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1 Introduction to SDL
1.1 Imroduction

The purpose of recommending SDL (Specification and Description Language) is to provide
a language for unambiguous specification and description of the behaviour of telecommunications
systems. The specifications and descriptions using SDL are intended to be formal in the sense that
it is possible to analyse and interpret them unambiguously.

The terms specification and description are used with the following meaning:

a) a specification of a system is the description of its required behaviour, and
b) adescription of a system is the description of its actual behaviour.

Note - Since there is no distinction between use of SDL for specification and its use for

description, the term specification is in the subsequent text used for both required behaviour and
actual behaviour.

A system specification, in a broad sense, is the specification of both the behaviour and a

set of general parameters of the system. However SDL aims only to specify the behavioural

aspects of a system; the general parameters describing properties like capacity and weight have to
be described using different techniques.

1.1.1 Objectives
The general objectives when defining SDL have been to provide a language that:
a) is easy to learn, use and interpret;
b) provides unambiguous specification for ordering and tendering;
¢) may be extended to cover new developments;

d) is able to support several methodologies of system specification and design, without
assuming any one of these.

1.1.2 Applications

. The main area of application for SDL is the specification of the behaviour of aspects of real
time systems. Applications include:

a) call processing (e.g. call handling, telephony signailling, metering) in switching
Systems;

b) maintenance and fault treatment (e.g. alarms, automatic fault clearance, routine tests) in
general telecommunications systems; '

¢) system control (e.g. overload control, modification and extension procedures);

d) operation & maintenance functions, network management;
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e) data communication protocols.
SDL can, of course, be used for the functional specification of the behaviour of any object

whose behaviour can be specified using a discrete model; i.e. the object communicates with its
environment by discrete messages.

SDL is a rich language and can be used for both high level informal (and/or formally
incomplete) specifications, semi-formal and detailed specifications. The user must choose the
appropriate parts of SDL for the intended level of communication and the environment in which the
language is being used. Depending on the environment in which a specification is used then many

aspects may be left to the common understanding between the source and the destination of the
specification.

Thus SDL may be used for producing:

a) facility requirements,

b) system specifications,

¢) CCITT Recommendations,

d) system design specifications,

e) detailed specifications,

f) system design (both high level and detailed),

g) system testing
and the user organization can choose the appropriate level of application of SDL.
1.1.3  System specification

An SDL specification defines a system behaviour in a stimulus/response fashion, assuming
that both stimuli and responses are discrete and carry information. In particular a system

specification is seen as the sequence of responses to any given sequence of stimuli.

The system specification model is based on the concept of communicating extended finite
state machines.

SDL also provides structuring concepts which facilitate the specification of large and/or
complex systems. These constructs allow the partitioning of the system specification into
manageable units that may be handled and understood independently. Partitioning may be

performed in a number of steps resulting in a hierarchical structure of units definin g the system at
different levels,

1.2 SDL grammars

SDL gives a choice of two different syntactic forms to use when representing a system; a
Graphic Representation (SDL/GR), and a textual Phrase Representation (SDL/PR). As both are
concrete representations of the same SDL semantics, they are equivalent. In particular they are both
equivalent to an abstract grammar for the corresponding concepts.

Fascicle X.1 — Rec. Z.100 9



A subset of SDL/PR is common with SDL/GR. This subset is called common textual
grammar,

Figure 1.1 shows the relationships between SDL/PR, SDL/GR, the concrete grammars and
the abstract grammar.

abstract grammar

1 1
e |

common textual grammar

| E U { 1
1

graphical grammar

. textual grammar
1 1

SDL/GR

- b e o b o m am m m m-

SDL/PR

FIGURE 1.1
SDL grammars

Each of the concrete grammars has a definition of its own syntax and of its relationship to
the abstract grammar (i.e. how to transform into the abstract syntax). Using this approach there is
only one definition of the semantics of SDL; each of the concrete grammars will inherit the
semantics via its relations to the abstract grammar. This approach also ensures that SDL/PR and
SDL/GR are equivalent.

__ A formal definition of SDL is also provided which defines how to transform a system
specification into the abstract syntax and define how to interpret a specification, given in terms of
the abstract syntax.

1.3 Basic definitions

__Some general concepts and conventions are used throughout this Recommendation, their
definitions are given in the following:

1.3.1 Type, definition and instance

In the Recommendation, the concepts of type, type instance and their relationship are
fundamental. The schema and terminology defined below and shown in Figure 1.2 are used.
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instantiated as
1
I
definition )
instance
FIGURE 1.2
The type concept

Types are defined by means of definitions. A definition of a type defines all properties
associated with that type. A type may be instantiated in any number of instances. Any instance of
a particular type has all the properties defined for that type.

This schema applies to several SDL concepts, e.g. system definitions and system instances,
process definitions and process instances.

Data type is a special class of type (see § 2.3 and § 5).

Note - To avoid cumbersome text, the convention is used that the term instance may be

omitted. For example "a system is interpreted......." means "a system instance is interpreted....".

1.3.2 Environment

Systems specified in SDL behave according to the stimuli received from the external world.
This external world is called the environment of the system being specified.

_ It is assumed that there are one or more process instances in the environment , and therefore
signals flowing from the environment toward the system have associated identities of these process
instances. These processes have PId values different from any PId value in the system (see §
5.6.10)

_ Although the behaviour of the environment is nondeterministic, it must obey the constraints
given by the system specification,

Fascicle X.1 — Rec. Z.100 11



1.3.3 Errors

A system specification is a valid SDL system specification only if it satisfies the syntactic
rules and the static conditions of SDL.

If a valid SDL specification is interpreted and a dynamic condition is violated then an error
occurs. An interpretation of a system specification which leads to an error means that the
subsequent behaviour of the system cannot be derived from the specification.

1.4 Presentation style
1.4.1 Division of text

In § 2, 3, 4, 5 the Recommendation is organised by topics described by an optional
introduction followed by titled enumeration items for:

a) Abstract grammar — described by abstract syntax and static conditions for
well-formedness.

b) Concrete textual grammar — both the common textual grammar used for SDL/PR and
SDL/GR and the grammar used only for SDL/PR. This grammar is described by the
textual syntax, static conditions and well formedness rules for the textual syntax, and the
relationship of the textual syntax with the abstract syntax.

¢) Concrete graphical grammar — described by the graphical syntax, static conditions
and well-formedness rules for the graphical syntax, the relationship of this syntax with the
abstract syntax, and some additional drawing rules (to those in § 2.2.4).

d) Semantics — gives meaning to a type, provides the properties it has, the way in which
an instance of that type is interpreted and any dynamic conditions which have to be fulfilled
for the instance of that type to be well behaved in the SDL sense.

e} Model — gives the mapping for shorthand notations expressed in terms of previously
defined strict concrete syntax constructs.

)  Examples

1.4.2  Titled enumeration items

_ Where a topic has an introduction followed by a titled enumeration item then the
introduction is considered to be an informal part of the Recommendation presented only to aid
understanding and not to make the Recommendation complete. '

If there is no text for a titled enumeration itemn the whole item is omitted.
The remainder of this section describes the other special formalisms used in each titled

enumeration item and the titles used. It can also be considered as an example of the typographical

layout of first level titled enumeration items defined above where this text is part of an introductory
section,

12 Fascicle X.1 — Rec. Z.100



Abstract grammar
The abstract syntax notation is defined in § 1.5.1.

If the titled enumeration item Abstract grammar is omitted, then there is no additional
abstract syntax for the topic being introduced and the concrete syntax will map onto the abstract
syntax defined by another numbered text section,

The rules in the abstract syntax may be referred to from any of the titled enumeration items
by use of the rule name in italics.

The rules in the formal notation may be followed by paragraphs which define conditions
which must be satisfied by a well-formed SDL definition and which can be checked without
interpretation of an instance. The static conditions at this point refer only to the abstract syntax.
Static conditions which are only relevant for the concrete syntax are defined after the concrete
syntax. Together with the abstract syntax the static conditions for the abstract syntax define the
abstract grammar of the language.

Concrete textual grammar

The concrete textual syntax is specified in the extended Backus-Naur Form of syntax
description defined in Recommendation Z.200 paragraph 2.1 (see also § 1.5.2).

The textual syntax is followed by paragraphs defining the static conditions which must be
satisfied in a well-formed text and which can be checked without interpretation of an instance,
Static conditions (if any) for the abstract grammar also apply. '

In many cases there is a simple relationship between the concrete and abstract syntax as a
concrete syntax rule is simply represented by a single rule in the abstract syntax. When the same
name is used in the abstract and concrete syntax in order to signify that they represent the same
concept, then the text "<x> in the concrete syntax represents X in the abstract syntax" is implied in
the language description and is often omitted. In this context case is ignored but underlined
semantic sub-categories are significant,

Concrete textual syntax which is not a shorthand form (derived syntax modelled by other
SDL constructs) is strict concrete textual syntax. The relationship from concrete textual syntax to
abstract syntax is defined only for the strict concrete textual syntax.

The relationship between concrete textual syntax and abstract syntax is omitted if the topic
being defined is a shorthand form which is modelled by other SDL constructs (see Model below).

Concrete graphical grammar

The concrete graphical syntax is specified in the extended Backus-Naur Form of syntax
description defined in § 1.5.3.

The graphical syntax is followed by paragraphs defining the static conditions which must
be satisfied in well-formed SDL/GR and which can be checked without interpretation of an
instance. Static conditions (if any) for the abstract grammar also apply.

The relationship between concrete graphical syntax and abstract syntax is omitted if the topic
being defined is a shorthand form which is modelled by other SDL constructs (see Model below).

Fascicle X.1 — Rec. Z.100 13



In many cases there is a simple relationship between concrete graphical grammar diagrams
and abstract syntax definitions. When the name of a non-terminal ends in the concrete grammar
with the word "diagram™ and there is a name in the abstract grammar which differs only by ending
in the word definition, then the two rules represent the same concept. For example, <system
diagram> in the concrete grammar and System-definition in the abstract grammar correspond.

Expansion in the concrete syntax arising from such facilities as remote definitions (§ 2.4.1),
macros (§ 4.2) and literals mappings (§ 5.4.1.15) etc., must be considered before the
correspondence between the concrete and the abstract syntax.

Semantics

Properties are used in the well-formedness rules which involve either the type or other types
which refer to that type.

An example of a property is the set of valid input signal identifiers of a process. This
‘property is used in the static condition "For each state-node, all input signal-identifiers (in the valid
Input signal set) appear in either a Save-signalset or an Input-node."

_ All instances have an identity property but unless this is formed in some unusual way this
identity property is determined as defined by the general section on identities in § 2. Therefore this
is not usually mentioned as an identity property. Also it has not been necessary to mention
sub-components of definitions contained by the definition since the ownership of such
sub-components is obvious from the abstract syntax. For example it is obvious that a block
definition "has” enclosed process definitions and/or a block substructure definition.

__ Properties are static if they can be determined without interpretation of an SDL system
specification and are dynamic if an interpretation of the same is required to determine the property.

The interpretation is described in an operational manner. Whenever there is a list in the
Abstract Syntax, the list is interpreted in the order given. That is, the Recommendation describes
how the instances are created from the system definition and how these instances are interpreted
within an "abstract SDL machine".

Dynamic conditions are conditions which must be satisfied during interpretation and cannot
be checked without interpretation. Dynamic conditions may lead to errors (see § 1.3.3).

Model

_ Some constructs are considered to be "derived concrete syntax™ (or a shorthand) for other
equivalent concrete syntax constructs. For example omitting an input for a signal is derived
concrete syntax for an input for that signal followed by a null transition back to the same state.

Sometimes such "derived concrete syntax", if expanded, would give rise to an extremely

large (possibly infinite) representation. Nevertheless, the semantics of such a specification can be
determined.

Examples

The titled enumeration item Examples contains examples.

14 Fascicle X.1 — Rec. Z.100



1.5  Mewlanguages

For the definition of properties and syntaxes of SDL. different metalanguages have been
used according to the particular needs.

In the following an introduction of the metalanguages used is given; where appropriate only
references to textbooks or specific ITU publications are given.
1.5.1 Mewalv

The following subset of Meta IV is used to describe the abstract syntax of SDL.

_ A definition in the abstract syntax can be regarded as a named composite object (a tree)
defining a set of sub-components.

For example the abstract syntax for variable definition is
Variable-definition = Variable-name Sort-reference-identifier

which defines the domain for the composite object (tree) named Variable-definition. This object
consists of two sub-components which in turn might be trees.

The Meta IV definition
Sort-reference-identifier = Identifier

expresses that a Sort-reference-identifier is an Identifier and cannot therefore syntactically be
distinguished from other identifiers.

An object might also be of some elementary (non-composite) domains. In the context of
SDL these are:

a) Integer objects

example

Number-gf-instances = Intg Intg

Number-of-instances denotes a composite domain containing two integer (Inzg ) values
denoting the initial number and the maximum number of instances.

b) Quotation objects

These are represented as any bold face sequence of uppercase letters and digits.
example

Destination-process = Procéss-identiﬁer | ENVIRONMENT

The Destination-process is either a Process-identifier or the environment which is denoted
by the quotation ENVIRONMENT.

Fascicle X.1 — Rec. Z.100 15



¢) Token objects

Token denotes the domain of tokens. This domain can be considered as consisting of a
potentially infinite set of distinct atomic objects for which no representation is required.

example
Name i Token

A name consists of an atomic object such that any Name can be distinguished from any
other narne.

d) Unspecified objects

An unspecified object denotes domains which might have some representation, but for
which the representation is of no concern in this Recommendation.

example
Informal-text
Informal-text contains an object which is not interpreted.

The following operators (constructors) in BNF (see §1.5.2) are also used in the abstract syntax:
"#" for possible empty list, "+" for non-empty list, "I" for alternative, and "[" "1" for optional.

Parentheses are used for grouping of domains which are logically related.

Finally, the abstract syntax uses another postfix operator "-set" yielding a set (unordered collection
of distinct objects) . Example

Process-graph i Process-start-node State-node-set

A Process-graph consists of a Process-start-node and a set of State-nodes

1.5.2 BNF

In the Backus Naur Form a terminal symbol is either indicated by not enclosing it within
angular brackets (that is the less-than sign and greater-than sign, < and >) or it is one of the two
representations <name> and <character string>. Note that the two special terminals <name> and
<character string> may also have semantics stressed as defined below.

The angular brackets and enclosed word(s) are either a non-terminal symbol or one of the
two terminals <character string> or <name>, Syntactic categories are the non-terminals indicated by
one or more words enclosed between angular brackets. For each non-terminal symbol, a
production rule is given either in concrete textual grammar or in graphical grammar. For example

<view expression> =
VIEW (<variable identifier>, <expression>)

A production rule for a non-terminal symbol consists of the non-terminal symbol at the

16 Fascicle X.1 — Rec. Z.100



left-hand side of the symbol ::=, and one or more constructs, consisting of non-terminal and/or
terminal symbol(s) at the right-hand side. E.g. <view expression>, <variable identifier> and
<expression> in the example above are non-terminals; VIEW, the parentheses and the comma are
terminal symbols.

Sometimes the symbol includes an underlined part. This underlined part stresses a semantic
aspect of that symbol. E.g. <variable identifier> is syntactically identical to <identifier>, but
semantically it requires the identifier to be a variable identifier.

At the right-hand side of the ::= symbol several alternative productions for the non-terminal
can be given, separated by vertical bars (1). For example

<block area> ::=

<graphical block reference>
! <block diagram>

expresses that a <block area> is either a <graphical block reference> or a <block diagram>,

. Syntactic elements may be grouped together by using curly brackets ({ and }), similar to the
parentheses in Meta IV (see § 1.5.1). A curly bracketed group may contain one or more vertical
bars, indicating alternative syntactic elements. For example

<block interaction area> ::=
{<block area> | <channel definition area>}+

Repetition of curly bracketed groups is indicated by an asterisk (*) or plus sign (+). An
asterisk indicates that the group is optional and can be further repeated any number of times; a plus
sign indicates that the group must be present and can be further repeated any number of times. The
example above expresses that a <block interaction area> contains at least one <block area> or

<channel definition area> and may contain several more <block area>s and <channel definition
area>s.

If syntactic elements are grouped using square brackets ([ and]), then the group is optional,
For example

<process heading> ::=
PROCESS <process identifier> [<formal parameters>]

expresses that a <process heading> may, but need not, contain <formal parameters>.

1.5.3 Metalanguage for graphical grammar

For the graphical grammar the metalanguage described in § 1.5.2 is extended with the -
following metasymbols:

a) contains

b) is associated with
¢) is followed by

d) is connected to

e) set

The set metasymbol is a postfix operator operating on the immediately preceding syntactic
¢lements within curly brackets, and indicating an (unordered) set of items. Each item may be any

Fascicle X.1 — Rec. Z.100 17



group of syntactic elements, in which case it must be expanded before applying the set
metasymbol.

Example:

{{<system text area>}* {<macro diagram>}* <block interaction area>)} set

is a set of zero or more <system text area>s, zero or more <macro diagram>s and one <block
interaction area>.

All the other metasymbols are infix operators, having a graphical non-terminal symbol as
the left-hand argument. The right-hand argument is either a group of syntactic elements within curly
brackets or a single syntactic element. If the right-hand side of a production rule has a graphical
non-terminal symbol as the first element and contains one or more of these infix operators, then the
graphical non-terminal symbol is the left-hand argument of each of these infix operators. A
graphical non-terminal symbol is a non-terminal having the word "symbol" immediately before the
greater than sign >.

) The metasymbol contains indicates that its right-hand argument should be placed within
its left-hand argument and the attached <text extension symbol>, if any, Example:

<graphical block reference> ::=
<block symbol> contains <block name:>

<block symbol> ::=

means the following

< block name >

_ The metasymbol is associated with indicates that its right-hand argument is logically
associated with its left-hand argument (as if it were "contained” in that argument, the unambiguous
association is ensured by appropriate drawing rules).

The metasymbol is followed by means that its right-hand argument follows (both
logically and in drawing) its left-hand argument.

The metasymbol is connected to means that its right-hand argument is connected (both
logically and in drawing) to its left-hand argument. ,
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2 Basic SDL
2.1  Imtroduction
_ An SDL system has a set of blocks. Blocks are connected to each other and to the
environment by channels. Within each block there are one or more processes. These processes
commumnicate with one another by signals and are assumed to execute concurrently.
§ 2 has been been divided into eight main topics:
a) General rules

basic SDL concepts such as lexical rules and identifiers, visibility rules, informal text,
partitioning of diagrams, drawing rules, comments, text extensions, text symbols.

b} Basic data concepts
basic SDL data concepts such as values, variables, expressions.
c) System structure

contains SDL concepts dealing with the general structuring concepts of the language. Such
concepts are system, block, process, procedure.

d) Communication

contains communication mechanisms used in SDL such as channel, signal route, signal.

e) Behaviour

the constructs that are relevant to the behaviour of a process: general connectivity rules of a
process or procedure graph, variable definition, start, state, input, save, label, transition.

f) Action

active constructs such as task, process create, procedure call, output, decision.
g) Timers

Timer definition and Timer primitives.

h) Examples

examples referred to from the other topics.

Fascicle X.1 — Rec. Z.100 19



2.2 General rules

2.2.1 Lexical rules

Lexical rules define lexical units. Lexical units are the terminal symbols of the Concrete
textual syntax.

<lexical unit> 1=
<name:>
| <character string>
[ <special>
| <composite special>
| <note>
| <keyword>

<name> ::=
<word> {<underline> <word> }*

<word> =
{<alphanumeric> | <full stop>}*
<alphanurneric>
{<alphanumeric> | <full stop>}*

<alphanumeric> ::=
<letter>
| <decimal digit>
| <national>
<letter> ::=
AIBICIDIEIFIGIHIIIJIKILIM
| NIOIPIQIRISITIUIVIWIXIY!IZ

| alblcldlelflglhliljlkillm
I nl ol pl gl rls!tlulvlwlxlylz

<decimal digit> ::=
0111213141516171819

<national> ::=

®@a %

I

I

I

: <left square bracket>
\

| <right square bracket>
| <left curly bracket>

| <vertical line>

| <right curly bracket>

| <overline>

[ <upward arrow head>
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<left square bracket> ::=

L

<right square bracket> ::=
<left curly bracket> 1=

<vertical line> =
I

<right curly bracket> ::=

<overline> ::=

~

<upward arrow head> ::=
A

<full stop> ::=
<underline> ::=
<character string> ::=
<apostrophe> {<alphanumeric>
I <other character>
I <special>
| <full stop>
| <underline>
I <space>
! <apostrophe> <apostrophe> }* <apostrophe>
<text> =
{<alphanumeric>
I <other character>
I <special>
| <full stop>
I <underline>
! <space>
I <apostrophe>}*
<apostrophe> ::=

<other character> ::=
71 &%

<special> ::=

+-TH 0> *C) L <=1
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<composite special> ::=
I ==
I /=
I <=
I >=
I/
I
I
I
|
I

<note> =
* <text> */

<keyword> ::=

I

I

I

I

I

I

|

I

|

l

I CONSTANT

| CONSTANTS

|  CREATE

|  DCL

I DECISION

| DEFAULT

| ELSE

| ENDALTERNATIVE
| ENDBLOCK

|  ENDCHANNEL
| ENDDECISION
| ENDGENERATOR
|  ENDMACRO

|  ENDNEWTYPE

|  ENDPROCEDURE
| ENDPROCESS

|  ENDREFINEMENT
| ENDSELECT

| ENDSERVICE

| ENDSTATE

| ENDSUBSTRUCTURE
| ENDSYNTYPE

| ENDSYSTEM

I ENV

I ERROR

I EXPORT

| EXPORTED
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EXTERNAL
FI

FOR

FPAR

FROM
GENERATOR
IF

IMPORT
IMPORTED

IN

INHERITS
INPUT

JOIN
LITERAL
LITERALS
MACRO
MACRODEFINITION
MACROID
MAP

MOD
NAMECLASS
NEWTYPE
NEXTSTATE
NOT

NOW
OFFSPRING
OPERATOR
OPERATORS

SELECT

SELF

SENDER
SERVICE

SET

SIGNAL
SIGNALLIST
SIGNALROUTE
SIGNALSET
SPELLING
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START

STATE

STOP

STRUCT
SUBSTRUCTURE
SYNONYM
SYNTYPE
SYSTEM

TASK

THEN

XOR

The <space> represents the CCITT Alphabet No 5 character for a space.

The <national> characters are represented above as in the International Reference Version of
CCITT Alphabet No. 5 (Recommendation T.50). The responsibility for defining the national
representations of these characters lies with national standardisation bodies.

All <letter>s are always treated as if uppercase, except within <character string>. (The
treatment of <national>s may be defined by national standardisation bodies.)

A <lexical unit> is terminated by the first character which cannot be part of the <lexical unit>
according to the syntax specified above. When an <underline> character is followed by one or
more control characters (control characters are defined as in Recommendation T.50) or spaces, all
of these characters (including the <underline>) are ignored, e.g. A_ B denotes the same <name>
as AB. This use of <underline> allows <lexical unit>s to be splitted over more than one line.

. When an <underline> character is followed by a <word> in a <name>, it is allowed to
specify one or more control characters or spaces instead of the <underline> character, as long as

one of the <word>s enclosing the <underline> character does not form a <keyword>, e.g. A B
denotes the same <name> as A_B. '

However, there are some cases where the absence of <underline> in <name>s is
ambiguous. The following rules therefore apply:

1. The <underline>s in the <name> in a <path item> must be specified explicitly.

2. When one or more <name>s or <identifier>s may be followed directly by a <sort> (e.g.
<variable definition>s, <view definition>s ) then the <underline>s in these <name>s or
<identifier>s must be specified explicitly, :

3. When a <data definition> contains <generator instantiations> then the <underline>s in the
<sort name> following the keyword NEWTYPE must be specified explicitly.

A control character has the same meaning of a space.
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~ Control characters and spaces may appear any number of times between two <lexical
unit>s. Any number of control characters and spaces between two <lexical unit>>s has the same
meaning as one space.

The character / immediately followed by the character * always starts a <note>.The
character * immediately followed by the character / in a <note> always terminates the <note>. A

<note> may be inserted before or after any <lexical unit>.

Special lexical rules apply within a <macro body> (see § 4.2.1).

2.2.2 Visibility rules and identifiers

Abstract grammar

Identifier T Qualifier Name
Qualifier = Path-item +
Path-item = System-qualifier |
Block-qualifier |
Block-substructure-qualifier |
Signal-qualifier |
Process-qualifier |
Procedure-qualifier |
Sort-qualifier
System-qualifier System-name
Block-qualifier Block-name
Block-substructure-qualifier Block-substructure-name
Process-qualifier Process-name
Procedure-qualifier Procedure-name
Signal-qualifier Signal-name
Sort-qualifier Sort-name
Name Token
Concrete textual grammar
<identifier> ::=
[<qualifier>] <name>
<qualifier> ::=
<path item> {/<path item>}*
<path item> ::=

<scope unit class> <name>

<scope unit class> 1=

I
|
I
I
I

SYSTEM

BLOCK
SUBSTRUCTURE
SIGNAL
PROCESS
PROCEDURE
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I TYPE
l SERVICE

There is no corresponding abstract syntax for the <scope unit class> denoted by SERVICE. The
<name>s and <identifier>s of entities defined in a <service definition> are transformed into unique

<name>s respectively <identifier>s defined in the <process definition> containing the <service
definition>,

The <qualifier> reflects the hierarchical structure from the system level to the defining context, and
such that the system level is the textual leftmost part.

It is allowed to omit some of the leftmost <path item>s (except for <remote definition>s, see
§ 2.4.1), or the whole <qualifier>>. When the whole <qualifier>> is omitted and the <name> denotes
an entity of the entity class containing variables, synonyms, literals and operators (see Semantics
below), the binding of the <name> to a definition must be resolvable by the actual context. In other
cases the <identifier> is bound to an entity that has its defining context in the nearest enclosing
scope unit in which the <qualifier> of the <identifier> is the same as the rightmost part of the full
<qualifier> denoting this scope unit. If the <identifier> does not contain a <qualifier>, then the
requirement on matching of <qualifier>s is omitted.

A subsignal must be qualified by its parent signal unless no other visible signal exists at that place
which have the same <name>.

Resolution by context is possible in the following cases:

a) The scope unit in which the <name> is used is not a <partial type definition> and it
contains a definition having that <name>. The <name> will be bound to that definition.

b) The scope unit in which the <name> is used does not contain any definition having that
<name> or the scope unit is a <partial type definition>, and in the whole <system
definition> there exists exactly one visible definition of an entity that has the same <name>
and to which the <name> can be bound without violating any static properties (sort
compatibilty etc) of the construct in which the <name> occurs. The <name> will be bound
to that definition.

Only visible identifiers may be used, except for the <variable identifier> in a <view definition> and
for the <identifier> used in place of a <name> in a referenced definition (that is a definition taken
out from the <system definition>).

Semantics

Scope units are defined by the following schema:

Concrete textual grammar Concrete graphical grammar
<system definition> <system diagram>

<block definition> <block diagram>

<process definition> <process diagram>
<procedure definition> <procedure diagram>

<block substructure definition> <block substructure diagram:>
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<channel substructure definition>  <channel substructure diagram>
<service definition> <service diagram>

<partial type definition>

<signal refinement>

A scope unit has a list of definitions attached. Each of the definitions defines an entity belonging
to a certain entity class and having an associated name. For a <partial type definition>, the attached
list of definitions consists of the <operator signature>s, the <literal signature>s and any <operator
signature> and <literal signature>s inherited from a parent sort, from a generator instance or
implied by the use of shorthand notations such as the keyword ORDERING (see § 5.4.1.8). Note,
that a <view definition> does not define an entity.
Although <infix operator>s, <operator>s with an exclamation and <character string>s have their
own syntactical notation they are in fact <name>s, they are in the Abstract syntax represented by a
name. In the following, they are treated as if they (also syntactically) were <name>s. However
<state name>s, <connector name>s, <generator formal name>s, <value identifier>s in equations,
<macro formal name>s and <macro name>s have special visibility rules and cannot therefore be
qualified. <state name>s and <connector name>s are not visible outside a <process body>,
<procedure body> or <service body> respectively. Other special visibility rules are explained in the
appropriate sections.

Each entity is said to have its defining context in the scope unit which defines it. Entities are
referenced by means of <identifier>s.

The <qualifier> within an <identifier> specifies uniquely the defining context of the <name>.
The following entity classes exist:

a) system

b) blocks

¢) channels, signal routes

d) signals, timers

€) processes

f) procedures

g) variables (including formal parameters), synonyms, literals, operators
h) sorts

1) generators

j) imported entities

k) signal lists

I} services

m) block substructures, channel substructures

An <identifier> is said to be visible in a scope unit

a) if the name part of the <identifier> has its defining context in that scope unit, or
b) if it is visible in the scope unit which defined that scope unit, or

c) if the scope unit contains a <partial type definition> in which the <identifier> is defined,
or

d) if the scope unit contains a <signal definition> in which the <identifier> is defined.

No two definitions in the same scope unit and belonging to the same entity class can have the same
<name>. An exception is <operator signature> and <literal signature> definitions in the same
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<partial type definition> (see § 5.2.2): two or more operators and/or literals can have the same
<name> with different <arguments sort>s or different <result> sort.

Another exception is imported entities. For this entity class the pairs of (<import name>>,<sort>) in
<import definition>s in the scope unit must be distinct.

In the concrete textual grammar, the optional name or identifier in a definition after the ending
keywords (ENDSYSTEM, ENDBLOCK, etc.) must be syntactically the same as the name or
identifier following the corresponding commencing keyword (SYSTEM, BLOCK, etc.
respectively).

2.2.3. Informal text

Abstract grammmar

Informal-text

Concrete textual grammar

<informal text> 1=
<character string>

Semantics

If informal text is used in an SDL system specification, it means that this text is not formal SDL,
1.e., SDL does not give it any semantics. The semantics of the informal text can be defined by some
other means,

2.2.4 Drawing rules

The size of the graphical symbols can be chosen by the user.

Symbol boundaries must not overlay or cross. An exception to this rule applies for line
symbols, i.e. <channel symbol>, <signal route symbol>, <create line symbol>, <flow line
symbol>, <solid association symbol> and <dashed association symbol>, which may cross each
other. There is no logical association between symbols which do cross.

The metasymbol is followed by implies a <flow line symbol>.

Line symbols may consist of one or more straighf line segments.

An arrowhead is required on a <flow line symbol>, when it enters another <flow line
symbol>, an <out-connector symbol> or a <nextstate symbol>. In other cases, arrowheads are

optional on <flow line symbol>s. The <flow line symbol>s are horizontal or vertical.

Vertical mirror images of <input symbol>, <output symbol>, <comment symbol> and
<text extension symbol> are allowed.

The righthand argument of the metasymbol is associated with must be closer to the
lefthand argument than to any other graphical symbol. The syntactical elements of the righthand
argument must be distinguishable from each other.

Text within a graphical symbol must be read from left to right, starting from the upper left

corner. The righthand edge of the symbol is interpreted as a newline character, indicating that the
reading must continue at the leftmost point of the next line (if any).
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2.2.5 Partitioning of diagrams

The following definition of diagram partitioning is not part of the Concrete graphical
grammar, but the same metalanguage is used.

<page>ii=
<frame symbol> contains
{<heading area> <page number area>
{<syntactical unit>)*}

<heading area> ::=
<implicit text symbol> contains <heading>

<page number area> ::=
<implicit text symbol> contains [<page number> [(<number of pages>)]]

<page number> ::=
<literal name>>

<number of pages> ::=
<natural literal name>

The <page> is a starting non-terminal, therefore it is not referred to in any production rule,
A diagram may be partitioned into a number of <page>s, in which case the <frame symbol>
delimiting the diagram and the diagram <heading> are replaced by a <frame symbol> and a
<heading> for each <page>.

_The user of SDL may choose <frame symbol>s to be imoplied by the boundary of the media
on which diagrams are reproduced.

The <implicit text symbol> is not shown, but implied, in order to have a clear separation
between <heading area> and <page number area>. The <heading area> is placed at the upper left
corner of the <frame symbol>. <page number area> is placed at the upper right corner of the
<frame symbol>. <heading> and <syntactical unit> depends on the type of diagram.

2.2.6 Comment
A comment is a notation to represent comments associated with symbols or text.

In the Concrete textual grammar two forms of comments are used. The first form is the
<note> defined in § 2.2.1.

Examples are shown in Figure 2.9.1 and in Figure 2.9.3.

The concrete syntax of the second form is:

<end> ::=
[<comment>];
<comment> :;=
COMMENT <character string>

An example is shown in Figure 2.9.2.

In the Concrete graphical grammar the following syntax is used:
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<comment area> ::=
<comment symbol> contains <text>
is connected to <dashed association symbol>

<comment symbol> ::=

<dashed association symbol> ::=

One end of the <dashed association symbol> must be connected to the middle of the vertical
segment of the <comment symbol>,

A <comment symbol> can be connected to any graphical symbol by means of a <dashed
association symbol>, The <comment symbol> is considered as a closed symbol by completing (in
imagl,)ination) the rectangle to enclose the text. It contains comment text related to the graphical
symbol.

An example is shown in Figure 2.9.4 in § 2.9.

2.2.7 Text extension
<text extension area> =
<text extension symbol> contains <text>
is connected to <solid association symbol>

<text extension symbol> ::=
<comment symbol>

<solid association symbol> ::=

One end of the <solid association symbol> must be connected to the middle of the vertical
segment of the <text extension symbol>.

A <text extension symbol> can be connected to any graphical symbol by means of a <solid
association symbol>, The <text extension symbol> is considered as a closed symbol by completing
(in imagination) the rectangle.

_ The text contained in the <text extension symbol> is a continuation of the text within the
graphical symbol and is considered to be contained in that symbol.

2.2.8 Text symbol

<text symbol> is used in any <diagram>. The content depends on the diagram.
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<text symbol> ::=

2.3 Basic data concepts

The concept of data in SDL is defined in §5; that is the SDL data terminclogy, the facility to
define new data types and predefined data facilities.

_Occurrences of data are in data type definitions, expressions, the application of operators,
variables, values and literals.

2.3.1 Data type definitions

Data in SDL is principally concemned with data types. A data type defines sets of values, a
set of operators which can be applied to these values, and a set of algebraic rules (equations)
defining the behaviour of these operators when applied to the values. The values, operators and
algebraic rules collectively define the properties of the data type. These properties are defined by
data type definitions.

SDL allows the definition of any needed data type, including composition mechanisms
(composite types), subject only to the requirement that such a definition can be formally specified.
By contrast, for programming languages there are implementation considerations which require that
the set of available data types and, in particular, the composition mechanisms provided (array,
structure, etc.) be limited.

2.3.2 Variable

_Variables are objects which can be associated with a value by assignment. When the
variable is accessed, the associated value is returned.

2.3.3 Values and literals.

A set of values with certain characteristics is called a sort. Operators are defined from and to
values of sorts. For instance the application of the operator for summation ("+") from and to values
of the Integer sort is valid, whereas summation of the Boolean sort is not.

All sorts have at least one value. Each value belongs to one and only one sort, that is sorts
never have values in common.

For most sorts there are literal forms to denote values of the sort (for example for Integers
"2" is used rather than "1 + 1". There may be more than one literal to denote the same value (for
example 12 and 012 can be used to denote the same Integer value). The same literal denotation may
be used for more than one sort; for example 'A’ is both a character and a character string of length
one. Some sorts may have no literals; for example, a composite value often has no literals of its
own but has its values defined by composition operations on values of its components.

2.3.4 Expressions
An expression denotes a value. If an expression does not contain a variable, for instance if it

is a literal of a given sort, each occurrence of the expression will always denote the same value. An
expression which contains variables may be interpreted as different values during the interpretation
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of an SDL system depending on the value associated with the variables.

2.4 System structure
2.4.1 Remote definitions

A <remote definition> is a definition that has been removed from its defining context to gain
overview. It is similar to a macro definition (see § 4.2), but it is "called" from exactly one place (the
defining context) using a reference.

Concrete grammar

<remote definition> ;=
<definition> | <diagram>

< system definition> ::=
{<textual system definition> | <system diagram>}
{ <remote definition>}*

<definition> ::=

<block definition>

<process definition>

<procedure definition>

<block substructure definition>
<channel substructure definition>
<service definition>

<macro definition>

<diagram> =

<block diagram>

<process diagram>

<procedure diagram>

<block substructure diagram>
<channel substructure diagram>
<service diagram>

<macro diagram>

For each <remote definition>, except for <macro definition> and <macro diagram> there

must be a reference in the <system definition>, the <system diagram>, or another <remote
definition>,

For each reference there must be a corresponding <remote definition:.

In each <remote definition> there must be an <identifier> immediately after the initial
keyword. The <qualifier> in this <identifier> must be either complete, or omitted. If the
<qualifier> is omitted, the <name> must be unique in the system definition, within the entity class
for the <remote definition>. It is not allowed to specify a <qualifier> in the <identifier> after the
mnitial keyword for definitions which are not <remote definition>s (i.e. a <name> must be
specified for normal definitions).
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Semantics

Before a <concrete system definition> can be analyzed, each reference must be replaced by the
corresponding <remote definition>. In this replacement the <identifier> of the <rernote definition>
is replaced by the <name> in the reference. '

2.4.2 System
Abstract grammar

System-definition ™ System-name
Block-definition-set
Channel-definition-set
Signal-definition-set
Data-type-definition
Syn-type-definition-set
System-name = Name

A System-definition has a name which can be used in qualifiers.
There must be at least one Block-definition contained in the System-definition.

