

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.100
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(12/2011)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) – Specification and
Description Language (SDL)

 Specification and Description Language –

Overview of SDL-2010

Recommendation ITU-T Z.100

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
User Requirements Notation (URN) Z.150–Z.159
Testing and Test Control Notation (TTCN) Z.160–Z.179

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Z.100 (12/2011) i

Recommendation ITU-T Z.100

Specification and Description Language – Overview of SDL-2010

Summary

Recommendation ITU-T Z.100 introduces the Specification and Description Language, intended for
unambiguous specification and description of telecommunication systems. The scope of the
Specification and Description Language is elaborated in clause 1. The ITU-T Z.100 series for
SDL-2010 together form a reference manual for the language. The objective of this
Recommendation is to provide an introductory overview to the language and the rest of the reference
manual contained in the ITU-T Z.100 series for SDL-2010. The language introduced in this
document is more fully defined in other Recommendations in the ITU-T Z.100 series for SDL-2010.

Coverage

The Specification and Description Language has concepts for behaviour, data description and
(particularly for larger systems) structuring. The basis of behaviour description is extended finite
state machines communicating by messages. Data description is based on data types for values and
objects. The basis for structuring is hierarchical decomposition and type hierarchies. These
foundations of the Specification and Description Language are elaborated in the respective main
clauses of Recommendations ITU-T Z.101 to ITU-T Z.105. A distinctive feature of the Specification
and Description Language is the graphical representation. This Recommendation covers the
conventions used to define the Specification and Description Language in the ITU-T Z.100 series,
rules for conformance and guidance for maintenance of the language.

Applications

Specification and Description Language is applicable within standard bodies and industry. The main
application areas for which the Specification and Description Language has been designed are stated
in clause 1.2, but the Specification and Description Language is generally suitable for describing
reactive systems. The range of application is from requirement description to implementation.

History

Edition Recommendation Approval Study Group

1.0 ITU-T Z.100 1984-10-19

1.1 ITU-T Z.100 Annex A 1984-10-19

1.2 ITU-T Z.100 Annex B 1984-10-19

1.3 ITU-T Z.100 Annex C1 1984-10-19

1.4 ITU-T Z.100 Annex C2 1984-10-19

1.5 ITU-T Z.100 Annex D 1984-10-19

2.0 ITU-T Z.100 1987-09-30 X

2.1 ITU-T Z.100 Annex A 1988-11-25

2.2 ITU-T Z.100 Annex B 1988-11-25

2.3 ITU-T Z.100 Annex C1 1988-11-25

2.4 ITU-T Z.100 Annex C2 1988-11-25

2.5 ITU-T Z.100 Annex D 1988-11-25 X

2.6 ITU-T Z.100 Annex E 1988-11-25

2.7 ITU-T Z.100 Annex F1 1988-11-25 X

2.8 ITU-T Z.100 Annex F2 1988-11-25 X

2.9 ITU-T Z.100 Annex F3 1988-11-25 X

ii Rec. ITU-T Z.100 (12/2011)

3.0 ITU-T Z.100 1988-11-25

3.1 ITU-T Z.100 Annex C 1993-03-12 X

3.2 ITU-T Z.100 Annex D 1993-03-12 X

3.3 ITU-T Z.100 Annex F1 1993-03-12 X

3.4 ITU-T Z.100 Annex F2 1993-03-12 X

3.5 ITU-T Z.100 Annex F3 1993-03-12 X

3.6 ITU-T Z.100 App. I 1993-03-12 X

3.7 ITU-T Z.100 App. II 1993-03-12 X

4.0 ITU-T Z.100 1993-03-12 X

4.1 ITU-T Z.100 (1993) Add. 1 1996-10-18 10

5.0 ITU-T Z.100 1999-11-19 10

5.1 ITU-T Z.100 (1999) Cor. 1 2001-10-29 17

6.0 ITU-T Z.100 2002-08-06 17

6.1 ITU-T Z.100 (2002) Amd. 1 2003-10-29 17

6.2 ITU-T Z.100 (2002) Cor. 1 2004-08-29 17

7.0 ITU-T Z.100 2007-11-13 17

7.1 ITU-T Z.100 Annex F1 2000-11-24 10

7.2 ITU-T Z.100 Annex F2 2000-11-24 10

7.3 ITU-T Z.100 Annex F3 2000-11-24 10

8.0 ITU-T Z.100 2011-12-22 17

 Rec. ITU-T Z.100 (12/2011) iii

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2012

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

iv Rec. ITU-T Z.100 (12/2011)

Table of Contents

 Page

1 Scope .. 1

1.1 Objective ... 1

1.2 Application ... 1

1.3 System specification ... 2

2 References... 2

3 Definitions .. 3

4 Abbreviations and acronyms .. 4

5 Conventions .. 5

5.1 Specification and Description Language grammars 5

5.2 Basic definitions ... 5

5.3 Presentation style .. 7

5.4 Choice of grammar rules and rule names ... 8

6 Tool compliance ... 8

6.1 Definitions of valid tools .. 8

6.2 Conformance .. 9

7 Allocation of features of SDL-2010 to Recommendations .. 9

7.1 Basic SDL-2010 – [ITU-T Z.101] .. 9

7.2 Comprehensive SDL-2010 – [ITU-T Z.102] .. 9

7.3 Shorthand notation and annotation in SDL-2010 – [ITU-T Z.103] 9

7.4 Data and action language in SDL-2010 – [ITU-T Z.104] 10

7.5 SDL-2010 combined with ASN.1 modules – [ITU-T Z.105] 10

7.6 Common Interchange Format for SDL-2010 – [ITU-T Z.106] 10

Annex A – Abstract syntax index .. 11

Annex B – BNF syntax index .. 17

Annex C – Compatibility ... 34

Annex D – Data defined in the package Predefined .. 35

D.1 Rules for "=" (equal), "/=" (not equal), comparison, data signatures and
literals ... 35

D.2 Package Predefined overview ... 35

Annex E – Reserved for examples ... 44

Annex F – Formal definition .. 44

Appendix I – Status of ITU-T Z.100, related documents and Recommendations 45

Appendix II – Guidelines for the maintenance of SDL-2010 .. 47

II.1 Maintenance of SDL-2010 ... 47

Appendix III – Evolution of the Specification and Description Language 50

III.1 Versions of the Specification and Description Language 50

III.2 Differences between SDL-88 and SDL-92 ... 50

 Rec. ITU-T Z.100 (12/2011) v

 Page

III.3 Differences between SDL-92 and SDL-2000 ... 51

III.4 Differences between SDL-2000 and SDL-2010 ... 53

Bibliography... 55

vi Rec. ITU-T Z.100 (12/2011)

Introduction

Status/Stability

This Recommendation is an introduction to the ITU-T Z.100 series of Recommendations for
SDL-2010 that give the complete language reference manual for SDL-2010. The main text of this
Recommendation is stable. Appendix I records the status of the Recommendation series, and should
be updated as further studies are completed. The current language definition is based on wide user
experience, recent additional user needs, clarifications and corrections. SDL-2010 as defined in this
series of Recommendations should meet most user needs, and is based on a previous version called
SDL-2000.

SDL-2000 contained a reference data type (object type) feature, but these had a number of
complexities including dynamic binding, and tool support for these was lacking. It was therefore
decided that this feature should for the time being be removed and further study take place leading
to a further Recommendation in the ITU-T Z.100 series, or to a revision of ITU-T Z.104 subsequent
to September 2011. Places in the ITU-T Z.100 series of Recommendations for SDL-2010 that
possibly need to be updated for a reference data type feature contain the text "for further study".

The main text is accompanied by appendices and annexes:

• Appendix I Status of ITU-T Z.100, related documents and Recommendations;

• Appendix II Guidelines for the maintenance of SDL-2010;

• Appendix III Evolution of the Specification and Description Language;

• Annex A Abstract syntax index;

• Annex B BNF syntax index;

• Annex C Compatibility;

• Annex D Data defined in the package Predefined;

• Annex E Reserved for examples.

The following Annex is published separately:

• Annex F Formal definition.

Annex F is the formal definition for the previous version of the language. It is therefore out of date,
but in combination with the obsolete 2007 version of ITU-T Z.100 (for SDL-2000) provides a more
formal definition for SDL-2000 than currently available for SDL-2010. Most of SDL-2010 is
intended to be unchanged from SDL-2000, therefore Annex F to ITU-T Z.100 with the obsolete
2007 version of Z.100 provides more detail on issues not covered by the ITU-T Z.100 series for
SDL-2010. If there is an inconsistency between Annex F to ITU-T Z.100 and other parts of the
ITU-T Z.100 series for SDL-2010, it is either because there is an error in the ITU-T Z.100 series
Recommendations or because there is a specific change to SDL-2010 compared with SDL-2000. If
a change from SDL-2000 is not documented in the ITU-T Z.100 for SDL-2010, further study is
needed to determine if the inconsistency is an error or intended. In September 2011 no work was
planned to update Annex F.

The ITU-T Z.100 series has also an independently published supplement:

− ITU-T Z. Suppl.1: Supplement on SDL+ methodology: use of MSC and SDL
(with ASN.1).

ITU-T Z. Suppl. 1 refers to an earlier version of the language but the methodology is still applicable
by making changes to the details of the language used. The current language has additional features
and there are also advances in or replacements for other techniques given in the Supplement.
Further study is planned to provide a Supplement to the ITU-T Z.1xx series to replace ITU-T Z.
Suppl. 1.

 Rec. ITU-T Z.100 (12/2011) vii

Associated work

One method for usage within standards is described in Recommendation ITU-T Q.65. A
recommended strategy for introducing a formal description technique like the Specification and
Description Language in standards is available in Recommendation ITU-T Z.110. The use of the
Specification and Description Language is also recommended in Recommendation ITU-T Z.450,
Quality aspects of protocol-related Recommendations. For references to additional material on the
Specification and Description Language, and information on industrial usage, see
http://www.sdl-forum.org.

Background

Different versions of the Specification and Description Language have been recommended by
ITU-T since 1976. The SDL-2010 version is a revision of SDL-2000, the last edition of which was
published in 2007. SDL-2000 was initially published in Recommendation ITU-T Z.100 (1999) as a
revision of Recommendation ITU-T Z.100 (1993) incorporating Addendum 1 to Recommendation
ITU-T Z.100 (1996) and parts of Recommendation ITU-T Z.105 (1995). Recommendation ITU-T
Z.100 (2002) was a technical update of Recommendation ITU-T Z.100 (1999) that incorporated a
number of technical corrections and amendments, and without the textual phrase alternative syntax,
which had been moved to Recommendation ITU-T Z.106 (2002).

Compared to the Specification and Description Language as defined in 1992, the versions defined
in SDL-2000 and SDL-2010 are extended in the areas of object-oriented data, harmonization of a
number of features to make the language simpler and features to enhance the usability of the
Specification and Description Language with other languages such as ASN.1 and UML. Other
minor modifications have been included. Though care has been taken not to invalidate existing
documents using the Specification and Description Language as defined in 1992, it is possible some
changes require some descriptions to be updated to use this version. Details on the evolution of the
language are in Appendix III.

http://www.sdl-forum.org/

 Rec. ITU-T Z.100 (12/2011) 1

Recommendation ITU-T Z.100

Specification and Description Language – Overview of SDL-2010

1 Scope

The purpose of recommending the Specification and Description Language is to provide a language
for unambiguous specification and description of the behaviour of telecommunication systems. The
specifications and descriptions using the language are intended to be formal in the sense that it is
possible to analyse and interpret them unambiguously.

The terms specification and description are used with the following meaning:

a) a specification of a system is the description of its required behaviour; and

b) a description of a system is the description of its actual behaviour (that is, its
implementation).

A system specification, in a broad sense, is the specification of both the behaviour and a set of
general parameters of the system. However, the Specification and Description Language is intended
to specify the behavioural aspects of a system; the general parameters describing properties like
capacity and weight have to be described using different techniques.

This Recommendation gives an overview of the series of Recommendations that define SDL-2010,
defines terms, conventions including meta-languages, tool compliance and the basis of data for
SDL-2010.

NOTE − Since there is no distinction between use for specification and its use for description, the term
specification is used in the SDL-2010 Recommendations for both required behaviour and actual behaviour.

1.1 Objective

The general objectives when defining the Specification and Description Language have been to
provide a language that:

a) is easy to learn, use and interpret;

b) provides unambiguous specification for ordering, tendering and design, while also allowing
some issues to be left open;

c) is able to be extended to cover new developments;

d) is able to support several methodologies of system specification and design.

1.2 Application

The Recommendations for SDL-2010 provide the reference manual for the Specification and
Description Language. This Recommendation provides an overview of the language and the
conventions used to define the language. A methodology framework document, which gives
examples of Specification and Description Language usage, is available as the Supplement to the
Recommendation ITU-T Z.100 series originally produced in the study period 1992-1996.

The main area of application for the language is the specification of the behaviour of aspects of
real-time systems, and the design of such systems. Applications in the field of telecommunications
include:

a) call and connection processing (for example, call handling, telephony signalling, metering)
in switching systems;

b) maintenance and fault treatment (for example, alarms, automatic fault clearance, routine
tests) in general telecommunication systems;

c) system control (for example, overload control, modification and extension procedures);

2 Rec. ITU-T Z.100 (12/2011)

d) operation and maintenance functions, network management;

e) data communication protocols;

f) telecommunication services.

The Specification and Description Language is, of course, usable for the functional specification of
the behaviour of any object whose behaviour is specifiable using a discrete model; that is, where the
object communicates with its environment by discrete messages.

The Specification and Description Language is a rich language and is usable for both high level
informal (and/or formally incomplete) specifications, semi-formal and detailed specifications. The
user chooses the appropriate parts of the Specification and Description Language for the intended
level of communication and the environment in which the language is being used. Depending on the
environment in which a specification is used, it is possible many aspects are left to the common
understanding between the provider and the user of the specification.

