composite-state-type-definition =

 snd.s-Composite-state-type-identifier.idToNodeAS1 in

 sn.stateDefinitionAS1 := parent

 endlet

 endif

 endextend

 endchoose

54 Rec. ITU-T Z.100/Annex F3 (01/2015)

State nodes are created as part of a state transition graph, which is unfolded node by node. The nodes

to be created are kept in the agent's state component stateNodesToBeCreated. If that set is not empty,

this means that the unfolding of a state transition graph is currently in progress, and some element of

the set is chosen. When a state node is created, its bookkeeping information is initialized. Since being

a regular state node, the created state node may have a substructure; it is included in the set of state

nodes to be refined.

CREATEPROCEDURESTATENODE(pd:Procedure-definition, vl:[VALUELABEL], cl:CONTINUELABEL) 

 extend STATENODE with sn

 sn.procedureAS1 := pd

 sn.owner := Self

 sn.parentStateNode := Self.currentParentStateNode

 sn.stateNodeKind := procedureNode

 sn.stateName := mk-Name("")

 sn.stateTransitions := 

 sn.startTransitions :=  // updated if the state node is refined

 sn.resultLabel := vl

 Self.stateNodesToBeRefined := {sn}

 Self.stateNodesToBeCreated := 

 Self.statePartitionsToBeCreated := 

 Self.stateNodesToBeSpecialised := {sn}

 Self.currentProcedureStateNode := sn

 Self.callingProcedureNode := sn

 CREATEPROCEDUREVARIABLES(Self,sn,pd)

 SAVEPROCEDURECONTROLBLOCK(sn,cl)

 endextend

Procedure state nodes are the top-level nodes of a procedure graph, which is unfolded node by node

subsequently. These nodes are created dynamically, when a procedure call is made. Thus, recursive

procedure calls can be handled in a uniform way.

F3.2.3.1.12 State partition creation

The creation of state partitions is modelled by extending the controlled domain STATENODE. Several

macros are defined to handle the creation of various kinds of state partitions, namely the top state

partition, (regular) state partitions, and state partitions introduced to model inheritance.

CREATETOPSTATEPARTITION(smd:[State-machine]) 

 extend STATENODE with sn

 sn.owner := Self

 Self.topStateNode := sn

 sn.parentStateNode := undefined

 sn.stateNodeKind := statePartition

 sn.stateTransitions := 

 sn.startTransitions :=  // updated if the state partition is refined

 if smd  undefined then

 let parent: Composite-state-type-definition =

 smd.s-Composite-state-type-identifier.idToNodeAS1 in

 sn.stateDefinitionAS1 := parent

 endlet
 sn.stateName := smd.s-State-name

 Self.stateNodesToBeRefined := {sn}

 Self.stateNodesToBeSpecialised := {sn}

 else
 sn.stateName := mk-Name("^pdummy^p")

 Self.stateNodesToBeRefined := 

 Self.stateNodesToBeSpecialised := 

 endif

 Self.stateNodesToBeCreated := 

 Self.statePartitionsToBeCreated := 

 endextend

 Rec. ITU-T Z.100/Annex F3 (01/2015) 55

The unfolding of the "hierarchical inheritance state graph" modelling an agent's state machine starts

with the creation of the root node, as defined by the macro CREATETOPSTATEPARTITION. When a root

node is created, its bookkeeping information is initialized. In particular, the root node is classified as

a state partition. If the agent has behaviour, the root node has a substructure, and is therefore included

in the set of state nodes to be refined. Further state components of the agent are reset before starting

the unfolding of the graph.

CREATESTATEPARTITION 

 choose spd: spd  Self.statePartitionsToBeCreated

 Self.statePartitionsToBeCreated := Self.statePartitionsToBeCreated \ {spd}

 extend STATENODE with sn

 sn.partitionAS1 := spd // used, e.g., as argument for startLabel

 sn.owner := Self

 sn.parentStateNode := Self.currentParentStateNode

 sn.stateNodeKind := statePartition

 sn.stateName := spd.s-Name

 sn.stateTransitions := 

 sn.startTransitions :=  // updated if the state partition is refined

 do forall cd: cd  spd.s-Connection-definition-set

 if cd  Entry-connection-definition then

 entryConnection(cd.s-Outer-entry-point.adaptEntryPoint, sn) :=

 adaptEntryPoint(cd.s-Inner-entry-point)

 elseif cd  Exit-connection-definition then

 exitConnection(cd.s-Inner-exit-point, sn) := cd.s-Outer-exit-point

 endif

 enddo
 Self.currentParentStateNode.statePartitionSet :=

 Self.currentParentStateNode.statePartitionSet  {sn}

 Self.stateNodesToBeRefined := Self.stateNodesToBeRefined  {sn}

 Self.stateNodesToBeSpecialised := Self.stateNodesToBeSpecialised  {sn}

 endextend

 endchoose

 where

 adaptEntryPoint(entry: Name  DEFAULT): STATEENTRYPOINT =def

 if entry = DEFAULT then undefined else entry endif

 endwhere

(Regular) state partitions are created as part of a state aggregation node, which is unfolded node by

node. The partitions to be created are kept in the agent's state component statePartitionsToBeCreated.

If that set is not empty, this means that the unfolding of a state aggregation node is currently in

progress, and some element of the set is chosen. When a state partition is created, its bookkeeping

information is initialized. Modelling a state partition, the created state node may have a substructure,

and is therefore included in the set of state nodes to be refined.

CREATEINHERITEDSTATE 

 choose sns: sns  Self.stateNodesToBeSpecialised

 Self.stateNodesToBeSpecialised := Self.stateNodesToBeSpecialised \ {sns}

 let cstd: Composite-state-type-definition =

 sns.stateDefinitionAS1 in

 if cstd.s-Composite-state-type-identifier  undefined then

 let parent: State-node = cstd.s-Composite-state-type-identifier.idToNodeAS1 in

 extend STATENODE with sn

 sn.stateAS1 := parent

 sn.owner := Self

 sn.parentStateNode := sns.parentStateNode

 sn.stateNodeKind := sns.stateNodeKind

 sn.stateName := sns.stateName

 sn.stateTransitions := 

 sn.startTransitions :=  // updated if the state node is refined

56 Rec. ITU-T Z.100/Annex F3 (01/2015)

 sns.inheritedStateNode := sn

 Self.stateNodesToBeRefined := Self.stateNodesToBeRefined  {sn}

 Self.stateNodesToBeSpecialised := Self.stateNodesToBeSpecialised  {sn}

 endextend

 endlet

 else
 sns.inheritedStateNode := undefined

 endif

 endlet

 endchoose

Specialization of composite state types is modelled by adding another dimension to the hierarchical

state graph, yielding a "hierarchical inheritance state graph". Formally, specialization is a relation

between composite state types. In the state graph, it is modelled by an inheritance relation among

state node instances. More specifically, if a state node is refined, and the refinement is defined using

specialization, then a root node that is inherited by the refined state node, and has the composite state

type being specialized, is created. By adding the root node to the set of state nodes to be refined, a

"hierarchical inheritance state graph" modelling the specialization is subsequently attached to this

root node.

F3.2.3.1.13 Composite state creation

All (regular) state nodes, state partitions, and procedure nodes are candidates for refinement and, if

refined, for specialization. Refinements are defined by a composite state type, which includes another

composite state type in case of specialization. In this clause, several macros treating these aspects are

introduced.

CREATESTATEREFINEMENT 

 choose snr: snr  Self.stateNodesToBeRefined

 Self.stateNodesToBeRefined := Self.stateNodesToBeRefined \ {snr}

 Self.currentParentStateNode := snr

 if snr.stateNodeKind = procedureNode then

 CREATEPROCEDUREVARIABLES(Self, snr, snr.procedureAS1)

 CREATEPROCEDUREGRAPHNODES(snr, snr.procedureAS1.s-Procedure-graph)

 else

 let parent: Composite-state-type-definition = snr.stateDefinitionAS1 in

 CREATECOMPOSITESTATEVARIABLES(Self, snr,

 parent)

 CREATECOMPOSITESTATE(snr,

 parent)

 endlet

 endif

 endchoose

When a state node, state partition, or procedure node is created, it is added to a set of state nodes to

be refined. In the macro CREATESTATEREFINEMENT, an arbitrary element of this set is selected, and

it is checked whether a refinement applies. Refinements are then treated by the macro

CREATECOMPOSITESTATE.

CREATECOMPOSITESTATE(sn:STATENODE, cstd:Composite-state-type-definition) 

 let sr = cstd.s-implicit in

 if sr  Composite-state-graph then

 CREATECOMPOSITESTATEGRAPH(sn,sr)

 elseif sr  State-aggregation-node then

 CREATESTATEAGGREGATIONNODE(sn,sr)

 endif

 endlet

If a state is structured, it is refined into either a composite state graph or a state aggregation node.

Based on this distinction, further rule macros are applied.

 Rec. ITU-T Z.100/Annex F3 (01/2015) 57

CREATECOMPOSITESTATEGRAPH(psn:STATENODE, csgd:Composite-state-graph) 

 psn.stateNodeRefinement := compositeStateGraph

 psn.startTransitions := getStartTransitions({csgd.s-State-transition-graph.s-State-start-node}) 

 getStartTransitions(csgd.s-Named-start-node-set)

 psn.freeActions := getFreeActions(csgd.s-State-transition-graph.s-Free-action-set)

 CREATESTATETRANSITIONGRAPH(psn,csgd.s-State-transition-graph.s-State-node-set)

Creating a composite state graph means creating its state transition graph.

CREATESTATETRANSITIONGRAPH(psn:STATENODE, nodes: State-node-set) 

 Self.stateNodesToBeCreated := nodes

 Self.currentParentStateNode := psn

Creating a state transition graph means creating its state nodes. Creation of state nodes is performed

in a series of subsequent ASM steps. These steps are triggered by assigning the state node definitions

to the agent's state component stateNodesToBeCreated.

CREATEPROCEDUREGRAPHNODES(psn:STATENODE, pg:Procedure-graph) 

 psn.stateNodeRefinement := compositeStateGraph

 psn.startTransitions := getStartTransitions({pg.s-Procedure-start-node})

 psn.freeActions := getFreeActions(pg.s-Free-action-set)

 CREATESTATETRANSITIONGRAPH(psn, pg.s-State-node-set)

 Self.stateNodesToBeCreated := pg.s-State-node-set

 Self.currentParentStateNode := psn

Creating a procedure graph means creating its state nodes.

CREATESTATEAGGREGATIONNODE(psn:STATENODE, sand:State-aggregation-node) 

 psn.stateNodeRefinement := stateAggregationNode

 Self.statePartitionsToBeCreated := sand.s-State-partition-seq.toSet

 Self.currentParentStateNode := psn

 psn.statePartitionSet := 

Creating a state aggregation node means creating its state partitions, which is performed in a series

of subsequent ASM steps. These steps are triggered by assigning the state partition definitions to the

agent's state component statePartitionsToBeCreated.

F3.2.3.2 System execution

After initialization, SDL-2010 agents start their execution. The execution of the system is modelled

by the concurrent execution of all its agents.

F3.2.3.2.1 Agent set execution

EXECAGENTSET 

 let child = take({ag  SDLAGENT: ag.owner = Self  ag.agentMode1 = initialisation}) in

 if child = undefined then

 DELIVERSIGNALS

 endif

 endlet

The behaviour of agent sets is formalized below.

DELIVERSIGNALS 

 choose g: g  Self.ingates  g.queue  empty

 let si = g.queue.head in

 DELETE(si,g)

 if si.toArg  PID  si.toArg  undefined then

 choose sa: sa  SDLAGENT  sa.owner = Self  sa.selfPid = si.toArg

 INSERT(si, si.arrival, sa.inport)

 endchoose

 else

58 Rec. ITU-T Z.100/Annex F3 (01/2015)

 choose sa: sa  SDLAGENT  sa.owner = Self

 INSERT(si, si.arrival, sa.inport)

 endchoose

 endif

 endlet

 endchoose

F3.2.3.2.2 Agent execution

The execution of SDL-2010 agents is modelled by a start phase followed by alternating phases,

namely transition selection and transition firing. To distinguish between these phases, corresponding

agent modes are defined. When in agent mode selectingTransition (agentMode2), the agent attempts

to select a transition, obeying a number of constraints. In agent mode firingTransition, a previously

selected transition is fired.

Figure F3-6 – Activity phases of SDL-2010 agents: execution (level 2)

An agent reaches the execution phase after it has completed its initialization. The execution phase

consists of three sub-phases as shown in the state diagram. Two of these sub-phases will in turn be

refined, which is indicated by the double line.

EXECAGENT 

 if Self.agentMode2 = startPhase then

 EXECUTIONSTARTPHASE

 elseif Self.agentMode2 = firingTransition then

 FIRETRANSITION

 elseif Self.agentMode2 = selectingTransition then

 SELECTTRANSITION

 elseif Self.agentMode2 = stopping then

 STOPPHASE

 endif

The execution of agents is given by the rule macro EXECAGENT. Depending on the current agent

mode, the corresponding execution phases are selected.