The_ definitions of all the signals, channels, data types, syntypes, used in the interface with the
environment and between blocks of the system are contained in the System-definition.
All predefined data are regarded to be defined at system level.

Concrete textual grammar

<textual system definition> ::=
SYSTEM <gystem name> <end>
{<block definition>
! <textual block reference>
] <channel definition>
f <signal definition>
f <signal list definition>
! <select definition>
! <macro definition>
I <data definition>}+
ENDSYSTEM [<system name>] <end>

<textual block reference> =
BL.OCK <block name> REFERENCED <end>

The <select definition> is defined in § 4.3.3, <macro definition> in § 4.2, <data definition> is
defined in § 5.5.1, <block definition> is defined in § 2.4.3 <channel definition> is defined in §
2.5.1. <signal definition> is defined in § 2.5.4. <signal list definition> is defined in § 2.5.5.

An example of <system definition> is shown in Figure 2.9.5 in § 2.9.,
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Concrete graphical grammar

<system diagram> ::=
<frame symbol> contains
{<system heading>
{ {<system text area>}*
{<macro diagram>} *
<block interaction area> }set }

<frame symbol> ::=

<system heading> ==
SYSTEM <gystem name>

<system text area> 1=
<text symbol> contains
{ <signal definition>
I <signal list definition>
! <data definition>
I <macro definition>
I <select definition>}*

<block interaction area> ::=
{<block area>
I <channel definition area>}+

<block area> ::=

<graphical block reference>
[ <block diagram>

<graphical block reference> ::=
<block symbol> contains <block name>

<block symbol> ::=

The <select definition> is defined in § 4.3.3, <macro definition> and <macro diagram> in § 4.2,
<data definition> is defined in § 5.5.1, <block diagram> is defined in § 2.4.3 <channel definition

area> is defined in § 2.5.1. <signal definition> is defined in § 2.5.4. <signal list definition> is
defined in § 2.5.5.

The Block-definition-set in the Abstract grammar corresponds to the <block area>s, the
Channel-definition-set corresponds to the <channel definition area>.

An example of a <system diagram> is shown in Figure 2.9.6.

34 Fascicle X.1 — Rec. Z.100



Semantics
A System-definition is the SDL representation of a specification or description of a system.

A system is separated from its environment by a system boundary and contains a set of blocks.
Communication between the system and the environment or between blocks within the system can
only take place using signals. Within a system, these signals are conveyed on channels. The
channels connect blocks to one another or to the system boundary.

Before interpreting a System-definition a consistent subset (see § 3.2.1) is chosen. This subset is
called an instance of the System-definition. A system instance is an instantiation of a system type
defined by a System-definition.The interpretation of an instance of a System-definition is
performed by an abstract SDL machine which thereby gives semantics to the SDL concepts. To
Interpret an instance of a System-definition is to:

a) to initiate the system time

b) to interpret the blocks and their connected channels which are contained in the

consistent partitioning subset selected.

2.4.3 Block
Abstract grammar

Block-definition > Block-name
Process-definition-set
Signal-definition-set
Channel-to-route-connection-set
Signal-route-definition-set
Data-type-definition
Syn-type-definition-set
[Block-substructure-definition

Block-name = Name

Unless a Block-definition contains a Block-substructure-definition there must be at least one
Process-definition and Signal-route-definition within the block.

It is possible to perform partitioning activities on the blocks specifying
Block-substructure-definition, this feature of the language is treated in § 3.2.2

Concrete textual grammar

<block definition> ::=

BLOCK {<block name>I<block identifier>} <end>

{<signal definition>

I <signal list definition>

I <process definition>

I <textual process reference>
I <signal route definition>
I
I
|
I

<macro definition>

<data definition>

<select definition>

<channel to route connection>}*

[<block substrucure definition>I<textual block substructure reference>]
ENDBLOCK [ <block name>} <block identifier> ] <end>
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<textual process reference> 1=
PROCESS <process name> [<number of instances>] REFERENCED <end>

<signal definition> is defined in § 2.5.4, <signal list definition> in § 2.5.5, <process definition> in
§ 2.4.4, <signal route definition> in § 2.5.2, <channel to route connection> in § 2.5.3. <block
substructure definition> and <textual block substructure reference> are defined in § 3.2.2, <macro
definition> in § 4.2.2 and <data definition> in § 5.5.1.

An example of <block definition> is shown in Figure 2.9.7 in § 2.9.

Concrete graphical grammar

<block diagram> ::=
<frame symbol>
contains {<block heading>
{ {<block text area>}* {<macro diagram>}*
[<process interaction area> ] [<block substructure area>]}set }
is associated with {<channel identifier>}*

The <channel identifier> identifies a channel connected to a signal route in the <block diagram>. It
is placed outside the <frame symbol> close to the endpoint of the signal route at the <frame
symbol>. If the <block diagram> does not contain a <process interaction area>, then it must
contain a <block substructure area>.

<block heéding> n= :
BLOCK {<block name> | <block identifier> }

<block text area> 1=
<system text area>

<process interaction area> ::=
{ <process area>
! <create line area>
I <signal route definition area>}+

<process area> ::=
<graphical process reference> | <process diagram>

<graphical process reference> ::=
<process symbol> contains [ <process name> [<number of instances>]}

-l

<number of instances> is defined in § 2.4.4.

<process symbol> ::=

<create line area> ;=
<create line symbol>
is connected to {<process area> <process area>}
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<create line symbol> ::=
SETEY

The arrowhead on the <create line symbol> indicates the <process area> upon which the create
action is performed.

The <process diagram>> is defined in § 2.4.4, <signal route definition area> in § 2.5.2, <block
substructure area> in § 3.2.2, <macro diagram> in § 4.2.2.

An example of <block diagram> is shown in Figure 2.9.8 in § 2.9.

Semantics

A block definition is a container for one or more process definitions of a system and/or a block
substructure, Purpose of the block definition is the grouping of processes that as a whole perform a
certain function, either directly or by a block substructure.

A block definition provides a static communication interface by which its processes can
communicate with other processes.In addition it provides the scope for process definitions.

To interpret a block is to create the initial processes in the block.

2.4.4 Process

Abstract grammar

Process-definition = Process-name
Number-of-instances
Process-formal-parameter *
Procedure-definition-set
Signal-definition-set
Data-type-definition
Syn-type-definition-set
Variable-definition-set
View-definition-set
Timer-definition-set

Process-graph
Number-of-instances : Intg Intg
Process-name = Name
Process-graph i Process-start-node

State-node-set

Process-formal-parameter : Variable-name
Sort-reference-identifier
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Concrete textual grammar

<process definition> ::=
PROCESS {<process identifier>| <process name> }
[<number of instances>] <end>
[<formal parameters> <end>] [<valid input signal set>]
{<signal definition>
<signal list definition>
<procedure definition>
<textual procedure reference>
<macro definition>
<data definition>
<variable definition>
<view definition>
<select definition>
<import definition>
<timer definition>} *
{<process body>
I <service decomposition>}
ENDPROCESS [ <process name>! <process identifier> ] <end>

<textual procedure reference> =
PROCEDURE <procedure name>> REFERENCED <end>

<valid input signal set> =
SIGNALSET [<signal list>] <end>

<process body> =
<start> {<state>} *

<formal parameters> =
FPAR <yariable name> {, <variable name>}*<sort>
{,<variable name>{, <variable name> } *<sort>}*

<number of instances> =
([<initial number>],[<maximum number>])
<initial number> =
<natural simple expression>

<maximum number> =
<patural simple expression>

The initial number of instances and maximum number of instances contained in
Number-of-instances are derived from <number of instances>. If <initial number> is left out then
<initial number> is 1. If <maximum number> is omitted then <maximum number> is unbounded.

The <number of instances> used in the derivation is the following:
a) If there is no <textual process reference> for the process then the <number of instances> in

the <process definition> is used. If it does not contain a <number of instances> then the

<number of instances> where both < initial number> and <maximum number> are omitted
is used.
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b) If both the <number of instances> in <process definition> and the <number of instances> in
a <textual process reference> are omitted then the <number of instances> where both
<initial number> and <maximum number> are omitted is used.

¢) If either the <number of instances> in <process definition> or the <number of instances> in

a <textual process reference> are omitted then the <number of instances> is the one which
is present,

d) If both the <number of instances> in <process definition> and the <number of instances> in
a <textual process reference> are specified then the two <number of instances> must be
equal lexically and this <number of instances> is used.

Similar relation applies for <number of instances> specified in <process diagram> and in
<graphical process reference> as defined below.

?he <signal definition > is defined in § 2.5.4, <signal list definition> in § 2.5.5, <view definition> |
in § 2:6.1.2, <variable definition> in § 2.6.1.1, <procedure definition> in § 2.4.5, <timer
definition> in § 2.8, <macro definition> in § 4.2.2, <import definition> in § 4.1.3, <select

definition> in § 4.3.3, <simple expression> in § 4.3.2 <service decomposition> in § 4.10.1,
<data definition> in § 5.5.1.

The <initial number> of instances must be less than or equal to <maximum number> and
<maximum number> must be greater than zero.

The vse of <valid input signal set> is defined in § 2.5.2 Model.
An example of <process definition> is shown in Figure 2.9.9in § 2.9.
Concrete graphical grammar

<process diagram> 1=
<frame symbol>
contains {<process heading>
{ {<process text area>}*

{<procedure area>}*
{<macro diagram> }*
{<process graph area> | <service interaction area> } }set }

[is associated with {<gignal route identifier>}+]

The <signal route identifier> identifies an external signal route connected to a signal route in the
<process diagram>. It is placed outside the <frame symbol> close to the endpoint of the signal
route at the <frame symbol>,

<process text area> ::=

<text symbol> contains {
[<valid input signalset>]
{<signal definition>
<signal list definition>
<variable definition>
<view definition>
<import definition>
<data definition>
<macro definition>
<timmer definition>
<select definition> }* }
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<process heading> ::=
- PROCESS {<process name>I<process identifier>}
[<number of instances> [<end>]]
[<formal parameters>]

<process graph area> ::=
<start area> { <state area> l<in-connector area> }*

The <signal definition > is defined in § 2.5.4, <signal list definition> in § 2.5.5, <view definition>
in § 2.6.1.2, <variable definition> in § 2.6.1.1, <procedure area> in § 2.4.5, <timer definition> in
§ 2.8, <macro definition> and <macro diagram> in § 4.2.2, <import definition> in § 4.1.3, <select
definition> in § 4.3.3, <data definition> in § 5.5.1, <start area> in § 2.6.2, <state area> in §
2.6.3, <in-connector area> in § 2.6.6, and <service interaction area> in § 4.10.1

An example of <process diagram> is shown in Figure 2.9.10 § 2.9.

Semantics

A process definition introduces the type of a process which is intended to represent a dynamic
behaviour,

In the Number-of-instances the first value represents the Number-of-instances of the process which
exist when the system is created, the second value represents the maximum number of simultanous
Instances of the process type.

A process instance is a communicating extended finite state machine performing a certain set of
actions, denoted as transitions, accordingly to the reception of a given signal, whenever it is in a
state. The completion of the transition results in the process waiting in another state, which is not
necessarily different from the first one.

The concept of finite state machine has been extended in that the state resulting after a transition,
besides the signal originating the transition, may be affected by decisions taken upon variables
known to the process.

Several instances of the same process type may exist at the same time and execute asynchronously
and in parallel with each other, and with other instances of different process type in the system.

When a system is created, the initial processes are created in a random order. The signal
communication between the processes commences only when all the initial processes have been
created. The formal parameters of these initial processes are initialized to an undefined value.

Process instances exist from the time that a system is created or can be created by create request
actions which start the processes being interpreted; their interpretation start when the start action is
interpreted; they may cease to exist by performing stop actions.

Signals received by process instances are denoted as input signals, and signals sent to process
mstances are denoted as output signals.

Signals may be consumed by a process instance only when it is in a state. The complete valid input
signal set is the union of the set of signals in all signal routes leading to the process, the <valid
input signal set>, the implicit signals and timer signals.

One and only one input port is associated with each process instance. When an input signal arrives
at the process, it is put into the input port of the process instance
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The process is either waiting in a state or active performing a transition. For each state, there is a
save signal set (see also § 2.6.5). When waiting in a state, the first input signal whose identifier is
not in the save signal set is taken from the queue and consumed by the process.

The input port may retain any number of input signals, so that several input signals are queued for
the process instance. The set of retained signals are ordered in the queune according to their arrival
time. If two or more signals arrive on different paths "simultaneously", they are arbitrarily ordered.

When the process is created, it is given an empty input port, and local variables are created with
values assigned to them.

The formal parameters are variables which are created either when the system is created (but no
actual parameters are passed 1o and therefore they are not initialized) or when the process instance is
dynamically created.

To all process instances four expressions yielding a PId (see § 5.6.10) value may be used: SELF,
PARENT, OFFSPRING and SENDER. They give a result for:

a) the process instance (SELF);
b) the creating process instance (PARENT);
¢) the mostrecent process instance created by the process (OFFSPRING);

d) the process instance from which the last input signal has been consumed (SENDER)
{see also § 2.6.4).

These expressions are further explained in § 5.5.4.3

SELF, PARENT, OFFSPRING and SENDER can be used in expressions inside the process
instances.

For all process instances present at system initialization, the predefined PARENT expression
always has the value NULL.

For all newly created process instances the predefined SENDER and OFFSPRING expressions
have the value NULL.

2.4.5 Procedure

Procedures are defined by means of procedure definitions. The procedure is invoked by means of
a procedure call referencing the procedure definition. Parameters are associated with a_ procedure
call: these are used both to pass values, and also to control the scope of variables for the procedure
execution. Which variables are affected by the interpretation of a procedure is controlled by the
parameter passing mechanism. -

Abstract grammar

Procedure-definition o Procedure-name
Procedure-formal-parameter*
Procedure-definition-set
Data-type-definition
Syn-type-definition-set
Variable-definition-set
Procedure-graph
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Procedure-name = Name

Procedure-formal-parameter = In-parameter
Inout-parameter
In-parameter n Variable-name

Sort-reference-identifier

Inout-parameter o Variable-name
Sort-reference-identifier

Procedure-graph : Procedure-start-node
State-node-set

Procedure-start-node 2 Transition

Concrete textual grammar

<procedure definition> ::=

PROCEDURE ( <procedure identifier>| <procedure name> } <end>

[<procedure formal parameters> <end>]
{ <data definition >
I <variable definition>
I <textual procedure reference>
I <procedure definition>
I <select definition>
I <macro definition> }*
<procedure body>
ENDPROCEDURE [<procedure name>|<procedure identifier>] <end>

<procedure formal parameters> ::=
FPAR <formal variable parameter>
{, <formal variable parameter> }*
<formal varjable parameter> ::=
[ INJOUT
I IN }
<variable name> {, <variable name>}* <sort>

< procedure body> ::=
<process body>

The <variable definition> is defined in § 2.6.1.1, <textual procedure reference> in § 2.4.4, <macro
definition>> is defined in § 4.2, <select definition> in § 4.3.3, <data definition>in § 5.5.1, <sort>
in § 5.2.2.

In a <procedure definition>, <variable definition> cannot contain REVEALED, EXPORTED,
REVEALED EXPORTED, EXPORTED REVEALED <variable name>s (see¢ § 2.6.1)
An example of <procedure definition> is shown in Figure 2.9.11.
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Concrete graphical grammar

<procedure diagram> ::=
<frame symbol> contains {<procedure heading>
{ {<procedure text area>
I <procedure area>
| <macro diagram> }*
<procedure graph area> }set }

<procedure area> ::=

<graphical procedure reference>
I <procedure diagram>

<procedure text area> i:=
<text symbol> contains
{<variable definition>
| <data definition>
I <select definition>
| <macro definition> }*

<graphical procedure reference> ::= .
<procedure symbol> contains <procedure name>

<procedure symbol> ::=

<procedure heading> ::=

PROCEDURE { <procedure name>| <procedure identifier> }

[<procedure formal parameters>]
<procedure graph area> ::=
<procedure start area>
{<state area> | <in-connector area> }*

<procedure start area> ::=
<procedure start symbol> is followed by <transition area>

<procedure start symbol> ::=

The <variable definition> is defined in § 2.6.1.1, <transition area> in § 2.6.7.1, <state area> in §
2.6.3, <in-connector area> in § 2.6.6, <macro definition> and <macro diagram> are defined in §
4.2, <select definition> in § 4.3.3, <data definition>in § 5.5.1.

An example of <procedure diagram> is shown in Figure 2.9.12 in § 2.9.
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Semantics

A procedure is a means of giving a name to an assembly of items and representing this assembly
by a single reference. The rules for procedures impose a discipline upon the way, in which the

assembly of items is chosen, and limit the scope of the name of variables defined in the
procedure.

A procedure variable is a local variable within the procedure that can neither be revealed nor
viewed, nor exported, nor imported. It is created when the procedure start node is interpreted, and
1t ceases to exist when the return node of the procedure graph is interpreted.

When a procedure definition is interpreted, its procedure graph is interpreted.

A procedure definition is interpreted only when a process instance calls it, and is interpreted by
that process instance.

The interpretation of a procedure definition causes the creation of a procedure instance and the
Interpretation to commence in the following way:

a) A local variable is created for each In-parameter, having the Name and Sort of the
In-parameter. The variable is assigned the value of the expression given by the
corresponding actual parameter, which may be undefined.

b) If an actual parameter is empty the corresponding formal parameter is given the value
undefined.

c) A formal parameter with no explicit attribute, has an implicit IN attribute.

d) A local variable is created for each Variable-definition in the Procedure-definition,
having the Name and Sort of the Variable-definition .

€) Each Inout-parameter denotes a synonym name for the variable which is given in the
actual parameter expression. This synonym name is used throughout the interpretation of
the Procedure-graph when referring to the value of the variable or when assigning a new
value to the variable.
f) The Transition contained in the Procedure-start-node is interpreted.

2.5  Communication |

2.5.1 Channel

Abstract grammar

Channel-definition o Channel-name
Channel-path
[Channel-path |

Channel-path : Originating-block

Destination-block
Signal-identifier-set

Originating-block = Block-identifier |
ENVIRONMENT

Destination-block = Block-identifier |
ENVIRONMENT

Block-identifier = Identifier
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Signal-identifier

Identifier
Charnnel-name

Name

The Signal-identifier-set must contain the list of all signals that may be conveyed on the
channel-path(s) defined by the channel.

At least one of the end points of the channel must be a block.
If both end points are blocks, the blocks must be different.

The block end point(s) must be defined in the same scope unit as the channel is defined.
Concrete textual grammar

<channel definition> :=
CHANNEL <channel name>
<channel path>
[ <channel path>]
[ <channel substructure definition>
| <textual channel substructure reference>]
ENDCHANNEL [<channel name>] <end>

<channel path> ::= '

{ FROM <block identifier> TO <block identifier>
| FROM <block identifier> TO ENV

| FROM ENV TO <block identifiers$ }

WITH <signal list> <end>

The <signal list> is defined in § 2.5.5, <channel substructure definition> and <textual channel
substructure reference> in § 3.2.3.

Where two <channel path>s are defined one must be in the reverse direction to the other.
Concrete graphical grammar

<channel definition area> ::=
<channel symbol>
is associated with {<channel name>
{ [{<channel identifier> | <block identifier>}]
<signal list area> [<signal list area>]}set }
is connected to { <block area> {<block area> | <frame symbol>}
[<channel substructure association area>] }set

The <channel identifier> identifies an external channel connected to the <block substructure
diagram> delimited by the <frame symbol>, The <block identifier> identifies an external block
being a channel endpoint for the <channel substructure diagram> delimited by the <frame symbol>.

<channel symbol> ::=
<channel symbol 1>
| <channel symbol 2>
I <channel symbol 3>

<channel symbol 1> ::=

v
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<channel symbol 2> ::=

w
F

<channel symbol 3> ::=

4 1'%
A Ld

The <signal list area> is defined in § 2.5.5, <block area> and <frame symbol> in § 2.4.1,
<channel substructure association area> in § 3.2.3.

For each arrowhead on the <channel symbol>, there must be a <signal list area>, A <signal list
area> must be unambiguously close enough to the arrowhead to which it is associated.

Semantics

A channel represents a transportation route for signals. A channel can be considered as one or two
indqpenden‘t unidirectional channel paths between two blocks or between a block and its
environment.

Signals conveyed by channels are delivered to the destination endpoint.

Signals are presented at the destination endpoint of a channel in the same order they have been
presented at its origin pq}nt. If two or more signals are presented simultaneously to the channel,
they are arbitrarily ordered.

A channel may delay the signals conveyed by the channel. That means that a First-In-First-Out
(FIFO) delaying queue is associated with each direction in a channel. When a signal is presented to
the channel, it is put into the delaying queue. After an indeterminant and non-constant time interval,
the first signal instance in the queue is released and given to one of the channels or signal routes
which is connected to the channel.

Several channels may exist between the same two endpoints. The same signal type can be conveyed
on different channels.

2.5.2 Signal route

Abstract grammar

Signal-route-definition n Signal-route-name
Signal-route-path
[Signal-route-path |
Signal-route-path :: Originating-process
Destination-process
Signal-identifier-set
Originating-process = Process-identifier |
ENVIRONMENT
Destination-process = Process-identifier |
ENVIRONMENT
Signal-route-name = Name

At-least one of the end points of the Signal-route-path must be a process.

If both end points are processes, the Process-identifiers must be different.
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The process endpoint(s) must be defined in the same scope unit as the signal route is defined.

Concrete textual grammar

<signal route definition> ::=
SIGNALROUTE <gignal route name>
<signal route path>
[ <signal route path> ]

<signal route path>::=

{ FROM <process identifier> TO <process identifier>
[ FROM <process identifier> TO ENV
I FROM ENV TO <process identifier> }
WITH <signal list> <end>

The <signal list> is defined in § 2.5.5.
Where two <signal route path>s.are defined one must be in the reverse direction to the other.
Concrete graphical grammar

<signal route definition area> ::=
<signal route symbol>
is associated with {<signal route name>
{[<channel identifier>] <signal list area> [<signal list area>] }set }
is connected to
{<process area> {<process area> | <frame symbol>} }set

<signal route symbol> ::=
<signal route symbol 1> | <signal route symbol 2>

<signal route symbol 1> ::

w

<signal route symbol 2> ::

d b
hJ Ld

A signal route symbol includes an arrowhead at one end (one direction) or one arrowhead at each
end (bidirectional) to show the direction of the flow of signals.

For each arrowhead on the <signal route symbol>, there must be a <signal list area>, A <signal list
area> must be unambiguously close enough to the arrowhead to which it is associated.

When the <signal route symbol> is connected to the <frame symbol>, then the <channel identifier>
identifies a channel to which the signal route is connected.

Semantics

A signal route represents a transportation route for signals. A signal route can be considered as one
or two independent unidirectional signal route paths between two processes or between a process
and its environment.

Signals conveyed by signal routes are delivered to the destination endpoint.

Fascicle X.1 — Rec. Z.100 47



A signal route does not introduce any delay in conveying the signals.

No signal route connects process instances of the same type. In this case, interpretation of the
Output-node implies that the signal is put directly in the input port of the destination process.

Several signal routes may exist between the same two endpoints. The same signal type can be
conveyed on different signal routes.

Model

A <valid input signal set> contains signals that the process is allowed to receive. A <valid input
signal s€t>, however, must not contain timer signals. If a <block definition> contains <signal route
definition>s then the <valid input signal set>, if any, need not contain signals in signal routes
leading to the process.

It a <block definition> contains no <signal route definition>s, then all <process definition>s in that
<block definition> must contain a <valid input signal set>. In that case the <signal route
definition>s and the <channel to route connection>s are derived from the <valid input signal set>s,
<output>s and channels terminating at the blocks boundary. The signals corresponding to a given
direction between two processes in the implied signal route is the intersection of the signals
specified in the <valid input signal set> of the destination process and the signals mentioned in an
output of the originating process. If one of the endpoints is the environment then the input
set/output set for that endpoint is the signals conveyed by the channel in the given direction.

2.5.3 Connection

Abstract grammar

Channel-to-route-connection " Channel-identifier
Signal-route-identifier-set
Signal-route-identifier = Identifier

Other connect constructs are contained in §3.

Each Channel-identifier connected to the enclosing block must be mentioned in exactly
oneChannel-to-route-connection.. The Channel-identifier in a Channel-to-route-connection must
denote a channel connected to the enclosing block.

Each Signal-route-identifier in a Channel-to-route-connection must be defined in the same block as
where the Channel-to-route-connection is defined and it must have the boundary of that block as
one of its endpoints. Each Signal-route-identifier defined in the surrounding block and which has
its environment as one of its endpoints, must be mentioned in ome and only one
Channel-to-route-connection.

For a given direction, the union of the Signal-identifier sets in the signal routes in a
Channel-to-route-connection must be equal to the set of signals conveyed by the Channel-identifier
in the same Channel-to-route-connection and corresponding to the same direction.

Concrete textual grammar

<channel to route connection> ::=
CONNECT <channel identifier> _
AND <signal route identifier> {,<signal route identifier>)*
<end>
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No <signal route identifier> in a <channel to route connection> may be mentioned twice.
Concreie graphical grammar

Graphically the connect construct is represented by the <channel identifier> associated to the signal
route and contained in the <signal route definition area > (see § 2.5.2 Concrete graphical grammar).

2.5.4 Signal

Abstract grammar

Signal-definition 5 Signal-name
Sort-reference-identifier®
[Signal-refinement |
Signal-name = Name

The Sort-reference-identifier, is defined in § 5.2.2.

Concrete textual grammar

<signal definition>;:=
SIGNAL {<signal name>[<sort list>][<signal refinement>] }
{,<signal name> [<sort list>] [<signal refinement>]}* <end>

<sort list> ::=
(<sort> {, <sort>}*)

<signal refinement> is defined in § 3.3, <sort> is defined in § 5.2.2.

Semantics

A signal instance is a flow of information between processes, and is an instantiation of a signal
type defined by a signal definition. A signal instance can be sent by either the environment or a
process and is always directed to either a process or the environment.

Two PId values (see § 5.6.10) denoting the origin and the destination processes, the <signal
identifier> specified in the corresponding output, and other values, whose sorts are defined in the
signal definition, are associated with each signal instance.
2.5.5 Signal list definition

A <signal list identifier> may be used in <channel definition>, <signal route definition>,
<signal list definition>,<valid input signal set> and <savelist>, as a shorthand to list signal
identifiers and timer signals.
Concrete textual grammar

<signal list definition> ::=
- SIGNALLIST<signal list name>= <signal list><end>

<signal list> ::= "
<signal item> { , <signal item>}
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<signal item> ::=
<signa] identifier> | <priority signal identifier> | ( <gignal list identifier> )
| <timer identifier>
The <signal list> which is constructed by replacing all <signal list identifier>s in the list by the
<signal identifier>s they denote, corresponds to a Signal-identifier-set in the Abstract grammar. In
every such constructed <signal list>, every <signal identifier> must be distinct.
Concrete graphical grammar

<signal list area> ::= .
<signal list symbol> contains <signal list>

<signal list symbol> ::=

2.6 Behaviour
2.6.1 Variables
2.6.1.1 Variable definition

Abstract grammar

Variable-definition : Variable-name
Sort-reference-identifier
[REVEALED]
Variable-name = Name

Concrete textual grammar

<variable definition> =
DCL [REVEALED| EXPORTED | REVEZALED EXPORTED | EXPORTED REVEALED]
<yvariable name> {, <variable name>} , <sort> [:= <ground expression>]
{,<variable name>{, <variable name>}" <sort> [:=<ground expression>] } <end>

Exported variable is defined in § 4.13.

Semantics

The semantics of variables is defined in § 2.3.2. The value of a variable can only be modified by
its owner. The owner of a variable is the process (or procedure) where the variable is declared.
The value of a variable is only known to its owner unless the variable has the REVEALED
attribute. The REVEALED attribute allows all the other processes of the same block to view the
variable, provided they have the view definition in declaring the variable.

Model

The <ground expression> in a <variable definition> or default value in a <sort> has no
corresponding abstract syntax. It is derived syntax for specifying a sequence of assignment
statements in the initial transition of the surrounding scope unit. The assignment statements assigns
the <ground expression> to all the <variable name> mentioned in the <variable definition>. If both
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a default value in a <sort> and a <ground expression> in the <variable definition >is specified, the
<ground expression> in the <variable definition> applies.

2.6.1.2  View definition

Abstract grammar

View definition = Variable-identifier
Sort-reference-identifier

The Variable-definition designated by Variable-identifier must have the REVEALED attribute, and
it must be of the same sort as the Sort-reference-identifier denoted.

Concrete textual grammar

<view definition> ::=
VIEWED
<yvariable identifier> {, <variable identifier>}* Ssort>
{,<variable identifier>{, <variable identifier>}" <sort>}* <end>

The qualifier in <variable identifier> in <view definition> may be omitted only if there exist one
and only one <process definition> in the block, which have a <variable definition> defining a
<variable name> which is the same as the <variable name> mentioned in <view definition> and
which have the REVEALED attribute, and which is of the same <sort> as denoted by the <sort> in
the <view definition>.

Semantics

The view mechanism allows a process instance to see the viewed variable value continuously as if it
were locally defined. The viewing process instance doesn't however have any right to modify it.

2.6.2 Start

Abstract grammar

Process-start-node . Transition
Concrete textual grammar

<start> =
START <end> <transition>

Concrete graphical grammar

<start area> ;1=
<start symbol> is followed by <transition area>

<start symbol> ::=

Semantics

The Transition of the Process-start-node is interpreted.
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2.6.3 State
Abstract grammar

State-node = State-name
Save-signalset
Input-node-set

State-name = Name

State-node s within a process-graph respectively procedure-graph have different State-names.

For each State-node, all Signal-identifiers (in the complete valid input signal set) appear in either a
Save-signalser or an Input-node.

The Signal-identifier s in the Input-node-set must be distinct.

Concrete textual grammar

<state> :i=
STATE <state list> <end>
{<input part>
I <priority input>
I <save part> «
I <continuous signal>}
[ENDSTATE [<state name>] <end>]

<state list> ::=
{ <state name> { , <state name> }*}
! <asterisk state list>

The <input part> is defined in § 2.6.4, <save part> in § 2.6.5, <continuous signal> in § 4.11,
<asterisk state list> in § 4.4 and <priority input>in § 4.10.2.

When the <state list> contains one <gtate name> then the <state name> represents a State-node. Fot
each State-node, the Save-signalset is represented by the <save part> and any implicit signal saves.

For each State-node , the Input-node set is represented by the <input part> and any implicit input
signals.

The optional <state name>> ending a <state> may be specified only if the <state list> in the <state>

consists of a single <state name> in which case it must be the same <state name> as in the <state
list>.
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Concrete graphical grammar

<state area> ;:=

<state symbol> contains <state list> is associated with
{<input association area>

I <priority input association area>

I <continuous signal association area>

l <save association area> }*

<state symbol> ::=

<input association area> ::=
<solid association symbol> is connected to <input area>

<save association area> =
<solid association symbol> is connected to <save area>

The <@nput area> is defined in § 2.6.4, <save area> in § 2.6.5, <continuous signal association
area> in § 4.11, <priority input association area> in § 4.10.2.

A <state area> represents one or more State-nodes.
The <solid association symbol>s originating from a <state symbol> may have a common

originating path.

Semantics

A state represents a particular condition in which a process instance can consume a signal instance
resulting in a transition. If there are no retained signal instances then the process waits in the state
until a signal instance is received.

Model

When the <state list> of a certain <state> contains more than one <state name>s, a copy of the
<state> is created for each such <state name>. Then the <state> is replaced by these copies.

2.6.4 Inpur

Abstract grammar

Input-node = Signal-identifier
[Variabie-identifier 1*
Transition

Variable-identifier = Identifier

The length of the [Variable-identifier 1% must be the same as the number of
Sort-reference-identifiers in the Signal-definition denoted by the Signal-identifier.
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The sorts of the variables should correspond by position to the sorts of the values that can be
carried by the signal.

It is not allowed to specify more variables to receive than the number of values conveyed by the
signal instance.

Concrete textual grammar

<input part> ::=
INPUT <input list> <end>
[<enabling condition>]<transition>
<input list> 1=
<asterisk input list> x
I <stimulus> { ,<stimulus> }
<stimulus> ::=

{ <signal identifier> N
I <timer identifier>} [( [<variable identifier>] {,[<variable identifier>]}" )]

'§I'he~<transition> is defined in § 2.6.7, <enabling condition>in § 4.12, and <asterisk input list> in
4.6.

When the <input list > contains one <stimulus>, then the <input part> represents an <input node>.
In the Abstract grammar, timer signals (<timer identifier>) are also represented by Signal-identifier.
Timer signals and ordinary signals are distinguished only where appropriate, as in many respects
they have similar properties. The exact properties of timer signals are defined in § 2.8.

A <transition> must have a transition terminator as defined in § 2.6.7.2

Concrete graphical grammar
<input area> ::=
<input symbol> contains <input list>
is followed by {[<enabling condition area>] <transition area>}

<input symbol> ::=

The <transition area> is defined in § 2.6.7, <enabling condition area> in § 4.12.
An <input area> whose <input list> contains one <stimulus> corresponds to one Input-node. Each

of the <signal identifiers> contained in an <input symbol> gives the name of one of the
Input-nodes which this <input symbol> represents.
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Semantics

An input allows the consumption of the specified input signal instance. The consumption of the
input signal instance makes the information conveyed by the signal available to the process. The
variables associated with the input are assigned the values conveyed by the consumed signal. If

there is no variable associated with the input for a sort specified in the signal, the value of this sort
is discarded,

The SENDER expression of the consuming process is given the PId value of the originating
process instance, carried by the signal instance.

Signal instances flowing from the environment to a process instance within the system will always
have a PId value different from any in the system. This is accessed using the SENDER
expression. ‘

Model

When the <stimulus>s list of a certain <input part> contains more than one <stimulus>, a copy of
the <input part> is created for each such <stimulus>. Then the <input part> is replaced by these
copies.

2.6.5 Save

A save specifies a set of signal identifiers whose instances are not relevant to the process in the state
to which the save is attached, and which need to be saved for future processing,

Abstract grammar
Save-signalset i Signal-identifier-set

In each State-node the Signal-identifiers contained in the Save-signalset must be different.
Concrete textual grammar

<save part>

SAVE <save list> <end>
<save list> :;=
{<signal list> | <asterisk save list>}
A <save list> represents the Signal-identifier-set. The <asterisk save list> is a shorthand notation
explained in § 4.8.

Concrete graphical grammar

<save arca> ;=

<save symbol> contains <save list>
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<save symbol> ;=

[/

The saved signals are retained in the input port in the order of their arrival.

Semantics

The effect of the save is valid only for the state to which the save is attached. In the following state,
signal instances that have been "saved" are treated as normal signal instances.

2.6.6 Label

Concrete textual grammar

abel> ::=
<connector name>:

All the <connector name=>s defined in a <process body> must be distinct.

A label represents the entry point of a "jump" from the corresponding join statements with the same
<connector name>s in the same <process body>.

"Jumps" are only allowed to labels within the same <process body>.
Concrete graphical grammar
<in-connector area> ::=
<in-connector symbol> contains <connector name> is followed by

<transition area>

<in-connector symbol> ::=

O

<transition area> is defined in § ‘2.6.7.1.

An <in-connector area> represents the continuation of a <flow line symbol> from a corresponding
<out-connector area> with the same <connector name> in the same <process graph area> or
<procedure graph area>.
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2.6.7 Transition
2.6.7.1  Transition body

Abstract grammar

Transition " Graph-node *
(Terminator | Decision-node )

Graph-node : Task-node |
. Output -node |
Create-Request-node |
Call-node |
Set-node |
Reset-node |

Terminator " Nextstate-node |
Stop-node |
Return-node

Concrete textual grammar

<fransition> ::=
{<transition string> [<terminator statement>] }
i <terminator statement>

<transition string> ::=
{<action statement>}+

<action statement> ::=
[<label>] <action> <end>

<action> =
<task>
I <output>
I <priority output>
I <create request>
I <decision>
I <transition option>
I <set>
I <reset>
! <export>
I <procedure call>

<terminator statement> ;=
[<label>] <terminator> <end>

<terminator> 1=
<nextstate>
I <join>
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| <stop>
| <return>

The <task> is defined in § 2.7.1, <output> in § 2.7.4, <create request> in § 2.7.2, <decision> in §
2.7.5, <set> and <reset> in § 2.8, <procedure call> in § 2.7.3, <nextstate>in § 2.6.7.2.1, <join>
in § 2.6.7.2.2, <stop> in § 2.6.7.2.3, <return> in § 2.6.7.2.4, <priority output> in §
4.10.2,<transition option> in § 4.3.4, and <export> in § 4.13.

If the <terminator> of a <transition> is omitted then the last action in the <transition> must contain
a terminating <decision> (see § 2.7.5) or terminating <transition option>, except for all

<transition>s contained in <decision>s and <transition option>s (<transition option> is defined in
§ 434

i

No <terminator> or <action> may follow a <terminator>, a terminating <transition option> or a
terminating <decision>.

