

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.511
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(11/2008)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY
Directory

 Information technology – Open Systems
Interconnection – The Directory: Abstract
service definition

ITU-T Recommendation X.511

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19
Interfaces X.20–X.49
Transmission, signalling and switching X.50–X.89
Network aspects X.90–X.149
Maintenance X.150–X.179
Administrative arrangements X.180–X.199

OPEN SYSTEMS INTERCONNECTION
Model and notation X.200–X.209
Service definitions X.210–X.219
Connection-mode protocol specifications X.220–X.229
Connectionless-mode protocol specifications X.230–X.239
PICS proformas X.240–X.259
Protocol Identification X.260–X.269
Security Protocols X.270–X.279
Layer Managed Objects X.280–X.289
Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS
General X.300–X.349
Satellite data transmission systems X.350–X.369
IP-based networks X.370–X.379

MESSAGE HANDLING SYSTEMS X.400–X.499
DIRECTORY X.500–X.599
OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629
Efficiency X.630–X.639
Quality of service X.640–X.649
Naming, Addressing and Registration X.650–X.679
Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT
Systems Management framework and architecture X.700–X.709
Management Communication Service and Protocol X.710–X.719
Structure of Management Information X.720–X.729
Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849
OSI APPLICATIONS

Commitment, Concurrency and Recovery X.850–X.859
Transaction processing X.860–X.879
Remote operations X.880–X.889
Generic applications of ASN.1 X.890–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999
INFORMATION AND NETWORK SECURITY X.1000–X.1099
SECURE APPLICATIONS AND SERVICES X.1100–X.1199
CYBERSPACE SECURITY X.1200–X.1299
SECURE APPLICATIONS AND SERVICES X.1300–X.1399

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. X.511 (11/2008) i

INTERNATIONAL STANDARD ISO/IEC 9594-3
ITU-T RECOMMENDATION X.511

Information technology – Open Systems Interconnection –
The Directory: Abstract service definition

Summary

ITU-T Recommendation X.511 | ISO/IEC 9594-3 defines in an abstract way the externally visible service provided by
the Directory, including bind and unbind operations, read operations, search operations, modify operations and errors.

Source

ITU-T Recommendation X.511 was approved on 13 November 2008 by ITU-T Study Group 17 (2009-2012) under the
ITU-T Recommendation A.8 procedure. An identical text is also published as ISO/IEC 9594-3.

ii ITU-T Rec. X.511 (11/2008)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2009

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 ITU-T Rec. X.511 (11/2008) iii

CONTENTS

 Page
1 Scope ... 1
2 Normative references .. 1

2.1 Identical Recommendations | International Standards ... 1
2.2 Other references.. 2

3 Definitions .. 2
3.1 Basic Directory definitions.. 2
3.2 Directory model definitions... 2
3.3 Directory information base definitions... 2
3.4 Directory entry definitions .. 2
3.5 Name definitions... 3
3.6 Distributed operations definitions ... 3
3.7 Abstract service definitions ... 3

4 Abbreviations .. 4
5 Conventions .. 4
6 Overview of the Directory service.. 4
7 Information types and common procedures.. 5

7.1 Introduction ... 5
7.2 Information types defined elsewhere ... 5
7.3 Common arguments... 6
7.4 Common results.. 9
7.5 Service controls .. 9
7.6 Entry information selection ... 12
7.7 Entry information.. 15
7.8 Filter .. 16
7.9 Paged results .. 19
7.10 Security parameters ... 21
7.11 Common elements of procedure for access control... 22
7.12 Managing the DSA Information Tree .. 24
7.13 Procedures for families of entries ... 25

8 Bind and Unbind operations ... 26
8.1 Directory Bind.. 26
8.2 Directory Unbind .. 28

9 Directory Read operations .. 28
9.1 Read... 29
9.2 Compare ... 31
9.3 Abandon ... 33

10 Directory Search operations.. 33
10.1 List... 33
10.2 Search... 37

11 Directory Modify operations... 47
11.1 Add Entry.. 47
11.2 Remove Entry .. 49
11.3 Modify Entry ... 51
11.4 Modify DN .. 54

12 Errors... 56
12.1 Error precedence... 56
12.2 Abandoned .. 57
12.3 Abandon Failed .. 57
12.4 Attribute Error.. 58
12.5 Name Error .. 58
12.6 Referral... 59

iv ITU-T Rec. X.511 (11/2008)

 Page
12.7 Security Error... 60
12.8 Service Error.. 60
12.9 Update Error .. 62

13 Analysis of search arguments.. 63
13.1 General check of search filter .. 63
13.2 Check of request-attribute-profiles.. 65
13.3 Check of controls and hierarchy selections ... 66
13.4 Check of matching use ... 67

Annex A – Abstract Service in ASN.1.. 68
Annex B – Operational semantics for Basic Access Control ... 79
Annex C – Examples of searching families of entries .. 92

C.1 Single family example.. 92
C.2 Multiple families example... 93

Annex D – External ASN.1 module ... 96
Annex E – Amendments and corrigenda ... 100

 ITU-T Rec. X.511 (11/2008) v

Introduction

This Recommendation | International Standard, together with the other Recommendations | International Standards, has
been produced to facilitate the interconnection of information processing systems to provide directory services. A set of
such systems, together with the directory information that they hold, can be viewed as an integrated whole, called the
Directory. The information held by the Directory, collectively known as the Directory Information Base (DIB), is
typically used to facilitate communication between, with or about objects such as application entities, people, terminals,
and distribution lists.

The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow, with a minimum of
technical agreement outside of the interconnection standards themselves, the interconnection of information processing
systems:

• from different manufacturers;
• under different managements;
• of different levels of complexity; and
• of different ages.

This Recommendation | International Standard defines the capabilities provided by the Directory to its users.

This Recommendation | International Standard provides the foundation frameworks upon which industry profiles can be
defined by other standards groups and industry forums. Many of the features defined as optional in these frameworks,
may be mandated for use in certain environments through profiles. This sixth edition technically revises and enhances,
but does not replace, the fifth edition of this Recommendation | International Standard. Implementations may still claim
conformance to the fifth edition. However, at some point, the fifth edition will not be supported (i.e., reported defects
will no longer be resolved). It is recommended that implementations conform to this sixth edition as soon as possible.

This sixth edition specifies versions 1 and 2 of the Directory protocols.

The first and second editions specified only version 1. Most of the services and protocols specified in this edition are
designed to function under version 1. However some enhanced services and protocols, e.g., signed errors, will not
function unless all Directory entities involved in the operation have negotiated version 2. Whichever version has been
negotiated, differences between the services and between the protocols defined in the six editions, except for those
specifically assigned to version 2, are accommodated using the rules of extensibility defined in ITU-T Rec. X.519 |
ISO/IEC 9594-5.

Annex A, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for the
Directory abstract service.

Annex B, which is not an integral part of this Recommendation | International Standard, provides charts that describe
the semantics associated with Basic Access Control as it applies to the processing of a Directory operation.

Annex C, which is not an integral part of this Recommendation | International Standard, gives examples of the use of
families of entries.

Annex D, which is not an integral part of this Recommendation | International Standard, includes an updated copy of an
external ASN.1 module referenced by this Directory Specification.

Annex E, which is not an integral part of this Recommendation | International Standard, lists the amendments and defect
reports that have been incorporated to form this edition of this Recommendation | International Standard.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 1

INTERNATIONAL STANDARD
ITU-T RECOMMENDATION

Information technology – Open Systems Interconnection –
The Directory: Abstract service definition

1 Scope
This Recommendation | International Standard defines in an abstract way the externally visible service provided by the
Directory.

This Recommendation | International Standard does not specify individual implementations or products.

2 Normative references
The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards
– ITU-T Recommendation X.200 (1994) | ISO/IEC 7498-1:1994, Information technology – Open Systems

Interconnection – Basic Reference Model: The Basic Model.
– ITU-T Recommendation X.500 (2008) | ISO/IEC 9594-1:2008, Information technology – Open Systems

Interconnection – The Directory: Overview of concepts, models and services.
– ITU-T Recommendation X.501 (2008) | ISO/IEC 9594-2:2008, Information technology – Open Systems

Interconnection – The Directory: Models.
– ITU-T Recommendation X.509 (2008) | ISO/IEC 9594-8:2008, Information technology – Open Systems

Interconnection – The Directory: Public-key and attribute certificate frameworks.
– ITU-T Recommendation X.518 (2008) | ISO/IEC 9594-4:2008, Information technology – Open Systems

Interconnection – The Directory: Procedures for distributed operation.
– ITU-T Recommendation X.519 (2008) | ISO/IEC 9594-5:2008, Information technology – Open Systems

Interconnection – The Directory: Protocol specifications.
– ITU-T Recommendation X.520 (2008) | ISO/IEC 9594-6:2008, Information technology – Open Systems

Interconnection – The Directory: Selected attribute types.
– ITU-T Recommendation X.521 (2008) | ISO/IEC 9594-7:2008, Information technology – Open Systems

Interconnection – The Directory: Selected object classes.
– ITU-T Recommendation X.525 (2008) | ISO/IEC 9594-9:2008, Information technology – Open Systems

Interconnection – The Directory: Replication.
– ITU-T Recommendation X.530 (2008) | ISO/IEC 9594-10:2008, Information technology – Open Systems

Interconnection – The Directory: Use of systems management for administration of the Directory.
– ITU-T Recommendation X.680 (2008) | ISO/IEC 8824-1:2008, Information technology – Abstract

Syntax Notation One (ASN.1): Specification of basic notation.
– ITU-T Recommendation X.681 (2008) | ISO/IEC 8824-2:2008, Information technology – Abstract

Syntax Notation One (ASN.1): Information object specification.
– ITU-T Recommendation X.682 (2008) | ISO/IEC 8824-3:2008, Information technology – Abstract

Syntax Notation One (ASN.1): Constraint specification.

ISO/IEC 9594-3:2008 (E)

2 ITU-T Rec. X.511 (11/2008)

– ITU-T Recommendation X.683 (2008) | ISO/IEC 8824-4:2008, Information technology – Abstract
Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications.

2.2 Other references
– IETF RFC 2025 (1996), The Simple Public-Key GSS-API Mechanism (SPKM).
– IETF RFC 4422 (2006), Simple Authentication and Security Layer (SASL).

3 Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 Basic Directory definitions

The following terms are defined in ITU-T Rec. X.500 | ISO/IEC 9594-1:
a) Directory;
b) Directory Information Base;
c) (Directory) User.

3.2 Directory model definitions

The following terms are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:
a) Directory System Agent;
b) Directory User Agent.

3.3 Directory information base definitions

The following terms are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:
a) alias entry;
b) Directory Information Tree;
c) (Directory) entry;
d) immediate superior;
e) immediately superior entry/object;
f) object;
g) object class;
h) object entry;
i) subordinate;
j) superior;
k) ancestor;
l) family (of entries);
m) compound entry.

3.4 Directory entry definitions

The following terms are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:
a) attribute;
b) attribute type;
c) attribute value;
d) attribute value assertion;
e) context;
f) context type;
g) context value;

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 3

h) operational attribute;
i) user attribute;
j) matching rule.

3.5 Name definitions

The following terms are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:
a) alias, alias name;
b) distinguished name;
c) (directory) name;
d) purported name;
e) relative distinguished name.

3.6 Distributed operations definitions

The following terms are defined in ITU-T Rec. X.518 | ISO/IEC 9594-4:
a) bound DSA;
b) chaining;
c) initial performer;
d) referral.

3.7 Abstract service definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.7.1 additional search: A search that starts from joinBaseObject as specified by the originator in the search
request.

3.7.2 contributing member: A family member within a compound entry, which made a contribution to either a
Read, Search or Modify Entry operation.

3.7.3 explicitly unmarked entry: An entry or a family member that is excluded from the SearchResult according
to a specification given in a control attribute referenced by the governing-search-rule.

3.7.4 family grouping: A set of members of a compound attribute that are grouped together for the purpose of
operation evaluation.

3.7.5 filter: An assertion about the presence or value of certain attributes of an entry in order to limit the scope of a
search.

3.7.6 originator: The user that originated an operation.

3.7.7 participation member: A family member that is either a contributing member or is a member of a family
grouping that as a whole matched a search filter.

3.7.8 primary search: The search that starts from baseObject as specified by the originator in the search request.

3.7.9 relaxation: A progressive modification of the behaviour of a filter during a search operation so as to achieve
more matched entries if too few are received, or fewer matched entries if too many are received.

3.7.10 service controls: Parameters conveyed as part of an operation, which constrain various aspects of its
performance.

3.7.11 strand: A family grouping comprising all the members in a path from a leaf family member up to the ancestor
inclusive. A family member will reside in as many strands as there are leaf family members below it (as immediate or
non-immediate subordinates).

3.7.12 streamed result: A result of a single operation that is included in multiple responses.

ISO/IEC 9594-3:2008 (E)

4 ITU-T Rec. X.511 (11/2008)

4 Abbreviations
For the purposes of this Recommendation | International Standard, the following abbreviations apply.

AVA Attribute Value Assertion
DIB Directory Information Base
DIT Directory Information Tree
DMD Directory Management Domain
DSA Directory System Agent
DUA Directory User Agent
RDN Relative Distinguished Name

5 Conventions
The term "Directory Specification" (as in "this Directory Specification") shall be taken to mean ITU-T Rec. X.511 |
ISO/IEC 9594-3. The term "Directory Specifications" shall be taken to mean the X.500-series Recommendations and all
parts of ISO/IEC 9594.

This Directory Specification uses the term first edition systems to refer to systems conforming to the first edition of the
Directory Specifications, i.e., the 1988 edition of the series of CCITT X.500 Recommendations and the
ISO/IEC 9594:1990 edition.

This Directory Specification uses the term second edition systems to refer to systems conforming to the second edition
of the Directory Specifications, i.e., the 1993 edition of the series of ITU-T X.500 Recommendations and the ISO/IEC
9594:1995 edition.

This Directory Specification uses the term third edition systems to refer to systems conforming to the third edition of the
Directory Specifications, i.e., the 1997 edition of the series of ITU-T X.500 Recommendations and the ISO/IEC
9594:1998 edition.

This Directory Specification uses the term fourth edition systems to refer to systems conforming to the fourth edition of
the Directory Specifications, i.e., the 2001 editions of ITU-T Recs X.500, X.501, X.511, X.518, X.519, X.520, X.521,
X.525, and X.530, the 2000 edition of ITU-T Rec. X.509, and parts 1-10 of the ISO/IEC 9594:2001 edition.

This Directory Specification uses the term fifth edition systems to refer to systems conforming to the fifth edition of the
Directory Specifications, i.e., the 2005 edition of the series of ITU-T X.500 Recommendations and the ISO/IEC
9594:2005 edition.

This Directory Specification uses the term sixth edition systems to refer to systems conforming to the sixth edition of the
Directory Specifications, i.e., the 2008 edition of the series of ITU-T X.500 Recommendations and the ISO/IEC
9594:2008 edition.

This Directory Specification presents ASN.1 notation in the bold Helvetica typeface. When ASN.1 types and values are
referenced in normal text, they are differentiated from normal text by presenting them in the bold Helvetica typeface.
The names of procedures, typically referenced when specifying the semantics of processing, are differentiated from
normal text by displaying them in bold Times. Access control permissions are presented in italicized Times.

If the items in a list are numbered (as opposed to using "–" or letters), then the items shall be considered steps in a
procedure.

6 Overview of the Directory service
As described in ITU-T Rec. X.501 | ISO/IEC 9594-2, the services of the Directory are provided through access points to
DUAs, each acting on behalf of a user. These concepts are depicted in Figure 1. Through an access point, the Directory
provides service to its users by means of a number of Directory operations.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 5

Figure 1 – Access to the Directory

The Directory operations are of three different kinds:
a) Directory Read operations, which interrogate a single Directory entry;
b) Directory Search operations, which interrogate potentially several Directory entries; and
c) Directory Modify operations.

The Directory Read operations, the Directory Search operations and the Directory Modify operations are specified in
clauses 9, 10, and 11, respectively. Conformance to Directory operations is specified in ITU-T Rec. X.519 |
ISO/IEC 9594-5.

7 Information types and common procedures

7.1 Introduction

This clause identifies, and in some cases defines, a number of information types which are subsequently used in the
definition of Directory operations. The information types concerned are those which are common to more than one
operation, are likely to be in the future, or which are sufficiently complex or self-contained as to merit being defined
separately from the operation which uses them.

Several of the information types used in the definition of the Directory Service are actually defined elsewhere.
Subclause 7.2 identifies these types and indicates the source of their definition. Each of the subclauses (7.3 through
7.10) identifies and defines an information type.

This clause also specifies some common elements of procedure that apply to most or all of the Directory operations.

7.2 Information types defined elsewhere

The following information types are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:
a) Attribute;
b) AttributeType;
c) AttributeValue;
d) AttributeValueAssertion;
e) Context;
f) ContextAssertion;
g) DistinguishedName;
h) Name;
i) OPTIONALLY-PROTECTED;
j) OPTIONALLY-PROTECTED-SEQ;
k) RelativeDistinguishedName.

The following information type is defined in ITU-T Rec. X.520 | ISO/IEC 9594-6:
a) PresentationAddress.

ISO/IEC 9594-3:2008 (E)

6 ITU-T Rec. X.511 (11/2008)

The following information types are defined in ITU-T Rec. X.509 | ISO/IEC 9594-8:
a) Certificate;
b) SIGNED;
c) CertificationPath.

The following information type is defined in ITU-T Rec. X.880 | ISO/IEC 13712-1:
a) InvokeId.

The following information types are defined in ITU-T Rec. X.518 | ISO/IEC 9594-4:
a) OperationProgress;
b) ContinuationReference.

7.3 Common arguments

The CommonArguments information may be present to qualify the invocation of each operation that the Directory can
perform.

CommonArguments ::= SET {
 serviceControls [30] ServiceControls DEFAULT { },
 securityParameters [29] SecurityParameters OPTIONAL,
 requestor [28] DistinguishedName OPTIONAL,
 operationProgress [27] OperationProgress
 DEFAULT { nameResolutionPhase notStarted },
 aliasedRDNs [26] INTEGER OPTIONAL,
 criticalExtensions [25] BIT STRING OPTIONAL,
 referenceType [24] ReferenceType OPTIONAL,
 entryOnly [23] BOOLEAN DEFAULT TRUE,
 exclusions [22] Exclusions OPTIONAL,
 nameResolveOnMaster [21] BOOLEAN DEFAULT FALSE,
 operationContexts [20] ContextSelection OPTIONAL,
 familyGrouping [19] FamilyGrouping DEFAULT entryOnly }

The ServiceControls component is specified in 7.5. Its absence is deemed equivalent to there being an empty set of
controls.

The SecurityParameters component is specified in 7.10. If the argument of the operation is to be signed by the
requestor, the SecurityParameters component shall be included in the argument. The absence of the
SecurityParameters component is deemed equivalent to an empty set.

The requestor Distinguished Name identifies the originator of a particular operation. It holds the name of the user as
identified at the time of binding to the Directory. It may be required when the request is to be signed (see 7.10), and
shall hold the name of the user who initiated the request.

NOTE 1 – Where a user has alternative distinguished names differentiated by context, the name used as the value of requestor
shall be the primary distinguished name where known. Otherwise, authentication and access control based on the value of
requestor may not work as desired.

The operationProgress, referenceType, entryOnly, exclusions and nameResolveOnMaster components are defined
in ITU-T Rec. X.518 | ISO/IEC 9594-4. They are supplied by a DUA either:

a) when acting on a continuation reference returned by a DSA in response to an earlier operation, and their
values are copied by the DUA from the continuation reference; or

b) when the DUA represents an administrative user that is managing the DSA Information Tree and the
manageDSAIT option is set in the service controls.

The aliasedRDNs component indicates to the DSA that the object component of the operation was created by the
dereferencing of an alias on an earlier operation attempt. The integer value indicates the number of RDNs in the name
that came from dereferencing the alias. (The value would have been set in the referral response of the previous
operation.)

NOTE 2 – This component is provided for compatibility with first edition implementations of the Directory. DUAs (and DSAs)
implemented according to later editions of the Directory Specifications shall always omit this parameter from the
CommonArguments of a subsequent request. In this way, the Directory will not signal an error if aliases dereference to further
aliases.

The operationContexts component supplies a set of context assertions which are applied to attribute value assertions
and entry information selection made within this operation, which do not otherwise contain context assertions for the
same attribute type and context type. If operationContexts is not present or does not address a particular attribute type

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 7

or context type, then default context assertions shall be applied by the DSA as described in 7.6.1 and in 8.9.2.2 and 12.8
of ITU-T Rec. X.501 | ISO/IEC 9594-2. If allContexts is chosen, then all contexts for all attribute types are valid and
context defaults that might have been supplied by the DSA are overridden. (ContextSelection is defined in 7.6).

familyGrouping is used to describe which family members should be selected for processing by a given operation. It is
described more fully in 7.3.2.

7.3.1 Critical extensions

The criticalExtensions component provides a mechanism to list a set of extensions that are critical to the performance
of a Directory operation. If the originator of the extended operation wishes to indicate that the operation shall be
performed with one or more extensions (i.e., that performing the operation without these extensions is not acceptable), it
does so by setting the criticalExtensions bit(s) which corresponds to the extension(s). If the Directory, or some part of
it, is unable to perform a critical extension, it returns an indication of unavailableCriticalExtension (as a serviceError
or PartialOutcomeQualifier). If the Directory is unable to perform an extension that is not critical, it ignores the
presence of the extension.

This Directory Specification does not establish rules regarding the order in which a performing DSA is to decode and
process PDUs that it receives. A DSA that receives an unknown critical extension shall return a ServiceError with
problem unavailableCriticalExtension to signal that the operation failed.

These Directory Specifications define a number of extensions. The extensions take such forms as additional numbered
bits in a BIT STRING, or additional components of a SET or SEQUENCE, and are ignored by first edition systems.
Each such extension is assigned an integer identifier, which is the number of the bit that may be set in
criticalExtensions. If the criticality of an extension is defined to be critical, the DUA shall set the corresponding bit in
criticalExtensions. If the defined criticality is non-critical, the DUA may or may not set the corresponding bit in
criticalExtensions.

The extensions, their identifiers, the operations in which they are permitted, the recommended criticality, the clauses in
which they are defined, and the corresponding LDAP controls (if any) are shown in Table 1.

Table 1 – Extensions

Extension Identifier Operations Criticality Defined
(subclauses) LDAP Control

subentries 1 All Non-critical 7.5 1.3.6.1.4.1.4203.1.10.1
copyShallDo 2 Read, Compare, List,

Search
Non-critical 7.5

attribute size limit 3 Read, Search Non-critical 7.5
extraAttributes 4 Read, Search Non-critical 7.6
modifyRightsRequest 5 Read Non-critical 9.1
pagedResultsRequest 6 List, Search Non-critical 10.1 1.2.840.113556.1.4.319
matchedValuesOnly 7 Search Non-critical 10.2 1.2.826.0.1.3344810.2.3
extendedFilter 8 Search Non-critical 10.2
targetSystem 9 Add Entry Critical 11.1
useAliasOnUpdate 10 Add Entry, Remove

Entry, Modify Entry
Critical 11.1

newSuperior 11 Modify DN Critical 11.4
manageDSAIT 12 All Critical 7.5, 7.13 2.16.840.1.113730.3.4.2
useContexts 13 Read, Compare, List,

Search, Add Entry,
Modify Entry, Modify
DN

Non-critical 7.6, 7.8

partialNameResolution 14 Read, Search Non-critical 7.5
overspecFilter 15 Search Non-critical 10.1.3 f)
selectionOnModify 16 Modify Entry Non-critical 11.3.2
Security parameters –
Response

17 All Non-critical 7.10

Security parameters –
Operation code

18 All Non-critical 7.10

ISO/IEC 9594-3:2008 (E)

8 ITU-T Rec. X.511 (11/2008)

Table 1 – Extensions

Extension Identifier Operations Criticality Defined
(subclauses) LDAP Control

Security parameters –
Attribute certification
path

19 All Non-critical 7.10

Security parameters –
Error Protection

20 All Non-critical 7.10

 21-24 Reserved
Service administration 25 Read, Search,

ModifyEntry
Critical 10.2.2, 13,

clause 16 of
ITU-T Rec.
X.501 | ISO/IEC
9594-2

entryCount 26 Search Non-critical 10.1.3
hierarchySelection 27 Search Non-critical 7.5
relaxation 28 Search Non-critical 7.8
familyGrouping 29 Compare,

Search,
RemoveEntry

Non-critical
Non-critical
Critical

7.3.2, 7.8.3
&
9.2.2
10.2
11.2.2

familyReturn 30 Read,
Search,
ModifyEntry

Non-critical
Non-critical
Non-critical

7.6.4, 7.7.1
&
9.1.3
10.2.3
11.3.3

dnAttributes 31 Search Non-critical 10.2.2
friend attributes 32 Read, Search Non-critical 7.6, 7.8.2
Abandon of paged
results

33 List, Search critical 7.9

Paged results on the
DSP

34 List, Search Non-critical 7.9

replaceValues 35 ModifyEntry critical 11.3.1, 11.3.2
NOTE 1 – The first extension is given the identifier 1 and corresponds to bit 1 of the BIT STRING. Bit 0 of the BIT STRING is
not used.
NOTE 2 – Use of signing on errors Add Entry, Remove Entry, Modify Entry, Modify DN requires version 2 or higher of the
protocol.
NOTE 3 – The SPKM credentials extension shall be critical unless used in associations established using version 2 or higher.

7.3.2 Family grouping

Family grouping allows a single family member, several family members or all family members of a compound entry,
to be grouped together for joint consideration prior to operation evaluation. These semantics can then be applied to the
following operations (as indicated in the descriptions below): Compare (to define the scope within which the compared
attribute might lie), Search (to define the groupings for which filtering might take place), Remove Entry (to define the
groupings for removal). The following ASN.1 is used to select members of a family:

FamilyGrouping ::= ENUMERATED {
 entryOnly (1),
 compoundEntry (2),
 strands (3),
 multiStrand (4) }

entryOnly means that the specific family member selected by the operation is to be considered in the group. This is the
default value, and ensures backward compatibility with previous editions of the Directory Specifications.

compoundEntry means that the complete compound entry selected by the operation is to be considered as a unit by
combining all the attributes. For Remove Entry operations, it is only applicable when the object name specified is that
of an ancestor of a compound entry, and it causes all family members to be removed by the same operation (subject to
access control).

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 9

strands means that all the strands associated with the family member are to be selected by the operation. This option is
not valid for the Remove Entry operation. For the Search operation, individual strands are considered for filter
purposes. If the combined set of attributes of one or more strands matches the filter, the compound entry is said to
match the filter. If the base object is a child member, only those strands that go through the base object are considered.
For Compare operations, all the attributes from all the family members in all the strands to which the entry belongs are
to be used in the comparison.

multiStrand is only applicable to the Search operation, and qualifies the matching rule for filtering on family
information. It is ignored for other operations. It specifies that one strand from each family within a compound entry is
to be considered at one time, but in all combinations. multiStrand is not applicable if the base object is a child family
member, in which this case multiStrand shall be ignored and entryOnly shall be substituted.

7.4 Common results

The CommonResults or CommonResultsSeq information is present to qualify the result of each retrieval operation
that the Directory can perform. In addition, it is present in any returned error.

CommonResults ::= SET {
 securityParameters [30] SecurityParameters OPTIONAL,
 performer [29] DistinguishedName OPTIONAL,
 aliasDereferenced [28] BOOLEAN DEFAULT FALSE,
 notification [27] SEQUENCE SIZE (1..MAX) OF Attribute{{SupportedAttributes}}
 OPTIONAL }

CommonResultsSeq ::= SEQUENCE {
 securityParameters [30] SecurityParameters OPTIONAL,
 performer [29] DistinguishedName OPTIONAL,
 aliasDereferenced [28] BOOLEAN DEFAULT FALSE,
 notification [27] SEQUENCE SIZE (1..MAX) OF Attribute{{SupportedAttributes}}
 OPTIONAL }

NOTE – CommonResults and CommonResultsSeq consist of the same components. The former is used when included in set
types by the COMPONENT OF type, while the latter is used similarly in sequence types.

The SecurityParameters component is specified in 7.10. If the result is to be signed by the Directory, the
SecurityParameters component shall be included in the result. The absence of the SecurityParameters component is
deemed equivalent to an empty set.

The performer Distinguished Name identifies the performer of a particular operation. It may be required when the
result is to be signed (see 7.10) and shall hold the name of the DSA that signed the result.

The aliasDereferenced component is set to TRUE when the purported name of an object or base object which is the
target of the operation included any aliases which were dereferenced.

The notification component shall be used to qualify returned result and error APDUs, for example providing more
precise error information. Standard notification attributes are defined in 6.13 of ITU-T Rec. X.520 | ISO/IEC 9594-6.
Such notification attributes are not necessarily stored in directory entries.

7.5 Service controls

A ServiceControls parameter contains the controls, if any, that are to direct or constrain the provision of the service.

ServiceControls ::= SET {
 options [0] ServiceControlOptions DEFAULT { },
 priority [1] INTEGER { low (0), medium (1), high (2) } DEFAULT medium,
 timeLimit [2] INTEGER OPTIONAL,
 sizeLimit [3] INTEGER OPTIONAL,
 scopeOfReferral [4] INTEGER { dmd(0), country(1) } OPTIONAL,
 attributeSizeLimit [5] INTEGER OPTIONAL,
 manageDSAITPlaneRef [6] SEQUENCE {
 dsaName Name,
 agreementID AgreementID } OPTIONAL,
 serviceType [7] OBJECT IDENTIFIER OPTIONAL,
 userClass [8] INTEGER OPTIONAL }

ServiceControlOptions ::= BIT STRING {
 preferChaining (0),
 chainingProhibited (1),

ISO/IEC 9594-3:2008 (E)

10 ITU-T Rec. X.511 (11/2008)

 localScope (2),
 dontUseCopy (3),
 dontDereferenceAliases (4),
 subentries (5),
 copyShallDo (6),
 partialNameResolution (7),
 manageDSAIT (8),
 noSubtypeMatch (9),
 noSubtypeSelection (10),
 countFamily (11),
 dontSelectFriends (12),
 dontMatchFriends (13),
 allowWriteableCopy (14)}

The options component contains a number of indications, each of which, if set, asserts the condition suggested. Thus:
a) preferChaining indicates that the preference is that chaining, rather than referrals, be used to provide the

service. The Directory is not obliged to follow this preference.
b) chainingProhibited indicates that chaining, and other methods of distributing the request around the

Directory, are prohibited.
c) localScope indicates that the operation is to be limited to a local scope. The definition of this option is

itself a local matter, for example, within a single DSA or a single DMD.
d) dontUseCopy indicates that copied information as defined in ITU-T Rec. X.518 | ISO/IEC 9594-4 shall

not be used to provide the service.
e) dontDereferenceAliases indicates that any alias used to identify the entry affected by an operation is

not to be dereferenced.
NOTE 1 – This is necessary to allow reference to an alias entry itself rather than the aliased entry, e.g., in order
to read the alias entry.

f) subentries indicates that a Search or List operation is to access subentries only; normal entries become
inaccessible, i.e., the Directory behaves as though normal entries do not exist. If this service control is
not set, then the operation accesses normal entries only and subentries become inaccessible. The service
control is ignored for operations other than Search or List.

NOTE 2 – The effects of subentries on access control, schema, and collective attributes are still observed even if
subentries are inaccessible.
NOTE 3 – If this service control is set, normal entries may still be specified as the base object of an operation.

g) copyShallDo indicates that if the Directory is able to partly but not fully satisfy a query at a copy of an
entry, it shall not chain the query. It is meaningful only if dontUseCopy is not set. If copyShallDo is not
set, the Directory will use shadow data only if it is sufficiently complete to allow the operation to be fully
satisfied at the copy. A query may be only partly satisfied because some of the requested attributes are
missing in the shadow copy, some of the attribute values for a given attribute are missing in the shadow
copy, because the DSA does not hold all context information for the attribute values it does have, or
because the DSA holding the shadowed data does not support the requested matching rules on that data.
If copyShallDo is set and the Directory is not able to fully satisfy a query, it shall set incompleteEntry
in the the returned entry information.

h) partialNameResolution indicates that if the Directory is able to resolve only part of the purported name
in a Read or Search operation, i.e., it is about to return a nameError, the entry whose name consists of all
resolved RDNs is to be considered the target of the operation and partialName is set to TRUE in the
result. This service control is ignored for operations other than Read or Search.

NOTE 4 – If this service control is set, the purported name is a context prefix entry to which access is denied,
and the requestor has access to the superior entry, then the existence of the context prefix entry will be indirectly
disclosed to the requestor even if DiscloseOnError permission to the entry is denied.

i) manageDSAIT indicates that the operation has been requested by an administrative user so that the DSA
Information Tree is managed. If multiple replications planes exist in the DSA to be managed, and the
manageDSAITPlaneRef service control has not been included in the operation, then the DSA selects a
suitable replication plane for the operation.

j) noSubtypeMatch indicates that attribute subtype matching shall not be attempted. This service control is
ignored for operations other than Compare and Search operations.

k) noSubtypeSelection indicates that subtype selection shall not be made.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 11

l) countFamily indicates that each member of a compound entry shall be counted as a separate entry, e.g.,
for the purposes of size and administrative limits, and relaxation controls. If this control is not set, then
members of a compound attribute shall be counted as a single entry.

m) dontSelectFriends indicates that the specification of an anchor attribute in entry information selection
does not automatically include friend attributes in the selection.

n) dontMatchFriends indicates that the specification of an anchor attribute in a filter item can only be
satisfied by the values of the anchor attribute, and not by friend attributes.

o) allowWriteableCopy indicates that a DSE of type writeableCopy is acceptable in the provision of a
query service request.

NOTE 5 – The allowWriteableCopy service control is distinct from copyShallDo in that this service control is
used to indicate that a complete copy is requested, but that it does not need to be the primary master, whereas
copyShallDo is used to indicate that any copy, whether complete or not, is acceptable.