GETEXECRIGHT 

 if Self.stateAgent.isActive = undefined then

 Self.stateAgent.isActive := Self

 endif

RETURNEXECRIGHT 

 Self.stateAgent.isActive := undefined

ExecRightPresent(sa:SDLAGENT): BOOLEAN =def

 let myDef: Agent-type-definition = sa.owner.agentAS1.s-Agent-type-identifier.idToNodeAS1 in

 sa.stateAgent.isActive = sa  myDef.s-Agent-kind  {BLOCK, SYSTEM}

 endlet

execution

selecting

Transition

firing

TransitionstartPhase

stopping

 Rec. ITU-T Z.100/Annex F3 (01/2015) 59

F3.2.3.2.3 Starting agent execution

When the execution phase starts, several initializations are made: the set of state nodes to be entered

is initialized to consist of the top state node; furthermore, the execution is switched to entering state

nodes.

EXECUTIONSTARTPHASE 

 Self.isActive := undefined

 Self.stateNodesToBeEntered :=

 {mk-STATENODEWITHENTRYPOINT (Self.topStateNode,undefined)}

 Self.agentMode2 := firingTransition

 Self.agentMode3 := enteringStateNode

 Self.agentMode4 := startPhase

 Self.currentLabel := undefined

F3.2.3.2.4 Transition selection

In agent mode selectingTransition (agentMode2), an SDL-2010 agent searches for a fireable

transition. SDL-2010 imposes certain rules on the search order. For instance, priority input signals

have to be checked before ordinary input signals, and these have in turn to be checked before

continuous signals can be consumed. Furthermore, a transition emanating from a substate has higher

priority than a conflicting transition emanating from any of the containing states. Finally, redefined

transitions take precedence over conflicting inherited transitions. These and some more constraints

have to be observed when formalizing the transition selection.

Figure F3-7 – Activity phases of SDL-2010 agents: selecting transition (level 3)

In order to structure the transition selection, several agent mode levels are defined. The uppermost

level is shown in the diagram, where the agent mode selectingTransition is refined into four

sub-modes (agentMode3). Some of these sub-modes will in turn be refined later.

SELECTTRANSITION 

 if Self.agentMode3 = startSelection then

 SELECTTRANSITIONSTARTPHASE

 elseif Self.agentMode3 = selectStartTransition then

 SELECTSTARTTRANSITION

 elseif Self.agentMode3 = selectExitTransition then

 SELECTEXITTRANSITION

selectingTransition

start
Selection

select
Priority
Input

select
Input

select
Continuous

select
Exception

select
FreeAction

select
Exit

Transition

select
Start

Transition

60 Rec. ITU-T Z.100/Annex F3 (01/2015)

 elseif Self.agentMode3 = selectFreeAction then

 SELECTFREEACTION

 elseif Self.agentMode3 = selectPriorityInput then

 SELECTPRIORITYINPUT

 elseif Self.agentMode3 = selectInput then

 SELECTINPUT

 elseif Self.agentMode3 = selectContinuous then

 SELECTCONTINUOUS

 endif

Transition selection starts with an attempt to select a start transition, free action, priority input, an

ordinary input, and finally, a continuous signal (in that order). If no transition has been selected, the

selection process is repeated/aborted. The evaluation of provided expressions and continuous

expressions may alter the local state of the process, which may lead to different results depending on

the evaluation order.

TRANSITIONFOUND(t:SEMTRANSITION) 

 Self.currentParentStateNode := Self.stateNodeChecked.parentStateNode

 Self.previousStateNode := Self.stateNodeChecked

 Self.currentStateId := Self.stateNodeChecked.parentStateNode.stateId

 Self.currentLabel := t.s2-LABEL // second label

 Self.agentMode2 := firingTransition

 Self.agentMode3 := firingAction

 RETURNEXECRIGHT

As soon as a selectable transition is found, the start label of the transition is assigned, and the agent

modes are set to firingTransition and firingAction, respectively. Also, the current parent state node is

set, which determines the current state name scope. This scope information is used when an

ENTERSTATENODE-primitive is evaluated.

STARTTRANSITIONFOUND(t:STARTTRANSITION, psn:STATENODE) 

 Self.currentParentStateNode := psn

 Self.currentStateId := psn.stateId

 Self.currentLabel := t.s-LABEL

 Self.agentMode2 := firingTransition

 Self.agentMode3 := firingAction

 RETURNEXECRIGHT

As soon as a selectable start transition is found, the start label of the transition is assigned, and the

agent modes are set to firingTransition and firingAction, respectively. Also, the current parent state

node is set, which determines the current state name scope. This scope information is used when an

ENTERSTATENODE-primitive is evaluated.

EXITTRANSITIONFOUND(et:SEMTRANSITION, psn:STATENODE) 

 Self.currentParentStateNode := psn

 Self.currentStateId := psn.stateId

 Self.currentLabel := et.s-LABEL

 Self.agentMode2 := firingTransition

 Self.agentMode3 := firingAction

 RETURNEXECRIGHT

As soon as a selectable exit transition is found, the start label of the transition is assigned, and the

agent modes are set to firingTransition and firingAction, respectively. Also, the current parent state

node is set, which determines the current state name scope. This scope information is used when a

LEAVESTATENODE-primitive is evaluated.

FREEACTIONFOUND(fa:FREEACTION, psn:STATENODE) 

 Self.currentParentStateNode := psn

 Self.currentStateId := psn.stateId

 Self.currentLabel := fa.s-LABEL

 Self.agentMode2 := firingTransition

 Rec. ITU-T Z.100/Annex F3 (01/2015) 61

 Self.agentMode3 := firingAction

 RETURNEXECRIGHT

As soon as a free action is found, the start label of the transition is assigned, and the agent modes are

set to firingTransition and firingAction, respectively. Also, the current parent state node is set, which

determines the current state name scope.

F3.2.3.2.5 Starting selection of transitions

When the selection of transition starts, several initializations are made: the input port is "frozen",

meaning that its state at the beginning of the selection is the basis for this selection cycle. This does

not prevent signal instances to arrive while the selection is active; however, these signals will not be

considered before the next selection cycle. Furthermore, the selection is switched to checking priority

signals.

SELECTTRANSITIONSTARTPHASE 

 if Self.currentStartNodes   then

 Self.stateNodeChecked := undefined

 Self.agentMode3 := selectStartTransition

 elseif Self.currentExitStateNodes   then

 Self.stateNodeChecked := undefined

 Self.agentMode3 := selectExitTransition

 elseif Self.currentConnector  undefined then

 Self.agentMode3 := selectFreeAction

 else
 Self.inputPortChecked := Self.inport.queue

 Self.agentMode3 := selectPriorityInput

 Self.agentMode4 := startPhase

 endif

F3.2.3.2.6 Start transition selection

Selection of a start transition is performed by checking, for all current start nodes, whether a start

transition can be selected.

SELECTSTARTTRANSITION 

 if Self.stateNodeChecked = undefined then

 let snwen = take(Self.currentStartNodes) in

 if snwen  undefined then

 Self.currentStartNodes := Self.currentStartNodes \ {snwen}

 Self.startNodeChecked := snwen

 Self.stateNodeChecked := snwen.s-STATENODE

 endif

 endlet

 else

 let t = take({tr  Self.stateNodeChecked.startTransitions:

 tr.s-STATEENTRYPOINT = Self.startNodeChecked.s-implicit}) in

 if t  undefined then

 STARTTRANSITIONFOUND(t, Self.startNodeChecked.s-STATENODE)

 else
 Self.stateNodeChecked :=

 take({sn1  Self.stateNodesToBeChecked:

 directlyInheritsFrom(Self.stateNodeChecked,sn1)})

 endif

 endlet

 endif

Start transitions are associated directly with the refined node, and are distinguished by their state entry

point.

62 Rec. ITU-T Z.100/Annex F3 (01/2015)

F3.2.3.2.7 Exit transition selection

SELECTEXITTRANSITION 

 let snwex = take(Self.currentExitStateNodes) in

 if Self.stateNodeChecked = undefined then

 if snwex  undefined then

 Self.currentExitStateNodes := Self.currentExitStateNodes \ {snwex}

 Self.exitNodeChecked := snwex

 Self.stateNodeChecked := snwex.s-STATENODE

 endif

 else

 let t = take({tr  Self.stateNodeChecked.stateTransitions.exitTransitions:

 tr.s-STATEEXITPOINT = Self.exitNodeChecked.s-STATEEXITPOINT}) in

 if t  undefined then

 EXITTRANSITIONFOUND(t,snwex.s-STATENODE)

 else
 Self.stateNodeChecked :=

 take({sn1  Self.stateNodesToBeChecked:

 directlyInheritsFrom(Self.stateNodeChecked,sn1)})

 endif

 endlet

 endif

 endlet

Exit transitions are associated with the containing node, and are distinguished by their state exit point.

F3.2.3.2.8 Free action selection

SELECTFREEACTION 

 let fa = take({elem  Self.stateNodeChecked.freeActions:

 elem.s-Connector-name = Self.currentConnector.s-Connector-name}) in

 if fa  undefined then

 Self.currentConnector := undefined

 FREEACTIONFOUND(fa, Self.currentParentStateNode)

 else
 Self.stateNodeChecked :=

 take({sn1  Self.stateNodesToBeChecked:

 directlyInheritsFrom(Self.stateNodeChecked,sn1)})

 endif

 endlet

Free actions are associated directly with the refined node, and are distinguished by their connector

name.

F3.2.3.2.9 Priority input selection

Selection of a priority input is performed by checking, for each signal instance of the agent's input

port, all current state nodes. Inheritance is taken into account by checking, for each state node, the

inherited state nodes.

 Rec. ITU-T Z.100/Annex F3 (01/2015) 63

Figure F3-8 – Activity phases of SDL-2010 agents: selecting priority inputs (level 4)

The selection of a priority input consists of the sub-phases (agentMode4) shown in the diagram. At

any time during the selection phase, an attempt to select a spontaneous signal may be made, depending

on the value of the monitored predicate Self.spontaneous.

SELECTPRIORITYINPUT 

 if Self.agentMode4 = startPhase then

 SELPRIORITYINPUTSTARTPHASE

 elseif Self.agentMode4 = selectionPhase then

 SELPRIORITYINPUTSELECTIONPHASE

 elseif Self.agentMode4 = selectSpontaneous then

 SELECTSPONTANEOUS

 endif

This ASM macro defines the upper level control structure of the priority input selection. Depending

on the agent mode agentMode4, further action is defined in the corresponding ASM macro. This

control structure is part of the previous state diagram.

SELPRIORITYINPUTSTARTPHASE 

 if Self.inputPortChecked  empty then

 Self.signalChecked := Self.inputPortChecked.head

 Self.SignalSaved := false

 Self.stateNodesToBeChecked := collectCurrentSubStates(Self.topStateNode)

 Self.stateNodeChecked := undefined

 Self.agentMode4 := selectionPhase

 else
 Self.agentMode3 := selectContinuous

 Self.agentMode4 := startPhase

 RETURNEXECRIGHT

 endif

When the selection starts, it is checked whether the input port carries signals. If so, several

initializations are made: the first signal instance to be checked is determined, the state nodes to be

checked are set, and the selection is activated. If the input port is empty, the selection of continuous

signals is triggered.

SELPRIORITYINPUTSELECTIONPHASE 

 if Self.stateNodeChecked = undefined then

 NEXTSTATENODETOBECHECKED

 elseif Self.spontaneous then

 Self.agentMode4 := selectSpontaneous

 Self.agentMode5 := selectionPhase

 else

 let t = take({tr  Self.stateNodeChecked.stateTransitions.priorityInputTransitions:

 tr.s-SIGNAL = Self.signalChecked.signalType}) in

 if t  undefined then

 Self.currentSignalInst := Self.signalChecked

 Self.sender := Self.signalChecked.signalSender

selectPriorityInput

start

Phase
selection

Phase

select

Spontaneous

64 Rec. ITU-T Z.100/Annex F3 (01/2015)

 DELETE(Self.signalChecked, Self.inport)

 TRANSITIONFOUND(t)

 else
 Self.stateNodeChecked := undefined

 endif

 endlet

 endif

 where

 NEXTSTATENODETOBECHECKED 

 if Self.stateNodesToBeChecked     Self.SignalSaved then

 SELECTNEXTSTATENODE

 else
 NEXTSIGNALTOBECHECKED

 Self.stateNodesToBeChecked := collectCurrentSubStates(Self.topStateNode)

 Self.stateNodeChecked := undefined

 endif

 SELECTNEXTSTATENODE 

 let sn = Self.stateNodesToBeChecked.selectNextStateNode in

 if sn = undefined then

 UNDEFINEDBEHAVIOUR

 elseif sn.stateNodeKind = procedureNode then

 Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \

 collectCurrentSubStates(sn.getPreviousStatePartition)

 // only state partitions of the state machine to be considered here

 elseif sn.stateNodeKind = statePartition then

 Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \ {sn}

 elseif sn.stateNodeKind = stateNode then

 let curSigId: Identifier = Self.signalChecked.signalType in

 Self.stateNodeChecked := sn

 Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \ {sn}

Self.transitionsToBeChecked :=

 {t  sn.stateTransitions.inputTransitions: t.s-SIGNAL = curSigId}

 if Self.signalChecked.signalType 

 sn.stateAS1.s-Save-signalset.s-Signal-identifier-set then

 Self.SignalSaved := true

 endif

 endlet

 endif

 endlet

 NEXTSIGNALTOBECHECKED 

 let si = nextSignal(Self.signalChecked, Self.inputPortChecked) in

 if si  undefined then

 Self.signalChecked := si

 Self.SignalSaved := false

 else
 Self.agentMode3 := selectInput

 Self.agentMode4 := startPhase

 RETURNEXECRIGHT

 endif

 endlet

 endwhere

For a given signal instance in the input port, all current state nodes of the agent are checked in an

arbitrary order, beginning, for each state partition, with the innermost state node. The latter reflects

the priority among conflicting transitions. Furthermore, when a particular state node is being checked,

the inherited state nodes are checked next, i.e., inheritance is taken into account at execution time and

not handled by transformations. As a redefinition takes precedence over the redefined transition, the

 Rec. ITU-T Z.100/Annex F3 (01/2015) 65

inherited nodes are to be checked only if the current signal instance is neither saved nor consumed in

the current state.