Concrete graphical grammar

<fransition area> ::=

[<transition string area>] is followed by
{<state area>

I <nextstate area>

I <decision area>

| <stop symbol>

| <merge area>

[ <out connector area>

! <return symbol>

i <transition option area> }

<transition string area> ::=

{<task area>
| <output area>
| <priority output area>
| <set area>
| <reset area>
[ <export area>
[ <create request area>
[ <procedure call area> }

[is followed by <transition string area>]

The <task area> is defined in § 2.7.1, <output area> in § 2.7.4, <create request area> in § 2.7.2,
<decision area> in § 2.7.5, <set area> and <reset area> in § 2.8, <procedure call area>in § 2.7.3,
<nextstate area> in § 2.6.7.2.1, <merge area> in § 2.6.7.2.2, <stop symbo!> in § 2.6.7.2.3,
<return symbol> in § 2.6.7.2.4, <priority output area> in § 4.10.2,<transition option area> in §
4.3.4, <export area> in § 4.13, and <out-connector area> in § 2.6.7.2.2.

A transition consists of a sequence of actions to be performed by the process.

The <transition area> corresponds to Transition and <transition string area> corresponds to
Graph-node*.
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Semantics

A transition performs a sequence of actions. During a transition, the data of a process may be
manipulated and signals may be output. The transition will end with the process entering a state,
with a stop or with a return. :

2.6.7.2  Transition terminator

2.6.7.2.1 Nextstate

Abstract grammar

Nexistate-node i State-name

The State-name specified in a nextstate must be the name of a state within the same Process-graph
or Procedure-graph.

Concrete textual grammar

<nextstate>::=
NEXTSTATE <nextstate body>

<nextstate body> ::=
{<state name>|<dash nexistate>)

<dash nextstate> is defined in § 4.9.

Concrete graphical grammar

<nextstate area> 1=
<state symbol> contains <nextstate body>

Semantics

A nextstate represents a terminator of a transition. It specifies the state the process instance will
assume when terminating the transition.

2.6.7.2.2 Join

A join alters the flow in a <process diagram> or <process body> by expressing that the next
<action statement> to be interpreted is the one which contains the same <connector name>,

Concrete textual grammar

<join> =
JOIN <connector name>

There must be one and only one <connector name> corresponding to a <join> within the same
<process body>, <procedure body> respectively <service body>.
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Concrete graphical grammar

<merge area> 1=
<merge symbol> is connected to <flow line symbol>

<merge symbol> ::=
<flow line symbol>

<flow line symbol> ::=

<out-connector area> =
<out-connector symbol> contains <connector name>

<out-connector symbol> ::=

<in-connector symbol>
For each <out-connector area> in a <process graph area> or <procedure graph area> there must be
one and only one <in-connector area> respectively in that <process graph area> or <procedure
graph area> with the same <connector name>
An <out-connector area> corresponds to a <join> in the Concrete textual grammar. If a <merge
area> is included in a <transition area> it is equivalent to specifying an <out-connector area> in the

<transition area> which contains a unique <connector name:> and attaching an <in-connector area>,
with the same <connector name> to the <flow line symbol> in the <merge area>.

Model

In the abstract syntax a <join> or <out-connector area> is derived from the <transition string>
wherein the first <action statement> or area has the same <connector name> attached.

2.6.7.2.3 Stop
Abstract grammar

Stop-node : 0

A Stop-node must not be contained in a Procedure-graph.
Concrete textual grammar

<Stop> 1=
STOP
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Concrete graphical grammar

X

<stop symbol> ::=

Semantics

The stop causes the immediate halting of the process instance issuing it. This means that the
retained signals in the input port are discarded and that the variables and timers created for the
process, the input port and the process will cease to exist,

2.6.7.2.4 Return

Abstract grammar

Return-node : (

A Return-node must not be contained in a Process-graph.
Concrete textual grammar

<return> =
RETURN

Concrete graphical grammar

<return symbol> =

Semantics
A Return-node is interpreted in the following way:

a) All variables created by the interpretation of the Procedure-start-node will cease to
exist, '

b) Interpreting the Return-node completes the interpretation of the Procedure-graph and
the procedure instance ceases to exist.

¢) Hereafter the calling process (or procedure) interpretation continues at the node
following the call.
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2.7  Action

2.7.1 Task

Abstract grammar

Task-node ° Assignment-statement |
Informal -text

Concrete textual grammar

<task> =
TASK <task body>

<task body> ::=
{<assignment statement>{,<assignment statement>}*)
I {<informal text> {,<informal text>}*}

<assignment statement> is defined in § 5.5.3
Concrete graphical grammar
<task area> :i=

<task symbol> contains <task body>

<task symbol> ::=

Semantics

The interpretation of a Task-node is the interpretation of the Assignment-statement which is
explained in § 5.5.3, or the interpretation of the Informal-text which is explained in § 2.2.3

Model

A <task> and a <task area> may contain several <assignment statement>s or <informal text>. In
that case it is derived syntax for specifying a sequence of <task>s, one for each <assignment

statement> or <informal text> such that the original order they were specified in the <task body> is
retained.

This shorthand is expanded before any <import expression> is expanded (see §4.13).
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2.7.2 Creae
Abstract grammar

Create-request-node :: Process-identifier
[Expression 1*

Process-identifier

Identifier

The number of Expressions in the [Expression]* must be the same as the number of
Process-formal-parameters in the Process-definition of the Process-identifier. Each Expression
must have the same sort as the corresponding by position Process-formal-parameter in the
Process-definition denoted Process-identifier.

Concrete textual grammar

<create request> =
CREATE <create body>

<create body> ::= '
<process identifier> [<actual parameters>]

<actual parameters> ::=
( [ <expression> ] {,[<expression>]}*)

<expression> is defined in § 5.

Concrete graphical grammar

<create request area> =
<create request Ssymbol> contains <create body>

<create request symbol> ;=

A <create request area> represents a Create-request-node.

Semantics

When a process instance is created, it is given an empty input port, variables are created and the
actual parameter expressions are interpreted in the order given, and assigned (as defined in § 5.5.3)
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to the corresponding formal parameters. If an actual parameter is empty, the corresponding formal
parameter is given the value undefined.Then the process starts by interpreting the start node in the
process graph.

The created process then executes asynchronously and in parallel with other processes,

The create action causes the creation of a process instance in the same block. The created process
PARENT has the same PId value as the creating process SELF. The created process SELF and the
creating process OFFSPRING expressions both have a newly created PId value (see § 5.6.10.1).
If an attempt is made to create more process instances than specified by the maximum number of
instances in the process definition, then no new instance is created, the OFFSPRING expression of
the creating process has the value NULL and interpretation continues.

2.7.3  Procedure Call

Abstract grammar

Call-node u Procedure-identifier
[Expression ] *

Procedure-ideniifier = Identifier

The length of the [Expression]* must be the same as the number of the
Procedure-formal-parameters in the Procedure-definition of the Procedure-identifier.

Each Expression corresponding by position to an IN Process-formal-parameter must have the same
sort as the Process-formal-parameter.

Each Expression corresponding by position to an IN/OUT Process-formal-parameter must be a
Variable-identifier with the same Sort-reference-identifier as the Process-formal-parameter.

There must be an Expression for each INJQUT Process-formal-parameter.

Concrete textual grammar

<procedure call> ::=
CALL <procedure call body>

<procedure call body> ::=
<procedure identifier> [<actnal parameters>]

<actual parameters> are defined in 2.7.2.

An example of <procedure call> is given in Figure 2.9.13 in § 2.9.
Concrete graphical grammar

<procedure call area> ::=
<procedure call symbol> contains <procedure call body>
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<procedure call symbol> ::=

The <procedure call area> represents the Call-node.

An exdmple of <procedure call area> is shown in Figure 2.9.14 in § 2.9.

Semantics

The interpretation of a procedure call node transfers the interpretation to the procedure definition
referenced in the call node, and that procedure graph is interpreted. The node of the procedure
graph are interpreted in the same manner as the equivalent nodes of a process graph.

The interpretation of the calling process is suspended until the interpretation of the called procedure
is finished.

The actual parameter expressions are interpreted in the order given.

A special semantics is needed as far as data and parameters interpretation is concerned (the
explanation is contained in § 2.4.4 ).

2.7.4 Ouwput

Abstract grammar

Qutput-node i Signal-identifier
[Expression |*
[Signal-destination ]
Direct-via

Expression
Signal-route-identifier-set

Signal-destination
Direct-via

nn

The length of the [Expression]* must be the same as the number of Sorz-reference-identifiers in the
Signal-definition denoted by the Signal-identifier.

Each Expression must have the same sort as the corresponding (by position)
Sort-identifier-reference in the Signal-definition.

For every possible consistent subset (see § 3) there must exist at least one communication path
(either implicit to own process type, or explicit via signal routes and possibly channels) to the
environment or to a process type having Signal-identifier in its valid input signal set and originating
from the process type where the Output-node is used.

For each Signal-route-identifier in Direct-via it must hold that the Originating-process in (one of)
the Signal-route-path(s) in the signal route must be of the same process type as the process
containing the Output-node and the Signal-route-path must include Signal-identifier in its set
of Signal-identifiers.

If no Signal-route-identifier is specified in Direct-via, any process, for which there exists a
communication path, may receive the signal. '
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Concrete textual grammar

<output> u=
OUTPUT <output body>
<output body> ::=
<signal identifier>

[<actual parameters>]{, <signal identifier> [<actual parameters>]}*
[TO <Pld expression>]

[ VIA {<signal route identifier>{,<signal route identifier>}*

f {<channel identifier>{,<channel identifier>}* } ]

The <actual parameters> are defined in § 2.7.2, <expression>in § 5.4.2.1.

It is not allowed to specify a <channel identifier> in the VIA construct if any signal routes are
specified for the block.

For each <channel identifier> in an <output> there must exist a channel originating from the
i:}rllclosmg block, and able to convey the signals denoted by the <signal identifier>s contained in
e <output>,

The TO <PId expression> represents the Signal-destination.

The VIA construct represents the Direct-via .
Concrete graphical grammar
<output area> =

<output symbol> contains <output body>

<output symbol> ::=

Semantics

The Signal-destination PId expression is interpreted after other expressions in the Quiput-node.
The values conveyed by the signal instance are the values of the actual parameters in the output. If
there is no actual parameter in the output for a sort in the signal definition, the undefined value is
conveyed by the signal. :

The origin PId value conveyed by the signal instance is the value associated with SELF (of the
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process performing the output action). The destination PId value conveyed by the signal instance is
the value of the signal destination PId expression contained in the output.

The signal instance is then delivered to a communication path able to convey it to the specified
destination process instance.

If no Signal-destination is specified, then there must exist one and only one receiver which may
receive the signal according to the signal routes or channels specified in Direct-via. The destination
PId value implicitly conveyed by the signal instance is the PId value of this receiver.

The environment may always receive any signal in the signal set of a channel which lead to the
environment,

Note that specifying the same channel identifier or signal route identifier in the Direct-via of two
Output-nodes does not automatically mean that the signals are queued in the input port in the same
order as the Output-nodes are interpreted. However, order is preserved if the two signals are
conveyed by identical channels connecting the Originating-process with the Destination-process
or if the processes are defined within the same block.

If a syntype is specified in the signal definition and an expression is specified in the output, then the
range check defined in § 5.4.1.9.1 is applied to the expression. If the range check is equivalent to
False then the output is in error and the future behaviour of the system is undefined.

An output sent to a non existent process instance (or no longer existent) causes an interpretation
error. The evaluation on the existence of a process instance is made at the same time the output is
interpreted. A subsequent stopping of the receiving process instance causes the discarding of the
signal from the input port and no error condition is reported.

Model

If several pairs of (<signal identifier> <actual parameters>) are specified in an <output body> it is
derived syntax for specifying a sequence of <output>s or <output area>s in the same order
specified in the original <output body> each containing a single pair of (<signal identifier> <actual
parameters>). The TO clause and the VIA clause are repeated in each of the <output>s or <output

area>s. This shorthand is expanded before any shorthands in the contained expressions are
expanded.

2.1.5 Decision
Abstract grammar
Decision-node o Decision-question

Decision-answer-set
[Else-answer |

Decision-question = Expression |
Informal-text
Decision-answer i (Range-condition |
Informal-text) Transition
Else-answer n Transition

The Decision-answers must be mutually exclusive.
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If the Decision-question is an Expression, the Range-condition of the Decision-answers must be
of the same sort as the Decision-question.

Concrete textual grammdr

<decision> ::=
DECISION <question> <end> <decision body> ENDDECISION

<decision body> =
{<answer part> <else part>}
! {<answer part> {<answer part>}+ [<else part>] }

<answer part> =
(<answer>) : [<transition>]

<answers> =

<range condition> | <informal text>
<else part> ::=

ELSE:[<transition>]
<question>::=

<question expression> | <informal text>
<range condition> is defined in § 5.4.1.9.1, <transition> in § 2.6.7.1, <informal text> in § 2.2.3.

A <decision> or <transition option> {defined in § 4.3.4) is terminating if each <answer part> and
<else part> in the <decision body> contains a <transition> where a <terminator statement> is
specified, or contains a <transition string> whose last <action statement> contains a terminating
decision or option.

Concrete graphical grammar

<decision area> ::=
<decision symbol> contains <question>
is followed by
{ {<graphical answer part> <graphical else part>} set
I {<graphical answer part> {<graphical answer part>}+ [<graphical else part>] } set }

<decision symbol> ::=

68 Fascicle X.1 — Rec. Z.100



<graphical answer part> ::= )
<flow line symbol> is associated with <graphical answer>
is followed by <transition area>

<graphical answer> =
<answer> | (<answer>)

<graphical else part> ::=
<flow line symbol> is associated with ELSE
is followed by <transition area>

The <transition area> is defined in § 2.6.7.1 and <flow line symbol> in § 2.6.7.2.2.

The <graphical answer> and ELSE may be placed along the associated <flow line symbol>, or in
the broken <flow line symbol>,

The <flow line symbol>s originating from a <decision symbol> may have a common originating
path.

A <decision area> represents a Decision-node.

Semantics

A decision transfers the interpretation to the outgoing path whose range condition contains the value
given by the interpretation of the question. A set of possible answers to the question is defined,
cach of them specifying the set of actions to be interpreted for that path choice.

One of the answers may be the complement of the others. This is achieved by specifying the
Else-answer, which indicates the set of activities to be performed when the value of the expression

on which the question is posed, is not covered by the values or set of values specified in the other
answers.

Whenever the Else-answer is not specified, the value resulting from the evaluation of the question
expression must match one of the answers.

There is syntactic ambiguity between <informal text>> and <character string> in question> and
<answer>>. If the <question>> and all <answer>>s are <character string>>, then all of these are
interpreted as <informal text>>. If the <question>> or any <answer> is a <character, string™> which
does not match the context of the decision, then the <character string> denotes <informal text>>.

The context of the decision (i.e. the sort) is determined without regard to <answer>s which are
<character string>>.

Model

If a <decision> is not a terminating decision then it is derived syntax for a <decision> wherein all
the <answer part>s and the <else part> have inserted in their <transition> a <join> to the ﬁrst
<action statement>> following the decision or, if the decision is the last < action statement>> in a
<transition string>, to the following <terminator statement>>.

2.8 Timer

Abstract grammar

Timer-definition = Timer-name Sort-reference-identifier™
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Timer-name = Name

Set-node s Time-expression
Timer-identifier
Expression*
Reset-node n Timer-identifier
Expression*
Timer-identifier = Identifier
Time-expression = Expression

The sorts of the Expression* in the Set-node and Reset-node must correspond by position to the
Sort-reference-identifier® directly following the Timer-name identified by the Timer-identifier.

The Expressions in a Set-node or Reset-node must be evaluated in the order given.

Concrete textual grammar
<timer definition> ::=

TIMER <timer name>> [ <sort list> ]

{ , <timer name> [ <sort list> ] }* <end>

<reset> 1=

RESET ( <reset statement> { , <reset statement> }*)
<reset statement> ::=

<timer identifier> [ ( <expression list> ) ]
<set> =

SET <set statement> { , <set statement> }*
<set statement> :i=

( <time expression> , <timer identifier> [ { <expression list>)])

<sort list> and <expression list> are defined in § 2.5.4 and § 5.5.2.1 respectively.
A <reset statement> represents a Reset-node; a <set statement> represents a Ser-nc_»de. If a <reset>
contains several <reset statement>s, then they must be interpreted in the order given. If a <set>
contains several <set statement>s, then they must be interpreted in the order given,

Concrete graphical grammar

<set area> 1=

<task symbol> contains <set>
<reset area> :1=

<task symbol> contains <reset>
Semantics

A timer instance is an object, owned by a process instance, that can be active or inactive. Two
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occurrences of a timer identifier followed by an expression list refer to the same timer instance only
if the two expression lists have the same values.

When an inactive timer is set, a time value is associated with the timer. Provided there is no reset or
other setting of this timer before the system time reaches this time value, a signal with the same
name as the timer is put in the input port of the process. The same action is taken if the timer is set
to a time value minor than NOW. After consumption of a timer signal the SENDER expression
yields the same value as the SELF expression. If an expression list is given when the timer is set,
the values of these expression(s) are contained in the timer signal in the same order. A timer is
active from the moment of setting up to the moment of consumption of the timer signal.

If a sort specified in a timer definition is a syntype, then the range check defined in § 5.4.19.1
applied to the corresponding expression in a set or reset must be True, otherwise the system is in
error and the further behaviour of the system is undefined.

When an inactive timer is reset, it remains inactive.

When an active timer is reset, the association with the time value is lost, if there is a corresponding
retained timer signal in the input port then it is removed, and the timer becomes inactive.

When an active timer is set, this is equivalent to resetting the timer, immediately followed by setting
the timer. Between this reset and set the timer remains active.

Before the first setting of a timer instance it is inactive.

2.9 Examples

INPUT S1 /example*/;
TASK /* example*/ T1:=0;

FIGURE 2.9.1
Example of comment (PR)

INPUT I1 COMMENT ‘example’;
TASK T1:=0;

FIGURE 2.9.2

Example of comment (PR)
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l

T3:=0
Mrexemple®!

FIGURE 2.9.3

Example of comment (GR)

'tagkl’ ----|  example
............. example
'

"task2’

FIGURE 294

Example of comment (GR)
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SYSTEM DAEMON_GAME;

/* This system is a game......ceeeenneee. A player logs out by the signal Endgame */

SIGNAL Newgame, Probe, Result, Endgame, Gameid, Win, Lose, Score (Integer),
Subscr,Endsubscr, Bump;

CHANNEL C1
FROM ENV TO Blockgame
WITH Newgame, Probe, Result, Endgame;
FROM Blockgame TO ENV
WITH Gameid, Win, Lose, Score;
ENDCHANNEL C1;

CHANNEL C3 FROM Blockgame TO Blockdaemon
WITH Subscr, Endsubscr;

ENDCHANNEL C3;

CHANNEL C4 FROM Blockdaemon TO Blockgame
WITH Bump;

ENDCHANNEL C4;

BLOCK Blockgame REFERENCED;

BLOCK Blockdaemon REFERENCED;

ENDSYSTEM DAEMON_GAME;

FIGURE 2.9.5

" Example of a system specification (PR)
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SYSTEM DAEMON_GAME 1(1)

/ This system is a game having any number of players. The players belong to ’(heB
environment of the system. A "daemon” in the system produces Bump signals
randomly. A player has to guess whether the number of the generated Bump
signals is edd or even. The guess is made by sending a Probe signal to the
system. The system replies by the signal Win if the number of the generated

Bump signals is odd, otherwise by the signal Lose.

The system keeps track of the score of each player. A player can ask for the
current value of his score by the signal Result, which is answered by the system
with the signal Score.

Before a player can start playing, he must log in. This is accomplished by the
signal Newgame. A player logs out by the signal Endgame, *

SIGNAL Newgame, Probe, Result, Endgame, Gameid, Win, Lose, Score{integer),
Subsre, Endsubscr, Bump;

Newgame,
Probe,
Result,
Endgame
<— >
Blockgam
c1 ockgame
Gameid,
Win,
Lose,

Score
Ca C4 L Eaump]

Subscr,
Endsubscr

Blockdaemon

74

T1063050-38

FIGURE 2.9.6
Example of a system specification (GR)
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BLOCK Blockgame;

CONNECT C1 AND R1,R2,R3;
CONNECT C3 AND R4;
CONNECT C4 AND R5;
SIGNALROUTE R1 FROM ENV TO Monitor WITH New game;
SIGNALROUTE R2 FROM ENV TO Game

WITH Probe, Result, Endgame;
SIGNALROUTE R3 FROM Game TO ENV

WITH Gameid, Win, Lose, Score;
SIGNALRQOUTE R4 FROM Game TO ENV

WITH Subscr, Endsubscr;
SIGNALROUTE R5 FROM ENV TO Game WITH Bump;

PROCESS Monitor (1,1) REFERENCED;
PROCESS Game (0,) REFERENCED;

ENDBLOCK Blockgame;
FIGURE 2.9.7
Example of block specification (PR)
BLOCK Blockgame
R2 [Prebe, Result, Endgame]
v
Ct Monitor (1,1) Game (0, )
1 [Newgame]
|
R3 [Gameid, Win, Lose, Score] R4 RS
Subscr, I:B :l
Endsubscr ump
C3 C4 TL003050-83

FIGURE 2.9.8

Example of a block diagram
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PROCESS Game (0, );
FPAR Player Pid;

DCL
Count Integer; /*counter to keep track of score */

START;

OUTPUT Subscr;

OUTPUT Gameid TO Player;

TASK Count:=0;
NEXTSTATE Even;

STATE Even;
INPUT Probe;
OUTPUT Lose TO Player;
TASK Count:=Count-1;
NEXTSTATE -;

INPUT Bump;
NEXTSTATE Odd;

STATE Odd;

INPUT Bump; -
NEXTSTATE Even;

INPUT Probe;

OUTPUT Win TO Player;

TASK Count:=Count+1;
NEXTSTATE -;
STATE *;
INPUT Result;

OUTPUT Score(Count) TO Player;
NEXTSTATE -;
INPUT Endgame;

OUTPUT Endsubscr;
STOP;
ENDPROCESS Game;

FIGURE 299

Example of process specification (PR)
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1 (1
PROCESS Game FPAR Player PId )

DCL Count integer; Subscr
/" Counter to keep
track of score */

g8

Gameid
TO Player

Count:=0

N/

Even

)

> Probe

Lose

TO Player
Count =
Count-1 > Bump Probe

TO Player

!

Bump

"\

\/a

Count =
Count+1
] 1
> Result > Endgame
|
Score(Count)> Endsubscr
TO Player
FIGURE 2.9.10 Example of process specification (GR) F—
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PROCEDURE check;
/* The following signal definitions are assumed:
SIGNAL sigl(Boolean), sig2, sig3(Integer,PId); */
FPAR IN/OUT x, y Integer;
DCL sum, index Integer,
nice Boolean;
START;
TASK sum :=0,
index = 1;
NEXTSTATE idle;
STATE idle;
INPUT sigl{nice);
DECISION nice;
(true): TASK “Calculate sum”;
OUTPUT sig3(sum, SENDER);
RETURN;
(false): NEXTSTATE Jaj;
ENDDECISION;
INPUT sig2;

ENDPROCEDURE check;
FIGURE 2.9.11

Example of a fragment of a procedure specification (PR)
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PROCEDURE check FPAR IN/OUT x, y integer

1(3)

/* The following signal definitiors B
are assumed:
SIGNAL sigt1(Boolean),

sig2, sig3(integer,pid); */ I
sum := 0,
DCL sum, index integer, index:=1

nice boolean;

> sigi{nice)

{ true)

> sig2

nice
( false) Calc'ulate
sum
Jaj sig3
(sum, SENDER
TL003080-88
FIGURE 2.9.12

Example of a fragment of a procedure specification (GR)
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/* The following signal definition is assumed:
SIGNAL inquire(Integer,Integer,Integer); */
PROCESS alfa;

DCL a,b,c Integer;

-----

------

INPUT inquire (a,b,c);
CALL check (a,b);

......

ENDPROCESS;

FIGURE 2.9.13
Example of a procedure call in a fragment of a process definition (PR)

PROCESS alfa

|
/*The following signal h |
definition is assumed:

SIGNAL inquire
inquire (Integer,Integer, (a,b,c)
Integer); */ i

DCL check
a,b,c Integer; (a,b)

Ti003020-33

FIGURE 2.9.14

Example of a procedure call in a fragment of a process definition (GR)
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3 Structural concepts in SDL
3.1  Imtroduction

This section defines a number of concepts needed to handle hierarchical structures in SDL.
The basis for these concepts is defined in §2 and the defined concepts are strict additions to those
defined in §2.

The intention with the concepts introduced in this section is to provide the user of SDL with
means to specify large and/or complex systems. The concepts defined in §2 are suitable for
specifying relatively small systems which may be understood and handled at a single level of
blocks. When a larger, or complex system is specified, there is a need to partition the system
specification into manageable units, which may be handled and understood independently. It is
often suitable to perform the partitioning in a number of steps, resulting in a hierarchical structure
of units specifying the system.

The term partitioning means subdivision of a unit into smaller subunits that are components
of the unit. Partitioning does not affect the static interface of a unit. In addition to partitioning, there
is also a need to add new details to the behaviour of a system when descending to lower levels in
the hierarchical structure of the system specification. This is denoted by the term refinement.

3.2 Partitioning
3.2.1 General

A block definition may be partitioned into a set of subblock definitions, channel definitions
and subchannel definitions. Similarly, a channel definition may be partitioned into a set of block
definitions, channel definitions and subchannel definitions. Thus, each block definition and channel
definition can have two versions: an unpartitioned version and a partitioned version in the concrete
syntaxes. However channel substructures are transformed when mapping onto the abstract syntax,
These two versions have the same static interface, but their behaviour may differ to some extent,
because the order of output signals may not be the same. A subblock definition is a block
definition, and a subchannel definition is a channel definition.

In a concrete system definition as well as in an abstract system definition, both the
unpartitioned and the partitioned version of a block definition may appear. In such a case, a
concrete system definition contains several consistent partitioning subsets, each subset
corresponding to a system instance. A consistent partitioning subset is a selection of the block
definitions in a system definition such that:

a) If it contains a Block-definition, then it must contain the definition of the enclosing
scope unit if there is one;

b) It must contain all the Block-definitions defined on the system level and if it contains a
Sub-block-definitions of a Block-definition , then it must also contain all other
Sub-block-definitions of that Block-definition.

¢)  All "leaf" Block-definitions in the resulting structure contain Process-definitions.
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/
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[
: | | - I' -
! /
’ ’
: Al21 Al22 partltlt?c;:nciﬂé subset
' !
FIGURE §3.2.1

Consistent partitioning subset illustrated in an auxiliary diagram

At system interpretation time a consistent partitioning subset is interpreted.

The processes in each of the leaf blocks in the consistent partitioning subset are interpreted. If these
leaf blocks also contain substructures, they have no effect. The substructures in the non-leaf blocks
have an effect on visibility, and the processes in these blocks are not interpreted.

3.2.2 Block partitioning

Abstract grammar
Block-substructure-definition n Block-substructure-name
Sub-block-definition-set
Channel-connection-set
Channel-definition-set
Signal-definition-set
Data-type-definition
Syn-type-definition-set
Block-substructure-name = Name
Sub-block-definition = Block-definition
Channel-connection N Channel-identifier
Sub-channel-identifier-set
Sub-channel-identifier = Channel-identifier
Channel-identifier = Identifier
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The Block-substructure-definition must contain at least one Sub-block-definition. It is understood in

the following that an abstract syntax term is contained in the Block-substructure-definition , if not
stated otherwise. :

A Block-identifier contained in a Channel-definition must denote a Sub-block-definitions. A
Channel-definition connecting a Sub-block-definition to the boundary of the
Block-substructure-definition is called a subchannel definition.

For each external Channel-definition connected to the Block-substructure-definition there must be

exactly one Channei-connection. The Channel-identifier in the Channel-connection must identify
this external Channel-definition.

For signals directed out of the Block-substructure-definition, the union of the Signal-identifiers
associated to the Sub-channel-identifier-set contained in a Channel-connection must be identical to
the Signal-identifiers associated to the Channel-identifier contained in the Channel-connection. The
same rule is valid for signals directed into the Block-substructure-definition. However, this rule is
modified in case of signal refinement, see §3.3.

Each Sub-channel-identifier must appear in one and only one Channel-connection.

Since a Sub-block-definition is a Block-definition, it may be partitioned. This partitioning may be
repeated any number of times, resulting in a hierarchical tree structure of Block-definitions and their
Sub-block-definitions. The Sub-block-definitions of a Block-definition are said to exist on the next
lower level in the block tree, see also the figure below.

A level n-1

Al A2 level n

| |
A21 A22 level n+1

T1003110-88

FIGURE 1/§3.2.2

A block tree diagram

The block tree diagram is an auxiliary diagram.
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Concrete textual grammar -

<block substructure definition> 1=
SUBSTRUCTURE {[<block substructure name> ]
| <block substructure identifier> } <end>
{ <block definition>
| <textual block reference>
| <channel definition>
| «channel connection>
| <signal definition>
| <signal list definition>
| <data definition>
| <select definition>
| <macro definition> H+
ENDSUBSTRUCTURE [{ <block substructure name>
| <block substructure identifier>}] <end>

The <block substructure name> after the keyword SUBSTRUCTURE can be omitted only if it is
the same as the <block name> in the enclosing <block definition>.

<textual block substructure reference> ::=
SUBSTRUCTURE <block substructure name> REFERENCED <end>

<channel connection> ;1=
CONNECT <channel identifier> AND <gsubchannel identifier>
{, <subchannel identifier>}* <end>

Concrete graphical grammar

<block substructure diagram> ::=
<frame symbol>
contains {<block substructure heading>
{ {<block substructure text area>}*
{<macro diagram>}*
<block interaction area> }set }
is associated with {<channel identifier>}*

T_he <channel identifier> identifies a channel connected to a subchannel in the <block substructure
diagram>. It is placed outside the <frame symbol> close to the endpoint of the subchannel at the
<frame symbol>.

A <channel symbol> within the <frame symbol> and connected to it indicates a subchannel.

<block substructure heading> ::=

SUBSTRUCTURE {<block substructure name> | <block substructure identifier>}
<block substructure text area> ::=

<system text area>
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<block substructure area> ::=
<graphical block substructure reference>
' <block substructure diagram>
| <open block substructure diagram>

<graphical block substructure reference> ::=
<block substructure symbol> contains <block substrocture name>

<block substructure symbol> ::=
<block symbol>

< open block substructure diagram> ::=
{ { <block substructure text area>}*
{<macro diagram>}*
<block interaction area>} set

e

When a <block substructure area> is an <open block substructure diagram>, then the enclosing
<block diagram> must not contain <block text area>, <macro diagram> nor <process interaction

area>.
Semantics
See § 3.2.1,
Model

An <open block substructure diagran> is transformed to a <block substructure diagram: in such a
way that in the <block substructure heading> the <block substructure name> or the <block
substructure identifier> is the same as the <block name> respectively <block identifier> in the

enclosing <block diagram>,
Example
An example of a <block substructure definition> is given below.

BLOCK A;
SUBSTRUCTURE A ;
SIGNAL s5(nat), s6, s8, s9(min);
BLOCK al REFERENCED;
BLOCK a2 REFERENCED;
BLOCK a3 REFERENCED;

CHANNEL c1 FROM a2 TO ENV WITH s1, s2; ENDCHANNEL cl;

CHANNEL ¢2 FROM ENV TO al WITH s3;

FROM al TO ENV WITH s1; ENDCHANNEL c2;
CHANNEL d1 FROM a2 TO ENV WITH s7; ENDCHANNEL d1;
CHANNEL d2 FROM a3 TO ENV WITH s10; ENDCHANNEL d2;
CHANNEL el FROM al TO a2 WITH s5, s6; ENDCHANNEL el;
CHANNEL e2 FROM a3 TO al WITH s8; ENDCHANNEL e2;
CHANNEL e3 FROM a2 TO a3 WITH s9; ENDCHANNEL e3;
CONNECT ¢ ANDcl,¢2;

CONNECT d ANDd1,4d2;
ENDSUBSTRUCTURE A;
ENDBLOCK A ; ’
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The <block substructure diagram> for the same example is given below.

SUBSTRUCTURE A

SIGNAL s5(nat), s6, s8, s9(mir1)[a

cl[s1,52]
-4 \
el [s5,56] dl [s7]
¢ B2 al > a2 14
[s3] [s1]
e3 [s9]
e2 [s8]
a3

d2 [s10]

Tloo3ile-38

FIGURE 2/§3.2.2

Block substructure diagram for block A

3.2.3 Channel partitioning

All static conditions are stated using concrete textual grammar. Analogous conditions hold
for the concrete graphical grammar.

Concrete textual grammar

<channel substructure definition> ::=
SUBSTRUCTURE ({[<channel] substructure name:>]
| <channel substructure identfier> } <end>
{ <block definition>
| <textual block reference>
| <channel definition>
| <channel endpoint connection>
| <signal definition>
| <signal list definition>
| <data definition>
| <select definition>
| <macro definition> }+
ENDSUBSTRUCTURE [{ <channel substructure name>
| <channel substructure identifier>}} <end>
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The <channe] substructure name> after the keyword SUBSTRUCTURE can be omitted only if it is
the same as the <channel name> in the enclosing <channel definition>.

<textual channel substructure reference> ::=
SUBSTRUCTURE <channel substructure name> REFERENCED <end>

<channel endpoint connection> ::=
CONNECT {<block identifier> | ENV} AND <gubchannel identifier>
{, <subchannel identifier>}* <end>

For each endpoint of the partitioned <channel definition> there must be exactly one <channel
endpoint connection>. The <block identifier> or ENVIRONMENT in a <channel endpoint
connection> must identify one of the endpoints of the partitioned <channel definition>.

Concrete graphical grammar

<channel substructure diagram> ;=
<frame symbol>
contains {<channel substructure heading>
{ {<channel substructure text area>}*
{<macro diagram>}*
<block interaction area> }set }
is associated with {<block identifier> | ENV }+

The <block identifier> or ENV identifies an endpoint of the partitioned channel. The <block
identifier> is placed outside the <frame symbol> close to the endpoint of the associated subchannel
at the <frame symbol>. The <channel symbol> within the <frame symbol> and connected to this
indicates a subchannel.

<channel substructure heading> ::=
SUBSTRUCTURE { < channel substructure name>

| < channel substructure identifier>}
<channe! substructure text area> 1=
<system text area>

<channel substructure association area> ::=
<dashed association symbol>
is connected to <channel substructure area>

<channel substructure area> ::=
<graphical channel substructure reference>
I <channel substructure diagram>

<graphical channel substructure reference> ::=
<channel substructure symbol> contains <channel substructure name>

<channel substructure symbol> ::=
<block symbol>
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Model

A <channel definition> which contains a <channel substructure definition> is transformed into a
<block definition> and two <channel definition>s such that:

a) The two <channel definition>s are each connected to the block and to an endpoint of the
original channel. The <channel definition>s have distinct new names and every reference to

the original channel in the VIA constructs is replaced by a reference to the appropriate new
channel.

b) The <block definition> has a distinct new name and it contains only a <block
substructure  definition> having the same name and containing the same definitions as the
original <channel substructure definition>. The qualifiers in the new <block definition> are
changed to include the block name. The two <channel endpoint connection>s from the
original <channel substructure definition>> are represented by two <channel connection>s
wherein the <block identifier> or ENV is replaced by the appropriate new channel.

This transformation must take place immediately after those of a generic system. See § 4.3.

Example

An example of a <channel substructure definition> is given below.

CHANNEL CFROM A TOB WITH s1;
FROM B TO A WITH s2;

SUBSTRUCTURE C;
SIGNAL s3(hel), s4(boo), s5;

BLOCK bl REFERENCED;
BLOCK b2 REFERENCED;

CHANNEL c1 FROM ENV TO bl WITH s1;
- FROM bl TO ENV WITH s2; ENDCHANNEL cl;

CHANNEL ¢2 FROM b2 TO ENV WITH si;
FROM ENV TO b2 WITH s2; ENDCHANNEL c2;

CHANNEL e1 FROM bl TO b2 WITH §3; ENDCHANNEL el;
CHANNEL e2 FROM b2 TO bl WITH s4, s5; ENDCHANNEL ¢2;

CONNECT A ANDcl;
CONNECT B AND c2;

ENDSUBSTRUCTURE C;
ENDCHANNEL C;

The <channel substructure diagram> for the same example is given below.
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SUBSTRUCTURE C

SIGNAL s3(hel), s4(boo), s5; [j

il [s3] ,
Al 1 - b2 > « B
[s1] [s2] e2 [s4,55] [s1] [s2]
T1003130-33
FIGURE §3.2.3

Channel substructure diagram for channel C

3.3  Refinement

Refinement is achieved by refining a signal definition into a set of subsignal
definitions. A subsignal definition is a signal definition and may be refined. This refinement can be
repeated any number of times, resulting in a hierarchical structure of signal definitions and their
subsignal definitions. Note that a subsignal definition of a signal definition is not considered a
component of the signal definition.