Thus the language is used for producing:

a) facility requirements;

b) system specifications;

c) ITU-T Recommendations, or other similar standards (international, regional or national);

d) system design specifications;

e) detailed specifications;

f) system design descriptions (both high level and detailed enough to directly produce
implementations);

g) system testing descriptions (in particular in combination with Message Sequence Chart
[MSC] and Testing and Test Control Notation [TTCN]).

The user organization is able to choose the appropriate level of application of SDL-2010.

1.3 System specification

A specification using the Specification and Description Language defines system behaviour in a
stimulus/response fashion, assuming that both stimuli and responses are discrete and carry
information. In particular, a system specification is seen as the sequence of responses to any given
sequence of stimuli.

The system specification model is based on the concept of communicating extended finite state
machines.

The Specification and Description Language also provides structuring concepts that facilitate the
specification of large and/or complex systems. These constructs allow the partitioning of the system
specification into manageable units that are capable of being handled and understood
independently. It is possible to perform partitioning in a number of steps resulting in a hierarchical
structure of units defining the system at different levels.

2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

 Rec. ITU-T Z.100 (12/2011) 3

[ITU-T T.50] Recommendation ITU-T T.50 (1992), International Reference Alphabet (IRA)
(Formerly International Alphabet No. 5 or IA5) − Information technology −
7-bit coded character set for information interchange.

[ITU-T Z.101] Recommendation ITU-T Z.101 (2011), Specification and Description
Language – Basic SDL-2010.

[ITU-T Z.102] Recommendation ITU-T Z.102 (2011), Specification and Description
Language – Comprehensive SDL-2010.

[ITU-T Z.103] Recommendation ITU-T Z.103 (2011), Specification and Description
Language – Shorthand notation and annotation in SDL-2010.

[ITU-T Z.104] Recommendation ITU-T Z.104 (2011), Specification and Description
Language – Data and action language in SDL-2010.

[ITU-T Z.105] Recommendation ITU-T Z.105 (2011), Specification and Description
Language – SDL-2010 combined with ASN.1 modules.

[ITU-T Z.106] Recommendation ITU-T Z.106 (2011), Specification and Description
Language – Common interchange format for SDL-2010.

[ITU-T Z.107] Recommendation ITU-T Z.107 (2012), Specification and Description
Language – Object-oriented data in SDL-2010.

[ITU-T Z.111] Recommendation ITU-T Z.111 (2008), Notations and guidelines for the
definition of ITU-T languages.

[ISO/IEC 10646] ISO/IEC 10646:2012, Information technology – Universal Coded Character
Set (UCS).

3 Definitions

There are numerous terms defined throughout this Recommendation and the rest of the
ITU-T Z.100 series for SDL-2010 and a complete list of definitions in this clause or in each of these
Recommendations would be a repetition of much of the text of the Recommendations. Therefore,
only a few key terms are given in this clause.

This Recommendation defines the following terms:

3.1 agent: The term agent is used to denote a system, block or process that contains one or
more extended finite state machines.

3.2 block: A block is an agent that contains one or more concurrent blocks or processes and is
also permitted to contain an extended finite state machine that owns and handles data within the
block.

3.3 body: A body is a state machine graph of an agent, procedure, composite state, or
operation.

3.4 channel: A channel is a communication path between agents.

3.5 environment: The environment of the system is everything in the surroundings that
communicates with the system in a Specification and Description Language-like way.

3.6 gate: A gate represents a connection point for communication with an agent type, and when
the type is instantiated it determines the connection of the agent instance with other instances.

3.7 instance: An instance is an object created when a type is instantiated.

3.8 ITU-T Z.100 series for SDL-2010: This Recommendation and the associated
Recommendations [ITU-T Z.101], [ITU-T Z.102], [ITU-T Z.103], [ITU-T Z.104], [ITU-T Z.105],
[ITU-T Z.106], [ITU-T Z.107] and any further Recommendation subsequently added to this series.

4 Rec. ITU-T Z.100 (12/2011)

3.9 pid: The term pid is used for the sort of data items that identify agent instances.

3.10 procedure: A procedure is an encapsulation of part of the behaviour of an agent, which is
defined in one place but is able to be called from several places within the agent. Other agents are
able to call a remote procedure.

3.11 process: A process is an agent that contains an extended finite state machine, and possibly
contains other processes.

3.12 signal: The primary means of communication is by signals that are output by the sending
agent and input by the receiving agent.

3.13 sort: A sort is a set of data items that have common properties.

3.14 state: An extended finite state machine of an agent is in a state if it is waiting for a
stimulus.

3.15 stimulus: A stimulus is an event that is able to cause an agent that is in a state to enter a
transition.

3.16 system: A system is the outermost agent that communicates with the environment.

3.17 timer: A timer is an item owned by an agent that causes a timer signal stimulus to occur at
a specified time.

3.18 transition: A transition is a sequence of actions an agent performs until it enters a transition
terminator such as the next state, a return from a composite state, a return from a procedure, or a
decision on the subsequent transition.

3.19 type: A type is a definition that is used for the creation of instances, or is inherited and
specialized to form other types. A parameterized type is a type that has parameters. When these
parameters are given different actual parameters, different unparameterized types are defined that,
when instantiated, give instance with different properties.

3.20 value: The term value is used for the class of data that is accessed directly. Values are
allowed to be freely passed between agents.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

BNF Backus-Naur Form

CIF Common Interchange Format

IRV International Reference Version of the International Reference Alphabet as defined
in [ITU-T T.50]

MSC Message Sequence Chart

SDL-88 Specification and Description Language as defined by Recommendation ITU-T
Z.100 (1988)

SDL-92 Specification and Description Language as defined by Recommendation ITU-T
Z.100 (1993) with Addendum 1 (1996)

SDL-2000 Specification and Description Language as defined by Recommendation ITU-T
Z.100 (2007)

SDL-2010 Specification and Description Language as defined by the ITU-T Z.100 series for
SDL-2010

TTCN Testing and Test Control Notation

 Rec. ITU-T Z.100 (12/2011) 5

UCS Universal Character Set of [ISO/IEC 10646]

UML Unified Modelling Language

5 Conventions

The text of this clause defines the conventions used for describing the Specification and Description
Language. The meta-languages and conventions introduced are solely introduced for the purpose of
describing Specification and Description Language unambiguously.

The conventions of [ITU-T Z.111] apply to all the Recommendations in the ITU-T Z.100 series for
SDL-2010.

5.1 Specification and Description Language grammars

In the ITU-T Z.100 series for SDL-2010 the Abstract grammar and Concrete grammar (see
clause 5.3.2 below) define the Specification and Description Language. The syntax of the Concrete
grammar is in some cases supplemented by a Model (see clause 5.3.2 below). A system
specification only conforms to the language if it conforms to these grammars (see clause 5.1 of
[ITU-T Z.111]). The way a system specification behaves is defined by Semantics (see clause 5.3.2
below).

A formal definition is provided which defines how to transform a system specification into the
abstract syntax and defines how to interpret a specification, given in terms of the abstract grammar.
The formal definition given in Annex F (published separately) is for SDL-2000, so is not fully
applicable to SDL-2010. Further study leading to an update of Annex F is needed to produce a
comprehensive formal definition for SDL-2010.

5.2 Basic definitions

Some general concepts and conventions are used throughout the ITU-T Z.100 series for SDL-2010;
their definitions are given in the following subclauses.

5.2.1 Definition, type and instance

In the ITU-T Z.100 series for SDL-2010, the concepts of type and instance and their relationship are
fundamental. The schema and terminology defined below and shown in Figure 5-1 are used.

This subclause introduces the basic semantics of type definitions, instance definitions,
parameterized type definitions, parameterization, binding of context parameters, specialization and
instantiation.

6 Rec. ITU-T Z.100 (12/2011)

Z100(11)_F5-1

With some context parameters,
bound is

Parameterized type

Parameterizes
as

With all context parameters,
bound is

Type

Specializes as

Implied type

Instance set
definition

Implied type

Defines
Instance

Instantiates as
of

Definition

Instantiates as

of

Figure 5-1 − The type concept

Definitions introduce named entities, which are types or instances with implied types or an instance
set that defines the behaviour instances. A definition of a type defines all properties associated with
that type. An example of an instance definition is a state definition. An example of a definition that
is a type definition is a signal definition. An example of an instance set definition is a process
definition. Block and process definitions introduce instance set definitions.

A type is allowed to be instantiated by any number of instances. An instance of a particular type has
all the properties defined for that type. An example of a type is a procedure, which is instantiated by
procedure calls.

A parameterized type is a type where some entities are represented as formal context parameters. A
formal context parameter of a type definition has a constraint. The constraints allow static analysis
of the parameterized type. Binding all the parameters of a parameterized type yields an ordinary
type. An example of a parameterized type is a parameterized signal definition where one of the sorts
conveyed by the signal is specified by a formal sort context parameter; this allows the parameter to
be of different sorts in different contexts.

An instance is defined either directly or by the instantiation of a type. An example of an instance is
a system instance, which is either defined by a system definition, or is an instantiation of a system
type. However, where an instance is defined directly (for example, a system definition), this is
actually an instantiation of the (anonymous) type for the direct definition.

Specialization allows one type, the subtype, to be based on another type, its supertype, by adding
properties to those of the supertype or by redefining virtual properties of the supertype. A virtual
property is allowed to be constrained in order to provide for analysis of general types.

Binding all context parameters of a parameterized type yields an unparameterized type. There is no
supertype/subtype relationship between a parameterized type and the type derived from it.

NOTE − To avoid cumbersome text in the ITU-T Z.100 series for SDL-2010, the convention is used that the
term "instance" is often omitted. For example, "a system is interpreted..." means "a system instance is
interpreted...".

 Rec. ITU-T Z.100 (12/2011) 7

5.2.2 Environment

Systems that are specified in the Specification and Description Language behave according to the
stimuli exchanged with the external world. This external world is called the environment of the
system being specified.

It is assumed that there are one or more agent instances in the environment, and therefore stimuli
flowing from the environment towards the system have associated identities of these agent
instances. These agents have pids that are distinguishable from any other pid within the system
(see clause D.2.16).

Although the behaviour of the environment is non-deterministic, it is assumed to obey the
constraints given by the system specification.

5.2.3 Validity and errors

A system specification is a valid Specification and Description Language system specification only
if it satisfies the syntactic rules and the static conditions defined in the ITU-T Z.100 series for
SDL-2010.

If a valid Specification and Description Language specification is interpreted and a dynamic
condition is violated, then an error occurs. Predefined exceptions (see clause D.2.20) will be raised
when an error is encountered during the interpretation of a system. SDL-2010 does not define the
handling of exceptions; therefore if an exception occurs the subsequent behaviour of the system
cannot be derived from the specification.

For most cases where an exception might be raised (for example, a range check or incorrect
indexing), it is possible to include actions to check before the error is encountered if the exception
will be raised, and take appropriate action to avoid the error occurring. Static analysis or dynamic
interpretation of a specification might also indicate that it is inevitable an exception is raised,
leading to modification of the specification to avoid the situation.

5.3 Presentation style

The conventions of [ITU-T Z.111] apply.

5.3.1 Division of text

The conventions of [ITU-T Z.111] apply.

5.3.2 Titled enumeration items

Abstract grammar

The abstract grammar is specified in the form defined in clause 5.4.1 of [ITU-T Z.111]. The textual
presentation of abstract syntax in clause 5.4.1.1 of [ITU-T Z.111] is used.

Concrete grammar

The concrete grammar is specified in the form defined in clause 5.4.2 of [ITU-T Z.111].

The metasymbol is followed by is used when the left-hand argument is followed by the right-hand
argument, and this is shown in diagrams by a <flow line symbol> (see further description in
clause 6.5 of [ITU-T Z.101]).

The right-hand argument of the metasymbol is associated with shall be closer to the left-hand
argument than to any other graphical symbol. The syntactical elements of the right-hand argument
shall be distinguishable from each other.

Except graphical symbols that are line symbols (such as <flow line symbol>, see the Concrete
grammar description for the symbol), graphical symbol boundaries shall not overlay or cross. An

8 Rec. ITU-T Z.100 (12/2011)

exception to this rule applies for line symbols, which are allowed to cross each other. There is no
logical association between line symbols that cross.

A line symbol consists of a line (solid or dashed) possibly with some additional decorations
(typically an arrowhead) at one end or both ends of the line or on the line. The line of a line symbol
consists of one or more joined straight-line segments. These segments should normally be
horizontal or vertical.

Semantics

All instances have an identity property, but unless this is formed in some unusual way, this identity
property is determined as defined by clause 6.6 of [ITU-T Z.101]. This is usually not mentioned as
an identity property. Also, it has not been necessary to mention sub-components of definitions
contained by the definition since the ownership of such sub-components is obvious from the
abstract syntax. For example, it is obvious that a block type definition "has" enclosed processes
and/or blocks.

Model

Some constructs are considered to be "derived concrete syntax" (or a shorthand notation) for other
equivalent concrete syntax constructs. For example, omitting an input for a signal is derived
concrete syntax for an input for that signal followed by a null transition back to the same state (see
[ITU-T Z.103]).

Precise details of the order of transformation for SDL-2000 are found in Annex F; and if not
specifically mentioned in the ITU-T Z.100 series for SDL-2010, this order applies for SDL-2010.

5.4 Choice of grammar rules and rule names

The grammar given in the ITU-T Z.100 series for SDL-2010 has been written to aid the
presentation in this Recommendation so that the rule names are meaningful in the context they are
given and are readable in text. This means that there are a number of apparent ambiguities that are
easily resolved by systematic rewriting of the syntax rules or the application of semantic rules.

6 Tool compliance

This clause defines the compliance for tools that claim to support the Specification and Description
Language.

The validity of a specification is defined as in clause 5.2.3.

6.1 Definitions of valid tools

6.1.1 compliant SDL-2010 tool: A tool that detects non-compliance of a description with the
ITU-T Z.100 series for SDL-2010. If the tool handles a superset notation, it is allowed to categorize
non-compliance as a warning rather than a failure.

6.1.2 fully compliant SDL-2010 tool: A compliant SDL-2010 tool that supports the complete
grammar defined by the ITU-T Z.100 series for SDL-2010.