If the given signal instance is not a priority input in the current states of the agent, the next signal

instance of the input port is checked. This is repeated until either all signals have been checked, or a

priority input has been found. In the former case, the selection of an input transition is triggered.

F3.2.3.2.10 Input selection

Selection of an input is performed by checking, for each signal instance of the agent's input port, all

current state nodes until a signal instance satisfying certain conditions is found. If no such signal

instance is found, the selection of a continuous signal is triggered.

Figure F3-9 – Activity phases of SDL-2010 agents: selecting inputs (level 4)

The selection of an ordinary input consists of the sub-phases shown in the state diagram. In

comparison to the selection of a priority input, an evaluation phase is added. This phase is entered

when a provided expression has to be evaluated. At any time during the selection phase, an attempt

to select a spontaneous signal may be made, depending on the value of the monitored predicate

Self.spontaneous.

SELECTINPUT 

 if Self.agentMode4 = startPhase then

 SELINPUTSTARTPHASE

 elseif Self.agentMode4 = selectionPhase then

 SELINPUTSELECTIONPHASE

 elseif Self.agentMode4 = evaluationPhase then

 SELINPUTEVALUATIONPHASE

 elseif Self.agentMode4 = selectSpontaneous then

 SELECTSPONTANEOUS

 endif

This ASM macro defines the upper level control structure of the input selection. Depending on the

agent mode agentMode3, further action is defined in the corresponding ASM macro. This control

structure is part of the previous state diagram.

SELINPUTSTARTPHASE 

 if Self.inputPortChecked  empty then

 Self.signalChecked := Self.inputPortChecked.head

 Self.SignalSaved := false

 Self.stateNodesToBeChecked := collectCurrentSubStates(Self.topStateNode)

 Self.stateNodeChecked := undefined

 Self.transitionsToBeChecked := 

 Self.agentMode4 := selectionPhase

 else

selectInput

start

Phase
selection

Phase

select

Spontaneous

evaluation

Phase

66 Rec. ITU-T Z.100/Annex F3 (01/2015)

 Self.agentMode3 := selectContinuous

 Self.agentMode4 := startPhase

 RETURNEXECRIGHT

 endif

When the selection starts, it is checked whether the input port contains signals. If so, several

initializations are made: the first signal instance to be checked is determined, the state nodes to be

checked are set, the transitions to be checked are reset, and the selection is activated. If the input port

is empty, the selection of a continuous signal is triggered.

SELINPUTSELECTIONPHASE 

 if Self.stateNodeChecked = undefined then

 NEXTSTATENODETOBECHECKED1

 elseif Self.spontaneous then

 Self.agentMode4 := selectSpontaneous

 Self.agentMode5 := selectionPhase

 elseif Self.transitionsToBeChecked   then

 choose t: t  Self.transitionsToBeChecked

 Self.transitionsToBeChecked := Self.transitionsToBeChecked \ {t}

 if t.s-LABEL  undefined then

 EVALUATEENABLINGCONDITION(t)

 else
 Self.currentSignalInst := Self.signalChecked

 Self.sender := Self.signalChecked.signalSender

 DELETE(Self.signalChecked,Self.inport)

 TRANSITIONFOUND(t)

 endif

 endchoose

 else
 Self.stateNodeChecked := undefined

 endif

 where

 EVALUATEENABLINGCONDITION(t:SEMTRANSITION) 

 Self.transitionChecked := t

 Self.currentStateId := Self.stateNodeChecked.parentStateNode.stateId

 Self.currentLabel := t.s-LABEL

 Self.agentMode4 := evaluationPhase

 NEXTSTATENODETOBECHECKED1 

 if Self.stateNodesToBeChecked     Self.SignalSaved then

 SELECTNEXTSTATENODE1

 else

 if  Self.SignalSaved then // implicit transition

 DELETE(Self.signalChecked,Self.inport)

 endif
 NEXTSIGNALTOBECHECKED1

 Self.stateNodesToBeChecked := collectCurrentSubStates(Self.topStateNode)

 Self.stateNodeChecked := undefined

 endif

 SELECTNEXTSTATENODE1 

 let sn = Self.stateNodesToBeChecked.selectNextStateNode in

 if sn = undefined then

 UNDEFINEDBEHAVIOUR

 elseif sn.stateNodeKind = procedureNode then

 Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \

 collectCurrentSubStates(sn.getPreviousStatePartition)

 // only state partitions of the state machine to be considered here

 elseif sn.stateNodeKind = statePartition then

 Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \ {sn}

 Rec. ITU-T Z.100/Annex F3 (01/2015) 67

 elseif sn.stateNodeKind = stateNode then

 Self.stateNodeChecked := sn

 Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \ {sn}

 Self.transitionsToBeChecked := {t sn.stateTransitions.inputTransitions:

 t.s-SIGNAL = Self.signalChecked.signalType}

 if Self.signalChecked.signalType 

 sn.stateAS1.s-Save-signalset.s-Signal-identifier-set then

 Self.SignalSaved := true

 endif

 endif

 endlet

 NEXTSIGNALTOBECHECKED1 

 let si = nextSignal(Self.signalChecked,Self.inputPortChecked) in

 if si  undefined then

 Self.signalChecked := si

 Self.SignalSaved := false

 else
 Self.agentMode3 := selectContinuous

 Self.agentMode4 := startPhase

 RETURNEXECRIGHT

 endif

 endlet

 endwhere

For a given signal instance in the input port, all current state nodes of the agent are checked in an

arbitrary order, beginning, for each state partition, with the innermost state node. The latter reflects

the priority among conflicting transitions. Furthermore, when a particular state node is being checked,

the inherited state nodes are checked next, i.e., inheritance is taken into account at execution time and

not handled by transformations. As a redefinition takes precedence over the redefined transition, the

inherited nodes are to be checked only if the current signal instance is neither saved nor consumed in

the current state.

If the given signal instance is saved in the current states of the agent, the next signal instance of the

input port is checked. This is repeated until either all signals have been checked, or an input has been

selected. In the former case, the selection of a continuous signal is triggered.

SELINPUTEVALUATIONPHASE 

 if Self.currentLabel  undefined then

 choose b: b  behaviour  b.s-LABEL = Self.currentLabel

 EVAL(b.s-ACTION)

 endchoose
 elseif semvalueBool(value(Self.transitionChecked.s-LABEL,Self)) then

 Self.currentSignalInst := Self.signalChecked

 Self.sender := Self.signalChecked.signalSender

 DELETE(Self.signalChecked,Self.inport)

 TRANSITIONFOUND(Self.transitionChecked)

 else
 Self.agentMode4 := selectionPhase

 endif

If an input transition has a provided expression, this expression has to be evaluated before continuing

with the selection. As this evaluation consists of several actions in general, another agent mode,

evaluationPhase, is entered. After completion of the evaluation, either the considered input signal is

consumed, or the selection continues.

F3.2.3.2.11 Continuous signal selection

Selection of an input is performed by checking, for each signal instance of the agent's input port, all

current state nodes until a signal instance satisfying certain conditions is found. If no such signal

instance is found, this cycle of transition selection ends, and another cycle is started.

68 Rec. ITU-T Z.100/Annex F3 (01/2015)

Figure F3-10 – Activity phases of SDL-2010 agents: selecting continuous signals (level 4)

The selection of a continuous signal consists of the sub-phases shown in the state diagram. The control

is identical to the selection of an ordinary input.

SELECTCONTINUOUS 

 if Self.agentMode4 = startPhase then

 SELCONTINUOUSSTARTPHASE

 elseif Self.agentMode4 = selectionPhase then

 SELCONTINUOUSSELECTIONPHASE

 elseif Self.agentMode4 = evaluationPhase then

 SELCONTINUOUSEVALUATIONPHASE

 elseif Self.agentMode4 = selectSpontaneous then

 SELECTSPONTANEOUS

 endif

This ASM macro defines the upper level control structure of the continuous signal selection.

Depending on the agent mode agentMode4, further action is defined in the corresponding ASM

macro. This control structure is part of the previous state diagram.

SELCONTINUOUSSTARTPHASE 

 Self.stateNodesToBeChecked := collectCurrentSubStates(Self.topStateNode)

 Self.stateNodeChecked := undefined

 Self.transitionsToBeChecked := 

 Self.agentMode4 := selectionPhase

When the selection starts, several initializations are made: the state nodes to be checked are set, the

transitions to be checked are reset, and the selection is activated.

SELCONTINUOUSSELECTIONPHASE 

 if Self.stateNodeChecked = undefined then

 NEXTSTATENODETOBECHECKED2

 elseif Self.spontaneous then

 Self.agentMode4 := selectSpontaneous

 Self.agentMode5 := selectionPhase

 else
 let t = selectContinuousSignal(Self.transitionsToBeChecked, Self.continuousPriorities) in

 if t  undefined then

 Self.transitionsToBeChecked := Self.transitionsToBeChecked \ {t}

 if t.s-LABEL  undefined then

 EVALUATEENABLINGCONDITION1(t)

 else
 TRANSITIONFOUND(t)

 endif

 else
 NEXTSTATENODETOBECHECKED2

selectContinuous

start

Phase
selection

Phase

select

Spontaneous

evaluation

Phase

 Rec. ITU-T Z.100/Annex F3 (01/2015) 69

 endif

 endlet

 endif

 where

 EVALUATEENABLINGCONDITION1(t:SEMTRANSITION) 

 Self.transitionChecked := t

 Self.currentStateId := Self.stateNodeChecked.parentStateNode.stateId

 Self.currentLabel := t.s-LABEL

 Self.agentMode4 := evaluationPhase

 NEXTSTATENODETOBECHECKED2 

 if Self.stateNodesToBeChecked   then

 if Self.stateNodeChecked = undefined then

 SELECTNEXTSTATENODE2

 else
 CHECKFORINHERITEDSTATENODES

 endif

 else
 Self.agentMode3 := startSelection

 RETURNEXECRIGHT

 endif

 SELECTNEXTSTATENODE2 

 let sn = Self.stateNodesToBeChecked.selectNextStateNode in

 if sn = undefined then

 UNDEFINEDBEHAVIOUR

 elseif sn.stateNodeKind = procedureNode then

 Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \

 collectCurrentSubStates(sn.getPreviousStatePartition)

 // only state partitions of the state machine to be considered here

 elseif sn.stateNodeKind = statePartition then

 Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \ {sn}

 elseif sn.stateNodeKind = stateNode then

 Self.stateNodeChecked := sn

 Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \ {sn}

 Self.transitionsToBeChecked := sn.stateTransitions.continuousSignalTransitions

 Self.continuousPriorities := 

 endif

 endlet

 CHECKFORINHERITEDSTATENODES 

 let sn = Self.stateNodeChecked in

 let sn1 = selectInheritedStateNode(sn, Self.stateNodesToBeChecked) in

 if sn1  undefined then

 Self.stateNodesToBeChecked := Self.stateNodesToBeChecked \ {sn1}

 Self.stateNodeChecked := sn1

 Self.transitionsToBeChecked :=

 sn1.stateTransitions.continuousSignalTransitions

 Self.continuousPriorities := Self.continuousPriorities 

 { t.s-NAT | t  sn.stateTransitions.continuousSignalTransitions}

 else
 Self.stateNodeChecked := undefined

 endif

 endlet

 endlet

 endwhere

All current state nodes of the agent are checked in an arbitrary order, beginning, for each state

partition, with the innermost state node. The latter reflects the priority among conflicting transitions.

Furthermore, when a particular state node is being checked, the inherited state nodes are checked.

70 Rec. ITU-T Z.100/Annex F3 (01/2015)

Finally, redefined transitions take precedence over conflicting inherited transitions also in case of

continuous signals. If no continuous signal is found, another cycle of the transition selection is started.

SELCONTINUOUSEVALUATIONPHASE 

 if Self.currentLabel  undefined then

 choose b: b  behaviour  b.s-LABEL = Self.currentLabel

 EVAL(b.s-ACTION)

 endchoose
 elseif semvalueBool(value(Self.transitionChecked.s-LABEL,Self)) then

 TRANSITIONFOUND(Self.transitionChecked)

 else
 Self.agentMode4 := selectionPhase

 endif

For each continuous signal, the continuous expression has to be evaluated. As this evaluation consists

of several actions in general, another agent mode, evaluationPhase, is entered. After completion of

the evaluation, either the considered continuous signal is consumed, or the selection continues.