Abstract grarmmar
Signal-refinement 2 Subsignal-definition-set
Subsignal-Definition i [REVERSE] Signal-definition

For each Channel-connection it must hold that for each Signal-identifier associated to the
Channel-identifier either the Signal-identifier is associated to at least one of the
Sub-channel-identifiers, or each of its subsignal identifiers is associated to at least one of the
Sub-channel-identifiers. This is a change of the corresponding rules for partitioning.

No two signals in the complete valid input signal set of a process definition or in the Quiput-nodes
of a process definition may be on different refinement levels of the same signal.
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<signal refinement> ::=
REFINEMENT
{ <subsignal definition>}+
ENDREFINEMENT

<subsignal definition> ::=
[REVERSE] <signal definition>

Semantics

When a signal is defined to be carried by a channel, the channel will automatically be the carrier for
all the subsignals of the signal. Refinement may take place when the channelis partitioned or split
into subchannels. In such a case the subchannels will carry the subsignals in place of the refined
signal. The direction of a subsignal is determined by the carrying subchannel, a subsignal may have
an opposite direction to the refined signal, which is indicated by the keyword REVERSE. Signals
cannot be refined when a channel is split into signal routes.

When a system definition contains signal refinement, the concept of consistent partitioning subset
1s restricted. Such a system definition is said to contain several consistent refinement subsets.

A consistent refinement subset is a consistent partitioning subset restricted by the following rule:
- When selecting the consistent partitioning subset, the set of signals on signalroutes connected
to an endpoint of a channel must not contain parent signals of contained subsignals, and unless

the other endpoint is the system ENVIRONMENT, the set of signals for the first endpoint
must be equal to the set of signals on signalroutes connected to the other endpoint.

Example

SYSTEM 8

SIGNAL s
REFINEMENT
SIGNAL s2;
REVERSE SIGNAL s1;
ENDREFINEMENT;
SIGNAL e;

BLOCK Bl BLOCK B2

2
B11 > cl < cy[g,a] c B21

P
[52,8] [s1] [s2,2] [s1]

T1003140-28

FIGURE §3.3
System diagram containing signal refinement

90 Fascicle X.1 — Rec. Z.100



In the above example signal s is refined in block definition B1 and B2, but not signal a. On the
highest refinement level, processes in B1 and B2 are communicating using signal s and a. On the
next lower level, processes in B11 and B21 are communicating using s1, s2 and a.

Note that refinement in only one of the block definitions B1 and B2 is not allowed, since there is no
dynamic transformation between a signal and its subsignals, only a static relation.
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4 Additional concepts in SDL

4.1  Introduction

This chapter defines a number of additional concepts. These additional concepts are standard
shorthand notations, and are modeled in terms of the primitive concepts of SDL, using concrete
syntax. They are introduced for the convenience of the users of SDL in addition to shorthand
notations defined in other chapters of the Recommendation.

The properties of a shorthand notation is derived from the way it is modeled in terms of (or
transformed to) the primitive concepts. In order to ensure easy and unambiguous use of the
shorthand notations, and to reduce side effects when several shorthand notations are combined,
these concepts are transformed in a specified order as follows:

Macro § 4.2

Generic systems § 4.3

Asterisk state § 4.4

State list § 2.6.3

Multiple appearence of state § 4.5
Asterisk input § 4.6

Asterisk save § 4.7

Stimulus list § 2.6.4

Output list § 2.7.4

10 Implicit transition § 4.8

11 Dash nextstate § 4.9

12 Service § 4.10

13 Continuous signal § 4.11

14 Enabling condition § 4.12

15 Imported and exported value § 4.13

Coo~Ihinph W

This order is also followed when defining the concepts in this section. The specified order of
transformation means that in the transformation of a shorthand notation of order # , another
shorthand notation of order m may be used, provided m>n.

Since there is no abstract syntax for the shorthand notations, terms of either graphical syntax or
textual syntax are used in their definitions. The choice between graphical syntax terms and textual
syntax terms is based on practical considerations, and does not restrict the use of the shorthand
notations to a particular concrete syntax,

4.2 Macro

In the following text the terms macro definition and macro call are used in a general sense, covering
both SDL/GR and SDL/PR. A macro definition contains a collection of graphical symbols and/or
lexical units, that can be included in one or more places in the <concrete system definition>. Each
such place is indicated by a macro call. Before a <concrete system definition> can be analysed, each
macro call must be replaced by the corresponding macro definition.

4.2.1 Lexical rules

<formal name> ::=
[<name>%] <macro parameter>
{% <name> %<macro parameter> | %<macro parameter> }* [J%<name>]
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4.2.2 Macro definition
Concrete textual grammar

<macro definition> ::=
MACRODEFINITION <macro name>
[< macro formal parameters>] <end>
<macro body>
ENDMACRO [<macro name>] <end>

<macro formal parameters> ::=
FPAR' < macro formal parameter> {, < macro formal parameter>}*

<macro formal parameter> ::=
<name>

<macro body> ::=
{<lexical unit>l<formal name>}*

<macro parameter> 1=
<macro formal parameter>
I MACROID

The <macro formal parameter>s must be distinct. <macro actual parameter>s of a macro call must
be matched one to one with their corresponding <macro formal parameter>s.

The <macro body> must not contain the keyword ENDMACRO and MACRODEFINITION.

Concrete graphical grammar

<macro diagram> 1=
<frame symbol> contains {<macro heading> <macro body area>}

<macro heading> ::=
MACRODEFINITION <macro name> [<macro formal parameters>]

<macro body area> ::=
{ {<any area> }*
<any area> [is connected to <macro body portl>] }set
I{ <any area> is connected to <macro body port2>
<any area> is connected to <macro body port2>
{ <any area> [is connected to <macro body port2>]}*)set

<macro inlet symbol>::=

D
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<macro outlet symbol>::=

O

<macro body portl> ::=
<outlet symbol> is connected to {<frame symbol>
[is associated with <macro label>]
| <macro inlet symbol> [{contains lis associated with } <macro label>]
| <macro outlet symbol> [{contains lis associated with } <macro label>] }

<macro body port2> ::=
<outlet symbol> is connected to {<frame symbol>
is associated with <macro label>
| <macro inlet symbol> {contains lis associated with } <macro label>
| <macro outlet symbol> {contains lis associated with } <macro label>}

<macro label> 1=
<name>

<outlet symbol> ::=
<dummy outlet symbol>
| <flow line symbol>
I <channel symbol>
| <signal route symbol>
| <solid association symbol>
| <«dashed association symbol>
| <create line symbol>

<dummy outlet symbol> ::=
<solid association symbol>

<system text area>
I <block interaction area>

[ <signal list area>

I <block area>

I <block text area>

I <process interaction area>

[ <graphical procedure reference>

| <process text area>

! <process graph area>

I <merge area>

I <transition string area>

I <state area>

[ <input area>

I <save area>

I <set area>

| <reset area>

| <export area>

I <text extension area>

! <channel substructure association area>
[ <channel substructure area>
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| <block substructure area>
| <priority input area>

| <continuous signal area>
| <in-connector area>

| <nextstate area> -
I <process area>

| <channel definition area>
| <create line area>

[ <signal route definition area>
I <graphical process reference>
| <process diagram>

| <start arca>

I <output area>

I <priority output area>

I <task area>

| <create request area>

| <procedure call area>

| <procedure area>

| <decision area>

! <out-connector area>

I <procedure text area>

I <procedure graph area>

| <procedure start area>

| <block substructure text area>

[ <block interaction area>

! <service area>

I <service signal route definition area>

I <service text area>

| <service graph area>

I <service start area>

| <comment area>

| <macro call area>

| <input association area>

I <save association area>

| <option area>

f <channel substructure text area>

f <transition option area>

[ <service interaction area>

| <priority input association area>

[ <contionuous signal association area>
[ <enabling condition area>

A <dummy outlet symbol> must not have anything associated to it except for <macro label>, -

For an <outlet symbol> which is not a <dummy outlet symbol>, the corresponding <inlet symbol>
in the macro call must be a <dummy inlet symbol>.

A <macro body> may appear in any text referred to in <any area>.
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Semantics

A <macro definition> contains lexical units, while a <macro diagram> contains syntactical units.
Thus, mapping between macro constructs in textual syntax and graphical syntax is generally not
possible. For the same reason, separate detailed rules apply for textual syntax and graphical syntax,
although there are some common rules.

<macro name> is visible in the whole system definition, no matter where the macro definition
appears. A macro call may appear before the corresponding macro definition.

A macro definition may contain macro calls, but a macro definition must not call itself either directly
or indirectly through macro calls in other macro definitions.

The keyword MACROID may be used as a pseudo macro formal parameter within each macro
definition. No <macro actual parameter>s can be given to it, and it is replaced by a unique <name>
for each expansion of a macro definition (within an expansion the same <name> is used for each
occurence of MACROID).

Example

Below is given an example of a <macro definition>:

MACRODEFINITION Exam
FPAR alfa, c, s, x;
BLOCK alfa REFERENCED;

CHANNEL ¢ FROM x TO alfa WITH s; ENDCHANNEL c;
ENDMACRO Exam;

The <macro diagram> for the same example is given below. However, the <macro formal
parameter>, x, is not required in this case. '

MACRODEFINITION Exam
FPAR alfa, c, s
¢ [s]
a > alfa b

TIDO3150-58

4.2.3 Macro call
Concrete textual grammar

<macro call> ::=
MACRO <macro name> [<macro call body>] <end>
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<macro call body> ::=
(<macro actual parameter> {, <macro actual parameter>}* )

<macro actual parameter> ::=
{<lexical unit>}*

The <lexical unit> cannot be a comma "," or right parenthesis ")". If any of these two characters is
required in a <macro actual parameter>, then the <macro actual parameter> must be a <character

string>. If the <macro actual parameter> is a <character string>, then the value of the <character

string> 1s used when the <macro actual parameter> replaces a <macro formal parameter>.

A <macro call> may appear at any place where a <lexical unit> is allowed.

Concrete graphical grammar

<macro call area> ::=

<macro call symbol> contains {<macro name> [<macro call body>]}
[is connected to

{<macro call port1> | <macro call port2> {<macro call port2>}+}]

<macro call symbol> ::=

<macro call portl> ::=

<inlet symbol> [is associated with <macro label> ]
is connected to <any area>

<macro call port2> ::=
<inlet symbol> is associated with <macro label>
1s connected to <any area>

<inlet symbol> ::=
<dummy inlet symbol>
I <flow line symbol>
| <channel symbol>
| <signal route symbol>
| <solid association symbol>
| <dashed association symbol>
| <create line symbol>

<dummy inlet symbol> ::=
<solid association symbol>

A <dummy inlet symbol> must not have anything associated to it except for <macro label>.
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For each <inlet symbol> there must be an <outlet symbol> in the corresponding <macro diagram:,
associated with the same <macro label>. For an <inlet symbol> which is not a <dummy inlet
symbol>, the corresponding <outlet symbol> must be a <dummy outlet symbol>.

Except in the case of <dummy inlet symbol>s and <dummy outlet symbol>s, it is possible to have
multiple (textual) <lexical unit>s associated with an <inlet symbol> or <outlet symbol>, In this case
the <lexical unit> closest to the <macro call symbol> or the <frame symbol> of the <macro
diagram> is taken to be the <macro label> associated with the <inlet symbol> or <outlet symbol>,

The <macro call area> may appear at any place where an area is allowed. However, a certain space
is required between the <macro call symbol> and any other closed graphical symbol. If such a
space must not be empty according to the syntax rules, then the <macro call symbol> is connected
to the closed graphical symbol with a <dummy inlet symbol>.

Semantics

A system definition may contain macro definitions and macro calls. Before such a system definition
can be analysed, all macro calls must be expanded. The expansion of a macro call means that a copy

of the macro definition having the same <macro name> as that given in the macro call replaces the
macro call,

When a macro definition is called, it is expanded. This means that a copy of the macro definition is
created, and each occurence of the <macro formal parameter>s. of the copy is replaced by the
corresponding <macro actual parameter>s of the macro call, then macro calls in the copy, if any, are
expanded. All percent characters (%) in <formal name>s are removed when <macro formal
parameter>s are replaced by <macro actual parameter>s.

There should be one to one correspondence between <macro formal parameter> and <macro actual
parameter:,

- Rules for graphical syntax

The <macro call area> is replaced by a copy of the <macro diagram> in the following way.
All <macro inlet symbol>s and <macro outlet symbol>s are deleted. A <dummy outlet
symbol> is replaced by the <inlet symbol> having the same <macro label>. A <dummy inlet
symbol> is replaced by the <outlet symbol> having the same <macro label>. Then the
~<macro label>s attached to <inlet symbol>s and <outlet symbol>s are deleted. <macro body
portl> and <macro boby port2> which have no corresponding <macro call portl> or
<macro call port2> are also deleted.
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Example

Below is given an example of a <macro call>, within a fragment of a <block definition>.

.........

BLOCK A REFERENCED;

MACRO éxam (B, Cl, S1, A);

BLOCK C REFERENCED;
CHANNEL C2 FROM B TO C WITH S2; ENDCHANNEL C2;

.........

.........

BLOCK A REFERENCED;
BLOCK B REFERENCED;

CHANNEL C1 FROM A TO B WITH S1; ENDCHANNEL C1;
BLOCK C REFERENCED;

CHANNEL C2 FROM B TO C WITH S2; ENDCHANNEL C2;

.........

The <macro call area> for the same example, within a fragment of a <block interaction area>, is

given below,

A

Exam
(B, C1, S1)

The expansion of this macro call gives the following result.

C1 [S1]
>

b

I " TICO3160-88
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4.3 Generic systems

A system specification may have optional parts and system parameters with undefined values in
order to meet various needs. Such a system specification is called generic, its generic property is
specified by means of external synonyms (which are analogous to formal parameters in a procedure
definition). A generic system specification is tailored by selecting a suitable subset of it and
providing a value for each of the system parameters. The resulting system specification does not
contain external synonyms, and is called a specific system specification.

4.3.1 External synonym
Concrete textual grammar

<external synonym definition>::=
SYNONYM <egxternal synonym name> <predefined sort> = EXTERNAL

<external synonym> ;=
<external synonym identifier>

An <external synonym definition> may appear at any place where a <synonym definition> is
allowed, see §5.4.1.13. An <external synonym> may be used at any place where a <synonym> is
allowed, see §5.4.2.3. The predefined sorts are: Boolean, Character, Charstring, Integer, Natural,
Real, PId, Duration or Time.

Semantics

An <external synonym> is a <synonym> whose value is not specified in the system definition. This
is indicated by the keyword EXTERNAL which is used instead of a <simple expression>.

A generic system definition is a system definition that contains <external synonym>s, or <informal
text> in a transition option (see §4.3.4). A specific system definition is created from a generic
system definition by providing values for the <external synonym>s, and transforming <informal

text> to formal constructs. How this is accomplished, and the relation to the abstract grammar, is
not part of the language definition.

4.3.2 Simple expression
Concrete textual grammar

<simple expression> ::=
<ground expression>

A <simple expression> must only contain operators, synonyms and literals of the predefined sorts.

Semantics

A simple expression is a Ground-expression.
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4.3.3 Optional definition
Concrete textual grammar

<select definition> ::=
SELECT IF (<boolean simple expression> ) <end>
{<block definition>
| <textual block reference>
| <channel definition>
| <signal definition>
| <signal list definition>
| <data definition>
| <process definition>
| <textual process reference>
| <timer definition>
| <service signal route definition>
| <channel connection>
| <channel endpoint connection>
| <variable definition>
f <view definition>
| <import definition>
| <procedure definition>
| <textual procedure reference>
| <service definition>
| <textual service reference>
| <signal route definition>
| <channel to route connection>
| <signal route connection>
| <select definition>
| <macro definition> }+
ENDSELECT <end>

The <boolean simple expression> must not be dependent on any definition within the <select

definition>. A <select definition> must contain only those definitions that are syntactically allowed
at that place.

Concrete graphical grammar

<option area> ::=
<option symbol> contains
{ SELECT IF (<boolean simple expression> )
{<block area>

| <channel definition area>
[ <system text area>
| <block text area>
| <process text area>
| <procedure text area>
| <block substructure text area>
| <channel substructure text area>
| <service text area>
| <macro diagram>
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| <process area>

I <signal route definition area>

| <create line area>

| <procedure area>

| <option area>

| <service area>

| <service signal route definition area> }+ }

The <option symbol> is a dashed polygon having solid corners, for example:

| I
e
]

1 |
ol TR

An <option symbol> logically contains the whole of any one-dimensional graphical symbol cut by
its boundary (i.e. with one end point outside).

- The <boolean simple expression> must not be dependent on any area or diagram within the <option
area>.

An <option area> may appear anywhere, except within a <process graph area>, <procedure graph
area> and <service graph area>. An <option area> must contain only those areas and diagrams that
are syntactically allowed at that place.

Semantics

If the value of the <boolean simple expression> is false, then the constructs contained in the <select
definition> and <option symbol> are not selected. In the other case the constructs are selected.

Model

The <select definition> and the <option area> are deleted at transformation and are replaced by the
contained selected constructs, if any.
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Example

In system Alfa there are three blocks: B1, B2 and B3. Block B1 and the channels connected to it
are optional, dependent on the values of the external synonyms p and extension. In SDL/PR this

example is represented as follows.

SYSTEM Alfa;
SYNONYM p Integer = EXTERNAL;
SYNONYM extension Boolean = EXTERNAL
SIGNAL s1,s2,53,54,55,56,57;
SELECT IF (p=3 AND extensmn)
BLOCK B1 REFERENCED;

CHANNEL C1 FROM ENV TO B1 WITH sl ; ENDCHANNEL Cl1;

CHANNEL C2 FROM B1 TO B2 WITH s2 ; ENDCHANNEL C2;
CHANNEL C6 FROM B3 TO B1 WITH s6; 'ENDCHANNEL C6;
ENDSELECT;
CHANNEL C3 FROM B2 TO ENV WITH s3 ; ENDCHANNEL C3;
CHANNEL C4 FROM B3 TO B2 WITH s4 ; ENDCHANNEL C4;
CHANNEL C5 FROM B2 TO B3 WITH s5; 'ENDCHANNEL C5;
CHANNEL C7 FROM ENV TO B3 WITH s7 ; ENDCHANNEL C7;
BLOCK B2 REFERENCED;
BLOCK B3 REFERENCED;
ENDSYSTEM Alfa;

The same example is in SDL/GR syntax represented as shown below.

SYSTEM Alfa

SYNONYM p Integer = EXTERNAL;

SIGNAL s1,52,53,84,55,56,57;

SYNONYM extension Boolean = EXTERNAL

7

C3 [s3]

i_ SELECT IF (p = 3 AND extension) |
|
1 |
I |
I |
|  C1 C2 [s1] | B2
*lb— B1 P _i
1[s1] :__ —
I I
I | r———- { C4 [s4]
|
[ [s& Y c5 [s5]
B3

Fascicle X.1 — Rec. Z.100

103



4.3.4 Optional transition string
Concrete textual grammar

<tramsition option> ::=
ALTERNATIVE <alternative question> <end>
{ <answer part> <else part>
| <answer part> { <answer part> }+ [ <else part>] }
ENDALTERNATIVE

<alternative question>::=
<simple expression>
| <informal text>

Every <ground expression> in <answer> must be a <simple expression>. The <answer>s in a
<transition option> must be mutually exclusive. If the <alternative question> is an <expression=>,
the Range-condition of the <answer>s must be of the same sort as of the <altemative question>.

Concrete graphical grammar

<transition option area> ::=
<transition option symbol> contains {<alternative question>}
is followed by { <option outletl> {<option outlet1> | <option outlet2> )
{ <option outletl> }* }set

<transition option symbol> ::=

<option outletl> ::= _
<flow line symbol> is associated with <graphical answer>
is followed by <transition area>

<option outlet2> ::=
<flow line symbol> is associated with ELSE
is followed by <transition area>

The <flow line symbol> in <option outlet1> and <option outlet2>> is connected to the bottom of the
<transition option symbol>. The <flow line symbol>s originating from a <transition option
symbol> may have a common originating path. The <graphical answer> and ELSE may be placed
along the associated <flow line symbol>, or in the broken <flow line symbol>.

The <graphical answer>s in a <transition option area> must be mutually exclusive.
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Semantics

Constructs in an <option outlet1> are selected if the <answer> contains the value of the <alternative
question>. If none of the <answer>s contains the value of the <alternative question>, then the
constructs in the <option outlet2> are selected.

If no <option outlet2> is provided and none of the outgoing paths is selected then the selection is
invalid.

Model

The <transition option> and <transition option area> is deleted at transformation and is replaced by
the contained selected constructs.

Example

A fragment of a <process definition> containing a <transition option> is shown below. p and s are
synonyms.

............

ALTERNATIVEp +s;
(>2) : TASK Do what you want’;
NEXTSTATE -;
ELSE: TASK Do nothing';
NEXTSTATE Hum;
ENDALTERNATIVE;

------------

The same example in concrete graphical syntax is shown below.

p+s
(>2) ELSE
| |
‘3]12)(1)1 ‘;VVI;.E:ltt' Do nothing'

‘ —— ) Hum
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4.4 Asterisk state
Concrete textual grammar

<asterisk state list> 1=
<asterisk> [(<state name> {, <state name>}*)]

<asterisk> 1=
*
In a <process body>, <procedure body> or <service body>, at least one <state list> must be

different from <asterisk state list>. The <state name>s in an <asterisk state list> must be distinct

and must be contained in other <state list>s in the enclosing <process body>, <procedure body> or
<service body>.

The <state name>s in the <asterisk state list> must not include all <state name>s in the enclosing
<process body>, <procedure body> or <service body>,

Concrete graphical grammar
A <state area> containing <asterisk state list> must not coincide with a <nextstate area>.

Model

An <asterisk state list> is transformed to a <state list> containing all <state name>s of the <process
body>, <service body> or <procedure body> in question, except for those <state name>s contained
in the <asterisk state list>.

4.5  Muliiple appearance of state

Concrete textual grammar

A <state name> may appear in more than one <state> of a <process body>, <service body> or
<procedure body>.

Model

When several <state>s contain the same <state name>, these <state>s are concatenated into one
<state> having that <sfate name>.

4.6 Asterisk input

Concrete textual grammar

<asterisk input list> ::=
<asterisk>

A <state> may contain at most one <asterisk input list>. A <state> must not contain both <asterisk
input list> and <asterisk save list>.
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Model

An <asterisk input list> is transformed to a list of <stimulus>s containing the complete valid input
signal set of the enclosing <process definition> or <service definition>, except for <signal
identifier>s of implicit signals and for <signal identifier>s contained in the other <input list>s and
<save list>s of the <state>, and in all <priority input>s of the <service definition> § 4.10.

4.7  Asterisk save

Concrete textual grammar

<asterisk save list> ;==
<asterisk>

A <state> may contain at most one <asterisk save list>. A <state> must not contain both <asterisk
input list> and <asterisk save list>.

Model

An <asterisk save list> is transformed to a list of <stimulus>s containing the complete valid input
signal set of the enclosing <process definition> or <service definition>, except for <signal
identifier>s of implicit signals and for <signal identifier>s contained in the other <input list>s and
<save list>s of the <state>, and in all <priority input>s of the <service definition> § 4.10.

4.8  Implicit transition

Concrete textual grammar

A <signal identifier> contained in the complete valid input signal set of a <process definition> or
<service definition> may be omitted in the set of <signal identifier>s contained in the <input list>s,
<priority input list>s and the <save list> of a <state>.

Model

For each <state> there is an implicit <input part> containing a <transition> which only contains a
<nextstate> leading back to the same <state>.

4.9  Dash nextstate

Concrete textual grammar

<dash nextstate> ::=
<hyphen>

<hyphen>::=

The <transition> contained in a <start> must not lead, directly or indirectly, to a <dash nextstate>.
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Model

In each <nextstate> of a <state> the <dash nextstate> is replaced by the <gstate name> of the
<state>.

4.10 Service

The behaviour of a process in basic SDL is defined by a process graph. The service concept
offers an alternative to the process graph through a set of service definitions. In many situations
service definitions can reduce the overall complexity and increase the readability of a process
definition. In addition, each service definition may define a partial behaviour of the process, which
may be useful in some applications.

4.10.1 Service decomposition
Concrete textual grammar

<service decomposition> ::=
{<service signal route definition>
| <signal route connection>
I <service definition>
| <select definition>
| <textual service reference>}+

<service signal route definition> ::=
SIGNALROUTE <setvice signal route name>
<service signal route path>
[<service signal route path>]

<service signal route path> ::=
{FROM <gervice identifier> TO <service identifier>
I FROM <gervice identifier> TO ENV
I FROM ENV TO <service identifier> }
WITH <signal list> <end>

<signal route connection> ::=
CONNECT <signal route identifier>
AND <gervice signal route identifier> {, <service signal route identifier>}* <end>

<textual service reference> ::=
SERVICE <service name> REFERENCED <end>

When a <process definition> contains a <service decomposition>, it must not contain <timer
definition>s outside the <service decomposition>.

A <service decomposition> must contain at least one <service definition>.

Similar wellformedness rules apply for <service signal route> as for <signal ronte>.
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Concrete graphical grammar

<service interaction area> 1=

{ <service area> | <service signal route definition area> }+

<service area> ;=
<graphical service reference>
I <service diagram>

<graphical service reference> ::=
<service symbol> contains <gervice name>

<service symbol> ::=

<service signal route definition area> ::

<signal route symbol>

is associated with {<gervice signal route name>
[<signal route identifier>]
<signal list area>

[<signal list area>] }set
is connected to {<service area>

{<service area> | <frame symbol>)} }set

When the <signal route symbol> is connected to the <frame symbol>, then the <gignal route
identifier> identifies an external signal route to which the signal route is connected.

Semantics

The <service decomposition> is an alternative to the <process body>, and expresses the same

behaviour.

Model

The service concept is modeled by transforming the <service decomposition> to primitive

concepts. Transformation of <service signal route definition>s and <signal route connection>s

results in nothing,
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4.10.2 Service definition
Concrete textual grammar

<service definition> ::=
SERVICE (<service name> | <service identifier>} <end>
[<valid input signal set>]
{<variable definition>
| <data definition>
| <timer definition>
| <view definition>
| <import definition>
| <select definition>
| <macro definition>
| <procedure definition>
| <textual procedure reference>}*
<service body>
ENDSERYVICE [{<service name> | <service identifier>}] <end>

<service body> 1=
<process body>

<priority input> ::=
PRIORITY INPUT <priority input list> <end> <transition>

<pmiority input list> ::=
<priority stimulus> {, <priority stimulus>}*

<priority stimulus> ::=
<priority signal identifier> [ ( [<variable identifier>] {, [<variable identifier>] }*) ]

<priority output> ::=
PRIORITY OUTPUT <priority output body>

<priority output body> ::=
<priority signal identifier> [<actual parameters>]
{, <priority signal identifier> [<actual parameters>] }*

A signal is a high priority signal in a process if and only if it is mentioned in a <priority input™> of
a <service definition>> in that process.

A <variable definition> in a <service definition> must not contain the keyword EXPORTED or
REVEALED.

A <priority signal identifier> in a <priority output> must not be contained in an <input part>orina
<save part>. A <priority signal identifier> in a <priority input> must not be contained in an
<output>,

The same rule on valid input signal set and service signal route stated in 2.5.2 on process applies.

The <service decomposition> may contain <service signal route definition>s only if the enclosing
<block definition> contains <signal route definition>s,

Only one of the <service definition>s in a <service decomposition> is allowed to have a <start>
containing a <transition string>. All other <start>s must contain only <nextstate>.
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The complete valid input signal sets (each such sets being a union of the <valid input signal set>
and the set of signals conveyed on incoming <service signal route>s of a <service definition>) of
the <service definition>s within a <process definition> must be disjoint.

A. <procedure definition> must not have <state>>s when the enclosing <process definition>> con-
tains a <service definition>. <procedure definition>>s visible to more than one service must not
contain a VIA construct.

The set of priorities associated to <continuous signal>s within the various <service definition>s of a
<service decomposition> must not overlap.

Similar wellformedness rules apply for <signal route connect> as for <channel to route
connection>,

If the enclosing <service decomposition> contains any <service signal route definition>s then for
each <gsignal route identifier> in an <output> there must exist a service signal route originating from
the enclosing service and connected to the signal route, and able to convey the signals denoted by
the <signal identifier>s contained in the <output>.

If an <output> does not contain a VIA construct, then there must exist at least one communication
path (either implicit to own service, or via (possibly implicit) service signal routes, and possibly
signal routes and channels), originating from the service, that is able to convey the signals denoted
by the <signal identifier>s contained in the <output>.

For each <priority output> there must exist at least one communication path (either implicit to own
service, or via (possibly implicit service signal routes}, originating from the service that is able to
convey the signals denoted by the <priority signal identifier>s contained in the <priority output>.

<priority input> is only allowed in a <service body>. <priority output> is only allowed in a
<service body> and in <procedure body=>.

Concrete graphical grammar

<service diagram> 1=
<frame symbol> contains
{<service heading>
[ {<service text area> }*

{<graphical procedure reference>}*
{ <procedure diagram>}*
{<macro diagram>} *
<service graph area> }set }

<service heading> ::=
SERVICE {<service name< | <gervice identifier>}

<service text area> 1=
<text symbol> contains
{ <variable definition>

| <data definition>
| <timer definition>
| <view definition>
| <import definition>
| <select definition>
| <macro definition> }¥

<service graph area> ::=
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<process graph area>

<priority input association area> ::=

<solid association symbol> is connected to <priority input area>
<priority input area> ::=

<priority input symbol> contains <priority input list>

is followed by <transition area>

<priority input symbol> ::=

<priority output area> ::=
<priority output symbol> contains <priority output body>

<priority output symbol> ::=

Semantics

The properties of a service are derived from the requirement that the <service decomposition>
replacing a <process body> expresses the same behaviour as the <process body>.

Within a process instance there is a service instance for each <service definition> in the <process
definition>. Service instances are components of the process instance, and cannot be manipulated
(created, addressed or aborted) as separate objects. They share the input port and the expressions
SELF, PARENT, OFFSPRING and SENDER of the process instance.

A service instance is a finite state machine, but it cannot run in parallel with other service instances
of the process instance, i. e. within a process instance only one service instance can perform a
transition at any one time.

In <priority output body> the construct TO SELF is implied. Priority signals are a special class of
signals that have higher priority than ordinary signals. These signals can be sent only between
service instances within the same process instance.

An input signal from the input port is given to the service instance that is able to receive that signal.

Model
a) Transformation of definitions

Local definitions within a <service definition> are transformed to the process level by
replacing every occurrence of a name in the service by the same distinct new name. Every
references to services in qualifiers disappear. _

View definitions or import definitions containing the same view or import variable are
merged into one view or import definition.
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b)

Transformation of <service body>s

The set of <service body>s is transformed into one <process body>. This may be done in
several alternative ways. Here, a simple transformation is chosen, since the main objective is
to define the service concept by strict concrete syntax. For practical reason a <service body>
and a <process body> is regarded as a graph composed of states, transition strings between
states, stop transition strings and one start transition string. A transition string is uniquely
defined by a start state, an input and an end state,

1)  States

A state in the resulting process graph is identified by a name-tuple. The dimension of
the tuple is the number of service graphs. Each tuple component refers uniquely to one
of the original services graphs, and the value of the tuple component is one of the state
names of the referred service graph. The state names of the process graph will then be
the set of tuples that is possible to construct using these rules. Example:

Given two service graphs and their states

fl: <a> <b>
2: <A> <B><C>

then the resulting process graph has the following states
<a.A> <a.B> <a,C> <b.A> <b.B> <b.C>
This state explosion can normally be reduced substantially, but this is not treated here.,
2) transition strings
Each transition string in a service graph is copied into the process graph in one or more
places. It is copied to connect each pair of state tuples that satisfies the following
conditions:
- One component of the start state tuple refers to the start state of the transition string
- One component of the end state tuple refers to the end state of the transition string
- the other component values must be the same for both state tuples
Example:
In the previous example we have a transition string in £2 between <B> and <C>. In the
resulting process graph, this transition string will connect <a.B> to <a.C> and <b.B>
to <b.C>. This can be expressed more concisely (using the short hand notation of the
concrete syntax):
<* B> is transformed to <-.C>
3) Start transition strings
If one of the service graphs contains a start transition string, then this transition string is
transformed into the start transition string of the process graph. The start transition

string of the process graph leads to the state tuple having as components all the initial
state names of the service graph.
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4)  Stop transition strings

Each transition leading to a <stop> is copied into the process graph and it is connected
to each state tuple having one component that refers to the start state of the transition.

5)  Priority signals
The priority signals are transformed as follows.

Each state of the resulting process graph is split into two states. Priority inputs to the

original state are connected to the first state, all other inputs to the second state and are

saved in the first state. The transition string leading to the original state is now leading

to the first state. To this transition string is added the following action string:

- aunique token-value is generated and.is assigned to the implicit variable
SAME_TOKEN

- the implicit signal X_CONT is sent to SELF, carrying the token-value.

An input for the implicit signal X_CONT 1is added to the first state, followed by the
following transition string:
A decision compares the received token-value with the value of SAME_TOKEN,
If the values are equal, then a path leading to the second state is chosen, otherwise
a part leading back to the first state.

Example

An example of a <process definition> containing a <service decomposition> is given below as well
as the corresponding <service definition>s. This process has the same behaviour of the one given in
Figure 2.9.9in § 2.9.

PROCESS Game;
FPAR Player pid;
SIGNAL Proberers (integer);
DCL A integer;

SIGNALROQUTE IR1 FROM Game_handler TO ENV WITH Score,Gameid;
SIGNALROUTE IR2 FROM Game_handler TO ENV WITH Subscr,Endsubscr;
SIGNALROUTE IR3 FROM ENV TO Game_handler WITH Result,Endgame;
SIGNALROUTE IR4 FROM ENV TO Bump_handler WITH Probe;
SIGNALROUTE IR5 FROM ENV TO Bump_handler WITH Bump;
SIGNALRQUTE IR6 FROM Bump_handler TO ENV WITH Lose, Win;
SIGNALROUTE IR7 FROM Bump_handler TO Game_handler WITH Proberers;

CONNECT R5 AND IRS;

CONNECT R2 AND IR3,IR4; .

CONNECT R3 AND IRL,IRG;
-CONNECT R4 AND IR2;

SERVICE Game_handler REFERENCED;
SERVICE Bump_handler REFERENCED;

ENDPROCESS Game;
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SERVICE Game handler;

/*The service handles a game with actions to start a game,
to end a game, to keep track
of the score and to communicate the score*/

DCL Count integer;
/*Counter to keep track of the score*/

START;

QUTPUT Subscr;

OUTPUT Gameid TO Player;

TASK Count:=0;

NEXTSTATE STARTED;

STATE STARTED;

PRIORITY INPUT Proberers(A);
TASK Count:=Count+A;
NEXTSTATE _;

INPUT Result;

OUTPUT Score(Count) TO Player;
NEXTSTATE _;
INPUT Endgame;
QUTPUT Endsubscr;
STOP;
ENDSTATE STARTED;
ENDSERVICE Game_handler;

SERVICE Bump_handler;

/*The service has actions to register the bumps and
to handle probes from the player.

The probe result is sent to the player but also to the service Game_handler*/

START;
NEXTSTATE EVEN;
STATE EVEN;
INPUT Probe;
OUTPUT Lose TO Player;
PRIORITY OUTPUT Proberers(-1);
NEXTSTATE _;
INPUT Bump;
NEXTSTATE ODD;
ENDSTATE EVEN;
STATE ODD;
INPUT Bump;
NEXTSTATE EVEN;
INPUT Probe;
OUTPUT Win TO Player;
PRIORITY OUTPUT Proberers(+1);
NEXTSTATE _;
ENDSTATE ODD;
ENDSERVICE Bump_handler;
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The same example in SDL/GR is shown in the following diagrams:

R5

116

PROCESS Game FPAR Player pid

SIGNAL Proberers (integer);
DCL A integer;

Lose, Score, Subscr,
Win Gameld Endsubscr

Game_handler

E{esult, :I
Probereg Endgame
IR
IR7 3
EBum;ZI Bump_handler [Probcj IR4
FIGURE 4.10.1

Example of a process diagram with service decomposition
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SERVICE Game_handler

/* The service handles a game
with actions to start a game,

to end a game, to keep track of
the score and to communicate
the score */

Subscr

1(1)

DCL Count integer;
/* Counter to keep track of
the score */
Count:=0
STARTED
{ ] ]
Result

Count :=
Count +A

Score(count)
TO Player

Endgame <

Endsubscr

FIGURE 4.10.2

Example of a service diagram
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SERVICE Bump_handier

/* The service has actions L~
to register the bumps and
to handle probes from the player,
The probe result is sent to the
player but also to the service
‘Game-handler' */

1(1)

H

l

i
Probe < Bump
lose TO
Player

Proberes {

( -1) Bump < Probe <
Win TO >

Player

L\

o}

Proberes\

(1)

.