6.1.3 valid basic SDL-2010 tool: A compliant SDL-2010 tool that supports the graphical
grammar defined in this Recommendation in combination with [ITU-T Z.101].

6.1.4 valid SDL-2010 tool: A compliant SDL-2010 tool that supports the graphical grammar
defined in the ITU-T Z.100 series for SDL-2010.

6.1.5 valid SDL-2010 with ASN.1 tool: A valid SDL-2010 tool that also supports ASN.1 as
modules according to [ITU-T Z.105].

 Rec. ITU-T Z.100 (12/2011) 9

6.1.6 valid CIF SDL-2010 tool: A compliant SDL-2010 tool that supports the textual SDL-2010
grammar as defined in Level 0 CIF (see clause 5 of [ITU-T Z.106]), which (by definition) includes
the semantics and some concrete syntax of other Recommendations in the ITU-T Z.100 series for
SDL-2010.

6.1.7 valid CIF SDL-2010 with ASN.1 tool: A valid CIF SDL-2010 tool that also supports
ASN.1 as modules according to [ITU-T Z.105].

6.2 Conformance

A conformance statement clearly identifying the language features and requirements not supported
should accompany any tool that handles a subset of the language defined by the ITU-T Z.100 series
for SDL-2010. If no conformance statement is provided, it shall be assumed that the tool is a fully
compliant SDL-2010 tool. It is therefore preferable to supply a conformance statement; otherwise,
any unsupported feature allows the tool to be rejected as not valid.

7 Allocation of features of SDL-2010 to Recommendations

The essential behaviour of a system defined using SDL-2010 depends on the extended finite state
machine model of [ITU-T Z.101] coupled with the behaviour of expressions of [ITU-T Z.104]. The
other Recommendations [ITU-T Z.102], [ITU-T Z.103], [ITU-T Z.105] and [ITU-T Z.106] provide
language features that (respectively): make the language more comprehensive, make the language
easier and more practical to use, provide the full data model and action language, enable ASN.1 to
be used, and define the interchange format. The following outlines the content of [ITU-T Z.101] to
[ITU-T Z.106]. The content of Recommendations subsequently added to the ITU-T Z.100 series for
SDL-2010 will be described in each Recommendation.

7.1 Basic SDL-2010 – [ITU-T Z.101]

[ITU-T Z.101] is the ITU-T Recommendation containing the part of the specification of SDL-2010
that covers core features such as agent (block, process) type diagrams containing agent instance
structures with channels, diagrams for extended finite state machines and the associated semantics
for these basic features. The character set used is International Reference Version (IRV) (see
[ITU-T T.50]).

7.2 Comprehensive SDL-2010 – [ITU-T Z.102]

[ITU-T Z.102] is the ITU-T Recommendation containing the part of the specification of SDL-2010
that extends the semantics and syntax of the Basic SDL-2010 language in [ITU-T Z.101] to cover
the full abstract grammar and the corresponding canonical concrete notation. This includes features
such as continuous signals, enabling conditions, type inheritance and composite states. Also
included are features for generic systems, macros and the handling of Universal Character Set
(UCS) (see [ISO/IEC 10646]), though these do not need additional abstract grammar.

7.3 Shorthand notation and annotation in SDL-2010 – [ITU-T Z.103]

[ITU-T Z.103] is the ITU-T Recommendation containing the part of the specification of SDL-2010
that adds shorthand notations (such as asterisk state) that make the language easier to use and more
concise, and various annotations that make models easier to understand (such as comments or create
lines), but do not add to the formal semantics of the models. Models transform shorthand notations
from the concrete syntax of [ITU-T Z.103] into concrete syntax of [ITU-T Z.102] or [ITU-T Z.101].

10 Rec. ITU-T Z.100 (12/2011)

7.4 Data and action language in SDL-2010 – [ITU-T Z.104]

[ITU-T Z.104] is the ITU-T Recommendation containing the part of the specification of SDL-2010
that adds the data and action language used to define data types and expressions. In SDL-2010 the
use of different concrete data notations is allowed, such as the SDL-2000 data notation or C, with
bindings to the abstract grammar and the predefined data package.

The underlying data model is fundamental to behaviour and provides sorts of data such as Boolean
and Integer that are used in other language features. For that reason this underlying model and an
overview of predefined data sorts and constructs is given in Annex D of this Recommendation.

Currently SDL-2010 does not define general reference or object data types or creation of data items
other than as variables that are part of an agent, procedure or state instance. The issue is for further
study, however, and is expected to lead to a revision of SDL-2010 including these in either
[ITU-T Z.104] or another ITU-T Z.100 series Recommendation.

7.5 SDL-2010 combined with ASN.1 modules – [ITU-T Z.105]

[ITU-T Z.105] provides a mapping for ASN.1 modules to features defined in the rest of the
Specification and Description Language recommendations for SDL-2010, so that the ASN.1
modules define data items that are used with the rest of SDL-2010.

7.6 Common Interchange Format for SDL-2010 – [ITU-T Z.106]

[ITU-T Z.106] provides alternative textual syntax for the graphical syntax items defined in
[ITU-T Z.101] to [ITU-T Z.105] that is used as a Common Interchange Format (CIF) between
SDL-2010 tools. The basic level of CIF provides only a textual equivalent of graphical items. The
full CIF is intended for the interchange of graphical SDL-2010 specifications (SDL-GR) so that the
drawings are recognizably the same.

 Rec. ITU-T Z.100 (12/2011) 11

Annex A

Abstract syntax index

(This annex forms an integral part of this Recommendation.)

The abstract syntax index consists of the following table that lists the abstract grammar syntax rules
of SDL-2010, where they are defined and redefined. Some abstract grammar syntax rules are
defined in only in [ITU-T Z.102] or [ITU-T Z.104] as shown in the table below, in which case the
column for [ITU-T Z.101] in the table below is shown blank. It is expected that users of the
SDL-2010 Recommendations have access to machine-readable copies of the Recommendation texts
and are therefore able to use computer software to locate the definitions and uses of the abstract
grammar syntax rules. An abstract grammar syntax rule name should always be in italics, and the
definition of a rule should start on a line in the original Microsoft Word text with the style "z.100
abs syntax 1st line".

Abstract syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.104

Abstract definition

Action-return-node definition

Activation-delay definition

Active-agents-expression definition

Active-expression definition

Actual-parameters definition

Agent-definition definition

Agent-formal-parameter definition

Agent-identifier definition

Agent-kind definition

Agent-name definition

Agent-qualifier definition

Agent-type-definition definition redefinition

Agent-type-identifier definition

Agent-type-name definition

Agent-type-qualifier definition

Aggregation-kind definition

Alternative-expression definition

Any-decision definition

Any-expression definition

Argument definition

Assignment definition

Boolean-expression definition

Break-node definition

Call-node definition redefinition

Channel-definition definition redefinition

Channel-name definition

12 Rec. ITU-T Z.100 (12/2011)

Abstract syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.104

Channel-path definition

Closed-range definition

Composite-state-formal-parameter definition

Composite-state-graph definition redefinition

Composite-state-type-definition definition redefinition

Composite-state-type-identifier definition

Compound-node definition

Conditional-expression definition

Condition-item definition

Connection-definition definition

Connect-node definition redefinition

Connector-name definition

Consequence-expression definition

Constant-expression definition

Continue-node definition

Continuous-expression definition

Continuous-signal definition

Create-request-node definition

Dash-nextstate definition

Data-type-definition definition

Data-type-identifier definition

Data-type-name definition

Data-type-qualifier definition

Decision-answer definition

Decision-body definition

Decision-node definition redefinition

Decision-question definition

Decoding-expression definition

Default-initialization definition

Destination-gate definition

Direct-via definition

Else-answer definition

Encoding-expression definition

Encoding-path definition

Encoding-rules definition

Entry-connection-definition definition

Entry-procedure-definition definition

Equality-expression definition

Exit-connection-definition definition

Exit-procedure-definition definition

Expression definition

 Rec. ITU-T Z.100 (12/2011) 13

Abstract syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.104

Finalization-node definition

First-operand definition

Formal-argument definition

Free-action definition

Gate-definition definition redefinition

Gate-identifier definition

Gate-name definition

Graph-node definition redefinition

Identifier definition

Imperative-expression definition redefinition

Informal-text definition

Init-graph-node definition

Initial-number definition

Inner-entry-point definition

Inner-exit-point definition

Inout-parameter definition

In-parameter definition

Input-node definition redefinition

In-signal-identifier definition

Interface-definition definition

Interface-name definition

Interface-qualifier definition

Join-node definition

Literal definition

Literal-identifier definition

Literal-name definition

Literal-natural definition

Literal-signature definition

Lower-bound definition

Maximum-number definition

Name definition

Named-nextstate definition

Named-return-node definition

Named-start-node definition

Nextstate-node definition

Nextstate-parameters definition redefinition

Now-expression definition

Null-literal-signature definition

Number-of-instances definition

Offspring-expression definition

Open-range definition

14 Rec. ITU-T Z.100 (12/2011)

Abstract syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.104

Operation-application definition

Operation-identifier definition

Operation-name definition

Operation-result definition

Operation-signature definition

Originating-gate definition

Outer-entry-point definition

Outer-exit-point definition

Out-parameter definition

Output-node definition

Out-signal-identifier definition

Package-definition definition

Package-name definition

Package-qualifier definition

Parameter definition

Parameter-aggregation definition

Parent-expression definition

Parent-sort-identifier definition

Path-item definition

Pid-expression definition

Priority-name definition

Procedure-definition definition redefinition

Procedure-formal-parameter definition

Procedure-graph definition

Procedure-identifier definition

Procedure-name definition

Procedure-qualifier definition

Procedure-start-node definition

Provided-expression definition

Qualifier definition

Range-check-expression definition

Range-condition definition

Reset-node definition

Result definition

Result-aggregation definition

Return-node definition redefinition

Rules-identifier definition

Save-item definition

Save-signalset definition

Sdl-specification definition

Second-operand definition

 Rec. ITU-T Z.100 (12/2011) 15

Abstract syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.104

Self-expression definition

Sender-expression definition

Set-node definition

Signal-definition definition redefinition

Signal-destination definition

Signal-identifier definition

Signal-name definition

Signal-parameter definition

Signal-priority definition

Size-constraint definition

Sort definition

Sort-identifier definition

Sort-reference-identifier definition

Spontaneous-transition definition

State-aggregation-node definition

State-entry-point-definition definition

State-entry-point-name definition

State-exit-point-definition definition

State-exit-point-name definition

State-expression definition

State-machine definition

State-name definition

State-node definition redefinition

State-partition definition

State-qualifier definition

State-start-node definition redefinition

State-timer definition

State-transition-graph definition redefinition

State-type-name definition

State-type-qualifier definition

Static-operation-signature definition

Step-graph-node definition

Stop-node definition

Syntype-definition definition

Syntype-identifier definition

Syntype-name definition

Task-node definition

Terminator definition redefinition

Time-expression definition

Timer-active-expression definition

Timer-default-initialization definition

16 Rec. ITU-T Z.100 (12/2011)

Abstract syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.104

Timer-definition definition

Timer-identifier definition

Timer-name definition

Timer-remaining-duration definition

Transition definition

Value-data-type-definition definition redefinition

Value-returning-call-node definition redefinition

Value-return-node definition

Variable-access definition

Variable-definition definition

Variable-identifier definition

Variable-name definition

While-graph-node definition

Some abstract grammar syntax rules defined in [ITU-T Z.101] are extended by a redefinition in
[ITU-T Z.102] or [ITU-T Z.104] (no rules are extended in [ITU-T Z.103]) as shown in the table
above. For such rules the complete abstract grammar syntax of SDL-2010 is given by the redefined
rule, which replaces the abbreviated rule given in [ITU-T Z.101]. Constraints and semantics given
in [ITU-T Z.101] also apply to the redefined grammar, except if there is specific normative text
otherwise. Constraints and semantics given in [ITU-T Z.102] or [ITU-T Z.104] for redefined rules
are in addition to constraints and semantics in [ITU-T Z.101].

 Rec. ITU-T Z.100 (12/2011) 17

Annex B

BNF syntax index

(This annex forms an integral part of this Recommendation.)

The Backus-Naur Form (BNF) syntax index consists of the following table that lists the concrete
grammar syntax rules of SDL-2010, where they are defined and redefined. For a rule defined in
only in [ITU-T Z.104], the columns for [ITU-T Z.101], [ITU-T Z.102] and [ITU-T Z.103] in the
table below are blank. Similarly, for a rule defined in [ITU-T Z.103] the columns for [ITU-T Z.101]
and [ITU-T Z.102] are blank, and for a rule defined in [ITU-T Z.102], the columns for
[ITU-T Z.101] is blank. It is expected that users of the SDL-2010 Recommendations have access to
machine-readable copies of the Recommendation texts and are therefore able to use computer
software to locate the definitions and uses of the concrete grammar syntax rules. A concrete
grammar syntax rule name should always be of the form "<rule name>" and the definition of a rule
should start "<rule name> ::=" at the start of a line that in the original Microsoft Word text has the
style "z100 syntax 1st line". Subsequent lines defining a rule should use the user-defined Microsoft
Word style "z100 syntax" except the last line of the rule definition which should use the style "z100
syntax last line".