F3.2.3.2.12 Spontaneous transition selection

Selection of a spontaneous transition is performed by checking, at any time during the selection

process, a single spontaneous transition.

Figure F3-11 – Activity phases of SDL-2010 agents: selecting spontaneous transitions (level 5)

Since any time the agent mode selectSpontaneous is entered, only one spontaneous transition is

checked, there are only two sub-modes (agentMode5), as shown in the diagram.

SELECTSPONTANEOUS 

 if Self.agentMode5 = selectionPhase then

 SELSPONTANEOUSSELECTIONPHASE

 elseif Self.agentMode5 = evaluationPhase then

 SELSPONTANEOUSEVALUATIONPHASE

 endif

This ASM macro defines the upper level control structure of the spontaneous transition selection.

Depending on the agent modeagentMode5, further action is defined in the corresponding ASM macro.

This control structure is part of the previous state diagram.

SELSPONTANEOUSSELECTIONPHASE 

 if Self.stateNodeChecked.stateTransitions.spontaneousTransitions   then

 choose t: t  Self.stateNodeChecked.stateTransitions.spontaneousTransitions

 if t.s-LABEL  undefined then

 EVALUATEENABLINGCONDITION2(t)

 else
 Self.sender := Self.selfPid

 TRANSITIONFOUND(t)

 endif

 endchoose

 else

 Self.agentMode4 := selectionPhase

selectSpontaneous

selection

Phase
evaluation

Phase

 Rec. ITU-T Z.100/Annex F3 (01/2015) 71

 endif

where

 EVALUATEENABLINGCONDITION2(t:SEMTRANSITION) 

 Self.transitionChecked := t

 Self.currentStateId := Self.stateNodeChecked.parentStateNode.stateId

 Self.currentLabel := t.s-LABEL

 Self.agentMode5 := evaluationPhase

endwhere

For a given state node, an arbitrary spontaneous transition is selected, and it is checked whether this

transition is fireable.

SELSPONTANEOUSEVALUATIONPHASE 

 if Self.currentLabel  undefined then

 choose b: b  behaviour  b.s-LABEL = Self.currentLabel

 EVAL(b.s-ACTION)

 endchoose
 elseif semvalueBool(value(Self.transitionChecked.s-LABEL,Self)) then

 Self.sender := Self.selfPid

 TRANSITIONFOUND(Self.transitionChecked)

 else
 Self.agentMode4 := selectionPhase

 endif

If a spontaneous transition has a provided expression, this expression has to be evaluated before

continuing with the selection. As this evaluation consists of several actions in general, another agent

mode, evaluationPhase, is entered. After completion of the evaluation, either the considered

spontaneous transition is selected, or the selection of priority input, input or continuous signals is

resumed.

F3.2.3.2.13 Transition firing

The firing of a transition is decomposed into the firing of individual actions, which may in turn consist

of a sequence of steps. At the beginning of a transition, the current state node is left; at the end, either

a state node is entered, or a termination takes place.

Figure F3-12 – Activity phases of SDL-2010 agents: firing transitions (level 3)

FIRETRANSITION 

 if Self.agentMode3 = firingAction then

 FIREACTION

 elseif Self.agentMode3 = leavingStateNode then

firingTransition

entering
State
Node

firing
Action

leaving
State
Node

initialising
Procedure

exiting
Composite

State

72 Rec. ITU-T Z.100/Annex F3 (01/2015)

 LEAVESTATENODES

 elseif Self.agentMode3 = enteringStateNode then

 ENTERSTATENODES

 elseif Self.agentMode3 = exitingCompositeState then

 EXITCOMPOSITESTATE

 elseif Self.agentMode3 = initialisingProcedure then

 INITPROCEDURE

 endif

Firing of a transition consists of firing a sequence of actions. Once started, transitions are completely

executed.

F3.2.3.2.14 Firing of actions

FIREACTION 

 if Self.currentLabel  undefined then

 choose b: b  behaviour  b.s-LABEL = Self.currentLabel

 EVAL(b.s-ACTION)

 endchoose

 else
 Self.agentMode2 := selectingTransition

 Self.agentMode3 := startSelection

 RETURNEXECRIGHT

 endif

Firing of actions is defined by the selection and evaluation of the corresponding SAM primitives.

Once started, the firing of actions continues until either a transition is completed (i.e., the current

label has the value undefined) or until the agent mode is changed during the evaluation of a primitive.

This is, for instance, the case when a state node is entered. The function currentLabel uniquely

identifies a behaviour primitive.

F3.2.3.2.15 Entering of state nodes

ENTERSTATENODES 

 if Self.agentMode4 = startPhase then

 ENTERSTATENODESSTARTPHASE

 elseif Self.agentMode4 = enterPhase then

 ENTERSTATENODESENTERPHASE

 elseif Self.agentMode4 = enteringFinished then

 ENTERSTATENODESENTERINGFINISHED

 endif

State nodes are entered when the execution of an agent starts, and possibly when a next state action

is executed. When this phase is started, a single state node with an entry point has already been

selected. Depending on the structure of the hierarchical graph, further state nodes to be entered may

be encountered when this single state node is entered.

Figure F3-13 – Activity phases of SDL-2010 agents: entering state node (level 4)

enteringStateNode

start
Phase

enter
Phase

entering

Finished

 Rec. ITU-T Z.100/Annex F3 (01/2015) 73

ENTERSTATENODESSTARTPHASE 

 Self.agentMode4 := enterPhase

At the beginning of this phase, the set of entered state nodes is initialized. This set is updated every

time another state node is entered, and evaluated at the end of the phase to determine the set of current

state nodes of the agent.

ENTERSTATENODESENTERPHASE 

 if Self.stateNodesToBeEntered   then

 choose snwen: snwen  Self.stateNodesToBeEntered

 snwen.s-STATENODE.currentSubStates := 

 snwen.s-STATENODE.currentExitPoints := 

 snwen.s-STATENODE.previousSubStates := 

 if snwen.s-STATENODE.parentStateNode  undefined then

 snwen.s-STATENODE.parentStateNode.currentSubStates :=

 snwen.s-STATENODE.parentStateNode.currentSubStates  {snwen.s-STATENODE}

 endif
 if snwen.s-STATENODE.stateNodeRefinement = undefined then

 REFINEMENTUNDEF(snwen)

 elseif snwen.s-STATENODE.stateNodeRefinement = stateAggregationNode then

 REFINEMENTSTATEAGGRNODE(snwen)

 elseif snwen.s-STATENODE.stateNodeRefinement = compositeStateGraph then

 REFINEMENTCOMPSTATENODE(snwen)

 endif

 endchoose

 else
 Self.agentMode4 := enteringFinished

 endif

where

 REFINEMENTUNDEF(snwen:STATENODEWITHENTRYPOINT) 

 let sn:[STATENODE] =

 take({sn1  STATENODE: directlyInheritsFrom(snwen.s-STATENODE,sn1)}) in

 if sn  undefined then

 // refinement possibly inherited

 Self.stateNodesToBeEntered := Self.stateNodesToBeEntered \ {snwen} 

 {mk-STATENODEWITHENTRYPOINT(sn,

 snwen.s-implicit)}

 else
 Self.stateNodesToBeEntered := Self.stateNodesToBeEntered \ {snwen}

 endif

 endlet

 REFINEMENTSTATEAGGRNODE(snwen:STATENODEWITHENTRYPOINT) 

 if snwen.s-implicit = HISTORY then

 Self.stateNodesToBeEntered := Self.stateNodesToBeEntered \ {snwen} 

 { mk-STATENODEWITHENTRYPOINT(s, HISTORY) |

 s  snwen.s-STATENODE.previousSubStates }

 else

 Self.stateNodesToBeEntered := Self.stateNodesToBeEntered \ {snwen} 

 { mk-STATENODEWITHENTRYPOINT(sp,

 entryConnection(snwen.s-implicit, sp)) |

 sp  snwen.s-STATENODE.statePartitionSet}

 endif

 let cstd: Composite-state-type-definition =

 snwen.s-STATENODE. stateDefinitionAS1 in

 let aggr: State-aggregation-node = cstd.s-implicit in

 if aggr.s-Entry-procedure-definition  undefined then

 CREATEPROCEDURE(aggr.s-Entry-procedure-definition, undefined,

 undefined)

74 Rec. ITU-T Z.100/Annex F3 (01/2015)

 endif

 endlet

 REFINEMENTCOMPSTATENODE(snwen:STATENODEWITHENTRYPOINT) 

 Self.stateNodesToBeEntered := Self.stateNodesToBeEntered \ {snwen}

 let cstd: Composite-state-type-definition = snwen.s-STATENODE.stateDefinitionAS1 in

 let comp: Composite-state-graph = cstd.s-implicit in

 if comp.s-Entry-procedure-definition  undefined then

 CREATEPROCEDURE(comp.s-Entry-procedure-definition, undefined,

 undefined)

 endif

 endlet
 if snwen.s-implicit = HISTORY then

 Self.stateNodesToBeEntered := Self.stateNodesToBeEntered \ {snwen} 

 { mk-STATENODEWITHENTRYPOINT(s, HISTORY) |

 s  snwen.s-STATENODE.previousSubStates }

 else

 Self.currentStartNodes := Self.currentStartNodes  {snwen}

 endif

endwhere

Entering of state nodes continues until the set stateNodesToBeEntered is empty. A distinction is made

between state nodes with and without a refinement. If there is a refinement into a state aggregation

node, then the entry procedure of that node is to be executed, and all state partitions are to be entered.

If there is a refinement into a composite state graph, then a start transition has to be selected and

executed, which determines a substate to be entered. Finally, if the state node is not refined, it may

be belong to a composite state with a state type inheriting from another state type, where it is refined.

ENTERSTATENODESENTERINGFINISHED 

 Self.agentMode2 := selectingTransition

 Self.agentMode3 := startSelection

 RETURNEXECRIGHT

When the set stateNodesToBeEntered is empty, the transition selection is activated by setting the

agent modes accordingly.

F3.2.3.2.16 Leaving of state nodes

LEAVESTATENODES 

 if Self.agentMode4 = leavePhase then

 LEAVESTATENODESLEAVEPHASE

 elseif Self.agentMode4 = leavingFinished then

 LEAVESTATENODESLEAVINGFINISHED

 endif

State nodes are left when transitions are fired. The set of state nodes to be left has already been

determined when this rule macro is applied.

Figure F3-14 – Activity phases of SDL-2010 agents: leaving state node (level 4)

leavingStateNode

leave
Phase

leaving

Finished

 Rec. ITU-T Z.100/Annex F3 (01/2015) 75

LEAVESTATENODESLEAVEPHASE 

 let sn = Self.stateNodesToBeLeft.selectNextStateNode in

 if sn = undefined then

 Self.agentMode4 := leavingFinished

 else
 Self.stateNodesToBeLeft := Self.stateNodesToBeLeft \ {sn}

 sn.parentStateNode.currentSubStates := sn.parentStateNode.currentSubStates \ {sn}

 sn.parentStateNode.previousSubStates := sn.parentStateNode.previousSubStates  {sn}

 if sn.stateNodeRefinement = compositeStateGraph then

 let cstd : Composite-state-type-definition =

 sn.stateAS1.s-Composite-state-type-identifier.idToNodeAS1 in

 let comp : Composite-state-graph = cstd.s-implicit in

 if comp.s-Exit-procedure-definition  undefined then

 CREATEPROCEDURE(comp.s-Exit-procedure-definition,undefined,

 undefined)

 endif

 endlet
 elseif sn.stateNodeRefinement = stateAggregationNode then

 let cstd: Composite-state-type-definition =

 sn.stateAS1.s-Composite-state-type-identifier.idToNodeAS1 in

 let aggr: State-aggregation-node = cstd.s-implicit in

 if aggr.s-Exit-procedure-definition  undefined then

 CREATEPROCEDURE(aggr.s-Exit-procedure-definition, undefined,

 undefined)

 endif

 endlet

 endif

 endif

 endlet

In the leave phase, state nodes that have been collected are left, from bottom to top, with possible

synchronization at state aggregation nodes. If defined, exit procedures are executed.

LEAVESTATENODESLEAVINGFINISHED 

 if Self.stateNodeToBeExited  undefined then

 Self.currentExitStateNodes := {Self.stateNodeToBeExited}

 Self.stateNodeToBeExited := undefined

 Self.agentMode3 := exitingCompositeState

 else
 Self.agentMode3 := firingAction

 Self.currentLabel := Self.continueLabel

 Self.continueLabel := undefined

 endif

When the leaving of a state node has been completed, either the exiting of a state node or firing of

the current transition has to be continued.

