

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T T.812
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(08/2007)

SERIES T: TERMINALS FOR TELEMATIC SERVICES
Still-image compression – JPEG 2000

 Information technology – JPEG 2000 image
coding system: An entry level JPEG 2000
encoder

ITU-T Recommendation T.812

 ITU-T Rec. T.812 (08/2007) i

INTERNATIONAL STANDARD ISO/IEC 15444-13
ITU-T RECOMMENDATION T.812

Information technology – JPEG 2000 image coding system:
An entry level JPEG 2000 encoder

Summary

The purpose of ITU-T Rec. T.812 | ISO/IEC 15444-13 is to define a normative entry level JPEG 2000 encoder providing
one or more optional complete encoding paths that use various features defined in the JPEG 2000 specifications. This
Recommendation | International Standard provides for an entry-level encoder that can be used in various applications
with guidelines on its use, based on patents for which royalty and license fee free declarations are available.

This Recommendation | International Standard defines a set of lossless (bit-preserving) and lossy compression methods
for coding bi-level, continuous-tone greyscale, palletized colour, or continuous-tone colour digital still images.

Source

ITU-T Recommendation T.812 was approved on 29 August 2007 by ITU-T Study Group 16 (2005-2008) under the
ITU-T Recommendation A.8 procedure. An identical text is also published as ISO/IEC 15444-13.

ii ITU-T Rec. T.812 (08/2007)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 ITU-T Rec. T.812 (08/2007) iii

CONTENTS

 Page
1 Scope ... 1

1.1 Context ... 1
1.2 Requirements ... 1

2 References .. 1
2.1 Identical Recommendations | International Standards ... 1

3 Definitions .. 2
4 Abbreviations and symbols... 5

4.1 Abbreviations... 5
4.2 Symbols .. 5

5 General description ... 6
5.1 Codestream.. 6
5.2 Coding principles .. 6

6 Encoder requirements.. 8
6.1 General ... 8
6.2 Encoder function definition... 8
6.3 Implementation... 12
6.4 Codestream description .. 13

7 Optional file format requirements .. 13
Annex A – Codestream syntax.. 14
Annex B – Image and compressed image data ordering ... 15
Annex C – Arithmetic entropy coding .. 16

C.1 Binary encoding.. 16
C.2 Description of the arithmetic encoder .. 17

Annex D – Coefficient bit modelling ... 25
D.1 Code-block scan pattern within code-blocks ... 25
D.2 Coefficient bits and significance .. 25
D.3 Encoding passes over the bit-planes .. 26
D.4 Initializing and terminating ... 29
D.5 Error resilience segmentation symbol.. 31
D.6 Selective arithmetic coding bypass ... 31
D.7 Vertically causal context formation... 32
D.8 Flow diagram of the code-block coding ... 32

Annex E – Quantization .. 35
E.1 Inverse quantization procedure (Informative).. 35
E.2 Scalar coefficient quantization ... 36

Annex F – Discrete wavelet transformation of tile-components ... 37
F.1 Tile-component parameters ... 37
F.2 Discrete wavelet transformations.. 37
F.3 Forward transformation .. 37
F.4 Sub-sampling of components... 45
F.5 Visual frequency weighting... 45

Annex G – DC level shifting and multiple component transformations ... 48
G.1 DC level shifting of tile-components... 48
G.2 Forward reversible multiple component transformation (RCT)... 48
G.3 Forward irreversible multiple component transformation (ICT) .. 49
G.4 Chrominance component sub-sampling and the reference grid ... 49

Annex H – Coding of images with regions of interest.. 50
H.1 Description of the Maxshift method .. 50
H.2 Remarks on region of interest coding .. 51

Annex I – JP2 file format syntax ... 53

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 1

INTERNATIONAL STANDARD
ITU-T RECOMMENDATION

Information technology – JPEG 2000 image coding system:
An entry level JPEG 2000 encoder

1 Scope
This Recommendation | International Standard was developed by the Joint Photographic Experts Group (JPEG), the
joint ISO/I–TU committee responsible for developing standards for continuous-tone still picture coding. It also refers to
the Recommendations | International Standards produced by this committee: ITU-T Rec. T.81 | ISO/IEC 10918-1,
ITU-T Rec. T.83 | ISO/IEC 10918-2, ITU-T Rec. T.84 | ISO/IEC 10918-3 and ITU-T Rec. T.87 | ISO/IEC 14495-1.

1.1 Context

This Recommendation | International Standard defines a set of lossless (bit-preserving) and lossy compression methods
for coding bi-level, continuous-tone greyscale, palletized colour, or continuous-tone colour digital still images. This
Recommendation | International Standard:

– specifies normative but optional encoding processes for converting source image data to JPEG 2000
compressed image data;

– specifies a complete encoding path to produce a conforming codestream as defined in Part 1 Annex A
(ITU-T Rec. T.800 | ISO/IEC 15444-1);

– provides guidance on encoding processes for converting source image data to compressed image data;
– provides guidance on how to implement these processes in practice.