FIGURE 4.10.3
Example of a service diagram

Applying the rules from 1 to 4 of the transformation the process graph of Figure 4.10.4 is obtained;
it still contains priority signals not yet transformed. Simplifying in an obvious way the transitions
that contain priority signals and using the asterisk state concept, the same process of Figure 2.9.10

in § 2.9 can be obtained. (Note that the states EVEN and ODD correspond respectively to the states
STARTED.EVEN and STARTED.ODD)
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PROCESS Game FPAR Player pid

SIGNAL Proberes (integer);
DCL A integer;
DCL Count integer;

Subscr

Gameid
TO Player

Count:=0

ISTARTED.EVEN

1(1)

> Probe

> Bump

>>'oberea
" (A)

> Endgame

Lose Count:=
TO Player Count+A Score (Count) Endsubscr
TO Player
Probereg
{-1)
A 4
( - ) (STARTED.ODI%
i
| | 1 | i
\Prober&:-
Bump Probe / (A) Result Endgame
] | ] N
Win
Count:= Score{Count) Endsubscr
sTARTEDEVEN | TO P‘aye.’> Count+A TO Player )
i
v v
Proberes:
1 - -
FIGURE 4.10.4 Example of partial transformation
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411 Continuous signal

In describing systems with SDL, the situation may arise where a user would like to show that a
transition is caused directly by a true value of a boolean expression. The model of achieving this is
to evaluate the expression while in the state, and initiate the transition if the expression evaluates to
true.A shorthand for this is called Continnous signal, which allows a transition to be initiated
directly when a certain condition is fulfilled.

Concrete textual grammar

<continuous signal> ::=
PROVIDED <boolean expression> <end>
[PRIORITY <integer literal name> <end> ] <transition>

The values of the <integer literal name>s in <continuous signal>s of a <state> must be distinct. The
PRIORITY construct may be omitted only if the <state>> contains exactly one <continuous signal>,

Concrete graphical grammar

<continuous signal association area> ::=
<solid association symbol> is connected to <continuous signal area>

<continuous signal area> ::=
<enabling condition symbol>

contains {<boolean expression> [[<end>] PRIORITY <integer literal name:>]}
is followed by <transition area>

Semantics

The <boolean expression> in the <continuous signal> is evaluated upon entering the state to which
it is associated, and while waiting in the state, any time no <stimulus> of an attached <input list> is
found in the input port. If the value of the <boolean expression> is True, the transition is initiated.
When the value of the <boolean expression> is True in more than one <continuous signal>s, then
the transition to be initiated is determined by the <continuous signal> having the highest priority,
that is the lowest value for <integer literal name>.

Model

The state with the name state_name containing <continuous signal>s is transformed to the
following. This transformation requires two implicit variables n and newn. The variable n is
initialised to 0. Furthermore an implicit signal emptyQ conveying an integer value is required.

1) All <nextstate>s which mention the state_name are replaced by JOIN I;
2)  The following transition is inserted:
1:  TASK n:=n+];
OUTPUT emptyQ (n) TO SELF;
NEXTSTATE state_name;
3)  The following <input part> is added to the <state> state_name:
INPUT emptyQ (newn);

and a <decision> containing the <question>
(newn=n)
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4a)  The false <answer part> contains
NEXSTATE state_name;

4b) The true <answer part> contains a sequence of <decision>s corresponding to the

<continuous signal>s in priority order (higher priority is indicated by lower value of the
<integer literal name>).

The False <answer part> contains the next <decision>, except for the last <decision> for
which this <answer part> contains: JOIN 1;

Each true <answer part> of these <decision>s leads to the <transition> of the corresponding
<continuous signal>.

Example
See § 4.12.

4.12  Enabling condition

In SDL the reception of a signal in a state immediately initiates a transition. The concept of

Enabling condition makes it possible to impose an additonal condition for the initiation of a
transition.

Concrete textual grammar

<enabling condition> ::=
PROVIDED <boolean expression> <end>

Concrete graphical grammar

<enabling condition area> ::=
<enbling condition symbol> contains <boolean expression>

<enabling condition symbol> ::=

< D

The <boolean expression> in the <enabling condition> is evaluated before entering the state in
question; and any time the state is reentered through the arrival of a <stimulus>. In the case of
multiple enabling conditions, these are evaluated sequentially in a non deterministic order before
entering the state. The transformation model guarantees repeated reevaluation of the expression by
sending additional <stimulus>s through the input port. A signal denoted in the <input list> which
precedes the <enabling condition> can start a transition only if the value of the corresponding
<boolean expression> is True. If this value is False, the signal is saved instead.

Semuantics
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Model

The state with the name state_name containing <enabling condition>s is transformed to the
following. This transformation requires two implicit variables n and newn. The variable n is
Initialised to 0. Furthermore an implicit signal emptyQ conveying an integer value is required.

1)
2)

3)

4)

5)
6)

All <nextstate>s which mention the state_name are replaced by JOIN 1;
The following transition is inserted:

I: TASK n:=n+l;
OUTPUT emptyQ (n) TO SELF;

A number of decisions, each containing only one <boolean expression> corresponding to
some <enabling condition> attached to the state, is added hierarchically in a non deterministic

order such that all combination of truth values may be evaluated for all enabling conditions
attached to the state.

Each such combination leads to a new distinct state .

Each of these new states has a set of <input part>s consisting of a copy of these <input
part>s of the state without enabling conditions plus the <input part>s for which the
<enabling condition>'s <boolean expression>s evaluated to true for this state.

The <stimulus>s for the remaining <input part>s constitute the <save list> for a new <save

part> attached to this state. The <save part>s of the original state are also copied to this new
state,

Add to each of the new states:
INPUT emptyQ (newn);

A <decision> containing the <question> (newn=n);
The false <answer part> contains a <nextstate> back to this same new state,

The true <answer part> contains a JOIN 1;

If <continuous signal>s and <enabling condition>s are used in the same <state>, evaluations
of the <boolean expression>s from <continuous signal>s are done by replacing step 5 of the
model for <enabling condition> with step 4b of the model for <continuous signal>.

Example

An example illustrating the transformation of continuous signal and enabling condition appearing in
a state is given below.

Note in the example that the connector ec has been introduced for convenience. It is not part of the
transformation model.
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STATEL1

EETR VAV
<

i}

is transformed into
l STATE1_
FALSE
n=n+1
> sl / 82,83 / (newn)

EMPTYQ(n)
TO SELF

STATEL_
FALSE ST ATE
TRUE

EMPTYQ
/ 3 / >(ncwn)
(nrue) (false) é é (false) @
@ TRUE
FIGURE 4.12.1

Transformation of continuos signal and enabling condition in the same state
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4.13 Imported and Exported value

In SDL a variable is always owned by, and local to, a process instance, Normally the
variable is visible only to the process instance which owns it, though it may be declared as a shared
value (see §2) which allows other process instances in the same block to have access to the value
of the variable. If a process instance in another block needs to access the value of a variable, a
signal interchange with the process instance owning the variable is needed.

This can be achieved by the following shorthand notation, called imported and exported
value. The shorthand notation may also be used to export values to other process instances within
the same block, in which case it provides an alternative to the use of shared values.

Concrete textual grammar
<import definition> ::=
IMPORTED <import name> {, <import name> }* <sort>
{, <import name> {, <import name> }* <sort>)* <end>

<import expression> ::=
IMPORT (<import identifier> [, <pid expression>])

<gxport> ;.=
EXPORT ( <variable identifier> {, <variable identifier> }*)

Concrete graphical grammar

<export area>::=
<task symbol> contains <export>

Semaniics

The process instance which owns a variable whose values are exported to other process instances
is called the exporter of the variable. Other process instances which use these values are known as
importers of the variable. The variable is called exported variable.

A process instance may be both importer and exporter, but it cannot import from or export to the
environment.

a) Export operation

Exported variables have the keyword EXPORTED in their <variable definition>s, and have
an implicit copy to be used in import operations.

An export operation is the execution of an <export> by which an exporter discloses the
current value of an exported variable . An export operation causes the storing of the current
value of the exported variable into its implicit copy.

b) Import operation
For each <import definition> in an importer there is a set of implicit variables, all having the

name and sort given in the <import definition>. These implicit variables are used for the
storage of imported values.
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An import operation is the execution of an <import expression> by which an importer
accesses the value of an exported variable. The value is stored in an implicit variable denoted
by the <import identifier> in the <import expression>. The exporter containing the exported
variable is specified by the <pid expression> in the <import expression>. If no <PId
expression> is specified then there should be only one instance exporting that variable.The
association between the exported variable in the exporter and the implicit variable in the
importer is specified by having the same <identifier> in the <export> and in the <import
expression>. In addition, the exported variable and the implicit variable must have the same
SOTT.

Mode!

An import operation is modeled by exchange of signals. These signals are implicit and are conveyed
on implicit channels and signal routes. The importer sends a signal to the exporter, and waits for the
reply. In response to this signal the exporter sends a signal back to the importer with the value
contained in the implicit copy of the exported variable.

If a default assignement is attached to the export variable or if the export variable is initiated when it
is defined, then also the implicit copy is initiated and with the same value as the export variable.

There are two implicit <signal definition>s for each combination of <jmport name> and <sort>
contained in all <import definition>s in a system definition. The <signal name>s in these <signal
definition>s is denoted by xtQUERY respectively xtREPLY, where x denotes an <import name>
and r denotes a <sort>. The implicit copy of the exported variable is denoted by imcx.

a) Importer
The <import expression> TMPORT (x, pidexp)' is transformed to the following:
OUTPUT xtQUERY TO pidexp;
Wait in state xtWAIT, saving all other signals;
INPUT xtREPLY (x);
Replace the <import expression> by x, (the <name> of the implicit variable);

If an <import expression> occurs more than once in an <expression>, then a separate
implicit variable with the same <name> is used for each occurence.

b) Exporter
To all <state>s, including implicit states, of the exporter the following <input part> is added:
INPUT xtQUERY;
OUTPUT xtREPLY (imcx) TO SENDER;
/* next state the same */

The <export> 'EXPORT (x)' is transformed to the following:

TASK imcx 1= x;
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5 Data in SDL
5.1  Imtroduction

_ This introduction gives an outline of the formal model used to define data types and
information on how the rest of § 5 is structured.

In a specification language, it is essential to allow data types to be formally described in
terms of their behaviour, rather than by composing them from provided primitives, as in some
programming languages. The latter approach invariably involves a particular implementation of the
data type, and hence restricts the freedom available to the implementer to choose appropriate
representations of the data type. The abstract data type approach allows any implementation
providing that it is feasible and correct with respect to the specification.

5.1.1 Abstraction in data types

All data used in SDL is based on abstract data types which are defined in terms of their
abstract properties rather than in terms of some concrete implementation. Examples of defining
abstract data types are given in § 5.6 which defines the predefined data facilities of the language.

Although all data types are abstract, and the predefined data facilities may even be
overridden by the user, SDL attempts to provide a set of predefined data facilities which are familiar
in both their behaviour and syntax. The following are predefined:

a) Boolean

b) Character

¢) String

d) Charstring

¢) Integer

f) Natural

g) Real

h) Array

i) Powerset

jy Pd
k) Duration
1) Time.

The structured sort concept (STRUCT) can be used to form composite objects.
5.1.2 Outline of formalisms used to model data
Data is modelled by an initial algebra. The algebra has designated sorts, and a set of

operators mapping between the sorts. Each sort is the collection of all the possible values which can
be generated by the related set of operators. Each value can be denoted by at least one expression in
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the language containing only literals and operators (except in the special case of PId values).
Literals are a special case of operators without arguments.

The sorts and operators, together with the behaviour (specified by algebraic rules) of the
data type, form the properties of the data type. A data type is introduced in a number of partial type
definitions, each of which defines a sort and operators and algebraic rules associated with that sort.

The keyword NEWTYPE introduces a partial type definition which defines a distinct new
sort. A sort can be created with properties inherited from another sort, but with different identifiers
for the sort and operators.

Introduction of a syntype nominates a subset of the values of an already existing sort.

) A generator is an incomplete NEWTYPE description: before it assumes the status of a sort,
it must be instantiated by providing the missing information.

Some operators map onto the sort, and so produce (possibly new) values of the sort. Other
operators give meaning to the sort by mapping onto other defined sorts. Many operators map onto

the Boolean sort from other sorts, but it is strictly prohibited for these operators to extend the
Boolean sort,

In SDL a function is known as a passive operator and can have no effect on the values
associated with variables given as parameters. SDL also defines assignment which can change the
values associated with variables.

5.1.3 Terminology

The terminology used in § 5 or the data model is chosen to be in harmony with published
work on injtial algebras. In particular "data type" is used to refer to a collection of sorts plus a
collection of operators associated with those sorts and the definition of properties of these sorts and
operators by algebraic equations. A "sort" is a set of values with common characteristics. An
"operator" is a relation between sorts. An "equation” is a definition of equivalence between terms of
a sort. A value is a set of equivalent terms, An "axiom" is an equation which defines a Boolean
value to be equivalent to True. However, "axioms" is used as a term for "axiom"s or "equation”s,
and an “equation” can be an "axiom".

5.1.4 Division of text on data

The initial algebra model used for data in SDL is described in a way which allows most of
the data concepts to be defined in terms of a data kernel of the SDL abstract data language.

The text of § 5 is divided into this introduction (§ 5.1), the data kernel language (§ 5.2), the
?iﬁa%;lgebra model (§ 5.3), passive use of data (§ 5.4), active use of data (§ 5.5) and predefined
ata (§ 5.6).

The data kernel language defines the part of data in SDL which corresponds directly with
the underlying initial algebra approach.

The text on initial algebra gives a more detailed introduction to the mathematical basis of this
approach. This is formulated in a more precise mathematical way in appendix L

The passive use of SDL includes the implicit and shorthand features of SDL data which
allow its use for the definition of abstract data types. It also includes the interpretation of
expressions which do not involve values assigned to variables. These "passive” expressions
correspond to functional use of the langunage.
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The active use of data extends the language to include assignment. This includes assi gnment
to use of and initialisation of variables. When SDL is used to assign to variables or to access the
values in variables, it is said to be used actively. The difference between active and passive
expressions is that the value of a passive expression is independent of when it is interpreted,
whereas an active expression may be interpreted as different values depending on the current values
assoclated with variables or the current system state.

The final topic is predefined data.

5.2 Thedata kernel language
The data kernel can be used to define abstract data types.

More convenient constructs for defining data types can be defined in terms of the constructs
defined for the data kernel, except where the concepts of assignment to a variable are needed. (The
concepts of errors and syntypes could be defined in terms of the kernel but in § 5.4.1.7 and §
3.4.1.9 alternative, more concise, definitions are used).

5.2.1 Data type definitions

At any point in an SDL specification there is an applicable data type definition. The data type
definition defines the validity of expressions and the relationship between expressions. The
definition introduces operators and sets of values (sorts).

.. There is not a simple correspondence between the concrete and abstract syntax for data type
definitions since the concrete syntax introduces the data type definition incrementally with emphasis
on the sorts (see also § 5.3).

] The definitions in the concrete syntax are often interdependent and cannot be separated into
different scope units. For example

NEWTYPE even LITERALS 0;
OPERATORS plusee  :even,even ->even;
plusoo :odd,odd ->even;

AXIOMS plusee(a,0) ==3a;
plusee(a,b) == plusee(b,a);
plusoo(a,b) == plusoo(b,a);

ENDNEWTYPE even COMMENT ‘even "numbers" with plus—depends on odd";
NEWTYPE odd LITERALS 1;
OPERATORS plusoe :o0dd,even -> odd;
pluseo  :even,odd ->odd;
AXIOMS plusoe(a,0) ==3;
pluseo(a,b) == plusoe(b,a);
ENDNEWTYPE odd; /*odd "numbers" with plus - depends on even*/

Each data type definition is complete; there are no references to sorts or operators which are
not included in the data type definition which applies at a given point. Also a data type definition
must not invalidate the semantics of a data type definition in the immediately surrounding scope
unit. A data type in an enclosed scope unit only enriches operators of sorts defined in the outer
scope unit. A value of a sort defined in a scope unit may be freely used and passed between or from
hierarchically Iower scope units. Since predefined data is defined at system level the predefined
sorts (for example Boolean and Integer) may be freely used throughout the system.
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Abstract grammar

Data-type-definition

Type-union

Type-identifier

Type-name
Type-union
Sorts
Signature—set
Equations

Type-identifier—set
Identifier

Sorts Sort-name-set
Type-name Name
Sort-name Name
Equations Equation—set

Within a data type definition for each Sort there must be at least one Signature with a Result (see
§ 5.2.2) which is the same as the Sort .

A data type definition must not add new values to any sort of the data type identified by the type
union.

If one term (see § 5.2.3) is non-equivalent to another term according to the data type identified by
the zype union of a data type definition, then these terms must not be defined to be equivalent by
the data type definition.

In addition the two Boolean terms True and False must not be (directly or indirectly) defined to be

equivalent (see § 5.4.3.1). Also it is not allowed to reduce the number of values for the predefined
sort PId. '

Note —  The abstract syntax allows more than one type identity for a rype union to harmonise
with the more general class of algebras used for the underlying model - in SDL only one type is
referenced because in the concrete syntax the visible data type is implicitly defined by the
surrounding <scope unit class>; therefore <type union> is only referenced in the abstract syntax

and is either the type identifier of the surrounding scope unit or in the case of a <system
definition> an empty set.

Concrete textual grammar
<partial type definition> ::=
NEWTYPE <sort name> [ <extended properties> ] <properties expression>
ENDNEWTYPE [ <sort name> ]

<properties expression> ::=
<operators> [ AXIOMS <axioms> ] [ <literal mapping> ] [ <default assignment> ]

The optional <extended properties>, <literal mapping> and <default assignment> are not part of the
data kernel and are defined in sections § 5.4.1, § 5.4.1.15 and § 5.5.3.3 respectively.

The data type definition is represented by the collection of all the <partial type definition>s in the

current <scope unit class> combined with the data type definition identified by the type union of
the surrounding <scope unit class>. The type name of a <data type definition> is implied and does
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not have a concrete syntax representation. The type identifier of a type union is implied to be the
identity of the data type definition of the surrounding scope unit.

The following <scope unit class>s (see § 2.2.2) each represent an item in the abstract syntax which
contains a data type definition : <system definition>, <block definition>, <process definition>,
<procedure definition>, <channel substructure definition> or <block substructure definition> or the
corresponding diagrams in graphical syntax. The <partial type definition> in a <service definition>
represents part of the data type definition in the enclosing <process definition> of the <service
definition> (see § 4.10).

The sorts for a <scope unit class> are represented by the set of <sort name>s introduced by the set
of <partial type definition>s of the <scope unit class>.

The signature set and equations for a <scope unit class> are represented by the <propernes
expression>s of the <partial type definition>s of the <scope unit class>.

The <operators> of a <properties expression> represents part of the signature set in the abstract
syntax. The complete signature setis the union of the signature sets defined by the <partial type
definition>s in the <scope unit class>.

The <axioms> of a <properties expression> represents part of the equation set in the abstract
syntax. The equations is the union of the equation sets defined by the <partial type definition>s in
the <scope unit class>.

The predefined data sorts have their implicit <partial type definition>s at the system level.

If a <sort name> is given after the keyword ENDNEWTYPE then it must be the same as the <sort
name> given after the keyword NEWTYPE,

Semantics

The data type definition defines a data type. A data type has a set of type properties, that is: a set of
sorts, a set of operators and a set of equations.

The properties of data types are defined in the concrete syntax by partial type definitions. A partial
type definition does not introduce all the properties of a data type but only partially defines some of
the properties related to the sort introduced in the partial type definition. The complete properties of
a data type are found by considering the combination of all partial type definitions which apply
within the scope unit containing the data type definition.

A sort is a set of data values. Two different sorts have no values in common.

The data type definition is formed from the data type definition of the scope unit defining the
current scope unit taken in conjunction with the sorts, operators and equations defined in the
current scope unit. The system definition contains the definition of the predefined data sorts.

Except within a <partial type definition>, a <signal refinement> or a <service definition>, the data
type definition which applies at any point is the data type defined for the scope unit immediately
enclosing that point. Within a <partial type definition> or a <signal refinement> the data type
definition which applies is the data type definition of the scope unit enclosing the <partial type
definition> or <signal refinement> respectively. Within a <service definition> it is the data type

definition of the enclosing <process definition> of the <service definition> which applies (see
$4.10).

The set of sorts of a data type is the set of sorts introduced in the current scope unit plus the set of
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sorts of the data type identified by the type union. The set of operators of a data type is the set of
operators introduced in the current scope unit plus the set of operators of the data type identified by
the type union, The set of equations of a data type is the set of equations introduced in the current
scope unit plus the set of equations of the data type identified by the type union.

Each sort introduced in a data type definition has an identifier which is the name introduced by a
partial type definition in the scope unit qualified by the identifier of the scope unit.

A data type has an identifier which is the unique type name in the abstract syntax qualified by the
identity of the scope unit. There is no name for a data type in the concrete syntax.

Example
NEWTYPE telephone

/* operators and construction of values defined elsewhere*/

ENDNEWTYPE telephone;

5.2.2 Literals and parameterised operators

Abstract grammar

Signature
Literal-signature
Operator-signature
Argument-list

Result

Sort-reference-identifier

Literal-operator-name
Operator-name

Sort-identifier

Literal-signature |

‘Operator-signature

Literal-operator-name
Result

Operator-name

Argument-list
Result

Sort-reference-identifier +
Sort-reference-identifier

Sort-identifier |
Syntype-identifier

Namne
Name

Identifier

Syntypes and syntype identifiers are not part of the kernel (see § 5.4.1.9).

Concrete textual grammar

<operators> ::=

[ literal list> ] [ <operator list> ]

<literal list> ::=

LITERALS <literal signature> {, <literal signature> }* [ <end> ]
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<literal signature> ::=
<literal operator name>
|  <extended literal name>

<operator list> .=
OPERATORS
<operator signature> { <end> <operator signature> }* [ <end> ]

<operator signature> 1=
<operator name>> : <argument list> -> <result>
| <ordering>

<operator name> ;=
<operator name>
| <extended operator name>

<argument list> ::=
<argument sort> { , <argument sort> }*

<argument sort> ::=
<extended sort>

<result> ;1=
<extended sort>
<extended sort> ;=
<S0rt>
| <generator sort>
<sort> 1=
<sort identifier>
| <syntype>

The alternatives <extended operator name>, <extended literal name>, <ordering>, <generator
sort>, <generator sort> and <syntype> are not part of the data kernel and are defined in § 5.4.1, §
54.1,8§54.1.8, § 54.1.12.1, § 54.1.12.1 and § 5.4.1.9 respectively.

Literals are introduced by <literal signatures>s listed after the keyword LITERALS. The result of a
literal signature is the sort introduced by the <partial type definition> defining the literal.

Each <operator signature> in the list of <operator signature>s after the keyword OPERATORS
represents an operator signature with an operator name, an argument list and a result .

The <operator name> corresponds to an operator name in the abstract syntax which is unique
within the defining scope unit even though the name may not be unique in the concrete syntax.

The unique Operator-name or Literal-operator-name in the abstract syntax is derived from
a) the <operator name> (or <literal operator name>), plus
b) the list of argument sort identifiers, plus

c) the result sort identifier, plus
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d) the sort identifier of the partial type definition in which the <operator name> (or <literal
operator name>>) is defined.

Whenever an <operator identifier> is specified then the unique operator name in operator identifier
is derived in the same way with the list of argument sorts and the result sort derived from context.
Two operators with the same <name> which differ by one or more of the argument or result sorts
have different names.

Each <argument sort> in an <argument list>> represents a sort reference identifier in an argument
list . A <result> represents the sort reference identifier of a result.

Wherever a <qualifier> of an <operator identifier> (or <literal operator identifier>) contains a <path
item> with the keyword TYPE, then the <sort name> after this keyword does not form part of the
Qualifier of the Operator-identifier (or Literal-operator-identifier) but is used to derive the unique
Name of the Identifier. In this case the Qualifier is formed from the list of <path item>s preceding
the keyword TYPE.

Semantics

An operator is "total" which means that application of the operator to any list of values of the
argument sorts denotes a value of the result sort.

An operator signature defines how the operator may be used in expressions. The operator signature
is the operator identity plus the list of sorts of the arguments and the sort of the result. It is the
operator signature which determines whether an expression is a valid expression in the language
according to the rules required for matching the sorts of argument expressions.

An operator with no argument is called a literal.

A literal represents a fixed value belonging to the result sort of the operator.

An operator has a result sort which is the sort identified by the result.

Note —  As guidelines: an <operator signature> should mention the sort introduced by the
enclosing <partial type definition> as either an <argument> or a <result>.

Example 1
LITERALS free, busy ;
Example 2

OPERATORS
findstate : Telephone -> Availability;

Example 3

LITERALS empty_list
OPERATORS add_to_list : list_of_telephones, telephone -> list_of_telephones;
sub_list - :list_of_telephones, telephone -> list_of telephones

3.2.3 Axioms

.. The axioms determine which terms represent the same value. From the axioms in a data type
definition the relationship between argument values and result values of operators is determined and
hence meaning is given to the operators. Axioms are either given as Boolean axioms or in the form
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of algebraic equivalence equations.

Abstract grammar

Equation = Unquantified-equation |
Quantified-equations |
Conditional-equation |
Informal-text

Urnquantified-equation n Term
Term

Quantified-equations b Value-name—set
Sort-identifier
Equations

Value-name = Name

Term = Ground-term |
Composite-term |
Error-term

Composite-term :: Value-identifier |
Operator-identifier Term™ |
Conditional-composite-term

Value-identifier = Identifier

Operator-identifier = Identifier

Ground-term n Literal-operator-identifier 1
Operator-identifier Ground-term™ |
Conditional-ground-term

Literal-operator-identifier = Identifier

The alternatives Conditional-composite-term and Conditional-ground-term in the rules
Composite-term and Ground-term tespectively are not part of the data kernel, although the
equations containing these terms may be replaced by semantically equivalent equations written in
the kernel language (see § 5.4.1.6). The alternative error term in the rule zerm is not part of the

data kernel and is defined in § 5.4.1.7.

The definitions of informal text and conditional equations are given in § 2.2.3 and § 5.2.4
respectively.

Each term (or ground term ) in the list of terms after an operator identifier must have the same sort
as the corresponding (by position) sort in the argument list of the operator signature.

The two terms in an unquantified equation must be of the same sort.
Concrete textual grammar

<axioms> ::=
<equation> { <end> <equation>}* [ <end> ]
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<equation> ::=
<unquantified equation>
| <quantified equations>
I <conditional equation>
| <informal text>

<quantified equations> ::=
<quantification> ( <axioms> )

<quantification> ::=
' FOR ALL <yalue name> { , <value name> }* IN <extended sort>

<unquantified equation> ::=
<term> == <term>
I <Boolean axiom>

<term> 1=
<ground term>
| <composite term>
| <error term>
I <spelling term>

<composite term> 1=
<value identifier>
| <operator identifier> ( <composite term list> )
| ( <composite term> )
| <extended composite term>

<composite term list> ::=
<composite term> { , <term> }*
| <term>, <composite term list>

<ground term> ::=
<literal identifier>
} <operator identifier> ( <ground term> { , <ground term> }* )
I (<ground term> )
I <extended ground term>

<literal identifier> ::=
<literal operator identifier>
| <extended literal identifier>

The alternatives <Boolean axiom> of rule <unquantified equation>, <error term> and <spelling

term> of rule <term>, <extended composite term> of rule <composite term>, <extended ground
term> of rule <ground term>, and <extended literal identifier> of rule <literal identifier> are not

part of the data kernel and are defined in § 5.4.1.5, § 5.4.1.7, § 5.4.1.15, § 5.4.1, § 5.4.1, and §

5.4.1 respectively.

The <sort> in a <quantification> represents the sort identifier in quantified equations . The <value
name>s in a <quantification> represents the value name set in quantified equations .

A <composite term list> represents a term list. An operator identifier followed by a term list is

only a composite term if the term list contains at least one value identifier.

An <identifier> which is an unqualified name appearing in a <term> represents
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a) an operator identifier if it precedes an open round bracket (or it is an <operator name>
which is an <extended operator name> — see § 5.4.1), otherwise

b) a value identifier if there is a definition of that name in a <quantification> of <quantified
equations> enclosing the <term> of a suitable sort for the context, otherwise

c) a literal operator identifier if there is a visible literal with that name of a suitable sort for the
context, otherwise

d) a value identifier which has an implied quantified equation in the abstract syntax for the
<unquantified equation>.

Two or more occurrences of the same unbound <value identifier> in an <equation> imply only one
quantification.

An operator identifier is derived from the context so that if the <operator name> is overloaded (that
is the same <name> is used for more than one operator) then it will be the operator name which
identifies a visible operator with the same name and the argument sorts and result sort consistent
with the operator application. If the <operator name> is overloaded then it may be necessary to
derive the argument sorts from the arguments and the result sort from context in order to determine
the operator name.

Within one <unquantified equation> there must be exactly one sort for each implicitly quantified
value identifier which is consistent with all its uses.

It must be possible to bind each unqualified <operator identifier> or <literal operator identifier> to
exactly one defined operator identifier or literal operator identifier which satisfies the conditions in
the construct in which the <identifier> is used. That is the binding shall be unique.

Note —  As guidelines: an axiom should be relevant to the sort of the enclosing partial type
definition by mentioning an operator or literal with a result of this sort or an operator which has an
argument of this sort; an axiom should be defined only once.

Semantics

Each equation is a statement about the algebraic equivalence of terms. The left hand side term and
right hand side term are stated to be equivalent so that where one term appears, the other term may
be substituted. When a value identifier appears in an equation then it may be simultaneously
substituted in that equation by the same term for every occurrence of the value identifier. For this
substitution the term may be any ground term of the same sort as the value identifier.

Value identifiers are introduced by the value names in quantified equations. A value identifier is
used to represent any data values belonging to the sort of the quantification. An equation will hold
if the same value is simultaneously substituted for every occurrence of the value identifier in the
equation regardless of the value chosen for the substitution.

A ground term is a term which does not contain any value identifiers. A ground term represents a
particular, known value. For each value in a sort there exists at least one ground term which
represents that value.

If any axioms contain informal text then the interpretation of expressions is not formally defined by
SDL but may be determined from the informal text by the interpreter. It is assumed that if informal
text is specified the equation set is known to be incomplete, therefore complete formal specification
has not been given in SDL.
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A value name is always introduced by quantified equations in the abstract syntax, and the
corresponding value has a value identifier which is the value name qualified by the sort identifier of
the enclosing quantified equations. For example

FOR ALL zzINX (FOR ALLzINX ...))
introduces only one value identifier named z of sort X.

In the concrete syntax it is not allowed to specify a qualifier for value identifiers.

Each value identifier introduced by quantified equations has a sort which is the sort identified in the
quantified equations by the sort reference identifier. The sort of the implied quantifications is the
sort required by the context(s) of the occurrence of the unbound identifier. If the contexts of a value
identifier which has implied quantification allow different sorts then the identifier is bound to a sort
which is consistent with all its uses in the equation.

A term has a sort which is the sort of the value identifier or the result sort of the (literal) operator.

Unless it can be deduced from the equations that two literals denote the same value then each literal
denotes a different value.

Example 1
FOR ALL b IN logical ( eq(b,b)==T)
Example 2

neq(T,F)==T; neq(T,T) ==F;
neq(F,T)==T; neq(F,F)==F;

Example 3

eq(b, b) =T;
eq(F, eq(T,F)) ==T;
eq(eq(b,a)eqab)) ==T;

5.2.4 Conditional equations

A conditional equation allows the specification of equations which only hold when certain
restrictions hold. The restrictions are written in the form of simple equations.

Abstract grammmar
Conditional-equation. 3 Restriction—set
) Restricted-equation
Restriction = Unquantified-equation
Restricted-equation = Unguantified-equation
Concrete textual grammar
<conditional equation> ::=
<restriction> { , <restriction> }* ===> <restricted equation>
<restricted equation> ::=
<unquantified equation>
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<restriction> ::=
<unquantified equation>

Semantics

A restricted equation defines that terms denote the same value only when any value identifier in the
restricted equations denotes a value which can be shown from other equations to satisfy the
restriction. A value will satisfy a restriction only if the restriction can be deduced from other
equations for this value.

The semantics of a set of equations for a data type which includes conditional equations are derived
as follows:- ‘

a) Quantification is removed by generating every possible ground term equation which can be
derived from the quantified equations. As this is applied to both explicit and implicit quantification a
set of unquantified equations in ground terms only is generated.

b) Let a conditional equation for which all the restrictions (in ground terms only) can be proved to
hold from unquantified equations which are not restricted equations be called a provable conditional
equation. If there exists a provable conditional equation, then it is replaced by the restricted
equation of the provable conditional equation.

¢) If there are conditional equations remaining in the set of equations and none of these conditional
equations are a provable conditional equation, then these conditional equations are deleted,
otherwise return to step (b).

d) The remaining set of unquantified equations defines the semantics of the data type.
Example

z /= 0 == True ==> (x/z)*z==

3.3 Initial algebra model (informal description)

The definition of data in SDL is based on the data kernel defined in §5.2. Operators and
values need to be given some further meaning in addition to the former definition so interpretation
can be given to expressions. For example expressions used in continuous signals, enabling
conditions, procedure calls, output actions, create requests, assignment statements, set and reset
statements, export statements, import statements, decisions, and viewing.

The necessary additional meaning is given to expressions by using the initial algebra
formalism which is explained in § 5.3.1 to § 5.3.6 below?.

At any point in an SDL specification the last data type hierarchically defined will apply, but
there will be a set of sorts visible. The set of sorts will be the union of all sorts at levels
hierarchically above the place in question as explained in §5.2.

1)The: text of § 53.1 to § 5.3.6 has been agreed between ISO and CCITT as a2 common informal
description of the initial algebra model for abstract data types. As well as appearing in this

recommendation this text (with appropriate typographical and numbering changes ) is alse an annex to
ISO 1S8807,
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(In this section the symbol = is used as an equation equivalence symbol whereas in SDL
symbol == is used for equation equivalence so that the symbol = can be used for the equality
operator. The symbol = is used in this section as it is the conventional symbol used in published
work on initial algebras.)

3.3.1 Inmtroduction

The meaning and interpretation of data based on initial algebra is explained in three stages:
a) Signatures
b) Terms
¢) Values
5.3.1.1  Representations

The idea that different notations can represent the same concept is commonplace. For
instance it is generally accepted that positive Arabic numbers (1,2,3,4,...) and Roman numerals
(LILILIV.,...) represent the same set of numbers with the same properties. As another example it
is quite usual to accept that prefix functional notational  plus(1,1) ), infix notation ( 1+1) and
reverse polish notation (1 1 +) can all represent the same operator. Furthermore different users
may use different names (perhaps because they are using different languages) for the same concepts

so that the pairs {true, false}, {T,F}, {0,1}, {vrai, faux} could be different representations of the
Boolean sort.

What is essential is the abstract relationship between identities and not the concrete
representation. Thus for numerals what is interesting is the relationship between 1 and 2 which is
the same as the relationship between I and II. Also for operators what is of interest is the
relationship between the operator identity and other operator identities and the list of arguments.
Concrete constructions such as brackets which allow us to distinguish between (a+b)*c and
a+(b*c) are only of interest so that the underlying abstract concept can be determined.

These abstract concepts are embodied in an abstract syntax of the concept which may be

realised by more than one concrete syntax. For example the following two concrete examples both
describe the same data type properties but in different concrete syntax. :
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NEWTYPE bool LITERALS true, false;
OPERATORS "not" :bool ->bool;

AXIOMS
not(true) == false;
not(not(a)) ==a;
ENDNEWTYPE bool;

NEWTYPE int LITERALS zero, one;
OPERATORS plus :int,int ->int;
minus :int,int ->int;

AXIOMS
plus(zero,a) == a;
plus(a,b) == plus(b,a);
plus(a,plus(b,c)) == plus(plus(a,b),c);
minus(a,a) == Zero,

" minus(a,zero) ==3;
minus(a,minus(b,c)) == minus(plus(a,c),b);
minus(minus(a,b),c) == minus(a,plus(b,c));
plus(minus(a,b),c) == minus(plus(a,c),b);

ENDNEWTYPE int;
NEWTYPE tree LITERALS nil;
OPERATOQORS
tip s int ->tree;
isnil : tree ->bool;
istip : tree ->bool;
node : tree,tree ->tree;
sam : free ->int;
AXIOMS
istip(nil) == false;
istip(tip(i)) == {rue;
istip(node(t1,t2)) == false;
isnil(nil) == true;
isnil(tip(i)) == false;

isnil(node(t1,t2)) == false;
sum(node(tl,t2)) == plus(sum(tl),sum(tZ));

sum(tip(i)) =1
sum(nil) == Z€ro;
ENDNEWTYPE tree;
EXAMPLE 1
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TYPE bool

SORTS  bool

OPNS true
false :

IS

-> bool
-> bool

not :bool-> bool

EQNS OFSORT bool FOR ALL a:bool
not(true) = false;
not(not(a)) =a
ENDTYPE
TYPE int IS bool WITH
SORTS imt
OPNS Zero @ -> int
one : -> int
plus : intint  ->int
minus:  ingint ->int
EQNS OFSORT int FOR ALL a,b,c:int
Plus(zero,a) =a;
plus(a,b) = plus(b,a);
plus(a,plus(b,c)) = plus(plus(a,b),c) ;
minus(a,a) = Zero;

minus(a,zero)

minus(a,minus(b,c))
minus(minus(a,b),c)
plus(minus(a,b),c)

ENDTYPE
TYPE tree IS int WITH
SORTS  tree
OPNS nil ->tree
tip :int ->tree
isnil : tree ->bool
istip : tree ->bool
node : tree,tree ->tree
sum : free ->int
EQNS OFSORT bool FOR ALL i:int, t1,t2:tree
istip(nil) = false;
istip(tip(i)) = true ;
istip(node(tl,12))  =false;
isnil(nil) = true ;
isnil(tip()) = false;
isnil(node(tl,2))  =false
OFSORT int FOR ALLi:int, t1,t2:tree
sum(node(t1,t2)) = plus(sum(tl),sum(t2));
sum(tip(i)) =i;
sum(nil) = ZETo
ENDTYPE
EXAMPLE 2

=a ,

= minus(plus(a,c),b);
= minus(a,plus(b,c));
= mjnus(plus(a,c),b)
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This example will be used for illustration. Initially the definition of sorts and literals will be
considered. '
It should be noted that literals are considered to be a special case of operators, that is
operators without parameters.
We can introduce some sorts and literals in the first form by
NEWTYPE int LITERALS zero, one; ...
NEWTYPE bool LITERALS true, false; ...