F3.2.3.2.17 Exiting of composite states

EXITCOMPOSITESTATE 

 if Self.stateNodeToBeExited  undefined then

 let sn = Self.stateNodeToBeExited.s-STATENODE in

 if sn.stateNodeKind = stateNode then

 Self.currentExitStateNodes := {Self.stateNodeToBeExited}

 Self.stateNodeToBeExited := undefined

 Self.agentMode2 := selectingTransition

 Self.agentMode3 := startPhase

 elseif sn.stateNodeKind = statePartition then

 sn.parentStateNode.currentExitPoints := sn.parentStateNode.currentExitPoints

  {Self.stateNodeToBeExited.s-STATEEXITPOINT}

 Self.stateNodesToBeLeft := {sn}

 Self.agentMode3 := leavingStateNode

76 Rec. ITU-T Z.100/Annex F3 (01/2015)

 Self.agentMode4 := leavePhase

 endif

 endlet

 elseif Self.currentExitStateNodes   then

 let snwex = take(Self.currentExitStateNodes) in

 let sn = snwex.s-STATENODE in

 if sn.parentStateNode.currentSubStates =  then

 let ep = take(sn.parentStateNode.currentExitPoints) in

 Self.stateNodeToBeExited := mk-STATENODEWITHEXITPOINT(

 sn.parentStateNode, exitConnection(ep,sn))

 Self.currentExitStateNodes := 

 endlet

 else

 Self.currentExitStateNodes := 

 Self.agentMode2 := selectingTransition

 Self.agentMode3 := startPhase

 endif

 endlet

 endlet

 endif

F3.2.3.2.18 Stopping agent execution

An agent ceases to exist as soon as all contained agents have been removed.

STOPPHASE 

 if sas  SDLAGENTSET: (sas.owner = Self   sa  SDLAGENT: sa.owner = sas) then

 REMOVEALLAGENTSETS(Self)

 REMOVEAGENT(Self)

 endif

F3.2.3.3 Interface between execution and compilation

The execution of agents requires certain behaviour parts (called "compilation units") to be treated

during compilation. Compilation units are sequences of actions of an agent that, once started, are

executed without being interleaved by other actions of this agent or an agent belonging to the same

set of nested agents:

• (Regular) transitions: Each transition starts with the evaluation of input parameters (if any),

followed by an action "leaveStateNode", followed by Transition as defined in the abstract

syntax. If the terminator of the transition is a Nextstate-node, the transition ends with an

action "enterStateNode".

• Start transitions (Named-start-node, State-start-node, Procedure-start-node): These are

associated with the containing state node.

• Exit transitions (Named-return-node): These are associated with the set of transitions of the

containing state node.

• Expressions: During the selection phase, enabling conditions and continuous signals have to

be evaluated. In these cases, the evaluation of an expression is a compilation unit.

Each compilation unit has a start label. Once a start label is assigned to the function currentLabel of

an agent, the sequence of actions that begins with this label – the evaluation of an expression or the

firing of a transition – is sequentially executed. This means that whenever an action has been

executed, the compilation determines the continue label such that the next action follows. The

termination of this sequence is "signalled" by having the continue label set to undefined after the last

action of the sequence.

During compilation, a function uniqueLabel: DEFINITIONAS1  NAT LABEL associates unique labels

with each node of the AST. The unique labels of nodes corresponding to compilation units are used

as starting labels. Furthermore, labels are used to retrieve the result of the evaluation of expressions.

 Rec. ITU-T Z.100/Annex F3 (01/2015) 77

F3.3 Data semantics

F3.3.1 Predefined data

An operator is functional if it is predefined. The built-in procedures for structures and literals are

treated as predefined.

functional(procedure: PROCEDURE, values: VALUE*): BOOLEAN =def

 (procedure.identifier1.s-Qualifier.head  Package-qualifier 

 procedure.identifier1.s-Qualifier.head.s-Package-name.s-TOKEN = "Predefined")

  isSpecialStructOp(procedure)

  isSpecialLiteralOp(procedure)

intype(procedure: PROCEDURE, name: Name): BOOLEAN =def

 procedure.identifier1.s-Qualifier.last.s-Data-type-name = name

compute (procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def

 if intype (procedure, IntegerType.s-Name) then computeInteger(procedure, values)

 elseif intype (procedure, BooleanType.s-Name) then computeBoolean(procedure, values)

 elseif intype (procedure, CharacterType.s-Name) then computeChar(procedure, values)

 elseif intype (procedure, RealType.s-Name) then computeReal(procedure, values)

 elseif intype (procedure, DurationType.s-Name) then computeDuration(procedure, values)

 elseif intype (procedure, TimeType.s-Name) then computeTime(procedure, values)

 elseif intype (procedure, StringType.s-Name) then computeString(procedure, values)

 elseif intype (procedure, ArrayType.s-Name) then computeArray(procedure, values)

 elseif intype (procedure, PowersetType.s-Name) then computePowerset(procedure, values)

 elseif intype (procedure, BagType.s-Name) then computeBag(procedure, values)

 elseif isSpecialStructOp(procedure) then computeStruct(procedure, values)

 elseif isSpecialLiteralOp (procedure) then computeLiteral(procedure, values)

 else

 raise(OutOfRange)

 endif

The TOKEN domain consists of character strings. The function emptyToken is therefore an empty

character string.

emptyToken: TOKEN =def

 ""

The function definingSort computes the scope in which an operator was defined.

definingSort(p: PROCEDURE): Identifier =def

 p.parentAS1.identifier1

The function procName computes the token of an operator.

procName(p: PROCEDURE): TOKEN =def

 p.s-Operation-name.s-TOKEN

F3.3.1.1 Well-known definitions

A set of functions refers to well-known Data-type-definition nodes from the package Predefined.

BooleanType: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Boolean"))

CharacterType: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Character"))

StringType: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("String"))

IntegerType: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Integer"))

RealType: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Real"))

78 Rec. ITU-T Z.100/Annex F3 (01/2015)

ArrayType: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Array"))

PowersetType: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Powerset"))

DurationType: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Duration"))

TimeType: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Time"))

BagType: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Bag"))

PidType: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Pid"))

Furthermore, there are a number of well-known identifiers for exceptions.

OutOfRange: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("OutOfRange"))

InvalidReference: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>,mk-Name("InvalidReference"))

NoMatchingAnswer: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>,mk-Name("NoMatchingAnswer "))

UndefinedVariable: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>,mk-Name("UndefinedVariable"))

UndefinedField: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("UndefinedField"))

InvalidIndex: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("InvalidIndex"))

DivisionByZero: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("DivisionByZero"))

EmptyException: Identifier =def

 mk-Identifier(<mk-Package-qualifier(mk-Name("Predefined"))>, mk-Name("Empty"))

To raise an exception, the function raise is used. Each Predefined exception is an Identifier and is a

member of the EXCEPTION domain (see clause F3.2.1.1.6). If raise is invoked the further behaviour

of the system is not defined by SDL-2010.

The further study of handling the Aggregation-kind REF requires exceptions "InvalidCall" and

"InvalidSort" to be added to the above list (see clause 12.2.7 of [ITU-T Z.107] and clause 12.2.8.1 of

[ITU-T Z.107]).

raise(ex:Identifier): Identifier =def

 UNDEFINEDBEHAVIOUR

There are also the following well-known operation signatures:

sdlAnd: Static-operation-signature =def

 mk-Operation-signature(mk-Name("and"),

 < (BooleanType), (BooleanType)>)

sdlOr: Static-operation-signature =def

 mk-Operation-signature(mk-Name("or"),

 < (BooleanType), (BooleanType)>)

sdlTrue: Literal-signature =def

 mk-Literal-signature (mk-Name("true"), mk-Result(BooleanType), undefined)

F3.3.1.2 Boolean

The function computeBoolean determines the value of an application of a Predefined Boolean

operator.

 Rec. ITU-T Z.100/Annex F3 (01/2015) 79

SDLBOOLEAN =def BOOLEAN  Identifier

computeBoolean(procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def

 let restype = definingSort(procedure) in

 case procedure.procName of

 | "not" => mk-SDLBOOLEAN( values.head.semvalueBool, restype)

 | "and" => mk-SDLBOOLEAN(values.head.semvalueBool  values.tail.head.semvalueBool, restype)

 | "or" => mk-SDLBOOLEAN(values.head.semvalueBool  values.tail.head.semvalueBool, restype)

 | "xor" => mk-SDLBOOLEAN( (values. head.semvalueBool  values.tail.head.semvalueBool),

 restype)

 | "=>" => mk-SDLBOOLEAN(values.head.semvalueBool  values.tail.head.semvalueBool,

 restype)

 endcase

 endlet

semvalueBool(v:SDLBOOLEAN): BOOLEAN =def v.s-BOOLEAN

F3.3.1.3 Integer

SDLINTEGER =def NAT  Identifier

semvalueInt(v:SDLINTEGER): NAT=def v.s-NAT

computeInteger(procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def

 let restype = definingSort(procedure) in

 if procedure  Literal-signature then

 integerLiteral(0,procedure.procName, restype)

 elseif procedure.procName = "-"  values.length = 1 then

 mk-SDLINTEGER(0 - values.head.semvalueInt, restype)

 elseif procedure.procName  {"+", "-", "*", "/", "mod", "rem", "<", ">", "<=", ">=", "power"}

 then
 let val1 = values[1]. semvalueInt, val2 = values[2]. semvalueInt in

 case procedure.procName of

 | "+" => mk-SDLINTEGER (val1+val2, restype)

 | "-"=> mk-SDLINTEGER (val1 – val2, restype)

 | "*"=> mk-SDLINTEGER (val1 * val2, restype)

 | "/"=>

 if val2 = 0 then

 raise(DivisionByZero)

 else
 mk-SDLINTEGER (intDiv(val1,val2), restype)

 endif
 | "mod"=>

 if val2 = 0 then

 raise(DivisionByZero)

 else
 mk-SDLINTEGER (intMod(val1,val2), restype)

 endif
 | "rem"=>

 if val2 = 0 then

 raise(DivisionByZero)

 else
 mk-SDLINTEGER (intRem(val1,val2), restype)

 endif
 | "power"=> mk-SDLINTEGER (intPower(val1,val2), restype)

 | "<" => mk-SDLBOOLEAN(val1 < val2, BooleanType)

 | "<=" => mk-SDLBOOLEAN(val1  val2, BooleanType)

 | ">" => mk-SDLBOOLEAN(val1 > val2, BooleanType)

 | ">="=> mk-SDLBOOLEAN(val1  val2, BooleanType)

 endcase

 endlet

 else raise(OutOfRange)

80 Rec. ITU-T Z.100/Annex F3 (01/2015)

 endif

 endlet

The function numberValue determines the NAT associated with a single character in the range "0" to

"9".

numberValue(c:TOKEN): NAT =def

 case c of

 | "0" => 0

 | "1" => 1

 | "2" => 2

 | "3" => 3

 | "4" => 4

 | "5" => 5

 | "6" => 6

 | "7" => 7

 | "8" => 8

 | "9" => 9

 endcase

The function integerLiteral returns the SDLINTEGER value for a real literal.

integerLiteral(num: NAT, proc: TOKEN, type: Identifier): SDLINTEGER =def

 if proc = emptyToken then

 mk-SDLINTEGER (num, type)

 else
 integerLiteral(num*10 + numberValue(proc.head), proc.tail, type)

 endif

The function intDiv returns the result of integer-dividing its arguments.

intDiv(a: NAT, b: NAT):NAT =def

 if a  0  b > a then 0

 elseif a  0  b  a  b > 0 then 1 + intDiv(a - b, b)

 elseif a  0  b < 0 then - intDiv(a, -b)

 elseif a < 0  b < 0 then intDiv (-a, -b)

 elseif a < 0  b > 0 then - intDiv (-a, b)

 else raise(DivisionByZero)

 endif

The function intMod returns the result of the integer-modulo operation.

intMod(a: NAT, b: NAT):NAT =def

 if a  0  b > 0 then intRem(a,b)

 elseif b < 0 then intMod(a, -b)

 elseif a < 0  b > 0  intRem(a,b) = 0 then intRem(a,b)

 elseif a < 0  b >0  intRem(a,b) < 0 then b + intRem(a,b)

 else raise(DivisionByZero)

 endif

The function intRem returns the result of the integer-remainder operation.

intRem(a: NAT, b: NAT):NAT =def

 a - b * intDiv(a,b)

The function intPower returns the result of the integer-power operation.

intPower(a: NAT, b: NAT):NAT =def

 if b = 0 then 1

 elseif a = 0 then 0

 elseif b > 0 then a * intPower(a, b-1)

 else intDiv(intPower(a, b+1), a)

 endif

 Rec. ITU-T Z.100/Annex F3 (01/2015) 81

F3.3.1.4 Character

Character values are represented by their name.

SDLCHARACTER =def Name  Identifier

computeChar(procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def

 let restype = definingSort(procedure) in

 if procedure  Literal-signature then

 mk-SDLCHARACTER(procedure.s-Literal-name, restype)

 elseif procedure.procName = "num" then

 mk-SDLINTEGER(charValue(values.head.s-Name), IntegerType)

 elseif procedure.procName = "chr" then

 mk-SDLCHARACTER(values.head.semvalueInt.charChr, restype)

 else raise(OutOfRange)

 endif

 endlet

The function charValue returns the numerical value of the character.

charValue(ch: Name): NAT =def

 let myDef: Value-data-type-definition = CharacterType.idToNodeAS1 in

 let literals = myDef.s-Literal-signature-set in

 take({L.s-Literal-natural | L  literals: L.s-Literal-name = ch})

 endlet

The function charChr returns the character for a given Integer.

charChr(a: NAT): Name =def

 if a > 128 then charChr(a - 128)

 elseif a < 0 then charChr(a+128)

 else
 let char: Value-data-type-definition = CharacterType.idToNodeAS1 in

 let literals = char.s-Literal-signature-set in

 take({L.s-Literal-name | L  literals: L.Literal-natural = a})

 endif

F3.3.1.5 Real

The Predefined type Real is represented as a rational number, with numerator and denominator.