Concrete syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.103 ITU-T Z.104

<abstract> defined

<action area> defined redefined

<activation delay> defined

<active agents expression> defined

<active primary> defined

<actual context parameter list> defined

<actual context parameter> defined

<actual context parameters> defined

<actual parameter list> defined

<actual parameters> defined

<agent additional heading> defined redefined

<agent area> defined redefined redefined

<agent body area> defined

<agent constraint> defined

<agent context parameter> defined

<agent diagram> defined

<agent formal parameters> defined redefined

<agent instantiation> defined

<agent reference area> defined

<agent signature> defined

<agent structure area> defined redefined

<agent text area> defined redefined redefined

<agent type additional heading> defined redefined

<agent type constraint> defined

18 Rec. ITU-T Z.100 (12/2011)

Concrete syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.103 ITU-T Z.104

<agent type context parameter> defined

<agent type diagram> defined

<agent type reference area> defined redefined

<agent type reference> defined

<aggregation kind> defined

<aggregation structure area> defined

<algorithm answer part> defined

<algorithm else part> defined

<alphanumeric> defined

<alternative expression> defined

<alternative question> defined

<alternative statement> defined

<ampersand> defined

<anchored sort> defined

<answer part> defined

<answer> defined

<any expression> defined

<apostrophe> defined

<argument> defined

<arguments> defined

<as channel> defined

<as gate> defined

<as interface> defined

<as signal> defined

<assignment statement> defined

<assignment> defined

<asterisk connect list> defined

<asterisk input list> defined

<asterisk save list> defined

<asterisk state list> defined

<asterisk> defined

<base type> defined

<basic sort> defined redefined

<basic state name> defined

<bit string> defined

<block diagram> defined

<block heading> defined

<block page> defined

<block reference area> defined

<block reference> defined

<block symbol> defined

 Rec. ITU-T Z.100 (12/2011) 19

Concrete syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.103 ITU-T Z.104

<block type diagram> defined redefined

<block type heading> defined

<block type page> defined

<block type reference area> defined redefined

<block type reference> defined

<block type symbol> defined

<break statement> defined

<call statement> defined

<channel definition area> defined redefined redefined

<channel symbol 1> defined

<channel symbol 2> defined

<character string> defined

<choice definition> defined redefined

<choice list> defined

<choice of sort> defined redefined

<circumflex accent> defined

<closed range> defined

<colon> defined

<comma> defined

<comment area> defined

<comment body> defined

<comment symbol> defined

<comment text> defined

<comment> defined

<commercial at> defined

<communication constraints> defined redefined

<composite begin sign> defined

<composite end sign> defined

<composite primary> defined

<composite special> defined

<composite state body area> defined redefined

<composite state diagram> defined

<composite state graph page> defined

<composite state heading> defined

<composite state item> defined redefined

<composite state name> defined

<composite state reference area> defined

<composite state structure area> defined

<composite state text area> defined redefined redefined

<composite state type constraint> defined

<composite state type diagram> defined redefined redefined

20 Rec. ITU-T Z.100 (12/2011)

Concrete syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.103 ITU-T Z.104

<composite state type heading> defined redefined

<composite state type page> defined

<composite state type reference area> defined redefined

<composite state type signature> defined

<composite state type symbol> defined

<compositestate type context parameter> defined

<compound statement> defined

<concatenation sign> defined

<conditional expression> defined

<connect association area> defined redefined

<connect list> defined redefined

<connector name> defined

<consequence expression> defined

<constant expression> defined

<constant> defined

<constraint> defined

<context parameters end> defined

<context parameters start> defined

<continuous expression> defined

<continuous signal area> defined

<continuous signal association area> defined

<create body> defined redefined

<create expression> defined

<create line area> defined

<create line endpoint area> defined

<create line symbol> defined

<create request area> defined

<create request symbol> defined

<create statement> defined

<dash nextstate> defined

<dashed association symbol> defined

<dashed block symbol> defined

<dashed line symbol> defined

<dashed process symbol> defined

<dashed state symbol> defined

<data binding> defined

<data definition> defined

<data type constructor> defined

<data type definition body> defined

<data type definition> defined redefined

<data type heading> defined

 Rec. ITU-T Z.100 (12/2011) 21

Concrete syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.103 ITU-T Z.104

<data type specialization> defined

<decimal digit> defined

<decision area> defined redefined

<decision statement body> defined

<decision statement> defined redefined

<decision symbol> defined

<decoding expression> defined

<default initialization> defined redefined

<definition selection list> defined

<definition selection> defined

<definition> defined redefined

<delaying channel symbol 1> defined

<delaying channel symbol 2> defined

<destination> defined

<diagram in package> defined redefined redefined

<diagram> defined redefined

<dollar sign> defined

<else part> defined

<enabling condition area> defined

<enabling condition association area> defined

<enabling condition symbol> defined

<encoded input> defined

<encoded output> defined

<encoding expression> defined

<encoding path> defined

<encoding rules> defined

<end> defined

<endpoint constraint> defined

<entity in agent diagram> defined

<entity in composite state area> defined

<entity in data type> defined redefined

<entity in interface> defined redefined

<entity in operation> defined

<entity in procedure> defined redefined redefined

<equality expression> defined

<equals sign> defined

<exclamation mark> defined

<exit transition area> defined

<export body> defined

<export statement> defined

<exported as> defined

22 Rec. ITU-T Z.100 (12/2011)

Concrete syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.103 ITU-T Z.104

<exported variables of sort> defined

<expression list> defined

<expression output> defined

<expression statement> defined

<expression> defined

<expression0> defined redefined

<extended primary> defined

<extended variable> defined

<external channel identifiers> defined

<external operation definition> defined

<external procedure definition> defined

<external synonym definition item> defined

<field default initialization> defined

<field list> defined

<field name> defined

<field number> defined

<field primary> defined redefined

<field sort> defined

<field variable> defined redefined

<field> defined

<fields of sort> defined redefined

<finalization statement> defined

<flow line symbol with arrowhead> defined

<flow line symbol without arrowhead> defined

<flow line symbol> defined redefined

<formal context parameter list> defined

<formal context parameter> defined

<formal context parameters> defined

<formal name> defined

<formal operation parameters> defined redefined

<formal parameter> defined

<formal variable parameters> defined

<frame symbol> defined

<full stop> defined

<gate constraint> defined

<gate context parameter> defined

<gate definition> defined redefined redefined redefined

<gate on diagram> defined redefined

<gate property area> defined

<gate symbol 1> defined

<gate symbol 2> defined

 Rec. ITU-T Z.100 (12/2011) 23

Concrete syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.103 ITU-T Z.104

<gate> defined

<general text character> defined

<graphical answer> defined redefined

<grave accent> defined

<greater than or equals sign> defined

<greater than sign> defined

<hex string> defined

<history dash nextstate> defined

<history dash sign> defined

<hyphen> defined

<identifier> defined

<if statement> defined

<imperative expression> defined redefined

<implies sign> defined

<import expression> defined

<imported procedure specification> defined

<imported variable specification> defined

<in choice> defined

<in connector area> defined

<in connector symbol> defined

<indexed primary> defined

<indexed variable> defined

<infix operation name> defined

<informal text> defined

<inherited agent definition> defined

<inherited block definition> defined redefined

<inherited gate symbol 1> defined

<inherited gate symbol 2> defined

<inherited process definition> defined redefined

<inherited state machine> defined

<inherited state partition definition> defined

<initial number> defined

<inline data type definition> defined

<inline syntype definition> defined

<inner graphical point> defined

<input area> defined redefined

<input association area> defined

<input list> defined redefined redefined

<input symbol> defined redefined

<integer name> defined

<interaction area> defined redefined

24 Rec. ITU-T Z.100 (12/2011)

Concrete syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.103 ITU-T Z.104

<interface constraint> defined

<interface context parameter list> defined

<interface definition> defined redefined

<interface gate definition> defined redefined

<interface heading> defined redefined

<interface procedure definition> defined

<interface specialization> defined

<interface use list> defined

<interface variable definition> defined

<internal input symbol> defined

<internal output symbol> defined

<internal synonym definition item> defined

<is assigned sign> defined

<keyword> defined

<left curly bracket> defined

<left parenthesis> defined

<left square bracket> defined

<legacy data inheritance> defined

<legacy data type definition> defined

<legacy external operator definition> defined

<legacy generator actual> defined

<legacy generators> defined

<legacy inheritance list> defined

<legacy inherited operator> defined

<legacy literal renaming> defined

<legacy operator definition> defined

<legacy operator reference> defined

<legacy operator signature> defined

<legacy operator signatures> defined

<legacy procedure signature> defined

<legacy syntype definition> defined

<legacy task body> defined

<less than or equals sign> defined

<less than sign> defined

<letter> defined

<lexical unit> defined

<literal identifier> defined

<literal list> defined redefined

<literal name> defined

<literal signature> defined

<literal> defined

 Rec. ITU-T Z.100 (12/2011) 25

Concrete syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.103 ITU-T Z.104

<local variables of sort> defined

<loop alternative statement> defined

<loop answer part> defined

<loop body statement> defined

<loop break statement> defined

<loop clause> defined

<loop compound statement> defined

<loop continue statement> defined

<loop decision statement body> defined

<loop decision statement> defined redefined

<loop else part> defined

<loop if statement> defined

<loop statement> defined

<loop statements> defined

<loop step> defined

<loop terminating statement> defined

<loop variable definition> defined

<loop variable indication> defined

<lower bound> defined

<lowercase letter> defined

<macro actual parameter> defined

<macro body> defined

<macro call body> defined

<macro call> defined

<macro definition> defined

<macro formal parameter> defined

<macro formal parameters> defined

<macro parameter> defined

<macro symbol> defined

<maximum number> defined

<merge area> defined

<merge symbol> defined

<method application> defined

<method list> defined

<monadic operation name> defined

<name or number> defined

<name> defined

<named fields sort list> defined

<named number> defined

<nextstate area> defined

<nextstate body> defined

26 Rec. ITU-T Z.100 (12/2011)

Concrete syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.103 ITU-T Z.104

<nextstate parameters> defined redefined

<non terminating statement> defined redefined redefined

<non terminating statements> defined redefined

<nondelaying channel symbol 1> defined

<nondelaying channel symbol 2> defined

<not asterisk or solidus> defined

<not equals sign> defined

<not number or solidus> defined

<note text> defined

<note> defined

<now expression> defined

<number of instances> defined

<number of pages> defined

<number sign> defined

<open range> defined

<operand> defined

<operand0> defined

<operand1> defined

<operand2> defined

<operand3> defined

<operand4> defined

<operand5> defined

<operation application> defined redefined

<operation body area> defined

<operation definition> defined

<operation definitions> defined redefined

<operation diagram> defined redefined

<operation heading> defined redefined

<operation identifier> defined

<operation name> defined

<operation page> defined

<operation parameters> defined

<operation preamble> defined

<operation reference> defined redefined

<operation result> defined redefined

<operation signature in constraint> defined

<operation signature> defined redefined

<operation signatures> defined redefined

<operation text area> defined redefined

<operations> defined

<operator application> defined

 Rec. ITU-T Z.100 (12/2011) 27

Concrete syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.103 ITU-T Z.104

<operator list> defined

<option area> defined redefined

<option symbol> defined

<other character> defined

<other special> defined

<out connector area> defined

<out connector symbol> defined

<outer graphical point> defined

<output area> defined

<output body item> defined redefined

<output body> defined redefined

<output statement> defined

<output symbol> defined redefined

<package diagram> defined

<package heading> defined

<package page> defined

<package public> defined

<package reference area> defined

<package reference> defined

<package symbol> defined

<package text area> defined redefined redefined

<package use area> defined

<package use clause> defined redefined

<page number area> defined

<page number> defined

<parameter aggregation> defined

<parameter kind> defined redefined

<parameters of sort> defined

<parent sort identifier> defined

<path item> defined

<percent sign> defined

<pid expression> defined

<pid sort> defined redefined

<plain input symbol> defined

<plain output symbol> defined

<plus sign> defined

<primary> defined redefined

<priority clause> defined redefined

<priority input area> defined

<priority input association area> defined

<priority input list> defined redefined

28 Rec. ITU-T Z.100 (12/2011)

Concrete syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.103 ITU-T Z.104

<priority input symbol> defined

<priority name> defined

<priority stimulus> defined redefined

<procedure body area> defined

<procedure call area> defined

<procedure call body> defined redefined

<procedure call symbol> defined

<procedure constraint> defined

<procedure context parameter> defined

<procedure definition> defined

<procedure diagram> defined

<procedure formal parameters> defined redefined

<procedure heading> defined redefined

<procedure page> defined

<procedure preamble> defined redefined

<procedure reference area> defined

<procedure reference heading> defined redefined

<procedure reference> defined

<procedure result> defined redefined

<procedure signature in constraint> defined

<procedure signature> defined

<procedure start area> defined redefined

<procedure start symbol> defined

<procedure symbol> defined

<procedure text area> defined

<process diagram> defined

<process heading> defined

<process page> defined

<process reference area> defined

<process reference> defined

<process symbol> defined

<process type diagram> defined redefined

<process type heading> defined

<process type page> defined

<process type reference area> defined redefined

<process type reference> defined

<process type symbol> defined

<provided expression> defined

<qualifier begin sign> defined

<qualifier end sign> defined

<qualifier> defined

 Rec. ITU-T Z.100 (12/2011) 29

Concrete syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.103 ITU-T Z.104

<question mark> defined

<question> defined

<quotation mark> defined

<quoted operation name> defined

<range check expression> defined

<range condition> defined

<range sign> defined

<range> defined

<real name> defined

<referenced definition> defined redefined

<remote procedure call area> defined

<remote procedure call body> defined

<remote procedure context parameter> defined