If this component is omitted, the following are assumed: no preference for chaining but chaining not prohibited, no limit
on the scope of the operation, use of copy permitted, aliases shall be dereferenced (except for modify operations for
which alias dereferencing is not supported), subentries are not accessible, and operations that cannot be fully satisfied
by shadowed data are subject to further chaining. However, these defaults may be overwritten by search-rules within
service specific administrative areas.

The priority (low, medium, or high) at which the service is to be provided. Note that this is not a guaranteed service in
that the Directory, as a whole, does not implement queuing. There is no relationship implied with the use of priorities in
underlying layers.

The timeLimit indicates the maximum elapsed time, in seconds, within which the service shall be provided. If the
constraint cannot be met, an error is reported. If this component is omitted, no time limit is implied. In the case of time
limit exceeded on a List or Search, the result is an arbitrary selection of the accumulated results.

NOTE 6 – This component does not imply the length of time spent processing the request during the elapsed time: any number of
DSAs may be involved in processing the request during the elapsed time.

The sizeLimit is only applicable to List and Search operations. It indicates the maximum number of entries to be
returned when paged results are not to be returned. In the case of size limit exceeded, the results of a List or Search
operation may be an arbitrary selection of the accumulated results, equal in number to the size limit. Any further results
shall be discarded. When paged results are being returned, the value of sizeLimit shall be ignored by the DSA
performing the paging as detailed in 7.9.

The scopeOfReferral indicates the scope to which a referral returned by a DSA should be relevant. Depending on
whether the values dmd or country are selected, only referrals to other DSAs within the selected scope shall be
returned. This applies to the referrals in both a referral error and the unexplored parameter of list and search results.

The attributeSizeLimit indicates the largest size of any attribute (i.e., the type and all its values) that is included in
returned entry information. If an attribute exceeds this limit, all of its values are omitted from the returned entry
information and incompleteEntry is set in the returned entry information. The size of an attribute is taken to be its size
in octets in the local concrete syntax of the DSA holding the data. Because of different ways applications store the data,
the limit is imprecise. If this parameter is not specified, no limit is implied.

NOTE 7 – Attribute values returned as part of an entry's Distinguished Name are exempt from this limit.

Certain combinations of priority, timeLimit, and sizeLimit may result in conflicts. For example, a short time limit could
conflict with low priority; a high size limit could conflict with a low time limit, etc.

The manageDSAITPlaneRef indicates that the operation has been requested by an administrative user so that a specific
replication plane of the DSA Information Tree is managed. The manageDSAITPlaneRef service control is ignored if
the manageDSAIT option is not set. The plane is identified by the dsaName component which is the name of the
supplying DSA and the agreementID component which contains the shadowing agreement identifier.

The serviceType service control is only relevant for a search request that starts its initial evaluation phase within a
service specific administrative area; it is otherwise ignored. If supplied, it increases the possibility of getting useful
notification information returned in case of a faulty formulated search request.

The userClass service control is only relevant for a search request that starts its initial evaluation phase within a
service specific administrative area and is otherwise ignored. It identifies a user-class. It allows a requestor to specify
another user-class than the Directory would otherwise apply. If supplied, it also increases the possibility of getting
useful notification information returned in case of a faulty formulated search request.

ISO/IEC 9594-3:2008 (E)

12 ITU-T Rec. X.511 (11/2008)

7.6 Entry information selection

An EntryInformationSelection parameter indicates what information is being requested from an entry in a retrieval
service.

EntryInformationSelection ::= SET {
 attributes CHOICE {
 allUserAttributes [0] NULL,
 select [1] SET OF AttributeType
 -- empty set implies no attributes are requested -- } DEFAULT allUserAttributes : NULL,
 infoTypes [2] INTEGER {
 attributeTypesOnly (0),
 attributeTypesAndValues (1) } DEFAULT attributeTypesAndValues,
 extraAttributes CHOICE {
 allOperationalAttributes [3] NULL,
 select [4] SET SIZE (1..MAX) OF AttributeType } OPTIONAL,
 contextSelection ContextSelection OPTIONAL,
 returnContexts BOOLEAN DEFAULT FALSE,
 familyReturn FamilyReturn DEFAULT
 { memberSelect contributingEntriesOnly } }

ContextSelection ::= CHOICE {
 allContexts NULL,
 selectedContexts SET SIZE (1..MAX) OF TypeAndContextAssertion }

TypeAndContextAssertion ::= SEQUENCE {
 type AttributeType,
 contextAssertions CHOICE {
 preference SEQUENCE OF ContextAssertion,
 all SET OF ContextAssertion } }

FamilyReturn ::= SEQUENCE {
 memberSelect ENUMERATED {
 contributingEntriesOnly (1),
 participatingEntriesOnly (2),
 compoundEntry (3) },
 familySelect SEQUENCE SIZE (1..MAX) OF OBJECT-CLASS.&id OPTIONAL }

The attributes component specifies the user and operational attributes about which information is requested:
a) If the select option is chosen, then the attributes involved are listed. If the list is empty, then no attributes

shall be returned. Information about a selected attribute shall be returned if the attribute is present. An
attributeError with problem noSuchAttributeOrValue shall only be returned if none of the attributes
selected is present.

b) If the allUserAttributes option is selected, then information is requested about all user attributes in the
entry.

Attribute information is only returned if access rights are sufficient. A securityError (with problem
insufficientAccessRights) shall only be returned in the case where access rights preclude the reading of all attribute
values requested. Note that access control is also applied to the attributes and values eligible to be returned according to
the components of EntryInformationSelection, and may further reduce the information that is returned.

NOTE 1 – Access control is also applied to the attributes and values eligible to be returned according to the components of
EntryInformationSelection, and may further reduce the information that is returned.

The infoTypes component specifies whether both attribute type and attribute value information (the default) or attribute
type information only is requested. If an attribute is of a type that is a carrier of other attributes, e.g., a
family-information attribute, then the value(s) shall be returned independent of the setting of the infoTypes component,
but the infoTypes specification shall be applied to the contained attributes. If the attributes component is such as to
request no attributes, then this component is not meaningful.

The extraAttributes component specifies a set of additional user and operational attributes about which information is
requested. If the allOperationalAttributes option is chosen, then information is requested about all directory
operational attributes in the entry. If the select option is chosen, then information about the listed attributes is
requested.

NOTE 2 – This component may be used to request information about, for example, specific operational attributes when
attributes is set to allUserAttributes, or about all operational attributes. If the same attribute is listed or implied in both
attributes and extraAttributes, it is treated as though it has been requested only once.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 13

A request for a particular attribute is always treated as a request for the attribute and all subtypes of that attribute (except
for requests processed by first-edition systems) if the noSubtypeSelection service control option is not set. If the
noSubtypeSelection service control option is set, only the requested attributes are returned, not their subtypes.
Similarly, a request for a particular attribute that has friends is treated as a request for the attribute and all friend
attributes, subject to the dontSelectFriends service control option not being set.

In responding to a request for attribute information, the Directory treats all collective attributes of an entry as if they
were actual user attributes of the entry, i.e., they are selected like other user attributes and are merged into the returned
entry information. A request for allUserAttributes requests all collective attributes of the entry as well as ordinary
attributes of the entry. An attribute is a collective attribute of an entry if all of the following are true:

a) it is located in a subentry whose subtree specification includes the entry;
b) it is not excluded by the presence in the entry of a collectiveExclusions attribute value equal to the

collective attribute type; and
c) it is permitted by the content rule for the structural object class for the entry.

The contextSelection component is used to specify which attribute values shall be returned of the attributes selected by
attributes or extraAttributes. The contextSelection is evaluated only against the values of attributes that are
candidates to be returned according to those other components of EntryInformationSelection. The evaluation of
contextSelection, and the use of defaults if it is not supplied, is discussed in 7.6.1 to 7.6.3.

If the infoTypes component is such as to request no attribute values, or the attributes component is such as to request
no attributes, then the contextSelection component is not meaningful. If, as a result of applying contextSelection,
there are no values of an attribute eligible to be returned, the attribute may be returned without any values.

The returnContexts component is used to request the Directory to return attribute values with their associated context
lists. If this component is absent or is specified with a value of FALSE, then no context information is returned in the
result. If this component is specified with a value of TRUE, then all context information is returned for each attribute
value returned. Note that the contextSelection component does not selectively affect which context information is
returned when returnContexts is TRUE.

The familyReturn component (if present) is used to determine which entries within a compound entry shall be returned
if one or more family members have been marked (see 7.6.4).

7.6.1 Use of contextSelection or context selection defaults

The contextSelection component is used to select certain attribute values of attributes selected by attributes or
extraAttributes. The contextSelection is evaluated only against the values of attributes that are candidates to be
returned according to those other components of EntryInformationSelection. For each attribute value, any context
selection governing its attribute type shall evaluate to TRUE (as defined in 7.6.2), in order for that attribute value to be
selected.

A contextSelection is said to govern an attribute type if any of the following conditions occur:
– the ContextSelection specifies allContexts (in which case all attribute values of all attribute types are

selected);
– the ContextSelection has a selectedContexts which includes a TypeAndContextAssertion whose type

is the same as or a supertype of the attribute type; or
– the ContextSelection has a selectedContexts which includes a TypeAndContextAssertion whose type

is id-oa-allAttributeTypes.

If contextSelection is not provided or it does not govern the given attribute type, then a default contextSelection shall
be applied. In addition to contextSelection in EntryInformationSelection, there are three potential sources for a
contextSelection: that specified for the operation as a whole, that available within subentries in the DIT, and that
available locally in the DSA. They are applied according to the following precedence:

1) If contextSelection is present in EntryInformationSelection and it governs the given attribute type as
described above, then it shall be applied.

2) If contextSelection is not present within the EntryInformationSelection, or it is present but does not
govern the given attribute type, then the operationContexts which has been supplied for the operation as
described in 7.3 shall be applied if one is present and it governs the given attribute type as described
above.

ISO/IEC 9594-3:2008 (E)

14 ITU-T Rec. X.511 (11/2008)

3) If the request has neither a contextSelection in the EntryInformationSelection nor operationContexts
for the operation, or neither governs the given attribute, then the values of the contextAssertionDefaults
attribute in the context assertion subentries (if any) controlling the entry shall be applied as the
selectedContexts. (Context assertion subentries are described in 14.7 of ITU-T Rec. X.501 |
ISO/IEC 9594-2).

4) If there is no contextSelection from the sources described above that govern the given attribute type,
then the DSA may apply a locally-defined default contextSelection. Such a default shall typically
reflect local parameters, such as the language or location of the place of deployment of the DSA, or the
current time of day, but may be tailored differently by the DSA for each DUA to which it responds.

5) If no contextSelection is available from any of these sources that govern the given attribute type, then
all values of the attribute are considered selected (i.e., allContexts is assumed as the base default).

NOTE – A default contextSelection that governs the given attribute type and makes an assertion about a certain context type
shall be applied in addition to an earlier contextSelection governing the same attribute type but making an assertion about a
different context type, in the same order of precedence as described above.

7.6.2 Evaluation of contextSelection

A contextSelection is TRUE (i.e., selects a given attribute value) if:
a) allContexts is specified (this permits a context selection to override any default that might otherwise be

applied if this contextSelection were omitted); or
b) each TypeAndContextAssertion in selectedContexts is TRUE as described in 7.6.3.

A contextSelection is FALSE otherwise.

7.6.3 Evaluation of a TypeAndContextAssertion

A TypeAndContextAssertion is TRUE (i.e., selects a given attribute value) if:
a) the type of the attribute is not the same as (nor a subtype of) the type in the TypeAndContextAssertion

and the type in the TypeAndContextAssertion is not id-oa-allAttributeTypes. In this case, the
TypeAndContextAssertion is not applicable to the attribute type of the given attribute value and so does
not eliminate the attribute value from selection; or

b) for the attribute value, the contextAssertions in TypeAndContextAssertion is TRUE as defined below.
NOTE 1 – The OBJECT IDENTIFIER value id-oa-allAttributeTypes may be used as the value of type in the
TypeAndContextAssertion to force evaluation of the contextAssertions against an attribute value of any attribute type.

contextAssertions is expressed either as an ordered sequence of preferred contexts or as a compound set of context
assertions:

a) If all is specified, then contextAssertions is TRUE for any attribute value only if each ContextAssertion in the SET
is TRUE, as defined in 8.9.2.4 of ITU-T Rec. X.501 | ISO/IEC 9594-2.

b) If preference is specified, then each ContextAssertion in the SEQUENCE is evaluated in turn against all candidate
attribute values of the same attribute type, until a ContextAssertion evaluates TRUE as defined in 8.9.2.4 of
ITU-T Rec. X.501 | ISO/IEC 9594-2. (The fallback flag, if present, is not taken into consideration until the entire
SEQUENCE is exhausted.) Once a ContextAssertion evaluates TRUE for one of the candidate attribute values, it shall
be evaluated for every candidate attribute value of the same attribute type, but subsequent ContextAssertion in the
SEQUENCE are ignored.

NOTE 2 – preference provides a means for selection to be specified in terms of a first, second, etc., choice of context
(e.g., Language = French but if no French then Language = English).

A TypeAndContextAssertion is FALSE otherwise.

7.6.4 Family Return

The familyReturn component is used to determine which entries within a compound entry shall be returned if one or
more family members have been marked as contributing or participating members. The procedures for how family
members are marked are further described in 7.13.

The memberSelect component specifies what entries are selected for return in the result:
– contributingEntriesOnly means that only family members marked as contributing members by the

operation are to be returned. In the case of Read or Modify-Entry operations, this is the family member
identified by the object operation argument; for the Search operation, it includes family members that
contributed to the match.

– participatingEntriesOnly means that only family members marked as participating members by the
operation are to be returned. In the case of Read or Modify-Entry, this is the same as for
contributingEntriesOnly.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 15

– compoundEntry means that each family member within the compound entry is to be returned, except
those that possibly have been explicitly un-marked by a governing-search-rule for a Search operation.

The familySelect component supplements the memberSelect component by specifying that all child members of
selected families shall be returned in addition to what is specified by memberSelect. The sequence of elements has no
significance. A family is identified by the structural object class of the family members immediate subordinate to the
ancestor. This component has no effect if the memberSelect specifies compoundEntry.

NOTE – A governing-search-rule may modify what information shall be returned (see 16.10 of ITU-T Rec. X.501 |
ISO/IEC 9594-2).

7.7 Entry information

7.7.1 Entry information data type

The EntryInformation data type conveys selected information from an entry.

EntryInformation ::= SEQUENCE {
 name Name,
 fromEntry BOOLEAN DEFAULT TRUE,
 information SET SIZE (1..MAX) OF CHOICE {
 attributeType AttributeType,
 attribute Attribute{{SupportedAttributes}} } OPTIONAL,
 incompleteEntry [3] BOOLEAN DEFAULT FALSE, -- not in first edition systems
 partialName [4] BOOLEAN DEFAULT FALSE, -- not in first or second edition systems
 derivedEntry [5] BOOLEAN DEFAULT FALSE -- not in pre-fourth edition systems -- }

The Name parameter indicates the Distinguished Name of the entry or the name of an alias to the entry. The
Distinguished Name of the entry is returned whenever permitted by the access control policy. If access is allowed to the
attributes of the entry but not to its Distinguished Name, the Directory may return either an error or the name of a valid
alias to the entry.

The primary distinguished name is used for the Name parameter. This means that if an RDN forming the name includes
an attribute which has multiple distinguished values differentiated by context, then the primary distinguished value is
used as the value in the returned RDN's AttributeTypeAndDistinguishedValue for that attribute. Since for each RDN
the returned value is thus always the primary distinguished value, primaryDistinguished shall be omitted for all
AttributeTypeAndDistinguishedValue.

The RDNs in Name shall include alternative distinguished values only if a context selection has been applied to the
entry information being returned. The alternative distinguished values are returned as part of valuesWithContext in the
returned RDN's AttributeTypeAndDistinguishedValue. The context selections applied to the entry information being
returned (see 7.6.1) are also applied to the alternative distinguished values to determine which distinguished values to
use in valuesWithContext.

NOTE 1 – The context selection is not applied to the primary distinguished values returned in Name.

If a request has been made to return context information with the result, then context information shall also be included
where available for the distinguished value within Name (using the valuesWithContext element of the RDNs). When
alternative distinguished values are being returned, context information is always returned, for all distinguished values.

NOTE 2 – If the entry was located using an alias, then that alias is known to be a valid alias. Otherwise, how it is ensured that the
alias is valid is outside the scope of these Directory Specifications.
NOTE 3 – Where a particular component of the Directory has a choice of alias names available to it for return, it is recommended
that where possible it choose the same alias name for repeated requests by the same requestor, in order to provide a consistent
service.

The fromEntry parameter indicates whether the information was obtained from the entry (TRUE) or a copy of the entry
(FALSE).

The information parameter is included if any attribute information from the entry is being returned, and contains a set
of attributeTypes and attributes, as appropriate.

The incompleteEntry parameter is included and set to TRUE whenever the returned entry information is incomplete in
relation to the user's request, e.g., because attributes or attribute values are omitted for reasons of access control (and
their existence is permitted to be disclosed), the presence of incomplete shadow information together with
copyShallDo, or because the attributeSizeLimit has been exceeded. It is not set to TRUE because an alias name has
been returned instead of the Distinguished Name.

The Directory shall complete the name resolution phase of operations in its entirety (including checking of all relevant
knowledge references, following up on referrals, etc.) before the partialNameResolution service control is considered.
If all name resolution options have been exhausted and at least one RDN has been resolved, the partialName parameter

ISO/IEC 9594-3:2008 (E)

16 ITU-T Rec. X.511 (11/2008)

is included and set to TRUE if the request had the partialNameResolution service control set and the Directory was
unable to complete name resolution on all RDNs of the relevant entry. When partialName is returned as TRUE, it
indicates that the information being returned is from the entry at the point where the last RDN was successfully
resolved.

The derivedEntry parameter is included and set to TRUE whenever the returned entry information contains joined
results obtained by performing a join on data that originated from more than one directory entry. When this parameter is
TRUE, the value in name may be the name of any of the related entries from which the entry information is derived, or
it may be the name of an alias to any of those entries. The value in name should not be used in subsequent operations. If
the derivedEntry parameter is set to TRUE and the response is signed, the signature is that of the DSA performing the
join.

7.7.2 Family information in entry information

When information from a compound entry is to be returned, attributes from each member to be returned are selected
according to the EntryInformationSelection (possibly modified by a governing-search-rule). When the
separateFamilyMembers search control option is set in the search request, each member is returned as a separate
entry. Otherwise, if more than one member is to be returned, the entry information shall be packed in such way that the
information appears to come from a single entry, which can be the ancestor or a subordinate member (the latter is
appropriate when the base object of the search request is a family member subordinate to the ancestor and the ancestor
has not been selected by FamilyReturn). The attributes from the other members shall be packed into a
family-information derived attribute as described below.

NOTE 1 – According to the above, multiple family members are always packed in a read or modifyEntry result.

The use of the family-information derived attribute is for packaging only; the attribute does not exist as a distinct
entity; it cannot directly be selected by entryInformationSelection (any attempt to do so shall be ignored), nor can it be
protected directly by access control.

family-information ATTRIBUTE ::= {
 WITH SYNTAX FamilyEntries
 USAGE directoryOperation
 ID id-at-family-information }

FamilyEntries ::= SEQUENCE {
 family-class OBJECT-CLASS.&id, -- structural object class value
 familyEntries SEQUENCE OF FamilyEntry }

FamilyEntry ::= SEQUENCE {
 rdn RelativeDistinguishedName,
 information SEQUENCE OF CHOICE {
 attributeType AttributeType,
 attribute Attribute{{SupportedAttributes}} },
 family-info SEQUENCE SIZE (1..MAX) OF FamilyEntries OPTIONAL }

The family-information attribute is a multi-valued attribute. If the ancestor is designated as the source of information,
each attribute value holds information from a single family. If a family member subordinate to the ancestor is
designated as the source of information, information is sorted into attribute values based on the structural object classes
of the immediately subordinate members of the designated member.

Each family member that is selected is represented by a value of type FamilyEntry, which contains:
– Selected attribute information (where appropriate), either as an attribute type or as a complete attribute,

depending on the infoTypes value in EntryInformationSelection;
NOTE 2 – As stated in 7.6, the infoTypes specification only applies for the contained attributes, not for the family-information
attribute itself.

– Any nested FamilyEntries information in the form of a complete family-information attribute, collected
in terms of the structural object classes of the subordinate entries;

– Unselected entries are not represented at all unless they are superior to one or more family members that
have been selected.

7.8 Filter

7.8.1 Filter parameter

A Filter parameter applies a test that is either satisfied or not by a particular entry. The filter is expressed in terms of
assertions about the presence or value of certain attributes of the entry, and is satisfied if and only if it evaluates to
TRUE.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 17

NOTE – A filter may be TRUE, FALSE, or UNDEFINED.

Filter ::= CHOICE {
 item [0] FilterItem,
 and [1] SET OF Filter,
 or [2] SET OF Filter,
 not [3] Filter }

FilterItem ::= CHOICE {
 equality [0] AttributeValueAssertion,
 substrings [1] SEQUENCE {
 type ATTRIBUTE.&id ({ SupportedAttributes }),
 strings SEQUENCE OF CHOICE {
 initial [0] ATTRIBUTE.&Type
 ({SupportedAttributes}{@substrings.type}),
 any [1] ATTRIBUTE.&Type
 ({SupportedAttributes}{@substrings.type}),
 final [2] ATTRIBUTE.&Type
 ({SupportedAttributes}{@substrings.type}),
 control Attribute{SupportedAttributes}} } }, -- Used to specify

interpretation of following items
 greaterOrEqual [2] AttributeValueAssertion,
 lessOrEqual [3] AttributeValueAssertion,
 present [4] AttributeType,
 approximateMatch [5] AttributeValueAssertion,
 extensibleMatch [6] MatchingRuleAssertion,
 contextPresent [7] AttributeTypeAssertion }

MatchingRuleAssertion ::= SEQUENCE {
 matchingRule [1] SET SIZE (1..MAX) OF MATCHING-RULE.&id,
 type [2] AttributeType OPTIONAL,
 matchValue [3] MATCHING-RULE.&AssertionType (CONSTRAINED BY {
 -- matchValue shall be a value of type specified by the &AssertionType field of
 -- one of the MATCHING-RULE information objects identified by matchingRule -- }),
 dnAttributes [4] BOOLEAN DEFAULT FALSE }

A Filter is either a FilterItem (see 7.8.2), or an expression involving simpler filters composed together with the logical
operators and, or, and not. The evaluation of a filter can be affected by the action of a relaxation policy, which can
cause a substitution of one matching rule for another, or can supply values that are to be considered for matching.

A Filter which is a FilterItem has the value of the FilterItem (i.e., TRUE, FALSE, or UNDEFINED).

A Filter which is the and of a set of filters is TRUE if the set is empty or if each filter is TRUE; it is FALSE if at least
one filter is FALSE; otherwise, it is UNDEFINED (i.e., if at least one filter is UNDEFINED and no filters are FALSE).

A Filter which is the or of a set of filters is FALSE if the set is empty or if each filter is FALSE; it is TRUE if at least
one filter is TRUE; otherwise, it is UNDEFINED (i.e., if at least one filter is UNDEFINED and no filters are TRUE).

A Filter which is the not of a filter is TRUE if the filter is FALSE; FALSE if it is TRUE; and UNDEFINED if it is
UNDEFINED.

A non-negated filter item is defined as one that is nested within an even number of not elements (possibly zero) within
the outermost Filter. Thus, a filter comprising only filter items in an and or or combination would only contain non-
negated items. A negated filter item is defined as one nested within an odd number of not elements within the
outermost Filter.

7.8.2 Filter item

A FilterItem is an assertion about the presence or value(s) of attributes in the entry under test. An assertion about a
particular attribute type is also satisfied if the entry contains a subtype of the attribute and the assertion is TRUE for the
subtype and the noSubtypeMatch service control option is not set, or if there is a collective attribute of the entry
(see 7.6) for which the assertion is TRUE, or if:

– the dontMatchFriends service control option is not set; and
– the entry contains a friend attribute for the specified attribute which has a matching rule compatible with

the assertion; and
– the assertion is TRUE for the friend attribute.

Each assertion is TRUE, FALSE, or UNDEFINED.

ISO/IEC 9594-3:2008 (E)

18 ITU-T Rec. X.511 (11/2008)

Every FilterItem includes or implies one or more AttributeTypes which identifies the particular attribute(s) concerned.

Any assertion about the values of such an attribute is only defined if the AttributeType is known by the evaluating
mechanism, the purported AttributeValue(s) conforms to the attribute syntax defined for that attribute type, the implied
or indicated matching rule is applicable to that attribute type, and (when used) a presented matchValue conforms to the
syntax defined for the indicated matching rules. When these conditions are not met, the FilterItem shall evaluate to the
logical value UNDEFINED.

NOTE 1 – Access control restrictions may affect the evaluation of the FilterItem and may cause the FilterItem to evaluate to
UNDEFINED.

An assertion which is defined by these conditions additionally evaluates to UNDEFINED if it relates to an attribute
value and the attribute type is not present in an attribute against which the assertion is being tested. An assertion which
is defined by these conditions and relates to the presence of an attribute type evaluates to FALSE.

Attribute value assertions in filter items are evaluated using the matching rules defined for that attribute type, as
substituted for, where applicable, in accordance with the action of a relaxation policy. Matching rule assertions are
evaluated as specified in their definition. A matching rule defined for a particular syntax can only be used to make
assertions about attributes of that syntax or subtypes of that syntax.

NOTE 2 – The action of a relaxation policy can cause a particular matching rule to revert to a nullMatch matching rule (which
always evaluates as TRUE (if non-negated) or FALSE (if negated)) – see 8.7.2 of ITU-T Rec. X.520 | ISO/IEC 9594-6.

A FilterItem may be UNDEFINED (as described above). Otherwise, where the FilterItem asserts:
a) equality – It is TRUE if and only if there is a value of the attribute or one of its subtypes for which the

equality matching rule applied to that value and the presented value returns TRUE.
b) substrings – It is TRUE if and only if there is a value of the attribute or one of its subtypes for which the

substring matching rule applied to that value and the presented value in strings returns TRUE. See
ITU-T Rec. X.520 | ISO/IEC 9594-6 for a description of the semantics of the presented value.

c) greaterOrEqual – It is TRUE if and only if there is a value of the attribute or one of its subtypes for
which the ordering matching rule applied to that value and the presented value returns FALSE, i.e., there
is a value of the attribute which is greater than or equal to the presented value.

d) lessOrEqual – It is TRUE if and only if there is a value of the attribute or one of its subtypes for which
either the equality matching rule or the ordering matching rule applied to that value and the presented
value returns TRUE, i.e., there is a value of the attribute which is less than or equal to the presented
value.

e) present – It is TRUE if and only if the attribute or one of its subtypes is present in the entry.
f) approximateMatch – It is TRUE if and only if there is a value of the attribute or one of its subtypes for

which some locally-defined approximate matching algorithm (e.g., spelling variations, phonetic match,
etc.) returns TRUE. If an item matches for equality, it shall also satisfy an approximate match.
Otherwise, there are no specific guidelines for approximate matching in this edition of this Directory
Specification. If approximate matching is not supported, this FilterItem should be treated as a match for
equality.

g) extensibleMatch – It is TRUE if and only if there is a value of the attribute with the indicated type or
one of its subtypes for which the matching rule specified in matchingRule applied to that value and the
presented value matchValue returns TRUE.

 If several matching rules are given, the way in which these rules are combined into a new rule is
unspecified (it is a locally-defined algorithm, which reflects the semantics of the constituent matching
rules, e.g., phonetic + keyword match).

 If type is omitted, the match is made against all attribute types which are compatible with that matching
rule. If dnAttributes is TRUE, the attributes of the Distinguished Name of the entry are used in addition
to those of the entry in evaluating the match.

 If an extensibleMatch is requested in a filter (rather than an extendedFilter), the extendedFilter bit in
the criticalExtensions parameter in CommonArguments shall be set, indicating that the extension is
critical.

 If an implementation does not support any of the matching rules defined in the matchingRule
subcomponent, or if none of the matching rules are compatible with the attribute type, an
extensibleMatch filter item evaluates to UNDEFINED if the performExactly search control option is
not set. If the performExactly search control option is set, the search request is rejected with:
– a serviceError with problem unsupportedMatchingUse;
– a searchServiceProblem notification attribute with the value id-pr-unsupportedMatchingRule if

all the matching rules are unsupported, otherwise with the value id-pr-unsupportedMatchingUse;

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 19

– an attributeTypeList notification attribute having as value the attribute type for which the invalid
matching rules were defined; and

– a matchingRuleList notification attribute having as values the object identifiers of the unsupported
and/or incompatible matching rules.

NOTE 3 – An extensibleMatch is not permitted for first-edition systems.

h) contextPresent – It is TRUE if, and only if, the AttributeTypeAssertion for this attribute type or, if the
noSubtypeMatch service control option is not set, one of its subtypes evaluates to TRUE.

If context assertions are included in an attribute value assertion in a filter item, then the filter item is evaluated against
only those values which satisfy all the given context assertions, as described in 8.9.2 of ITU-T Rec. X.501 |
ISO/IEC 9594-2. If no context assertions are included in an attribute value assertion, then default context assertions
shall be applied as described in 8.9.2.2 of ITU-T Rec. X.501 | ISO/IEC 9594-2.

7.8.3 Evaluating filters with family information

Specific family groupings work as follows in fulfilling filter requirements:

entryOnly means that only family members that completely fulfil the filter requirements are marked as contributing and
participating members (for the definition of contributing and participating members, see 7.13).

compoundEntry means that the entire compound entry forms the group that shall satisfy the complete filter; within
each compound entry that satisfies the filter, family members that contribute to the match are marked as contributing
members, while all members of the compound entry are marked as participating entries.

strands means that the filter applies to each complete strand from a leaf to the ancestor. The compound entry matches
the filter if at least one strand matches the filter. Family members on a matching strand that contribute to the match are
marked as contributing members, while all the members on a matching strand are marked as participating members.

A strand is a set of members within a family that form a path from a leaf to the ancestor, so that there are as many
strands as there are leaf entries.

multiStrand means that a combination of one strand from each family class is a family grouping for the purpose of
matching. All combinations are to be considered one at the time. The compound entry matches the filter if at least one
combination of strands matches the filter. Family members on a matching strand combination that contribute to the
match are marked as contributing members, while all members of a matching strand combination are marked as
participating members.

Two strands are of the same family class if and only if the family members that are immediately subordinate to the
ancestor have the same structural object class.

A strand is matched for a filter if and only if it is present in at least one of all possible combinations of strands that
causes the entry to match for the subfilter. The following are corollaries:

– If the ancestor matches the subfilter completely, all strands are matched.
– Similarly, if there are three family classes for a particular ancestor, and the subfilter is fulfilled by two of

the classes without considering the third one, all strands for the third family class are matched.

multiStrand is only applicable if the base object is the ancestor (or higher) in the DIT. If the base object is a family
member, but not the ancestor, then multiStrand shall be ignored and entryOnly shall be substituted.

7.9 Paged results

A PagedResultsRequest parameter is used by the DUA to request that the results of a List or Search operation be
returned to it "page-by-page": it requests the DSA to return only a subset – a page – of the results of the operation, in
particular the next pageSize subordinates or entries, and to return a queryReference which can be used to request the
next set of results on a follow-up query.

Paged results may either be performed by the DSA to which the DUA has bound by a Bind operation (the bound DSA)
or by the DSA that started the initial evaluation phase (the initial performer as detailed in 15.5.5 of ITU-T Rec. X.518 |
ISO/IEC 9594-4).

It shall not be used if results are to be signed, unless there is an understanding among DSAs cooperating to provide the
paged results that the DSA performing the paging may remove the signatures on results received from other DSAs and
then itself sign the results to be returned toward the DUA. The way such an understanding is established is outside the
scope of this Directory Specification. Although a DUA may request pagedResults, a DSA is permitted to ignore the
request and return its results in the normal manner.

ISO/IEC 9594-3:2008 (E)

20 ITU-T Rec. X.511 (11/2008)

NOTE 1 – The result my be unpredictable in case of a configuration that is not "well-connected", e.g., where due to shadowing
and use of NSSRs, the name resolution will locate more than one base object.

If paged results are requested and paging is performed, then the paging DSA shall ignore the sizeLimit service control,
if any. If paging is not performed, the sizeLimit service control shall be honoured. A contributing DSA (see 15.5.5 of
ITU-T Rec. X.518 | ISO/IEC 9594-4) shall honour the sizeLimit service control.

PagedResultsRequest ::= CHOICE {
 newRequest SEQUENCE {
 pageSize INTEGER,
 sortKeys SEQUENCE SIZE (1..MAX) OF SortKey OPTIONAL,
 reverse [1] BOOLEAN DEFAULT FALSE,
 unmerged [2] BOOLEAN DEFAULT FALSE,
 pageNumber [3] INTEGER OPTIONAL },
 queryReference OCTET STRING,
 abandonQuery [0] OCTET STRING }

SortKey ::= SEQUENCE {
 type AttributeType,
 orderingRule MATCHING-RULE.&id OPTIONAL }

For a new list or search operation, the PagedResultsRequest is set to newRequest, which consists of the following
parameters:

a) The pageSize parameter specifies the maximum number of subordinates or entries to return in the
results. The DSA shall return up to but not more than the requested number of entries. The sizeLimit, if
any, is ignored. The inclusion of family information does not count towards page size when packaged in
family-information derived attributes.

b) The sortKeys parameter specifies a sequence of attribute types with optional ordering matching rules to
use as sort keys for sorting the returned entries prior to return to the DUA. In the case of List operations,
the sorting shall be by RDN, but the sorting requirements shall apply only to attributes within the RDN.
In the case of Search operations, ordering shall only apply to attributes that are actually supplied (as a
result of selection, and access control, with sorting by distinguished name as a fallback). The entries are
sorted according to their values of the type attribute of the first SortKey in the sequence, and in the event
of multiple entries having the same sort position, of the next SortKey in the sequence, and so on.