SDLREAL =def NAT  NAT  Identifier

semvalueRealNum(v: SDLREAL): NAT =def v.s-NAT

semvalueRealDen(v: SDLREAL): NAT =def v.s2-NAT

semvalueReal(v: SDLREAL): REAL=def

 let res: REAL = v.semvalueRealNum / v.semvalueRealDen in

 res

 endlet

computeReal(procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def

 let restype = definingSort(procedure) in

 if procedure  Literal-signature then

 realLiteral(0,1,procedure.procName, restype)

 elseif procedure.procName = "-"  values.length = 1 then

 mk-SDLREAL(0 - values.head.semvalueRealNum, values.head.semvalueRealDen, restype)

 elseif procedure.procName  {"+", "-", "*", "/", "<", ">", "<=", ">="} then

 let num1 = values[1].semvalueRealNum in

 let den1 = values[1]. semvalueRealDen in

 let num2 = values[2]. semvalueRealNum in

 let den2 = values[2]. semvalueRealDen in

82 Rec. ITU-T Z.100/Annex F3 (01/2015)

 case procedure.procName of

 | "+" => mk-SDLREAL(num1*den2 + num2*den1, den1*den2, restype)

 | "-"=> mk-SDLREAL(num1*den2 - num2*den1, den1*den2, restype)

 | "*"=> mk-SDLREAL(num1*num2, den1*den2, restype)

 | "/"=>

 if num2 = 0 then

 raise(DivisionByZero)

 else
 mk-SDLREAL(num1*num2, den1*den2, restype)

 endif
 | "<" => mk-SDLBOOLEAN(num1*den2 < num2*den1, BooleanType)

 | "<=" => mk-SDLBOOLEAN(num1*den2  num2*den1, BooleanType)

 | ">" => mk-SDLBOOLEAN(num1*den2  num2*den1, BooleanType)

 | ">="=> mk-SDLBOOLEAN(num1*den2  num2*den1, BooleanType)

 endcase

 endlet
 elseif procedure.procName = "float" then

 mk-SDLREAL(semvalueInt(values.head), 1, restype)

 elseif procedure.procName = "fix" then

 mk-SDLINTEGER(computeFix(values.head.semvalueRealNum,

 values.head.semvalueRealDen), IntegerType)

 else raise(OutOfRange)

 endif

 endlet

The function realLiteral returns the SDLREAL value for a real literal.

realLiteral(num: NAT, den: NAT, proc: TOKEN, type: Identifier): SDLREAL =def

 if proc = emptyToken then

 mk-SDLREAL(num, den, type)

 elseif proc.head = "." then

 realLiteral(num*10,den*10, proc.tail, type)

 elseif den = 1 then

 realLiteral(num*10 + numberValue(proc.head), den, proc.tail, type)

 else
 realLiteral(num*10 + numberValue(proc.head), den, proc.tail, type)

 endif

The function computeFix returns the NAT value given numerator and denominator.

computeFix(num: NAT, den: NAT): NAT =def

 if num < 0 then

 - computeFix(- num, den) - 1

 elseif num < den then

 0

 else
 computeFix (num - den, den) + 1

 endif

F3.3.1.6 Duration

The domain SDLDURATION is based on the domain SDLREAL.

SDLDURATION =def DURATION  Identifier

computeDuration(procedure: PROCEDURE, values: VALUE*): VALUE =def

 computeReal(procedure, values)

F3.3.1.7 Time

The domain SDLTIME is based on the domain SDLREAL.

SDLTIME=def TIME  Identifier

 Rec. ITU-T Z.100/Annex F3 (01/2015) 83

computeTime(procedure: PROCEDURE, values: VALUE*): VALUE =def

 let restype = definingSort(procedure) in

 if procedure  Literal-signature then

 realLiteral(0,1,procedure.procName, restype)

 else

 case procedure.procName of

 | "time"=>

 let val: SDLREAL = values.head in

 mk-SDLREAL(val.s-NAT, val.s2-NAT, RealType)

 endlet
 | "<" => computeReal(procedure, values)

 | "<=" => computeReal(procedure, values)

 | ">" => computeReal(procedure, values)

 | ">=" => computeReal(procedure, values)

 | "+" => computeReal(procedure, values)

 | "-" =>

 if values.head  SDLTIME  values.tail.head  SDLDURATION then

 computeReal(procedure, values)

 else
 let res: SDLREAL = computeReal(procedure,values) in

 mk-SDLREAL(res.s-NAT, res.s2-NAT, RealType)

 endlet

 endif

 endcase

 endif

 endlet

F3.3.1.8 String

A string type is defined as a sequence of its element type.

SDLSTRING =def VALUE *  Identifier

computeString (procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def

let restype = definingSort(procedure) in

 case procedure.procName of

 | "emptystring"=> mk-SDLSTRING(empty, restype)

 | "mkstring"=> mk-SDLSTRING(<values.head>, restype)

 | "make"=> mk-SDLSTRING(<values.head>, restype)

 | "length"=> mk-SDLINTEGER (values.head. s-VALUE-seq.length, IntegerType)

 | "first"=> values.head. s-VALUE-seq.head

 | "last"=> values.head. s-VALUE-seq.last

 | "//"=> mk-SDLSTRING(values[1]. s-VALUE-seq ⁀ values[2].s-VALUE-seq, restype)

 | "extract"=>

 let string = values[1]. s-VALUE-seq in

 let intval: SDLINTEGER = values[2] in

 let index = intval.s-NAT in

 if index < 0  index > string.length then

 raise(InvalidIndex)

 else
 string[index]

 endif

 endlet
 | "modify"=>

 let intval: SDLINTEGER = values[2] in

 let index = intval.s-NAT in

 let front = substr(values[1].s-VALUE-seq, 1, index-1) in

 let back = substr(values[1].s-VALUE-seq, index+1, values[1].s-VALUE-seq.length - index) in

 if InvalidIndex = front  InvalidIndex = back then raise(InvalidIndex)

 else

 mk-SDLSTRING(front ⁀ <values[3]> ⁀ back, restype)

 endif

84 Rec. ITU-T Z.100/Annex F3 (01/2015)

 endlet
 | "substring"=>

 let from: SDLINTEGER = values[2] in

 let to: SDLINTEGER = values[3] in

 let val = substr(values[1].s-VALUE-seq, from.s-NAT, to.s-NAT) in

 if InvalidIndex = val then raise(InvalidIndex)

 else mk-SDLSTRING(val, restype) endif

 endlet
 | "remove"=>

 let intval: SDLINTEGER = values[2] in

 let index = intval.s-NAT in

 let front = substr(values[1].s-VALUE-seq, 1, index-1) in

 let back = substr(values[1].s-VALUE-seq, index+1, values[1].s-VALUE-seq.length - index) in

 if InvalidIndex = front  InvalidIndex = back then raise(InvalidIndex) else

 mk-SDLSTRING(front ⁀ back, restype)

 endif

 endlet

 endcase

endlet

The function substr computes the substring of a string value.

substr(str: VALUE*,start: NAT, len: NAT): VALUE*  EXCEPTION =def

 if start  0  len  0  start+len-1 > str.length then

 raise(InvalidIndex)

 elseif len = 0 then

 empty

 else

 substr(str,start,len-1) ⁀ <str[start+len-1] >

 endif

F3.3.1.9 Array

An array is represented as a set of index/itemsort pairs, with an optional default value.

SDLARRAY =def VALUEPAIR-set  [VALUE]  Identifier

VALUEPAIR =def VALUE  VALUE

computeArray(procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def

 let restype = definingSort(procedure) in

 if procedure.procName = "Make" then

 if values.length = 0 then

 mk-SDLARRAY(, undefined, restype)

 else

 mk-SDLARRAY(,values.head, restype)

 endif
 elseif procedure.procName = "Modify" then

 let a = values[1], index = values[2], value = values[3] in

 mk-SDLARRAY(modifyArray(a.s-VALUEPAIR-set, index, value), a.s-VALUE, restype)

 endlet
 elseif procedure.procName = "Extract" then

 let v = take({ f.s2-VALUE | f  values[1].s-VALUEPAIR-set: f.s-VALUE = values[2]}) in

 if v = undefined then

 if values[1].s-VALUE = undefined then

 raise(InvalidIndex)

 else
 values[1].s-VALUE

 else
 v

 endlet

 else raise(OutOfRange)

 Rec. ITU-T Z.100/Annex F3 (01/2015) 85

 endif

 endlet

modifyArray(a: VALUEPAIR-set, index: VALUE, value: VALUE): VALUEPAIR-set =def

 { item | item  a: item.s-VALUE  index }  { mk-VALUEPAIR(index,value)}

F3.3.1.10 Powerset

A Powerset is represented as a set.

SDLPOWERSET =def VALUE-set  Identifier

computePowerset (procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def

 let restype = definingSort(procedure) in

 case procedure.procName of

 | "empty"=> mk-SDLPOWERSET(,restype)

 | "in"=> mk-SDLBOOLEAN(values[1]  values[2].s-VALUE-set, BooleanType)

 | "incl"=> mk-SDLPOWERSET(values[2].s-VALUE-set  {values[1] }, restype)

 | "del"=> mk-SDLPOWERSET(values[2].s-VALUE-set \ {values[1] }, restype)

 | "<"=> mk-SDLBOOLEAN(values[1].s-VALUE-set  values[2].s-VALUE-set, BooleanType)

 | "<="=> mk-SDLBOOLEAN(values[1].s-VALUE-set  values[2].s-VALUE-set, BooleanType)

 | ">"=> mk-SDLBOOLEAN(values[2].s-VALUE-set  values[1].s-VALUE-set, BooleanType)

 | ">="=> mk-SDLBOOLEAN(values[2].s-VALUE-set  values[1].s-VALUE-set, BooleanType)

 | "and"=> mk-SDLPOWERSET(values[1].s-VALUE-set  values[2].s-VALUE-set, restype)

 | "or"=> mk-SDLPOWERSET(values[1].s-VALUE-set  values[2].s-VALUE-set, restype)

 | "length"=> mk-SDLINTEGER(| values[1].s-VALUE-set |, IntegerType)

 | "take"=> if values[1].s-VALUE-set =  then

 raise(EmptyException)

 else
 values[1]. s-VALUE-set.take

 endif

 endcase

 endlet

F3.3.1.11 Bag

A Bag is represented as a set of value-frequency pairs.

SDLBAG =def FREQUENCY-set  Identifier

FREQUENCY =def VALUE  NAT

computeBag (procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def

 let restype = definingSort(procedure) in

 case procedure.procName of

 | "empty"=> mk-SDLBAG(,restype)

 | "in"=> mk-SDLBOOLEAN(bagcount(values[1], values[2])  0, BooleanType)

 | "incl"=> mk-SDLBAG(bagincl(values[1], values[2]), restype)

 | "del"=> mk-SDLBAG(bagdel(values[1], values[2]), restype)

 | "<"=> mk-SDLBOOLEAN(baginbag(values[1], values[2]), BooleanType)

 | "<="=> mk-SDLBOOLEAN( baginbag(values[2], values[1]), BooleanType)

 | ">"=> mk-SDLBOOLEAN(baginbag(values[2], values[1]), BooleanType)

 | ">="=> mk-SDLBOOLEAN( baginbag(values[1], values[2]), BooleanType)

 | "and"=> mk-SDLBAG(bagand(values[1], values[2]), restype)

 | "or"=> mk-SDLBAG(bagor(values[1], values[2]), restype)

 | "length"=> mk-SDLINTEGER(baglength(values[1].s-FREQUENCY-set), IntegerType)

 | "take"=> values[1].s-FREQUENCY-set.take.s-VALUE

 endcase

 endlet

bagcount(item: VALUE, bag: SDLBAG): NAT =def

 let elem1 = {elem.s-NAT | elem  bag.s-FREQUENCY-set: elem.s-VALUE = item } in

86 Rec. ITU-T Z.100/Annex F3 (01/2015)

 if elem1 =  then 0 else elem1.take endif

 endlet

bagincl(item: VALUE, bag: SDLBAG): FREQUENCY-set =def

 if bagcount(item, bag)  0 then

 {if elem.s-VALUE = item then mk-FREQUENCY(item, elem.s-NAT+1) else elem endif |

 elem  bag.s-FREQUENCY-set}

 else

 bag.s-FREQUENCY-set  {mk-FREQUENCY (item, 1)}

 endif

bagdel(item: VALUE, bag: SDLBAG): FREQUENCY-set =def

 if bagcount(item, bag)  1 then

 {if elem.s-VALUE = item then mk-FREQUENCY(item, elem.s-NAT - 1) else elem endif |

 elem  bag.s-FREQUENCY-set}

 else
 bag.s-FREQUENCY-set \ { mk-FREQUENCY(item, 1)}

 endif

baginbag(smaller: SDLBAG, larger: SDLBAG): BOOLEAN =def

  elem  smaller.s-FREQUENCY-set: bagcount(elem.s-VALUE, larger) < elem.s-NAT

bagand(a: SDLBAG,b: SDLBAG): FREQUENCY-set =def

 { mk-FREQUENCY (x.s-VALUE, min(bagcount(x.s-VALUE,a),bagcount(x.s-VALUE,b))) |

 x  a.s-FREQUENCY-set: bagcount(x.s-VALUE, b) > 0}

min(a: NAT,b: NAT): NAT =def if a>b then a else b endif

bagor(a: SDLBAG,b: SDLBAG): FREQUENCY-set =def

 { mk-FREQUENCY(x.s-VALUE, bagcount(x.s-VALUE,a) + bagcount(x.s-VALUE, b))

 | x  a.s-FREQUENCY-set }

  { x | x  b.s-FREQUENCY-set: bagcount(x.s-VALUE, a) = 0}

baglength(a: FREQUENCY-set):NAT =def

 if a =  then 0

 else let x = a.take in

 x.s-NAT + baglength(a \ {x})

 endlet

 endif

F3.3.2 Pid types

A PID value is represented by an agent and an interface.