1.2 Requirements

This subclause contains a list of requirements for the definitions of an entry-level encoder.

An entry-level JPEG 2000 encoder implementation (this Recommendation | International Standard):
– shall be normative but optional; implementers shall be allowed to select necessary technologies/paths

that would suite their application needs;
– shall define a JPEG 2000 Part 1 codestream encoder implementation; should define a JP2 file format

encoder implementation;
– shall define a complete encoding path to produce a conforming codestream as defined in Annex A of

ITU-T Rec. T.800 | ISO/IEC 15444-1:2004;
– shall consist of technology with clear IP status being royalty fee-free.

2 References
The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards
– ITU-T Recommendation T.81 (1992) | ISO/IEC 10918-1:1994, Information technology – Digital

compression and coding of continuous-tone still images: Requirements and guidelines.
– ITU-T Recommendation T.84 (1996) | ISO/IEC 10918-3:1997, Information technology – Digital

compression and coding of continuous-tone still images: Extensions.

ISO/IEC 15444-13:2008 (E)

2 ITU-T Rec. T.812 (08/2007)

– ITU-T Recommendation T.86 (1998) | ISO/IEC 10918-4:1999, Information technology – Digital
compression and coding of continuous-tone still images: Registration of JPEG Profiles, SPIFF Profiles,
SPIFF Tags, SPIFF Colour Spaces, APPn Markers, SPIFF Compression Types and Registration
Authorities (REGAUT).

– ITU-T Recommendation T.87 (1998) | ISO/IEC 14495-1:2000, Information technology – Lossless and
near-lossless compression of continuous-tone still images – Baseline.

– ITU-T Recommendation T.88 (2000) | ISO/IEC 14492:2001, Information technology – Lossy/lossless
coding of bi-level images.

– ITU-T Recommendation T.800 (2002) | ISO/IEC 15444-1:2004, Information technology – JPEG 2000
image coding system: Core coding system.

– ITU-T Recommendation T.801 (2002) | ISO/IEC 15444-2:2004, Information technology – JPEG 2000
image coding system: Extensions.

– ITU-T Recommendation T.803 (2002) | ISO/IEC 15444-4:2004, Information technology – JPEG 2000
image coding system: Conformance testing.

– ITU-T Recommendation T.804 (2002) | ISO/IEC 15444-5:2003, Information technology – JPEG 2000
image coding system: Reference software.

3 Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply. The definitions
defined in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004 clause 3 also apply to this Recommendation | International
Standard.

3.1 5-3 reversible filter (5-3R): A particular filter pair used in the wavelet transformation. This reversible filter
pair has 5 taps in the low-pass and 3 taps in the high-pass.

3.2 9-7 irreversible filter (9-7I): A particular filter pair used in the wavelet transformation. This irreversible filter
pair has 9 taps in the low-pass and 7 taps in the high-pass.

3.3 arithmetic coder: An entropy coder that converts variable length strings to variable length codes (encoding)
and visa versa (decoding).

3.4 bit-plane: A two-dimensional array of bits. In this Recommendation | International Standard, a bit-plane
refers to all the bits of the same magnitude in all coefficients or samples. This could refer to a bit-plane in a component,
tile-component, code-block, region of interest, or other.

3.5 bit stream: The actual sequence of bits resulting from the coding of a sequence of symbols. It does not
include the markers or marker segments in the main and tile-part headers or the EOC marker. It does include any packet
headers and in stream markers and marker segments not found within the main or tile-part headers.

3.6 channel: One logical component of the image. A channel may be a direct representation of one component
from the codestream, or may be generated by the application of a palette to a component from the codestream.

3.7 cleanup pass: A coding pass performed on a single bit-plane of a code-block of coefficients. The first pass
and only coding pass for the first significant bit-plane is a cleanup pass; the third and the last pass of every remaining
bit-plane is a cleanup pass.

3.8 codestream: A collection of one or more bit streams and the main header, tile-part headers, and the EOC
required for their decoding and expansion into image data. This is the image data in a compressed form with all of the
signalling needed to decode.

3.9 code-block: A rectangular grouping of coefficients from the same sub-band of a tile-component.

3.10 coder: An embodiment of either an encoding or decoding process.

3.11 coding pass: A complete pass through a code-block where the appropriate coefficient values and context are
applied. There are three types of coding passes: significance propagation pass, magnitude refinement pass and cleanup
pass. The result of each pass (after arithmetic coding, if selective arithmetic coding bypass is not used) is a stream of
compressed image data.