 For a particular SortKey, the DSA uses the orderingRule matching rule if it is present, otherwise the
ordering matching rule of the attribute if one is defined; it ignores the sort key if none is defined. If the
attribute type is multi-valued, the "least" value is used; if the attribute type is missing from the returned
results, it is regarded as "greater" than all other matched values. A DSA is permitted to support only
certain sort key sequences (thus, a DSA that holds and returns its data in the internal order "alphabetic by
surname" will be able to comply with only one sort key sequence). If it cannot support the requested
sequence, it shall use a default sort sequence.

 A hierarchical group shall not be separated, but returned in the sequence as specified by 10.3 of ITU-T
Rec. X.501 | ISO/IEC 9594-2. When sorting is performed, the first entry of a hierarchical group to be
returned determines the position of the hierarchical group within the sorted result.

NOTE 2 – A hierarchical group may span pages.

c) If the reverse parameter is TRUE, then the DSA will return the sorted results in reverse order (i.e., from
"greatest" to "least" – if the attribute type is multi-valued, the "greatest" is used; if the attribute type is
missing from the returned results, it is regarded as "less" than all other matched values). If it is FALSE,
the DSA returns them in forward order. If no sortKeys parameter is specified, this parameter is ignored.

d) If the unmerged parameter is TRUE and the DSA responsible for the paging is collecting results from a
number of other DSAs, it shall return all the data from one DSA (in sort order) before returning data
from the next DSA. If the parameter is FALSE, the DSA shall collect the results from all other DSAs and
sort the merged data before returning any of it. If no sortKeys parameter is specified, this parameter is
ignored. The semantic of the unmerged parameter is the same whether the DSA supports DSP paged
results or not.

e) If the pageNumber parameter is present, it indicates that the user wants to start with a particular page
rather than necessarily the first one. This parameter shall be ignored if ordering is not requested.

For a follow-up request, i.e., to request the next set of paged results, the DUA makes the same list or search request as
before, but sets PagedResultsRequest to queryReference, with the value of this parameter the same as that returned
in the PartialOutcomeQualifier of the previous results. The DUA has no understanding of the queryReference, which
is available to a DSA to use as it wishes to record context information for the query. The DSA uses this information to
determine which results to return next.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 21

The DUA may at any time indicate that no more pages are required by making the same list or search request as
before, by setting the PagedResultsRequest set to abandonQuery, with the value identical to the queryReference
value returned in the PartialOutcomeQualifier of the previous results. No further pages shall be requested or returned.
It is implementation dependent as to when the pages will be purged.

In the case where the queryReference or the abandonQuery choice is made, the new request and the original
information shall be identical in the following respects:

– baseObject within SearchArgument or object within ListArgument shall match for the present and the
original request;

– the queryReference subcomponent of pagedResults shall be identical to the queryReference value
returned in the PartialOutcomeQualifier of the previous result;

– the options component of the ServiceControls data type shall specify identical options for the present
and the original request;

– operationProgress (if present) shall be identical for the present and the original request.

Otherwise a serviceError with problem invalidQueryReference shall be returned.
NOTE 3 – If the DIB changes between search requests, the DUA may not see the effects of these changes. This is
implementation dependent.
NOTE 4 – A query-reference may remain valid even if a DUA begins a new list or search operation. A DUA may request paged
results with several queries and then return to an earlier query and request the next page of results using the query-reference
supplied for it. The number of "active" query-references to which a DUA can return is a local DSA implementation option, as is
the lifetime of those query-references.
NOTE 5 – Support of the abandonQuery choice is only available for post fourth edition systems.
NOTE 6 – When a DAP association terminates, access to all associated paged results is lost. Paged results can only be accessed
within the DAP association within which they were originally invoked.

7.10 Security parameters

The SecurityParameters govern the operation of various security features associated with a Directory operation.
NOTE 1 – These parameters are conveyed from sender to recipient. Where the parameters appear in the argument of an operation
the requestor is the sender, and the performer is the recipient. In a result, the roles are reversed.

SecurityParameters ::= SET {
 certification-path [0] CertificationPath OPTIONAL,
 name [1] DistinguishedName OPTIONAL,
 time [2] Time OPTIONAL,
 random [3] BIT STRING OPTIONAL,
 target [4] ProtectionRequest OPTIONAL,
 response [5] BIT STRING OPTIONAL,
 operationCode [6] Code OPTIONAL,
 attributeCertificationPath [7] AttributeCertificationPath OPTIONAL,
 errorProtection [8] ErrorProtectionRequest OPTIONAL,
 errorCode [9] Code OPTIONAL }

ProtectionRequest ::= INTEGER { none (0), signed (1) }

Time ::= CHOICE {
 utcTime UTCTime,
 generalizedTime GeneralizedTime }

ErrorProtectionRequest ::= INTEGER { none (0), signed (1) }

The CertificationPath component is a sequence containing the signer's user certificate, and, optionally, a sequence of
one or more certification authority (CA) certificates. (See clause 7 in ITU-T Rec. X.509 | ISO/IEC 9594-8.) The user
certificate is used to bind the signer's public key and distinguished name, and may be used to verify the signature on a
request argument, response, or error. This parameter shall be present and contain the signer's user certificate if the
request argument, response, or error is signed. Additional certificates may be present and may be used to determine if
the signer's user certificate is valid. Additional certificates are not required if the recipient shares the same certification
authority as the signer. If the recipient requires a certification path for validation, and an acceptable parameter is not
present, whether the recipient rejects the signature, or attempts to determine a certification path, is a local matter.

The name is the distinguished name of the first intended recipient of the argument or result. For example, if a DUA
generates a signed argument, the name is the distinguished name of the DSA to which the operation is submitted.

ISO/IEC 9594-3:2008 (E)

22 ITU-T Rec. X.511 (11/2008)

NOTE 2 – Where the first intended recipient has alternative distinguished names differentiated by context, name may be an
alternative name. However, authentication and access control which may be based on the value of name may not work as desired
if the primary distinguished name is not used.

The time is the intended expiry time for the validity of the request, response, or error. It is used in conjunction with the
random number to enable the detection of replay attacks.

The random value is a number that should be different for each request, response, or error. It is used in conjunction
with the time parameter to enable the detection of replay attacks. If sequence integrity is required, then the random
argument may be used to carry a sequence integrity number as follows:

a) The random value used with operation arguments is derived using a pre-agreed sequence (e.g., the
previous value plus 1) from:
i) for the first operation sent from a system on a binding, the random value passed in the bind

operation argument/result by the remote peer system; and
ii) for subsequent operations, the random value passed in the previous operation in the same direction.

b) The random value used with operation results or errors is derived using some pre-agreed sequence from
the random value in the request (e.g., random in request argument plus 1).

The target ProtectionRequest may appear only in the request for an operation to be carried out, and indicates the
requestor's preference regarding the degree of protection to be provided to the result. Two levels are provided: none (no
protection requested, the default), and signed (the Directory is requested to sign the result). The degree of protection
actually provided to the result is indicated by the form of result and may be equal to or lower than that requested, based
on the limitations of the Directory.

The response is used to convey any information back to the initiator of the request.

The operationCode is used to securely bind the operation code to the request arguments, results or errors.

The attributeCertificationPath is used to convey a security clearance for rule based access control, or other attribute, in
an Attribute Certificate, optionally with the certificates needed to validate the Attribute Certificate.

The errorProtection request may appear only in the request for an operation to be carried out, and indicates the
requestor's preference regarding the degree of protection to be provided to any error. Two levels are provided: none (no
protection requested, the default), and signed (the Directory is requested to sign the error). The degree of protection
actually provided to the error is indicated by the form of error and may be equal to or lower than that requested, based
on the limitations of the Directory.

NOTE 3 – A DUA may request that any security label context be returned with an attribute value using the context selection.

The errorCode is used to secure the error code where an error is returned in response to an operation.

If the syntax of Time has been chosen as the UTCTime type, the value of the two-digit year field shall be rationalized
into a four-digit year value as follows:

– If the 2-digit value is 00 through 49 inclusive, the value shall have 2000 added to it.
– If the 2-digit value is 50 through 99 inclusive, the value shall have 1900 added to it.

GeneralizedTime shall be used if the negotiated version is v2 or greater. The use of GeneralizedTime when v1 has
been negotiated may prevent interworking with implementations unaware of the possibility of choosing either UTCTime
or GeneralizedTime. It is the responsibility of those specifying the domains in which this Directory Specification will
be used, e.g., profiling groups, as to when the GeneralizedTime may be used. In no case shall UTCTime be used for
representing dates beyond 2049.

7.11 Common elements of procedure for access control

This subclause defines the elements of procedure that are common to all abstract service operations when basic-access-
control, rule-based-access-control, or both are in effect. If both mechanisms are in effect, the order in which they are
applied is a local matter, except that if access is denied to the entry, an attribute type or an attribute value by either
mechanism, then a grant from the other mechanism shall not override it. In this respect, DiscloseOnError permission of
basic-access-control is a grant that shall not override a deny of rule-based-access-control.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 23

7.11.1 Common elements of procedure for basic access control

7.11.1.1 Alias dereferencing

If, in the process of locating a target object entry (identified in the argument of an abstract service operation), alias
dereferencing is required, no specific permissions are necessary for alias dereferencing to take place. However, if alias
dereferencing would result in a ContinuationReference being returned (i.e., in a Referral), the following sequence of
access controls applies. If the DSA chains the request to another DSA and receives back a referral from it, then the
access controls shall be applied to the referral if the targetObject in the referral is the same as in the chained request.
That is, the DSA shall police all referrals whether they were generated locally or remotely.

1) Read permission is required to the alias entry. If permission is not granted, the operation fails in
accordance with the procedure described in 7.11.1.

2) Read permission is required to the aliasedEntryName attribute and to the single value that it contains.
If permission is not granted, the operation fails and nameError with problem
aliasDereferencingProblem shall be returned. The matched element shall contain the name of the alias
entry.

NOTE – In addition to the access controls described above, security policy may prevent the disclosure of knowledge information
which would otherwise be conveyed as a ContinuationReference in Referral. If such a policy is in effect and if a DUA
constrains the service by specifying chainingProhibited, the Directory may return a serviceError with problem
chainingRequired. Otherwise, a securityError with problem insufficientAccessRights or noInformation shall be returned.

7.11.1.2 Return of Name Error

If, while performing an abstract service operation, the specified target object (alias or entry) – e.g., the Name of an entry
to be read or the baseObject in a search request – could not be found, a nameError with problem noSuchObject shall
be returned. The matched element shall either contain the name of the next superior entry to which DiscloseOnError
permission is granted, or the name of the DIT root (i.e., an empty RDNSequence).

NOTE – The second alternative may be taken by a DSA which does not have access to all superior entries.

7.11.1.3 Non-disclosure of the existence of an entry

If access is denied under rule-based-access-control, then the DiscloseOnError permission is not applicable.

If, while performing an abstract service operation, the necessary entry level permission is not granted to the specified
target object entry – e.g., the entry to be read – the operation fails and the error returned is one of: if DiscloseOnError
permission is granted to the target entry, a securityError with problem insufficientAccessRights or noInformation
shall be returned; otherwise, a nameError with problem noSuchObject shall be returned. The matched element shall
either contain the name of the next superior entry to which DiscloseOnError permission is granted, or the name of the
DIT root (i.e., an empty RDNSequence).

NOTE – The second alternative may be taken by a DSA which does not have access to all superior entries.

Additionally, whenever the Directory detects an operational error (including a referral), it shall ensure that in returning
that error it does not compromise the existence of the named target entry and any of its superiors. For example, before
returning a serviceError with problem timeLimitExceeded or an updateError with problem notAllowedOnNonLeaf,
the Directory verifies that DiscloseOnError permission is granted to the target entry. If it is not, the procedure described
in the paragraph above shall be followed.

7.11.1.4 Return of Distinguished Name

In a Compare, List, or Search operation, ReturnDN permission is required to the object (or baseObject) entry if, as a
result of dereferencing an alias, the object's distinguished name is to be returned in the name parameter of the operation
result (see 9.2.3). If this permission is not granted, the Directory shall return an alias name for the entry instead, as
described in 7.7, or shall omit the name parameter altogether.

In a Read or Search operation, ReturnDN permission is required to an entry in order to return its distinguished name in
EntryInformation. If this permission is not granted, the Directory shall return the name of an alias instead, as described
in 7.7, or if no alias name is available shall fail the operation with a nameError (in the case of Read) or omit the entry
from the results (in the case of Search).

If the user supplied alias name is returned in the result, then the aliasDeferenced flag of CommonResults shall not be
set to TRUE.

ISO/IEC 9594-3:2008 (E)

24 ITU-T Rec. X.511 (11/2008)

7.11.2 Common elements of procedure for rule-based-access-control

7.11.2.1 Accessing an entry (entry level permission)

In order to access an entry, permission is required to access at least one attribute value in the entry. If entry level
permission is not granted, then nameError with problem noSuchObject shall be returned.

7.11.2.2 Returning the name of an entry

In order to return the DN of an entry, permission is required to access all the attribute values of at least one context
variant of the RDN of the entry (this is termed RDN permission). No permissions are required from any of the superiors
of the entry. If RDN permission is not granted, then a DSA may choose to either return the DN of a valid alias of the
entry for which RDN permission has been granted, or to omit the name component from the operation result.

NOTE – The selection of an appropriate alias name is further described in the Notes of 7.7.

7.11.2.3 Alias dereferencing

In order to dereference an alias, permission is required to access the aliasedEntryName attribute value.

7.11.2.4 Return of Name Error (noSuchObject)

The matched component of nameError with problem noSuchObject shall be set to the name of the next superior entry
to which the requestor has RDN permission. If such an entry is not available to the DSA generating the error, then the
name of the DIT root shall be returned.

7.11.2.5 Accessing an attribute

In order to access an attribute, permission is needed to access at least one of the values of the attribute.

7.11.2.6 Deleting information

In order to delete an attribute value, permission is needed to access that value. When deleting an entry or an attribute,
the operation shall return a successful response if at least one attribute value is deleted, irrespective of how many values
were requested to be deleted.

7.11.2.7 Invoking search-rules

In order to evaluate a search-rule against the arguments of a search operation, invoke permission to the search-rule is
required for the requestor originating the search operation. The user needs no other permissions to access the search-
rule attribute or the subentry that contains it.

7.11.3 Family information

Family information is treated as for any other information, except that ACI for which the ProtectedItem is marked as
includeFamily; if the ACI is applicable to an ancestor or family member this causes subordinate family members to be
subject to the same ACI. IncludeFamily is only meaningful when applied to an entry protected item.

7.12 Managing the DSA Information Tree

The DSA Information Tree held by a DSA can be managed using the Directory Abstract Service. When the DSA
Information Tree is managed:

– all DSEs in a DSA are visible through DAP including the root DSE;
– attributes defined as no user modification may be modified (though the DSA can reply with an

serviceError with problem unwillingToPerform if it cannot support the requested change);
– knowledge is merely another attribute which can be read and modified; and
– the DSA never chains requests or returns referrals or continuation references.

Visibility of DSEs and retrieval of or changes to operational attributes can be controlled via access control in the normal
way.

The management of a DSA Information Tree is achieved by a DUA using the following procedures:
1) the DUA BINDs directly to the DSA which holds the DSA Information Tree that is to be managed;
2) for each operation that is used to manage the DSA Information Tree:

– the manageDSAIT extension bit shall be set;
– the manageDSAIT option shall be set;

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 25

– the manageDSAITPlaneRef option shall be included if a specific replication plane is to be
managed;

 the following components are ignored by the Directory:
– operationProgress in CommonArgument;
– referenceType in CommonArgument;
– entryOnly in CommonArgument;
– nameResolveOnMaster in CommonArgument; and
– chainingProhibited in ServiceControls.

7.13 Procedures for families of entries

As specified in 7.3.2, family members within a compound entry may be grouped together for the purpose of operation
evaluation. This grouping is only relevant for Compare, Search and Remove Entry operations. If family grouping is
specified for any other operation, it shall be ignored.

For determining what family members that shall be returned according to the familyReturn component of the
entryInformationSelection, the concepts of contributing member and participating member is introduced. These
concepts are only relevant for operations that return entry information, i.e., Read, Search and Modify Entry operations.

If a family member makes an active contribution to the operation evaluation, it is marked as a contributing member. A
family member makes a contribution to the match if it is part of a family grouping that matches the filter and if it holds
one or more attributes that are matched by non-negated filter items. It also contributes if it holds an attribute of a given
type if a negated filter item for the same type does not match. In the case of a Read or Modify Entry operation, the
family member that is selected by the operation (as specified by the object component of the operation) is the only
member marked as a contributing member and as a participating member. In the case of a Search operation, family
grouping is done for filter matching. If a family grouping matches a filter (see 7.8.3) all members that have contributed
actively to the matching are marked as contributing members, while all entries of the grouping are marked as
participating members. If the filter used is the default filter (and : { }), then all members of a family grouping shall be
marked as participating members, but not as contributing members.

When a family grouping of compound entry matches the filter and the SearchArgument specifies hierarchy selection
(except for self), the selected entries shall also be marked if applicable. If the ancestor of the compound entry is marked
as participating (and possibly also as contributing), all referenced entries of the hierarchical group that are not
compound entries shall be selected, otherwise they shall be excluded. If a referenced entry is a compound entry, the
marking of its members shall be done as follows. Each member of the referenced compound entry that have the same
local member name as a member of the matched compound entry is marked the same way. All other members of the
referenced compound entry are left unmarked.

As a Search filter possibly can match several compound entries, the resulting selection and marking shall be the union
of those for the individual matched compound entries.

If a matched entry not being a compound entry references a compound entry in its hierarchy selection, all the members
of that compound entry are marked as participating.

How this marking of entries affects the return of entry information is detailed in 7.6.4.

Family members may be packed into a family-information derived attribute. If only a single member of a compound
entry is returned in the result, packaging shall not be performed. However, if several members are returned from a Read
or Modify Entry operation, these members shall be packed. In the case of a Search operation where several members of
a compound attribute are returned they shall be packed unless the separateFamilyMembers search control option is set,
in which case the members shall be returned as separate entries.

When performing search operations involving compound entries, there are four relevant phases for a Search operation:
a) The groupings of family members within each entry of interest, as defined by familyGrouping, are

logically considered within each candidate entry (i.e., as selected by subset). By pooling together all the
attributes of the group, all attribute values for a given attribute type are considered to belong to that
single attribute type, even if they originated from different family members.

b) The filter is applied to each family grouping; if the filter is satisfied for the grouping, the compound
entry then satisfies the filter, and is considered to be selected by the filter. Family members are marked
as described above.

c) The marked entries are augmented, as specified by familyReturn in EntryInformationSelection, to mark
all entries that would be returned.

ISO/IEC 9594-3:2008 (E)

26 ITU-T Rec. X.511 (11/2008)

d) If the additionalControl component is present in a governing-search-rule (see 16.10.8 of
ITU-T Rec. X.501 | ISO/IEC 9594-2), the markings, and thereby what is returned, may be changed as the
result of processing the referenced control attributes.

8 Bind and Unbind operations
The Directory Bind and Directory Unbind operations, defined in 8.1 and 8.2 respectively, are used by the DUA at the
beginning and end of a particular period of accessing the Directory.

8.1 Directory Bind

8.1.1 Directory Bind syntax

A Directory Bind operation is used at the beginning of a period of accessing the Directory. The arguments of the
operation may be signed (see 17.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2) by the requestor. If so requested, the
Directory may sign the results.

directoryBind OPERATION ::= {
 ARGUMENT DirectoryBindArgument
 RESULT DirectoryBindResult
 ERRORS { directoryBindError } }

DirectoryBindArgument ::= SET {
 Credentials [0] Credentials OPTIONAL,
 versions [1] Versions DEFAULT {v1} }

Credentials ::= CHOICE {
 simple [0] SimpleCredentials,
 strong [1] StrongCredentials,
 externalProcedure [2] EXTERNAL,
 spkm [3] SpkmCredentials,
 sasl [4] SaslCredentials }

SimpleCredentials ::= SEQUENCE {
 name [0] DistinguishedName,
 validity [1] SET {
 time1 [0] CHOICE {
 utc UTCTime,
 gt GeneralizedTime } OPTIONAL,
 time2 [1] CHOICE {
 utc UTCTime,
 gt GeneralizedTime } OPTIONAL,
 random1 [2] BIT STRING OPTIONAL,
 random2 [3] BIT STRING OPTIONAL } OPTIONAL,
 password [2] CHOICE {
 unprotected OCTET STRING,
 protected HASH {OCTET STRING} } OPTIONAL}

StrongCredentials ::= SET {
 certification-path [0] CertificationPath OPTIONAL,
 bind-token [1] Token,
 name [2] DistinguishedName OPTIONAL,
 attributeCertificationPath [3] AttributeCertificationPath OPTIONAL }

SpkmCredentials ::= CHOICE {
 req [0] SPKM-REQ,
 rep [1] SPKM-REP-TI }

SaslCredentials ::= SEQUENCE {
 mechanism [0] DirectoryString { ub-saslMechanism },
 credentials [1] OCTET STRING OPTIONAL,
 saslAbort [2] BOOLEAN DEFAULT FALSE }

ub-saslMechanism INTEGER ::= 20 -- According to RFC 4422

Token ::= SIGNED { TokenContent }

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 27

TokenContent ::= SEQUENCE {
 algorithm [0] AlgorithmIdentifier{{SupportedAlgorithms}},
 name [1] DistinguishedName,
 time [2] Time,
 random [3] BIT STRING,
 response [4] BIT STRING OPTIONAL }

Versions ::= BIT STRING {v1(0), v2(1) }

DirectoryBindResult ::= DirectoryBindArgument

directoryBindError ERROR ::= {
 PARAMETER OPTIONALLY-PROTECTED {
 SET {
 versions [0] Versions DEFAULT {v1},
 error CHOICE {
 serviceError [1] ServiceProblem,
 securityError [2] SecurityProblem },
 securityParameters [30] SecurityParameters OPTIONAL } } }

BindKeyInfo ::= ENCRYPTED { BIT STRING }

8.1.2 Directory Bind arguments

The credentials argument of the DirectoryBindArgument allows the Directory to establish the identity of the user. The
credentials may be simple, or strong or externally defined (externalProcedure) (as described in ITU-T Rec. X.509 |
ISO/IEC 9594-8).

If simple is used, it consists of a name (always the distinguished name of an object), an optional validity, and an
optional password. This provides a limited degree of security. The password may be unprotected, or it may be
protected (either Protected1 or Protected2) as described in 18.1 of ITU-T Rec. X.509 | ISO/IEC 9594-8. The validity
supplies time1, time2, random1 and random2 arguments, which derive their meaning by bilateral agreement, and
which may be used to detect replay. In some instances, a protected password may be checked by an object which knows
the password only after locally regenerating the protection to its own copy of the password and comparing the result
with the value in the bind argument (password). In other instances, a direct comparison may be possible. A possible
approach for protected password may be found in an informative Annex K of ITU-T Rec. X.509 | ISO/IEC 9594-8.

GeneralizedTime shall be used for time1 and time2 if the negotiated version is v2 or greater. The use of
GeneralizedTime when v1 has been negotiated may prevent interworking with implementations unaware of the
possibility of choosing either UTCTime or GeneralizedTime. It is the responsibility of those specifying the domains in
which this Directory Specification will be used, e.g., profiling groups, as to when the GeneralizedTime may be used.
UTCTime shall not be used for representing dates beyond 2049.

If strong is used, it consists of a bind-token, and, optionally, a certification-path (certificate and sequence of
certification-authority cross-certificates, as defined in ITU-T Rec. X.509 | ISO/IEC 9594-8) and the name of the
requestor. This enables the Directory to authenticate the identity of the requestor establishing the association, and vice
versa. If StrongCredentials or SpkmCredentials are used in a bind operation, information relating to identity and
authorization is conveyed. This enables the identity of either entity to be authenticated, and also enables use of
established encryption and integrity cryptographic keying material.

If the operation is to be signed and encrypted, an attribute certificate containing the attribute (see clause 12 of ITU-T
Rec. X.509 | ISO/IEC 9594-8) may be used to convey the clearances required to access the attribute. The
attributeCertificationPath is used to convey a security clearance for rule based access control, or other attribute,
conveyed in an Attribute Certificate, optionally with the certificates needed to validate the Attribute Certificate.

The arguments of the bind token are used as follows. algorithm is the identifier of the algorithm employed to sign this
information. name is the name of the intended recipient. The time parameter contains the expiry time of the token. The
random number is a number which should be different for each unexpired token, and may be used by the recipient to
detect replay attacks.

NOTE – Where names are used in either simple or strong credentials, it is possible to use alternative distinguished names if they
exist. However, authentication and access control based on the name may not work as desired if the primary distinguished name
is not used. Following successful processing of an authenticated BIND operation, whatever the name used in the BIND argument,
the bound entities shall thereafter know each other by their primary distinguished names, to facilitate operation of access controls
while the BIND is in effect.

If externalProcedure is used, then the semantics of the authentication scheme being used are outside the scope of the
Directory Specifications.

ISO/IEC 9594-3:2008 (E)

28 ITU-T Rec. X.511 (11/2008)

sasl is used when using the Simple Authentication and Security Layer (SASL) specified in IETF RFC 4422. If a
directoryBind operation is invoked with a SaslCredentials mechanism value set to the empty string, a SecurityError
of inappropriateAuthentication shall be returned.

The versions argument of the DirectoryBindArgument identifies the versions of the service which the DUA is
prepared to participate in. The value v1 denotes the protocol version 1 and the value v2 denotes the protocol version 2.
The value v2 shall be used if, in a subsequent ModifyEntry operation, the alterValues or resetValue modification types
are to be sent in a request or a result other than NULL is required (see 11.3). The value shall be set to v2 if signing of
errors or result to Add Entry, Remove Entry, Modify Entry, Modify DN is used.

Migration to future versions of the Directory should be facilitated by:
a) any elements of DirectoryBindArgument other than those defined in this Directory Specification shall

be accepted and ignored;
b) additional options for named bits of DirectoryBindArgument (e.g., versions) not defined shall be

accepted and ignored.

The response component is used to carry a number derived from random if challenge response of authentication is
required.

8.1.3 Directory Bind results

Should the bind request succeed, a result shall be returned.

The credentials argument of the DirectoryBindResult allows the user to establish the identity of the Directory. It
allows information identifying the DSA (that is directly providing the Directory service) to be conveyed to the DUA. It
shall be of the same form (i.e., CHOICE) as that supplied by the user.

The versions parameter of the DirectoryBindResult indicates which of the versions of the service requested by the
DUA is actually going to be provided by the DSA.

8.1.4 Directory Bind errors

Should the bind request fail, a bind error shall be returned. If the Bind request was using strong authentication or if
SPKM credentials were supplied, then the Bind responder may sign the error parameters.

The versions parameter of the directoryBindError indicates which versions are supported by the DSA.

The SecurityParameters components (see 7.10) shall be included if the error is to be signed.

A securityError or serviceError shall be supplied as follows:

 – securityError inappropriateAuthentication
 invalidCredentials
 blockedCredentials
 spkmError
 unsupportedAuthenticationMethod

 – serviceError unavailable
 saslBindInProgress

For details on serviceError and securityError, see 12.7 and 12.8.

8.2 Directory Unbind

The unbinding at the end of a period of accessing the Directory is for the OSI environment specified in 7.6.4 and 7.6.5
of ITU-T Rec. X.519 | ISO/IEC 9594-5 and for the TCP/IP environment in 9.2.2 of ITU-T Rec. X.519 |
ISO/IEC 9594-5.

NOTE – On unbinding, all paged results not so far accessed become inaccessible, and should be disposed of.

9 Directory Read operations
There are two 'read-like' operations: read and compare, defined in 9.1 and 9.2, respectively. The abandon operation,
defined in 9.3, is grouped with these operations for convenience.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 29

9.1 Read

9.1.1 Read syntax

A Read operation is used to extract information from an explicitly identified entry. It may also be used to verify a
distinguished name. The arguments of the operation may be signed (see 17.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2)
by the requestor. If so requested, the Directory may sign the result.

read OPERATION ::= {
 ARGUMENT ReadArgument
 RESULT ReadResult
 ERRORS { attributeError | nameError | serviceError | referral | abandoned |
 securityError }
 CODE id-opcode-read }

ReadArgument ::= OPTIONALLY-PROTECTED {
 SET {
 object [0] Name,
 selection [1] EntryInformationSelection DEFAULT { },
 modifyRightsRequest [2] BOOLEAN DEFAULT FALSE,
 COMPONENTS OF CommonArguments } }

ReadResult ::= OPTIONALLY-PROTECTED {
 SET {
 entry [0] EntryInformation,
 modifyRights [1] ModifyRights OPTIONAL,
 COMPONENTS OF CommonResults } }

ModifyRights ::= SET OF SEQUENCE {
 item CHOICE {
 entry [0] NULL,
 attribute [1] AttributeType,
 value [2] AttributeValueAssertion },
 permission [3] BIT STRING { add (0), remove (1), rename (2), move (3) } }

9.1.2 Read arguments

The object argument identifies the object entry from which information is requested. Should the Name involve one or
more aliases, they are dereferenced (unless this is prohibited by the relevant service controls). The Name may be an
alternative name and may include context information, as described in 9.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2.

The selection argument indicates what information from the entry is requested (see 7.6). However, it should not be
assumed that the attributes returned are the same as or limited to those requested.

The CommonArguments (see 7.3) include a specification of the service controls and security parameters applying to
the request. For the purposes of this operation, the sizeLimit component is not relevant and is ignored if provided. If the
argument of this operation is to be signed by the requestor, the SecurityParameters (see 7.10) component shall be
included in the arguments.

The modifyRightsRequest argument is used to request return of the requestor's modification rights to the entry and its
attributes.

9.1.3 Read results

Should the request succeed, the result shall be returned.

The entry result parameter holds the requested information (see 7.7). This may include family information, if required
by the presence of a familyReturn element in EntryInformationSelection.

The modifyRights parameter is present if it was requested via the modifyRightsRequest argument, and the user has
modification privileges to some or all of the requested entry information, and the return of this information is permitted
by the local security policy. If returned, the modification rights of the requestor are returned for the entry and for the
attributes specified in the selection argument. The parameter contains the following:

– An element of the SET is returned for the entry; for each user attribute requested which the user has the
right to add or remove; and for each returned attribute value for which the user's rights to add or remove
it differ from those of the corresponding attribute.

– The returned permission indicates what operations or actions on the entry by the user would succeed. In
the case of an entry, remove indicates that a RemoveEntry operation would succeed; rename indicates

ISO/IEC 9594-3:2008 (E)

30 ITU-T Rec. X.511 (11/2008)

that a ModifyDN operation with the newSuperior parameter absent would succeed; and move that a
ModifyDN operation with the newSuperior parameter present and an unchanged RDN would succeed.

 In the case of attributes and values, add indicates that a ModifyEntry operation that adds the attribute or
value would succeed; and remove indicates that a ModifyEntry operation that removes the attribute or
value would succeed.

NOTE – An operation to move an entry to a new superior may also depend on permissions associated with the new superior (as
for example with basic-access-control). These are ignored when determining permission.

The CommonResults (see 7.4) include the security parameters applying to the response. If this result is to be signed by
the Directory, the SecurityParameters (see 7.10) component shall be included in the results.

9.1.4 Read errors

Should the request fail, one of the listed errors shall be reported. If none of the attributes explicitly listed in selection
can be returned, then an attributeError with problem noSuchAttributeOrValue shall be reported. The circumstances
under which other errors shall be reported are defined in clause 12.

9.1.5 Read operation decision points for basic access control

If rule-based-access-control is also to be applied, the order in which it is applied with respect to basic-access-control is a
local matter, except that if access is denied to the entry, an attribute type or an attribute value by either mechanism, it
shall not be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a
permission that shall not override a deny of rule-based-access-control.

If basic-access-control is in effect for the entry being read, the following sequence of access controls applies:
1) Read permission is required to the entry being read. If permission is not granted, the operation fails in

accordance with 7.11.1.3.
2) If the infoTypes element of selection specifies that attribute types only are to be returned, then for each

attribute type that is to be returned, Read permission is required. If permission is not granted, the
attribute type is omitted from the ReadResult. If as a consequence of applying these controls no attribute
information is returned, the entire operation fails in accordance with 9.1.5.1.

3) If the infoTypes element of selection specifies that attribute types and values are to be returned, then for
each attribute type and for each value that is to be returned, Read permission is required. If permission to
an attribute type is not granted, the attribute is omitted from ReadResult. If permission to an attribute
value is not granted, the value is omitted from its corresponding attribute. In the event that permission is
not granted to any of the values within the attribute, an Attribute element containing an empty SET OF
AttributeValue is returned. If as a consequence of applying these controls, no attribute information is
returned, the entire operation fails in accordance with 9.1.5.1.

NOTE – Privileges that permit a DAP read operation may not work in an LDAP environment where browse permission is
required to support an equivalent read service.

9.1.5.1 Error returns

If the operation fails as defined in 9.1.5 items 2) or 3), the valid error returns are one of:
a) If an open-ended option was specified (i.e., allUserAttributes or allOperationalAttributes), a

securityError with problem insufficientAccessRights or noInformation shall be returned.
b) Otherwise, if a select option was specified (in attributes and/or in extraAttributes), then if the

DiscloseOnError permission is granted to any of the selected attributes, a securityError with problem
insufficientAccessRights or noInformation shall be returned. Otherwise, an attributeError with
problem noSuchAttributeOrValue shall be returned.

9.1.5.2 Non-disclosure of incomplete results

If an incomplete result is being returned in EntryInformation, i.e., some of the attributes or attribute values have been
omitted because of the applicable access controls, the incompleteEntry element shall be set to TRUE if
DiscloseOnError permission is granted to at least one attribute type withheld from the result, or at least one attribute
value withheld from the result (for which attribute type Read permission was granted).

9.1.6 Read operation decision points for rule-based access control

If basic-access-control is also applied, the order in which it is applied with respect to rule-based-access-control is a local
matter, except that if access is denied to the entry, an attribute type or an attribute value by either mechanism, it shall
not be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a
permission that shall not override a deny of rule-based-access-control.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 31

If rule-based-access-control, rule-and-basic-access-control, or rule-and-simple-access-control is in effect for the entry being
read, the following access controls apply:

1) If entry level access is denied under rule-based-access-control, then the operation fails with nameError
with problem noSuchObject in accordance with 7.11.2.4.