<remote procedure definition> defined

<remote variable definition> defined

<remotevariable context parameter list> defined

<rename list> defined

<rename pair> defined

<renaming> defined

<reset body> defined redefined

<reset clause> defined

<reset statement> defined

<result aggregation> defined

<result sign> defined

<result> defined

<return area> defined redefined

<return body> defined

<return statement> defined

<return symbol> defined

<reverse solidus> defined

<right curly bracket> defined

<right parenthesis> defined

<right square bracket> defined

<rules identifier> defined

<save area> defined redefined

<save association area> defined

<save item> defined

<save list> defined redefined

<save symbol> defined

<scope unit kind> defined

<sdl specification> defined

30 Rec. ITU-T Z.100 (12/2011)

Concrete syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.103 ITU-T Z.104

<select definition> defined redefined

<selected entity kind> defined redefined

<semicolon> defined

<set body> defined redefined

<set clause> defined

<set statement> defined

<signal constraint> defined

<signal context parameter list> defined

<signal definition list> defined redefined

<signal definition> defined redefined redefined

<signal list area> defined

<signal list definition> defined

<signal list item> defined redefined redefined

<signal list symbol> defined

<signal list> defined

<signal priority> defined

<signal signature> defined

<simple expression> defined

<size constraint> defined

<solid association symbol> defined

<solidus> defined

<sort constraint> defined

<sort context parameter> defined

<sort list> defined

<sort signature> defined

<sort> defined redefined

<space> defined

<special> defined

<specialization> defined

<spontaneous association area> defined

<spontaneous designator> defined

<spontaneous transition area> defined

<start area> defined redefined

<start symbol> defined

<start timer area> defined

<start timer symbol> defined

<start> defined

<state aggregation body area> defined

<state aggregation heading> defined

<state aggregation page> defined

<state aggregation type heading> defined

 Rec. ITU-T Z.100 (12/2011) 31

Concrete syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.103 ITU-T Z.104

<state aggregation type page> defined

<state area> defined redefined

<state connection point area> defined

<state connection point symbol 1> defined

<state connection point symbol 2> defined

<state entry point> defined

<state entry points> defined

<state exit point list> defined redefined

<state exit point> defined

<state exit points> defined

<state expression> defined

<state list> defined redefined

<state machine area> defined redefined redefined

<state machine reference area> defined

<state partition area> defined redefined

<state partition connection area> defined

<state symbol> defined

<state timer area> defined

<state timer association area> defined

<state timer> defined

<statement in loop> defined

<statement> defined redefined redefined

<statements> defined redefined

<stimulus> defined

<stop statement> defined

<stop symbol> defined

<stop timer area> defined

<stop timer symbol> defined

<string name> defined

<structure definition> defined redefined

<synonym constraint> defined

<synonym context parameter list> defined

<synonym definition item> defined

<synonym definition> defined

<synonym> defined

<syntype definition> defined redefined

<syntype> defined redefined

<system diagram> defined

<system heading> defined

<system page> defined

<system specification> defined redefined

32 Rec. ITU-T Z.100 (12/2011)

Concrete syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.103 ITU-T Z.104

<system type diagram> defined redefined

<system type heading> defined

<system type page> defined

<system type reference area> defined redefined

<system type reference> defined

<system type symbol> defined

<task area> defined redefined

<task body> defined redefined

<task symbol> defined

<terminating statement> defined

<terminator area> defined redefined redefined

<text extension area> defined

<text extension symbol> defined

<text symbol> defined

<text> defined

<textual endpoint constraint> defined

<tilde> defined

<timer active expression> defined

<timer communication constraint> defined

<timer constraint> defined

<timer context parameter list> defined

<timer default initialization> defined

<timer definition item> defined

<timer definition> defined

<timer remaining duration> defined

<transition area> defined

<transition option area> defined

<transition option symbol> defined

<transition string area> defined

<type expression> defined redefined

<type preamble> defined redefined

<typebased agent definition> defined

<typebased block definition> defined

<typebased block heading> defined

<typebased composite state> defined redefined redefined

<typebased process definition> defined

<typebased process heading> defined

<typebased state machine> defined

<typebased state partition definition> defined

<typebased state partition heading> defined

<typebased system definition> defined

 Rec. ITU-T Z.100 (12/2011) 33

Concrete syntax rule name ITU-T Z.101 ITU-T Z.102 ITU-T Z.103 ITU-T Z.104

<typebased system heading> defined

<underline> defined

<uppercase letter> defined

<valid input signal set> defined

<value returning procedure call> defined redefined

<variable access> defined redefined redefined

<variable context parameter list> defined

<variable definition statement> defined

<variable definition> defined redefined

<variable definitions> defined

<variable> defined

<variables of sort> defined

<vertical line> defined

<via path> defined redefined

<virtuality constraint> defined

<virtuality> defined

<visibility> defined

<word> defined

Some concrete grammar syntax rules defined in [ITU-T Z.101], [ITU-T Z.102] or [ITU-T Z.103]
are extended by a redefinition in [ITU-T Z.102], [ITU-T Z.103] or [ITU-T Z.104] as shown in the
table above. Sometimes a redefined rule in [ITU-T Z.102] is further redefined. For redefined rules
the complete concrete grammar syntax of SDL-2010 is given by redefinitions of the rule, where a
redefinition in [ITU-T Z.104] replaces the rule in [ITU-T Z.101], [ITU-T Z.102] or [ITU-T Z.103],
redefinition in [ITU-T Z.103] replaces the rule in [ITU-T Z.101] or [ITU-T Z.102] and redefinition
in [ITU-T Z.102] replaces the rule in [ITU-T Z.101]. Constraints and semantics are cumulative so
that those in [ITU-T Z.101], [ITU-T Z.102] or [ITU-T Z.103] also apply to any redefined grammar
in [ITU-T Z.102], [ITU-T Z.103] or [ITU-T Z.104], except if there is specific normative text
otherwise.

Any construct that is valid for a rule before redefinition should also be valid with the redefined rule.
If this is not the case, there is an error in the ITU-T Z.100 series of SDL-2010 that needs to be
corrected.

34 Rec. ITU-T Z.100 (12/2011)

Annex C

Compatibility

(This annex forms an integral part of this Recommendation.)

SDL-2010 introduces some changes that could invalidate descriptions written for older versions of
the Specification and Description Language that were available prior to SDL-2010 being approved.
The intention is that SDL-2010 is compatible with most uses of the SDL-2000 versions as
supported by tools. This annex documents how legacy descriptions are handled.

The Recommendation for SDL-2000 allowed many existing valid Specification and Description
Language descriptions using SDL-92 to remain valid Specification and Description Language
descriptions. Most (if not all) of these Specification and Description Language descriptions using
SDL-92 should remain valid SDL-2010 descriptions.

Existing valid Specification and Description Language descriptions using SDL-2000 are not valid
SDL-2010 descriptions if they use features of SDL-2000 deleted in SDL-2010, but it is expected the
number of such cases is small because the deleted features (see clause III.4) have not been widely
implemented or used.

In the concrete grammar of SDL-2010 there are a number of syntax rules introduced of the form
<legacy …>. These rules define alternative syntax for features from older versions of the
Specification and Description Language. New descriptions should avoid using such legacy syntax,
but it is recognized that the use of legacy syntax is possibly impractical for existing descriptions,
updating parts of existing descriptions or when the tool available only supports the legacy syntax.

Similarly, there are a number of concrete syntax rule alternatives containing the keywords
endnewtype, fpar, newtype and returns that define alternative syntax from older versions of the
Specification and Description Language. The concrete grammar defined by alternative syntax from
older versions of the Specification and Description Language extends the notation allowed for
SDL-2010 without extending the semantics. This grammar allows SDL-2010 tools to provide
backwards compatibility for older descriptions and allows older tools to be used as tools for a subset
of the SDL-2010 language. Where the alternative with the keyword occurs in Basic SDL-2010
[ITU-T Z.101] or Comprehensive SDL-2010 [ITU-T Z.102], this is the canonical form because it
should be compatible with most tools, although an alternative without these keywords is preferred
for new descriptions. The alternatives without the keywords are sometimes added in Shorthand
SDL-2010 [ITU-T Z.103] or in [ITU-T Z.104].

 Rec. ITU-T Z.100 (12/2011) 35

Annex D

Data defined in the package Predefined

(This annex forms an integral part of this Recommendation.)

This annex provides an overview of the predefined data items that are defined in an implicitly used
package Predefined, which is fully defined in [ITU-T Z.104]. The overview here provides an
intuitive understanding of data and expressions for understanding [ITU-T Z.101], [ITU-T Z.102]
and [ITU-T Z.103] without reference to [ITU-T Z.104]. The overview provided here should be
consistent with [ITU-T Z.104], but any inconsistency should be assumed to be an error in this
Annex that needs to be corrected.

D.1 Rules for "=" (equal), "/=" (not equal), comparison, data signatures and literals

The operators "=" (equal) and "/=" (not equal) are valid for every sort of data. The result is a
Boolean.

The operators "<", "<=", ">", ">=" for comparisons are valid when the sort of data is based on
ordered literals, for example, Character. If the name of the sort of data is S, it has the following
operators:

 "<" (this S, this S) -> Boolean;
 ">" (this S, this S) -> Boolean;
 "<=" (this S, this S) -> Boolean;
 ">=" (this S, this S) -> Boolean;
 first -> this S;
 last -> this S;
 succ (this S) -> this S;
 pred (this S) -> this S;
 num (this S) -> Natural;

NOTE – The quoted operators such as "<" are used as prefix operators, for example, in the expression
"<"(a, b) but the quoted operator signs (in this case the less than sign) are also defined as infix operators
so "<"(a, b) has the same meaning as a < b.

The keyword this before the name of the sort of data in signatures is relevant only when a sort of
data is inherited.

Certain operators given below are able to raise an exception rather than return a result as indicated
by raise and the name of the exception in the operator signature.

Where different sorts of data have literals that are lexically the same, the sort of data is usually
determined by context. If this is not possible, the literal has to be qualified by the sort of data.

D.2 Package Predefined overview

The <<package Predefined>> is defined fully in [ITU-T Z.104]. This overview lists the sorts and
the operations for each sort.

D.2.1 Boolean

literals true, false;
operators
 "not" (this Boolean) -> this Boolean;
 "and" (this Boolean, this Boolean) -> this Boolean;
 "or" (this Boolean, this Boolean) -> this Boolean;
 "xor" (this Boolean, this Boolean) -> this Boolean;
 "=>" (this Boolean, this Boolean) -> this Boolean;

Boolean is used to represent true and false values. Often it is used as the result of a comparison.
Boolean is used widely throughout the Specification and Description Language.

36 Rec. ITU-T Z.100 (12/2011)

D.2.2 Character

literals
 NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
 BS, HT, LF, VT, FF, CR, SO, SI,
 DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
 CAN, EM, SUB, ESC, IS4, IS3, IS2, IS1,
 ' ', '!', '"', '#', '$', '%', '&', '''',
 '(', ')', '*', '+', ',', '-', '.', '/',
 '0', '1', '2', '3', '4', '5', '6', '7',
 '8', '9', ':', ';', '<', '=', '>', '?',
 '@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',
 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',
 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
 'X', 'Y', 'Z', '[', '\', ']', '^', '_',
 '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g',
 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',
 'p', 'q', 'r', 's', 't', 'u', 'v', 'w',
 'x', 'y', 'z', '{', '|', '}', '~', DEL;

/* '''' is an apostrophe, ' ' is a space, '~' is a tilde */
operators
 chr (Integer) -> this Character;

The Character sort is used to represent characters of the International Reference Alphabet
(Recommendation [ITU-T T.50]).

D.2.3 String

String is a parameterized sort of data that takes another sort of data as a parameter. For example,
String(Integer) is a string of integers. In particular, the Charstring is defined as
String(Character).

In the following operators the sort of data given as the parameter is the Itemsort.

operators
 emptystring -> this String;
 mkstring (Itemsort) -> this String; /* same as Make */
 Make (Itemsort) -> this String;
 length (this String) -> Integer;
 first (this String) -> Itemsort;
 last (this String) -> Itemsort;
 "//" (this String, this String) -> this String; /* concatenation */
 Extract (this String, Integer) -> Itemsort raise InvalidIndex;
 Modify (this String, Integer, Itemsort) -> this String;
 substring (this String, Integer, Integer) -> this String raise InvalidIndex;
 /* substring (s,i,j) gives a string of length j starting from the ith element */
 remove (this String, Integer, Integer) -> this String;
 /* remove (s,i,j) gives a string with a substring of length j starting from
 the ith element removed */

Where the value of a String is needed, the notation

 (. item .)

has the same meaning as

 Make(item)

and makes a string of length 1 from the item value.

The notation where s is a string variable and i is an Integer

 s [i]

has the same meaning as

 Extract(s, i) if it appears in an expression

and means there is an assignment to the element i of the string (using Modify) if it is the target of
assignment.

 Rec. ITU-T Z.100 (12/2011) 37

D.2.4 Charstring

Charstring is String parameterized with Character and has the operators defined for String.
Comparison operators and num are not defined for Charstring.

Charstring has literals that are defined by the regular expression

 '''' ((' ':'&') or '''''' or ('(': '~'))+ ''''

That is, the Charstring literal starts with an apostrophe, followed by one or more characters that
are characters from space to ampersand or a pair of apostrophes (representing a single apostrophe)
or a character from an open round bracket to a tilde and followed by an apostrophe. For example,
'aB%b 7cd'.

A double apostrophe not in a Charstring literal represents an empty Charstring.

'A' could be a Character or a Charstring depending on context. Non-printing characters are made
into character strings by the use of the Make construct, so a character string for linefeed with
carriage return and some prompt characters is constructed by

 (. LF .) // (. CR .) // '+>'

D.2.5 Integer

A notation for an Integer value is a sequence of one or more of the numbers 0 to 9. Negative
integers are represented by applying the unary "-" operator to a positive Integer. The ordering of
integers is defined independently from the notation so that 0034 is ordered in the same place and
has the same value as 034. The comparison operators are defined to give the usual mathematical
integer ordering.

operators
 "-" (this Integer) -> this Integer;
 "+" (this Integer, this Integer) -> this Integer;
 "-" (this Integer, this Integer) -> this Integer;
 "*" (this Integer, this Integer) -> this Integer;
 "/" (this Integer, this Integer) -> this Integer raise DivisionByZero;
 "mod" (this Integer, this Integer) -> this Integer raise DivisionByZero;
 "rem" (this Integer, this Integer) -> this Integer;
 "<" (this Integer, this Integer) -> Boolean;
 ">" (this Integer, this Integer) -> Boolean;
 "<=" (this Integer, this Integer) -> Boolean;
 ">=" (this Integer, this Integer) -> Boolean;
 power (this Integer, this Integer) -> this Integer;
 integer(<< package Predefined>> Integer) -> this Integer;
 num (this Integer) -> << package Predefined>> Integer;

Integer is used for mathematical integers with decimal 12, hex '0C'H, or binary '1100'B notation,
where the examples given here all represent the same value (twelve).