3.12 coefficient: The values that are the result of a transformation.

3.13 component: A two-dimensional array of samples. An image typically consists of several components, for
instance representing red, green and blue.

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 3

3.14 context: Function of coefficients previously decoded and used to condition the decoding of the present
coefficient.

3.15 decoder: An embodiment of a decoding process, and optionally a colour transformation process.

3.16 decoding process: A process which takes as its input all or part of a codestream and outputs all or part of a
reconstructed image.

3.17 decomposition level: A collection of wavelet sub-bands where each coefficient has the same spatial impact or
span with respect to the source component samples. These include the HL, LH, and HH sub-bands of the same two
dimensional sub-band decomposition. For the last decomposition level, the LL sub-band is also included.

3.18 discrete wavelet transformation (DWT): A transformation that iteratively transforms one signal into two or
more filtered and decimated signals corresponding to different frequency bands. This transformation operates on
spatially discrete samples.

3.19 encoder: An embodiment of an encoding process.

3.20 encoding process: A process, that takes as its input all or part of a source image data and outputs a
codestream.

3.21 file format: A codestream and additional support data and information not explicitly required for the
decoding of codestream. Examples of such support data include text fields providing titling, security and historical
information, data to support placement of multiple codestream within a given data file, and data to support exchange
between platforms or conversion to other file formats.

3.22 guard bits: Additional most significant bits that have been added to sample data.

3.23 header: Either a part of the codestream that contains only markers and marker segments (main header and tile
part header) or the signalling part of a packet (packet header).

3.24 image area: A rectangular part of the reference grid, registered by offsets from the origin and the extent of the
reference grid.

3.25 image area offset: The number of reference grid points down and to the right of the reference grid origin
where the origin of the image area can be found.

3.26 irreversible: A transformation, progression, system, quantization, or other process that, due to systemic or
quantization error, disallows lossless recovery. An irreversible process can only lead to lossy compression.

3.27 JP2 file: The name of a file in the file format described in this Recommendation | International Standard.
Structurally, a JP2 file is a contiguous sequence of boxes.

3.28 JPEG: Used to refer globally to the encoding and decoding process of the following
Recommendations | International Standards:

– ITU-T Recommendation T.81 (1992) | ISO/IEC 10918-1:1994, Information technology – Digital
compression and coding of continuous-tone still images: Requirements and guidelines.

– ITU-T Recommendation T.83 (1994) | ISO/IEC 10918-2:1995, Information technology – Digital
compression and coding of continuous-tone still images: Compliance testing.

– ITU-T Recommendation T.84 (1996) | ISO/IEC 10918-3:1997, Information technology – Digital
compression and coding of continuous-tone still images: Extensions, plus Amendment 1 (1999),
Provisions to allow registration of new compression types and versions in the SPIFF header.

– ITU-T Recommendation T.86 (1998) | ISO/IEC 10918-4:1999, Information technology – Digital
compression and coding of continuous-tone still images: Registration of JPEG Profiles, SPIFF Profiles,
SPIFF Tags, SPIFF Colour Spaces, APPn Markers, SPIFF Compression Types and Registration
Authorities (REGAUT).

3.29 JPEG 2000: Used to refer globally to the encoding and decoding processes in this
Recommendation | International Standard and their embodiment in applications.

3.30 JPX file: JPEG 2000 File Format defined in ITU-T Rec. T.801 | ISO/IEC 15444-2:2004; JPEG 2000 File
Format Extended.

3.31 layer: A collection of compressed image data from coding passes of one, or more, code-blocks of a tile
component. Layers have an order for encoding and decoding that must be preserved.

3.32 lossless: A descriptive term for the effect of the overall encoding and decoding processes in which the output
of the decoding process is identical to the input to the encoding process. Distortion free restoration can be assured. All
of the coding processes or steps used for encoding and decoding are reversible.

ISO/IEC 15444-13:2008 (E)

4 ITU-T Rec. T.812 (08/2007)

3.33 lossy: A descriptive term for the effect of the overall encoding and decoding processes in which the output of
the decoding process is not identical to the input to the encoding process. There is distortion (measured
mathematically). At least one of the coding processes or steps used for encoding and decoding is irreversible.

3.34 magnitude refinement pass: A type of coding pass.

3.35 main header: A group of markers and marker segments at the beginning of the codestream that describe the
image parameters and coding parameters that can apply to every tile and tile-component.

3.36 marker: A two-byte code in which the first byte is hexadecimal FF (0xFF) and the second byte is a value
between 1 (0x01) and hexadecimal FE (0xFE).

3.37 marker segment: A marker and associated (not empty) set of parameters.