2) If access to the entry is not permitted under the basic-access-control scheme as described in 9.1.5 item 1),
then the operation fails in accordance with 7.11.1.3.

3) If the infoTypes element of selection specifies that attribute types only are to be returned, then if under
rule-based-access-control, access is not granted for all attribute values of that type, the attribute type is
omitted from the ReadResult. If, as a consequence of applying these controls, no attribute information is
returned, the entire operation fails returning an attributeError with problem noSuchAttributeOrValue in
accordance with 9.1.5.1 b).

4) If the infoTypes element of selection specifies that attribute types only are to be returned, basic-access-
control is applied as described in 9.1.5 item 2).

5) Under rule-based access controls, if the infoTypes element of selection specifies that attribute types and
values are to be returned, then for each attribute value that is to be returned, access shall be granted. If
access to an attribute value is not granted, the attribute value is omitted from its corresponding attribute.
In the event that access is not granted to any of the attribute values within an attribute, the whole attribute
is omitted from ReadResult. If as a consequence of applying these controls, no attribute information is
returned, the entire operation fails returning an attributeError with problem noSuchAttributeOrValue.

6) basic-access-control is applied as described in 9.1.5 item 3).
7) The name of the entry returned in the operation result is determined as defined in 7.11.2.2.

9.2 Compare

9.2.1 Compare syntax

A Compare operation is used to compare a value (which is supplied as an argument of the request) with the value(s) of a
particular attribute type in a particular object entry. The arguments of the operation may be signed (see 17.3 of ITU-T
Rec. X.501 | ISO/IEC 9594-2) by the requestor. If so requested, the Directory may sign the result.

Any value of familyGrouping except multiStrand may be used, and the attributes in all the grouped family members
are to be used in the comparison against the purported attribute value assertion. If familyGrouping specifies
multiStrand, compoundEntry is assumed.

compare OPERATION ::= {
 ARGUMENT CompareArgument
 RESULT CompareResult
 ERRORS { attributeError | nameError | serviceError | referral | abandoned |
 securityError }
 CODE id-opcode-compare }

CompareArgument ::= OPTIONALLY-PROTECTED {
 SET {
 object [0] Name,
 purported [1] AttributeValueAssertion,
 COMPONENTS OF CommonArguments } }

CompareResult ::= OPTIONALLY-PROTECTED {
 SET {
 name Name OPTIONAL,
 matched [0] BOOLEAN,
 fromEntry [1] BOOLEAN DEFAULT TRUE,
 matchedSubtype [2] AttributeType OPTIONAL,
 COMPONENTS OF CommonResults } }

9.2.2 Compare arguments

The object argument is the name of the particular object entry concerned. Should the Name involve one or more
aliases, they are dereferenced (unless prohibited by the relevant service control). The Name may be an alternative name
and may include context information, as described in 9.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2.

The purported argument identifies the attribute type and value to be compared with that in the entry. The comparison is
TRUE if the entry holds the purported attribute type or one of its subtypes, or there is a collective attribute of the entry

ISO/IEC 9594-3:2008 (E)

32 ITU-T Rec. X.511 (11/2008)

which is the purported attribute type or one of its subtypes (see 7.6), and if there is a value of that attribute which
matches the purported value using the attribute's equality matching rule.

NOTE – A compare request cannot be satisfied by a friend attribute type of the attribute type specified in the argument.

If context assertions are included in the attribute value assertion, then the matching shall be attempted only against those
values which satisfy all the given context assertions, as described in 8.9.2 of ITU-T Rec. X.501 | ISO/IEC 9594-2. If no
context assertions are included in the attribute value assertion, then default context assertions shall be applied as
described in 8.9.2.2 of ITU-T Rec. X.501 | ISO/IEC 9594-2.

The CommonArguments (see 7.3) include a specification of the service controls and security parameters applying to
the request. For the purposes of this operation, the sizeLimit component is not relevant and is ignored if provided. If the
argument of this operation is to be signed by the requestor, the SecurityParameters (see 7.10) component shall be
included in the arguments.

9.2.3 Compare results

Should the request succeed (i.e., the comparison is actually carried out), the result shall be returned.

The name is the distinguished name of the entry or an alias name of the entry, as described in 7.7. It is present only if
an alias has been dereferenced, RDNs have been resolved to primary RDNs, or context selection has been applied and
the name to be returned differs from the object name supplied in the operation argument.

The matched result parameter holds the result of the comparison. The parameter takes the value TRUE if the values
were compared and matched, and FALSE if they did not.

If fromEntry is TRUE, the information was compared against the entry; if FALSE, the information was compared
against a copy.

The matchedSubtype parameter is present only if the result of the match was TRUE and if the match succeeded
because a subtype of the purported attribute was matched. It contains the matched subtype. If more than one such
subtype is available, the one highest in the hierarchy is returned.

The CommonResults (see 7.4) include the security parameters applying to the response. If this result is to be signed by
the Directory, the SecurityParameters (see 7.10) component shall be included in the results.

9.2.4 Compare errors

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors
shall be reported are defined in clause 12.

9.2.5 Compare operation decision points for basic access control

If rule-based-access-control is also applied, the order in which it is applied with respect to basic-access-control is a local
matter, except that if access is denied to the entry, an attribute type or an attribute value by either mechanism, it shall
not be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a
permission that shall not override a deny of rule-based-access-control.

If basic-access-control is in effect for the entry being compared, the following sequence of access controls applies:
1) Read permission is required to the entry to be compared. If permission is not granted, the operation fails

in accordance with 7.11.1.3.
2) Compare permission is required to the attribute being compared. If permission is not granted, the

operation fails in accordance to 9.2.5.1.
3) If there exists a value within the attribute being compared that matches the purported argument and for

which Compare permission is granted, the operation returns the value TRUE in the matched result
parameter of the CompareResult. Otherwise, the operation returns the value FALSE.

9.2.5.1 Error returns

If the operation fails as defined in 9.2.5 item 2), the valid error returns are one of: if the DiscloseOnError permission is
granted to the attribute being compared, a securityError with problem insufficientAccessRights or noInformation
shall be returned; otherwise, an attributeError with problem noSuchAttributeOrValue shall be returned.

9.2.6 Compare operation decision points for rule-based access control

If basic-access-control is also applied, the order in which it is applied with respect to rule-based-access-control is a local
matter, except that if access is denied to the entry, an attribute type or an attribute value by either mechanism, it shall
not be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a
permission that shall not override a deny of rule-based-access-control.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 33

If rule-based-access-control, rule-and-basic-access-control, or rule-and-simple-access-control is in effect for the entry being
compared, the following access controls apply:

1) if entry level access is denied under rule-based-access-control, then the operation fails with nameError
with problem noSuchObject in accordance with 7.11.2.4;

2) if access to the entry is not permitted under the basic-access-control scheme as described in 9.2.5 item 1),
then the operation fails in accordance with 7.11.1.3;

3) if access is not granted to the attribute value being compared, the Directory shall act as though the
attribute value was not present;

4) basic-access-control is applied as described in 9.2.5 items 2) and 3);
5) the name returned in the operation result is determined as defined in 7.11.2.2.

9.3 Abandon

Operations that interrogate the Directory may be abandoned using the abandon operation if the user is no longer
interested in the result. The arguments of the operation may be signed (see 17.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2)
by the requestor. If so requested, the Directory may sign the result.

abandon OPERATION ::= {
 ARGUMENT AbandonArgument
 RESULT AbandonResult
 ERRORS { abandonFailed }
 CODE id-opcode-abandon }

AbandonArgument ::= OPTIONALLY-PROTECTED-SEQ {
 SEQUENCE {
 invokeID [0] InvokeId } }

AbandonResult ::= CHOICE {
 null NULL,
 information OPTIONALLY-PROTECTED-SEQ {
 SEQUENCE {
 invokeID InvokeId,
 COMPONENTS OF CommonResultsSeq } } }

There is a single argument, the invokeID which identifies the operation that is to be abandoned. The value of the
invokeID is the same invokeID that was used to invoke the operation that is to be abandoned.

Should the request succeed, a result shall be returned. If this result is to be signed by the Directory, the
SecurityParameters (see 7.10) component of CommonResultsSeq (see 7.4) shall be included in the results. If the
result of the operation is not to be signed by the Directory, no information shall be conveyed with the result. The
original operation shall fail with an abandoned error.

Should the request fail, the abandonFailed error shall be reported. As a local matter, a DSA may choose not to abandon
the operation and shall then return the abandonFailed error. This error is described in 12.3.

Abandon is only applicable to interrogation operations, i.e., Read, Compare, List, and Search operations.

A DSA may abandon an operation locally. If the DSA has chained or multicasted the operation to other DSAs, it may in
turn request them to abandon the operation.

10 Directory Search operations
There are two 'search-like' operations: List and Search, defined in 10.1 and 10.2 respectively.

10.1 List

10.1.1 List syntax

A List operation is used to obtain a list of the immediate subordinates of an explicitly identified entry. Under some
circumstances, the list returned may be incomplete. The arguments of the operation may be signed (see 17.3 of ITU-T
Rec. X.501 | ISO/IEC 9594-2) by the requestor. If so requested, the Directory may sign the result.

list OPERATION ::= {
 ARGUMENT ListArgument

ISO/IEC 9594-3:2008 (E)

34 ITU-T Rec. X.511 (11/2008)

 RESULT ListResult
 ERRORS { nameError | serviceError | referral | abandoned | securityError }
 CODE id-opcode-list }

ListArgument ::= OPTIONALLY-PROTECTED {
 SET {
 object [0] Name,
 pagedResults [1] PagedResultsRequest OPTIONAL,
 listFamily [2] BOOLEAN DEFAULT FALSE,
 COMPONENTS OF CommonArguments } }

ListResult ::= OPTIONALLY-PROTECTED {
 CHOICE {
 listInfo SET {
 name Name OPTIONAL,
 subordinates [1] SET OF SEQUENCE {
 rdn RelativeDistinguishedName,
 aliasEntry [0] BOOLEAN DEFAULT FALSE,
 fromEntry [1] BOOLEAN DEFAULT TRUE },
 partialOutcomeQualifier [2] PartialOutcomeQualifier OPTIONAL,
 COMPONENTS OF CommonResults },
 uncorrelatedListInfo [0] SET OF ListResult } }

PartialOutcomeQualifier ::= SET {
 limitProblem [0] LimitProblem OPTIONAL,
 unexplored [1] SET SIZE (1..MAX) OF ContinuationReference OPTIONAL,
 unavailableCriticalExtensions [2] BOOLEAN DEFAULT FALSE,
 unknownErrors [3] SET SIZE (1..MAX) OF ABSTRACT-SYNTAX.&Type OPTIONAL,
 queryReference [4] OCTET STRING OPTIONAL,
 overspecFilter [5] Filter OPTIONAL,
 notification [6] SEQUENCE SIZE (1 .. MAX) OF
 Attribute{{SupportedAttributes}} OPTIONAL,
 entryCount CHOICE {
 bestEstimate [7] INTEGER,
 lowEstimate [8] INTEGER,
 exact [9] INTEGER } OPTIONAL,
 streamedResult [10] BOOLEAN DEFAULT FALSE }

LimitProblem ::= INTEGER {
 timeLimitExceeded (0), sizeLimitExceeded (1), administrativeLimitExceeded (2) }

10.1.2 List arguments

The object argument identifies the object entry (or possibly the root) whose immediate subordinates are to be listed.
Should the Name involve one or more aliases, they are dereferenced (unless prohibited by the relevant service control).
The Name may be an alternative name and may include context information, as described in 9.3 of ITU-T Rec. X.501 |
ISO/IEC 9594-2.

The pagedResults argument is used to request that results of the operation be returned page-by-page, as described
in 7.9.

If listFamily is TRUE and the object is an ancestor, the listed subordinates are taken from immediately subordinate
family members; no other subordinates are included. Otherwise, the listed subordinates are taken only from
immediately subordinate entries that are not family members.

The CommonArguments (see 7.3) include a specification of the service controls applying to the request. If the
argument of this operation is to be signed by the requestor, the SecurityParameters (see 7.10) component shall be
included in the arguments.

10.1.3 List results

The request succeeds, subject to access controls, if the object is located, regardless of whether there is any subordinate
information to return.

The name is the distinguished name of the entry or an alias name of the entry, as described in 7.7. It is present only if
an alias has been dereferenced, RDNs have been resolved to primary RDNs, or context selection has been applied and
the name to be returned differs from the object name supplied in the operation argument.

The subordinates parameter conveys the information on the immediate subordinates, if any, of the named entry.
Should any of the subordinate entries be aliases, they shall not be dereferenced.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 35

The rdn parameter is the relative distinguished name of the subordinate. This may be affected by contexts as described
for Name in 7.7.

The fromEntry parameter indicates whether the information was obtained from the entry (TRUE) or a copy of the entry
(FALSE).

The aliasEntry parameter indicates whether the subordinate entry is an alias entry (TRUE) or not (FALSE).

The partialOutcomeQualifier consists of nine subcomponents as described below. This parameter shall be present
whenever the result is incomplete because of a time limit, size limit, or administrative limit problem, because regions of
the DIT were not explored, because some critical extensions were unavailable, because an unknown error was received,
because paged results are being returned, an overspecified filter is to be indicated, one or more notification attributes are
to be returned, or the result of an operation is a streamed result and this response is not the last response of the result:

a) The LimitProblem parameter indicates whether the time limit, the size limit, or an administrative limit
has been exceeded. The results being returned are those which were available when the limit was
reached.

b) The unexplored parameter shall be present if regions of the DIT were not explored. Its information
allows the DUA to continue the processing of the List operation by contacting other access points if it so
chooses. The parameter consists of a set (possibly empty) of ContinuationReferences, each consisting
of the name of a base object from which the operation may be progressed, an appropriate value of
OperationProgress, and a set of access points from which the request may be further progressed. The
ContinuationReferences that are returned shall be within the scope of referral requested in the operation
service control. See 12.6.

c) The unavailableCriticalExtensions parameter indicates, if present, that one or more critical extensions
were unavailable in some part of the Directory.

d) The unknownErrors parameter is used to return unknown error types or parameters received from other
DSAs in the processing of the operation. Each member of the SET contains one such unknown error. See
12.2.4 of ITU-T Rec. X.519 | ISO/IEC 9594-5.

e) The queryReference parameter shall be present when the DUA has requested paged results and the DSA
has not returned all the available results. See 7.9. It shall be absent when the DSA can determine that all
results valid for the user have been returned (i.e., other than as a result of applying access control).

f) The overspecFilter component is only used in conjunction with the Search operation when, as a
consequence of over-specified filtering, the returned Search result is empty, although there are candidate
entries either matching only portions of the filter or matching only approximately the filter. It is returned
only if the search request included the checkOverspecified item and the Directory can determine that
the filter was over-specified. It consists of the filter supplied in the search argument with those elements
of the filter that succeeded in matching some entries omitted. The actual procedure for generating the
overspecFilter is a local matter.

NOTE 1 – The return of a suitable overspecFilter in a distributed Directory is for further study.

g) The notification parameter may be used to send qualifications of error outcomes, and may also for the
Search operation be used to return a proposedRelaxation attribute (see 6.13.15 of ITU-T Rec. X.520 |
ISO/IEC 9594-6) which provides a relaxation policy that could be applied by the user. In this case, the
sequence of MRMapping elements that would have been used to affect the relaxation (or tightening)
policy specified by the relevant search-rule may be supplied.

NOTE 2 – The ordering of sequence-of Attribute in notification is not significant.

h) The entryCount parameter is only relevant in search results and if then present, it gives a best estimate
of the number of entries that fulfil the search criteria. This subcomponent shall be present if, and only if:
– entryCount search control option is set in the search argument or by a governing-search-rule;
– if paged results have been requested or a size limit has been exceeded; and
– if the feature is supported by at least one of the participating DSAs.
When the entryCount subcomponent is present, the bestEstimate or exact choice shall be taken if all
performing DSAs support the feature and if all the eligible DSAs have participated in the operation. The
exact choice shall be taken if all participating DSAs can supply an exact count; otherwise, the
bestEstimate choice shall be taken. If not all the eligible DSAs participated in the operation or if some
of the participating DSA do not support the entryCount parameter, the lowEstimate choice shall be
taken. Family members of a compound entry only count as a single entry.

i) The streamedResult parameter indicates, when present and TRUE, that the DSA is sending a streamed
result and that this response is not the last response of the result. If absent or present with the value
FALSE, this parameter indicates that this response is the final response of a streamed result or that it is a

ISO/IEC 9594-3:2008 (E)

36 ITU-T Rec. X.511 (11/2008)

non-streamed response. Each of the responses in a streamed result shall be identified with the same
invokeId.

If a limit problem is encountered which results in a limitProblem element being used in PartialOutcomeQualifier, this
component shall be repeated in all subsequent results supplied as part of the paged result set.

NOTE 3 – Each of the responses in a streamed result shall be identified with the same invokeID. As such, this option is only
available with the IDM Directory protocols as specified in ITU-T Rec. X.519 | ISO/IEC 9594-5.

When the DUA has requested a protection request of signed, or if the Directory for other reasons is not able to correlate
information, the uncorrelatedListInfo parameter may comprise a number of sets of result parameters originating from
and signed by different components of the Directory. If no DSA in the chain can correlate all the results, the DUA shall
assemble the actual result from the various pieces.

The CommonResults (see 7.4) include the security parameters applying to the response. If this result is to be signed by
the Directory, the SecurityParameters (see 7.10) component shall be included in the results.

10.1.4 List errors

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors
shall be reported are defined in clause 12.

10.1.5 List operation decision points for basic access control

If rule-based-access-control is also applied, the order in which it is applied with respect to basic-access-control is a local
matter, except that if access is denied to the entry, an attribute type or an attribute value by either mechanism, it shall
not be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a
permission that shall not override a deny of rule-based-access-control.

If basic-access-control is in effect for the portion of the DIB where the list operation is being performed, the following
sequence of access controls applies:

1) No specific permission is required to the entry identified by the object argument.
2) For each immediate subordinate for which a RelativeDistinguishedName is to be returned in

subordinates, Browse and ReturnDN permissions are required to that entry. Entries for which these
permissions are not granted are ignored. If as a consequence of applying these controls, no subordinate
information (excluding any ContinuationReferences in PartialOutcomeQualifier) is returned and if
DiscloseOnError permission is not granted to the entry identified by the object argument, the operation
fails and a nameError with problem noSuchObject shall be returned. The matched element shall either
contain the name of the next superior entry to which DiscloseOnError permission is granted, or the name
of the DIT root (i.e., an empty RDNSequence). Otherwise, the operation succeeds but no subordinate
information (excluding any ContinuationReferences in PartialOutcomeQualifier) is conveyed with it.

NOTE 1 – In the case of a nameError being returned, the empty RDNSequence may be used by a DSA which does not have
access to all superior entries.
NOTE 2 – Security policy may prevent the disclosure of subordinate information which would otherwise be conveyed as
ContinuationReferences in PartialOutcomeQualifier. If such a policy is in effect and if a DUA constrains the service by
specifying chainingProhibited, the Directory may return a serviceError with problem chainingRequired. Otherwise, the
procedure described in item 2) above is followed.
NOTE 3 – Security policy may prevent the Directory from indicating that a listed subordinate entry is an alias entry. For
example, if the DUA is not granted Read access to the alias entry, its objectClass attribute and the value alias that it contains,
the Directory may omit the aliasEntry component of subordinates from the ListResult or set it to FALSE.
NOTE 4 – If DiscloseOnError permission is not granted to the entry identified by the object argument, a
partialOutcomeQualifier indicating a limitProblem or unavailableCriticalExtensions should not be returned as it may
compromise the security of this entry.

10.1.6 List operation decision points for rule-based access control

If basic-access-control is also applied, the order in which it is applied with respect to rule-based-access-control is a local
matter, except that if access is denied to the entry, an attribute type or an attribute value by either mechanism, it shall
not be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a
permission that shall not override a deny of rule-based-access-control.

If rule-based-access-control, rule-and-basic-access-control, or rule-and-simple-access-control is in effect for the portion of
the DIB where the List operation is being performed, the following access controls apply:

1) If rule-based entry level permission is denied to the entry identified by the object argument, then
nameError with problem noSuchObject is returned in accordance with 7.11.2.4.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 37

2) For each immediate subordinate for which a RelativeDistinguishedName is to be returned in
subordinates, rule-based RDN permission must be granted to that entry. Entries for which access is not
granted are ignored.

3) basic-access-control is applied as described in 10.1.5.

10.2 Search

10.2.1 Search syntax

A Search operation is used to search one or more portions of the Directory for entries of interest, and to return selected
information from those entries. The arguments of the operation may be signed (see 17.3 of ITU-T Rec. X.501 | ISO/IEC
9594-2) by the requestor. If so requested, the Directory may sign the result.

search OPERATION ::= {
 ARGUMENT SearchArgument
 RESULT SearchResult
 ERRORS { attributeError | nameError | serviceError | referral | abandoned |
 securityError }
 CODE id-opcode-search }

SearchArgument ::= OPTIONALLY-PROTECTED {
 SET {
 baseObject [0] Name,
 subset [1] INTEGER {
 baseObject(0), oneLevel(1), wholeSubtree(2) } DEFAULT
baseObject,
 filter [2] Filter DEFAULT and : { },
 searchAliases [3] BOOLEAN DEFAULT TRUE,
 selection [4] EntryInformationSelection DEFAULT { },
 pagedResults [5] PagedResultsRequest OPTIONAL,
 matchedValuesOnly [6] BOOLEAN DEFAULT FALSE,
 extendedFilter [7] Filter OPTIONAL,
 checkOverspecified [8] BOOLEAN DEFAULT FALSE,
 relaxation [9] RelaxationPolicy OPTIONAL,
 extendedArea [10] INTEGER OPTIONAL,
 hierarchySelections [11] HierarchySelections DEFAULT { self },
 searchControlOptions [12] SearchControlOptions DEFAULT { searchAliases },
 joinArguments [13] SEQUENCE SIZE (1..MAX) OF JoinArgument OPTIONAL,
 joinType [14] ENUMERATED {
 innerJoin(0), leftOuterJoin(1), fullOuterJoin(2) } DEFAULT leftOuterJoin,
 COMPONENTS OF CommonArguments } }

HierarchySelections ::= BIT STRING {
 self (0),
 children (1),
 parent (2),
 hierarchy (3),
 top (4),
 subtree (5),
 siblings (6),
 siblingChildren (7),
 siblingSubtree (8),
 all (9) }

SearchControlOptions ::= BIT STRING {
 searchAliases (0),
 matchedValuesOnly (1),
 checkOverspecified (2),
 performExactly (3),
 includeAllAreas (4),
 noSystemRelaxation (5),
 dnAttribute (6),
 matchOnResidualName (7),
 entryCount (8),
 useSubset (9),
 separateFamilyMembers (10),
 searchFamily (11) }

ISO/IEC 9594-3:2008 (E)

38 ITU-T Rec. X.511 (11/2008)

JoinArgument ::= SEQUENCE {
 joinBaseObject [0] Name,
 domainLocalID [1] DomainLocalID OPTIONAL,
 joinSubset [2] ENUMERATED {
 baseObject(0), oneLevel(1), wholeSubtree(2) } DEFAULT baseObject,
 joinFilter [3] Filter OPTIONAL,
 joinAttributes [4] SEQUENCE SIZE (1..MAX) OF JoinAttPair OPTIONAL,
 joinSelection [5] EntryInformationSelection }

DomainLocalID ::= UnboundedDirectoryString

DomainLocalID is a string which locally uniquely identifies a remote domain holding a portion of another DIT.

NOTE – This string is defined locally and does not need to be registered by any registration authority.

JoinAttPair ::= SEQUENCE {
 baseAtt AttributeType,
 joinAtt AttributeType,
 joinContext SEQUENCE SIZE (1..MAX) OF JoinContextType OPTIONAL }

JoinContextType ::= CONTEXT.&id({SupportedContexts})

SearchResult ::= OPTIONALLY-PROTECTED {
 CHOICE {
 searchInfo SET {
 name Name OPTIONAL,
 entries [0] SET OF EntryInformation,
 partialOutcomeQualifier [2] PartialOutcomeQualifier OPTIONAL,
 altMatching [3] BOOLEAN DEFAULT FALSE,
 COMPONENTS OF CommonResults },
 uncorrelatedSearchInfo [0] SET OF SearchResult } }

10.2.2 Search arguments

The baseObject argument identifies the object entry (or possibly the root) relative to which the primary search is to
take place. The baseObject may be an alternative name and may include context information, as described in 9.3 of
ITU-T Rec. X.501 | ISO/IEC 9594-2.

The subset argument indicates whether the primary search is to be applied to:
a) the baseObject only;
b) the immediate subordinates of the base object only (oneLevel);
c) the base object and all its subordinates (wholeSubtree).

If the base object is an ordinary entry, compound entries shall be counted as a single entry with respect to the subset
specification. If the base object is the ancestor of a compound entry, the searchFamily search control option controls
the exact behaviour. If the base object is a child family member, family members shall count as individual entries.

The filter argument is used to eliminate entries from the primary search space which are not of interest. Information
shall only be returned on entries which satisfy the filter (see 7.8). In the presence of a basic user-supplied or search-rule-
supplied relaxation policy, the filter shall be evaluated for the first time with the required substitutions of matching
rules.

In the presence of a user-supplied or a search-rule-supplied relaxation policy, or both, the return of fewer results than
minimum shall cause a re-evaluation of the filter, using the appropriate relaxations (see 7.8 and also below, for the
relaxation element of SearchArgument), progressively until there are enough entries or no more relaxations are
defined. Similarly, the return of more results than the maximum shall cause a re-evaluation of the filter, using the
appropriate tightenings, progressively until there are few enough entries or no more tightenings are defined.

NOTE 1 – If no search-rule relaxations are provided, the user may need to simplify the filter and try again, or alternatively to
define a user defined relaxation.

The familyGrouping component of CommonArguments is used to logically merge together entries in a family prior to
applying the filter, as described in 7.3.2 and 7.8.3.

Aliases shall be dereferenced while locating the base object, subject to the setting of the dontDereferenceAliases
service control. Aliases among the subordinates of the base object shall be dereferenced during the search, subject to the
setting of the searchAliases parameter. If the searchAliases parameter is TRUE, aliases shall be dereferenced, if the
parameter is FALSE, aliases shall not be dereferenced. If the searchAliases parameter is TRUE, the search shall
continue in the subtree of the aliased entry.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 39

The selection argument indicates what information from the entries is requested (see 7.6). However, it should not be
assumed that the attributes returned are the same as or limited to those requested.

NOTE 2 – A DSA that is coordinating distributed operations for related entries (i.e., has finished name resolution for a Search
argument containing joinArguments and needs to acquire a collection of potentially related entries from non-internal sources)
needs to override the DAP-supplied infoTypes value with attributeTypesAndValues for the purposes of distributed operations,
and needs also to include join attributes (i.e., attributes in the set specified by JoinAttPair.joinAtt within
JoinArgument.joinAttributes) in the selection of attributes to be returned using distributed operations. However, entries and
derived entries that are returned to the user by the coordinating DSA shall omit attribute values in the DAP-returned information
if the infoTypes value was attributeTypesOnly, and shall thus return EntryInformation in accordance with the original user
request.

The pagedResults argument is used to request that results of the operation be returned page-by-page, as described
in 7.9.

The matchedValuesOnly argument indicates that certain attribute values are to be omitted from the returned entry
information. Specifically, where an attribute to be returned is multi-valued, and some but not all of the values of that
attribute contributed to the search filter, in its last effective form (i.e., taking relaxed matching rules into account)
returning TRUE via filter items other than present, then the values that did not so contribute are omitted from the
returned entry information.

If the matchedValuesOnly argument is specified in the search argument, the following logic processing applies to the
attributes to be returned:

a) If the filter consists of one filter item, the following rules apply:
– if the type of the filter item is present, then the matchedValuesOnly argument has no effect on the

attribute in this filter item.
– If the type of the filter item is equality, substrings, greaterOrEqual, lessOrEqual,

approximateMatch, contextPresent or extensibleMatch and the assertion is not TRUE for the
attribute, then the matchedValuesOnly argument has no effect on this attribute. If the assertion is
TRUE, then the values of this attribute that did not match the filter item are omitted from the
returned entry information.

– If the filter item is negated, then the matchedValuesOnly argument has no effect on this attribute.
b) If the filter is complex (consists of more than one filter item), then the following rules apply:

– If the filter contains a negated (i.e., not) filter, then the matchedValuesOnly argument has no effect
on any attribute within the negated filter.

NOTE 3 – This applies to nested negated filters as well.

– The matchedValuesOnly argument has no effect on the attributes of any elements of or filters that
evaluate to FALSE or UNDEFINED.

– An attribute that occurs multiple times in the filter, only needs one of its occurrences to evaluate to
TRUE as described in a), second bullet above, for the matchedValuesOnly argument to be
effective, i.e., one instance of effectiveness overrides one or more instances of ignore.

– Each filter in an or filter should be evaluated for matchedValuesOnly, even if the truth of the filter
can be determined before full evaluation is complete.

The extendedFilter argument is used in mixed version environments to specify an alternative filter to that described
above. When this argument is present, the filter argument (if any) shall be ignored by second and subsequent edition
systems. The extendedFilter is always ignored by first edition systems. Search relaxation is applied just as for filter.

NOTE 4 – By including both filters, a DUA can specify one filter to be used by first edition systems and a different filter to be
used by second and subsequent edition systems in the distributed processing of the Search request. First edition systems do not
support attribute polymorphism or matching rule assertions.

The checkOverspecified argument is used to request the Directory to return an overspecFilter item in
partialOutcomeQualifier if the result of the search operation is empty and the Directory is able to determine that this is
due to the filter being overspecified.

The relaxation component may be used to specify a user-supplied RelaxationPolicy using the construct defined
in 16.10 of ITU-T Rec. X.501 | ISO/IEC 9594-2.

Substitutions specified by a search request shall not be performed within a service specific administrative area if the
substitution causes the search to be invalid with respect to the governing-search-rule. The governing-search-rule can be
violated when the substituting matching rule:

a) effectively removes one or more filter items from the search filter; or

ISO/IEC 9594-3:2008 (E)

40 ITU-T Rec. X.511 (11/2008)

b) violates the matchingUse specification for the attribute type (see 16.10.2 of ITU-T Rec. X.501 |
ISO/IEC 9594-2).

NOTE 5 – The nullMatch matching rule has the effect of removing one or more filter items from the filter. When using this
matching rule, the governing-search-rule might be violated.

If the Search operation is performed outside a service specific administrative area or if the governing-search-rule does
not provide a RelaxationPolicy component, the user-supplied RelaxationPolicy is applied as described in 16.10.7 of
ITU-T Rec. X.501 | ISO/IEC 9594-2. When a search-rule-provided RelaxationPolicy is also present, the combination is
applied according to the following procedure:

1) The search-rule specified basic substitution policy, if any, is applied already during the search-validation
process. The possible basic substitutions specified by the governing-search-rule are thereby applied a
priori.

2) The basic substitutions and the mapping-based mapping specified in the search request, if present, shall
then be applied. However, basic substitutions that cause the governing-search-rule to be violated shall
not be applied, but shall be ignored. The oldMatchingRule value (if supplied) in this case applies to the
basic matching rule, i.e., the one that would have been applicable in the absence of a search-rule-applied
basic substitution policy.

3) The relaxation/tightening substitutions, if any, specified in the search request are then applied together
with any specified mapping-based matching following the rules defined in 16.10.7 of ITU-T Rec. X.501 |
ISO/IEC 9594-2. If substituting matching rule is encountered at any point that caused non-conformance
with the governing-search-rule, this particular substitution is abandoned completely, together with any
further substitutions that may have been specified by the search request for that attribute type. If during
the process, the minimum or maximum specification specified in the search request is satisfied, the
process stops.

4) The governing search-rule-supplied relaxation or tightening substitutions are applied, with the exception
there shall be no substitution for attribute types for which relaxation or tightening substitutions has been
performed. That is, further relaxation or tightening substitutions apply only to matching rules for
attribute types that so far have not been exposed to relaxation or tightening substitution. In this part of
the process, the maximum or minimum specifications in the search request still apply, rather than those
in specified in the governing-search-rule.

If a substitution specified in the search request proposes an unsupported matching rule, the existing matching rule stays
in place. If this strategy fails to produce a supported matching rule, the filter-item is evaluated as UNDEFINED.

The user can propose that the system provides a relaxation or tightening by specifying the dummy matching rule
systemProposedMatch.

The extendedArea component indicates the level of relaxation (if greater than zero) or the level of tightening (if less
than zero). If this component is present, it affects relaxation or tightening, as it is described in 16.10.7 of
ITU-T Rec. X.501 | ISO/IEC 9594-2.

The hierarchySelection search control specifies by means of a bit string the hierarchical selection to be performed
within a hierarchical group with respect to each matched entry. It is ignored for matched entries that are not part of a
hierarchical group. If several entries within a hierarchy are matched, hierarchical selection will not result in the same
entry being returned more than once. If this search control is not present, no hierarchical selection is performed. When
present, the following choices are possible either alone or in combinations:

a) self indicates that entry information shall be returned from the matched entries. If this is the only choice,
it corresponds to performing no hierarchical selection.

b) children indicates that for each matched entry, the entry information is returned from all immediately
hierarchical children, if any, of each matched entry. No information is returned from the matched entry if
this is the only setting.

c) parent indicates that for each matched entry, the entry information is returned from the immediately
hierarchical parent, if any, of each matched entry. No information is returned from the matched entry if
this is the only setting.

d) hierarchy indicates that for each matched entry, the entry information is returned from all the
hierarchical parents. No information is returned from the matched entry if this is the only setting.

e) top indicates that for each matched entry, the entry information from the hierarchical top is returned. No
information is returned from the matched entry if this is the only setting, unless the matched entry is the
top entry.

f) subtree indicates that for each matched entry, the entry information is returned from all its hierarchical
children, if any. No information is returned from the matched entry if this is the only setting.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 41

g) siblings indicates that for each matched entry, the entry information from all hierarchical siblings is
returned. No information is returned from the matched entry if this is the only setting.

h) siblingChildren indicates that for each matched entry, the entry information from the immediately
hierarchical children of all hierarchical siblings is returned. No information is returned from the matched
entry and its siblings if this is the only setting.

i) siblingSubtree indicates that for each matched entry, the entry information from all the children of all
hierarchical siblings is returned. No information is returned from the matched entry and its siblings if this
is the only setting.

j) all indicates that for each matched entry, the entry information from all entries of the hierarchical group
is returned.