There is no theoretical limit to the maximum size of an Integer, but in practice there will be some
limit so some additional checks might be needed to ensure the limit is not reached. Using a syntype
based on Integer with limits on the range of values instead of Integer provides such checks.

D.2.6 Natural

Natural is used when positive integers only are required. All operators will be the Integer
operators, but the value is checked when a value is used as a parameter or assigned. A negative
value will be an error.

38 Rec. ITU-T Z.100 (12/2011)

D.2.7 Real

The notation for a Real value is a sequence of one or more of the numbers 0 to 9 (the same as an
Integer) or a sequence of one or more of the numbers 0 to 9 followed by a decimal point
(represented by a full stop) followed by one or more of the numbers 0 to 9. Examples are: 42; 999;
10.3; 0.79 and .001.

The leading zeros before the decimal point do not have any meaning for the value, so that 001.4 has
the same value as 1.4 and 000001.4. Similarly, trailing zeros after the decimal point do not change
the value.

Negative values are represented by applying the unary "-" operator to a positive Real.

operators
 "-" (this Real) -> this Real;
 "+" (this Real, this Real) -> this Real;
 "-" (this Real, this Real) -> this Real;
 "*" (this Real, this Real) -> this Real;
 "/" (this Real, this Real) -> this Real raise DivisionByZero;
 "<" (this Real, this Real) -> Boolean;
 ">" (this Real, this Real) -> Boolean;
 "<=" (this Real, this Real) -> Boolean;
 ">=" (this Real, this Real) -> Boolean;
 float (Integer) -> this Real;
 fix (this Real) -> Integer;

Real represents all numbers that are able to be represented as one integer divided by another
(known as rational numbers). Numbers that cannot be represented in this way (irrational numbers –
for example, the square root of 2) are not part of the Real. However, for practical engineering a
sufficiently accurate approximation is usually used.

There is no theoretical limit to the maximum size of a Real, but in practice there will be some limit
so some additional checks might be needed to ensure the limit is not reached. Similarly, there is no
theoretical limit to the precision, so in theory values are infinitely precise but in practice there will
be some limit so additional checks might be needed to allow for the precision of the implemented
system. For example, the expression (1/9)*9=1.0 should always be true, but in an actual system it is
possible the calculation of (1/9)*9 produces a value that is not precisely equal to 1.0.

D.2.8 The mapping called Array

Array is a mapping where a value of one sort of data is used as a key index to access element items
of the mapping.

NOTE – The use of the name Array for this sort of data sometimes causes confusion, because in many
computer languages the index of any data called an Array is limited to values of an ordered sort of data that
has a finite number of elements such as Character or a bounded Integer. For an Array in the Specification
and Description Language the index sort of data does not have to be ordered, nor does it need to be bounded.
For example, the index is allowed to be Integer (which has no upper or lower bound), or a structured value.
Vector is more similar to what is called an Array in other computer languages where the index is an Integer
greater than zero with a maximum upper bound.

Array is a parameterized sort of data that takes two other sorts of data as parameters, in the following
named the Index and the Itemsort.

operators
 Make -> this Array ;
 Make (Itemsort) -> this Array ;
 Modify (this Array,Index,Itemsort) -> this Array ;
 Extract(this Array,Index) -> Itemsort raise InvalidIndex;

The Make notation produces an Array value as a result. If no parameter is given no element of the
Array is initialized. Where a value of an Array is needed (determined by context), normally the
notation

 Rec. ITU-T Z.100 (12/2011) 39

 (. item .)

has the same meaning as

 Make(item)

and makes an Array where every element is initialized to the item value. If the index is unbounded
the Array is of a theoretically infinite size, but implementation is possible noting this item value
once only for the Array and noting specifically {index, item value} pairs for elements that are given
other item values. In this way only a finite amount of information is needed even for an Array of
theoretically infinite size such as one indexed with Real.

The notation where a is an array variable and i is an index value

 a [i]

has the same meaning as

 Extract(a, i) if it appears in an expression where it gives the value of the element

and means there is an assignment to the element i of the array (using Modify) if it is the target of
assignment.

D.2.9 Vector

Vector is a parameterized sort of data that is an Array constrained to have an Integer index sort of
data where the lower bound is 1 and the upper bound is the maximum index value given as the
parameter of Vector.

D.2.10 Powerset

Powerset is a mathematical set. Every element item of a Powerset has the same sort of data. No
item value appears more than once in the Powerset. If an item value is added to Powerset (using
incl to include it), and the item value is already in the Powerset there is no change to the
Powerset. There is no order to the elements of a Powerset.

operators
 empty -> this Powerset;
 "in" (Itemsort, this Powerset) -> Boolean; /* is member of */
 incl (Itemsort, this Powerset) -> this Powerset; /* include item in set */
 del (Itemsort, this Powerset) -> this Powerset; /* delete item from set */
 "<" (this Powerset, this Powerset) -> Boolean; /* is proper subset of */
 ">" (this Powerset, this Powerset) -> Boolean; /* is proper superset of */
 "<=" (this Powerset, this Powerset) -> Boolean; /* is subset of */
 ">=" (this Powerset, this Powerset) -> Boolean; /* is superset of */
 "and" (this Powerset, this Powerset) -> this Powerset; /* intersection of sets */
 "or" (this Powerset, this Powerset) -> this Powerset; /* union of sets */
 length (this Powerset) -> Integer;
 take (this Powerset) -> Itemsort raise Empty;

The take operator removes and returns an arbitrary element item from the Powerset.

D.2.11 Duration

Duration is used for the values to be added to timers and as the result of the difference between
Time values (see Time). The notation for Duration values is the same as for Real. Whether a value
denotation is a Real or Duration (or Time) value is usually determined by context. The unit of
Duration is the same as the unit of Time, and unless otherwise specified is 1 second.

40 Rec. ITU-T Z.100 (12/2011)

operators
 "+" (this Duration, this Duration) -> this Duration;
 "-" (this Duration) -> this Duration;
 "-" (this Duration, this Duration) -> this Duration;
 ">" (this Duration, this Duration) -> Boolean;
 "<" (this Duration, this Duration) -> Boolean;
 ">=" (this Duration, this Duration) -> Boolean;
 "<=" (this Duration, this Duration) -> Boolean;
 "*" (this Duration, Real) -> this Duration;
 "*" (Real, this Duration) -> this Duration;
 "/" (this Duration, Real) -> Duration;

Duration values are allowed to be added and subtracted from one another, and multiplied and
divided by Real values.

D.2.12 Time

Accessing the system clock returns a Time value. The origin of Time is system dependent. Time
values are used to set the expiry time of timers.

The notation for Time values is the same as for Real. It is usually determined by context whether a
value is a Time value or Real value or Duration value. The unit of Time is the same as the unit of
Duration, and therefore unless otherwise specified is 1 second.

operators
 protected time (Duration) -> this Time;
 "<" (this Time, this Time) -> Boolean;
 "<=" (this Time, this Time) -> Boolean;
 ">" (this Time, this Time) -> Boolean;
 ">=" (this Time, this Time) -> Boolean;
 "+" (this Time, Duration) -> this Time;
 "+" (Duration, this Time) -> this Time;
 "-" (this Time, Duration) -> this Time;
 "-" (this Time, this Time) -> Duration;

A Time value that has a Duration added or subtracted from it gives another Time value. A Time
value subtracted from another Time value gives a Duration.

D.2.13 Bag

Bag is an unordered collection of items. Every element item of a Bag has the same sort of data. By
comparison with a Powerset, if an item value is added to Bag (using incl to include it), there is
always a change to the Bag increasing the number of elements items that have the given value by
one. Similarly, deleting an item of a particular value from a Bag (using del) reduces the number of
elements items that have the given value by one (except if the count is already zero). Deleting an
item of a given value is not an error if there are no items of that value in the Bag. There is no order
to the elements of a Bag.

Bag is used to represent the SET OF construction of ASN.1.

operators
 empty -> this Bag;
 "in" (Itemsort, this Bag) -> Boolean; /* is member of */
 incl (Itemsort, this Bag) -> this Bag; /* increase items of this value in Bag */
 del (Itemsort, this Bag) -> this Bag; /* delete an item of this value from Bag
 */
 "<" (this Bag, this Bag) -> Boolean; /* is proper subbag of */
 ">" (this Bag, this Bag) -> Boolean; /* is proper superbag of */
 "<=" (this Bag, this Bag) -> Boolean; /* is subbag of */
 ">=" (this Bag, this Bag) -> Boolean; /* is superbag of */
 "and" (this Bag, this Bag) -> this Bag; /* intersection of bags */
 "or" (this Bag, this Bag) -> this Bag; /* union of bags */
 length (this Bag) -> Integer; /* number of items in Bag */
 count (Itemsort, this Bag) -> Integer; /* number of this item value in Bag */
 take (this Bag) -> Itemsort raise Empty;

The take operator removes and returns an arbitrary element item from the Bag.

 Rec. ITU-T Z.100 (12/2011) 41

D.2.14 Bit and Bitstring

Bit has the literals 0 and 1, and the same operators as Boolean plus operators for changing a Bit to
an Integer and an Integer to a Bit.

operators
 "not" (this Bit) -> this Boolean;
 "and" (this Bit, this Bit) -> this Bit;
 "or" (this Bit, this Bit) -> this Bit;
 "xor" (this Bit, this Bit) -> this Bit;
 "=>" (this Bit, this Bit) -> this Bit;
 num (this Bit) -> Integer;
 bit (Integer) -> this Bit raise OutOfRange;
endvalue type Bit;

Bitstring is a string of each element of which is a Bit. To be compatible with ASN.1, the index of
the first element is zero (unlike Charstring and other sorts of data based on String where
indexing starts from 1). The values of Bitstring are denoted by the binary form '0101'B and/or the
hexadecimal '12AF'H.

operators
 mkstring (Bit) -> this Bitstring;
 Make (Bit) -> this Bitstring;
 length (this Bitstring) -> Integer;
 first (this Bitstring) -> Bit;
 last (this Bitstring) -> Bit;
 "//" (this Bitstring, this Bitstring) ->
 this Bitstring;/*concatenation*/
 Extract (this Bitstring, Integer) -> Bit raise InvalidIndex;
 Modify (this Bitstring, Integer, Bit) -> this Bitstring;
 substring (this Bitstring, Integer, Integer) -> this Bitstring raise InvalidIndex;
 /* substring (s,i,j) gives a string of length j starting from the ith element */
 remove (this Bitstring, Integer, Integer) -> this Bitstring;
 /* remove (s,i,j) gives a string with a substring of length j starting from
 the ith element removed */
/*The following operators are specific to Bitstrings*/
 "not" (this Bitstring) -> this Bitstring;
 "and" (this Bitstring, this Bitstring) -> this Bitstring;
 "or" (this Bitstring, this Bitstring) -> this Bitstring;
 "xor" (this Bitstring, this Bitstring) -> this Bitstring;
 "=>" (this Bitstring, this Bitstring) -> this Bitstring
 num (this Bitstring) -> Integer;
 bitstring (Integer) -> this Bitstring raise OutOfRange;
 octet (Integer) -> this Bitstring raise OutOfRange;

D.2.15 Octet and Octetstring

Octet is a Bitstring of exactly 8 bits, and therefore has the same notation as a Bitstring but
with exactly 8 binary digits such as '10101010'B or 2 hexadecimal digits such as '1F'H.

Octetstring is a String of each element of which is an Octet. The index of the first element is
one (like Charstring and other sorts of data based on String, but in contrast to Bitstring where
indexing starts from zero). The values of Octetstring are multiples of 8 binary digits such as
'0101010110101010'B or multiples of 2 hexadecimal digits such as 'FE12A7'H.

operators
 bitstring (this Octetstring) -> Bitstring;
 octetstring (Bitstring) -> this Octetstring;

D.2.16 Process interface data (pid and Pid)

An interface defines a pid sort of data, which has elements that are identities of agents. The sort of
data Pid is a supertype of all pid sorts of data. When a variable is declared to be of sort Pid, data
items belonging to any pid sort are valid for assignment to that variable. Other pid sorts are
constrained to reference only agents that offer the interface of the pid. Certain actions (such as
creating a process instance) produce a Pid value. The notation Null denotes a reference that is not

42 Rec. ITU-T Z.100 (12/2011)

associated with a value; that is the Pid value that is used when there is no instance to reference.
Apart from equal and not equal, there are no language-defined operators for pid sorts of data. If
there is an attempt to use Null as a reference the exception InvalidReference is raised.

D.2.17 Enumerated data

It is allowed to define a sort of data, the elements of which are named values. If the data sort is to be
used in more than one place it is given a name. An example of introducing such a type named
enumabc with values a, b and c is:

 value type enumabc literals a, b, c;

D.2.18 Structure data

The keyword struct is used to introduce a composite structure sort of data that has named fields
each of which is associated with a field sort of data. The fields have any sort of data, including a
structure, an array, a vector or a string or a choice (see below). An example of a structure definition
in a sort named astruct is:

 value type astruct { struct f1 Integer; f2 Boolean; f3 Pid; }

The definition has make, extract and modify operators (similar to String and Array). Where a
value for the above structure is needed (determined by context), the notation

 (. ie1, be2, pe3 .)

is used to produce a structure value where ie1, be2 and pe3 are Integer, Boolean and Pid
expressions respectively. This construct has the same meaning as

 make(ie1, be2, pe3)

If there is a variable vs declared with the structure above, the notations

 vs.f1
 vs.f2
 vs.f3

are used to assign to, or access field f1, f2 and f3 respectively.