3.38 packet: A part of the bit stream comprising a packet header and the compressed image data from one layer of
one precinct of one resolution level of one tile-component.

3.39 packet header: Portion of the packet that contains signalling necessary for decoding that packet.

3.40 precinct: A one rectangular region of a transformed tile-component, within each resolution level, used for
limiting the size of packets.

3.41 precision: Number of bits allocated to a particular sample, coefficient, or other binary numerical
representation.

3.42 progression: The order of a codestream where the decoding of each successive bit contributes to a "better"
reconstruction of the image. What metrics make the reconstruction "better" is a function of the application. Some
examples of progression are increasing resolution or improved sample fidelity.

3.43 quantization: A method of reducing the precision of the individual coefficients to reduce the number of bits
used to entropy-code them. This is equivalent to division while compressing and multiplying while decompressing.
Quantization can be achieved by an explicit operation with a given quantization value or by dropping (truncating)
coding passes from the codestream.

3.44 reference grid: A regular rectangular array of points used as a reference for other rectangular arrays of data.
Examples include components and tiles.

3.45 region of interest (ROI): A collections of coefficients that are considered of particular relevance by some
user-defined measure.

3.46 resolution level: Equivalent to decomposition level with one exception: the LL sub-band is also a separate
resolution level.

3.47 reversible: A transformation, progression, system, or other process that does not suffer systemic or
quantization error and, therefore, allows lossless signal recovery.

3.48 segmentation symbol: A special symbol coded with a uniform context at the end of each coding pass for
error resilience.

3.49 selective arithmetic coding bypass: A coding style where some of the code-block passes are not coded by
the arithmetic coder. Instead the bits to be coded are appended directly to the bit stream without coding.

3.50 significance propagation pass: A coding pass performed on a single bit-plane of a code-block of
coefficients.

3.51 sub-band: A group of transform coefficients resulting from the same sequence of low-pass and high-pass
filtering operations, both vertically and horizontally.

3.52 tile: A rectangular array of points on the reference grid, registered with and offset from the reference grid
origin and defined by a width and height. The tiles that overlap are used to define tile-components.

3.53 tile-component: All the samples of a given component in a tile.

3.54 tile index: The index of the current tile ranging from zero to the number of tiles minus one.

3.55 tile-part: A portion of the codestream with compressed image data for some, or all, of a tile. The tile-part
includes at least one, and up to all, of the packets that make up the coded tile.

3.56 tile-part header: A group of markers and marker segments at the beginning of each tile-part in the
codestream that describe the tile-part coding parameters.

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 5

3.57 tile-part index: The index of the current tile-part ranging from zero to the number of tile-parts minus one in a
given tile.

3.58 transformation: A mathematical mapping from one signal space to another.

4 Abbreviations and symbols

4.1 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply. The abbreviations
defined in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004 clause 4 also apply to this Recommendation | International
Standard.

1D-DWT One-dimensional Discrete Wavelet Transformation
FDWT Forward Discrete Wavelet Transformation
ICC International Colour Consortium
ICT Irreversible Component Transformation
IDWT Inverse Discrete Wavelet Transformation
JPEG Joint Photographic Experts Group
JURA JPEG Utilities Registration Authority
RCT Reversible Component Transformation
ROI Region of Interest

4.2 Symbols

For the purposes of this Recommendation | International Standard, the following symbols apply. The abbreviations
defined in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004 clause 4 also apply to this Recommendation | International
Standard.

0x---- Denotes a hexadecimal number
\nnn A three-digit number preceded by a backslash indicates the value of a single byte within a character

string, where the three digits specify the octal value of that byte

εb Exponent of the quantization value for a sub-band defined in QCD and QCC

μb Mantissa of the quantization value for a sub-band defined in QCD and QCC
Mb Maximum number of bit-planes coded in a given code-block
NL Number of decomposition levels as defined in COD and COC
Rb Dynamic range of a component sample as defined in SIZ
COC Coding style component marker
COD Coding style default marker
COM Comment marker
CRG Component registration marker
EOC End of codestream marker
EPH End of packet header marker
PLM Packet length, main header marker
PLT Packet length, tile-part header marker
POC Progression order change marker
PPM Packed packet headers, main header marker
PPT Packed packet headers, tile-part header marker
QCC Quantization component marker
QCD Quantization default marker
RGN Region-of-interest marker
SIZ Image and tile size marker

ISO/IEC 15444-13:2008 (E)

6 ITU-T Rec. T.812 (08/2007)

SOC Start of codestream marker
SOD Start of data marker
SOP Start of packet marker
SOT Start of tile-part marker
TLM Tile-part lengths marker

5 General description

5.1 Codestream

The definition of codestream is the same as in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004.