The searchControlOptions component contains only control options applicable for the Search operation. This
component has indicators with the same semantics as the boolean type components of the search argument. An
implementation supporting the service administration extension shall support this component. A sending supporting
implementation (e.g., a DUA) shall in addition to setting the boolean type components also set the corresponding bits in
this component (unless defaults apply). If a supporting DSA implementation receives a search request with this
component, it shall ignore the boolean type components in the request. If this component is absent in a request, the
default setting shall be understood to be all bits reset, except as indicated below:

a) The searchAliases search control option is a replacement for the searchAliases search argument
component. If this bit is set, it corresponds to the searchAliases component being TRUE. If the
searchControlOptions component is absent, the default value is according to the searchAliases
component, i.e., if the searchAliases component is absent or set to TRUE, this bit defaults to being set.

b) The matchedValuesOnly search control option is a replacement for the matchedValuesOnly search
argument component. If this bit is set, it corresponds to the matchedValuesOnly component being
TRUE. If the searchControlOptions component is absent, the default value is according to the
matchedValuesOnly component, i.e., if the matchedValuesOnly component is set to TRUE, this bit
defaults to being set; otherwise, it defaults to being reset.

c) The checkOverspecified search control option is a replacement for the checkOverspecified search
argument component. If this bit is set, it corresponds to the checkOverspecified component being
TRUE. If the searchControlOptions component is absent, the default value is according to the
checkOverspecified component, i.e., if the checkOverspecified component is set to TRUE, this bit
defaults to being set; otherwise, it defaults to being reset.

d) The performExactly search control option indicates that an operation shall be performed exactly
according to the relevant matching rules as specified or implied by the filter after a basic matching rule
substitution, if applicable. When an extensibleMatch filter item specifies an unsupported matching rule,
the search request shall be rejected when this search control option is set. Otherwise, the filter item
evaluates to UNDEFINED. If the Search operation starts its initial evaluation phase within a service
specific administrative area and a matching restriction in a search-rule is violated, that search-rule will
fail the search-validation if, and only if, this search control option is set.

e) The includeAllAreas search control option is only relevant if the extendedArea component is included
with a value of zero or greater. In all other cases, it is ignored. If the value is TRUE, inclusive relaxation
is performed; otherwise, exclusive relaxation is performed if possible (see 13.6 of ITU-T Rec. X.501 |
ISO/IEC 9594-2).

f) The noSystemRelaxation search control option is used when the user requires that DSA-supplied
relaxation policies shall not be applied. The DSA still applies a basic policy, unless there is a user-
supplied basic policy that overrides it, but no subsequent relaxations or tightenings shall be applied. That
is, the filter is never evaluated more than once over the set of candidate entries, except because of user-
supplied relaxations.

g) The dnAttribute search control option is used to indicate that the attributes of the Distinguished Name of
an entry are used in addition to those of the entry when evaluating filter against the entry. If set, it
overrides any possible dnAttribute specification in extensibleMatch filter items. It also applies to all
filter item types.

h) The matchOnResidualName search control option is only relevant if the partialNameResolution
service control option is set. It is used to indicate that if the Directory is able to resolve only part of the
purported name in a search operation, the AVAs of the unresolved RDNs shall be treated as AND'ed
equality filter items. These filter items are AND'ed with the search filter both for search evaluation
against search-rules and for entry matching.

i) The entryCount search control option indicates that an entry count shall be supplied in the search result
in case either a service control size limit or an administrative size limit has been exceeded. The

ISO/IEC 9594-3:2008 (E)

42 ITU-T Rec. X.511 (11/2008)

entryCount gives an indication of how many entries would have been returned had a size limit not been
encountered. This search control is ignored if the subentries service control option is set.

j) The useSubset search control option indicates that the imposedSubset search-rule component shall be
ignored (see 16.10.9 of ITU-T Rec. X.501 | ISO/IEC 9594-2).

k) The separateFamilyMembers search control option indicates that family members are returned as
separate entries rather than being embedded in the family-information derived attribute.

l) The searchFamily search control option specifies how the search is performed if the base object is the
ancestor of a compound attribute. This option is ignored if the base object is not an ancestor or if the
entryOnly is set in either the CommonArguments or in the ChainingArguments. If this option is set,
the operation is only performed on the compound entry and each family member count as a separate
entry with respect to the subset and sizeLimit specifications. If searchFamily option is not set, the
compound entry is considered a single entry with respect to the subset specification.

NOTE 6 – The latter implies that if, as an example, subset is set to baseObject and familyGrouping is entryOnly, then each
individual family member is within the scope of the search.

The joinArguments argument is used to specify additional portions of the Directory to be searched for the purpose of
identifying and accessing entries related to those in the primary search and to specify the attributes to be used in joining
the related entries. Although specified as a SEQUENCE, the order in which joinArgument arguments appear is not
significant.

NOTE 7 – When joinArguments is specified, the primary search and each additional search is considered to produce a set of
intermediate results. Each set of intermediate results resulting from a specification of joinArgument will be joined with the
results of the primary search, and all joins will be performed prior to returning any results in SearchResult. Intermediate results
are not visible to users of the directory.

The joinBaseObject argument identifies the object entry (or possibly the root) relative to which each additional search
is to take place. The joinBaseObject may be an alternative name and may include context information, as described
in 9.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2.

The domainLocalID argument optionally specifies a separate DIT in which the search for joinBaseObject is to be
initiated. If absent, the search for joinBaseObject is to be initiated in all DITs known to the DSA.

The joinSubset argument indicates whether the additional search is to be applied to:
a) the joinBaseObject only;
b) the immediate subordinates of the join base object only (oneLevel);
c) the join base object and all its subordinates (wholeSubtree).

The joinFilter argument is used to eliminate entries from the additional search space which are not of interest. Only
information which satisfies the joinFilter will be considered for joining with related entries. If joinFilter is not specified,
the value in the filter component of the SearchArgument will be used. If the filter component of the SearchArgument
is not supplied, the default value for that component will be used. When present, joinFilter will be treated according to
the rules for extendedFilter.

The joinAttributes argument is used to specify the pairs of attributes to be used in joining entries from the primary
search with entries from an additional search. An entry from the primary search (the "primary entry") is considered
related to an entry from an additional search (the "additional entry") if there exists a joinAttrPair such that the following
conditions are true:

a) the primary entry has a value for the attribute type specified by baseAtt;
b) the additional entry has a value for the attribute type specified by joinAtt;
c) one of the attribute values in the primary entry and one of the attribute values in the additional entry are

equal according to the following rules:
i) if the attribute types are the same, the equality matching rule for that attribute type is applied;
ii) if the attribute types are not the same, but have the same syntax, the equality matching rule for the

attribute type specified for the primary entry is applied;
iii) if joinContexts is present, only attribute values of the specified contexts may be used in evaluating

in accordance with rule i) or ii) above. If joinContexts is absent, attribute values of all contexts may
be used in evaluating in accordance with rule i) or ii) above.

In evaluating joinAttributes for potential joins, subtypes of the join attributes shall be ignored. Only the explicitly-
identified baseAtt and joinAtt shall be used to evaluate a potential join.

If an equality rule is applied and evaluates to either FALSE or UNDEFINED, the entries are not considered to be
related.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 43

If no suitable matching rule can be applied under condition c) above, the entries are not considered to be related.
NOTE 8 – Care should be taken to prevent the unintentional retrieval of meaningless data when specifying joins involving multi-
valued attributes. For example, if an entry uses a multi-valued attribute such as an employee identifier to denote membership in a
committee, specification of that multi-valued attribute in performing the join could result in the return of an uncorrelated set
containing group member names, telephone numbers, electronic mail addresses, and so on. Nevertheless, when outer joins are
specified, all entries that are retrieved will be returned, even if not related.

The joinSelection argument is used to eliminate attributes from the additional search intermediate result which are not
of interest.

The joinType argument is used to specify the type of join to be performed on related entries, as follows:
a) If innerJoin is specified, the resulting entry set will include only those entries for which a join has been

performed based on the attribute pairs specified in joinAttributes. Each resulting entry will include all
the corresponding related entries as relatedEntry attribute values.

b) If leftOuterJoin is specified, the resulting entry set will include all entries selected by the primary
search; all entries for which a join has been performed based on the attribute pairs specified in
joinAttributes will include all the corresponding related entries as relatedEntry attribute values.

c) If fullOuterJoin is specified, the resulting entry set will include all entries from the primary and
additional searches; all entries for which a join has been performed based on the attribute pairs specified
in joinAttributes will include all the corresponding related entries as relatedEntry attribute values rather
than as explicit entries.

No attempt at joining shall take place unless the joinAttributes value contains at least one JoinAttPair and each
JoinAttPair is valid in terms of matching rules. If this is not the case, no attempt at joining shall take place, and the
following shall be the outcome of merging for each JoinAttPair, depending on the join-type:

Join-type Merged output

inner-join empty
left-outer-join primary results only
full-outer-join results from primary and joined search

Otherwise, entries shall only be eligible for joining when they can supply all of the relevant join-attribute values.

The results of joining shall include all combinations of matched join attributes.
NOTE 9 – For example, consider A B and C as entries from the primary search and P, Q, R as entries from an additional search
using J, a corresponding JoinAttPair value, and suppose that the following matches take place as a result of J:
– A with P, A with Q, A with R
– B with Q
– C with P and C with Q
Then, the joined results will include:
– A with {P,Q,R}
– B with {Q}
– C with {P,Q}
even though Q's results occur three times.

The CommonArguments (see 7.3) include a specification of the service controls and security parameters applying to
the request. If the argument of this operation is to be signed by the requestor, the SecurityParameters (see 7.10)
component shall be included in the arguments.

10.2.3 Search results

The request succeeds, subject to access controls, if the baseObject is located, regardless of whether there are any
subordinates to return, and if there are no service restrictions as specified within a service specific administrative area
that prevent the Search operation from proceeding.

NOTE 1 – As a corollary to this, the outcome of an unfiltered search applied to a single entry may not be identical to a read
which seeks to interrogate the same set of attributes of the entry. This is because the latter shall return an AttributeError if none
of the selected attributes exist in the entry.

The name is the distinguished name of the entry or an alias name of the entry, as described in 7.7. It is present only if
an alias has been dereferenced, RDNs have been resolved to primary RDNs, or context selection has been applied and
the name to be returned differs from the baseObject name supplied in the operation argument.

ISO/IEC 9594-3:2008 (E)

44 ITU-T Rec. X.511 (11/2008)

The entries parameter conveys the requested information from each entry (zero or more) which satisfied the filter
(see 7.5). The names supplied as part of entries may be affected by contexts as described for Name in 7.7. The entry
information may include family information, as required by the familyReturn element of EntryInformationSelection.
The interaction between familyGrouping and familyReturn is defined in a four-phase evaluation of a filter and
subsequent evaluation of what to return, as described in 7.8.3.

The partialOutcomeQualifier is as described in 10.1.3.
NOTE 2 – Where returned entry information is incomplete for a particular entry, it is indicated via the incompleteEntry
parameter in the returned entry information.

The altMatching parameter indicates that a matching rule has not been applied exactly as specified in the search
request.

The appliedRelaxation attribute in the notifications element of CommonResults shall be used to list the attributes of
the filter which have been subject to relaxation or tightening, other than those made by the basic element of a relaxation
policy (see 6.13.16 of ITU-T Rec. X.520 | ISO/IEC 9594-6).

The uncorrelatedSearchInfo parameter is as described for uncorrelatedListInfo in 10.1.3.

The CommonResults (see 7.4) include the security parameters applying to the response. If this result is to be signed by
the Directory, the SecurityParameters (see 7.10) component shall be included in the results.

10.2.4 Service administration

An administrative authority may establish service specific administrative areas as specified in clause 7 of
ITU-T Rec. X.501 | ISO/IEC 9594-2. This allows the administrative authority to administer the service by restricting the
Search operation with respect to what areas of the DIT can be searched and what type of searches can be formed, what
information can be returned, etc., by definition of search-rules.

10.2.5 Search errors

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors
shall be reported are defined in clause 12.

When searches are performed within service specific administrative areas, a number of additional, quite detailed
elements of error information may be returned as detailed in clause 13.

10.2.6 Search operation decision points for basic access control

If rule-based-access-control is also applied, the order in which it is applied with respect to basic-access-control is a local
matter, except that if access is denied to the entry, an attribute type or an attribute value by either mechanism, it shall
not be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a
permission that shall not override a deny of rule-based-access-control.

If basic-access-control is in effect for the portion of the DIT to be searched, the following sequence of access controls
applies:

1) No specific permission is required to the entry identified by the baseObject argument.
NOTE 1 – If the baseObject is within the scope of the SearchArgument (i.e., when the subset argument
specifies baseObject or wholeSubtree) the access controls specified in items 2) through 5) apply.

2) For each entry within the scope of the SearchArgument which is to be a candidate for consideration,
Browse permission is required. Entries for which this permission is not granted are ignored.

3) The filter argument is applied to each entry left to be considered after taking item 2) into account, in
accordance with the following:
a) For each FilterItem that specifies an attribute, FilterMatch permission for the attribute type is

required before the FilterItem can be evaluated as either TRUE or FALSE. A FilterItem for which
this permission is not granted evaluates as UNDEFINED.

b) For each FilterItem that additionally specifies an attribute value, FilterMatch permission is required
for each stored attribute value which is to be considered for the purposes of matching. If there is a
value that both matches the FilterItem and for which permission is granted, the FilterItem evaluates
to TRUE, otherwise it evaluates to FALSE.

4) If present, the joinCriteria argument is applied to each entry left to be considered after taking item 3) into
account, in accordance with the following:
a) For each JoinCriteriaItem which specifies an attribute, FilterMatch permission for the attribute type

is required before the JoinCriteriaItem can be evaluated as either TRUE or FALSE. A
JoinCriteriaItem for which this permission is not granted evaluates as UNDEFINED.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 45

b) For each JoinCriteriaItem that additionally specifies an attribute value, FilterMatch permission is
required for each stored attribute value which is to be considered for the purposes of matching. If
there is a value that both matches the JoinCriteriaItem and for which permission is granted, the
JoinCriteriaItem evaluates to TRUE, otherwise it evaluates to FALSE.

5) Once the procedures defined in 2) through 4) have been applied, the entry is either selected or discarded.
If as a consequence of applying these controls to the entire scoped subtree, no entries have been selected
(excluding any ContinuationReferences in partialOutcomeQualifier) and if DiscloseOnError
permission is not granted to the entry identified by the baseObject argument, the operation fails and a
nameError with problem noSuchObject shall be returned. The matched element shall either contain the
name of the next superior entry to which DiscloseOnError permission is granted, or the name of the DIT
root (i.e., an empty RDNSequence). Otherwise, the operation succeeds but no subordinate information is
conveyed with it.

NOTE 2 – In the case of a nameError being returned, the empty RDNSequence may be used by a DSA which
does not have access to all superior entries.
NOTE 3 – Security policy may prevent the disclosure of knowledge information which would otherwise be
conveyed as ContinuationReferences in partialOutcomeQualifier. If such a policy is in effect and if a DUA
constrains the service by specifying chainingProhibited, the Directory may return a serviceError with problem
chainingRequired. Otherwise, the ContinuationReference is omitted from partialOutcomeQualifier.

6) Otherwise, for each selected entry, the information returned is as follows:
a) If the infoTypes element of selection specifies that attribute types only are to be returned, then for

each attribute type that is to be returned, Read permission is required. If permission is not granted,
the attribute type is omitted from EntryInformation. If as a consequence of applying these controls
no attribute type information is selected, the EntryInformation element is returned but no attribute
type information is conveyed with it (i.e., the SET OF CHOICE element is omitted or empty).

b) If the infoTypes element of selection specifies that attribute types and values are to be returned,
then for each attribute type and for each value that is to be returned, Read permission is required. If
permission to an attribute type is not granted, the attribute is omitted from EntryInformation. If
permission to an attribute value is not granted, the value is omitted from its corresponding attribute.
In the event that permission is not granted to any of the values within the attribute, an Attribute
element containing an empty SET OF AttributeValue is returned. If as a consequence of applying
these controls no attribute information is selected, the EntryInformation element is returned but no
attribute information is conveyed with it (i.e., the SET OF CHOICE element is omitted or empty).

NOTE 4 – If DiscloseOnError permission is not granted to the entry identified by the baseObject argument, a
partialOutcomeQualifier indicating a limitProblem or unavailableCriticalExtensions should not be returned as it may
compromise the security of this entry.

10.2.6.1 Search operation decision points for basic-access-control in the presence of additional searches

If the joinArguments argument is present, and if basic-access-control is in effect for the portion of the DIT to be
searched, the following sequence of access controls applies to each additional search:

1) No specific permission is required to the entry identified by the joinBaseObject argument.
NOTE 1 – If the joinBaseObject is within the scope of the joinArgument (i.e., when the joinSubset argument
specifies baseObject or wholeSubtree) the access controls specified in items 2) through 6) apply.

2) For each entry within the scope of the joinArgument which is to be a candidate for consideration,
Browse permission is required. Entries for which this permission is not granted are ignored.

3) If present, the joinFilter argument is applied to each entry left to be considered after taking item 2) into
account, in accordance with the following:
a) For each FilterItem which specifies an attribute, FilterMatch permission for the attribute type is

required before the FilterItem can be evaluated as either TRUE or FALSE. A FilterItem for which
this permission is not granted evaluates as UNDEFINED.

b) For each FilterItem which additionally specifies an attribute value, FilterMatch permission is
required for each stored attribute value which is to be considered for the purposes of matching. If
there is a value which both matches the FilterItem and for which permission is granted, the
FilterItem evaluates to TRUE, otherwise it evaluates to FALSE.

4) If the joinFilter argument is not present, the filter argument is applied to each entry left to be considered
after taking item 2) into account, in accordance with the following:
a) For each FilterItem which specifies an attribute, FilterMatch permission for the attribute type is

required before the FilterItem can be evaluated as either TRUE or FALSE. A FilterItem for which
this permission is not granted evaluates as UNDEFINED.

ISO/IEC 9594-3:2008 (E)

46 ITU-T Rec. X.511 (11/2008)

b) For each FilterItem which additionally specifies an attribute value, FilterMatch permission is
required for each stored attribute value which is to be considered for the purposes of matching. If
there is a value which both matches the FilterItem and for which permission is granted, the
FilterItem evaluates to TRUE, otherwise it evaluates to FALSE.

5) Once the procedures defined in 2) through 4) have been applied, the entry is either selected or discarded.
If, as a consequence of applying these controls to the entire scoped subtree, no entries have been selected
(excluding any ContinuationReferences in partialOutcomeQualifier) and if DiscloseOnError
permission is not granted to the entry identified by the baseObject argument, the operation fails and a
nameError with problem noSuchObject shall be returned. The matched element shall either contain the
name of the next superior entry to which DiscloseOnError permission is granted, or the name of the DIT
root (i.e., an empty RDNSequence). Otherwise, the operation succeeds but no subordinate information is
conveyed with it.

NOTE 2 – In the case of a nameError being returned, the empty RDNSequence may be used by a DSA which
does not have access to all superior entries.
NOTE 3 – Security policy may prevent the disclosure of knowledge information which would otherwise be
conveyed as ContinuationReferences in partialOutcomeQualifier. If such a policy is in effect and if a DUA
constrains the service by specifying chainingProhibited, the Directory may return a serviceError with problem
chainingRequired. Otherwise, the ContinuationReference is omitted from partialOutcomeQualifier.

6) Otherwise, for each selected entry, the information returned is as follows:
a) If the infoTypes element of selection specifies that attribute types only are to be returned, then for

each attribute type that is to be returned, Read permission is required. If permission is not granted,
the attribute type is omitted from EntryInformation. If as a consequence of applying these controls
no attribute type information is selected, the EntryInformation element is returned but no attribute
type information is conveyed with it (i.e., the SET OF CHOICE element is omitted or empty).

b) If the infoTypes element of selection specifies that attribute types and values are to be returned,
then for each attribute type and for each value that is to be returned, Read permission is required. If
permission to an attribute type is not granted, the attribute is omitted from EntryInformation. If
permission to an attribute value is not granted, the value is omitted from its corresponding attribute.
In the event that permission is not granted to any of the values within the attribute, an Attribute
element containing an empty SET OF AttributeValue is returned. If as a consequence of applying
these controls no attribute information is selected, the EntryInformation element is returned but no
attribute information is conveyed with it (i.e., the SET OF CHOICE element is omitted or empty).

NOTE 4 – If DiscloseOnError permission is not granted to the entry identified by the baseObject argument, a
partialOutcomeQualifier indicating a limitProblem or unavailableCriticalExtensions should not be returned as it may
compromise the security of this entry.

10.2.6.2 Alias dereferencing during Search

No specific permissions are necessary for alias dereferencing to take place in the course of a search operation (subject
to the searchAliases parameter being set to TRUE). However, for each alias entry encountered, if alias dereferencing
would result in a ContinuationReference being returned in partialOutcomeQualifier, the following access controls
apply: Read permission is required to the alias entry, the aliasedEntryName attribute and to the single value that it
contains. If any of these permissions is not granted, the ContinuationReference shall be omitted from
partialOutcomeQualifier. These access controls shall also be applied to a continuationReference that is received in a
response from another DSA. That is, the DSA shall police all continuationReferences whether they were generated
locally or not.

NOTE – In addition to the access controls described above, security policy may prevent the disclosure of knowledge information
that would otherwise be conveyed as ContinuationReferences in partialOutcomeQualifier. If such a policy is in effect and if a
DUA constrains the service by specifying chainingProhibited, the Directory may return a serviceError with problem
chainingRequired. Otherwise, the ContinuationReference is omitted from partialOutcomeQualifier.

10.2.6.3 Non-disclosure of incomplete results

If an incomplete result is being returned in EntryInformation, i.e., some of the attributes or attribute values have been
omitted because of the applicable access controls, the incompleteEntry element shall be set to TRUE if
DiscloseOnError permission is granted to at least one attribute type withheld from the result, or at least one attribute
value withheld from the result (for which attribute type Read permission was granted).

10.2.7 Search operation decision points for rule-based access control

If basic-access-control is also applied, the order in which it is applied with respect to rule-based-access-control is a local
matter, except that if access is denied to the entry, an attribute type or an attribute value by either mechanism, it shall
not be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a
permission that shall not override a deny of rule-based-access-control.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 47

If rule-based-access-control, rule-and-basic-access-control, or rule-and-simple-access-control is in effect for the portion of
the DIB where the search operation is being performed, the following access controls apply:

1) If rule-based entry level permission is denied to the entry identified by the baseObject argument, then
nameError with problem noSuchObject is returned as defined in 7.11.2.4.

2) Under rule-based-access-control, each entry within the scope of the SearchArgument for which entry
level access is denied is ignored.

3) basic-access-control on entries is applied as defined in 10.2.6 item 2).
4) The filter is applied ignoring attribute values to which access is denied under rule-based-access-control.
5) basic-access-control on the filter is applied as defined in 10.2.6 items 3) and 4).
6) For any selected entry:

a) for each attribute type that may be returned under rule-based-access-control, access must be granted
to at least one attribute value of that type;

b) attribute values to which access is denied under rule-based-access-control shall not be returned.
7) basic-access-control is applied to the information returned as defined in 10.2.6 item 5).

11 Directory Modify operations
There are four operations to modify the Directory: addEntry, removeEntry, modifyEntry, and modifyDN defined
in 11.1 through 11.4, respectively.

NOTE 1 – Each of these operations identifies the target entry by means of its distinguished name.
NOTE 2 – The success of addEntry, removeEntry, and modifyDN operations may depend on the physical distribution of the DIB
across the Directory. Failure shall be reported with an updateError with problem affectsMultipleDSAs. See ITU-T Rec. X.518 |
ISO/IEC 9594-4.
NOTE 3 – In the event of failure of the underlying communications mechanism, the outcome of the operations is undetermined.
The user should use Directory interrogation operations to check whether the attempted modification operation succeeded or not.

11.1 Add Entry

11.1.1 Add Entry syntax

An addEntry operation is used to add a leaf entry (either an object entry or an alias entry) to the DIT. The arguments of
the operation may be signed (see 17.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2) by the requestor. If so requested, the
Directory may sign the result.

addEntry OPERATION ::= {
 ARGUMENT AddEntryArgument
 RESULT AddEntryResult
 ERRORS { attributeError | nameError | serviceError | referral | securityError |
 updateError }
 CODE id-opcode-addEntry }

AddEntryArgument ::= OPTIONALLY-PROTECTED {
 SET {
 object [0] Name,
 entry [1] SET OF Attribute{{SupportedAttributes}},
 targetSystem [2] AccessPoint OPTIONAL,
 COMPONENTS OF CommonArguments } }

AddEntryResult ::= CHOICE {
 null NULL,
 information OPTIONALLY-PROTECTED-SEQ {
 SEQUENCE { COMPONENTS OF CommonResultsSeq } } }

11.1.2 Add Entry arguments

The object argument identifies the entry to be added. Its immediate superior, which must already exist for the operation
to succeed, is determined by removing the last RDN component (which belongs to the entry to be created). object may
be an alternative name and may include context information, as described in 9.3 of ITU-T Rec. X.501 |
ISO/IEC 9594-2. The last RDN component shall be the primary RDN and shall include all distinguished values with
their context lists for all attributes contributing to the RDN. Where any AttributeTypeAndDistinguishedValue in the

ISO/IEC 9594-3:2008 (E)

48 ITU-T Rec. X.511 (11/2008)

last RDN component is provided without alternative distinguished values, the single value provided shall be used as the
single distinguished value for that attribute.

The entry argument contains the attribute information which, together with that from the RDN, constitutes the entry to
be created. The Directory shall ensure that the entry conforms to the Directory schema. Where the entry being created is
an alias, no check is made to ensure that the aliasedEntryName attribute points to a valid entry.

The targetSystem argument indicates the DSA to hold the new entry. If this argument is absent, it shall be taken to
mean the same DSA as holds the superior of the new object. If the argument is present, it shall be the DSA with the
specified AccessPoint. The parameter shall be absent when subentries are to be added.

If the argument is present, the targetSystem bit in the criticalExtensions parameter in CommonArguments shall be
set, indicating that this extension is critical.

NOTE 1 – If the choice of indicated or implied DSA conflicts with local administrative policy, the operation is not performed
and an error is returned.

The CommonArguments (see 7.3) includes a specification of the service controls and security parameters applying to
the request. The dontDereferenceAlias option is ignored (and treated as set) unless the useAliasOnUpdate critical
extension bit is set in criticalExtensions. Thus aliases are dereferenced by this operation only if dontDereferenceAlias
is not set and useAliasOnUpdate is set. The sizeLimit component is ignored if provided. If the argument of this
operation is to be signed by the requestor, the SecurityParameters (see 7.10) component shall be included in the
arguments.

NOTE 2 – Update operations that involve dereferencing of an alias name will always fail if they encounter first edition DSAs.

11.1.3 Add Entry results

Should the request succeed, a result shall be returned. If this result is to be signed by the Directory, the
SecurityParameters (see 7.10) component of CommonResultsSeq (see 7.4) shall be included in the results. If the
result of this operation is not to be signed by the Directory, no information shall be conveyed with the result.

11.1.4 Add Entry errors

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors
shall be reported are defined in clause 12.

11.1.5 Add operation decision points for basic access control

If rule-based-access-control is also applied the order in which it is applied with respect to basic-access-control is a local
matter, except that if access is denied to the entry, an attribute type or an attribute value by either mechanism, it shall
not be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a
permission that shall not override a deny of rule-based-access-control.

If basic-access-control is in effect for the entry being added, the following sequence of access controls applies:
1) No specific permission is required to the immediate superior of the entry identified by the object

argument.
NOTE 1 – Security policy may prevent Directory users from adding entries across DSA boundaries (e.g., using the targetSystem
argument). In this event, an appropriate nameError, serviceError, securityError or updateError may be returned provided that it
does not compromise the existence of the immediate superior entry. If it does (i.e., DiscloseOnError is not granted to the superior
entry), the procedure defined in 7.11.3 shall be followed with respect to the superior entry.

2) If an entry already exists with a distinguished name equal to the object argument, the operation fails in
accordance with 11.1.5.1, item a).

3) Add permission is required for the new entry being added. If this permission is not granted, the operation
fails in accordance with 11.1.5.1, item b).

NOTE 2 – The Add permission shall be provided as prescriptiveACI when attempting to add an entry and as
prescriptiveACI or subentryACI when attempting to add a subentry.

4) For each attribute type and for each value that is to be added, Add permission is required. If any
permission is absent, the operation fails in accordance with 11.1.5.1, item c).

11.1.5.1 Error returns

If the operation fails as defined in 11.1.5, the following procedure applies:
a) If the operation fails as defined in 11.1.5 item 2), the valid error returns are one of: if DiscloseOnError or

Add permission is granted to the existing entry, an updateError with problem entryAlreadyExists shall
be returned. Otherwise, the procedure described in 7.11.3 is followed with respect to the entry being
added.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 49

b) If the operation fails as defined in 11.1.5 item 3), the procedure described in 7.11.3 is followed with
respect to the entry being added.

c) If the operation fails as defined in 11.1.5 item 4), the valid error return is securityError with problem
insufficientAccessRights or noInformation.

11.1.6 Add Entry operation decision points for rule-based-access-control

If basic-access-control is also applied, the order in which it is applied with respect to rule-based-access-control is a local
matter, except that if access is denied to the entry, an attribute type or an attribute value by either mechanism, it shall
not be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a
permission that shall not override a deny of rule-based-access-control.

If rule-based-access-control, rule-and-basic-access-control, or rule-and-simple-access-control is in effect for the portion of
the DIB where the addEntry operation is being performed, the following sequence of access control applies:

1) If rule-based entry level permission to the immediate superior is denied, then nameError with problem
noSuchObject is returned as defined in 7.11.2.4.

2) basic-access-control is applied as defined in 11.1.5.

11.2 Remove Entry

11.2.1 Remove Entry syntax

A Remove Entry operation is used to remove a leaf entry (either an object entry, family member or an alias entry) or a
non-leaf ancestor and its children, from the DIT. The arguments of the operation may be signed (see 17.3 of ITU-T Rec.
X.501 | ISO/IEC 9594-2) by the requestor. If so requested, the Directory may sign the result.

removeEntry OPERATION ::= {
 ARGUMENT RemoveEntryArgument
 RESULT RemoveEntryResult
 ERRORS { nameError | serviceError | referral | securityError | updateError }
 CODE id-opcode-removeEntry }

RemoveEntryArgument ::= OPTIONALLY-PROTECTED {
 SET {
 object [0] Name,
 COMPONENTS OF CommonArguments } }

RemoveEntryResult ::= CHOICE {
 null NULL,
 information OPTIONALLY-PROTECTED-SEQ {
 SEQUENCE { COMPONENTS OF CommonResultsSeq } } }

11.2.2 Remove Entry arguments

The object argument identifies the entry to be deleted. The object may be an alternative name and may include context
information, as described in 9.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2.

The CommonArguments (see 7.3) includes a specification of the service controls and security parameters applying to
the request. The dontDereferenceAlias option is ignored (and treated as set) unless the useAliasOnUpdate critical
extension bit is set in criticalExtensions. Thus aliases are dereferenced by this operation only if dontDereferenceAlias
is not set and useAliasOnUpdate is set. The sizeLimit component is ignored if provided. If the argument of this
operation is to be signed by the requestor, the SecurityParameters (see 7.10) component shall be included in the
arguments.

NOTE – Update operations that involve dereferencing of an alias name will always fail if they encounter first edition DSAs.

FamilyGrouping may be set as follows:
– entryOnly is the default for this operation. The entry to be removed shall be a leaf entry.
– compoundEntry may be specified for an ancestor. All the members of the compound entry will be

removed. The operation will fail with an updateError with problem notAncestor if the target object is
not an ancestor. The operation will also fail with an appropriate error if it is not possible to remove all
members, e.g., for security reason.

If FamilyGrouping is absent or set to any other value than above, entryOnly is assumed.

ISO/IEC 9594-3:2008 (E)

50 ITU-T Rec. X.511 (11/2008)

11.2.3 Remove Entry results

Should the request succeed, a result shall be returned. If this result is to be signed by the Directory, the
SecurityParameters (see 7.10) component of CommonResultsSeq (see 7.4) shall be included in the results. If the
result of the operation is not to be signed by the Directory, no information shall be conveyed with the result.

When family information is selected by familyReturn in EntryInformationSelection, the information returned is
defined in 7.6.4.

The information returned in information component corresponds to the state of the DIB after the (successful) Modify
Entry operation.

11.2.4 Remove Entry errors

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors
shall be reported are defined in clause 12.

11.2.5 Remove Entry operation decision points for basic access control

If rule-based-access-control is also applied, the order in which it is applied with respect to basic-access-control is a local
matter, except that if access is denied to the entry, an attribute type or an attribute value by either mechanism, it shall
not be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a
permission that shall not override a deny of rule-based-access-control.

If basic-access-control is in effect for the entry being removed, the following access controls apply:
– Remove permission is required for the entry being removed. If this permission is not granted, the

operation fails in accordance with 7.11.1.
NOTE – No specific permissions are required for any of the attributes and attribute values present within the entry being
removed.

11.2.6 Remove Entry operation decision points for rule-based access control

If basic-access-control is also applied, the order in which it is applied with respect to rule-based-access-control is a local
matter, except that if access is denied to the entry, an attribute type or an attribute value by either mechanism, it shall
not be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a
permission that shall not override a deny of rule-based-access-control.