NEWTYPE tree LITERALS nil; ...
or in the second form by
SORTS bool
OPNS true : -> bool
false : -> bool
SORTS int
OPNS Zero ->int
one : -> int
SORTS tree
OPNS nil : ->tree

In the following the second form only will be used as that is closest to the formulation used
in many publications on initial algebra. It should be noted that the form of terms is the same in both
cases and the most significant difference is the way in which literals are introduced. It should be
remembered that it is necessary to adopt a concrete notation to communicate the concepts, but the
meaning of the algebras is independent of the notation so that systematic renaming of names
(retaining the same uniqueness) and a change from prefix to polish notation will not change the
meaning defined by the type definitions.

5.3.2 Signatures

_ Associated with each sort will be one or more operators. Each operator has an operator
functionality; that is it is defined to relate one or more input sorts to a result sort.

For example the following operators can be added to the sorts defined above

SORTS bool

OPNS true : -> bool
false : ->» bool
not :bool-> bool

SORTS int

OPNS  zero: ->int
one : -->int
plus : int,int  ->int
minus:  int,int -> int

SORTS tree

OPNS nil : ->tree
tip int ->tree
isnil : tree ->bool
istip :  tree ->bool
node: tree,free  ->tree
sum : tree ->int

142 Fascicle X.1 — Rec. Z.100



_ The signature of the type which applies is the set of sorts, and the set of operators (both
literals and operators with parameters) which are visible. '

A signature of a type is called complete (closed) if for every operator in the signature, the
sorts of the functionality of the operator are included in the set of sorts of the type.

3.3.3 Terms and expressions

The language of interest is one which allows expressions which are variables, literals or
operators applied to expressions. A variable is a data object which is associated with an expression.
Interpretation of a variable can be replaced with interpretation of the expression associated with the
variable. In this way variables can be eliminated so that interpretation of an expression can be
reduced to the application of various operators to literals,

Thus on interpretation an open expression (an expression involving variables) becomes a
closed expression (an expression without variables) by providing the open expression with actual
arguments (that is closed expressions).

A closed expression corresponds to a ground term.,

The set of all possible ground terms of a sort is called the set of ground terms of the sort.
For example for bool as defined above the set of ground terms will contain '

{true, false, not(true), not(false), not(not(true)), ...}

It can be seen that even for this very simple sort the set of ground terms is infinite.

3.3.3.1  Generation of terms

Given a signature of a type it is possible to generate the set of ground terms for that type.

The set of literals of the type are considered to be the basic set of ground terms. Each literal

has a sort, therefore each ground term has a sort. For the type being defined above this basic set of
ground terms will be

{zero, one, true, false, nil}

For each operator in the set of operators for the type, ground terms are generated by
substituting for each argument all previously generated ground terms of the correct sort for that
argument. ‘The result sort of each operator is the sort of the ground term generated by that operator.
The resulting set of ground terms is added to the existing set of ground terms to generate a new set
of ground terms. For the type above this is

{zero, one, true, false, nil,
plus(zero,zero), plus(one,one),  plus(zero,one), plus(one,zero),
minus(zero,zero), minus(one,one), minus(zero,one), minus(one,zero),
not(true), not(false), tip(zero), tip(one),

isnil(nil), istip(nil), node(nil,nil), sum(nil) }
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This new set of ground terms is then taken as the previous set of ground terms for a further

application of the last algorithm to generate a further set of ground terms. This set of ground terms
will include

{zero, one, true, false, nil,
plus(zero,zero), plus(one,one), plus(zero,one), plus(one,zero),
plus(zero,plus(zero,zero)), plus(zero,plus(one,one)),
plus(zero,sum(nil)), .

isnil(node(nil,nil)), istip(node(nil,nil)), node(nil,node(nil,nil)),

vers sum(node(nil,nil)) }
_ This algorithm is applied repeatedly to generate all possible ground terms for the type which
is the set of ground terms for the type. The set of ground terms for a sort is the set of ground terms
of the type which have that sort.

Normally generation will continue indefinitely yielding an infinite number of terms.

5.3.4 Values and algebras

) Each term of a sort represents a value of that sort. It can be seen from above that even a
simple sort such as bool has an infinite number of terms and hence an infinite number of values,
unles:s some definition is given of how terms are equivalent (that is represent the same value). This
definition is given by equations defined on terms. In the absence of istip and isnil the sort bool can
be limited to two values by the equations

not(true) = false;
not(false) = true

~ Such equations define terms to be equivalent and it is then possible to obtain the two
equivalent classes of terms

{ true, not(false), not(not(true )),  not(not(not(false))), ...}
{ false, not(true ), not(not(false)), not(not(not(true ))), ...}

Each equivalence class then represents one value and members of the class are different
representations of the same value.

Note that unless they are defined equivalent by equations, terms are non-equivalent (that is
they do not represent the same value). :

An algebra defines the set of terms which satisfies the signature of the algebra. The
equations of the algebra relate terms to one another,

In general there will be more than one representation for each value of a sort in an algebra.
) An algebra for a given signature is an initial algebra if and only if any other algebra which
gives the same properties for the signature can be systematically transformed onto the initial
algebra. (Formally such a transformation is known as a homomorphism.)

Providing not, istip and isnil always produce values in the equivalence classes of true and
false then an initial algebra for bool is the pair of literals

{true, false}

and no equations.
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5.3.4.1  Equarions and quantification

_ For a sort such as bool, where there are only a limited number of values, all equations can
be written using only ground terms, that is terms which only contain literals and operators.

When a sort contains many values, writing all the equations using ground terms is not
practical and for sorts with an infinite number of values (such as integers), such explicit
enumeration becomes impossible. The technique of writing quantified equations is used to
represent a possibly infinite set of equations by one quantified equation.

A quantified equation contains value identifiers in terms. Such terms are called composite
terms. The set of equations with only ground terms can be derived from the quantified equation by
systematically generating equations with each value identifier substituted in the equation by one of
the ground terms of the sort of the value identifier. For example

FOR ALL b :bool not(not(b))=b
represents

not(not(true)) = true;

not(not(false)) = false

An alternative set of equations for bool can now be taken as
FOR ALL b : bool
not(not(b)) =b;
not(true) = false

When the sort of the quantified value identifier is obvious from context it is usual practice to
omit the clause defining the value identifier so that the example becomes
not{not(b)) =b;
not(true) = false

5.3.5 Algebraic specification and semantics (meaning)

An algebraic specification consists of a signature and sets of equations for each sort of that

signature. These sets of equations induce equivalence relations which define the meaning of the
specification.

__The symbol = denotes an equivalence relation that satisfies the reflexive, symmetric and
transitive properties and the substitution property.

The equations given with a type allow terms to be placed into equivalence classes. Any two
terms in the same equivalence class are interpreted as having the same value. This mechanism can
be used to identify syntactically different terms which have the sarme intended value.

Two terms of the same sort, TERM1 and TERM2, are in the same equivalence class if
a) there is an equation
" TERMI=TERM2,
or
b) one of the equations derived from the given set of quantified equations is

TERMI=TERM2,
or

Fascicle X.1 — Rec. Z.100 145



¢) i) TERM1 is in an equivalence class containing TERMA, and
ii) TERMR2 isin an equivalence class containing TERMB, and

iif) there is an equation or an equation derived from the given set quantified equations
such that '
TERMA=TERMB,
or

d) by substituting a sub-term of TERM1 by a term of the same class as the sub-term
producing a term TERM1A it is possible to show that TERM1A is in the same class as
TERM2.

By applying all equations the terms of each sort are partitioned into one or more equivalence
classes. There are as many values for the sort as there are equivalence classes. Each equivalence
class represents one value and every member of a class represents the same value.,

5.3.6 Representation of values

Interpretation of an expression then means first deriving the ground term by determining the
actual value of variables used in the expression at the point of interpretation, then finding the

equivalence class of this ground term. The equivalence class of this term determines the value of the
expression,

_ Meaning is thus given to operators used in expressions by determining the resultant value
given a set of arguments.

It is usual to choose a literal in the equivalence class to represent the value of the class. For
instance bool would be represented by true and false, and natural numbers by 0,1,2,3 etc.. When
there is no literal then usually a term of the lowest possible complexity (least number of operators)
is used. For instance for negative integers the usual notation is -1,-2 -3 etc..
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5.4  Passive use of SDL data

In § 5.4.1 extensions to the data definition constructs in § 5.2 are defined. How to interpret
the use of the abstract data types in expressions is defined in § 5.4.2 if the expression is "passive”
(that is do not depend on variables or the system state). How to interpret expressions which are not
passive (that is "active" expressions) is defined in § 5.5.

5.4.1 Extended data definition constructs

The constructs defined in § 5.2 are the basis of more concise forms explained below.

Abstract grammar

There is no additional abstract syntax for most of these constructs. In § 5.4.1 and all subsections of
§ 5.4.1 the relevant abstract syntax is usually to be found in § 5.2.

Concrete textual grammar

<extended properties> ::=
<inheritance rule>
| <generator instantiations>
<structure definition>

<extended composite term> ::=
<extended operator identifier> ( <composite term list> )
| <composite term> <infix operator> <term>
| <term> <infix operator> <composite term>
| <monadic operator> <composite term>
|  <conditional composite term>

<extended ground term> ::=
<extended operator identifier>
(<ground term> {, <ground term> }* )
I <ground term> <infix operator> <ground term>
| <monadic operator> <ground term>
| <conditional ground term>

<extended operator identifier> ::=
<gperator identifier> <exclamation>
| <generator formal name>
| [ <qualifier> ] <quoted operator>

<extended operator name> =
<gperator name> <exclamation>
| <generator formal name>
| <quoted operator>

<exclamation> 1=
1

<extended literal name> ::=
<character string literal>
| <generator formal name>
| <name class literal>
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<extended literal identifier> ::=
<character string literal identifier>
| <generator formal name>

The rules <extended properties>, <extended composite term>, <extended ground term>,
<extended operator name>, <extended literal name> and <extended literal identifier> extend the
rules for <partial type definition> (§ 5.2.1), <composite term> (§ 5.2.3), <ground term> (§
5.2.3), <operator name> (§ 5.2.2), <literal> (§ 5.2.2) and <literal identifier> (§ 5.2.3) respectively
in the data kernel. The rules above are further expanded by the rules <inheritance rule> (§
5.4.1.11), <generator instantiations> (§ 5.4.1.12.2), <generator formal name> (§ 5.4.1.12.1),
<conditional composite term> (§ 5.4.1.6), <conditional ground term> (§ 5.4.1.6), <character
string literal> and <character string literal identifier> (§ 5.4.1.2) and <name class literal> (§
5.4.1.14). The rules <infix operator>, <monadic operator>, <quoted infix operator> and <quoted
monadic operator> are defined in § 5.4.1.1,

Alternatives with <generator formal name>s are only valid in a <properties expression> in a
<generator text> (see § 5.4.1.12) which has that name defined as a formal parameter.

The alternatives of <extended composite term> and <extended ground term> with a <generator
formal name> preceding a "(" are only valid if the <generator formal name> is defined to be of the
OPERATOR class (see § 5.4.1.12).

The alternative of <extended literal name> with a <generator formal name> is only valid if the
<generator formal name> is defined to be of the LITERAL class (see § 5.4. 1.12),

The alternative of <extended literal identifier> with a <generator formal name> is only valid if the

<generator formal name> is defined to be of the LITERAL class or the CONSTANT class (see §
5.4.1.12).

If an operator name is defined with an <exclamation>, then the <exclamation> is semantically part
of the name.

The forms <gperator name> <exclamation> or <operator identifier> <exclamation> represent
operator name (§ 5.2.2) and operator identifier (§ 5.2.3) respectively.

Semantics

An operator name defined with an <exclamation> has the normal semantics of an operator, but the
operator name is only visible in axioms,

5.4.1.1  Special operators

These are operator names which have special syntactic forms. The special syntax is
introduced so that arithmetic operators and Boolean operators can have their usual syntactic form.,
That is the user can write "(1 + 1) = 2" rather than being forced to use the for example
equal(add(1,1),2). Which sorts are valid for each operator will depend on the data type definition.

Concrete textal grammar

<quoted operator> ::=
<quote>> <infix operator> <quote>
' <quote> <monadic operator> <quote>

<quote> 1=
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<monadic operator> ::=
| NOT
Semantics

An infix operator in a term has the normal semantics of an operator but with infix or quoted prefix
syntax as above.

A monadic operator in a term has the normal semantics of an operator but with the prefix or quoted
prefix syntax as above.

The quoted forms of infix or monadic operators are valid names for operators.

Infix operators have an order of precedence which determines the binding of operators. The
binding is the same as the binding in <expression>s as specified in § 5.4.2.1.

When the binding is ambiguous such as in
aORbXORc;

then binding is from left to right so that the above term is equivalent to
(aORb)XORc;

Note that the <quoted operator>>s MOD and REM have no predefined semantics, as they are not
defined in the predefined data sorts.

Model

A term of the form

_ ) <terml> <infix operator> <term2>
is derived syntax for

) __ "<infix operator>" ( <terml>, <term2>)
with "<infix operator>" as a legal name. "<infix operator>" represents an operator name.

Similarly

_ ) <monadic operator> <term>
1s derived syntax for

"<monadic operator>" ( <term> )
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with "<monadic operator>" as a legal name and representing an operator name.

(Note that the SDL equality operator ( =) should not be confused with the SDL term equivalence
symbol (==).)

5.4.1.2  Character string literals

Concrete textual grammar

<character string literal identifier> ::=
[ <qualifier> ] <character string literal>

<character string literal> ::=
<character string>

A <character string> is a lexical unit defined in § 2.2.1.
A <character string literal identifier> represents a Literal-operator-identifier in the abstract syntax.

A <character string literal> represents a unique Literal-operator-name (§ 5.2.2) in the abstract
syntax derived from the <character string>,

Semantics

Character string literal identifiers are the identifiers formed from character string literals in terms
and expressions.

Character string literals are used for the predefined data sorts Charstring and Character (see § 5.6).
They also have a special relationship with name class literals (see § 5.4.1.14) and literal mappings
(see § 5.4.1.15). These literals may also be defined to have other uses.

A <character string literal> has a length which is the number of <alphanumeric>s plus <other
character>s plus <special>s plus <full stop>s plus <underline>s plus <space>s plus <apostrophe>
<apostrophe> pairs in the <character string> (see § 2.2.1).

A <character string literal> which

a) has a length greater than one, and

b) has a substring formed by deleting the last character ( <alphanumeric> or <other character>
or <special> or <full stop> or <underline> or <space> or <apostrophe> <apostrophe>
pairs) from the <character string>, and

c) that substring is defined as a literal such that

substring // deleted_character_in_guotes

is a valid term with the same sort as the <character string literal>,

then there is an implied equation given by the concrete syntax that the <character string literal> is

equivalent to the substring followed by the "//" infix operator followed by the deleted character with
apostrophes to form a <character string>.
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For example the literals 'ABC', 'AB™, and 'AB' in
NEWTYPE s
LITERALS 'ABC', 'AB"™, 'AB', 'A', 'B', "
OPERATORS "/f": s, s ->s;

have implied equations
IABCI — |ABr // !Cl :
|ABII| ———— IABI // nm ;
|ABI JE— IAI // PBI;

5.4.1.3  Predefined data

The predefined data including the Boolean sort which defines properties for two literals
True and False, are defined in § 5.6. The semantics of Equality (§ 5.4.1.4), Boolean axioms (§
5.4.1.5), Conditional terms (§ 5.4.1.6), Ordering (§ 5.4.1.8), and Syntypes (§ 5.4.1.9) rely on
the definition of the Boolean sort (§ 5.6.1). The semantics of Name Class Literals (if <regular
interval>s are used — § 5.4.1.14) and Literal Mapping (§ 5.4.1.15) also rely on the definition of
Character (§ 5.6.2) and Charstring (§ 5.6.4) respectively.

Predefined data is considered to be defined at system level.
5.414  Eguality
Concrete textual grammar

Each sort name introduced in a <partial type definition> has an implied operator signature for both
=and /=, and an implied equation set for these operators.

A <partial type definition> introducing a sort named S has implied operator signature pair
equivalent to

"=":8§,S -> Boolean;

"/=": 8, S -> Boolean;
where Boolean is the predefined Boolean sort.

A <partial type definition> introducing a sort named S has an implied equation set
FOR ALL a, b, ¢ IN S (

a=a === True;
a=b ==b=a;
((a=b ) AND (b=c )) =>a=c == True;
a/=b ==NOT (a=b);
a=b==True ==> a ==b )

The last equation expresses the substitution property for equality.

If it is possible to derive from the equations (explicit, implicit and derived) that

True == False
this is in contradiction with the assumed properties of the Boolean data type and so the definition
must be invalid. It must not be possible to derive

True == False;

Every Boolean ground expression which is used outside data type definitions must be interpreted as
either True or False. If it is not possible to reduce such an expression to True or False then the
specification is incomplete and allows more than one interpretation of the data type.
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Semantics

For every sort introduced by a partial data type definition there is an implicit definition of operators
and equations for equality.

The symbols = and /= in the concrete syntax represent the names of the operators which are called
the equal and not equal operators.

5.4.1.5  Boolean axioms
Concrete textual grammar

<Boolean axiom> ::=
<Boolean term>

Semantics

A Boolean axiom is a statement of truth which holds under all conditions for the data type being
defined, and thus can be used to specify the behaviour of the data type.

Model

An axiom of the form
<Boolean term>;
is derived syntax for the concrete syntax equation
<Boolean term> == True;
which has the normal relationship of an equation with the abstract syntax,

5.4.1.6 Conditional terms

In the following the equation containing the conditional term is called a conditional term
equation.

Abstract grammar

Conditional—qqmposite—terrn = Conditional-term

Conditional-ground-term = Conditional-term

Conditional-term i Condition
Consequence
Alternative

Condition = Term

Consequence = Term

Alternative = Term

The sort of the Condition must be the predefined Boolean sort and the Condition must not be the
Error-term. The consequence and the alternative must have the same sort.

A conditional term is a conditional composite term if and only if one or more of the zerms in the
condition, the consequence or alternative is a composite term.
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A conditional term is a conditional ground term if and only if all the zerms in the condition, the

consequence or alternative are ground terms.

Concrete textual grammar

<conditional composite term> ::=
<conditional term>

<conditional ground term> ::=
<conditional term>

<conditional term> 1=
IF <condition> THEN <consequence> ELSE <alternative> FI

<condition> ::=
<Boolean term>

<consequence> =
<term>

<alternative> ::=
<term:>

Semantics

A conditional term used in an equation is semantically equivalent to two sets of equations where all

the quantified value identifiers in the Boolean term have been eliminated.

The set equations can be formed by simultaneously substituting throughout the conditional term
equation each value identifier in the condition by each ground term of the appropriate sort. In this .
set of equations the condition will always have been replaced by a Boolean ground term. In the

following 'Ehis set of equations is referred to as the expanded ground set.

A conditional term equation is equivalent to the equation set which contains

a)  for every equation in the expanded ground set for which the condition is equivalent to True,
that equation from the expanded ground set with the conditional term replaced by the

(ground) consequence, and

b)  for every equation in the expanded ground set for which the condition is equivalent to False,
that equation from the expanded ground set with the conditional term replaced by the

(ground) alrernative.

Note that in the special case of an equation of the form

ex! == IF a THEN b ELSE c HI,
this is equivalent to the pair of conditional equations

== True ==>exl ==Db;

a == False ==>egxl ==¢;
Example
IFi=j* j THEN posroot(i) ELSE abs(j) FI == IF positive(j) THEN j ELSE -j FL;
Note —There are better ways of specifying these properties - this is only an example.
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5.4.1.7 Errors

Errors are used to allow the properties of a data type to be fully defined even for cases when
no specific meaning can be given to the result of an operator.

Abstract grammar
Error-term :: 0

An error term must not be used as a argument zerm for an operator identifier in a composite term.

An error term must not be used as part of a restriction.

It must not be possible to derive from Equations that a literal operator identifier isequal to error
term.

Concrete textual grammar

<error terme> =
ERROR <exclamation>

Semantics

A term may be an error so that it is possible to specify the circumstances under which an operator
produces an error. If these circumstances arise during interpretation then the further behaviour of
the system is undefined.

5.41.8  Ordering
Concrete textual grammar

=<0rden'ng> u=
ORDERING

(<ordering> is referenced in § 5.2.2)

Semantics

The ordering keyword is a shorthand for explicitly specifying ordering operators and a set of
ordering equations for a partial type definition.

Model

A <partial type definition> introducing a sort named S with the keyword ORDERING implies an
operator signature set equivalent to the explicit definitions:

<" : 8,8 ->Boolean;
">" :§,S ->Boolean;
"<=":§,8 -> Boolean;
">=":§,8 -> Boolean;

where Boolean is the predefined Boolean sort, and also implies the Boolean axioms:
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FOR ALL a,b IN S

(
"<"(a,a) == False;
||<ll(a,b) JE— I|>l|(b,a);
|l<=ll(a’b) e “ORI’I’(Il<l!(a,b)’ll="(a,b));
ll>=“(a’b) j— IIORI!(N>ll(a,b),ll="(a’b));
"<"(a,b) =>NOT("<"(b,a));
"<'"(a,b) AND "<"(b,c) =>"<"(a,c);
);

When a <partial type definition> includes both <literal list> and the keyword ORDERING the
<literal signature>s are nominated in ascending order, that is

LITERALS A,B,C;

OPERATORS ORDERING;
implies  A<B, B<C.

5.419  Syntypes

A syntype specifies set of values of a sort. A syntype used as a sort has the same semantics

as the sort referenced by the syntype except for checks that values are within the value set of the
sort. :

Abstract grammar
Syntype-identifier = Identifier
Syntype-definition :: Syntype-name
Parent-sort-identifier
Range-condition
Syntype-name = Name
Parent-sort-identfier = Sort-identifier
Concrete textual grammar
<syntype> =
<syntype identifier>
<syntype definition> ::=
SYNTYPE

<gyntype name> = <parent sort identifier>
[ <default assignment>] [ CONSTANTS <range condition> ]
ENDSYNTYPE [ <syntype name> ]

I NEWTYPE <syntype name> [ <extended properties> |
<properties expression> CONSTANTS <range condition>
ENDNEWTYPE [ <syntype name> |

<parent sort identifier> ::=
<sort>

A <syntype:> is an alternative for a <sort> (see § 5.2.2).

A <syntype definition> with the keyword SYNTYPE and "= <syntype identifier>" is derived
syntax defined below,
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A <syntype definition> with the keyword SYNTYPE in the concrete syntax corresponds to a
Syntype-definition in the abstract syntax.

A <syntype definition> with the keyword NEWTYPE can be distinguished from a <partial type
definition> by the inclusion of CONSTANTS <range condition>. Such a <syntype definition>is a
shorthand for introducing a <partial type definition> with an anonymous name followed by a
<syntype definition> with the keyword SYNTYPE based on this anonymously named sort. That is
NEWTYPE X /* details */
CONSTANTS /* constant list */
ENDNEWTYPE X;
is equivalent to
NEWTYPE anon /* details */
ENDNEWTYPE anon;
followed by
SYNTYPE X =anon
CONSTANTS /* constant list */
ENDSYNTYPE X;

When a <gyntype identifier> is used as an <argument> in an <argument list> defining an operator,
the sort for the argument in an argument list is the parent sort identifier of the syntype.

When a <gyntype identifier> is used as a result of an operator, the sort of the result is the parent
sort identifier of the syntype.

When a <gyntype identifier> is used as a qualifier for a name, the qualifier is the parent sort
identifier of the syntype.

The optional <gyntype name> given at the end of a <syntype definition> after the keyword
ENDSYNTYPE or ENDNEWTYPE must be the same as the <syntype name> specified after
SYNTYPE or NEWTYPE respectively. = ,

If the keyword SYNTYPE is used and the <range condition> is omitted then all the values of the
sort are in the range condition so that the <syntype identifier> has exactly the same semantics as the
sort identifier and the range condition is always true.

Semantics

A syntype definition defines a syntype which references a sort identifier and range condition.
Specifying a syntype identifier is the same as specifying the parent sort identifier of the syntype
except for the following cases:

a) assignment to a variable declared with a syntype (see § 5.5.3),

b) an output of a signal if one of the sorts specified for the signal is a syntype (see § 2.7.4),

c) calling a procedure when one of the sorts specified for the procedure IN parameter variables
is a syntype (see § 2.4.5),

d) Creating a process when one of the sorts specified for the process parameters is a syntype
(see § 2.7.2 and § 2.4.4),

e) input of a signal and one of the variables which is associated with the input, has a sort
which is a syntype (see § 2.6.4),
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f) use in an expression of an operator which has a syntype defined as either an argument sort
or aresult sort (see § 5.4.2.2 and § 5.5.2.4),

2) a set or reset statement on a timer and one of the sorts in the timer definition is a syntype
(see § 2.8),

h) an import definition (see §4.13).

For example a <syntype definition> with the keyword SYNTYPE and "= <syntype identifier>" is
equivalent to substituting the <parent sort identifier> by the <parent sort identifier> of the <syntype
definition> of the <syntype identifier>. That is

SYNTYPE s2 = nl CONSTANTS al:a3; ENDSYNTYPE s2;
SYNTYPE §3 =52 CONSTANTS al:a2; ENDSYNTYPE s3;

is equivalent to

SYNTYPE s2 =nl CONSTANTS al:a3; ENDSYNTYPE s2;
SYNTYPE s3 =nl1 CONSTANTS al:a2; ENDSYNTYPE s3;

When a syntype is specified in terms of <gyntype identifier> then the two syntypes must not be
mutually defined.

A syntype defined by a syntype definition has an identity which is the name introduced by the
syntype name qualified by the identity of the enclosing scope unit.

A syntype has a sort which is the sort identified by the parent sort 1dent1f1cr given in the syntype
definition.

A syntype has a range which is the set of values specified by the constants of the syntype
definition.

5.4.1.9.1 Range condition

Abstract grammar

Range-condition " Or-operator-identifier
Condition-item—set

Condition-item = Open-range | Closed-range

Open-range " Operator-identifier
Ground-expression

Closed-range i And-operator-identifier
Open-range
Open-range

Or-operator-identifier = Identifier

And-operator-identifier ' = Identifier
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Concrete textual grammar

<range conditon> ::=

{ <closed range> | <open range> } {, { <closed range> | <openrange> } }*
<closed range> ::=

<constant> : <constant>

<open range> 1=
<constant>
I {=Il/=l<l>|<=I>=} <constant>

<constant> ::=
<ground expression>

The symbol "<" ("<=", ">", ">=" respectively) must only be used in the concrete syntax of the
<range condition> if that symbol has been defined with an <operator signature>

P, P -> Boolean;
where P is the sort of the syntype. These symbols represent operator identifier.

A <closed range> must only be used if the symbol "<=" is defined with an <operator signature>
P, P -> Boolean;
where P is the sort of the syntype.

A <constant> in a <range condition> must have the same sort as the sort of the syntype.

Semantics

A range condition defines a range check. A range check is used when a syntype has additional
semantics to the sort of the syntype (see § 5.4.1.9 and the cases where syntypes have different
semantics — see § 5.5.3, § 2.6.4, § 2.7.2, § 2.5.4, § 54.2.2 and § 5.5.4). A range check is also
used to determine the interpretation of a decision (see § 2.7.5).

The range check is the application of the operator formed from the range condition. The application
of this operator must be equivalent to true otherwise the further behaviour of the system is
undefined. The range check is derived as follows:

a) Each element ( <open range> or <closed range> ) in the <range condition> has a
corresponding open range or closed range in the condition item.

b) An <open range> of the form <constant> is equivalent to an <open range> of the form =
<constant>,

c) For a given term, A, then

1) an <open range> of the form = <constant>, /= <constant>, < <constant>, <=
<constant>, > <constant>, and >= <constant>, has sub-terms in the range check of the
form A = <constant>, A /= <constant>, A < <constant>, A <= <constant>, A >
<constant>, and A >= <constant> respectively.

ii) a <closed range> of the form <first constant> : <second constant> has a sub-term in the
range check of the form <first constant> <= A AND A <= <second constant> where
AND corresponds to the Boolean AND operator and corresponds to the And operator
identifier in the abstract syntax.
d) There is an or operator identifier for the distributed operator over all the elements in the
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condition-item—set which is a Boolean union (OR) of all the elements. The range check is
the term formed from the Boolean union (OR) of all the sub-terms derived from the <range
condition>. :

If a syntype is specified without a <range condition> then the range check is True.
5.4.1.10  Structure sorts
Concrete textual grammar

<structure definition> ::=
STRUCT <field list> [<end>] [ ADDING ]

<field list> ::=
<fields> { <end> <fields> }*

<fields> ::=
<field name> { , <field name> }* <field sort>

<field sort> ::=
<Sort>

Each <field name> of a structure sort must be different from every other <field name> of the same
<structure definition>.

Semantics

A structure definition defines a structure sort whose values are composed from a list of field values
of sorts.

The length of the list of values is determined by the structure definition and the sort of a value is
determined by its position in the list of values.

Model

A structure definition is derived syntax for the definition of

a) an operator, Make!, to create structure values, and

b) operators both to modify structure values and to extract field values from structure values.

The name of the implied operator for modifying a field is the field name concatenated with
"Modify!".

The name of the implied operator for extracting a field is the field name concatenated with
“Extract!".

The <argument list> for the Make! operator is the list of <field sort>s occurring in the field list in
the order in which they occur.

The <result> for the Make! operator is the sort identifier of the structure.

The <argument list> for the field modify operator is the sort identifier of the structure followed by

the <field sort> of that field. The <result> for a field modify operator is the sort identifier of the
structure,
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The <argument list> for a field extract operator is the sort identifier of the structure. The <result>
for a field extract operator is the <field sort> of that field.

There is an implied equation for each field which defines that modifying a field of a structure to a
value is the same as constructing a structure value with that value for the field,

There is an implied equation for each field which defines that extracting a field of a structure value
will return the value associated with that field when the structure value was constructed.

For example
NEWTYPE s STRUCT
b  Boolean;
i Integer;

c Character;
ENDNEWTYPE S;

implies
NEWTYPE s
OPERATORS
Make! : Boolean, Integer, Character -> s;
bModify!  :s, Boolean ->s;
iModify! : s, Integer > §;
cModify! : §, Character > §;
bExtract! 18 -> Boolean;
iBxtract! 18 -> Integer;
cExtract! 18 -> Character;
AXIOMS
bModify!  (Make!(x,y,z),b) == Make!(b,y,z);
iModify! (Make!(x,y,2),i) == Make!(x,1,2);
cModify! (Make!(x,y,z),c) == Make!(x,y,c);
bExtract! (Make!(x,y,z)) == X;
iExtract! (Make!(x,y,z)) ==Yy;
cExtract! Make!(x,y,2)) ==z
ENDNEWTYPE s;

5.4.1.11  Inheritance
Concrete textual grammar
<inheritance rule> ::=
INHERITS <parent sort> [ <literal renaming> ]
[ [ OPERATORS ] { ALL | ( <inheritance list>) } [ <end>]] [ ADDING ]

<parent sort> ;=
<sort>

<inheritance list> ::=
' <inherited operator> { , <inherited operator> }*

<inherited operator> :;=
{ <operator name> = ] <inherited operator name>

<inherited operator name> ::=
<parent SQrt operator name>
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<literal rename list> ::=
<literal rename pair> { , <literal rename pair> }*
<literal rename pair> 1=
<literal rename signature>> = < parent literal rename signature>

<literal rename signature> ::=

< literal operator name>
| <character string literal>

A sort must not be circularly based on itself by inheritance.

All <literal rename signature>s in a <literal rename list> must be distinct. All the <parent literal
rename signature>s in a <literal rename list> must be different.

All <inherited operator name>s in an <inheritance list> must be distinct. All <operator name>s in
an <inheritance list> must be distinct.

An <inherited operator name>> specified in an <inheritance list>> must be a visible o_pefator of the
<parent sort> defined in the <partial type definition> defining the <parent sort>. An operator name
is not visible at this point if it is defined with an <exclamation>.

When several operators of the <parent sort>> have the same name, as the <inherited operator
name>>, then all of these operators are inherited.

Semantics

One sort may be based on another sort by using NEWTYPE in combination with an inheritance
rule. The sort defined using the inheritance rule is disjoint from the parent sort.

If the parent sort has literals defined the literal names are inherited as names for literals of the sort
unless literal renaming has taken place for that literal. Literal renaming has taken place for a literal if
the parent literal name appears as the second name in a literal renaming pair in which case the literal
is renamed to the first name in that pair.

There is an inherited operator for every operator of the parent sort except "=" and "/=". An operator
of the parent sort is any operator which both

a) is defined by any partial type definition or syntype definition (except that being defined)
which defines a sort visible at the point of inheritance, and also

b) has the parent sort as either an argument or as a result.

The names of operators are inherited as specified by ALL or the inheritance list. The name of an
inherited operator is

a) the same as the parent sort operator name if ALL is specified and the name is explicitly or
implicitly defined as an operator name in the partial type definition or syntype definition
defining the parent sort, otherwise

b) if the parent operator identifier is given in the inheritance list and an operator name followed
by "=" is given for the inherited operator, then renamed to this name, otherwise

c) if the parent operator identifier is given in the inheritance list and an operator name followed
by "=" is not given for the inherited operator, then the same name as the parent sort operator
name, otherwise
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d) if ALL is not specified and the parent operator identifier is not mentioned in the inheritance
list, then renamed to an invisible but unique name. Such names cannot be explicitly used
either in axioms or expressions.

The arguﬁlent sorts and result of an inherited operator are the same as those of the corresponding
operator of the parent sort, except if the argument sort or result is the parent sort in which case it is
changed to the sort being defined. That is every occurrence of the parent sort in the inherited
operators is changed to the new sort.

From each equation of the parent sort an equation is derived by inheritance. The equations of the
parent sort are

a) any equation which contains an operator (or literal) of the parent sort, and also

b) any equation which is defined by any partial type definition or syntype definition (except
that being defined) which defines a sort visible at the point of inheritance.

An inherited equation is the same as the corresponding equation of the parent sort except that
a) any occurrence of the parent sort is changed to the new sort, and

b) operators (or literals) of the parent sort which have renamed inherited operators (or literals),
undergo the same renaming in the inherited equation.

As a consequence of changing sorts as in (a) the literal identities and operator identities of inherited
literals and inherited operators are changed to be qualified by the sort identity of the new sort.

Model

The concrete syntax of an <inheritance rule> is related to the concrete syntax of the <properties
expression> in the <partial type definition> or <syntype definition> containing the <inheritance
rule>,

The set of <literal>s of the new sort in the abstract syntax corresponds to the set of <literal
signature>s in the <properties expression> plus the set of inherited literals.

The set of <operator>s of the new sort in the abstract syntax corresponds to the set of <operator
signature>s in the <properties expression> plus the set of inherited operators.

The set of <equations> of the new sort in the abstract syntax corresponds to the <axioms> of the
<properties expression> plus the set of inherited equations.

Example

NEWTYPE bit
INHERITS Boolean
LITERALS 1 = True, 0 = False;
OPERATORS ("NOT", "AND", "OR")
ADDING
OPERATORS
EXOR: bit,bit -> bit;
AXIOMS /* note ~ 2 different ways of writing NOT are used here */
EXOR(a,b) == (a AND "NOT"(b)) OR (NOTa AND b );
ENDNEWTYPE bit;
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5.4.1.12  Generators

_ A generator allows a parameterised text template to be defined which is expanded by
instantiation before the semantics of data types are considered.

5.4.1.12.1 Generator definition
Concrete textual grammar

<generator definition> ::=

GENERATOR <generator name> ( <generator parameter list> ) <generator text>
ENDGENERATOR [ <generator name> ]

<generator text> 1=
[ <generator instantiations> ] <properties expression>

<generator parameter list> 1=
<generator parameter> { , <generator parameter> } ¥

<generator parameter> 1=
{ TYPE | LITERAL | OPERATOR | CONSTANT }
<generator formal name> {, <generator formal name> }*

<generator formal name> ::=
<generator formal name>

<generator sort> ::=

<generator formal name>
| <generator name>

A <generator name> or <generator formal name> must only be used in a <properties expression> if
the <properties expression> is in a <generator text>.

In a <generator definition> all <generator formal name>s of the same class (TYPE, LITERAL,
OPERATOR or CONSTANT) must be distinct. A name of the class LITERAL must be distinct
from every name of the class CONSTANT in the same <generator definition>.