5.2 Coding principles

The main procedures for this Recommendation | International Standard are shown in Figure 1. This shows the encoding
order, a reverse ordering of the block diagram of Figure 5-1 in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004.

Figure 1 – Specification block diagram

Procedures are presented in the annexes. The category of the annexes is the same as in
ITU-T Rec. T.800 | ISO/IEC 15444-1:2004. Also the index of the annex is the same.

The coding process is summarized below.

Many images have multiple components. This Specification has a multiple component transformation to correlate three
components. This is the only function in this Specification that relates components to each other. (See Annex G.)

The image components may be divided into tiles. These tile-components are rectangular arrays that relate to the same
portion of each of the components that make up the image. Thus, tiling of the image actually creates tile-components
that can be encoded independently of each other. This tile independence provides one of the methods for encoding a
region of the image. (See Annex B.)

The tile-components are composed into different decomposition levels using a wavelet transformation. These
decomposition levels contain a number of sub-bands populated with coefficients that describe the horizontal and
vertical spatial frequency characteristics of the original tile-components. The coefficients provide frequency information
about a local area, rather than across the entire image like the Fourier transformation. A decomposition level is related
to the next decomposition level by a spatial factor of two. That is, each successive decomposition level of the sub-bands
has approximately half the horizontal and half the vertical resolution of the previous. (See Annex F.)

Although there are as many coefficients as there are samples, the information content tends to be concentrated in just a
few coefficients. Through quantization, the information content of a large number of small-magnitude coefficients is
further reduced (Annex E). Additional processing by the entropy coder reduces the number of bits required to represent
these quantized coefficients, sometimes significantly compared to the original image. (See Annexes C, D and B.)

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 7

The individual sub-bands of a tile-component are further divided into code-blocks. These rectangular arrays of
coefficients can be extracted independently. The individual bit-planes of the coefficients in a code-block are coded with
three coding passes. Each of these coding passes collects contextual information about the bit-plane compressed image
data. (See Annex D.)

An arithmetic coder uses this contextual information, and its internal state, to encode coefficients. (See Annex C.)
Different termination mechanisms allow different levels of independent extraction of this coding pass compressed
image data.

The bit stream compressed image data created from these coding passes is grouped in layers. Layers are arbitrary
groupings of coding passes from code-blocks. (See Annex B.)

NOTE – Although there is great flexibility in layering, the premise is that each successive layer contributes to a higher quality
image.

Sub-band coefficients at each resolution level are partitioned into rectangular areas called precincts. (See Annex B.)

Packets are a fundamental unit of the compressed codestream. A packet contains compressed image data from one layer
of a precinct of one resolution level of one tile-component. Packets provide another method for extracting a spatial
region independently from the codestream. These packets are interleaved in the codestream using a few different
methods. (See Annex B.)

A mechanism is provided that allows the compressed image data corresponding to regions of interest in the original tile
components to be coded and placed earlier in the bit stream. (See Annex H.)

Several mechanisms are provided to allow the detection and concealment of bit errors that might occur over a noisy
transmission channel. (See Annex D.)

The codestream relating to a tile, organized in packets, are arranged in one, or more, tile-parts. A tile-part header,
comprised of a series of markers and marker segments, contains information about the various mechanisms and coding
styles that are needed to locate, extract, decode, and reconstruct every tile-component. At the beginning of the entire
codestream is a main header, comprised of markers and marker segments, that offers similar information as well as
information about the original image. (See Annex A.)

The codestream is optionally wrapped in a file format that allows applications to interpret the meaning of, and other
information about, the image. The file format may contain data besides the codestream. (See Annex I.)

To review, procedures that divide the original image are the following:
– The components of the image are divided into rectangular tiles. The tile-component is the basic unit of

the original or reconstructed image.
– Performing the wavelet transformation on a tile-component creates decomposition levels.
– These decomposition levels are made up of sub-bands of coefficients that describe the frequency

characteristics of local areas (rather than across the entire tile-component) of the tile-component.
– The sub-bands of coefficients are quantized and collected into rectangular arrays of code-blocks.
– Each bit-plane of the coefficients in a code-block is entropy coded in three types of coding passes.
– Some of the coefficients can be coded first to provide a region of interest.

At this point the image data is fully converted to compressed image data. The procedures that reassemble these bit
stream units into the codestream are the following:

– The compressed image data from the coding passes are collected in layers.
– Packets are composed compressed image data from one precinct of a single layer of a single resolution

level of a single tile-component. The packets are the basic unit of the compressed image data.
– All the packets from a tile are interleaved in one of several orders and placed in one, or more, tile-parts.
– The tile-parts have a descriptive tile-part header and can be interleaved in some orders.
– The codestream has a main header at the beginning that describes the original image and the various

decomposition and coding styles.
– The optional file format describes the meaning of the image and its components in the context of the

application.