If rule-based-access-control, rule-and-basic-access-control, or rule-and-simple-access-control is in effect for the entry being
removed, the following sequence of access control applies:

1) If rule-based entry level permission is not granted to the target entry, the operation fails with nameError
with problem noSuchObject as defined in 7.11.2.4.

2) Entry level basic-access-control is applied as specified in 11.2.5.
3) If rule-based access is not granted to an attribute value, then it shall not be removed.
4) If rule-based RDN permission is not granted, then none of the attribute values of the RDN shall be

removed. If all the values of an attribute are removed, then the attribute is removed from the entry. If all
the attributes are removed, then the entry is removed from the DIT. If at least one attribute value is
removed, and the requestor does not have RDN permission, the operation succeeds but the entry remains
in the DIT with one or more attributes.

NOTE 1 – Unless all the values of the label context for distinguished values of the entry have all the same values, this may not
support a rule-based access-control policy.

5) Under rule-based-access-control, if RDN permission is granted, but permission to access at least one other
attribute value is not granted, then the RDN is not removed, and the operation fails with securityError
with problem insufficientAccessRights. It is a local matter whether other attribute values to which the
requestor has access permission are removed or not.

NOTE 2 – This reveals to the requestor that at least one attribute value exists that is inaccessible.

6) If all the attributes of the entry are removed, then the entry is removed from the DIT, and the operation is
successful.

11.3 Modify Entry

11.3.1 Modify Entry syntax

The Modify Entry operation is used to perform a series of one or more of the following modifications to a single entry:
a) add a new attribute;

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 51

b) remove an attribute;
c) add attribute values;
d) remove attribute values;
e) replace attribute values;
f) modify an alias;
g) add a constant to all values of an attribute;
h) delete all attribute values for which fallback is FALSE in every context.

The arguments of the operation may be signed (see 17.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2) by the requestor. If so
requested, the Directory may sign the result.

modifyEntry OPERATION ::= {
 ARGUMENT ModifyEntryArgument
 RESULT ModifyEntryResult
 ERRORS { attributeError | nameError | serviceError | referral | securityError |
 updateError }
 CODE id-opcode-modifyEntry }

ModifyEntryArgument ::= OPTIONALLY-PROTECTED {
 SET {
 object [0] Name,
 changes [1] SEQUENCE OF EntryModification,
 selection [2] EntryInformationSelection OPTIONAL,
 COMPONENTS OF CommonArguments } }

ModifyEntryResult ::= CHOICE {
 null NULL,
 information OPTIONALLY-PROTECTED-SEQ {
 SEQUENCE {
 entry [0] EntryInformation OPTIONAL,
 COMPONENTS OF CommonResultsSeq } } }

EntryModification ::= CHOICE {
 addAttribute [0] Attribute{{SupportedAttributes}},
 removeAttribute [1] AttributeType,
 addValues [2] Attribute{{SupportedAttributes}},
 removeValues [3] Attribute{{SupportedAttributes}},
 alterValues [4] AttributeTypeAndValue,
 resetValue [5] AttributeType{{SupportedAttributes}},
 replaceValues [6] Attribute }

11.3.2 Modify Entry arguments

The object argument identifies the entry to which the modifications should be applied. The object may be an
alternative name and may include context information, as described in 9.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2.

The changes argument defines a sequence of modifications that are applied in the order specified. If any of the
individual modifications fails, then an attributeError is generated and the entry left in the state it was prior to the
operation. That is, the operation is atomic. The end result of the sequence of modifications shall not violate the
Directory schema. However, it is possible, and sometimes necessary, for the individual EntryModification changes to
appear to do so. The following types of modification may occur:

a) addAttribute – This identifies a new attribute to be added to the entry, which is fully specified by the
argument. Any attempt to add an already existing attribute results in an attributeError.

b) removeAttribute – The argument identifies (by its type) an attribute to be removed from the entry. Any
attempt to remove a non-existing attribute results in an attributeError.

NOTE 1 – This operation is not allowed if the attribute type is present in the RDN.

c) addValues – This identifies an attribute by the attribute type in the argument, and specifies one or more
attribute values to be added to the attribute. An attempt to add an already existing value results in an
error. An attempt to add a value to a non-existent type results in the type and value being added.

d) removeValues – This identifies an attribute by the attribute type in the argument, and specifies one or
more attribute values to be removed from the attribute. If the values are not present in the attribute, this
results in an attributeError. An attempt to remove the last value from an attribute results in the attribute
type being removed.

ISO/IEC 9594-3:2008 (E)

52 ITU-T Rec. X.511 (11/2008)

NOTE 2 – This operation is not allowed if one of the values is present in the RDN.

 Attributes or attribute values to be added may be specified with or without a context list. Contexts cannot
be added to existing attribute values, removed from existing attribute values, nor modified. To alter a
context list of an existing attribute value, first remove the attribute value, and then insert the same
attribute value with the new context list. When an attribute value is removed, no context list shall be
supplied, and any existing context list associated with the attribute value being removed is removed with
the attribute value.

e) alterValues – This identifies an attribute type, and specifies a quantity to be added to all values of the
attribute. An attempt to apply this modification to an attribute whose syntax is other than INTEGER or
REAL results in an attributeError.

f) resetValue – This identifies an attribute by its type, and removes all values of the attribute (if any) which
have an associated attribute value context for which fallback is FALSE. resetValue does not remove any
attribute values that have no context.

g) replaceValues – This replaces all existing values of the given attribute type with the values supplied,
creating the attribute type if it did not exist. A replace with no value removes the attribute type if it
exists, and is ignored if the type does not exist.

NOTE 3 – This Directory Specification does not establish rules regarding the order in which a performing DSA is to decode and
process PDUs that it receives. If a DSA decodes the entire PDU before processing each element, and if a new and unexpected
value, such as replaceValues, is in place for a non-optional CHOICE, it is possible that the DSA will signal an encoding error. If,
however, the DSA decodes the elements as they are needed, it will most likely detect an unknown critical extension and return an
unsupported critical extension reason code to signal that the operation failed. In either case, it is correct for the DSA to not
process the operation; however, implementers should be aware that either signal may be used to indicate the failure of the
operation.

Values may be replaced by a combination of addValues and removeValues in a single ModifyEntry operation.

The CommonArguments (see 7.3) includes a specification of the service controls and security parameters applying to
the request. The dontDereferenceAlias option is ignored (and treated as set) unless the useAliasOnUpdate critical
extension bit is set in criticalExtensions. Thus, aliases are dereferenced by this operation only if
dontDereferenceAlias is not set and useAliasOnUpdate is set. The sizeLimit component is ignored if provided. If the
argument of this operation is to be signed by the requestor, the SecurityParameters (see 7.10) component shall be
included in the arguments.

NOTE 4 – Update operations that involve dereferencing of an alias name will always fail if they encounter first edition DSAs.

The selection argument specifies an optional entry information selection that controls whether information is returned
in the operation result and specifies the specific attributes and values to be returned. It shall only be specified if the
version negotiated through the bind operation is v2 or higher.

The operation may be used to modify directory operational attributes. Only those directory operational attributes which
are not classified noUserModification (and to which the user has effective modification access rights) may be
modified.

NOTE 5 – Whether or not user modification is permitted, the Directory may change the values of directory operational attributes
as a side effect of other Directory operations.

The operation may be used to modify collective attributes only if the service control subentries is TRUE and if the
object is the subentry actually holding the collective attribute(s) to be modified.

NOTE 6 – Caution should therefore be exercised when modifying the information returned on reading an entry: some of the
information may be from collective attributes, and cannot be modified in an operation directed at the entry itself. For example, it
is not possible to delete a collective attribute from an (ordinary) entry via a removeAttribute entry modification to the entry (an
attributeError with problem noSuchAttributeOrValue would be returned).

The operation may be used to modify an entry's Object Class attribute value if the values specify auxiliary object
classes. However, an attempt to change an Object Class value which specifies an entry's structural object class shall
result in an updateError with problem objectClassModificationProhibited. Any modification to auxiliary object
classes shall leave the superclass chains consistent and correct with the resultant object class definition.

11.3.3 Modify Entry results

Should the request succeed, a result shall be returned. If no selection was specified in the operation argument and the
result is not to be signed, the null result is returned. If no selection was specified (but the result is to be signed by the
Directory), the entry component is omitted. If the result is to be signed by the Directory, the SecurityParameters
(see 7.10) component of CommonResultsSeq (see 7.4) shall be included in the results. If the result is not to be signed
by the Directory, no entry information shall be conveyed with the result.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 53

11.3.4 Modify Entry errors

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors
shall be reported are defined in clause 12.

11.3.5 Modify Entry operation decision points for basic access control

If rule-based-access-control is also applied, the order in which it is applied with respect to basic-access-control is a local
matter, except that if access is denied to the entry, an attribute type or an attribute value by either mechanism, it shall
not be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a
permission that shall not override a deny of rule-based-access-control.

If basic-access-control is in effect for the entry being modified, the following sequence of access controls applies:
1) Modify permission is required for the entry being modified. If this permission is not granted, the

operation fails in accordance with 7.11.1.
2) For each of the specified EntryModification arguments applied in sequence, the following permissions

are required:
i) Add permission for the attribute type and for each of the values specified in an addAttribute

parameter. If these permissions are not granted or the attribute already exists, the operation fails in
accordance with 11.3.5.1, item a).

ii) Remove permission for the attribute type specified in a removeAttribute parameter. If this
permission is not granted, the operation fails in accordance with 11.3.5.1, item b).

NOTE 1 – No specific permissions are required for any of the attribute values present within the attribute being
removed.

iii) Add permission on each of the attribute values specified in an addValues parameter. If these
permissions are not granted or any of the attribute values already exist, the operation fails in
accordance with 11.3.5.1, item c).

iv) Remove permission on each of the values specified in a removeValues parameter. If these
permissions are not granted, the operation fails in accordance with 11.3.5.1, item d).
 NOTE 2 – If the end result of a removeValues modification is to remove the last value of an attribute

(which causes the attribute itself to be removed), Remove permission is also required on the specified
attribute type.

v) Add and Remove permission on each of the values specified in an alterValues parameter. If these
permissions are not granted, the operation fails in accordance with 11.3.5.1, item e).

vi) Remove permission on each of the values to be removed via a resetValue parameter. If at least one
value is to be removed and these permissions are not granted, the operation fails in accordance
with 11.3.5.1, item f).

11.3.5.1 Error returns

If the operation fails as defined in 11.3.5, the following procedure applies:
a) If the operation fails as defined in 11.3.5 item 2), subitem i), the valid error returns are one of: if the

attribute already exists and DiscloseOnError or Add is granted to that attribute, an attributeError with
problem attributeOrValueAlreadyExists shall be returned; otherwise, a securityError with problem
insufficientAccessRights or noInformation shall be returned.

b) If the operation fails as defined in 11.3.5 item 2), subitem ii), the valid error returns are one of: if
DiscloseOnError permission is granted to the attribute being removed and the attribute exists, a
securityError with problem insufficientAccessRights or noInformation shall be returned; otherwise,
an attributeError with problem noSuchAttributeOrValue shall be returned.

c) If the operation fails as defined in 11.3.5 item 2), subitem iii), the valid error returns are one of: if an
attribute value already exists and DiscloseOnError or Add is granted to that attribute value, an
attributeError with problem attributeOrValueAlreadyExists shall be returned; otherwise,
DiscloseOnError permission at the attribute level shall be verified. If DiscloseOnError is granted to the
attribute, a securityError with problem insufficientAccessRights or noInformation shall be returned;
otherwise, an attributeError with problem noSuchAttributeOrValue shall be returned.

d) If the operation fails as defined in 11.3.5 item 2), subitem iv), the valid error returns are one of: if
DiscloseOnError permission is granted to any of the attribute values being removed, a securityError
with problem insufficientAccessRights or noInformation shall be returned; otherwise, an
attributeError with problem noSuchAttributeOrValue shall be returned.

ISO/IEC 9594-3:2008 (E)

54 ITU-T Rec. X.511 (11/2008)

e) If the operation fails as defined in 11.3.5 item 2), subitem v), the valid error returns are one of: if
DiscloseOnError permission is granted to any of the attribute values being altered, a securityError with
problem insufficientAccessRights or noInformation shall be returned; otherwise, an attributeError
with problem noSuchAttributeOrValue shall be returned.

f) If the operation fails as defined in 11.3.5 item 2), subitem vi), the valid error returns are one of: if
DiscloseOnError permission is granted to any of the attribute values being removed, a securityError
with problem insufficientAccessRights or noInformation shall be returned; otherwise, an
attributeError with problem noSuchAttributeOrValue shall be returned.

11.3.6 Modify Entry operation decision points for rule-based access control

If basic-access-control is also applied, the order in which it is applied with respect to rule-based-access-control is a local
matter, except that if access is denied to the entry, an attribute type or an attribute value by either mechanism, it shall
not be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a
permission that shall not override a deny of rule-based-access-control.

If rule-based-access-control, rule-and-basic-access-control, or rule-and-simple-access-control is in effect for the entry being
modified, the following sequence of access control applies:

1) If rule-based entry level permission is not granted to the target entry, then the operation fails with
nameError with problem noSuchObject according to 7.11.2.4.

2) Entry level basic-access-control is applied according to 11.3.5.1.
3) Access must be granted to each of the attribute values (if any) that are removed. If rule-based-access-

control permission is not granted to any attribute value that is to be removed, the operation fails with
attributeError with problem noSuchAttributeOrValue.

4) Attribute level basic-access-control is applied as in 11.3.5 item 2).

11.4 Modify DN

11.4.1 Modify DN syntax

The Modify DN operation is used to change the Relative Distinguished Name of an entry, to change the primary
Relative Distinguished Name of an entry, to add and subtract distinguished values of attributes, and/or to move an entry
to a new superior in the DIT. It may be used with object entries, including compound entries or alias entries.

For family members, its use is restricted to the case where the affected family members stay within the same compound
entry.

If the entry has subordinates, then all subordinates are renamed or moved accordingly (i.e., the subtree remains intact).
The arguments of the operation may be signed (see 17.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2) by the requestor. If so
requested, the Directory may sign the result.

NOTE 1 – First edition systems may use the operation only to change the Relative Distinguished Name of a leaf entry.
NOTE 2 – Second and subsequent edition systems may use the operation to move entries to a new superior only if the old
superior, the new superior, the entry, and all its subordinates are in the one DSA.
NOTE 3 – The operation does not move entries to a new DSA; all entries remain in the original DSA.
NOTE 4 – The operation either succeeds or fails in its entirety; it shall not fail with some entries moved and some not moved. No
intermediate states of the operation shall be externally visible to users of the Directory.
NOTE 5 – Some offline activity may be required following this operation to preserve consistency, for example, to update
attributes in any entries that hold Distinguished Name values that refer to the renamed or moved entry(ies).
NOTE 6 – The modifyTimeStamp attribute is not updated for entries subordinate to the renamed or moved entry.

modifyDN OPERATION ::= {
 ARGUMENT ModifyDNArgument
 RESULT ModifyDNResult
 ERRORS { nameError | serviceError | referral | securityError | updateError }
 CODE id-opcode-modifyDN }

ModifyDNArgument ::= OPTIONALLY-PROTECTED {
 SET {
 object [0] DistinguishedName,
 newRDN [1] RelativeDistinguishedName,
 deleteOldRDN [2] BOOLEAN DEFAULT FALSE,
 newSuperior [3] DistinguishedName OPTIONAL,
 COMPONENTS OF CommonArguments } }

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 55

ModifyDNResult ::= CHOICE {
 null NULL,
 information OPTIONALLY-PROTECTED-SEQ {
 SEQUENCE {
 newRDN RelativeDistinguishedName,
 COMPONENTS OF CommonResultsSeq } } }

11.4.2 Modify DN arguments

The object argument identifies the entry whose Distinguished Name is to be modified. Aliases in the name shall not be
dereferenced. The object may be an alternative name and may include context information, as described in 9.3 of
ITU-T Rec. X.501 | ISO/IEC 9594-2.

The newRDN argument specifies the new RDN of the entry. If the operation moves the entry to a new superior without
changing its RDN, the old RDN is supplied for this parameter.

If an attribute value in the new RDN does not already exist in the entry (either as part of the old RDN or as a non-
distinguished value), it is added. If it cannot be added, an error is returned.

For each attribute contributing to the RDN, newRDN may provide alternative distinguished values if those
distinguished values are differentiated by context, as described in 9.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2. If so,
newRDN shall be a primary RDN and shall include all distinguished values with their context lists for all attributes
contributing to the RDN (including existing distinguished values that are to be retained as distinguished values). An
AttributeTypeAndDistinguishedValue in newRDN which is provided without alternative distinguished values
indicates a single distinguished value for that attribute.

If the deleteOldRDN flag is set, all attribute values in the old RDN that are not in the new RDN are deleted. This
includes alternative distinguished values differentiated by contexts, if they exist in the old RDN but are not included in
the new RDN. If this flag is not set, the old distinguished values shall remain in the entry (but are no longer
distinguished values). The flag shall be set where a single value attribute in the RDN has its value changed by the
operation. If an attribute value in the old RDN is the same as the one in the new RDN except for their context lists, the
one in the old RDN is replaced by the one in the new RDN. If this operation removes the last attribute value of an
attribute, that attribute shall be deleted.

The newSuperior argument, if present, specifies that the entry is to be moved to a new superior in the DIT. The entry
becomes an immediate subordinate of the entry with the indicated Distinguished Name, which must be an already
existing object entry. The new superior shall not be the entry itself or any of its subordinates, or an alias, or such that
the moved entry violates any DIT structure rules. It is possible that entries subordinate to the moved entry may violate
the active subschema, in which case it is the responsibility of the Subschema Administrative Authority to
make subsequent adjustments to these entries to make them consistent with the subschema, as described in clause 14 of
ITU-T Rec. X.501 | ISO/IEC 9594-2.

If the argument is present, the newSuperior bit in the criticalExtensions parameter in CommonArguments shall be
set, indicating that this extension is critical.

The newSuperior may be an alternative name and may include context information, as described in 9.3 of ITU-T
Rec. X.501 | ISO/IEC 9594-2.

The CommonArguments (see 7.3) includes a specification of the service controls and security parameters applying to
the request. For the purposes of this operation, the dontDereferenceAlias option and the sizeLimit component are not
relevant and are ignored if provided. Aliases are never dereferenced by this operation. If the argument of this operation
is to be signed by the requestor, the SecurityParameters (see 7.10) component shall be included in the arguments.

11.4.3 Modify DN results

Should the request succeed, a result shall be returned. If this result is to be signed by the Directory, the
SecurityParameters (see 7.10) component of CommonResultsSeq (see 7.4), and the new RDN shall be included in
the results. If the result is not to be signed by the Directory, no information shall be conveyed with the result.

11.4.4 Modify DN errors

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors
shall be returned are defined in clause 12.

11.4.5 ModifyDN decision points for basic access control

If rule-based-access-control is also applied, the order in which it is applied with respect to basic-access-control is a local
matter, except that if access is denied to the entry, an attribute type or an attribute value by either mechanism, it shall

ISO/IEC 9594-3:2008 (E)

56 ITU-T Rec. X.511 (11/2008)

not be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a
permission that shall not override a deny of rule-based-access-control.

If basic-access-control is in effect for the entry being renamed, the following access controls apply:
– If the effect of the operation is to change the RDN of the entry, Rename permission is required for the

entry being renamed (considered with its original name). If this permission is not granted, the operation
fails in accordance with 11.4.5.1.

– If the effect of the operation is to move an entry to a new superior in the DIT, Export permission is
required for the entry being considered with its original name, and Import permission is required for the
entry being considered with its new name. If either of these permissions is not granted, the operation fails
in accordance with 11.4.5.1.

NOTE 1 – The Import permission shall be provided as prescriptive ACI.
NOTE 2 – No additional permissions are required even if, as a result of modifying the last RDN of the name, a new distinguished
value needs to be added or an old one removed.

11.4.5.1 Error returns

If the operation fails as defined in 11.4.5, the procedure described in 7.11.1 is followed with respect to the entry being
renamed (considered with its original name).

11.4.6 Modify DN operation decision points for rule-based access control

If basic-access-control is also applied, the order in which it is applied with respect to rule-based-access-control is a local
matter, except that if access is denied to the entry, an attribute type or an attribute value by either mechanism, it shall
not be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a
permission that shall not override a deny of rule-based-access-control.

If rule-based-access-control, rule-and-basic-access-control, or rule-and-simple-access-control is in effect for the entry being
renamed, the following sequence of access control applies:

1) If rule-based RDN permission is not granted to the target entry, the operation fails with nameError with
problem noSuchObject in accordance with 7.11.2.4.

2) Entry level basic-access-control is applied as in 11.4.5.
3) If the effect of the operation is to move the entry to a new superior in the DIT, rule-based RDN

permission is required to the new superior, else the operation fails with nameError with problem
noSuchObject in accordance with 7.11.2.4.

12 Errors

12.1 Error precedence

The Directory does not continue to perform an operation beyond the point at which it determines that an error is to be
reported.

NOTE 1 – An implication of this rule is that the first error encountered can differ for repeated instances of the same query, as
there is not a specific logical order in which to process a given query. For example, DSAs may be searched in different orders.
NOTE 2 – The rules of error precedence specified here apply only to the abstract service provided by the Directory as a whole.
Different rules apply when the internal structure of the Directory is taken into account.

Should the Directory simultaneously detect more than one error, the following list determines which error is reported.
An error higher in the list has a higher logical precedence than one below it, and is the error which is reported.

a) nameError;
b) updateError;
c) attributeError;
d) securityError;
e) serviceError.

The following errors do not present any precedence conflicts:
a) abandonFailed, because it is specific to one operation, Abandon, which can encounter no other error;
b) abandoned, which is not reported if an Abandon operation is received simultaneously with the detection

of an error. In this case, an abandonFailed error with problem tooLate is returned along with the report
of the actual error encountered;

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 57

c) referral, which is not a "real" error, only an indication that the Directory has detected that the DUA
should present its request to another access point.

12.2 Abandoned

This outcome may be reported for any outstanding directory enquiry operation (i.e., Read, Search, Compare, List) if the
DUA invokes an Abandon operation with the appropriate InvokeId. If the parameters of the operation were signed
(see 17.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2) by the requestor, then the Directory may sign the error parameters.

abandoned ERROR ::= { -- not literally an "error"
 PARAMETER OPTIONALLY-PROTECTED {
 SET {
 COMPONENTS OF CommonResults} }
 CODE id-errcode-abandoned }

The SecurityParameters component (see 7.10) shall be included in the CommonResults (see 7.4) if the error is to be
signed by the Directory.

12.3 Abandon Failed

The abandonFailed error reports a problem encountered during an attempt to abandon an operation. If the parameters
of the operation were signed (see 17.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2) by the requestor, then the Directory may
sign the error parameters.

abandonFailed ERROR ::= {
 PARAMETER OPTIONALLY-PROTECTED {
 SET {
 problem [0] AbandonProblem,
 operation [1] InvokeId,
 COMPONENTS OF CommonResults } }
 CODE id-errcode-abandonFailed }

AbandonProblem ::= INTEGER { noSuchOperation (1), tooLate (2), cannotAbandon (3) }

The various parameters have the following meanings.

The particular problem encountered is specified. Any of the following problems may be indicated:
a) noSuchOperation – When the Directory has no knowledge of the operation which is to be abandoned

(this could be because no such invoke took place, or because the Directory has forgotten about it);
b) tooLate – When the Directory has already responded to the operation;
c) cannotAbandon – When an attempt has been made to abandon an operation for which this is prohibited

(e.g., modify), or the abandon could not be performed.

The identification of the particular operation (invocation) to be abandoned.

The SecurityParameters component (see 7.10) shall be included in the CommonResults (see 7.4) if the error is to be
signed by the Directory.

The information provided by the error problem can optionally be qualified by the use of the notification component of
CommonResults.

12.4 Attribute Error

An attributeError reports an attribute-related problem. If the parameters of the operation were signed (see 17.3 of
ITU-T Rec. X.501 | ISO/IEC 9594-2) by the requestor, then the Directory may sign the error parameters.

attributeError ERROR ::= {
 PARAMETER OPTIONALLY-PROTECTED { SET {
 object [0] Name,
 problems [1] SET OF SEQUENCE {
 problem [0] AttributeProblem,
 type [1] AttributeType,
 value [2] AttributeValue OPTIONAL },
 COMPONENTS OF CommonResults } }
 CODE id-errcode-attributeError }

AttributeProblem ::= INTEGER {

ISO/IEC 9594-3:2008 (E)

58 ITU-T Rec. X.511 (11/2008)

 noSuchAttributeOrValue (1),
 invalidAttributeSyntax (2),
 undefinedAttributeType (3),
 inappropriateMatching (4),
 constraintViolation (5),
 attributeOrValueAlreadyExists (6),
 contextViolation (7) }

The various parameters have the following meaning.

The object parameter identifies the entry to which the operation was being applied when the error occurred. The name
returned may include only the primary distinguished values for attributes containing multiple distinguished values
differentiated by context (i.e., the DSA need not apply context selection as described in 7.7, as it does for successful
operations).

One or more problems may be specified. Each problem (identified below) is accompanied by an indication of the
attribute type, and, if necessary to avoid ambiguity, the value, which caused the problem:

a) noSuchAttributeOrValue – The named entry lacks one of the attributes or attribute values specified as
an argument of the operation.

b) invalidAttributeSyntax – A purported attribute value, specified as an argument of the operation, does
not conform to the attribute syntax of the attribute type.

c) undefinedAttributeType – An undefined attribute type was provided as an argument to the operation.
This error may occur only in relation to addEntry or modifyEntry operations.

d) inappropriateMatching – An attempt was made, e.g., in a filter, to use a matching rule not defined for
the attribute type concerned.

e) constraintViolation – An attribute value supplied in the argument of an operation does not conform to
the constraints imposed by ITU-T Rec. X.501 | ISO/IEC 9594-2 or by the attribute definition (e.g., the
value exceeds the maximum size allowed).

f) attributeOrValueAlreadyExists – An attempt was made to add an attribute which already existed in the
entry, or a value which already existed in the attribute.

g) contextViolation – A context list or context supplied with an attribute value in the argument of an
operation does not conform to the constraints imposed by ITU-T Rec. X.501 | ISO/IEC 9594-2, by the
context definition (e.g., the context value is not of the correct syntax), or the DIT Context Use.

The SecurityParameters component (see 7.10) shall be included in the CommonResults (see 7.4) if the error is to be
signed by the Directory.

The information provided by the error problem can optionally be qualified by the use of the notification component of
CommonResults.

12.5 Name Error

A nameError reports a problem related to the name provided as an argument to an operation. If the parameters of the
operation were signed (see 17.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2) by the requestor, then the Directory may sign
the error parameters.

nameError ERROR ::= {
 PARAMETER OPTIONALLY-PROTECTED { SET {
 problem [0] NameProblem,
 matched [1] Name,
 COMPONENTS OF CommonResults } }
 CODE id-errcode-nameError }

NameProblem ::= INTEGER {
 noSuchObject (1),
 aliasProblem (2),
 invalidAttributeSyntax (3),
 aliasDereferencingProblem (4),
 contextProblem (5) }

The various parameters have the following meaning.

The particular problem encountered. Any of the following problems may be indicated:
a) noSuchObject – The name supplied does not match the name of any object.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 59

b) aliasProblem – An alias has been dereferenced which names no object.
c) invalidAttributeSyntax – An attribute type and its accompanying attribute value in an AVA in the name

are incompatible.
d) aliasDereferencingProblem – An alias was encountered in a situation where it was not allowed or

where access was denied.
e) contextProblem – A context type or value used in a name is not understood or is invalid, the use of a

context variant name is not acceptable, or during name resolution a purported name matches the names
of more than one DIT entry.

The matched parameter contains the name of the lowest entry (object or alias) in the DIT that was matched, and is a
truncated form of the name provided or, if an alias has been dereferenced, of the resulting name. The name returned
may include only the primary distinguished values for attributes containing multiple distinguished values differentiated
by context (i.e., the DSA need not apply context selection as described in 7.7, as it does for successful operations).

NOTE – If there is a problem with the attribute types and/or values in the name offered in a Directory operation argument, this is
reported via a nameError with problem invalidAttributeSyntax rather than as an attributeError or an updateError.

The SecurityParameters component (see 7.10) shall be included in the CommonResults (see 7.4) if the error is to be
signed by the Directory.

The information provided by the error problem can optionally be qualified by the use of the notification component of
CommonResults.

12.6 Referral

A referral redirects the service-user to one or more access points better equipped to carry out the requested operation. If
the parameters of the operation were signed (see 17.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2) by the requestor, then the
Directory may sign the error parameters.

referral ERROR ::= { -- not literally an "error"
 PARAMETER OPTIONALLY-PROTECTED { SET {
 candidate [0] ContinuationReference,
 COMPONENTS OF CommonResults } }
 CODE id-errcode-referral }

The error has a single parameter which contains a ContinuationReference which can be used to progress the operation
(see ITU-T Rec. X.518 | ISO/IEC 9594-4).

If the DSA is responding to an LDAP request, the NSAP address in the presentation address shall hold an LDAP URL as
specified in 11.4 of ITU-T Rec. X.519 | ISO/IEC 9594-5, in which case it will use that value to create an LDAP referral. If
this is not the case, it shall not return a referral.

The SecurityParameters component (see 7.10) shall be included in the CommonResults (see 7.4) if the error is to be
signed by the Directory.

Before acting on a continuation reference, the DUA shall check that an identical request to the one that would be
generated from the continuation reference has not already been issued as a part of processing the same user request. If it
has, the DUA shall not act on the continuation reference. This avoids loops.

12.7 Security Error

A securityError reports a problem in carrying out an operation for security reasons. If the parameters of the operation
were signed (see 17.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2) by the requestor, then the Directory may sign the error
parameters.

securityError ERROR ::= {
 PARAMETER OPTIONALLY-PROTECTED { SET {
 problem [0] SecurityProblem,
 spkmInfo [1] SPKM-ERROR,
 COMPONENTS OF CommonResults } }
 CODE id-errcode-securityError }

SecurityProblem ::= INTEGER {
 inappropriateAuthentication (1),
 invalidCredentials (2),
 insufficientAccessRights (3),
 invalidSignature (4),
 protectionRequired (5),

ISO/IEC 9594-3:2008 (E)

60 ITU-T Rec. X.511 (11/2008)

 noInformation (6),
 blockedCredentials (7),
-- invalidQOPMatch (8), obselete
 spkmError (9),

unsupportedAuthenticationMethod} (10) }

The error has a single parameter, which reports the particular problem encountered. The following problems may be
indicated:

a) inappropriateAuthentication – The level of security associated with the requestor's credentials is
inconsistent with the level of protection requested, e.g., simple credentials were supplied while strong
credentials were required.

b) invalidCredentials – The supplied credentials were invalid.
c) insufficientAccessRights – The requestor does not have the right to carry out the requested operation.
d) invalidSignature – The signature of the request was found to be invalid.
e) protectionRequired – The Directory was unwilling to carry out the requested operation because the

argument was not signed.
f) noInformation – The requested operation produced a security error for which no information is

available.
g) blockedCredentials – The credentials are blocked from consideration for security reasons (e.g., because

an invalid password has been presented too many times in succession). The decision to return this error is
governed by the security policy in effect for the DSA.

h) spkmError – The supplied SPKM token was found to be invalid. The spkmInfo parameter contains an
indication that this is an SPKM error token and the identifier of the SPKM context with which this error
is associated.

i) unsupportedAuthenticationMethod – The authentication method suggested is not supported by the
DSA.

The SecurityParameters component (see 7.10) shall be included in the CommonResults (see 7.4) if the error is to be
signed by the Directory.

The information provided by the error problem can optionally be qualified by the use of the notification component of
CommonResults.

12.8 Service Error

A serviceError reports a problem related to the provision of the service. If the parameters of the operation were signed
(see 17.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2) by the requestor, then the Directory may sign the error parameters.

serviceError ERROR ::= {
 PARAMETER OPTIONALLY-PROTECTED { SET {
 problem [0] ServiceProblem,
 COMPONENTS OF CommonResults } }
 CODE id-errcode-serviceError }

ServiceProblem ::= INTEGER {
 busy (1),
 unavailable (2),
 unwillingToPerform (3),
 chainingRequired (4),
 unableToProceed (5),
 invalidReference (6),
 timeLimitExceeded (7),
 administrativeLimitExceeded (8),
 loopDetected (9),
 unavailableCriticalExtension (10),
 outOfScope (11),
 ditError (12),
 invalidQueryReference (13),
 requestedServiceNotAvailable (14),
 unsupportedMatchingUse (15),
 ambiguousKeyAttributes (16),
 saslBindInProgress (17) }

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 61

The error has a single parameter which reports the particular problem encountered. The following problems may be
indicated:

a) busy – The Directory, or some part of it, is presently too busy to perform the requested operation, but
may be able to do so after a short while.

b) unavailable – The Directory, or some part of it, is currently unavailable.
c) unwillingToPerform – The Directory, or some part of it, is not prepared to execute this request, e.g.,

because it would lead to excessive consumption of resources or violates the policy of an Administrative
Authority involved.

d) chainingRequired – The Directory is unable to accomplish the request other than by chaining; however,
chaining was prohibited by means of the chainingProhibited service control option.

e) unableToProceed – The DSA returning this error did not have administrative authority for the
appropriate naming context and, as a consequence, was not able to participate in name resolution.

f) invalidReference – The DSA was unable to perform the request as directed by the DUA, (via
OperationProgress) – This may have arisen due to using an invalid referral.

g) timeLimitExceeded – The Directory has reached the limit of time set by the user in a service control. No
partial results are available to return to the user.

h) administrativeLimitExceeded – The Directory has reached some limit set by an administrative
authority, and no partial results are available to return to the user.

i) loopDetected – The Directory is unable to accomplish this request due to an internal loop.
j) unavailableCriticalExtension – The Directory was unable to satisfy the request because one or more

critical extensions were not available.
k) outOfScope – No referrals were available within the requested scope.
l) ditError – The Directory is unable to accomplish the request due to a DIT consistency problem.
m) invalidQueryReference – The parameters of the requested operation are invalid. This problem is

reported if the queryReference in paged results is invalid.
NOTE – This problem is not supported by first edition systems.

n) requestedServiceNotAvailable – A search request failed within a service specific administrative area
because no search-rule was available for the search or because the search violated an applicable search-
rule. Additional diagnostic information may be returned together with this service problem. Such
additional information for different situations is defined in clause 13.

o) unsupportedMatchingUse – An attempt was made, e.g., in a filter, to use a matching rule not supported
by the DSA when the performExactly search option is set.

p) ambiguousKeyAttributes – A mapping-based matching rule was selected, but the mappable filter items
provided multiple matches against the relevant mapping table. This error situation is accompanied by a
notification attribute, as indicated by the relevant matching-based matching rule.

q) saslBindInProgress – For some authentication mechanisms, it may be necessary for the requestor to
invoke the directoryBind operation multiple times. This is indicated by the responder sending a
serviceError with problem saslBindInProgress. This indicates that the responder requires the requestor
to invoke a new directoryBind operation, with the same SaslCredentials mechanism, to continue the
authentication process. If at any stage the requestor wishes to abort the process, it may invoke a
directoryBind operation with SaslAbort set to TRUE.