D.2.19 Choice

The keyword choice is used to introduce a composite sort of data that has named fields, only one of
which is present at any time. If there is a variable defined with the choice sort of data, assigning to
one of the fields means that all other fields lose the data value associated with them. An example of
a choice definition in a sort named achoice is:

 value type achoice { choice f1 Char; f2 Boolean; f3 Integer; }

If there is a variable vc declared with the choice above, the notations

 vc.f1
 vc.f2
 vc.f3

are used to assign to, or access field f1, f2 and f3 respectively. To access a field to obtain a value
of the field sort of data, the choice variable has to contain that field. If the choice variable does not
contain the field when the access is made, the UndefinedField exception is raised. There is an
operator PresentExtract with a parameter that is the choice sort the result of which is the name of
the field that is present and is normally denoted by

 vc.PresentExtract

 Rec. ITU-T Z.100 (12/2011) 43

For each field there is an operator with a parameter that is the choice sort, the result of which is a
Boolean and has the value true if the choice value contains a value of that field. The name of the
operator is the field name concatenated with Present, and the usual notation to apply the operator to
a variable vc for a field f1 is

 vc.f1Present

Choice is used to represent the CHOICE construction of ASN.1.

D.2.20 Exceptions for language defined sorts of data

The following exceptions are mentioned in this annex:

 OutOfRange, /* A range check has failed. For example, assigning a negative

Integer value to a Natural, or applying the Bit operator or
Bitstring operator or Octetstring operator to negative Integer.
*/

 InvalidIndex, /* A String or Array was accessed with an incorrect index. */
 Empty; /* No element could be returned. For example when applying the

take operator to a Powerset or Bag that is empty. */
 DivisionByZero; /* An Integer or Real division by zero was attempted. */
 InvalidReference, /* Null was used incorrectly. Wrong Pid for this signal. */
 UndefinedField, /* An undefined field was accessed. */

D.2.21 Support for ASN.1 character, symbol string and NULL types
The following items are defined in the package Predefined support, the combination of ASN.1
modules with SDL-2010: syntype NumericChar, value type NumericString, syntype

PrintableChar, value type PrintableString, syntype TeletexChar, syntype

VideotexChar, value type VideotexString, syntype IA5Char, syntype IA5String, value
type GeneralChar, value type UniversalChar, value type UniversalCharString, syntype
UTF8String, value type GeneralCharString, syntype GraphicChar, syntype VisibleChar,
value type VisibleString, syntype BMPChar, value type BMPCharString and value type
NULL.

44 Rec. ITU-T Z.100 (12/2011)

Annex E

Reserved for examples

(This annex forms an integral part of this Recommendation.)

Annex F

Formal definition

(This annex forms an integral part of this Recommendation.)

Published separately. The status of Annex F is described in the Introduction and in Appendix I.

 Rec. ITU-T Z.100 (12/2011) 45

Appendix I

Status of ITU-T Z.100, related documents and Recommendations

(This appendix does not form an integral part of this Recommendation.)

This appendix contains a list of the status of Recommendations related to the Specification and
Description Language issued by ITU-T. The list includes all parts of this Recommendation and of
[ITU-T Z.101], [ITU-T Z.102], [ITU-T Z.103], [ITU-T Z.104], [ITU-T Z.105], [ITU-T Z.106],
[ITU-T Z.107], [b-ITU-T Z.109], Recommendations subsequently added to the ITU-T Z.100 series
for SDL-2010 and any related methodology documents. It also lists other relevant
Recommendations such as Recommendations [b-ITU-T Z.110], [ITU-T Z.111] and [b-ITU-T
Z.119].

This list shall be updated by appropriate means (for example, a corrigendum) whenever changes to
the Specification and Description Language are agreed and new Recommendations approved.

SDL-2010 is defined by or related to the following Recommendations approved by ITU-T listed
below.

– Recommendation ITU-T Z.100.

– Annex A to Recommendation ITU-T Z.100.

– Annex B to Recommendation ITU-T Z.100.

– Annex C to Recommendation ITU-T Z.100.

– Annex D to Recommendation ITU-T Z.100.

– There were no specific plans at the time of approval for Annex E, but this is reserved for
examples.

– Annex F to Recommendation ITU-T Z.100 (approved by ITU-T Study Group 10 on 24
November 2000). This document was for SDL-2000 and consistency with SDL-2010 is
subject to further study. Not part of the ITU-T Z.100 series for SDL-2010.

 Tools for the formal semantics reference model of SDL-2000 (ITU-T Specification and
Description Language) are found at http://sourceforge.net/projects/sdlc (the files themselves
are accessible either through CVS, or through the CVS web front end, at
http://sdlc.cvs.sourceforge.net/viewvc/sdlc/).

– Supplement 1 to ITU-T Z.100 series Recommendations on SDL+ methodology: use of
MSC and SDL (with ASN.1), which is not part of the ITU-T Z.100 series for SDL-2010.

– [ITU-T Z.101].

– [ITU-T Z.102].

– [ITU-T Z.103].

– [ITU-T Z.104].

– [ITU-T Z.105].

– [ITU-T Z.106].

– [ITU-T Z.107].

– [b-ITU-T Z.109].

– [b-ITU-T Z.110]. This is not part of the ITU-T Z.100-series of Recommendations for
SDL-2010, but refers to ITU-T Z.100.

– [ITU-T Z.111]. This is not part of the ITU-T Z.100-series of Recommendations for
SDL-2010, but included by reference.

http://sourceforge.net/projects/sdlc
http://sdlc.cvs.sourceforge.net/viewvc/sdlc/

46 Rec. ITU-T Z.100 (12/2011)

Further information on the Specification and Description Language including information on books
and other publications is available via: http://www.sdl-forum.org/.

At the time this Recommendation was approved, further study was in progress on: C language
binding to replace Annex C of [ITU-T Z.104] and on object-oriented data as an additional
Recommendation.

http://www.sdl-forum.org/

 Rec. ITU-T Z.100 (12/2011) 47

Appendix II

Guidelines for the maintenance of SDL-2010

(This appendix does not form an integral part of this Recommendation.)

II.1 Maintenance of SDL-2010

This appendix describes the terminology and rules for maintenance of the Specification and
Description Language agreed at the Study Group 10 meeting in November 1993, and the associated
"change request procedure".

In the following text, references to Recommendation ITU-T Z.100 shall be considered to include
annexes, appendices and supplements of this Recommendation, as well as any addenda,
amendments, corrigenda or implementors' guides. This shall also apply for [ITU-T Z.101],
[ITU-T Z.102], [ITU-T Z.103], [ITU-T Z.104], [ITU-T Z.105], [ITU-T Z.106], [ITU-T Z.107] and
any Recommendation subsequently added to the ITU-T Z.100 series for SDL-2010 and
[b-ITU-T Z.109].

II.1.1 Terminology

a) An error is an internal inconsistency within Recommendation ITU-T Z.100.

b) A textual correction is a change to text or diagrams of Recommendation ITU-T Z.100 that
corrects clerical or typographical errors.

c) An open item is a concern identified but not resolved. An open item is identified either by a
change request, or by agreement of the Study Group or Working Party.

d) A deficiency is an issue identified where the semantics of the Specification and Description
Language is not (clearly) defined by Recommendation ITU-T Z.100.

e) A clarification is a change to the text or diagrams of Recommendation ITU-T Z.100 that
clarifies previous text or diagrams that could be ambiguously understood without the
clarification. The clarification should attempt to make Recommendation ITU-T Z.100
correspond to the semantics of the Specification and Description Language as understood
by the Study Group or Working Party.

f) A modification is a change to the text or diagrams of Recommendation ITU-T Z.100 that
changes the semantics of the Specification and Description Language.

g) A decommitted feature is a feature of the Specification and Description Language that is to
be removed from the Specification and Description Language in the next revision of
Recommendation ITU-T Z.100.

h) An extension is a new feature, which shall not change the semantics of features defined in
Recommendation ITU-T Z.100.

II.1.2 Rules for maintenance

a) When an error or deficiency is detected in Recommendation ITU-T Z.100, it shall be
corrected or clarified. The correction of an error should imply as small a change as possible.
Error corrections and clarifications will be put into the master list of changes for
Recommendation ITU-T Z.100 and come into effect immediately.

b) Except for error corrections and resolution of open items from the previous study period,
modifications and extensions should only be considered as the result of a request for change
that is supported by a substantial user community. A request for change should be followed
by investigation by the Study Group or Working Party in collaboration with representatives
of the user group, so that the need and benefit are clearly established and it is certain that an
existing feature of the Specification and Description Language is unsuitable.

48 Rec. ITU-T Z.100 (12/2011)

c) Modifications and extensions not resulting from error correction shall be widely publicized
and the views of users and toolmakers canvassed before the change is adopted. Unless there
are special circumstances requiring such changes to be implemented as soon as possible,
such changes will not be recommended until Recommendation ITU-T Z.100 is revised.

d) Until a revised Recommendation ITU-T Z.100 is published, a master list of changes to
Recommendation ITU-T Z.100 will be maintained covering Recommendation ITU-T Z.100
and all annexes except the formal definition. It is suggested the master list of changes is
prepared as a draft version of an implementor's guide. Appendices, addenda, corrigenda,
implementor's guides or supplements will be issued as decided by the Study Group. To
ensure effective distribution of the master list of changes to Recommendation ITU-T Z.100,
it will be published as COM Reports and by appropriate electronic means.

e) For deficiencies in Recommendation ITU-T Z.100, the formal definition should be
consulted. This should lead to either a clarification or correction that is recorded in the
master list of changes to Recommendation ITU-T Z.100. If there is an inconsistency
between Recommendation ITU-T Z.100 and the formal definition, and it is decided that the
formal definition is out of date or otherwise incorrect, it is permitted to document the
inconsistency rather than update the formal definition.

II.1.3 Change request procedure

The change request procedure is designed to enable the Specification and Description Language
users from within and outside ITU-T to ask questions about the precise meaning of
Recommendation ITU-T Z.100, make suggestions for changes to the Specification and Description
Language or Recommendation ITU-T Z.100, and to provide feedback on proposed changes to the
Specification and Description Language. The Specification and Description Language experts'
group shall publish proposed changes to the Specification and Description Language before they are
implemented.

Requests for changes should either use the Change Request Form (see below) or provide the
information listed by the form. The kind of request should be clearly indicated (error correction,
clarification (or question), simplification, extension, modification or decommitted feature). It is also
important that, for any change other than an error correction, the amount of user support for the
request is indicated.

Meetings of the ITU-T Study Group responsible for Recommendation ITU-T Z.100 should treat all
change requests. For corrections or clarifications, it is allowed that the changes are put on the list of
corrections without consulting users. Otherwise, a list of open items shall be compiled. The
information should be distributed to users:

• as ITU-T white contribution reports;

• by electronic mail to Specification and Description Language mailing lists (such as an
ITU-T informal list for maintenance of the language, and sdlnews@sdl-forum.org);

• other means as agreed by the experts in the Study Group responsible for the Specification
and Description Language.

Study group experts should determine the level of support and opposition for each change and
evaluate reactions from users. A change will only be put on the accepted list of changes if there is
substantial user support and no serious objections to the proposal from more than just a few users.
Finally, all accepted changes will be incorporated into a revised Recommendation ITU-T Z.100.
Users should be aware that until changes have been incorporated and approved by the Study Group
responsible for Recommendation ITU-T Z.100, they are not recommended by ITU-T.

 Rec. ITU-T Z.100 (12/2011) 49

Change Request Form

Please supply the following details.
Type of change:  error correction  clarification (or

question)

  simplification  extension

  modification  decommission

Short summary of change request

Short justification of the change request

Is this view shared in your organization?  yes  no

Have you consulted other users?  yes  no

How many users do you represent?  1-5  6-10

 11-100  over 100

Your name and address

Please attach further sheets with details if necessary.

SDL (ITU-T Z.100) Rapporteur, c/o ITU-T, Place des Nations, CH-1211 Geneva 20, Switzerland.
Fax: +41 22 730 5853, e-mail: SDL.rapporteur@itu.int.

mailto:SDL.rapporteur@itu.int

50 Rec. ITU-T Z.100 (12/2011)

Appendix III

Evolution of the Specification and Description Language

(This appendix does not form an integral part of this Recommendation.)

III.1 Versions of the Specification and Description Language

The Specification and Description Language was first Recommended in 1976. Since then it has had
several major enhancements reflecting both changes in user needs and changes in techniques and
tools, while retaining the state machine model of the original language.

It was first practical to make software tools for the language defined in Recommendation
ITU-T Z.100 as published in the 1988 Blue Book. The language defined in the Blue Book is known
as SDL-88, and the language defined in the next version of the Recommendation was called
SDL-92. Every effort had been made to make SDL-92 a pure extension of SDL-88, without
invalidating the syntax or changing the semantics of any existing SDL-88 usage. In addition,
enhancements were only accepted based on need as supported by several ITU-T member-bodies.
The SDL-92 language was quite successful, but some need for more significant change was
established in the period 1996-2000, which resulted in the definition of SDL-2000, which was first
published in 1999. Tools were already supporting some features of SDL-2000 at this time, but the
legacy investment in SDL-92 of both tools and models coupled with some significant changes in
business outlook meant that full migration of major tools to SDL-2000 was never achieved.

In the period 2000-2008 there was a need to integrate UML with ITU-T languages, which led to a
UML profile for the Specification and Description Language in Recommendation ITU-T Z.109
in 2007. In the 2004 period to 2010 it was appropriate to review the language after a period of
stability, in particular with respect to SDL-2000 features not supported by tools. At the same time
SDL-2000 was maintained and incorporated changes were issued in 2007 consistent with the
Recommendation ITU-T Z.109 of 2007. However, work on the profile in Recommendation
ITU-T Z.109 (2007) also identified some desirable changes to SDL-2000 to better align the
Specification and Description Language and UML. The changes made are documented in more
detail in clause III.4.

III.2 Differences between SDL-88 and SDL-92

The major extensions were in the area of object orientation. While SDL-88 is object-based in its
underlying model, some language constructs had been added to allow SDL-92 to more completely
and uniformly support the object paradigm:

a) packages;

b) system, block, process and service types;

c) system, block, process and service (set of) instances based on types;

d) parameterization of types by means of context parameters;

e) specialization of types, and redefinition of virtual types and transitions.

The other extensions were: spontaneous transition, non-deterministic choice, internal input and
output symbol for compatibility with existing diagrams, a non-deterministic imperative operator
any, non-delaying channel, remote procedure call and value returning procedure, input of variable
field, operator definition, combination with external data descriptions, extended addressing
capabilities in output, free action in transition, continuous transitions in same state with same
priority and m:n connections of channels and signal routes at structure boundaries. In addition, a
number of minor relaxations to the syntax have been introduced.