ISO/IEC 15444-13:2008 (E)

8 ITU-T Rec. T.812 (08/2007)

6 Encoder requirements

6.1 General

An encoding process converts source image data to compressed image data. Annexes A, B, C, D, E, F, G and H
describe the encoding process. All encoding processes are normative. An encoder is an embodiment of the encoding
process. In order to conform to this Recommendation | International Standard, an encoder shall convert source image
data to compressed image data, that conform to the codestream syntax specified in Annex A.

There is no required specific implementation for the encoder. In some cases, the descriptions use particular
implementation techniques for illustrative purposes only.

The definition of an entry-level encoder is separated into three groups:
– encoder function;
– implementation;
– codestream description.

6.2 Encoder function definition

There are four encoding styles described in this Recommendation | International Standard:
– lossless based colour encoding;
– lossy based colour encoding;
– lossless based greyscale encoding;
– lossy based greyscale encoding.

The definition of image and compressed data ordering is applied commonly above four styles. Table 1 shows the
definition of image and compressed data ordering. All reference of Table 1 is described in Annex B in
ITU-T Rec. T.800 | ISO/IEC 15444-1:2004.

Table 1 – Function definition of image and compressed data ordering

Item Reference

Reference grid B.2*
Tiling B.3*
Sub-band B.5*
Precinct B.6*
Code-block (64x64 or 32x32) B.7*
Layer B.8*
Packet B.9*
Packet header coding B.10*
Tile-parts (plural) B.11*
Part 1 progression order (one of 5 progression methods) B.12.1*
Progression order change B.12.2, B.12.3*
* Described in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004.

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 9

6.2.1 Lossless based colour encoding

Lossless based colour encoding process is shown in Figure 2. Because a basic concept of lossless based colour encoding
is colour image exchange lossless, reversible component transformation (RCT) and reversible wavelet transformation
(5-3R) shall be executed. Also scalar quantization shall not be executed. It may be used in truncated codestream to
provide lossy compression.

Function definition of Lossless based colour encoding is shown in Table 2.

Figure 2 – Lossless based colour encoding block diagram

Table 2 – Function definition of lossless based colour encoding

Category Item Reference

DC level shifting data G.1 DC level shifting and multiple
component transformations RCT G.2

Wavelet transform (5-3R) F.3
Sub-sampling by discarding coefficients F.4 Discrete wavelet transform
Visual frequency weighting F.5
3-coding pass, 4-coding mode (EBCOT) D.3
Predictable termination D.4
Reset context probabilities on coding pass boundaries D.4
Termination on each coding pass D.4
Segmentation symbols D.5
Selective AC bypass D.6

Coefficient bit modelling

Vertically causal context D.7
Arithmetic entropy coding MQ-Coder Encoding C.2
Region of Interest Max-shift H.1, H.2

ISO/IEC 15444-13:2008 (E)

10 ITU-T Rec. T.812 (08/2007)

6.2.2 Lossy based colour encoding

Lossy-based colour encoding process is shown in Figure 3. Lossy-based colour encoding has several purposes such as
high compression performance or fixed codestream size. Irreversible component transformation (ICT) and irreversible
wavelet transformation (9-7I) shall be executed. Scalar quantization may be executed.

Function definition of Lossy based colour encoding is shown in Table 3.

Figure 3 – Lossy based colour encoding block diagram

Table 3 – Function definition of lossy based colour encoding

Category Item Reference

DC level shifting data G.1 DC level shifting and multiple
component transformations ICT G.3

Wavelet transform (9-7I) F.3
Sub-sampling by discarding coefficients F.4 Discrete wavelet transform
Visual frequency weighting F.5

Quantization Scalar quantization E.2
3-coding pass, 4-coding mode (EBCOT) D.3
Predictable termination D.4
Reset context probabilities on coding pass boundaries D.4
Termination on each coding pass D.4
Segmentation symbols D.5
Selective AC bypass D.6

Coefficient bit modelling

Vertically causal context D.7
Arithmetic entropy coding MQ-Coder Encoding C.2
Region of Interest Max-shift H.1, H.2

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 11

6.2.3 Lossless based greyscale encoding

Lossless based greyscale encoding process is shown in Figure 4. A basic concept of lossless based greyscale encoding is
almost the same as lossless based colour encoding, but source image is changed colour to greyscale. Reversible wavelet
transformation (5-3R) shall be executed. Component transformation and scalar quantization shall not be executed. It
may be used in truncated codestream to provide lossy compression.

Function definition of lossless based greyscale encoding is shown in Table 4.