PID =def VALIDPID  NULLPID

NULLPID =def { mk-Null-literal-signature(mk-Name("null"), Pidtype, undefined) }

VALIDPID =def SDLAGENT  [Interface-definition]

static nullPid: PID =def take(NULLPID)

The static function nullPid is the special PID value for the unique named element of the Pid sort

(denoted by "null") that does not identify any agent and is the unique element of NULLPID.

F3.3.3 Constructed types

F3.3.3.1 Structures

A structure value is identified by its type name, and the field list. The field names are a list, rather

than a set because Make operator uses the order of the fields rather than the field names.

SDLSTRUCTURE =def FIELD*  Identifier

FIELD =def Name  VALUE

 Rec. ITU-T Z.100/Annex F3 (01/2015) 87

isSpecialStructOp(procedure: PROCEDURE): BOOLEAN =def

 let procsort = procedure.definingSort, pn = procedure.procName in

 ( str  SDLSTRUCTURE: (procsort = str.s-Identifier)) 

 ((pn = "Make")

  (pn = "Undefined")

  ( fld  procsort.s-FIELD-seq: (pn = fld.s-Name ⁀ "Modify"))

  ( fld  procsort.s-FIELD-seq: (pn = fld.s-Name ⁀ "Extract"))

  ( fld  procsort.s-FIELD-seq: (pn = fld.s-Name ⁀ "Present"))

The function computeStruct gives the value of applying the language-defined operators for structures.

computeStruct(procedure: PROCEDURE, values: VALUE*): VALUEOREXCEPTION =def

 let structsort = definingSort(procedure), pn = procedure.procName in

 if pn = "Undefined" then

 structUndefined(structsort)

 elseif pn = "Make " then

 structMake(structsort, empty, structsort.s-FIELD-seq, values)

 elseif ( fld  structsort.s-FIELD-seq: (pn = fld.s-Name ⁀ "Modify") then

 let fn ⁀ "Modify" = pn in

 structModify(fn, structsort, values.head, empty, structsort.s-FIELD-seq)

 endlet

 elseif ( fld  structsort.s-FIELD-seq: (pn = fld.s-Name ⁀ "Extract") then

 let fn ⁀ "Extract" = pn in

 structExtract(fn, structsort)

 endlet

 elseif ( fld  structsort.s-FIELD-seq: (pn = fld.s-Name ⁀ "Present")) then

 let fn ⁀ "Present" = pn in

 structFieldPresent(fn, structsort)

 endlet
 else raise(OutOfRange)

 endif

 endlet

The function structMake creates a structure value with the fields initialized to the list of values. It

should be called externally (internally it is recursive) with a structure value, an empty list of new

fields (newflds) and a list of old fields (oldflds) that each has a field name defined, and a list of one

or more values. The new fields (newflds) and old fields (oldflds) are used in the internal recursion.

structMake(st: SDLSTRUCTURE, newflds: FIELD*, oldflds: FIELD*, values: VALUE*): VALUE =def

 if values.length < oldflds.length then structMake(st, newflds, oldflds, values ⁀ undefined)

 elseif values.length = 0  oldflds.length = 0 then

 mk-SDLSTRUCTURE(newflds, st.s-Identifier)

 else

 structMake(st, newflds ⁀ mk-FIELD(oldflds.head.s-Name, values.head),

 oldflds.tail, values.tail)

 endif

The function structUndefined returns the true if (and only if) all the fields are undefined.

structUndefined(st: SDLSTRUCTURE): SDLBOOLEAN =def

 mk-SDLBOOLEAN(semvalueBool(value  st.s-FIELD.s-VALUE: (value = undefined)), BooleanType)

The function structExtract returns the field with a given name from a list of fields.

structExtract(fieldname:Name, structtype: SDLSTRUCTURE): VALUE =def

 let valueset = { f.s-VALUE | f  structtype.s-FIELD-seq: f.s-Name = fieldname} in

 if valueset =  then raise(UndefinedField)

88 Rec. ITU-T Z.100/Annex F3 (01/2015)

 else valueset.take

 endif

 endlet

The function structModify returns a new structure with one field changed. It should be called

externally (internally it is recursive) with the field name, a structure value, the new value for the field,

an empty list of new fields (newflds) and a list of old fields (oldflds) that each have a field name

defined. The new fields (newflds) and old fields (oldflds) are used in the internal recursion.

structModify(fn: Name, struct: SDLSTRUCTURE, val: VALUE, newflds: FIELD*, oldflds: FIELD*):

 SDLSTRUCTURE =def

 if oldflds.length = 0 then

 mk-SDLSTRUCTURE(newflds, struct.s-Identifier)

 else
 structModify(fn, struct, val,

 newflds ⁀

 mk-FIELD(oldflds.head.s-Name,

 if oldflds.head.s-Name  fieldname then val else oldflds.head.s-VALUE endif),

 oldflds.tail)

 endif

The function structFieldPresent returns the true if the specified field has a value.

structFieldPresent(fn: Name, st: SDLSTRUCTURE): SDLBOOLEAN =def

 mk-SDLBOOLEAN(semvalueBool(fn.parentAS1.s-FIELD.s-VALUE  undefined), BooleanType)

F3.3.3.2 Literals

Values of a literal sort are represented by the type in which the literal is defined, and the literal

signatures:

SDLLITERALS =def Literal-signature  Identifier

isSpecialLiteralOp(procedure: PROCEDURE): BOOLEAN =def

 let procsort = procedure.definingSort, pn = procedure.procName in

 ( lit  SDLLITERALS: (procsort = lit.s-Identifier)) 

 (pn  { "<", ">","<=",">=", "first", "last", "succ", "pred", "num" })

The function computeLiteral gives the value of applying the language-defined operators for

structures.

computeLiteral(procedure:PROCEDURE, values:VALUE*): [VALUE]=def

 let restype = definingSort(procedure) in

 let defi: Value-data-type-definition = restype.idToNodeAS1 in

 if procedure.procName  { "<", ">","<=",">=" } then

 let v1 = values.head.s-Literal-signature.literalNum in

 let v2 = values.tail.head.s-Literal-signature.literalNum in

 case procedure.procName of

 | ">" => mk-SDLBOOLEAN(v1 > v2, BooleanType)

 | ">=" => mk-SDLBOOLEAN(v1  v2, BooleanType)

 | "<" => mk-SDLBOOLEAN(v1 < v2, BooleanType)

 | "<=" => mk-SDLBOOLEAN(v1  v2, BooleanType)

 endcase

 endlet
 elseif procedure.procName = "first" then

 literalMinimum (defi.s-Literal-signature-set)

 elseif procedure.procName = "last" then

 literalMaximum (defi.s-Literal-signature-set)

 elseif procedure. procName = "succ" then

 literalSucc(defi.s-Literal-signature-set, values.head)

 elseif procedure. procName = "pred" then

 literalPred(defi.s-Literal-signature-set, values.head)

 Rec. ITU-T Z.100/Annex F3 (01/2015) 89

 elseif procedure. procName = "num" then

 mk-SDLINTEGER(literalNum(values.head).semvalueInt, IntegerType)

 else

 undefined

 endif

 endlet

literalNum(s: Literal-signature): NAT =def

 s.s-Literal-natural

literalValue(s: Literal-signature): VALUE =def

 mk-SDLLITERALS(s, s.s-Result)

literalMinimum(s: Literal-signature-set): VALUE =def

 take({s1.literalValue

 | s1  s:  s2s:s2.literalNum> s1.literalNum})

literalMaximum(s: Literal-signature-set): VALUE =def

 take({s1.literalValue

 | s1  s:  s2s:s2.literalNum < s1.literalNum})

literalSucc(s: Literal-signature-set, val: SDLLITERALS): VALUE =def

 if val = literalMaximum (s, val.s-Identifier) then literalMinimum(s, val.s-Identifier)

 else

 take({s1.literalValue | s1  s 

 (s1.literalNum > val.s-NAT) 

 (s2  s: (s2.literalNum  s.literalNum)  (s1.literalNum  s2.literalNum))}

 endif

literalPred(s: Literal-signature-set, val: SDLINTEGER): VALUE =def

 if val = literalMinimum(s, val.s-Identifier) then literalMaximum (s, val.s-Identifier)

 else

 take({s1.literalValue | s1  s 

 (s1.literalNum < val.s-NAT) 

 (s2  s: (s2.literalNum  s1.literalNum)  (s.literalNum  s2.literalNum))}

 endif

F3.3.3.2 Choice

Further study is required for this subject.

F3.3.4 Variables with Aggregation-kind REF

Further study is required for this subject.

F3.3.5 State access

The STATE domain consists of substates (associations of values for a specific STATEID), and super

states (associations between super state and substate). In case a certain variable is bound to an in/out

parameter in a substate, it refers to the variable in the caller's state.

STATE =def NAMEDVALUE-set  SUPERSTATE-set

NAMEDVALUE =def STATEID  Variable-identifier  [BOUNDVALUE]

BOUNDVALUE =def VALUE  Variable-identifier

SUPERSTATE =def STATEID  STATEID

initAgentState(state: [STATE], newid: STATEID, id: [STATEID], declarations: DECLARATION-set): STATE =def

 let newsub = initDeclarations(newid, declarations) in

 if state = undefined then

90 Rec. ITU-T Z.100/Annex F3 (01/2015)

 mk-STATE(newsub, , )

 else

 let newsuper = if id = undefined then  else { mk-SUPERSTATE(id, newid)} endif in

 mk-STATE(state.s-NAMEDVALUE-set  newsub, state.s-SUPERSTATE-set  newsuper)

 endif

 endlet

initProcedureState(state: STATE, newid: STATEID, id: STATEID, vars: DECLARATION-set,

 declarations: DECLARATION*,

 values:VALUE*, variables: Variable-identifier*): STATE =def

 let newsub = assignValues(initDeclarations(newid, vars  declarations.toSet),

 newid,declarations,

 values, variables) in

 let newsuper = mk-SUPERSTATE(id, newid) in

 mk-STATE(state.s-NAMEDVALUE-set  newsub, state.s-SUPERSTATE-set  { newsuper })

 endlet

initDeclarations(newid: STATEID, decls: DECLARATION-set): NAMEDVALUE-set =def

 { mk-NAMEDVALUE(newid, d.identifier1, d.s-Constant-expression)

 | d  decls: d  Variable-definition} 

 { mk-NAMEDVALUE(newid, d.identifier1,

 undefined)

 | d  decls: d  Procedure-formal-parameter}

The function assignValues puts a sequence of parameter values into a named values set for a given

state id.

assignValues(namedvalues:NAMEDVALUE-set, id: STATEID, decls:DECLARATION*,

 values:VALUE*, variables:Variable-identifier*): NAMEDVALUE-set =def

 if values = empty then

 namedvalues

 else

 if decls.head  In-parameter then

 assignValues(setValue(namedvalues, id, variables.head, values.head),

 id, decls.tail, values.tail, variables.tail)

 else
 assignValues(namedvalues, id, decls.tail, values.tail, variables.tail)

 endif

The function setValue puts a single value into a named values set for a given state id.

setValue(namedvalues: NAMEDVALUE-set, id: STATEID, varname:Identifier, value:VALUE):

 NAMEDVALUE-set =def

 { binding | binding  namedvalues:

 binding.s-Variable-identifier  varname  binding.s-STATEID  id} 

 { mk-NAMEDVALUE(id, varname, value) }

The function getValue returns the association between id and varname in namedvalues.

getValue(namedvalues: NAMEDVALUE-set, id: STATEID, varname:Identifier): NAMEDVALUE-set =def

 { b  namedvalues:

 b.s-STATEID = id  b.s-Variable-identifier = varname}

The function eval returns the value associated with a state, a state id, and a name. If there is named

value for the state and identified variable, there can be at most one. If this named value has a bound

value that is a value, this is the result. Otherwise, if the bound value is a variable identifier, this bound

variable must be a variable in the caller (the state id that caused this state id to exist), because static

semantics ensures each variable exists. In this case eval is called recursively to return the value (in

the named values for the state) for the bound variable and the caller (the state id that caused this state

id to exist). Otherwise the bound value is undefined, and undefined returned. If no named value is

associated, the static semantics ensures the variable exists, so the identified variable must be