 Rec. ITU-T Z.100 (12/2011) 51

In a few cases, changes were made to SDL-88 where the definition of SDL-88 was not consistent. It
was possible to overcome the restrictions and changes introduced by an automatic translation
procedure. This procedure was also necessary to convert an SDL-88 document into SDL-92 that
contained names consisting of words that are keywords of SDL-92.

For the output construct, the semantics were simplified between SDL-88 and SDL-92, and this
possibly invalidated some special usage of output (when no to clause is given and there exist
several possible paths for the signal) in SDL-88 specifications. Also, some properties of the equality
property of sorts were changed.

For the export/import construct, an optional remote variable definition was introduced, in order to
align export of variables with the introduced export of procedures (remote procedure). This
necessitated a change to any SDL-88 document that contained qualifiers in import expressions or
introduced several imported names in the same scope with different sorts. In the (rare) cases where
it was necessary to qualify import variables to resolve resolution by context, the change to make
SDL-88 into SDL-92 is to introduce <remote variable definition>s and to qualify them with the
identifier of the introduced remote variable name.

For the view construct, the view definition had been made local to the viewing process or service.
This necessitated a change to SDL-88 documents that contained qualifiers in view definitions or in
view expressions. To make SDL-88 into SDL-92 requires removal of these qualifiers. This did not
change the semantics of the view expressions, since these are decided by their (unchanged) pid
expressions.

The service construct was defined as a primitive concept, instead of being a shorthand form,
without extending its properties. The use of service was not affected by this change, since it has
been used anyway as if it were a primitive concept. The reason for the change is to simplify the
language definition and align it with the actual use, and to reduce the number of restrictions on
service, caused by the transformation rules in SDL-88. As a consequence of this change, the service
signal route construct was deleted; signal routes could be used instead. This was only a minor
conceptual change, and had no implications for concrete use (the syntax of SDL-88 service signal
route and SDL-92 signal route were the same).

The priority output construct has been removed from the language. This construct is replaced by
output to self with an automatic translation procedure.

Some of the definitions of the basic Specification and Description Language were extended
considerably, e.g., signal definition. It should be noted that the extensions were optional, but were
used for utilizing the power introduced by the object-oriented extensions, e.g., to use
parameterization and specialization for signals.

Keywords of SDL-92 that are not keywords of SDL-88 are:

 any, as, atleast, connection, endconnection, endoperator, endpackage, finalized, gate,
interface, nodelay, noequality, none, package, redefined, remote, returns, this, use,
virtual.

III.3 Differences between SDL-92 and SDL-2000

A strategic decision was made to keep the language stable for the period 1992 to 1996, so that at the
end of this period only a limited number of changes were made. These were published as
Addendum 1 to Recommendation ITU-T Z.100 (1996) rather than updating the SDL-92 document.
Although this version was sometimes called SDL-96, there were relatively few changes compared
with those from SDL-88 to SDL-92. The changes were:

a) harmonizing signals with remote procedures and remote variables;

b) harmonizing channels and signal routes;

c) adding external procedures and operations;

52 Rec. ITU-T Z.100 (12/2011)

d) allowing a block or process to be used as a system;

e) state expressions;

f) allowing packages on blocks and processes;

g) parameterless operators.

These were incorporated into Recommendation ITU-T Z.100, together with a number of other
changes to produce a version known as SDL-2000 initially published as Recommendation
ITU-T Z.100 (1999). In this Recommendation, the language defined by Recommendation
ITU-T Z.100 (1993) with Addendum 1 to Recommendation ITU-T Z.100 (1996) is still called
SDL-92. The 2002 version of SDL-2000 (the name was not changed) consolidated into
Recommendation ITU-T Z.100 (1999) a number of technical changes made to correct errors or to
improve the description of the language and to make a few minor extensions. Recommendation
ITU-T Z.100 (2002) no longer included the alternative textual syntax of SDL-2000 that was instead
defined in Recommendation ITU-T Z.106 (2002).

The advantages of language stability, which was maintained over the period from 1992 to 1996,
began to be outweighed by the need to update the Specification and Description Language to
support and better match other languages that are frequently used in combination with the
Specification and Description Language. Also, improvements in tools and techniques had made it
practical to generate software more directly from Specification and Description Language models,
and incorporating better support for this use would provide further significant gains. While
SDL-2000 is largely an upgrade of SDL-92, it was agreed that some incompatibility with SDL-92
was justified; otherwise the resulting language would have been too large, too complex and too
inconsistent. This subclause provides information about the changes from SDL-92 to SDL-2000.

Changes were made in a number of areas, with a focus on simplification of the language and
adjustment made to newer application areas:

a) adjustment of syntactical conventions to other languages with which the Specification and
Description Language is used;

b) harmonization of the concepts of system, block and process to be based on "agent", and
merging of the concept of signal route into the concept channel;

c) interface descriptions;

d) exception handling;

e) support for textual notation of algorithms;

f) composite states;

g) replacement of the service construct with the state aggregation construct;

h) new model for data;

i) constructs to support the use of ASN.1 with the Specification and Description Language
previously in Recommendation ITU-T Z.105 (1995).

Other changes were: nested packages, direct containment of blocks and processes in blocks, out-
only parameters.

On the syntactic level, SDL-2000 is case-sensitive. Keywords are available in two spellings: all
uppercase or all lowercase. Keywords of SDL-2000 that are not keywords of SDL-92 are:

 abstract, aggregation, association, break, choice, composition, continue,
endexceptionhandler, endmethod, endobject, endvalue, exception, exceptionhandler,
handle, method, loop, object, onexception, ordered, private, protected, public, raise,
value.

 Rec. ITU-T Z.100 (12/2011) 53

The following keywords of SDL-92 are not keywords in SDL-2000:

 all, axioms, constant, endgenerator, endrefinement, endservice, error, for, generator,
literal, map, noequal, ordering, refinement, reveal, reverse, service, signalroute, view,
viewed.

The following keywords of SDL-92 are keywords of SDL-2000 to support backwards
compatibility:

 endnewtype, fpar, imported, newtype, returns

A small number of constructs of SDL-92 were not available in SDL-2000: view expression,
generators, block substructures, channel substructures, signal refinement, axiomatic definition of
data, and macro diagrams. These constructs were rarely (if ever) used in SDL-92, and the overhead
of keeping them in the language and tools did not justify their retention.

How most SDL-92 descriptions might be systematically transformed into SDL-2000 was given in
Appendix III of Recommendation ITU-T Z.100 (1999) and subsequent versions up to
Recommendation ITU-T Z.100 (2007), the last edition for SDL-2000.

III.4 Differences between SDL-2000 and SDL-2010

SDL-2010 supports Unicode for identifiers and annotations.

In SDL-2010 it is not allowed for a diagram to contain another diagram in the concrete syntax;
instead the item that is included in another higher level item (for example, a process type in a block
type) is shown as a reference symbol in the container diagram and the contained diagram is drawn
separately. In SDL-2000 the change from a reference to an included item is theoretically done by
transformations to a nested concrete syntax and then this concrete syntax is mapped to the abstract
syntax. However, in reality such nesting of diagrams was not fully supported by tools, nor is it
practical for any but the simplest systems. In SDL-2010 the change from references to the hierarchy
is done by mapping referenced diagrams directly to the abstract grammar. In the concrete syntax the
nested graphical form is no longer part of the language, with several simplifications to the concrete
syntax because only one form of inclusion is provided. It is easy to redraw without nesting any
existing diagrams that use nesting, and probably if a tool has been used to draw the diagrams, the
tool will produce a version without nesting.

SDL-2010 does not include the UML-like concrete syntax of SDL-2000 for type references that
look like UML class symbols. These had limited support in tools, but were a significant amount of
additional concrete syntax in the language definition. The rationale at the time was that providing
this syntax would aid the integration of SDL-2000 and UML descriptions. Since SDL-2000 was
published, the UML profile for the Specification and Description Language [b-ITU-T Z.109] has
been significantly improved, and it is now considered that tools provide the best way of integrating
descriptions, so that additional complication of type reference syntax was not justified.

SDL-2010 does not include the optional <specification area>. Though such a mechanism is needed
to collect all the diagrams together for a complete description, the approach taken is tool dependent
and it does not need to be standardized. Related to the optional <specification area> and to the use
of UML-like type references, the package dependency annotation is no longer part of SDL-2010.

SDL-2010 does not include the UML-like associations introduced in SDL-2000. These were not
well supported and added nothing to the semantics of the language: they just made the language
Recommendation more complex and difficult to understand. It is possible to present the information
in auxiliary diagrams or in other annotation without defining a strict concrete syntax with
constraints in the language Recommendations.

54 Rec. ITU-T Z.100 (12/2011)

SDL-2010 does not include the object data type of SDL-2000. This was not widely supported by
tools, and had a number of complications. However, the need for some of the benefits (in particular
avoiding copying large data items, or multiple copying of data items) are still needed, and further
study is in progress to provide these benefits in another way. As a consequence of removing the
object data type, the following are currently not features of SDL-2010: dynamic sorts and dynamic
binding of operations, virtual methods. However, at the time of initial approval of this
Recommendation further study was in place to produce an additional Recommendation for
SDL-2010 on object-oriented data.

The nameclass and spelling of SDL-2000 are not supported as user features in SDL-2010.

SDL-2010 includes predefined exceptions, but does not provide the exception handling mechanisms
defined in SDL-2000. It is therefore well-defined when exceptions occur. If an exception occurs and
is not handled, how the system subsequently behaves is not defined by the language (the same as
SDL-2000). In most cases, language features or language-defined operations allow a check to be
made before an exception might occur so that the situation is avoided. It is possible to replace user-
defined exceptions by Boolean items. Exception handling pervaded many other features of the
language, and removing it is a significant simplification.

Because exceptions are not handled, remote procedure call timers in SDL-2010 are managed in a
way that differs from that of SDL-2000, as it is no longer possible to use an exception handler with
the same name as the timer. Instead, if the timer expires, control is transferred to a connector that by
default has the same name as the timer or is specifically named.

SDL-2010 has timer supervised states, where a state timer is optionally specified for a state and
leads to a transition if the timer expires before another transition (other than an empty transition
back to the same state) is taken. The timer is set on entering the state and reset for transition except
an empty transition back to the same state.

The semantics of synonym is changed so that in principle it is a read-only variable, though the
syntax is unchanged and it is not expected that tools will need changing. The change was made so
that a synonym is equivalent to a read-only variable in [b-ITU-T Z.109].

SDL-2010 allows the optional specification of a lower bound on the number of instances for an
agent instance set. A Stop-node in an instance set that is already at the Lower-bound causes the
exception OutOfRange to be raised. The number of active instances is returned by the integer built-
in expression active(this) or active(aid) where aid is the name of an agent instance set
definition. If Lower-bound is the same as Maximum-number, the number of instances is static and
fixed when the agent instance set is created.

In SDL-2010, when a signal is placed in the input port, the retained information includes the
identity of the gate on which it arrived at the SDL-2010 destination agent, which allows the taken
transition to be determined by the gate as well as the signal identity by use of a via path. This
enables the differentiation of instances of the same signal on different paths, rather than having to
define a signal name for each path.

Priority input in SDL-2010 has multiple levels of input priority. A signal instance in the input port
for an input with a higher priority is considered before those with lower priority.

In SDL-2010 a signallist definition has the same meaning defining an interface that uses the
listed signals.

In SDL-2010, it is possible to specify the delay between output of signal and the signal being
available for consumption in the destination input port.

 Rec. ITU-T Z.100 (12/2011) 55

Bibliography

[b-ITU-T Z.109] Recommendation ITU-T Z.109 (2012), Specification and Description
Language – Unified modeling language profile for SDL-2010.

[b-ITU-T Z.110] Recommendation ITU-T Z.110 (2008), Criteria for use of formal description
techniques by ITU-T.

[b-ITU-T Z.119] Recommendation ITU-T Z.119 (2007), Guidelines for UML profile design.

Printed in Switzerland
Geneva, 2012

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.100 (12/2011) –
Specification and Description Language - Overview of SDL-2010
	Summary
	History
	FOREWORD
	Table of Contents
	Introduction
	1 Scope
	1.1 Objective
	1.2 Application
	1.3 System specification

	2 References
	3 Definitions
	4 Abbreviations and acronyms
	5 Conventions
	5.1 Specification and Description Language grammars
	5.2 Basic definitions
	5.3 Presentation style
	5.4 Choice of grammar rules and rule names

	6 Tool compliance
	6.1 Definitions of valid tools
	6.2 Conformance

	7 Allocation of features of SDL-2010 to Recommendations
	7.1 Basic SDL-2010 - [ITU-T Z.101]
	7.2 Comprehensive SDL-2010 - [ITU-T Z.102]
	7.3 Shorthand notation and annotation in SDL-2010 - [ITU-T Z.103]
	7.4 Data and action language in SDL-2010 - [ITU-T Z.104]
	7.5 SDL-2010 combined with ASN.1 modules - [ITU-T Z.105]
	7.6 Common Interchange Format for SDL-2010 - [ITU-T Z.106]

	Annex A –
Abstract syntax index
	Annex B –
 BNF syntax index
	Annex C – Compatibility
	Annex D – Data defined in the package Predefined
	D.1 Rules for "=" (equal), "/=" (not equal), comparison, data signatures and literals
	D.2 Package Predefined overview
	Annex E – Reserved for examples
	Annex F – Formal definition
	Appendix I –
Status of ITU-T Z.100, related documents and Recommendations
	Appendix II –
Guidelines for the maintenance of SDL-2010
	II.1 Maintenance of SDL-2010
	Appendix III –
Evolution of the Specification and Description Language
	III.1 Versions of the Specification and Description Language
	III.2 Differences between SDL-88 and SDL-92
	III.3 Differences between SDL-92 and SDL-2000
	III.4 Differences between SDL-2000 and SDL-2010
	Bibliography