The SecurityParameters component (see 7.10) shall be included in the CommonResults (see 7.4) if the error is to be
signed by the Directory.

The information provided by the error problem can optionally be qualified by the use of the notification component of
CommonResults.

12.9 Update Error

An updateError reports problems related to attempts to add, delete, or modify information in the DIB. If the parameters
of the operation were signed (see 17.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2) by the requestor, then the Directory may
sign the error parameters.

updateError ERROR ::= {
 PARAMETER OPTIONALLY-PROTECTED {
 SET {
 problem [0] UpdateProblem,

ISO/IEC 9594-3:2008 (E)

62 ITU-T Rec. X.511 (11/2008)

 attributeInfo [1] SET SIZE (1..MAX) OF CHOICE {
 attributeType AttributeType,
 attribute Attribute{{SupportedAttributes}} } OPTIONAL,
 COMPONENTS OF CommonResults } }
 CODE id-errcode-updateError }

UpdateProblem ::= INTEGER {
 namingViolation (1),
 objectClassViolation (2),
 notAllowedOnNonLeaf (3),
 notAllowedOnRDN (4),
 entryAlreadyExists (5),
 affectsMultipleDSAs (6),
 objectClassModificationProhibited (7),
 noSuchSuperior (8),
 notAncestor (9),
 parentNotAncestor (10),
 hierarchyRuleViolation (11),
 familyRuleViolation (12) }

The problem parameter reports the particular problem encountered. The following problems may be indicated.
a) namingViolation – The attempted addition or modification would violate the structure rules of the DIT

as defined in the Directory schema and ITU-T Rec. X.501 | ISO/IEC 9594-2. That is, it would place an
entry as the subordinate of an alias entry, or in a region of the DIT not permitted to a member of its
object class, or would define an RDN for an entry to include a forbidden attribute type.

b) objectClassViolation – The attempted update would produce an entry inconsistent with the rules for
entry content; for example, its object class definition, the DIT content rules, or with the definitions of
ITU-T Rec. X.501 | ISO/IEC 9594-2 as they pertain to object classes.

c) notAllowedOnNonLeaf – The attempted operation is only allowed on leaf entries of the DIT.
d) notAllowedOnRDN – The attempted operation would affect the RDN (e.g., removal of an attribute

which is a part of the RDN).
e) entryAlreadyExists – An attempted addEntry or modifyDN operation names an entry which already

exists.
NOTE 1 – This includes a conflict caused by RDNs which include multiple distinguished values differentiated
by contexts, regardless of context, as described in 9.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2.

f) affectsMultipleDSAs – An attempted update would need to operate on multiple DSAs where this
operation is not permitted.

g) objectClassModificationProhibited – An operation attempted to modify the structural object class of an
entry.

h) noSuchSuperior – An attempted ModifyDN operation names a new superior entry that does not exist.
i) notAncestor – An operation attempted to delete a compound entry without specifying the ancestor as the

object.
j) parentNotAncestor – An operation attempted to establish an entry as an immediately hierarchical child

under a family member that is not the ancestor.
k) hierarchyRuleViolation – An operation attempted to break a rule applicable to a hierarchical group: a

hierarchical group has to be completely outside any service specific administrative area or has to be
completely contained within a service specific administrative area; hierarchical group is confined to a
single DSA.

l) familyRuleViolation – An operation attempted to break a rule applicable to families within a compound
entry.

The attributeInfo parameter identifies the particular attribute type(s) and possibly value(s) causing a problem. If an
objectClassViolation is being reported, an attribute item shall be present indicating the objectClass attribute type and
listing the object class(es) that caused the problem; additional attributeType items may also be present (e.g., to identify
missing mandatory attributes or extraneous attributes).

NOTE 2 – The updateError is not used to report problems with attribute types, values, or constraint violations encountered in an
addEntry, removeEntry, modifyEntry, or modifyDN operation. Such problems are reported via an attributeError.

The SecurityParameters component (see 7.10) shall be included in the CommonResults (see 7.4) if the error is to be
signed by the Directory.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 63

The information provided by the error problem can optionally be qualified by the use of the notification component of
CommonResults.

13 Analysis of search arguments
This clause is only relevant for a Search operation starting its initial evaluation phase within a service specific
administrative area.

This procedure has two purposes:
a) It provides the search-validation function (see 16.12 of ITU-T Rec. X.501 | ISO/IEC 9594-2). However,

the search-validation function does not produce error information. If during the procedure an error is
encountered, the evaluation stops and returns FALSE; otherwise, it returns TRUE. A search-validation
against an empty search-rule will always return TRUE.

b) It is the procedure to be used when no governing-search-rule can be located and where it is possible to
identify a single search-rule the SearchArgument can be evaluated against to identify why the search
request failed. When an error condition is found in this case, the evaluation stops, the necessary
diagnostic information is supplied in the notification component of the CommonResults data type and a
service error with problem requestedServiceNotAvailable is returned. What diagnostic information that
is included is dependent on the type of error identified.

NOTE – According to the specification above, a search request may be evaluated twice against the same search-rule. How this
could be optimized is not part of this specification, but is an implementation decision.

The procedure assumes that an implementation will not allow an invokable search-rule to:
– specify unsupported attribute types, context types, matching rules, matching restrictions, etc.;
– specify mapping-based matching algorithms that are unsupported or not relevant for the type of search

for which the search-rule is governing;
– specify matching rule substitutions that would violate the search-rule;
– refer to optional search-rule features not supported by the implementation; or
– be inconsistent or erroneous.

13.1 General check of search filter

The evaluation is performed by first checking whether the filter violates some basic restrictions using the following
procedure:

1) If there are attribute types represented in the filter but not represented by any request-attribute-profile in
the inputAttributeTypes search-rule component, the notification shall contain:
– a searchServiceProblem notification attribute with the value id-pr-searchAttributeViolation;
– a serviceType notification attribute having as value the serviceType component of the search-rule;

and
– an attributeTypeList notification attribute having as values the object identifiers identifying the

illegal attribute types.
2) If there are attribute types only represented by negated filter items, then the notification shall contain:

– a searchServiceProblem notification attribute with the value id-pr-attributeNegationViolation;
– a serviceType notification attribute having as value the serviceType component of the search-rule;

and
– an attributeTypeList notification attribute where the values are the object identifiers identifying the

attribute types illegally negated in the filter.
3) Check that the condition specified in the attributeCombination is fulfilled with respect to the non-

negated presence of attribute types. If mandatory attribute types, i.e., attribute types that unconditionally
have to be represented by non-negated filter items in the filter, are missing in any subfilter, the
notification shall contain:
– a searchServiceProblem notification attribute with the value id-pr-missingSearchAttribute;
– a serviceType notification attribute having as value the serviceType component of the search-rule;

and
– an attributeTypeList notification attribute having as values the object identifiers identifying the

missing attribute types.

ISO/IEC 9594-3:2008 (E)

64 ITU-T Rec. X.511 (11/2008)

If a required combination is not present, the notification shall contain:
– a searchServiceProblem notification attribute with the value
 id-pr-searchAttributeCombinationViolation;
– a serviceType notification attribute having as value the serviceType component of the search-rule;

and
– an attributeCombinations notification attribute identifying the missing combination(s).

4) For request-attribute-profiles having a selectedValues subcomponent but the set of values is empty, it is
checked whether there is any filter item for those attribute types that do not meet one of the following
requirements:
– the filter item is of type present and the contexts subcomponent is not present in the request-

attribute-profile; or
– the filter item is of type contextPresent and the contexts subcomponent is present in the request-

attribute-profile.
If the above check fails for any filter item, the notification shall contain:
– a searchServiceProblem notification attribute with the value id-pr-searchValueNotAllowed;
– a serviceType notification attribute having as value the serviceType component of the search-rule;

and
– a filterItem notification attribute with the failing filters items as values.

5) For request-attribute-profiles having a contexts subcomponent, it is checked whether there are any filter
items that refer to context types not included in this subcomponent. If so, the notification shall contain:
– a searchServiceProblem notification attribute with the value id-pr-searchContextViolation;
– a serviceType notification attribute having as value the serviceType component of the search-rule;

and
– a contextTypeList notification attribute having as values the object identifiers for the illegal context

types.
6) If the allowed choice for the subset component is taken in the search-rule, it is checked whether the

subset argument of the SearchArgument complies with that specification. If not, the notification shall
contain:
– a searchServiceProblem notification attribute with the value id-pr-searchSubsetViolation; and
– a serviceType notification attribute having as value the serviceType component of the search-rule.

13.2 Check of request-attribute-profiles

If the above procedure did not yield any error, it has to be checked for each subfilter that any attribute type represented
in that subfilter is also effectively present. This procedure does not specify any order in which subfilters should be
evaluated. For an attribute type to be effectively present in a subfilter, it has to be represented by at least one non-
negated filter item that complies with the corresponding request-attribute-profile. A non-negated filter item is evaluated
using the below procedure.

The non-negated filter items are checked in the following order:
1) the filter items for the attribute types that unconditionally have to be represented are checked for each

subfilter;
2) the filter items for the attribute types that conditionally have to be represented are checked for each

subfilter; and
3) the remaining filter items are checked for each subfilter.

If a subfilter fails the evaluation, the evaluation stops and error information is returned as detailed below.

If an attribute type in a subfilter is represented by several non-negated filter items, each such filter item is in principle
checked until either a complying filter item is found or all filter items are checked. If a filter item fails during the
procedure, it is dropped for further evaluation. It is the last filter item to fail for the attribute type that determines the
diagnostic information returned.

A filter item is evaluated using the following procedure:
1) If the selectedValues component in the request-attribute-profile is absent; or if it is present and

non-empty, check whether the filter item is of type equality, substrings, approximateMatch or
extensibleMatch. If not, the notification shall contain:

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 65

– a searchServiceProblem notification attribute with the value id-pr-searchValueRequired;
– a serviceType notification attribute having as value the serviceType component of the search-rule;

and
– an attributeTypeList notification attribute having as value the object identifier identifying the

attribute type from the filter item.
2) If the selectedValues subcomponent in the corresponding request-attribute-profile is present and non-

empty, check whether the filter item fails to match any value specified in that subcomponent. If so, the
notification shall contain:
– a searchServiceProblem notification attribute with the value id-pr-invalidSearchValue;
– a serviceType notification attribute having as value the serviceType component of the search-rule;

and
– a filterItem notification attribute with the failing filter item as the only value.

3) If the contexts subcomponent is not present, continue with next subclause.
4) Check that the condition specified in the contextCombination subcomponent is fulfilled with respect to

the presence of context types. If mandatory context types, i.e., context types that unconditionally have to
be represented for the attribute type, are missing, the notification shall contain:
– a searchServiceProblem notification attribute with the value id-pr-missingSearchContext;
– a serviceType notification attribute having as value the serviceType component of the search-rule;
– an attributeTypeList notification attribute having as a single value the object identifier identifying

the attribute type from the filter item;
– a contextTypeList notification attribute with the object identifiers identifying the missing context

types.
If a required combination is not present, the notification shall contain:
– a searchServiceProblem notification attribute with the value
 id-pr-searchContextCombinationViolation;
– a serviceType notification attribute having as value the serviceType component of the search-rule;
– an attributeTypeList notification attribute having as only value the object identifier identifying the

attribute type from the filter item;
– a contextCombinations notification attribute identifying the missing combination(s).

5) Check if the context assertions for the attribute type in the subfilter are all included in the contexts
subcomponent. If not, the notification shall contain:
– a searchServiceProblem notification attribute with the value id-pr-searchContextViolation;
– a serviceType notification attribute having as value the serviceType component of the search-rule;
– an attributeTypeList notification attribute having as only value the object identifier identifying the

attribute type from the filter item; and
– a contextTypeList notification attribute having as values the object identifiers identifying the

context types not allowed for the attribute type.
6) If context values are included for any of the context types in the contexts subcomponent of the request-

attribute-profile, check whether any of the context assertions specified for the attribute type in the
subfilter contains values not specified for the corresponding context types in contexts subcomponent. If
so, the notification shall contain:
– a searchServiceProblem notification attribute with the value id-pr-searchContextValueViolation;
– a serviceType notification attribute having as value the serviceType component of the search-rule;
– an attributeTypeList notification attribute having as only value the object identifier identifying the

attribute type from the filter item; and
– a contextList notification attribute having as values the context assertions not allowed for the

attribute type.

13.3 Check of controls and hierarchy selections

If the search request fails the test against the control and hierarchy selections as specified in 16.10.5 of
ITU-T Rec. X.501 | ISO/IEC 9594-2, the procedure in this subclause is performed.

ISO/IEC 9594-3:2008 (E)

66 ITU-T Rec. X.511 (11/2008)

1) If the defaultControls component of the search-rule or the hierarchyOptions subcomponent of the
defaultControls is absent, and the search request specifies hierarchy selections beside self, then the
notification shall contain:
– a searchServiceProblem notification attribute with the value id-pr-hierarchySelectForbidden;

and
– a serviceType notification attribute having as value the serviceType component of the search-rule.

2) If there are hierarchy select options in the request that are not allowed, or some selections are missing
according to the combination of the defaultControls and mandatoryControls components of the search-
rule, then the notification shall contain:
– a searchServiceProblem notification attribute with the value id-pr-invalidHierarchySelect;
– a serviceType notification attribute having as value the serviceType component of the search-rule;

and
– a hierarchySelectList notification attribute having as value a bitstring identifying the invalid

hierarchy selection options.
3) If there are hierarchy select options in the request that are not supported by the DSA and which are not

covered by 2), then the notification shall contain:
– a searchServiceProblem notification attribute with the value id-pr-unavailableHierarchySelect;

– a serviceType notification attribute having as value the serviceType component of the search-rule;
and

– a hierarchySelectList notification attribute having as value a bitstring identifying the unsupported
hierarchy selection options.

4) If there are search control options (as defined by 10.2.1) in the request that are not allowed, or some
options are missing according to the combination of the defaultControls and mandatoryControls
components of the search-rule, then the notification shall contain:
– a searchServiceProblem notification attribute with the value id-pr-invalidSearchControlOptions;
– a serviceType notification attribute having as value the serviceType component of the search-rule;

and
– a searchControlOptionsList notification attribute having as value a bitstring identifying the invalid

search control options.
5) If there are service control options in the request not allowed or some options are missing according to

the combination of the defaultControls and mandatoryControls components of the search-rule, then the
notification shall contain:
– a searchServiceProblem notification attribute with the value id-pr-invalidServiceControlOptions;
– a serviceType notification attribute having as value the serviceType component of the search-rule;

and
– a serviceControlOptionsList notification attribute having as value a bitstring identifying the

invalid service control options.

13.4 Check of matching use

In the search-validation procedure, this subclause represents the last step in the validation and it is assumed that the
search request has passed all other validation steps. A search-rule failing this last step is put on the MatchProblemSR
list (see 19.3.2.2.1, item 3) of ITU-T Rec. X.518 | ISO/IEC 9594-4).

If the search request does not comply with the matchingUse requirement as specified in 16.10.2 of ITU-T Rec. X.501 |
ISO/IEC 9594-2 for any of the request-attribute-profiles, then a notification for one of the failing request-attribute-
profile shall contain:

– a searchServiceProblem notification attribute with the value id-pr-attributeMatchingViolation if the
matching restriction is violated, or with the value id-pr-unsupportedMatchingUse if the matching rule
is to be applied in an unsupported way;

– a serviceType notification attribute having as value the serviceType component of the search-rule;
– an attributeTypeList notification attribute having as only value the object identifier identifying the

attribute type; and
– for the matching restriction that is violated, additional notification attributes as specified by specification

for that matching restriction.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 67

NOTE – When several request-attribute-profiles fail the validation, it is a local matter to select which one for which to create a
notification.

ISO/IEC 9594-3:2008 (E)

68 ITU-T Rec. X.511 (11/2008)

Annex A

Abstract Service in ASN.1
(This annex forms an integral part of this Recommendation | International Standard)

This annex includes all of the ASN.1 type, value and information object definitions contained in this Directory
Specification in the form of the ASN.1 module DirectoryAbstractService.

DirectoryAbstractService {joint-iso-itu-t ds(5) module(1) directoryAbstractService(2) 6}
DEFINITIONS ::=
BEGIN

-- EXPORTS All --
-- The types and values defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but this will not constrain
-- extensions and modifications needed to maintain or improve the Directory service.

IMPORTS

-- from ITU-T Rec. X.501 | ISO/IEC 9594-2

 attributeCertificateDefinitions, authenticationFramework, basicAccessControl,
 commonProtocolSpecification, directoryShadowAbstractService, distributedOperations,
 enhancedSecurity, id-at, informationFramework, selectedAttributeTypes, serviceAdministration
 FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 6}

 Attribute{}, ATTRIBUTE, AttributeType, AttributeTypeAssertion, AttributeValue,
 AttributeValueAssertion, CONTEXT, ContextAssertion, DistinguishedName,
 MATCHING-RULE, Name, OBJECT-CLASS, RelativeDistinguishedName,
 SupportedAttributes, SupportedContexts
 FROM InformationFramework informationFramework

 RelaxationPolicy
 FROM ServiceAdministration serviceAdministration

 AttributeTypeAndValue
 FROM BasicAccessControl basicAccessControl

 OPTIONALLY-PROTECTED{ }, OPTIONALLY-PROTECTED-SEQ{ }
 FROM EnhancedSecurity enhancedSecurity

-- from ITU-T Rec. X.518 | ISO/IEC 9594-4

 AccessPoint, ContinuationReference, Exclusions, OperationProgress, ReferenceType
 FROM DistributedOperations distributedOperations

-- from ITU-T Rec. X.519 | ISO/IEC 9594-5

 Code, ERROR, id-errcode-abandoned, id-errcode-abandonFailed, id-errcode-attributeError,
 id-errcode-nameError, id-errcode-referral, id-errcode-securityError, id-errcode-serviceError,
 id-errcode-updateError, id-opcode-abandon, id-opcode-addEntry, id-opcode-compare,
 id-opcode-list, id-opcode-modifyDN, id-opcode-modifyEntry, id-opcode-read,
 id-opcode-removeEntry, id-opcode-search, InvokeId, OPERATION
 FROM CommonProtocolSpecification commonProtocolSpecification

-- from ITU-T Rec. X.520 | ISO/IEC 9594-6

 DirectoryString {}, UnboundedDirectoryString
 FROM SelectedAttributeTypes selectedAttributeTypes

-- from ITU-T Rec. X.509 | ISO/IEC 9594-8

 AlgorithmIdentifier{}, CertificationPath, ENCRYPTED {}, HASH {}, SIGNED {}, SupportedAlgorithms
 FROM AuthenticationFramework authenticationFramework

 AttributeCertificationPath

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 69

 FROM AttributeCertificateDefinitions attributeCertificateDefinitions

-- from ITU-T Rec. X.525 | ISO/IEC 9594-9

 AgreementID
 FROM DirectoryShadowAbstractService directoryShadowAbstractService

-- from RFC 2025

 SPKM-ERROR, SPKM-REP-TI, SPKM-REQ
 FROM SpkmGssTokens { iso (1) identified-organization (3) dod(6) internet (1)
 security (5) mechanisms (5) spkm (1) spkmGssTokens (10) } ;

-- Common data types --

CommonArguments ::= SET {
 serviceControls [30] ServiceControls DEFAULT { },
 securityParameters [29] SecurityParameters OPTIONAL,
 requestor [28] DistinguishedName OPTIONAL,
 operationProgress [27] OperationProgress
 DEFAULT { nameResolutionPhase notStarted },
 aliasedRDNs [26] INTEGER OPTIONAL,
 criticalExtensions [25] BIT STRING OPTIONAL,
 referenceType [24] ReferenceType OPTIONAL,
 entryOnly [23] BOOLEAN DEFAULT TRUE,
 exclusions [22] Exclusions OPTIONAL,
 nameResolveOnMaster [21] BOOLEAN DEFAULT FALSE,
 operationContexts [20] ContextSelection OPTIONAL,
 familyGrouping [19] FamilyGrouping DEFAULT entryOnly }

FamilyGrouping ::= ENUMERATED {
 entryOnly (1),
 compoundEntry (2),
 strands (3),
 multiStrand (4) }

CommonResults ::= SET {
 securityParameters [30] SecurityParameters OPTIONAL,
 performer [29] DistinguishedName OPTIONAL,
 aliasDereferenced [28] BOOLEAN DEFAULT FALSE,
 notification [27] SEQUENCE SIZE (1..MAX) OF Attribute{{SupportedAttributes}}

OPTIONAL }

CommonResultsSeq ::= SEQUENCE {
 securityParameters [30] SecurityParameters OPTIONAL,
 performer [29] DistinguishedName OPTIONAL,
 aliasDereferenced [28] BOOLEAN DEFAULT FALSE,
 notification [27] SEQUENCE SIZE (1..MAX) OF Attribute{{SupportedAttributes}}
OPTIONAL }

ServiceControls ::= SET {
 options [0] ServiceControlOptions DEFAULT { },
 priority [1] INTEGER { low (0), medium (1), high (2) } DEFAULT medium,
 timeLimit [2] INTEGER OPTIONAL,
 sizeLimit [3] INTEGER OPTIONAL,
 scopeOfReferral [4] INTEGER { dmd(0), country(1) } OPTIONAL,
 attributeSizeLimit [5] INTEGER OPTIONAL,
 manageDSAITPlaneRef [6] SEQUENCE {
 dsaName Name,
 agreementID AgreementID } OPTIONAL,
 serviceType [7] OBJECT IDENTIFIER OPTIONAL,
 userClass [8] INTEGER OPTIONAL }

ServiceControlOptions ::= BIT STRING {
 preferChaining (0),
 chainingProhibited (1),
 localScope (2),
 dontUseCopy (3),
 dontDereferenceAliases (4),
 subentries (5),

ISO/IEC 9594-3:2008 (E)

70 ITU-T Rec. X.511 (11/2008)

 copyShallDo (6),
 partialNameResolution (7),
 manageDSAIT (8),
 noSubtypeMatch (9),
 noSubtypeSelection (10),
 countFamily (11),
 dontSelectFriends (12),
 dontMatchFriends (13),

allowWriteableCopy (14)}

EntryInformationSelection ::= SET {
 attributes CHOICE {
 allUserAttributes [0] NULL,
 select [1] SET OF AttributeType
 -- empty set implies no attributes are requested -- } DEFAULT
 allUserAttributes : NULL,
 infoTypes [2] INTEGER {
 attributeTypesOnly (0),
 attributeTypesAndValues (1) } DEFAULT attributeTypesAndValues,
 extraAttributes CHOICE {
 allOperationalAttributes [3] NULL,
 select [4] SET SIZE (1..MAX) OF AttributeType } OPTIONAL,
 contextSelection ContextSelection OPTIONAL,
 returnContexts BOOLEAN DEFAULT FALSE,
 familyReturn FamilyReturn DEFAULT
 { memberSelect contributingEntriesOnly } }

ContextSelection ::= CHOICE {
 allContexts NULL,
 selectedContexts SET SIZE (1..MAX) OF TypeAndContextAssertion }

TypeAndContextAssertion ::= SEQUENCE {
 type AttributeType,
 contextAssertions CHOICE {
 preference SEQUENCE OF ContextAssertion,
 all SET OF ContextAssertion } }

FamilyReturn ::= SEQUENCE {
 memberSelect ENUMERATED {
 contributingEntriesOnly (1),
 participatingEntriesOnly (2),
 compoundEntry (3) },
 familySelect SEQUENCE SIZE (1..MAX) OF OBJECT-CLASS.&id OPTIONAL }

EntryInformation ::= SEQUENCE {
 name Name,
 fromEntry BOOLEAN DEFAULT TRUE,
 information SET SIZE (1..MAX) OF CHOICE {
 attributeType AttributeType,
 attribute Attribute{{SupportedAttributes}} } OPTIONAL,
 incompleteEntry [3] BOOLEAN DEFAULT FALSE, -- not in first edition systems
 partialName [4] BOOLEAN DEFAULT FALSE, -- not in first or second edition systems
 derivedEntry [5] BOOLEAN DEFAULT FALSE -- not in pre-fourth edition systems -- }

family-information ATTRIBUTE ::= {
 WITH SYNTAX FamilyEntries
 USAGE directoryOperation
 ID id-at-family-information }

FamilyEntries ::= SEQUENCE {
 family-class OBJECT-CLASS.&id, -- structural object class value
 familyEntries SEQUENCE OF FamilyEntry }

FamilyEntry ::= SEQUENCE {
 rdn RelativeDistinguishedName,
 information SEQUENCE OF CHOICE {
 attributeType AttributeType,
 attribute Attribute{{SupportedAttributes}} },
 family-info SEQUENCE SIZE (1..MAX) OF FamilyEntries OPTIONAL }

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 71

Filter ::= CHOICE {
 item [0] FilterItem,
 and [1] SET OF Filter,
 or [2] SET OF Filter,
 not [3] Filter }

FilterItem ::= CHOICE {
 equality [0] AttributeValueAssertion,
 substrings [1] SEQUENCE {
 type ATTRIBUTE.&id ({ SupportedAttributes }),
 strings SEQUENCE OF CHOICE {
 initial [0] ATTRIBUTE.&Type
 ({SupportedAttributes}{@substrings.type}),
 any [1] ATTRIBUTE.&Type
 ({SupportedAttributes}{@substrings.type}),
 final [2] ATTRIBUTE.&Type
 ({SupportedAttributes}{@substrings.type}),
 control Attribute{{SupportedAttributes}} } }, -- Used to specify
 -- interpretation of following items
 greaterOrEqual [2] AttributeValueAssertion,
 lessOrEqual [3] AttributeValueAssertion,
 present [4] AttributeType,
 approximateMatch [5] AttributeValueAssertion,
 extensibleMatch [6] MatchingRuleAssertion,
 contextPresent [7] AttributeTypeAssertion }

MatchingRuleAssertion ::= SEQUENCE {
 matchingRule [1] SET SIZE (1..MAX) OF MATCHING-RULE.&id,
 type [2] AttributeType OPTIONAL,
 matchValue [3] MATCHING-RULE.&AssertionType (CONSTRAINED BY {
 -- matchValue shall be a value of type specified by the &AssertionType field of
 -- one of the MATCHING-RULE information objects identified by matchingRule -- }),
 dnAttributes [4] BOOLEAN DEFAULT FALSE }

PagedResultsRequest ::= CHOICE {
 newRequest SEQUENCE {
 pageSize INTEGER,
 sortKeys SEQUENCE SIZE (1..MAX) OF SortKey OPTIONAL,
 reverse [1] BOOLEAN DEFAULT FALSE,
 unmerged [2] BOOLEAN DEFAULT FALSE,
 pageNumber [3] INTEGER OPTIONAL },
 queryReference OCTET STRING,
 abandonQuery [0] OCTET STRING }

SortKey ::= SEQUENCE {
 type AttributeType,
 orderingRule MATCHING-RULE.&id OPTIONAL }

SecurityParameters ::= SET {
 certification-path [0] CertificationPath OPTIONAL,
 name [1] DistinguishedName OPTIONAL,
 time [2] Time OPTIONAL,
 random [3] BIT STRING OPTIONAL,
 target [4] ProtectionRequest OPTIONAL,
 response [5] BIT STRING OPTIONAL,
 operationCode [6] Code OPTIONAL,
 attributeCertificationPath [7] AttributeCertificationPath OPTIONAL,
 errorProtection [8] ErrorProtectionRequest OPTIONAL,
 errorCode [9] Code OPTIONAL }

ProtectionRequest ::= INTEGER { none (0), signed (1) }

Time ::= CHOICE {
 utcTime UTCTime,
 generalizedTime GeneralizedTime }

ErrorProtectionRequest ::= INTEGER { none (0), signed (1) }

-- Bind and unbind operations --

ISO/IEC 9594-3:2008 (E)

72 ITU-T Rec. X.511 (11/2008)

directoryBind OPERATION ::= {
 ARGUMENT DirectoryBindArgument
 RESULT DirectoryBindResult
 ERRORS { directoryBindError } }

DirectoryBindArgument ::= SET {
 credentials [0] Credentials OPTIONAL,
 versions [1] Versions DEFAULT {v1} }

Credentials ::= CHOICE {
 simple [0] SimpleCredentials,
 strong [1] StrongCredentials,
 externalProcedure [2] EXTERNAL,
 spkm [3] SpkmCredentials,
 sasl [4] SaslCredentials }

SimpleCredentials ::= SEQUENCE {
 name [0] DistinguishedName,
 validity [1] SET {
 time1 [0] CHOICE {
 utc UTCTime,
 gt GeneralizedTime } OPTIONAL,
 time2 [1] CHOICE {
 utc UTCTime,
 gt GeneralizedTime } OPTIONAL,
 random1 [2] BIT STRING OPTIONAL,
 random2 [3] BIT STRING OPTIONAL } OPTIONAL,
 password [2] CHOICE {
 unprotected OCTET STRING,
 protected HASH {OCTET STRING} } OPTIONAL}

StrongCredentials ::= SET {
 certification-path [0] CertificationPath OPTIONAL,
 bind-token [1] Token,
 name [2] DistinguishedName OPTIONAL,
 attributeCertificationPath [3] AttributeCertificationPath OPTIONAL }

SpkmCredentials ::= CHOICE {
 req [0] SPKM-REQ,
 rep [1] SPKM-REP-TI }

SaslCredentials ::= SEQUENCE {
 mechanism [0] DirectoryString { ub-saslMechanism },
 credentials [1] OCTET STRING OPTIONAL,
 saslAbort [2] BOOLEAN DEFAULT FALSE }

ub-saslMechanism INTEGER ::= 20 -- According to RFC 4422

Token ::= SIGNED { TokenContent }

TokenContent ::= SEQUENCE {
 algorithm [0] AlgorithmIdentifier{{SupportedAlgorithms}},
 name [1] DistinguishedName,
 time [2] Time,
 random [3] BIT STRING,
 response [4] BIT STRING OPTIONAL }

Versions ::= BIT STRING {v1(0), v2(1) }

DirectoryBindResult ::= DirectoryBindArgument

directoryBindError ERROR ::= {
 PARAMETER OPTIONALLY-PROTECTED {
 SET {
 versions [0] Versions DEFAULT {v1},
 error CHOICE {
 serviceError [1] ServiceProblem,
 securityError [2] SecurityProblem },
 secutityParameters [30] SecurityParameters OPTIONAL } } }

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 73

BindKeyInfo ::= ENCRYPTED { BIT STRING }

-- Operations, arguments, and results --

read OPERATION ::= {
 ARGUMENT ReadArgument
 RESULT ReadResult
 ERRORS { attributeError | nameError | serviceError | referral | abandoned |
 securityError }
 CODE id-opcode-read }

ReadArgument ::= OPTIONALLY-PROTECTED {
 SET {
 object [0] Name,
 selection [1] EntryInformationSelection DEFAULT { },
 modifyRightsRequest [2] BOOLEAN DEFAULT FALSE,
 COMPONENTS OF CommonArguments } }

ReadResult ::= OPTIONALLY-PROTECTED {
 SET {
 entry [0] EntryInformation,
 modifyRights [1] ModifyRights OPTIONAL,
 COMPONENTS OF CommonResults } }

ModifyRights ::= SET OF SEQUENCE {
 item CHOICE {
 entry [0] NULL,
 attribute [1] AttributeType,
 value [2] AttributeValueAssertion },
 permission [3] BIT STRING { add (0), remove (1), rename (2), move (3) } }

compare OPERATION ::= {
 ARGUMENT CompareArgument
 RESULT CompareResult
 ERRORS { attributeError | nameError | serviceError | referral | abandoned |
 securityError }
 CODE id-opcode-compare }

CompareArgument ::= OPTIONALLY-PROTECTED {
 SET {
 object [0] Name,
 purported [1] AttributeValueAssertion,
 COMPONENTS OF CommonArguments } }

CompareResult ::= OPTIONALLY-PROTECTED {
 SET {
 name Name OPTIONAL,
 matched [0] BOOLEAN,
 fromEntry [1] BOOLEAN DEFAULT TRUE,
 matchedSubtype [2] AttributeType OPTIONAL,
 COMPONENTS OF CommonResults } }

abandon OPERATION ::= {
 ARGUMENT AbandonArgument
 RESULT AbandonResult
 ERRORS { abandonFailed }
 CODE id-opcode-abandon }

AbandonArgument ::= OPTIONALLY-PROTECTED-SEQ {
 SEQUENCE {
 invokeID [0] InvokeId } }

AbandonResult ::= CHOICE {
 null NULL,
 information OPTIONALLY-PROTECTED-SEQ {
 SEQUENCE {
 invokeID InvokeId,
 COMPONENTS OF CommonResultsSeq } } }

list OPERATION ::= {

ISO/IEC 9594-3:2008 (E)

74 ITU-T Rec. X.511 (11/2008)

 ARGUMENT ListArgument
 RESULT ListResult
 ERRORS { nameError | serviceError | referral | abandoned | securityError }
 CODE id-opcode-list }