 Rec. ITU-T Z.100/Annex F3 (01/2015) 91

associated with the caller (the state id that caused this state id to exist). In this case eval is called

recursively to return the value (in the named values for the state) for the given variable and the caller

state.

eval(varname:Identifier, state:STATE, id:STATEID): VALUEOREXCEPTION =def

 let callerid = caller(state, id) in

 let namedval = getValue(state.s-NAMEDVALUE-set, id, varname) in

 if namedval   then

 if namedval.take.s-BOUNDVALUE  VALUE then

 namedval.take.s-BOUNDVALUE

 elseif namedval.take.s-BOUNDVALUE  Variable-identifier then

 eval(namedval.take.s-BOUNDVALUE, state, callerid)

 else // the BOUNDVALUE is undefined

 raise(UndefinedVariable)

 endif

 else
 eval(varname, state, callerid)

 endif

 endlet

 endlet

The function update modifies a binding of a name to a value.

update(name:Identifier, value:VALUE, state:STATE, id:STATEID): STATE =def

 let val = getValue(state.s-NAMEDVALUE-set, id, name) in

 if val =  then

 update(name, value, state, caller(state, id))

 elseif val.take  NAMEDVALUE then

 mk-STATE(setValue(state.s-NAMEDVALUE-set, id, name, value),

 state.s-SUPERSTATE-set)

 else
 update(val.take.s-Variable-identifier, value, state, id)

 endif

 endlet

The function assign modifies the variable with the given name in the state/id association to the given

value.

assign (variablename:Variable-identifier, value:VALUE, state:STATE, id:STATEID): STATEOREXCEPTION =def

 if isValueVariable(variablename) then

 if isSyntypeVariable(variablename)  rangeCheck(variablename.variableSort, value) then

 raise(OutOfRange)

 else update(variablename, value, state, id)

 endif

 else
 // pid variable, sort of variable is an Interface-definition

 if variablename.variableSort = value.interface 

 isSuperType(variablename.variableSort, value.interface) then

 update(variablename, value, state, id)

 else
 update(variablename, nullPid, state, id)

 endif

 endif

The function caller returns the state id that caused this state id to exist.

caller(state: STATE, id: STATEID): STATEID =def

 take({ s.s-STATEID | s  state.s-SUPERSTATE-set: s.s2-STATEID = id})

The function variableSort returns the sort for a given variable identifier.

variableSort(variableid: Variable-identifier): Data-type-definition =def

92 Rec. ITU-T Z.100/Annex F3 (01/2015)

 variableid.idToNodeAS1.s-Sort-reference-identifier.idToNodeAS1

The predicate isValueVariable holds if the variablename refers to a variable of a value type.

isValueVariable(variableid: Variable-identifier): BOOLEAN =def

 variableid.variableSort  Value-data-type-definition

The predicate isSyntypeVariable holds if the variablename refers to a variable with a syntype.

isSyntypeVariable(variableid: Variable-identifier): BOOLEAN =def

 variableid.idToNodeAS1.s-Sort-reference-identifier  Syntype-identifier

interface(val: VALUE): Interface-definition =def

 if val.sort  Interface-definition then val.sort else undefined endif

The function sort gives the sort of a value, which for most domains (such as SDLBOOLEAN or

SDLSTRUCTURE that form part of the VALUE domain) is found from the Identifier element of the

domain. The exception is the PID domain, which instead is either a NULLPID that has the value nullPid,

and is a PidType value, or is a VALIDPID with an optional Interface-definition. In the case of a

VALIDPID without an Interface-definition, the value is a PidType value; otherwise the data type

definition is the Interface-definition.

sort(val: VALUE): Data-type-definition =def

if val  NULLPID then PidType.idToNodeAS1

elseif val  VALIDPID then

 if val.s-Interface-definition = undefined then PidType.idToNodeAS1

 else val.s-Interface-definition

 endif
else val.s-Identifier.idToNodeAS1

endif

F3.3.6 Specialization

The function dynamicType determines the identity of the dynamic type of a value.

dynamicType(v: VALUE): Identifier =def

if v = nullPid then raise(OutOfRange) else

 case v of

 | SDLBOOLEAN(*,t) => t

 | SDLINTEGER(*, t) => t

 | SDLCHARACTER(*, t) => t

 | SDLREAL(*,*, t) => t

 | SDLSTRING(*,t) => t

 | SDLLITERALS(*,t) => t

 | SDLSTRUCTURE(*,t) => t

 | PID(*, t) => t

 endcase

endif

F3.3.7 Operators and methods

The function dispatch determines the procedure to select given a set of actual parameters.

dispatch(procedure:PROCEDURE, values:VALUE*): Identifier =def

 if procedure  Static-operation-signature then

 procedure.s-Identifier

 else
 let c = allDynamicCandidates(procedure) in

 let c1 = matchingCandidates(c, values) in

 bestMatch(c1)

 endlet

 endif

 Rec. ITU-T Z.100/Annex F3 (01/2015) 93

The function allDynamicCandidates returns the set of all signatures with the same name as the given

signature.

allDynamicCandidates(procedure:PROCEDURE): PROCEDURE-set =def

 { p | p Operation-signature:

 p.s-Operation-name = procedure.s-Operation-name }

The function matchingCandidates returns the set of all signatures that are compatible with the

arguments.

matchingCandidates(procedures: PROCEDURE-set, values: VALUE*): PROCEDURE-set =def

 { p | p  procedures: isSignatureCompatible(p.s-Formal-argument-seq, dynamicTypes(values)) }

The function matchingCandidates returns the most specialized signature.

bestMatch(procedures:PROCEDURE-set): Identifier =def

 take({ p.s-Identifier | p  procedures:

  q  procedures: isSignatureCompatible(p.s-Formal-argument-seq,

 q.s-Formal-argument-seq) })

The predicate isSignatureCompatible holds if p is compatible with q.

isSignatureCompatible(p:Formal-argument*, q:Formal-argument*): BOOLEAN =def

 if p = empty then

 true

 else

 isSortCompatible(p.head.s-Argument, q.head.s-Argument) 

 isSignatureCompatible(p.tail, q.tail)

 endif

isSortCompatible(p: Sort-reference-identifier, r: Sort-reference-identifier): BOOLEAN =def

 (p = r) 

 isDirectlySortCompatible(p, r) 

 (r.idToNodeAS1  Interface-definition 

 ( q  Sort-reference-identifier: (isSortCompatible(p, q)  isSortCompatible(q, r))))

isDirectlySortCompatible(y: Sort-reference-identifier, z: Sort-reference-identifier): BOOLEAN =def

 if isSuperSort(z, y) then

 if y.idToNodeAS1  Value-data-type-definition then

 // true if y is <anchored sort> of the form this z

 y.idToNodeAS1.s-Data-type-identifier = z

 else // y is a pid sort (because not a value dat type) – and z is super sort of y

 true

 endif

 else false

 endif

isSuperSort(z Sort-reference-identifier, y: Sort-reference-identifier): BOOLEAN =def

 isSuperType(z, y) // see clause F2.2.1.6.4.

dynamicTypes(values:VALUE*): Formal-argument* =def

 <mk-Formal-argument(dynamicType(v)) | v in values >

F3.3.8 Syntypes

The predicate rangeCheck holds if the range check for a value of a syntype passes.

rangeCheck(syntype: Syntype-definition, value: VALUE): BOOLEAN =def

  cond  syntype.s-Range-condition.s-Condition-item-set:

 conditionItemCheck(cond, value, syntype.s-Parent-sort-identifier)

94 Rec. ITU-T Z.100/Annex F3 (01/2015)

The predicate conditionItemCheck holds if the condition is true for the value of the given type. If the

condition is a size constraint, rewriting the concrete grammar creates an anonymous operation

identified by the Operation-identifier of the Size-constraint that embodies the ranges specified, so the

Open-range or Closed-range items in the abstract grammar of Size-constraint are redundant. An

alternative would be to construct an anonymous procedure here based on the Open-range or Closed-

range items of Size-constraint, in which case the Operation-identifier of Size-constraint is redundant.

conditionItemCheck(cond: Condition-item, value: VALUE, type: Identifier): BOOLEAN =def

 if cond  Open-range then

 semvalueBool(compute(cond.s-Open-range.s-Operation-identifier,

 < cond.s-Open-range.s-Constant-expression >))

 elseif cond  Closed-range then

 choose lessthaneq: lessthaneq  type.s-Static-operation-signature-set  lessthaneq.procName = "<="

 semvalueBool(compute(lessthaneq, < cond.s-Closed-range.s-Constant-expression, value >)) 

 semvalueBool(compute(lessthaneq, < value, cond.s-Closed-range.s2-Constant-expression >))

 endchoose

 else //size constraint and cond  Size-constraint

 semvalueBool(compute(cond.s-Size-constraint.s-Operation-identifier, < value >))

 endif

 Rec. ITU-T Z.100/Annex F3 (01/2015) 95

Appendix I to Annex F3

List of abstract syntax grammar rules used

This list contains the Specification and Description Language abstract syntax grammar rules that are

used in this annex (Annex F3). The complete list of abstract syntax grammar rules can be found in

Annex A of Recommendation ITU-T Z.100, which also identifies the Recommendation

([ITU-T Z.101], [ITU-T Z.102] or [ITU-T Z.104]) where the grammar rule is defined.

Action-return-node

Agent-definition

Agent-identifier

Agent-kind

Agent-type-definition

Agent-type-identifier

Any-expression

Argument

Assignment

Break-node

Call-node

Channel-definition

Channel-path

Closed-range

Composite-state-graph

Composite-state-type-definition

Composite-state-type-identifier

Compound-node

Condition-item

Conditional-expression

Connect-node

Connection-definition

Connector-name

Constant-expression

Continue-node

Continuous-expression

Continuous-signal

Create-request-node

Dash-nextstate

Data-type-definition

Data-type-name

Decision-answer

Decision-node

Destination-gate

Entry-connection-definition

Entry-procedure-definition

Equality-expression

Exception-identifier

Exit-connection-definition

Exit-procedure-definition

Formal-argument

Free-action

Gate-definition

Graph-node

Identifier

In-parameter

In-signal-identifier

Initial-number

Inner-entry-point

Inner-exit-point

Input-node

Interface-definition

Join-node

96 Rec. ITU-T Z.100/Annex F3 (01/2015)

Literal

Literal-name

Literal-natural

Literal-signature

Maximum-number

Name

Named-nextstate

Named-return-node

Named-start-node

Nextstate-parameters

Now-expression

Number-of-instances

Null-literal-signature

Offspring-expression

Open-range

Operation-application

Operation-identifier

Operation-name

Operation-signature

Originating-gate

Out-parameter

Out-signal-identifier

Outer-entry-point

Outer-exit-point

Output-node

Package-name

Package-qualifier

Parameter

Parent-expression

Parent-sort-identifier

Priority-name

Procedure-definition

Procedure-formal-parameter

Procedure-graph

Procedure-identifier

Procedure-start-node

Provided-expression

Qualifier

Range-check-expression

Range-condition

Reset-node

Result

Save-signalset

Self-expression

Sender-expression

Set-node

Signal-definition

Signal-identifier

Size-constraint

Sort

Sort-identifier

Sort-reference-identifier

Spontaneous-transition

State-aggregation-node

State-entry-point-name

State-exit-point-name

State-machine

State-name

State-node

State-partition

State-start-node

State-transition-graph

Static-operation-signature

 Rec. ITU-T Z.100/Annex F3 (01/2015) 97

Stop-node

Syntype-identifier

Syntype-definition

Terminator

Timer-active-expression

Transition

Value-data-type-definition

Value-return-node

Value-returning-call-node

Variable-access

Variable-definition

Variable-identifier

Printed in Switzerland
Geneva, 2015

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	Rec. ITU-T Z.100 Annex F3 (01/2015) -
Specification and Description Language – Overview of SDL-2010Annex F3: SDL-2010 formal definition: Dynamic semantics
	Summary
	History
	FOREWORD
	Table of Contents
	F3.1 General information
	F3.1.1 Definitions from Annex F1
	F3.1.2 Definitions from Annex F2
	F3.1.3 Status of Annex F3 (this annex)

	F3.2 Behaviour semantics
	F3.2.1 SDL-2010 abstract machine definition (SAM)
	F3.2.2 Compilation function
	F3.2.3 SDL-2010 abstract machine programs

	F3.3 Data semantics
	F3.3.1 Predefined data
	F3.3.1.1 Well-known definitions
	F3.3.1.2 Boolean
	F3.3.1.3 Integer
	F3.3.1.4 Character
	F3.3.1.5 Real
	F3.3.1.6 Duration
	F3.3.1.7 Time
	F3.3.1.8 String
	F3.3.1.9 Array
	F3.3.1.10 Powerset
	F3.3.1.11 Bag

	F3.3.2 Pid types
	F3.3.3 Constructed types
	F3.3.4 Variables with Aggregation-kind REF
	F3.3.5 State access
	F3.3.6 Specialization
	F3.3.7 Operators and methods
	F3.3.8 Syntypes

	Appendix I to Annex F3 List of abstract syntax grammar rules used