The <generator name> after the keyword GENERATOR must be distinct from all sort names in the

<generator definition> and also distinct from all TYPE <generator parameter>s of that <generator
definition>,

A <generator sort> is only valid if it appears as an <extended sort> (see § 5.2.2) in a <generator
text> and the name is either the <generator name> of that <generator definition> or a <generator
formal name:> defined by that definition.

If a <generator sort> is a <generator formal name> it must be a name defined to be of the TYPE
class.

The optional <generator name> after ENDGENERATOR must be the same as the <generator
name> given after GENERATOR.

A <generator formal name> must not be used in a <qualifier>>. A <generator name>> or
<generator formal name>> must not:

a) be qualified, or
b} be followed by an <exclamation>>, or
¢) be used in a <default assignment>>,
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AHCTFRET LD
A generator names a piece of text which can be used in generator instantiations.

The texts of generator instantiations within a generator text are considered to be expanded at the
point of definition of the generator text.

Each generator parameter has a class (TYPE, LITERAL, OPERATOR or CONSTANT) specified
by the keyword TYPE, LITERAL, OPERATOR or CONSTANT respectively.

Model

The text defined by a generator definition is only related to the abstract syntax if the generator is

instantiated. There is no corresponding abstract syntax for the generator definition at the point of
definition.

Example

GENERATOR bag(TYPE item)

LITERALS empty;

OPERATORS
put : item, bag -> bag;
count :item, bag -> Integer;
take : item, bag -> bag;

AXIOMS
take(i,put(i,b)) ==b;
take (i,empty) == ERROR!;
count(i,empty) =={J;
count(i,put(j,b)) == count(i,b) + IF i=j THEN 1 ELSE 0 FT;
put(i,put(j,b)) == put(j,put(i,b));
ENDGENERATOR bag;

Note — The formal definition (Annex F.2) does not allow the use of <generator formal name>
in qualifiers. The recommendation was corrected for this topic, after the Annex F.2 was printed.
Annex F.2 is thus invalid on this topic.

5.4.1.12.2 Generator instantiation
Concrete textual grammar

<generator instantiations> ::=
{ <generator instantiation> [ <end> ] [ ADDING ] }+

<generator instantiation> ;:= .
<generator identifier> ( <generator actual list> )

<generator actual list> ::= _
<generator actual> { , <generator actual> }*

<generator actual> ;.=
<extended sort>
| <literal signature>
|  <operator name>
| <ground term>

If the class of a <generator parameter> is TYPE then the corresponding <generator actual> must be
an <extended sort>.
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If the class of a <generator parameter> is LITERAL then the corresponding <generator actual>
must be a <literal signature>.

A <literal signature> which is a <name class literal> may be used as a <generator actual> if and
only if the corresponding <generator formal name> does not occur in the <axioms>, or <literal
mapping> of the <properties expression> in the <generator text>.

If the class of a <generator parameter> is OPERATOR then the corresponding <generator actual>
must be an <operator name>.

If the class of a <generator parameter> is CONSTANT then the corresponding <generator actual>
must be a <ground term>,

If the <generator actual> is a <generator formal name> then the class of the <generator formal
name> must be the same as the class for the <generator actual>.

Semantics

Use of a generator instantiation in extended properties or in a generator text denotes instantiation of
the text identified by the generator identifier. An instantiated text for literals, operators and axioms
is formed from the generator text with

a) the generator actual parameters substituted for the generator parameters, also
b) with the name of the generator substituted by

i) if the generator instantiation is in a partial type definition or syntype definition, the
identity of the sort being defined by the partial type definition or syntype definition,
otherwise

ii) in the case of generator instantiation within a generator, the name of that generator.

The instantiated text for literals is the text instantiated from the literals in the properties expression
of the generator text omitting the keyword LITERALS.

The instantiated text for operators is the text instantiated from the operator list in the properties
expression of the generator text omitting the keyword OPERATORS.

The instantiated text for axioms is the text instantiated from the axioms in the properties expression
of the generator text omitting the keyword AXIOMS.

When there is more than one generator instantiation in the list of generator instantiations, the
instantiated texts for literals (operators and axioms) are formed by concatenating the instantiated text
for the literals (operators, axioms respectively) of all the generators in the order they appear in the
list,

The instantiated text for literals is a list of literals for the properties expression of the enclosing
partial type definition, syntype definition or generator definition occurring before any literal list
explicitly mentioned in the properties expression. That is if ordering has been specified, literals
defined by generator instantiations will be in the order they are instantiated and before any other
literals, .

The instantiated text for operators and axioms are added to the operator list and axioms respectively
of the enclosing partial type definition, syntype definition or generator definition.
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When instantiated text is added to a properties expression the keywords LITERALS, OPERATORS
and AXIOMS are considered to be added if necessary to create correct concrete syntax.

Model

The abstract syntax corresponding to a generator instantiation is determined after instantiation. The
relationship is determined from the instantiated text at the point of instantiation.

Example
NEWTYPE boolbag bag(Boolean)
ADDING
OPERATORS
yesvote : boolbag -> Boolean;
AXIOMS
yesvote(b) == count(True,b) > count(False,b);
ENDNEWTYPE boolbag;
5.4.1.13  Synonyms

A synonym gives a name to a ground expression which represents one of the values of a
sort,

Concrete textual grammar
<synonym definition> ::=
SYNONYM <synonym name> | <sort> ] = <ground expression>
| <external synonym definition>

The alternative <external synonym definition> is described in § 4.3.1.

If the sort of the <ground expression> cannot be uniquely determined, then a sort must be specified
in the <synonym definition>.

The sort identified by the <sort> must be one of the sorts to which the <ground expression> can be
bound.

The <ground expression> must not refer to the synonym defined by the <synonym definition>
either directly or indirectly (via another synonym).

Semantics

The value which the synonym represents is determined by the context in which the synonym
definition appears.

If the sort of the ground expression cannot be uniquely determined in the context of the synonym
then the sort is given by the <sort>.

A synonym has a value which is the value of the ground term in the synonym definition.

A synonym has a sort which is the sort of the ground term in the synonym definition.

Model
The <ground expression> in the concrete syntax denotes a ground term in the abstract syntax as
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defined in § 5.4.2.2.

If a <sort> is specified the result of the <ground expression> is bound to that sort. The <ground
expression> represents a ground term in the abstract syntax which has an operator identifier with
the same name and the same argument sorts as given by the concrete syntax and the result sort
equal to the sort specified in the concrete syntax.

5.4.1.14 Name class literals

A name class literal is a shorthand for writing a (possibly infinite) set of literal names
defined by a regular expression.

Concrete textual grammar

<name class literal> ::=
NAMECLASS <regular expression>

<regular expression> ::=
<partial regular expression>
{ [ OR ] <partial regular expression> }*

<partial regular expression>::=
<regular element> [ <natural literal name> [ +1*]

<regular element> ::=
( <regular expression> )
| <character string literal>
| <regular interval>

<regular interval> ::=
<character string literal> : <character string literal>

The names formed by the <name class literal> must satisfy the normal static conditions for literals
(see § 5.2.2) and either the lexical rules for names (see § 2.2.1) or the concrete syntax for
<character string literal> (see § 5.4.1.2). :

The <character string literal>s in a <regular interval> must both be of length one, and must both be
literals defined by the Character sort (see § 5.6.2 ).

Semantics

A name class literal is an alternative way of specifying literal signatures.
Model

The set of names which a name class literal is equivalent to is defined as the set of names which
satisfy the syntax specified by the <regular expression>. The name class literal is equivalent to this
set of names in the abstract syntax.

A <regular expression> which is a list of <partial regular expression>s without an OR specifies that
the names can be formed from the characters defined by the first <partial regular expression>
followed by the characters defined by the second <partial regular expression>.

When an OR is specified between two <partial regular expression>s then the names are formed
from either the first or the second of these <partial regular expression>s. Note that OR is more
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tightly binding than simple sequencing so that
NAMECLASS 'A' '0' OR '1' "2
is equivalent to
NAMECLASS 'A' ('0' OR '1") "2,
and defines the literals A02, A12.
If a <regular element> is followed by <patural literal name> the <partial regular expression> is

equivalent to the <regular element> being repeated the number of times specified by the <natural
literal name>,

For example
NAMECLASS 'A" ('A' OR 'B") 2
defines names AAA, AAB, ABA and ABB.

If a <regular element> is followed an '*' the <partial regular expression> is equivalent to the
<regular element> being repeated zero or more times.

For example
NAMECLASS 'A' ('A' OR 'B)*
defines names A, AA, AB, AAA, AAB, ABA, ABB, AAAA, ... etc.

If a <regular element> is followed an '+' the <partial regular expression> is equivalent to the
<regular element> being repeated one or more times.

For example
NAMECLASS 'A' ('A' OR 'B")+
defines names AA, AB, AAA, AAB, ABA, ABB, AAAA, ... etc.

A <regular element> which is a bracketed <regular expression> defines the character sequences
defined by the <regular expression>.

A <regular element> which <character string literal> defines the character sequence given in the
character string literal (omitting the quotes).

A <regular element> which is a <regular interval> defines all the characters specified by the
<regular interval> as alternative character sequences. The characters defined by the <regular
interval> are all the characters greater than or equal to the first character and less than or equal to the
second character according to the definition of the character sort (see § 5.6.2 ). For example
|al : Ifl

defines the alternatives 'a’ or 'b' or '¢' or 'd' or 'e' or 'f\.
If the sequence of definition of the names is important (for instance if ORDERING is specified),
then the names are considered to be defined in the order so that they are alphabetically sorted
according to the ordering of the character string sort. If two names commence with the same
characters but are of different lengths then the shorter name is considered to be defined first.
5.4.1.15 Literal mapping

Literal mappings are shorthands used to define the mapping of literals to values.

Concrete Textual Grammar

<literal mapping> ::=
MAP <literal equation> { <end> <literal equation> }* [ <end> ]

C
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<literal equation> ::=
<literal quantification>
( <literal axioms> { <end> <literal axioms> }* [ <end>])

<literal axioms> ::=
<equation>
I <literal equation>

<literal quantification> ::=
FOR ALL <value name> { , <value name> }* IN <extended sort> LITERALS

<spelling term> ::=
- SPELLING ( <value identifier> )

The rules <literal mapping> and <spelling term> are not part of the data kemel but occur in the
rules <properties expression> and <ground term> in § 5.2.1 and § 5.2.3 respectively.

Semantics

Literal mapping is a shorthand for defining a large (possibly infinite) number of axioms ranging
over all the literals of a sort. The literal mapping allows the literals for a sort to be mapped onto the
values of the sort. When the sort contains a large (or infinite) number of values a literal mapping is
the only practical way to define the value corresponding to each literal.

The spelling term mechanism is used in literal mappings to refer to the character string which
contains the spelling of the literal. This mechanism allows the Charstring operators to be used to
define literal mappings.

Model

A <literal mapping> is a shorthand for a set of <axioms>. This set of <axioms> is derived from the
<literal equation>s in the <literal mapping>. The <equation>s which are used for this derivation are
all <equation>s contained in <axioms> of the rules <literal axioms>. In each of these <equation>s
the <value identifier>s defined by the <value name> in the <literal quantification> are replaced. In
cach derived <equation> each occurrence of the same <yalue identifier> is replaced by the same
<literal operator identifier> of the <sort> of the <literal quantification>. The derived set of
<axioms> contains all possible <equation>s which can be derived in this way.

The derived <axioms> for <literal equation>s are added to <axioms> (if any) defined after the
keyword AXIOMS and before the keyword MAP in the same <partial type definition>.

For example
NEWTYPE abc LITERALS 'A',b,'c";

OPERATORS
"<" : abc,abc -> Boolean;
"+" : abc,abc -> Boolean;

MAP FOR ALL x,y IN abc LITERALS
x<y=>y+x);

ENDNEWTYPE abg;

is derived concrete syntax for
NEWTYPE abc LITERALS 'A',b,'c";
OPERATORS
"<" : abc,abc -> Boolean;
"+" : abc,abc -> Boolean;

Fascicle X.1 — Rec. Z.100 169



|A| < !A' => IAI + lAI;
‘A" < =>Db + Al
IA! < 1.1 => I'cl + IA!;
b <A =>'A'" + b;
b <b =>b + b;
b <'¢ =>'¢" +b;
IC' < rAl = ‘A' + 1cr;
'’ <b =>b + ‘¢
I'cl < Icl => ICI + lcl;
ENDNEWTYPE abc;

If a <literal quantification> contains one or more <spelling term>s then there is replacement of the
<spelling term>s with Charstring literals (see § 5.6.3).

If the <literal signature> of the <literal operator identifier> of a <spelling term> is a <literal operator
name> (see § 5.2.2), then the <spelling term> is shorthand for an uppercase Charstring derived
from the <literal operator identifier>. The Charstring contains the uppercase spelling of the <literal
operator name> of the <literal operator identifier>.

If the <literal signature> of the <literal operator identifier> of a <spelling term> is a <character
string literal> (see § 5.2.2 and § 5.4.1.2 ), then the <spelling term> is shorthand for a Charstring
derived from the <character string literal>. The Charstring contains the spelling of the <character
string literal>.

The Charstring is used to replace the <value identifier> after the <literal equation> containing the
<spelling term> is expanded as above. '

For example
NEWTYPE abc LITERALS 'A',Bb,'c’;
OPERATORS
"<" : abc,abc -> Boolean;
MAP FOR ALL x,y IN abc LITERALS
SPELLING(x) < SPELLING(y) =>x <y;
ENDNEWTYPE abc;

is derived concrete syntax for

NEWTYPE abc LITERALS 'A',Bb,'c’;
OPERATORS
"<" : abe,abe -> Boolean;
AXIOMS
/* note that 'A", Bb, 'c' are bound to the local sort abc */
/* ™A™, 'BB' and "'c" should be qualified by the Charstring identifier
if these literals are ambiguous - to be concise this is omitted below™/

!!lAIII < lHAIII => IA! < !Al;
||IA!!! < 'IBBI => IAI <Bb;
IIIAII! < |HCH| => |Al < Icl;
IBBI < lllAHl => Bb < IAI;
'BB’ < 'BB' =>Bb < Bb;
IBB| < lllcll'! => Bb < !CI;
lllcl” < |IIAI!I' => Icl < IAI;
III‘CHI < IBB| => Icl <Bb;
chl" < I'Ilcill => !cl < !C!; l
ENDNEWTYPE abc;
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Every <unquantified equation> in <literal axioms> must contain a <spelling term> or a <literal
operator identifier>, .
A <spelling term> must be in a <literal mapping>.

The <MI;Q identifier> in a <spelling term> must be a <yalue identifier> defined by a <literal
quantification>,

5.4.2 Useofdata

The following defines how data types, sorts, literals, operators and synonyms are
interpreted in expressions.

5.4.2.1  Expressions

Expressions are literals, operators, variables accesses, conditional expressions and
imperative operators.

Abstract grammar
Expression = Ground-expression |
Active-expression
An expression is an active expression if it contains an active primary (see § 5.5).
An expression which does not contain an active primary is a ground expression.
Concrete textual grammar

For simplicity of description no distinction is made between the concrete syntax of ground

expression and active expression. The concrete syntax for <expression> is givenin § 54.2.2
below.

Semantics

An expression is interpreted as the value of the ground expression or active expression. If the value
is an error then the further behaviour of the system is undefined.

The expression has the sort of the ground expression or active expression.
5.4.2.2  Ground expressions
Abstract grammar

Ground-expression i Ground-term
The static conditions for the ground term also apply to the ground expression .
Concrete texwal grammar

<ground expression> ::=
<ground expression>
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<expression> ::=
<operand0>
| <sub expression> => <operand(>

<sub expression> 1=
<expression>

<operand(> ::=
<operand1>
| <sub operand0> { OR | XOR } <operand1>

<sub operand(> 1=
<operand0>

<operandi> ::=
<operand2> :
I <sub operand1> AND <operand2

<sub operand1> ::=
<operand1>

<operand2> =
<operand3>
| <suboperand2> { =1/=1>|>=1<]<=|IN } <operand3>

<sub operand2> ::=
<operand2>

<operand3> ::=
<operand4>
| <sub operand3> { +1-1//} <operand4>

<sub operand3> ::=
<operand3>

<operand4> ::=
<operand5>
| <suboperand4> { * | /I MOD | REM } <operand5>

<sub operand4> ::=
<operand4:>>

<operandS> 1=
[- INOT ] <primary>

<primary> ::=
<ground primary>
| <active primary>
| <extended primary>

<ground primary> ::=
<literal identifier>
| <operator identifier> ( <ground expression list> )
| ( <ground expression> )
I <conditional ground expression>
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<extended primary> ::=
<synonym:
| <indexed primary>
| <field primary>
| <structure primary>

<ground expression list> ::=
<ground expression> { , <ground expression> }*

<operator identifier> ::=
<operator identifier>
| [<qualifier>] <quoted operator>

An <expression> which does not contain any <active primary> represents a ground expression in
the abstract syntax. A <ground expression> must not contain an <active primary>.

If an <expression> is a <ground primary> with an <operator identifier> and an <argument sort> of
the <operator signature> is a <syntype> then the range check for that syntype defined in §

5.4.1.9.1 is applied to the corresponding argument value. The value of the range check must be
True.

If an <expression> is a <ground primary> with an <operator identifier> and the <result sort> of the
<operator signature> is a <syntype> then the range check for that syntype defined in § 5.4.1.9.1is
applied to the result value, The value of the range check must be True. '

If an <expression> contains an <extended primary> (that is a <synonym>, <indexed primary>,
<field primary> or <structure primary:), this is replaced at the concrete syntax level as defined in §
54.2.3, § 5424, § 5.4.2.5 and § 5.4.2.6 respectively before relationship to the abstract syntax
1s considered.

The optional <qualifier> before a <quoted operator> has the same relationship with the abstract
syntax as a <qualifier> of an <gperator identifier> (see § 5.2.2). '

Semantics

A ground expression is interpreted as the value denoted by the ground term syntacticaﬂy equivalent
to the ground expression.

In general there is no need or reason to distinguish between the ground term and the value of the
ground term. For example the ground term for the unity integer value can be written "1". Usually
there are several ground terms which denote the same value, for instance the integer ground terms
"0+1", "3-2" and "(7+5)/12", and it is usual to consider a simple form of ground term (in this case
"1") as denoting the value.

A ground expression has a sort which is the sort of the equivalent ground term,

A ground expression has a value which is the value of the equivalent ground term.
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3.42.3  Synonym
Concrete textual grammar
<synonym> ::=

<gynonym identifier>
| <external synonym>

The alternative <external synonym> is described in § 4.3.1.

Semantics

A synonym is a shorthand for denoting an expression defined elsewhere.

Model

A <synonym> represents the <ground expression> defined by the <synonym definition> identified
by the <synonym identifier>. An <identifier> used in the <ground expression> represents an
identifier in the abstract syntax according to the context of the <synonym definition>.

5.4.2.4  Indexed primary

_ An indexed primary is a shorthand syntactic notation which can be used to denote
“indexing" of an "array" value. However, apart from the special syntactic form an indexed primary
has no special properties and denotes an operator with the primary as a parameter. '
Concrete textual grammar

<indexed primary> ::=
<primary> ( <expression list> )

Semantics

An indexed expression represents the application of an Extract! operator.

Model

A <primary> followed by a bracketed <expression list> is derived concrete syntax for the concrete
syntax

Extract!{ <primary>, <expression list>)
and then this is considered as a legal expression even though Extract! is not allowed as an operator
name in the concrete syntax for expressions. The abstract syntax is determined from this concrete
expression according to § 5.4.2.2,
5.4.2.5  Field primary

An field primary is a shorthand syntactic notation which can be used to denote "field
selection” of "structures”, However, apart from the special syntactic form an field primary has no
special properties and denotes an operator with the primary as a parameter.

Concrete textual grammar

<field primary> ::=
<primary> <field selection>
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<field selection> ::=
! <field name>
| (<field name> { , <field name> }*)

The field name must be a field name defined for the sort of the primary.

Semantics

A field primary represents the application of one of the field extract operators of a structured sort.

Model

The form
<primary> ( <figld name> )
is derived syntax for
<primary> ! <field name>
The form
<primary> ( <first field name> { , <field name> }*)
is derived syntax for

<primary> ! < first field name > { ! <field name> }#
where the order of field names is preserved.

The form
<primary> ! <field name>
is derived syntax for
<field extract operator name> ( <primary> )

where the field extract operator name is formed from the concatenation of the field name and
"Extract!" in that order. For example

s!fl
is derived syntax for

f1Extract!(s)

and then this is considered as a legal expression even though f1Extract! is not allowed as an
operator name in the concrete syntax for expressions. The abstract syntax is determined from this
concrete expression according to § 5.4.2.2.

In the case where there is an operator defined for a sort so that
Extract!(s,name)

is a valid term when "name" is the same as a valid field name of the sort of s then a primary
s(name)

is derived concrete syntax for
Extract!(s,name)

and the field selection must be written
s ! name

5.4.2.6  Swructure primary

Concrete textual grammar

<structure primary> ::=
[<qualifier>] (. <expression list>.)
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Semantics

A structure primary represents a value of a structured sort which is constructed from expressions
for each field of the structure.

The form
(. <expression list>.)

is derived concrete syntax for
Make!( <expression list> )

where this is considered as a legal ground expression even though Make! is not allowed as an
operator name in concrete syntax for ground expressions. The abstract syntax is determined from
this concrete ground expression according to § 5.4.2.2.

5.4.277  Conditional ground expression
Concrete textual grammar

<conditional ground expression> ::=
IF <Boolean ground expression>
THEN <consequence ground expression>

ELSE <alternative ground expression>
FI

<consequence ground expression> ::=
<ground expression>

<alternative ground expression> ::=
<ground expression>

The <conditional ground expression> represents a ground expression in the abstract syntax. If the
<Boolean ground expression> represents True then the ground expression is represented by the

<consequence ground expression> otherwise it is represented by the <alternative ground
expression>, -

The sort of the <consequence ground expression> must be the same as the sort of the <alternative
ground expression>.

Semantics

A conditional ground expression is a ground primary which is interpreted as either the consequence
ground expression or the alternative ground expression.

If the <Boolean ground expression> has the value True then the <alternative ground expression> is
not interpreted. If the <Boolean ground expression> has the value False then the <consequence
ground expression> is not interpreted. The further behaviour of the system is undefined if the
<ground expression> which is interpreted has the value of an error.

A conditional ground expression has a sort which is the sort of the consequence ground expression
{and also the sort of the alternative ground expression).
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5.5  Useof data with variables

This section defines the use of data and variables declared in processes and -procedures, and
the imperative operators which obtain values from the underlying system.

A variable has a sort and an associated value of that sort. The value associated with a
variable may be changed by assigning a new value to the variable. The value associated with the
variable may be used in an expression by accessing the variable.

Any expression containing a variable is considered to be "active" since the value obtained by
interpreting the expression may vary according to the value last assigned to the variable.

5.5.1 Variable and data definitions

Concrete textual grammar

<data definition> ::=
{ <partial type definition>
{  <syntype definition>
I <generator definition>

I <synonym definition> } <end>
A data definition forms part of a data type definition if it is a <partial type definiion> or <syntype
definition> as defined in § 5.2.1 and § 5.4.1.9 respectively. The rules <generator definition> and
<synonym definition> are defined in § 5.4.1.12 and §5.4.1.13 respectively.

The syntax for introducing process variables and for procedure parameter variables is given in §
2.5.1.1 and § 2.3.4 respectively. A variable defined in a procedure must not be revealed.

Semantics

A data definition is used either for the definition of part of a data type or the definition of a
synonym for an expression as further defined in § 5.2.1, § 5.4.1.9 or § 5.4.1.13.

When a variable is created it contains a special value called undefined which is distinct from any
other value of the sort of that variable.

5.5.2 Accessing variables
The following defines how an expression involving variables is interpreted.

5.5.2.1  Active expressions

Abstract grammar
Active-expression = Variable-access |
Conditional-expression |
Operator-application |
Imperative-operator
Concrete textual grammar

<active expression> =
<active expression>
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<active primary> n=
<variable access>
| <operator application>
| <conditional expression>
| <imperative operator>
| (<active expression> )
| <active extended primary>

<active extended primary> ::=
<active extended primary>

<expression list> n=
< expression> { , < expression> }*

To be concise the concrete syntax for <active expression> is given as <expression> in § 5.4.2.2..
An <expression> is an <active expression> if it contains an <active primary>,

Also to be concise the concrete syntax for <active extended primary> is given as <extended
primary> in § 5.4.2.2. An <extended primary> is an <active extended primary> if it contains an
<active primary>. For an <extended primary> replacement at the concrete syntax level takes place
as defined in § 5.4.2.3, § 5.4.2.4, § 5.4.2.5 and § 5.4.2.6 before the relationship to the abstract
syntax is considered.

Semantics

An active expression is an expression whose value will depend on the current state of the system.
An active expression has a sort which is the sort of the equivalent ground term.

An active expression has a value which is the ground term equivalent to the active expression at the
time of interpretation.

Model

Each time the active expression is interpreted the value of the active expression is determined by
finding the ground term equivalent to the active expression. This ground term is determined from a
ground expression formed by replacing each active primary in the active expression by the ground
term equivalent to the value of that active primary. The value of an active expression is the same as
the value of the ground expression . :

Within an active expression each operator is interpreted in the order determined either by the
concrete syntax given in § 5.4.2.2 or in the case of ambiguity from left to right. Within an active
expression list or expression list each element of the list is interpreted in the order left to 1i ght.
5.5.2.2  Variable access
Abstract grammar

Variable-access = Variable-identifier
Concrete textual grammar

<variable access> =
<variable identifier>
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Semantics

A variable access is interpreted as giving the value associated with the identified variable.

A variable access has a sort which is the sort of the variable identified by the variable access.

A variable access has a value which is the value last associated with the variable or if that value was
the special value "undefined" then an error. If the value of a variable access is an error then the
further behaviour of the system is undefined.

5.5.2.3  Conditional expression

A conditional expression is an expression which is interpreted as either the consequence or
the alternative.

Abstract grammar
Conditional-expression = Boolean-expression
Consequence-expression
Alternative-expression
Boolean-expression = Expression
Consequence-expression = Expression
Alternative-expression = Expression

The sort of the consequence expression must be the same as the sort of the alternative expression.
Concrete textual grammar

<conditional expression> ::=
IF <Boolean active expression>

THEN <consequence expression>
ELSE <alternative expression>
FI

| IF <Boolean expression>
THEN <active consequence expression>
ELSE <alternative expression>
FI

| IF <Boolean expression>
THEN <consequence expression>
ELSE <active alternative expression>
FI

<consequence expression> ::=
<expression>

<alternative expression> =
<expression>

A <conditional expression> is distinguished from a <conditional ground expression> by the
occurrence of an <active expression> in the <conditional expression>.
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Semantics

A conditional expression is interpreted as the interpretation of the condition followed by either the
interpretation of the consequence expression or the interpretation of the alternative expression. The
consequence is interpreted only if the condition has the value True, so that if the condition has the
value False then the further behaviour of the system is undefined only if the alternative expression
is an error, Similarly, the alternative is interpreted only if the condition has the value False, so that
if the condition has the value True then the further behaviour of the system is undefined only if the
consequence expression is an error,

The conditional expression has a sort which is the same as the sort of the consequence and
alternative,

The conditional expression has a value which is the value of the consequence if the condition is
True or the value of the alternative if the condition is False.

5.5.2.4  Operator application

An operator application is the application of an operator where one or more of the actual
arguments is an active expression,

Abstract grammar

Operator-application : Operator-identifier
Expression™

If an argument sort of the operator signature is a syntype and the corresponding expression in the
list of expressions is a ground expression, the range check defined in § 5.4.1.9.1 applied to the
value of the expression must be True.

Concrete textual grammar

<operator application> ::=
<operator identifier> ( <active expression list> )

<active expression list> 1=
<active expression> [ , <expression list> ]
I <ground expression> , <active expression list>

An <operator application> is distinguished from the syntactically similar <ground expression> by
one of the <expression>s in the bracketed list of <expression>s being an <active expression>. If all
the bracketed <expression>s are <ground expression>s then the construction represents a ground
expression as defined in § 5.4.2.2.

Semantics

An operator application is a active expression which has the value of the ground term equivalent to
the operator application. The equivalent ground term is determined as in § 5.5.2.1,

The list of expressions for the operator application are interpreted in the order given before
Interpretation of the operator.

If an argument sort of the operator signature is a syntype and the corresponding expression in the
active expression list is an active expression then the range check defined in § 5.4.1.9.1 is applied
to the value of the expression. If the range check is False at the time of interpretation then the
system is in error and the further behaviour of the system is undefined.
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If the result sort of the operator signature is a syntype then the range check defined in § 5.4.1.9.1 1s
applied to the value of the operator application. If the range check is False at the time of
interpretation then the system is in error and the further behaviour of the system is undefined.

5.5.3 Assignment statement
Abstract grammar

Assignment-statement :: Variable-identifier
Expression

The sort of the variable identifier and the sort of the expression must be the same.

If the variable is declared with a syntype and the expression is a ground expression, then the range
check defined in § 5.4.1.9.1 applied to the expression must be True.

Concrete textual grammar

<assignment statement> =
<variable> := <expression>

<variable> ::=
<variable identifier>
| <indexed variable>
| <field variable>

If the <variable > is a <variable identifier> then the <expression> in the concrete syntax represents
the <expression> in the abstract syntax. The other forms of <variable>, <indexed variable> and
<field variable>, are derived syntax and the <expression> in the abstract syntax is found from the
equivalent concrete syntax defined in § 5.5.3.1 and § 5.5.3.2 below.

Semantics

An assignment statement is interpreted as creating an association from the variable identified in the
assignment statement to the value of the expression in the assignment statement. The previous
association of the variable is lost.

If the variable is declared with a syntype and the expression is an active expression, then the range
check defined in § 5.4.1.9.1 is applied to the expression. If this range check is equivalent to False
then the assignment is in error and the further behaviour of the system is undefined.

5.5.3.1  Indexedvariable

An indexed variable is a shorthand syntactic notation which can be used to denote
"indexing" of "arrays". However, apart from the special syntactic form an indexed active primary
has no special properties and denotes an operator with the active primary as a parameter.

Concrete textual grammar

<indexed variable> =
<variable> ( <expression list> )

There must be an appropriate definition of an operator named Modify!.
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Semantics

An indexed variable represents the assignment of a value formed by the application of the Modify!
operator to an access of the variable and the expression given in the indexed variable.

Model

The concrete syntax form

<variable> ( <expression list> ) := <expression>
is derived concrete syntax for

<variable> := Modify!( <variable>,<expression list>, <expression> )
where the same <variable> is repeated and the text is considered as a legal assignment even though
Modify! is not allowed as an operator name in the concrete syntax for expressions. The abstract
syntax is determined for this <assignment statement> according to § 5.5.3 above.

The model for indexed variables must be applied before the model for import (see § 4.13).
5.53.2  Fieldvariable

A field variable is a shorthand for assigning a value to a variable so that only the value in
one field of that variable has changed.

Concrete textual grammar

<field variable> ::=
<variable> <field selection>

There must be an appropriate definition of an operator named Modify!. Normally this definition
will be implied by a structured sort definition.

Semantics

A field variable represents the the assignment of a value formed by the application of a field modify
operator.

Model

Bracketed field selection is derived syntax for ! <field name> field selection as defined in §
5.4.2.5.

The concrete syntax form
_ <variable> ! <field name> := <expression>
is derived concrete syntax for

<variable> := <field modify operator name> ( <variable>, <expression> )
where

a) the same <variable> is repeated, and

b) the <field modify operator name> is formed from the concatenation of the field name and
"Modify!", and then

C) the text is considered as a legal assignment even though the <field modify operator name> is
not allowed as an operator name in the concrete syntax for expressions.
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If there is more than one <field name> in the field selection then they are modelled as above by
expanding each ! <field name> in turn from right to left and considering the remaining part of the
<field variable> as a <variable>. For example

var ! fielda ! fieldb := expression;
is first modelled by

var ! fielda := fieldbModify!(var ! fielda, expression);
and then by

var := fieldaModify!( var, fieldbModify!(var ! fielda, expression));

The abstract syntax is determined for the <assignment statement> formed by the modelling
according to § 5.5.3 above.

5.5.3.3  Default assignment

A default assignment is shorthand for assigning the same value to all variables of a specified
sort immediately after they are created.

Concrete textual grammar

<default assignment> ::=
DEFAULT <ground expression> [ <end> ]

A <partial type definition> or <syntype definition> must contain not more than one <default
assignment>, (This prevents multiple assignments arising from generator instantiations).

Semantics

A default assignment is optionally added to a properties expression of a sort. A default assignment
specifies that any variable declared with the sort introduced by the partial type definition or syntype
definition is immediately assigned the value of the ground expression.

If there is no default assignment then when a variable is declared it will be associated with the
undefined value.

A variable may be assigned an alternative value when it is declared by including an explicit
assignment with the declaration.

Default assignments are not inherited.

Model

The concrete syntax form

DEFAULT <ground expression>
used in a properties expression where the sort s is introduced implies an assignment of the <ground
expression> to a variable. This assignment is interpreted immediately after the declaration of the

variable and before any explicitly specified action in the same process or procedure is interpreted.
For example if

DEFAULT 2*dnumber

is given for sort s and there is a declaration in the concrete syntax
DCL v s;

then there is an implied assignment
v 1= 2*dnumber;
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If the declaration also has an <initial value> then the <initial value> is assigned to the variable after
the <ground expression> in the <default assignment>,

The implied assignment statement has the normal relationship of an <assignment statement> to the
abstract syntax (see § 5.5.3).

If a <default assignment> is specified for a <data definition> then the <sort> (representing a
syntype or sort) has a default assignment value which is the value of the <ground expression> of
the <default assignment>. If no <default assignment> is given in <syntype definition> then the
syntype has a default assignment value if the parent sort identifier (identifying a syntype or sort)

given in the syntype definition has a default assignment value. '

For a <syntype definition> the assignments are interpreted if and only if the range check as defined
in § 5.4.1.9.1 gives True when applied to the default assignment value. That is, for each variable
of the syntype there is an implied decision of the form

DECISION <range check>;
(True) : <default assignment>
ELSE: ENDDECISION.
5.5.4 Imperative operators

Imperative operators obtain values from the underlying system state.

Abstract grarmmmar

Imperative-operator = Now-expression |
Pid-expression |
View-expression |
Timer-active-expression
Concrete textual grammar

<imperative operator> ::=
<now expression>
| <import expression>
I <PId expression>
| <view expression>
| <timer active expression>
The alternative <import expression> is defined in § 4.13.

Imperative operators are expressions for checking whether timers are active or for accessing the
system clock, the PId values associated with a process or imported variables.

5.54.1 NOW
Abstract grammar

Now-expression 11 0
Concrete textual grammar

<now expression> - =
NOwW
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Semantics

The now expression is an expression which accesses a system clock variable to determine the
absolute system time.

The now expression represents an expression requesting the current value of the system clock
giving the time. The origin and unit of time are system dependent. Whether two occurences of
NOW in the same transition will give the same value is system dependent.

A now expression has the time sort.

5.5.42  IMPORT expression

Concrete textual grammar

The concrete syntax for an import expression is defined in § 4.3.

Semantics

In addition to the semantics defined in § 4.13 an import expression is interpreted as a variable
access (see § 5.5.2.2) to the implicit variable for the import expression.

Model

The import expression has implied syntax for the importing of the value as defined in § 4.13 and
also has an implied variable access of the implied variable for the import in the context where the
<import expression> appears.

5.5.4.3  PId expression

Abstract grammar
Pid-expression = Self-expression |
Parent-expression | -
Offspring-expression |
Sender-expression
Self-expression :: 0
Parent-expression i 0
Offspring-expression : 0
Sender-expression i 0
Concrete textual grammar
<PId expression> ::=
SELF
|  PARENT
|  OFFSPRING
I SENDER
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Semantics

A PId expression accesses one of the implicit process variables defined in § 2.4.4. The process

variable expression is interpreted as the last value associated with the corresponding implicit
variable,

A PId expression has a sort which is PId.

A PId expression has a value which is the last value associated with the corresponding variable as
defined by § 2.4.4.

5.5.4.4  View expression

A view expression allows a process to obtain the value of a variable of another process in
the same block as if the variable were defined locally. The viewing process can not modify the
value associated with the variable,

Abstract grammar

View-expression :: Variable-identifier
Expression

The expression must be a PId expression.

The variable identifier must be one of the identifiers of one of the variables in the process identified
by the expression.

Concrete textual grammar.

<view expression> ::=
VIEW ( <variable identifier>, <PId expression> )

The <variable identifier> must be defined to be viewed in a <view definition> in the process
containing the <view expression>. The <qualifier> in <variable identifier> may be omitted only if
no other variables with the same <name> part are contained in a <view definition> for the enclosing
<process definition>.

Semantics

A view expression is interpreted in the same way as a variable access (see § 5.5.2.2). The variable
accessed is the variable in the process identified by the PId expression which corresponds to the
PId expression (see § 5.5.4.3).