Figure 4 – Lossless based greyscale encoding block diagram

Table 4 – Function definition of lossless based greyscale encoding

Category Item Reference

DC level shifting and multiple
component transformations DC level shifting data G.1

Wavelet transform (5-3R) F.3
Discrete wavelet transform

Visual frequency weighting F.5
3-coding pass, 4-coding mode (EBCOT) D.3
Predictable termination D.4
Reset context probabilities on coding pass boundaries D.4
Termination on each coding pass D.4
Segmentation symbols D.5
Selective AC bypass D.6

Coefficient bit modelling

Vertically causal context D.7
Arithmetic entropy coding MQ-Coder Encoding C.2
Region of Interest Max-shift H.1, H.2

ISO/IEC 15444-13:2008 (E)

12 ITU-T Rec. T.812 (08/2007)

6.2.4 Lossy based greyscale encoding

Lossy-based greyscale encoding process is shown in Figure 5. A concept of lossy-based greyscale encoding is almost
the same as lossy based colour encoding, but source image is changed colour to greyscale. Irreversible wavelet
transformation (9-7I) shall be executed. Scalar quantization may be executed. Component transformation shall not be
executed.

Function definition of lossy based greyscale encoding is shown in Table 5.

Figure 5 – Lossy based greyscale encoding block diagram

Table 5 – Function definition of lossy based greyscale encoding

Category Item Reference

DC level shifting and multiple
component transformations

DC level shifting data G.1

Wavelet transform (9-7I) F.3
Discrete wavelet transform

Visual frequency weighting F.5
Quantization Scalar quantization E.2

3-coding pass, 4-coding mode (EBCOT) D.3
Predictable termination D.4
Reset context probabilities on coding pass boundaries D.4
Termination on each coding pass D.4
Segmentation symbols D.5
Selective AC bypass D.6

Coefficient bit modelling

Vertically causal context D.7
Arithmetic entropy coding MQ-Coder Encoding C.2
Region of Interest Max-shift H.1, H.2

6.3 Implementation

There is no required specific implementation for this Recommendation | International Standard. This subclause defines
optional implementation choices.

Implementation definition is shown in Table 6. All reference of Table 6 is described in Annex J in ITU-T
Rec. T.800 | ISO/IEC 15444-1:2004.

Table 6 – Implementation definition

Category Item Reference

Row-based wavelet transform J.5*
Visual frequency weighting J.12* Implementation
Rate control J.14*

* Described in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004.

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 13

6.4 Codestream description

Any compressed image data shall comply with the syntax and code assignments appropriate for the coding processes
defined in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004.

ITU-T Rec. T.803 | ISO/IEC 15444-4:2004 (JPEG 2000 Part 4) describes a definition of compliance or conformance.

This subclause defines the use of a particular marker segment for an encoder.

Codestream description is shown in Table 7. All reference of Table 7 is described in Annex A in ITU-T
Rec. T.800 | ISO/IEC 15444-1:2004.

Table 7 – Codestream description

Category Item Reference

SOC marker A.4.1*
SOT marker segment A.4.2*
SOD marker A.4.3*
EOC marker A.4.4*
SIZ marker segment A.5.1*
COD marker segment A.6.1*
COC marker segment A.6.2*
RGN marker segment A.6.3*
QCD marker segment A.6.4*
QCC marker segment A.6.5*
POC marker segment A.6.6*
TLM marker segment A.7.1*
PLM marker segment A.7.2*
PLT marker segment A.7.3*
PPM marker segment A.7.4*
PPT marker segment A.7.5*
SOP marker segment A.8.1*
EPH marker segment A.8.2*
CRG marker segment A.9.1*

Implementation

COM marker segment A.9.2*
* Described in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004.

7 Optional file format requirements
Annex I describes the optional file format containing metadata about the image in addition to the codestream. This data
allows, for example, screen display or printing at a specific resolution. The optional file format, when used, shall
comply with the file format syntax and code assignments appropriate for the coding processes defined in ITU-T
Rec. T.800 | ISO/IEC 15444-1:2004.

ISO/IEC 15444-13:2008 (E)

14 ITU-T Rec. T.812 (08/2007)

Annex A

Codestream syntax
 (This annex forms an integral part of this Recommendation | International Standard)

There is no additional codestream syntax of JPEG 2000 codestream.

This annex is identical to Annex A in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004.

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 15

Annex B

Image and compressed image data ordering
(This annex forms an integral part of this Recommendation | International Standard)

There is no additional definition of image and compressed data ordering.

This annex is identical to Annex B in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004.

ISO/IEC 15444-13:2008 (E)

16 ITU-T Rec. T.812 (08/2007)

Annex C

Arithmetic entropy coding
(This annex forms an integral part of this Recommendation | International Standard)

In this annex and all of its subclauses, the flow charts and tables are normative only in the sense that they are defining
an output that alternative implementations shall duplicate.