ListArgument ::= OPTIONALLY-PROTECTED {
 SET {
 object [0] Name,
 pagedResults [1] PagedResultsRequest OPTIONAL,
 listFamily [2] BOOLEAN DEFAULT FALSE,
 COMPONENTS OF CommonArguments } }

ListResult ::= OPTIONALLY-PROTECTED {
 CHOICE {
 listInfo SET {
 name Name OPTIONAL,
 subordinates [1] SET OF SEQUENCE {
 rdn RelativeDistinguishedName,
 aliasEntry [0] BOOLEAN DEFAULT FALSE,
 fromEntry [1] BOOLEAN DEFAULT TRUE },
 partialOutcomeQualifier [2] PartialOutcomeQualifier OPTIONAL,
 COMPONENTS OF CommonResults },
 uncorrelatedListInfo [0] SET OF ListResult } }

PartialOutcomeQualifier ::= SET {
 limitProblem [0] LimitProblem OPTIONAL,
 unexplored [1] SET SIZE (1..MAX) OF ContinuationReference OPTIONAL,
 unavailableCriticalExtensions [2] BOOLEAN DEFAULT FALSE,
 unknownErrors [3] SET SIZE (1..MAX) OF ABSTRACT-SYNTAX.&Type OPTIONAL,
 queryReference [4] OCTET STRING OPTIONAL,
 overspecFilter [5] Filter OPTIONAL,
 notification [6] SEQUENCE SIZE (1 .. MAX) OF
 Attribute{{SupportedAttributes}} OPTIONAL,
 entryCount CHOICE {
 bestEstimate [7] INTEGER,
 lowEstimate [8] INTEGER,
 exact [9] INTEGER } OPTIONAL,
 streamedResult [10] BOOLEAN DEFAULT FALSE }

LimitProblem ::= INTEGER {
 timeLimitExceeded (0), sizeLimitExceeded (1), administrativeLimitExceeded (2) }

search OPERATION ::= {
 ARGUMENT SearchArgument
 RESULT SearchResult
 ERRORS { attributeError | nameError | serviceError | referral | abandoned |
 securityError }
 CODE id-opcode-search }

SearchArgument ::= OPTIONALLY-PROTECTED {
 SET {
 baseObject [0] Name,
 subset [1] INTEGER {
 baseObject(0), oneLevel(1), wholeSubtree(2) } DEFAULT baseObject,
 filter [2] Filter DEFAULT and : { },
 searchAliases [3] BOOLEAN DEFAULT TRUE,
 selection [4] EntryInformationSelection DEFAULT { },
 pagedResults [5] PagedResultsRequest OPTIONAL,
 matchedValuesOnly [6] BOOLEAN DEFAULT FALSE,
 extendedFilter [7] Filter OPTIONAL,
 checkOverspecified [8] BOOLEAN DEFAULT FALSE,
 relaxation [9] RelaxationPolicy OPTIONAL,
 extendedArea [10] INTEGER OPTIONAL,
 hierarchySelections [11] HierarchySelections DEFAULT { self },
 searchControlOptions [12] SearchControlOptions DEFAULT { searchAliases },
 joinArguments [13] SEQUENCE SIZE (1..MAX) OF JoinArgument OPTIONAL,
 joinType [14] ENUMERATED {
 innerJoin(0), leftOuterJoin(1), fullOuterJoin(2) } DEFAULT leftOuterJoin,
 COMPONENTS OF CommonArguments } }

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 75

HierarchySelections ::= BIT STRING {
 self (0),
 children (1),
 parent (2),
 hierarchy (3),
 top (4),
 subtree (5),
 siblings (6),
 siblingChildren (7),
 siblingSubtree (8),
 all (9) }

SearchControlOptions ::= BIT STRING {
 searchAliases (0),
 matchedValuesOnly (1),
 checkOverspecified (2),
 performExactly (3),
 includeAllAreas (4),
 noSystemRelaxation (5),
 dnAttribute (6),
 matchOnResidualName (7),
 entryCount (8),
 useSubset (9),
 separateFamilyMembers (10),
 searchFamily (11) }

JoinArgument ::= SEQUENCE {
 joinBaseObject [0] Name,
 domainLocalID [1] DomainLocalID OPTIONAL,
 joinSubset [2] ENUMERATED {
 baseObject(0), oneLevel(1), wholeSubtree(2) } DEFAULT baseObject,
 joinFilter [3] Filter OPTIONAL,
 joinAttributes [4] SEQUENCE SIZE (1..MAX) OF JoinAttPair OPTIONAL,
 joinSelection [5] EntryInformationSelection }

DomainLocalID ::= UnboundedDirectoryString

JoinAttPair ::= SEQUENCE {
 baseAtt AttributeType,
 joinAtt AttributeType,
 joinContext SEQUENCE SIZE (1..MAX) OF JoinContextType OPTIONAL }

JoinContextType ::= CONTEXT.&id({SupportedContexts})

SearchResult ::= OPTIONALLY-PROTECTED {
 CHOICE {
 searchInfo SET {
 name Name OPTIONAL,
 entries [0] SET OF EntryInformation,
 partialOutcomeQualifier [2] PartialOutcomeQualifier OPTIONAL,
 altMatching [3] BOOLEAN DEFAULT FALSE,
 COMPONENTS OF CommonResults },
 uncorrelatedSearchInfo [0] SET OF SearchResult } }

addEntry OPERATION ::= {
 ARGUMENT AddEntryArgument
 RESULT AddEntryResult
 ERRORS { attributeError | nameError | serviceError | referral | securityError |
 updateError }
 CODE id-opcode-addEntry }

AddEntryArgument ::= OPTIONALLY-PROTECTED {
 SET {
 object [0] Name,
 entry [1] SET OF Attribute{{SupportedAttributes}},
 targetSystem [2] AccessPoint OPTIONAL,
 COMPONENTS OF CommonArguments } }

AddEntryResult ::= CHOICE {
 null NULL,

ISO/IEC 9594-3:2008 (E)

76 ITU-T Rec. X.511 (11/2008)

 information OPTIONALLY-PROTECTED-SEQ {
 SEQUENCE { COMPONENTS OF CommonResultsSeq } } }

removeEntry OPERATION ::= {
 ARGUMENT RemoveEntryArgument
 RESULT RemoveEntryResult
 ERRORS { nameError | serviceError | referral | securityError | updateError }
 CODE id-opcode-removeEntry }

RemoveEntryArgument ::= OPTIONALLY-PROTECTED {
 SET {
 object [0] Name,
 COMPONENTS OF CommonArguments } }

RemoveEntryResult ::= CHOICE {
 null NULL,
 information OPTIONALLY-PROTECTED-SEQ {
 SEQUENCE { COMPONENTS OF CommonResultsSeq } } }

modifyEntry OPERATION ::= {
 ARGUMENT ModifyEntryArgument
 RESULT ModifyEntryResult
 ERRORS { attributeError | nameError | serviceError | referral | securityError |
 updateError }
 CODE id-opcode-modifyEntry }

ModifyEntryArgument ::= OPTIONALLY-PROTECTED {
 SET {
 object [0] Name,
 changes [1] SEQUENCE OF EntryModification,
 selection [2] EntryInformationSelection OPTIONAL,
 COMPONENTS OF CommonArguments } }

ModifyEntryResult ::= CHOICE {
 null NULL,
 information OPTIONALLY-PROTECTED-SEQ {
 SEQUENCE {
 entry [0] EntryInformation OPTIONAL,
 COMPONENTS OF CommonResultsSeq } } }

EntryModification ::= CHOICE {
 addAttribute [0] Attribute{{SupportedAttributes}},
 removeAttribute [1] AttributeType,
 addValues [2] Attribute{{SupportedAttributes}},
 removeValues [3] Attribute{{SupportedAttributes}},
 alterValues [4] AttributeTypeAndValue,
 resetValue [5] AttributeType,
 replaceValues [6] Attribute{{SupportedAttributes}} }

modifyDN OPERATION ::= {
 ARGUMENT ModifyDNArgument
 RESULT ModifyDNResult
 ERRORS { nameError | serviceError | referral | securityError | updateError }
 CODE id-opcode-modifyDN }

ModifyDNArgument ::= OPTIONALLY-PROTECTED {
 SET {
 object [0] DistinguishedName,
 newRDN [1] RelativeDistinguishedName,
 deleteOldRDN [2] BOOLEAN DEFAULT FALSE,
 newSuperior [3] DistinguishedName OPTIONAL,
 COMPONENTS OF CommonArguments } }

ModifyDNResult ::= CHOICE {
 null NULL,
 information OPTIONALLY-PROTECTED-SEQ {
 SEQUENCE {
 newRDN RelativeDistinguishedName,
 COMPONENTS OF CommonResultsSeq } } }

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 77

-- Errors and parameters --

abandoned ERROR ::= { -- not literally an "error"
 PARAMETER OPTIONALLY-PROTECTED {
 SET {
 COMPONENTS OF CommonResults} }
 CODE id-errcode-abandoned }

abandonFailed ERROR ::= {
 PARAMETER OPTIONALLY-PROTECTED {
 SET {
 problem [0] AbandonProblem,
 operation [1] InvokeId,
 COMPONENTS OF CommonResults } }
 CODE id-errcode-abandonFailed }

AbandonProblem ::= INTEGER { noSuchOperation (1), tooLate (2), cannotAbandon (3) }

attributeError ERROR ::= {
 PARAMETER OPTIONALLY-PROTECTED { SET {
 object [0] Name,
 problems [1] SET OF SEQUENCE {
 problem [0] AttributeProblem,
 type [1] AttributeType,
 value [2] AttributeValue OPTIONAL },
 COMPONENTS OF CommonResults } }
 CODE id-errcode-attributeError }

AttributeProblem ::= INTEGER {
 noSuchAttributeOrValue (1),
 invalidAttributeSyntax (2),
 undefinedAttributeType (3),
 inappropriateMatching (4),
 constraintViolation (5),
 attributeOrValueAlreadyExists (6),
 contextViolation (7) }

nameError ERROR ::= {
 PARAMETER OPTIONALLY-PROTECTED { SET {
 problem [0] NameProblem,
 matched [1] Name,
 COMPONENTS OF CommonResults } }
 CODE id-errcode-nameError }

NameProblem ::= INTEGER {
 noSuchObject (1),
 aliasProblem (2),
 invalidAttributeSyntax (3),
 aliasDereferencingProblem (4),
 contextProblem (5) }

referral ERROR ::= { -- not literally an "error"
 PARAMETER OPTIONALLY-PROTECTED { SET {
 candidate [0] ContinuationReference,
 COMPONENTS OF CommonResults } }
 CODE id-errcode-referral }

securityError ERROR ::= {
 PARAMETER OPTIONALLY-PROTECTED { SET {
 problem [0] SecurityProblem,
 spkmInfo [1] SPKM-ERROR,
 COMPONENTS OF CommonResults } }
 CODE id-errcode-securityError }

SecurityProblem ::= INTEGER {
 inappropriateAuthentication (1),
 invalidCredentials (2),
 insufficientAccessRights (3),
 invalidSignature (4),
 protectionRequired (5),

ISO/IEC 9594-3:2008 (E)

78 ITU-T Rec. X.511 (11/2008)

 noInformation (6),
 blockedCredentials (7),
-- invalidQOPMatch (8), obsolete
 spkmError (9),

unsupportedAuthenticationMethod (10)}

serviceError ERROR ::= {
 PARAMETER OPTIONALLY-PROTECTED { SET {
 problem [0] ServiceProblem,
 COMPONENTS OF CommonResults } }
 CODE id-errcode-serviceError }

ServiceProblem ::= INTEGER {
 busy (1),
 unavailable (2),
 unwillingToPerform (3),
 chainingRequired (4),
 unableToProceed (5),
 invalidReference (6),
 timeLimitExceeded (7),
 administrativeLimitExceeded (8),
 loopDetected (9),
 unavailableCriticalExtension (10),
 outOfScope (11),
 ditError (12),
 invalidQueryReference (13),
 requestedServiceNotAvailable (14),
 unsupportedMatchingUse (15),
 ambiguousKeyAttributes (16),
 saslBindInProgress (17) }

updateError ERROR ::= {
 PARAMETER OPTIONALLY-PROTECTED {
 SET {
 problem [0] UpdateProblem,
 attributeInfo [1] SET SIZE (1..MAX) OF CHOICE {
 attributeType AttributeType,
 attribute Attribute{{SupportedAttributes}} } OPTIONAL,
 COMPONENTS OF CommonResults } }
 CODE id-errcode-updateError }

UpdateProblem ::= INTEGER {
 namingViolation (1),
 objectClassViolation (2),
 notAllowedOnNonLeaf (3),
 notAllowedOnRDN (4),
 entryAlreadyExists (5),
 affectsMultipleDSAs (6),
 objectClassModificationProhibited (7),
 noSuchSuperior (8),
 notAncestor (9),
 parentNotAncestor (10),
 hierarchyRuleViolation (11),
 familyRuleViolation (12) }

-- attribute types --

id-at-family-information OBJECT IDENTIFIER ::= {id-at 64}

END -- DirectoryAbstractService

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 79

Annex B

Operational semantics for Basic Access Control
(This annex does not form an integral part of this Recommendation | International Standard)

This annex contains a number of charts that describe the semantics associated with Basic Access Control as it applies to
the processing of a Directory operation (see Figures B.1 to B.16).

Figure B.1 – Alias Dereferencing in Name Resolution

Figure B.2 – Return of Name Error

ISO/IEC 9594-3:2008 (E)

80 ITU-T Rec. X.511 (11/2008)

Figure B.3 – Non-Disclosure of the Existence of an Entry

Figure B.4 – Return of Distinguished Name

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 81

Figure B.5 – Read Operation

ISO/IEC 9594-3:2008 (E)

82 ITU-T Rec. X.511 (11/2008)

Figure B.6 – No Such Attribute Or Value for Read

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 83

Figure B.7 – Compare Operation

ISO/IEC 9594-3:2008 (E)

84 ITU-T Rec. X.511 (11/2008)

Figure B.8 – List Operation

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 85

Figure B.9 – Search Operation

ISO/IEC 9594-3:2008 (E)

86 ITU-T Rec. X.511 (11/2008)

Figure B.10 – Alias Dereference in Search

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 87

Figure B.11 – Entry Selection in Search

ISO/IEC 9594-3:2008 (E)

88 ITU-T Rec. X.511 (11/2008)

Figure B.12 – Add Entry Operation

Figure B.13 – Remove Entry Operation

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 89

Figure B.14 – Modify Entry Operation

ISO/IEC 9594-3:2008 (E)

90 ITU-T Rec. X.511 (11/2008)

Figure B.15 – ModifyDN Operation

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 91

Figure B.16 – Modify Add Attribute or Values

ISO/IEC 9594-3:2008 (E)

92 ITU-T Rec. X.511 (11/2008)

Annex C

Examples of searching families of entries
(This annex does not form an integral part of this Recommendation | International Standard)

C.1 Single family example

Suppose Charles Smith has multiple modes of communication: A land telephone, a fax, a mobile phone and e-mail, and
each mode has its own associated parameters. Suppose further that Charles Smith has two e-mail accounts, one at his
place of work and one at home, and that both offer POP3 mailboxes and SMTP servers. All this information can be held
in a compound entry, with Charles Smith's member being the ancestor, with each mode of communication being a child
member, and with each e-mail service being a child of the e-mail mode of communication. This is shown in Figure C.1
below. As all the members immediately subordinate to the ancestor has the same structural object class (comAddr), the
compound entry consists of a single family.

Figure C.1 – Charles Smith's family of entries

Suppose a search request is generated with a base object of {...o=Andersen Express}, a filter of {telNo=1234 &
tariff=normal}, and a subset of wholeSubtree or oneLevel. With the familyGrouping parameter set to:

a) entryOnly: No members of the family would match the filter.
b) strands or multiStrand: No strand or multi-strand in the family would match the filter.
c) compoundEntry: Member 2 and member 3 would together match the filter and would be marked as

contributing members. All the members are marked as participating members.

Nothing from this compound entry would be returned for case a) and b) above.

For the case c) above, the returned information would be dependent on the family return specification (e.g., given by
familyReturn in EntryInformationSelection):

i) contributingEntriesOnly: The members marked as contributing members, i.e., members 2 and 3 would
be returned.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 93

ii) participatingEntriesOnly and compoundEntry: All the members in the compound entry would be
returned.

C.2 Multiple families example

Suppose Charles Smith only has a land telephone and e-mail, but also has two postal addresses with associated
parameters. All this information can be held in a compound entry, with Charles Smith's member being the ancestor and
with each mode of communication or postal address being a child member. This is shown in Figure C.2 below. As the
members immediately subordinate to the ancestor are of two different structural object classes (comAddr and
postAddr), the compound entry consists of two families, where members 1, 2 and 3 constitute one family, and
members 1, 4, 5, 6, 7, 8 and 9 constitute another family.

Figure C.2 – Charles Smith's families of entries

C.2.1 Filter example 1

Now suppose a Search request is generated with a base object of {...o=Andersen Express}, a filter of {telNo=1234 &
service=e-mail & streetAddr=Main & postalCode=3740 }, and a subset of wholeSubtree or oneLevel. With the
familyGrouping parameter set to:

a) entryOnly: No single member of the compound entry would match the filter.
b) strands: No single strand in any of the families would match the filter.
c) multiStrand: No combination of strands, one strand from each family, would match the filter.
d) compoundEntry: Members 2, 3, 4 and 5 would together match the filter and would be marked as

contributing members. All the members are marked as participating members.

Nothing from this compound entry would be returned for case a), b) and c) above.

For the case d) above, the returned information would be dependent on the family return specification:
i) contributingEntriesOnly: The members marked as contributing members, i.e., members 2, 3, 4 and 5

would be returned.

ISO/IEC 9594-3:2008 (E)

94 ITU-T Rec. X.511 (11/2008)

ii) participatingEntriesOnly and compoundEntry: All the members within the compound entry would be
returned.

C.2.2 Filter example 2

If we change the filter to {rfc822=cs@cs.dk & service=e-mail & streetAddr=Main & postalCode=1815}. With the
familyGrouping parameter set to:

a) entryOnly: No single member of the compound entry would match the filter.
b) strands: No single strand in any of the families would match the filter.
c) multiStrand: The strand ending in member 2 together with any strand going through member 5 would

match the filter. Members 2 and 5 have contributed to the matching and would be marked as contributing
members. Members 1, 2, 5, 6, 7, 8 and 9 are marked as participating members.

d) compoundEntry: Members 2 and 5 would together match the filter and would be marked as contributing
members. All the members are marked as participating members.

Nothing from this compound entry would be returned for case a) and b) above.

For the case c) above, the returned information would be dependent on the family return specification:
i) contributingEntriesOnly: The members marked as contributing members, i.e., members 2 and 5, would

be returned.
ii) participatingEntriesOnly: The members marked as participating members are returned, i.e., the

members 1, 2, 5, 6, 7, 8 and 9.
iii) compoundEntry: All the members of the compound entry would be returned.

For the case d) above, the returned information would be dependent on the family return specification:
i) contributingEntriesOnly: The members marked as contributing members, i.e., members 2 and 5, would

be returned.
ii) participatingEntriesOnly and compoundEntry: All the members of the compound entry would be

returned.

C.2.3 Filter example 3

If we now change the filter to {rfc822=cs@cs.dk & service=e-mail}. With the familyGrouping parameter set to:
a) entryOnly: Member 5 alone would match the filter and this member would be marked as a contributing

member and as a participating member.
b) strands: Any strand going through member 5 would match the filter. Member 5 would be marked as a

contributing member. Members 1, 5, 6, 7, 8 and 9 would be marked as participating members.
c) multiStrand: Any strand going through member 5 together with any strand of the postal address family

would match the filter. Entries 5 would be marked as a contributing member. Members 1, 2, 3, 5, 6, 7, 8
and 9 would be marked as participating members.

d) compoundEntry: Member 5 would match the filter and would be marked as a contributing member. All
the members are marked as participating members.

For the case a) above, the returned information would be dependent on the family return specification:
i) contributingEntriesOnly and participatingEntriesOnly: Member 5 would be returned.
ii) compoundEntry: All the members of the compound entry would be returned.

For the case b) above, the returned information would be dependent on the family return specification:
i) contributingEntriesOnly: Member 5 would be returned.
ii) participatingEntriesOnly: All the members marked as participating members are returned, i.e., the

members 1, 5, 6, 7, 8 and 9.
iii) compoundEntry: All the members of the compound entry would be returned.

For the case c) above, the returned information would be dependent on the family return specification:
i) contributingEntriesOnly: Member 5 would be returned.
ii) participatingEntriesOnly: All the members marked as participating members are returned, i.e., the

member 1, 2, 3, 5, 6, 7, 8 and 9.
iii) compoundEntry: All the members of the compound entry would be returned.

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 95

For the case d) above, the returned information would be dependent on the family return specification:
i) contributingEntriesOnly: Member 5 would be returned.
ii) participatingEntriesOnly and compoundEntry: All the members of the compound entry would be

returned.

C.2.4 Filter example 4

If we finally change the filter to {cn=Smith & givenName=Charles}. The ancestor alone would match the filter.
a) entryOnly: Only the ancestor (member 1) would be marked as a contributing member and as a

participating member.
b) strands, multiStrand and compoundEntry: The ancestor would be marked as a contributing member

and all members would be marked as participating members.

For the case a) above, the returned information would be dependent on the family return specification:
i) contributingEntriesOnly and participatingEntriesOnly: Member 1 would be returned.
ii) compoundEntry: All the members of the compound entry would be returned.

For the case b) above, the returned information would be dependent on the family return specification:
i) contributingEntriesOnly: Member 1 would be returned.
ii) participatingEntriesOnly and compoundEntry: All the members of the compound entry would be

returned.

ISO/IEC 9594-3:2008 (E)

96 ITU-T Rec. X.511 (11/2008)

Annex D

External ASN.1 module
(This annex does not form an integral part of this Recommendation | International Standard)

This annex provides an external ASN.1 module referenced by this Directory Specification. This module is provided for
easy compilation of the ASN.1 modules defined by these Directory Specifications.

/* The following module is an abstract of the module specified by RFC 2025. The import statement that imports has been
changed to import only from the current Directory Specifications not to be dependent on modules from previous
editions.*/

SpkmGssTokens {iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) spkm(1) spkmGssTokens(10)}

DEFINITIONS IMPLICIT TAGS ::=
BEGIN

-- EXPORTS ALL

IMPORTS

 Name
 FROM InformationFramework {joint-iso-itu-t(2) ds(5) module(1)
 informationFramework(1) 6}

 Certificate, CertificateList, CertificatePair, AlgorithmIdentifier{}, SupportedAlgorithms, Validity
 FROM AuthenticationFramework {joint-iso-itu-t(2) ds(5) module(1)
 authenticationFramework(7) 6};

-- types

SPKM-REQ ::= SEQUENCE {
 requestToken REQ-TOKEN,
 certif-data [0] CertificationData OPTIONAL,
 auth-data [1] AuthorizationData OPTIONAL }

CertificationData ::= SEQUENCE {
 certificationPath [0] CertificationPath OPTIONAL,
 certificateRevocationList [1] CertificateList OPTIONAL
} -- at least one of the above shall be present

CertificationPath ::= SEQUENCE {
 userKeyId [0] OCTET STRING OPTIONAL,
 userCertif [1] Certificate OPTIONAL,
 verifKeyId [2] OCTET STRING OPTIONAL,
 userVerifCertif [3] Certificate OPTIONAL,
 theCACertificates [4] SEQUENCE OF CertificatePair OPTIONAL
} -- Presence of [2] or [3] implies that [0] or [1] must also be
-- present. Presence of [4] implies that at least one of [0], [1],
-- [2], and [3] must also be present.

REQ-TOKEN ::= SEQUENCE {
 req-contents Req-contents,
 algId AlgorithmIdentifier{{SupportedAlgorithms}},
 req-integrity Integrity -- "token" is Req-contents
}

Integrity ::= BIT STRING

-- If corresponding algId specifies a signing algorithm,
-- "Integrity" holds the result of applying the signing procedure
-- specified in algId to the BER-encoded octet string which results
-- from applying the hashing procedure (also specified in algId) to
-- the DER-encoded octets of "token".
-- Alternatively, if corresponding algId specifies a MACing

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 97

-- algorithm, "Integrity" holds the result of applying the MACing
-- procedure specified in algId to the DER-encoded octets of
-- "token"

Req-contents ::= SEQUENCE {
 tok-id INTEGER(256), -- shall contain 0100 (hex)
 context-id Random-Integer,
 pvno BIT STRING,
 timestamp UTCTime OPTIONAL, -- mandatory for SPKM-2
 randSrc Random-Integer,
 targ-name Name,
 src-name [0] Name OPTIONAL,
 req-data Context-Data,
 validity [1] Validity OPTIONAL,
 key-estb-set Key-Estb-Algs,
 key-estb-req BIT STRING OPTIONAL,
 key-src-bind OCTET STRING OPTIONAL
 -- This field must be present for the case of SPKM-2
 -- unilateral authen. if the K-ALG in use does not provide
 -- such a binding (but is optional for all other cases).
 -- The octet string holds the result of applying the
 -- mandatory hashing procedure (in MANDATORY I-ALG;
 -- see Section 2.1) as follows: MD5(src || context_key),
 -- where "src" is the DER-encoded octets of src-name,
 -- "context-key" is the symmetric key (i.e., the
 -- unprotected version of what is transmitted in
 -- key-estb-req), and "||" is the concatenation operation.
}

Random-Integer ::= BIT STRING

Context-Data ::= SEQUENCE {
 channelId ChannelId OPTIONAL,
 seq-number INTEGER OPTIONAL,
 options Options,
 conf-alg Conf-Algs,
 intg-alg Intg-Algs,
 owf-alg OWF-Algs
}

ChannelId ::= OCTET STRING

Options ::= BIT STRING {
 delegation-state(0), mutual-state(1), replay-det-state(2), sequence-state(3),
 conf-avail(4), integ-avail(5), target-certif-data-required(6)}

Conf-Algs ::= CHOICE {
 algs [0] SEQUENCE OF AlgorithmIdentifier{{SupportedAlgorithms}},
 null [1] NULL }

Intg-Algs ::= SEQUENCE OF AlgorithmIdentifier{{SupportedAlgorithms}}

OWF-Algs ::= SEQUENCE OF AlgorithmIdentifier{{SupportedAlgorithms}}

Key-Estb-Algs ::= SEQUENCE OF AlgorithmIdentifier{{SupportedAlgorithms}}

SPKM-REP-TI ::= SEQUENCE {
 responseToken REP-TI-TOKEN,
 certif-data CertificationData OPTIONAL
 -- present if target-certif-data-required option was
} -- set to TRUE in SPKM-REQ

REP-TI-TOKEN ::= SEQUENCE {
 rep-ti-contents Rep-ti-contents,
 algId AlgorithmIdentifier{{SupportedAlgorithms}},
 rep-ti-integ Integrity -- "token" is Rep-ti-contents
}

Rep-ti-contents ::= SEQUENCE {
 tok-id INTEGER(512), -- shall contain 0200 (hex)

ISO/IEC 9594-3:2008 (E)

98 ITU-T Rec. X.511 (11/2008)

 context-id Random-Integer,
 pvno [0] BIT STRING OPTIONAL,
 timestamp UTCTime OPTIONAL, -- mandatory for SPKM-2
 randTarg Random-Integer,
 src-name [1] Name OPTIONAL,
 targ-name Name,
 randSrc Random-Integer,
 rep-data Context-Data,
 validity [2] Validity OPTIONAL,
 key-estb-id AlgorithmIdentifier{{SupportedAlgorithms}} OPTIONAL,
 key-estb-str BIT STRING OPTIONAL
}

SPKM-REP-IT ::= SEQUENCE {
 responseToken REP-IT-TOKEN,
 algId AlgorithmIdentifier{{SupportedAlgorithms}},
 rep-it-integ Integrity -- "token" is REP-IT-TOKEN
}

REP-IT-TOKEN ::= SEQUENCE {
 tok-id INTEGER(768), -- shall contain 0300 (hex)
 context-id Random-Integer,
 randSrc Random-Integer,
 randTarg Random-Integer,
 targ-name Name,
 src-name Name OPTIONAL,
 key-estb-rep BIT STRING OPTIONAL
}

SPKM-ERROR ::= SEQUENCE {
 errorToken ERROR-TOKEN,
 algId AlgorithmIdentifier{{SupportedAlgorithms}},
 integrity Integrity -- "token" is ERROR-TOKEN
}

ERROR-TOKEN ::= SEQUENCE {
 tok-id INTEGER(1024), -- shall contain 0400 (hex)
 context-id Random-Integer }

SPKM-MIC ::= SEQUENCE {
 mic-header Mic-Header,
 int-cksum BIT STRING }

Mic-Header ::= SEQUENCE {
 tok-id INTEGER(257), -- shall contain 0101 (hex)
 context-id Random-Integer,
 int-alg [0] AlgorithmIdentifier{{SupportedAlgorithms}} OPTIONAL,
 snd-seq [1] SeqNum OPTIONAL }

SeqNum ::= SEQUENCE {
 num INTEGER,
 dir-ind BOOLEAN }

SPKM-WRAP ::= SEQUENCE {
 wrap-header Wrap-Header,
 wrap-body Wrap-Body }

Wrap-Header ::= SEQUENCE {
 tok-id INTEGER(513), -- shall contain 0201 (hex)
 context-id Random-Integer,
 int-alg [0] AlgorithmIdentifier{{SupportedAlgorithms}} OPTIONAL,
 conf-alg [1] Conf-Alg OPTIONAL,
 snd-seq [2] SeqNum OPTIONAL }

Wrap-Body ::= SEQUENCE {
 int-cksum BIT STRING,
 data BIT STRING }

Conf-Alg ::= CHOICE {
 algId [0] AlgorithmIdentifier{{SupportedAlgorithms}},

ISO/IEC 9594-3:2008 (E)

 ITU-T Rec. X.511 (11/2008) 99

 null [1] NULL }

SPKM-DEL ::= SEQUENCE {
 del-header Del-Header,
 int-cksum BIT STRING }

Del-Header ::= SEQUENCE {
 tok-id INTEGER(769), -- shall contain 0301 (hex)
 context-id Random-Integer,
 int-alg [0] AlgorithmIdentifier{{SupportedAlgorithms}} OPTIONAL,
 snd-seq [1] SeqNum OPTIONAL }

-- other types
-- from [RFC-1508]

MechType ::= OBJECT IDENTIFIER

InitialContextToken ::= [APPLICATION 0] IMPLICIT SEQUENCE {
 thisMech MechType,
 innerContextToken SPKMInnerContextToken
} -- when thisMech is SPKM-1 or SPKM-2

SPKMInnerContextToken ::= CHOICE {
 req [0] SPKM-REQ,
 rep-ti [1] SPKM-REP-TI,
 rep-it [2] SPKM-REP-IT,
 error [3] SPKM-ERROR,
 mic [4] SPKM-MIC,
 wrap [5] SPKM-WRAP,
 del [6] SPKM-DEL }

-- from [RFC-1510]

AuthorizationData ::= SEQUENCE OF SEQUENCE {
 ad-type INTEGER,
 ad-data OCTET STRING }

-- object identifier assignments

md5-DES-CBC OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1) security(5)
 integrity(3) md5-DES-CBC(1) }

sum64-DES-CBC OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1) security(5)
 integrity(3) sum64-DES-CBC(2) }

spkm-1 OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) spkm(1) spkm-1(1) }

spkm-2 OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) spkm(1) spkm-2(2) }

END -- SpkmGssTokens

ISO/IEC 9594-3:2008 (E)

100 ITU-T Rec. X.511 (11/2008)

Annex E

Amendments and corrigenda
(This annex does not form an integral part of this Recommendation | International Standard)

This edition of this Directory Specification includes the following amendment to the previous edition that was balloted
and approved by ISO/IEC:

– Amendment 3 on Communications support enhancements.

This edition of this Directory Specification includes the following technical corrigenda correcting the defects
documented in Defect Reports against the 5th edition of this Directory Specification:

– Technical Corrigendum 1 (covering Defect Reports 321, 323 and 324); and
– Technical Corrigendum 2 (covering Defect Reports 326 and 329).

Printed in Switzerland
Geneva, 2009

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia
signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. X.511 (11/2008) – Information technology - Open Systems Interconnection - The Directory: Abstract service definition
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Other references

	3 Definitions
	3.1 Basic Directory definitions
	3.2 Directory model definitions
	3.3 Directory information base definitions
	3.4 Directory entry definitions
	3.5 Name definitions
	3.6 Distributed operations definitions
	3.7 Abstract service definitions

	4 Abbreviations
	5 Conventions
	6 Overview of the Directory service
	7 Information types and common procedures
	7.1 Introduction
	7.2 Information types defined elsewhere
	7.3 Common arguments
	7.4 Common results
	7.5 Service controls
	7.6 Entry information selection
	7.7 Entry information
	7.8 Filter
	7.9 Paged results
	7.10 Security parameters
	7.11 Common elements of procedure for access control
	7.12 Managing the DSA Information Tree
	7.13 Procedures for families of entries

	8 Bind and Unbind operations
	8.1 Directory Bind
	8.2 Directory Unbind

	9 Directory Read operations
	9.1 Read
	9.2 Compare
	9.3 Abandon

	10 Directory Search operations
	10.1 List
	10.2 Search

	11 Directory Modify operations
	11.1 Add Entry
	11.2 Remove Entry
	11.3 Modify Entry
	11.4 Modify DN

	12 Errors
	12.1 Error precedence
	12.2 Abandoned
	12.3 Abandon Failed
	12.4 Attribute Error
	12.5 Name Error
	12.6 Referral
	12.7 Security Error
	12.8 Service Error
	12.9 Update Error

	13 Analysis of search arguments
	13.1 General check of search filter
	13.2 Check of request-attribute-profiles
	13.3 Check of controls and hierarchy selections
	13.4 Check of matching use

	Annex A – Abstract Service in ASN.1
	Annex B – Operational semantics for Basic Access Control
	Annex C – Examples of searching families of entries
	C.1 Single family example
	C.2 Multiple families example

	Annex D – External ASN.1 module
	Annex E – Amendments and corrigenda