A view expression has a value and a sort which are the value and sort of the variable access.
The PId expression must identify an existing process in the same block as the process in which the
view expression is interpreted otherwise the view expression is in error and the further behaviour

of the system is undefined. The PId expression must identify the same process type as Process-
identifier in the corresponding view definition.
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5.5.4.5  Timer active expression

Abstract grammar

Timer-active-expression 3 Timer-identifier
Expression*
The sorts of the Expression* in the Timer-active-expression must correspond by position to the

Sort-reference-identifier* directly following the Timer-name (§ 2.8) identified by the
Timer-identifier.

Concrete textual grammar

<Timer active expression> ::=
ACTIVE ( <timer identifier> [ ( <expression list>)])

<expression list> is defined in § 5.5.2.1.

Semantics

A timer active expression is an expression of the Boolean sort which has the value True if the timer
identified by timer identifier, and set with the same values as denoted by the expression list (if any),
is active (see §2.8.2). Otherwise the timer active expression has the value False. The expressions
are interpreted in the order given.
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5.6  Predefined data

This section defines data sorts and data generators implicitly defined at system level.

Note that section 5.4.1.1 defines the syntax and precedence of special operators (infix and
monadic), but the semantics of these operators (except REM and MOD) are defined by the data
definitions in this section.

5.6.1 Boolean sort

56.1.1

Definition
NEWTYPE Boolean
LITERALS True False;
OPERATORS
"NOT" :Boolean -> Boolean;
/¥
= : Boolean, Boolean -> Boolean; The "=" and "/=" operators
=" : Boolean, Boolean -> Boolean; are implied. See § 5.4.1.4
*/
"AND" :Boolean, Boolean -> Boolean;
"OR" : Boolean, Boolean -> Boolean;
"XOR" :Boolean, Boolean -> Boolean;
V=n" : Boolean, Boolean -> Boolean;
AXIOMS

"NOT"(True ) == False;

"NOT"(False) ==True ;

"=" (True, True) ==True;

"=" (True,False) == False;

"=" (False, True) == False;

"=" (False,False) ==True;

"/=" ('True, True) == False;

"/=" ( True,False) ==True;

"f=" (False, True) == True;

"/=" (False,False) == False;

"AND"( True, True) == True ;

"AND"( True,False) == False;

"AND"(False, True) == False;
"AND"(False,False) == False;

"OR" ( True, True) == True;

"OR" ( True,False) ==True;

"OR" (False, True) ==True;

"OR" (False,False) == False;

"XOR"( True, True) == False;

"XOR"( True,False) == True ;

"XOR"(False, True) == True ;
"XOR"(False,False) == False;

"=>" ( True, True) ==True;

"=>" ( True,False) == False;
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"=>" (False, True)
"=>" (False,False)
ENDNEWTYPE Boolean;

5.6.1.2  Usage

True ;
True ;

The Boolean sort is used to represent true and false values, Often it is used as the result of a

comparison,

The Boolean sort is used by many of the short-hand forms of data in SDL such as axioms
without the "==" symbol, and the implicit equality operators "=" and "/=".

5.6.2 Character sort

5.6.2.1  Definition
NEWTYPE Character
LITERALS
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, 80O, 8],
DLE, DCl1, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, 1S4, 1S3, 1S2, 181,
1 I’ |!I, |Ill’ !#l’ IQ" |%l, l&l’ |ll‘,
1 !, |)l’ |*I’ I+!, i,l, |_I’ I'.l’ l/l’
IOE’ 11!, 12!’ |3I, |4|’ |5l, I6|, l7l’
. |8I’ |9I’ |:!’ I;l, !<P, |=l |'>I, I?I’
1 l’ |A|, |B!, IC!, !DI’ |El, lFl, IGI,
|Hf’ 1I|, IJ', IKE’ 'Ll’ |M|’ IN', IO!’
IPI, IQ|, IRl’ ISI, rTl, |U|, IVI, IW"
|X|’ IY', IZI’ ] l, I\!, |]l’ IAI, !_l’
I\I’ Ial’ Ibl’ ICI, ld‘, |ef, Ifl, Ig"
lhl’ Ii', Ijl, lkl, ll', |ml" lnl, !0|’
lpl, ' l, lrl, lsl’ Itl’ |u!, tvl’ 'W',
lx!, Iyl, Izl’ l{l, |'|l’ 1}!, =1 . DEL;
/* ""is an apostrophe, "' is a space, "' is an overline or tilde */
OPERATORS
/*
"=": Character, Character -> Boolean; The "=" and "/=" operator signatures
"/=": Character, Character -> Boolean; are implied —see § 5.4.1.4
*/
"<" 1 Character, Character -> Boolean;
"«=": Character, Character -> Boolean;
"»" : Character, Character -> Boolean;
">=": Character, Character -> Boolean;
AXTIOMS
/* the following specifies "less than" between adjacent character literals*/
NUL < SOH == True; SOH < STX ==True;
STX <ETX ==True; ETX <EQT == True;
EOT <ENQ == True; ENQ < ACK == True;
ACK <BEL == True; BEL <BS ==True;
BS <HT ==Trme; HT <LF ==True;
ILF <VT =True; VI <FF ==True;
FF <CR =True; CR <SSO ==True;
SO <S8SI =Trme; SI <DLE ==True;
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DLE <DC1 ==True;
DC2 <DC3 == True;
DC4 < NAK ==True;
SYN <ETB ==True;
CAN <EM ==True;
SUB <ESC ==Tre;
IS4 <IS3 ==True;
1IS2 <IS1 ==True;

< 'l"  ==True;
|.||| < |#| — True;
"y < |%r — Tme,
|&| < ray — Tl'ue,
1ot < 1)1 =Tfue;
ot < |+r — Tme;
|’| < —_ True;
VU< =True;
|0| < |1| S Truc,
|2| < |3| — Tme;
|4| < |5t — Truc,
'6. < |7r — Tme;
|8| < |9| —_ True,
|:| < l;! — Tl'llc;
1<1 < et — TI'UC,
|>| < l?! —_ Tl'ue;
I@! < IA! — Tl'ue;
IBI < |C| — Tme;
|D| < 'E S Tl‘ue;
|Ft < |Gr —_ Tl'ue;
'H' < T =Tre;
7' < 'K =True;
L' < M' ==Tre;
er < rol — True;
I'Pl < t ] —_— True;
rR! < IS! _ True,
'T" < 'U ==True;
I'VI < lWl —_ Tl'lle,
'XI < rY| P Tmc,
A < |[| —_ Tmc,
I‘\I < |]| S Tmc;
AL < |_| —_ Tmc;
L | < |a| —_— True;
'’ <'¢" ==Tre;
|dr < 1e| — Trﬂe;
Ifl < o =True;
'h' <1 =True;
!jr < 'k =Tl'uc;
lll < lml e True;
!nr < !Ol — Tme;
|p| < 1q| — Trlle;
|r| < |S| :"True;
't < 'v'  =True;
:vr < lwl —_ Tmc;
!xr < !yl —_ True;
‘7! < l{l J— True;
!|I < l}l —_— True;
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DCl <DC2 ==True;
DC3 <DC4 ==True;
NAK < SYN ==True;
ETB < CAN == True;
EM < SUB ==True;
ESC <IS4 ==True;
IS3 <1IS2 ==True;
IS1 <'' ==True;
] ! 1 < Hir — Tme;
l#l < ID| J— Tme;
I%I < r&r —_ True;
[RRE! < l(l — Tme;
!)! < M —_— TI‘ue;
1+| < |,| — Tmc;
t1 < |.| — TI‘Llc;
"' < '0" ==True;
! 1 1 < " — True;
!3 1 < |4' [— Tme;
'5' <'6¢" ==True;
7' < '8 ==True;
!9| < t:I — Tmc;
I;I < <! — Tme;
_t < ! — Tme;
|?r < r@l — True;
lAr < rB| — TI'lle;
'C' <D ==True;
IEI < IF| J—— True;
'G'" < 'H' ==True;
|I| < |J| —— Tl‘ue;
IKI < 'L — True;
:Mr < |N| — True;
‘0" <P ==True;
'Q' < 'R' ==True;
'S' < 'T'" ==True;
lUI < IVI — Truc;
:Wl < |X! e True,
Y' < 'Z ==Tre;
![v < I\! — Tme;
|]| < IA? — Tl'l.lc;
<™ =True;
‘a' < 'b' ==True;
|c| < rd! —_ Tl'llc;
‘e’ < 'f  ==True;
|g! < !hl — True;
|i| < |jl I True;
|k| < 11r — Tme;
'm' <'n' ==True;
‘o' <'p' ==True;
|q| < rrn . Trlle;
's' <t ==Tre;
' <'v' ==True;
|wr < lxl — Tme;
|yr < lz| — Truc;
' { t < rlr — True;
1 } 1 < =1 [— Tme;



e A Y ]

FOR ALL a,b,c IN Character (

a<a == False;
a<bANDb<c=> a<c - ==True;
a<b ==b >a
a<bOR a>b ==a/=b;
a<b=> NOT (b < a);
NOT (a/=b) ==3 =bh;
a<bOR a=b ==a<=b;
a>bOR a=b ==a>=bh;)
ENDNEWTYPE Character;
5.6.2.2 Usage

The Character sort defines character strings of length 1, where the characters are those of
the International Alphabet No. 5. These are defined either as strings or as abbreviations according
the International Reference Version of the alphabet. The printed representation may vary accordin g
to national usage of the alphabet.

There are 128 different literals and values defined for Character. The ordering of the values
and equality and inequality are defined. .

5.6.3 String generator
5.6.3.1  Definition

GENERATOR String(TYPE Itemsort, LITERAL Emptystring) /*Strings are “indexed” from one */
LITERALS Emptystring;

OPERATORS
MkString : Itemsort -> String; /* make a string from an item */
Length :String -> Integer; /* length of string */
First : String  -> Itemsort; /* first item in string®/
Last : String , -> Itemsort; /* last item in string */
/A : String, String -> String;  /* concatenation */
Extract! : String, Integer -> Itemsort; /* get item from siring */

Modify! : String, Integer, Itemsort -> String;/* modify value of string */
SubString : String, Integer,Integer  -> String;/* get substring from string */
[*substring (s,1,j) gives a string of length j starting from the ith element */
AXIOMS
FOR ALL item, itemi, itemj, item1, item2 IN Itemsort (
FOR ALL s, 51, 2, s3 IN String (

FOR ALL i, j IN Integer ( .
type String Length(Emptystring) ==(;
type String Length(MkString(item)) ==1:
type String Extract!(MkString(item),1) = item;
First(s) == Extract!(s,1);
Last (s) == Extract!(s,Length(s));
Length( sl //s2) == Length (s1) + Length (s2) ;
Length(Modify!(s,i,item)) == Length(s);
(s1//s2 )//s3 ==s1// (s2 // s3);
Emptystring // s ==§;
s // Emptystring ==

Emptystring = (MkString(item) 7/_s23 == False; _
(MkString(item1) // s1) = (MkString (item?2) // s2) == (item1 = item 2) AND (s1 =52);
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i> 0 AND i <= Length(s) == True ==>
Extract!(Modify!(s,i,item),i) == item;

i/=jANDi>0ANDi <= Length(s) AND j > 0 AND j <= Length(s) == True ==>
Extract!(Modify!(s,i,item),j) == Extract!(s,j);

1 <=0 OR i > Length(s) == True ==> Extract!(s,i) == ERROR!;

1/: i == Tme ==

Modify!(Modify!(s,i,itemi),j,itemj) == Modify! (Modify! (s j,itemj),i,itemi);
Modify!(Modify!(s,i,item1).i,item2) == Modify!(s,i,item2);
i <=0 OR i > Length(s) == True ==> Modify!(s,1,item) == ERROR!;

i <= Length(s1) == True ==
‘ Extract!(s1 // s2,i) == Extract!(s1,i);
i > Length(sl) = True ==>
Extract!(sl // s2,1) == Extract!(s2,i - Length(s1));

i>0 AND i <= Length(s) == True ==> SubString(s,i,0) == Emptystring;
i>0 AND i <= Length(s) == True ==> SubString(s,i,1) == MkString(Extract!(s,i));
i>0 AND i <= Length(s) AND i -1+j <= Length(s) AND j > 1 ==True ==
SubString(s.i,j) == SubString(s,i,1) // SubString(s,i+1,j-1);
i <0 ORi>Length(s) OR j <=0 OR i+j > Length(s) == True ==
SubString(s,i,j) == ERROR!;

1>0 AND i <= Length(s) ==True ==
Modify!(s,i,item) ==
Substring(s,1,i-1) / MkString(item) // Substring(s,i+1,Length(s)-i);)));
ENDGENERATOR String;

5.6.3.2 Usage

A string generator can be used to define a sort which allows strings of any itemn sort to be
constructed. The most common use will be for the Charstring defined below.

The Extract! and Modify! operators will typically be used with the shorthands defined in §
5.4.24 and § 5.5.3.1 for accessing the values of strings and assigning values to strings.

5.6.4 Charstring sort
5.6.4.1  Definition

NEWTYPE Charstring String (Character, ")
ADDING LITERALS NAMECLASS ™ ( ('''&) OR "™ OR ('(:"') )+ "
/* character strings of any length of any characters from a space ' ' to an overline "™ */
/* equations of the form
IABCI — lAB! // ICI;
are implied — see § 5.4.1.2 */
MAP  FOR ALL ¢ IN Character LITERALS (
FOR ALL charstr IN Charstring LITERALS (
Spelling( charstr ) == Spelling( ¢ ) ==> charstr == Mkstring(c);
); /* string 'A’ is formed from character 'A’ etc. */
ENDNEWTYPE Charstring;
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5.6.42  Usage

The Charstring sort defines strings of characters. A Charstring literal can contain printing
characters and spaces. A non printing character can be used as a siring by using Mkstring, for

example Mkstring(DEL).

/* Example */ SYNONYM newline_prompt Charstring = Mkstring(CR) // Mkstring(LF) //'$>"

5.6.5 Integer sort
5.6.5.1  Definition

NEWTYPE Integer

LITERALS NAMECLASS (0':79%* (09 ;

/* optional number sequence before one of the numbers 0 to 9 */

OPERATORS
"' Integer -> Integer;
"+" :Integer, Integer  -> Integer;
"-" :Integer, Integer  -> Integer;
"x" . Integer, Integer  -> Integer;
“/" Integer, Integer  -> Integer;
"=" :Integer, Integer  -> Boolean; The "=" and "/=" operator signatures
“f=" :Integer, Integer  -> Boolean; are implied —see § 5.4.1.4
*/
"<" :Integer, Integer  -> Boolean;
">" :Integer, Integer . -> Boolean;
"<=":Integer, Integer = -> Boolean;
">=": Integer, Integer -> Boolean;
Float: Integer ->Real; /¥ axioms in NEWTYPE Real definition */
Fix :Real -> Integer; /* axioms in NEWTYPE Real definition */
AXIOMS |
FOR ALL a, b, ¢ IN Integer (
negation*/
0-a == -a
/* addition*/
O+a == a
a+b == b+a
a+((b+c) == (a+b)+c;
[*subtraction*/
a-a == 0
(a-b)-c == a-(b+c)
(@a-b)+c == f{a+c)-b;
a-(b-c) == (a+c)-b;
fmultiplication*®/
a*0 = ()
a*1i == &
a*b == b*a;
a*(b*c) == (@*b)*g
a*(b+c) == a*b+a¥*c
a*({-c¢) == a*b-a*c;
[*ordering*/
a+1l>a == True,
a-1<a == True;
[*equality®/
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\A- ) AN U ) == ANV L =),
/* normal ordering axioms */

"<"(a,a) == False;

l|<ll(a’b) J— II>"(b’a); .
||'<="(a’b) . e IIORII(l|<fl(a,b)’ll=lt(a’b)); -
">=”(a,b) —— "OR"(">"(a,b),"=”(a,b));

"<"(a,b) == True ==> NOT("<"(b,a)) == True;
"<"(a,b) AND "<"(b,c) == True ==> "<"(a,c) ==True;
[*division*/ /
a/0 == ERROR!,

a>=0AND b>a=="True =>a/b==0;
a>=0ANDb<=a ANDb>0==True ==>a/b==1+ (a-b)/b;
a>=0AND b <0 == True ==>a/b==-(a/(-b));
a<0 ANDb <0 =="Tre ==> 3 [ b == (-a)/(-b);
a<(0 ANDDb>0==True ==>a/b==-((-a)b);
/* Literals 2 to 9 */

TYPE Integer 2 == 1 + 1; TYPE Integer 3 ==2 + 1;

TYPE Integer 4 == 3 + 1; TYPE Integer 5 == 4 + 1;

TYPE Integer 6 == 5 + 1; TYPE Integer 7 ==6 + 1;

TYPE Integer 8 == 7 + 1; TYPE Integer 9 ==8 + 1;

MAP /* Literals other than 0 to 9 */
FOR ALL a,b,c IN Integer LITERALS
( Spelling(a) == Spelling(b) // Spelling(c), Length(Spelling(c)) == 1 ==
| a==b*(9+1)+c;
h
ENDNEWTYPE Integer;
5.6.5.2  Usage

The Integer sort is used for mathematical integers with decimal notation.

3.6.6 Natural syntype

5.6.6.1  Definition

SYNTYPE Natural = Integer CONSTANTS >= 0 ENDSYNTYPE Natural; .
5.6.6.2  Usage

The natural syntype is used when pos'itivc integers only are required. All operators will be
the integer operators but when a value is used as a parameter or assigned the value is checked. A
negative value will be an error,
5.6.7 Realsort

5.6.1.1  Definition

NEWTYPE Real
LITERALS NAMECLASS ( ('0:'9")* ('0':'9") ) OR ( (0%:'9Y)* ! (0':'9)+ );
OPERATORS
“" i Real -> Real;
"+" :Real, Real -> Real;
"." :Real, Real -> Real;
"kt : Real, Real -> Real;
"™ :Real, Real -> Real;
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/*

"=" :Real, Real -> Boolean; The "="and "/=" operator signatures
"/=" : Real, Real -> Boolean; are implied —see §5.4.1.4
*/
"<" :Real, Real -> Boolean;
">" :Real, Real -> Boolean;
"<=": Real, Real -> Boolean;
">=":Real, Real -> Boolean;
AXIOMS
FOR ALL a, b, ¢ IN Real (
[*negation*/
0-a == -3a
/* addition*/
O+a == g
a+b == b+a
a+(b+c) == (a+b)+c;
[¥subtraction*/
a-a = 0,
(a-b)-c == a-(b+c¢)
(@a-b)+c == (a+c)-b;
a-(b-c) == (a+c)—-b;
[*multiplication®/
a*( = 0
a * 1 == a;
a*b == b*a
a*(b*c) = @*b)*c
a*{(b+c) == a*b+a*c
a*(b-c¢) == a*b-a*c);
[*ordering*/
FOR ALL i, j IN Integer (
Float(i) > Float(j) == TYPE Integer ">"(i,j);

Float(j) = 0 == False ==> Float(i) / Float(j) > 0 == Float(i) > 0 AND Float(j) >0
OR Float(i) < 0 AND Float(j) < 0;
Float(i) > 0 AND Float(j) > 0 AND Float(i) > Float(j)
==> Float(i) / Float(j) > 1 == True;);

FORALLa,r,bINReal(a+r<b+r==a<b;

I>0==>a*r<b*r==a<b;

r<0==>a*r<b*r==>b < a;);
/* normal ordering axioms */
FOR ALL a, b, ¢, d IN Real (

/* equality and ordering */
(a>b) OR (b>a) == NOT (a=b);

"<"(a,a) == False;

|I<Il(a,b) — II>II(b,a);

Il<=ll(a,b) J— !!ORI‘I‘(II<I1(a,b),llzll(a,b});

II>=II‘(a,b) [— ||0RII(H>"(a’b),"=ll(a,b));

"<"(a,b) == True == NOT("<"(b,a)) == True;

"<"(a,b) AND "<"(b,c) == True ==> "<"(a.c) == True ;
[f*division*/ '

a/0 == ERROR!;

a={0==False=>afa == 1;

a=0==False==>0/a == 0;

b=0==False ==>(a/b)*b ==a;
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ORc=0==False==>(a*b)/(c *b) ==a/c;
ORd=0==False=>a/b+c/d==(@*d+b*c)/(b*d);
ORd=0==False==>a/b -c/d==(a*d -b*c)/(b*d);
OR d =0 == False ==>(a/b) * (c¢/d) == (a * ¢) / (b * d);

b=0 OR d = 0 == False ==> (a/b) / (¢/d) == (a * d)/ (b *c););

/* conversions between integer and real */ :

FOR ALL a, 1, j IN Integer (

FOR ALL rIN Real (

ctoogc
[ I [ T
OO0

Fix(Float(a)) == g;
r - 1.0 < Float(Fix(r)) == True; /* Note Fix(1.5) == 1, Fix(-0.5) ==-1 */
Float(Fix(r)) <=r == True;
Float(TYPE integer "+"(i,j)) == Float(i) + Float(j);));
FOR ALL r,s IN Real LITERALS (

FOR ALL1i,j IN Integer LITERALS (
Spelling(r) == Spelling(i) ==> r == Float(i);
Spelling(r) == Spelling(i) ==> i == Fix(r);
Spelling(r) == Spelling(i) // Spelling(s), Spelling(s) =="" // Spelling(j)
==>r1 == Float(i) + s;
Spelling(r) =="." // Spelling(i), Length(Spelling(i)) ==
==>r == Float(i) / 10;
Spelling(r) =="." // Spelling(i) // Spelling(j), Length(Spelling(i)) == 1,
Spelling(s) =="." // Spelling(j)
==>r == (Float(i) + s) / 10;

) Kk
ENDNEWTYPE Real;
5.67.2  Usage

The real sort is used to represent real numbers. The real sort can represent all numbers
which can be represented as one integer divided by another. Numbers which cannot be represented
in this way (irrational numbers — for example V2) are not part of the real sort. However for practical
engineering a sufficiently accurate approximation can usually be used, Defining a set of numbers
which includes all irrationals is not possible without using additional techniques.

5.6.8 Array generator
5.6.8.1  Definition
GENERATOR Array (TYPE Index, TYPE Itemsort)

OPERATORS
Make! : Itemsort -> Array ;
Modify! : Array,Index,ltemsort  -> Array ;
Extract! : Array,Index -> [temsort ;
AXIOMS

FOR ALL item, iteml, item2, itemi, itemj IN Itemsort (

FOR ALL i, j, ipos IN Index (

FOR ALL a, s IN Array (
type Array Extract!(Make!(item,i)) ==item ;
Modify!(Modify!(s,i,item1),i,item2) == Modify!(s,i,item2);
Extract!(Modify!(a,ipos,item),ipos) ==item;

i=j==False ==> Extract!(Modify!(a,j,item),i) == Extract!(a,i);
i=j==False ==
Modify!(Modify!(s,i,itemi),j,itemj) == Modify!(Modify!(s,],itemj),1,itemi);)));
[*equality*/
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type Array Make! (item1) = Make! (item2) ==iteml =item?2;

Modify! (a,i,item) =s == (Extract! (s,1) = item) AND (a=s);
ENDGENERATOR Array;
5.6.8.2  Usage

The array generator can be used to define one sort which is indexed by another. For
example

NEWTYPE indexbychar Array(Character,Integer)
ENDNEWTYPE indexbychar;

defines an array containing integers and indexed by characters.

Arrays are usually used in combination with the shorthand forms of Modify! and Extract!
defined in § 5.5.3.1 and § 5.4.2.4 for indexing. For example

DCL charvalue indexbychar;
'.I"A‘S:I.i.charvaluc('A') := charvalue('B")-1;
5.6.9 Powerset generator

5.6.9.1  Definition
GENERATOR Powerset ( TYPE Itemsort )

LITERALS Empty;

OPERATORS :
"IN" : Itemsort, Powerset -> Boolean; /* is member of operator *f
Incl : Itemsort, Powerset -> Powerset; /* include item in set *f
Del : Itemsort, Powerset -> Powerset; /* delete item from set */
"<t : Powerset,  Powerset -> Boolean; /* is proper subset of operator */
"> : Powerset,  Powerset ->Boolean; /* is proper superset of operator */
=" : Powerset,  Powerset -> Boolean; /* is subset of operator */
=" : Powerset, = Powerset -> Boolean; /*is supersetof operator - ¥/
"AND" :Powerset, Powerset -> Powerset; /* intersection of sets */
"OR" : Powerset, Powerset -> Powerset; /* union of sets *f

AXIOMS

FOR ALL i, j IN Itemsort (
FOR ALL p, ps, 2, b, ¢ IN Powerset (

i IN type Powerset Empty == False;

i IN Incl(i,ps) == True;

1IN ps ==1i IN Incl(j,ps);

type Powerset Del(i, Empty) == Empty ;

NOT( IN ps) == Del(i,ps) = ps;

Del(i,Incl(i,ps)) == ps;

i=j=="False ==>Del(i,Incl(j,ps))==Inckj,Del(i,ps));

Incl(i,Incl(j,p)) == Incl(j,Incl(i,p));

Incl(i,ncl(ip)) == Incl(ip);
a<b=>({INa=>iINDb) == True;

iIN(aANDD) == TYPE Boolean "AND"(iIN a, i IN b);
iIN(aORb) =="TYPE Boolean "OR"(iIN a, i IN b);
[*equality*/ :

Empty = Incl (i,ps) == False;

Incl (i,a) =b == (i IN b) AND (a=Del (i,b));

/* normal ordering axioms */
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~\au) == 2 Ay,

|l<:"(a,b) —_— "ORII(|I<!l(a,b),“=||’(a,b));

">=!l(a’b) —— IIORH(">ll(a’b)’ll=”(a’b));

"<"(a,b) ==True ==> NOT("<"(b,a)) == True;

TYPE Boolean "AND"("<"(a,b),"<"(b,¢)) == True ==> "<"(a,c) == True ;))
ENDGENERATOR Powerset;

5.6.9.2  Usage
Powersets are used to represent mathematical sets. For example

NEWTYPE Boolset Powerset(Boolean) ENDNEWTYPE Boolset;
can be used for a variable which can be empty or contain (True), (False) or (True,False).

5.6.10 Pld sort
5.6.10.1 Definition

NEWTYPE PId
LITERALS Null ;
OPERATORS unique! : PId ->PId ;
/¥
"="" Pid,Pid -> Boolean; The ”"=" and "/=" operator signatures
”/=": Pid,Pid —> Boolean; are implied — see § 5.4.1.4
*/
AXTIOMS
FOR ALL p, pl, p2 IN PId (
unique! (p) = Null == False;
unique! (p1) = unique! (p2) ==pl=p2 )
DEFAULT Null ;
ENDNEWTYPE PId;

5.6.10.2  Usage

The PId sort is used for process identities. Note that there are no other literals than the value

Null. When a process is created the underlying system uses the unique! operator to generate a new
unique value.

5.6.11 Duration sort
3.6.11.1  Definition

NEWTYPE Duration INHERITS Real ( "+", "-" ,">")
ADDING
OPERATORS
"*% . Duration, Real -> Duration;
“/" . Duration, Real -> Duration;
AXIOMS /* in the following every d must be a duration value from context */
FOR ALL d, z IN Duration (
FOR ALL r IN Real (
[*equality*®/
(d>z) OR (z>d) == NOT (d=2);
/* Duration multiplied by Real */
d*0 ==(;
O*r ==(;
d * TYPE Real "+"(1,r) ==d+(d *r);
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d* TYPEReal "-" (1,r) ==d- (d*1);

d* TYPE Real "-" (r,1) ==(d *r)-d;

d * TYPE Real "-" (1) =0-(d*r),

/* Duration divided by Real */

d/0 ==ERROR!;

r=0==False==>d/r==d * TYPEReal "/" (1,1);

/* that is division is the same as multiplying by the (real) reciprocal */

r=0==False==>z*r=d ==(d/1)=2z))

MAP

FOR ALL d IN Duration LITERALS (

FOR ALLr IN Real LITERALS ( Spelling(d) == Spelling(r) ==>d ==1*r));
ENDNEWTYPE Duration;

5.6.11.2  Usage
_ The duration sort is used for the value to be added to the current time to set timers. The
literals of the sort duration are the same as the literals for the real sort. The meaning of one unit of
duration will depend on the system being defined.
Durations can be multiplied and divided by reals.
5.6.12 Time sort
5.6.12.1  Definition

NEWTYPE Time INHERITS Real OPERATORS (<", "<=", ">", ">=") ADDING

OPERATORS

"+" : Time, Duration -> Time;

""" : Time, Duration -> Time;

"' Time, Time -> Duration;
AXIOMS

FOR ALL ¢, tl, {2 IN Time (
FOR ALL d,d1,d2 IN Duration (
(t1>12) OR (12>t1) == NOT (t1=t2);

t+0 ===
t-d ==t + TYPE Duration "-"(0,d);
(t+dl)+d2 ==t + TYPE Duration "+"(d1,d2);

{t+dl) -(t+d2) ==TYPE Duration "-"(d1,d2);));

FOR ALL d IN Duration LITERALS (

FOR ALL t IN Time LITERALS ( Spelling(d) == Spelling(t) ==>t==0+4d));
ENDNEWTYPE Time;
5.6.12.2  Usage

The NOW expression returns a value of the time sort. A time value may have a duration

added or subtracted from it to give another time. A time value subtracted from another time value
gives a duration, Time values are used to set the expiry time of timers.

The origin of time is system dependent. A unit of time is the amount of time represented by
adding one duration unit to a time,
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Appendix I
(To Recommendation Z.100)

The formal model of non-parameterised data types!)
L1  Many-sorted algebras
A many-sorted algebra A is a 2-tuple <D,0> where

a) Dis a set of sets, and the elements of D are referred to as the data carriers (of A); the
elements of a data-carrier dc are referred to as data-values; and

b) Ois a set of total functions, where the domain of each function is a Cartesian product of
data carriers of A and the range of one of the data carriers.

L2 Semantics of data type definitions
I.2.1  General concepts

1.2.1.1 Signature
A signature SIG is a tuple <S,0OP> where

a) Sis a set of sort-identifiers (also referred to as sorts); and

b) OP is a set of operators.

An operator consists of an operation-identifier op, a list of (argument) sorts w with elements in
S, and a (range) sort se S. This is usually written as op:w—s. If w is equal to the empty list the
Op:w—3s is called a null-ary operator or constant symbol of sort s.

1.2.1.2 Signature morphism

Let SIG{=<S;,0P{> and SIGy=<S8,,0P,> be signatures. A signature morphism
g:S1G1~>81G, is a pair of mappings
g = <gsi51—57,80p:0P; - 0Py>
such that for all e-opid; = <opidfy, <gs(e-sidfy), ..., gs(e-sidf})>, gs(e-res), pos > e OPq
gop( e-opidy) = <opidfy, <(e-sidfy), ..., (e-sidfi)>, (e-res), pos >
for some operation-identifier opidf;.

1) The text of this appendix has been agreed between CCITT and 1SO as a common formal descriptior
of the initial algebra model for abstract data types. As well as appearing in this recommendation this text
(with appropriate terminology, typographical and numbering changes) also appears in ISO IS8807. §§1.1,
[2.1.1, 1.2.1.2, 1.2.1.3, 1.2.1.4, 12.1.5, 1.2.1.6, 1.3, 14.1, [4.2, 143, 144, 145 and 1.4.6 of this
appendix appear in §§5.2, 7.2.2.1, 7.3.2.8, 7.2.2.2, 7.2.2.3, 7.2.2.4, 7.2.2.5, 4.7, 7.42.1, 7.4.2.2,
743, 74.3 and 7.44 of IS8807 respectively. The terminologies sort-identifier, operator,
variable-identifier, variable, algebraic specification SPEC and operations of this appendix
are replaced by sort-variable, operation-variable, value-variable, value-variable, data
presentation pres and functiens respectively in 1S8807.
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1.2.1.3 Terms

Let V be any set of variables and let <S, OP> be a signature. The sets TERM(OP,V,s) of terms of
sort s€ S with operators in OP and variables in V, are defined inductively by the following steps:

a) each variable xXs € V is in TERM(OP,V,s);
b) each null-ary operator op € QP with res(op)=s is in TERM(OP,V,s);

¢) if the terms t; of sort s; are in TERM(OP,V,s;) for i=1,...,n, then for each ope OP with
arg(op)=< 81, ...,S> and res(op)=s, op(ty,...,t) is in TERM(OP,Vs).

If term tis an element of TERM(OP,V,s) then s is call the sort of t, denoted as sort(t).
The set TERM(OP,s) of ground terms of sort s € § is defined as the set TERM(OP,{},s).

1.2.1.4 Equations
An equation of sort s with respect to a signature <S,0P> is a triple <V,L,R> where

a) Vs a set of variable-identifiers; and
b) L,Re T(OP,V,s); and

¢) se S.

An equation e'=<{},L'R"> is a ground instance of an equation e=<V,L,R>, if L' R' can be

obtained from L,R by for each variable v:s in V, replacing all occurrences of that variable in LR by
the same ground term with sort s.

The notation L=R is used for the ground instance <{},L,R> of an equation.

Note  — Also an equation <V,L,R> may be written L=R if no semantical complications are thus
introduced.

I.2.1.5 Conditional equations
A conditional equation of sort s with respect to the signature <S, OP> is a triple <V,Eq,e>,
where a) 'V isa set of variable-identifiers; and
b) Eqis a set of equations with respect to <S, OP>, with variables in V; and
€) eis an equation of sort s with respect to <S, OP>, with variables in V.
1.2.1.6 Algebraic specifications
An algebraic specification SPEC is a triple <S,0P,E> where

a) <S,0P=> is a signature; and

b) E is a set of conditional equations with respect to <S,0P>.
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1.3 Derivation systems

A derivation system is a 3-tuple D=<A,Ax,I> with:

a) A a set, the elements of which are called assertions,

b) ADAx the set of axioms,

- ¢) Iasetof inference rules.

Each inference rule Re1 has the following format

R:
where Py,. Pp.Qe A

A derivation of an assertion P in a derivation system D is a finite sequence s of assertions
satisfying the following conditions:

a) the lastelementof sis P,

b) if Qis an element of s, then either Qe Ax, or there exists a rule Rel

with P{,....P elements of s preceding Q.

If there exists a derivation of P in a derivation system D, this is written D I-P. If D is uniquely
determined by context this may be abbreviated to -P.

1.4 Semantics of algebraic specifications

All occurrences of a set of sorts S, a set operations OP, and a set of equations E in § 1.4 refer to a
given algebraic specification SPEC=<S,0P,E> as defined in § 1.2.1.6.

In order to define the semantics of an algebraic specification SPEC, a derivation system associated
with SPEC is used. This derivation system is defined in §§ 1.4.1-1.4.3. Using this derivation
system a relation on the set of ground terms with respect to <S,0P,E> and conguence classes are
defined in § 1.4.4 and § 1.4.5. This relation is used in § 14.6 to define an algebra (see § 1.1) that
represents the data type that is specified by <S,0P,E>.

L4.1 Axioms generated by equations

Let ceq be a conditional equation. The set of axioms generated by ceq, notation Ax(ceq), is defined
as follows:

a) if ceq=<V,Eq,e> with Eq={}, then Ax(ceq)={}; and

b) if ceq=<V,{},e> then Ax(ceq) is the set of all ground instances of e (see § 1.2.1.3)
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14.2 Inference rules generated by equations

Let ceq be a conditional equation. The set of inference rules generated by ceq; notation Inf(ceq), is
defined as follows:

a) if ceq=<V,{},e>, then Inf(ceq)={}, and
b) if ceq=<V, {e1,....eq}, €> with n>0, then Inf(ceq) contains all rules of the form

cl',...,en

el
where e1',..., €,',¢' are ground instances of €1,.-.» €,€ respectively, that are obtained by,
for each variable x occurring in V, replacing all occurrences of that variable in € arees

€y.€ by the same ground term with sort sort(x).

L4.3 Generated derivation system

The derivation system D=<A,Ax,I> (see § 1.3) generated by an algebraic specification
SPEC=<S,0P,E>is defined as follows:

a) A is the set of all ground instances of equations w.r.t. <S,0P>; and

b) Ax=\U{Ax(ceq)lceqeE} UID,
with ID={t=t | tis a ground term}; and

¢) I=\U({Inf(ceq) | ceqe E} U SI,

where SIis given by the following schemata

1) ty=ty
_— for all ground terms ty, ty; and
t2=t1

ii) ty=ty , ty=t3

for all ground terms ty, ty, t3; and
t1=t3

iif) t1=t1 ey t=ty

op(ty,.. t)=op(ty  ty)

for all operators op:sy,...,5,—>s € OP with n>0 and all ground terms of t.y' of
sort §; for i=1,...,n.

1.4.4  Congruence relation generated by an algebraic specification

Let D be the derivation system generated by an algebraic specification SPEC=<S,0P,E>. Two
ground terms t1 and t, are called congruent with respect to SPEC, notation t1=¢pgcty, iff
D I-t1=ty.
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L.4.5  Congruence classes

The SPEC-congruence class [t] of a ground term t is the set of all terms congruent to t with
respect to SPEC, i.e.

1.4.6 Quotient term algebra

The semantical interpretation of an algebraic specification SPEC=<S,0P,E> is the following
many-sorted algebra Q=<Dq,0q>, called the quotient term algebra, where

a) Dqis the set { Q(s) | seS} where
Q(s)={ [ t]Itis ground term of sort s} for each s S; and

b) Oq is the set of operations { op' | ope OP }, where the op' are defined by
op'([ty 1.... [ty 1) = [ op(ty,....ty) 1.
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