C.1 Binary encoding

Figure C.1 shows a simple block diagram of the binary adaptive arithmetic encoder. The decision (D) and context (CX)
pairs are processed together to produce compressed image data (CD) output. Both D and CX are provided by the model
unit (not shown). CX selects the probability estimate to use during the coding of D. In this Recommendation |
International Standard, CX is a label for a context.

Figure C.1 – Arithmetic encoder inputs and outputs

C.1.1 Recursive interval subdivision

The recursive probability interval subdivision of Elias coding is the basis for the binary arithmetic coding process. With
each binary decision the current probability interval is subdivided into two sub-intervals, and the code string is modified
(if necessary) so that it points to the base (the lower bound) of the probability sub-interval assigned to the symbol that
occurred.

In the partitioning of the current interval into two sub-intervals, the sub-interval for the more probable symbol (MPS) is
ordered above the sub-interval for the less probable symbol (LPS). Therefore, when the MPS is coded, the LPS sub-
interval is added to the code string. This coding convention requires that symbols be recognized as MPS or LPS, rather
than 0 or 1. Consequently, the size of the LPS interval and the sense of the MPS for each decision must be known in
order to code that decision.

Since the code string always points to the base of the current interval, the decoding process is a matter of determining,
for each decision, which sub-interval is pointed to by the compressed image data. This is also done recursively, using
the same interval sub-division process as in the encoder. Each time a decision is decoded, the decoder subtracts any
interval the encoder added to the code string. Therefore, the code string in the decoder is a pointer into the current
interval relative to the base of the current interval. Since the coding process involves addition of binary fractions rather
than concatenation of integer code words, the more probable binary decisions can often be coded at a cost of much less
than one bit per decision.

C.1.2 Coding conventions and approximations

The coding operations are done using fixed precision integer arithmetic and using an integer representation of fractional
values in which 0x8000 is equivalent to decimal 0.75. The interval A is kept in the range 0.75 ≤ A < 1.5 by doubling it
whenever the integer value falls below 0x8000.

The code register C is also doubled each time A is doubled. Periodically – to keep C from overflowing – a byte of
compressed image data is removed from the high order bits of the C-register and placed in an external compressed
image data buffer. Carry-over into the external buffer is prevented by a bit-stuffing procedure.

Keeping A in the range 0.75 ≤ A < 1.5 allows a simple arithmetic approximation to be used in the interval subdivision.
The interval is A and the current estimate of the LPS probability is Qe, a precise calculation of the sub-intervals would
require:

 A – (Qe * A) = sub-interval for the MPS (C-1)

 Qe * A = sub-interval for the LPS (C-2)

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 17

Because the value of A is of order unity, these are approximated by:

 A – Qe = sub-interval for the MPS (C-3)

 Qe = sub-interval for the LPS (C-4)

Whenever the MPS is coded, the value of Qe is added to the code register and the interval is reduced to A – Qe.
Whenever the LPS is coded, the code register is left unchanged and the interval is reduced to Qe. The precision range
required for A is then restored, if necessary, by renormalization of both A and C.

With the process illustrated above, the approximations in the interval subdivision process can sometimes make the LPS
sub-interval larger than the MPS sub-interval. If, for example, the value of Qe is 0.5 and A is at the minimum allowed
value of 0.75, the approximate scaling gives 1/3 of the interval to the MPS and 2/3 to the LPS. To avoid this size
inversion, the MPS and LPS intervals are exchanged whenever the LPS interval is larger than the MPS interval. This
MPS/LPS conditional exchange can only occur when a renormalization is needed.

Whenever a renormalization occurs, a probability estimation process is invoked which determines a new probability
estimate for the context currently being coded. No explicit symbol counts are needed for the estimation. The relative
probabilities of renormalization after coding an LPS or MPS provide an approximate symbol counting mechanism
which is used to directly estimate the probabilities.

C.2 Description of the arithmetic encoder

The ENCODER (Figure C.2) initializes the encoder through the INITENC procedure. CX and D pairs are read and
passed on to ENCODE until all pairs have been read. The probability estimation procedures that provide adaptive
estimates of the probability for each context are imbedded in ENCODE. Bytes of compressed image data are output
when necessary. When all of the CX and D pairs have been read, FLUSH sets the contents of the C-register to as many
1 bits as possible and then outputs the final bytes. FLUSH also terminates the encoding and generates the required
terminating marker.

Figure C.2 – Encoder for the MQ-coder

C.2.1 Encoder code register conventions

The flow charts given in this annex assume the register structures for the encoder shown in Table C.1.

Table C.1 – Encoder register structures

 MSB LSB

C-register 0000 cbbb bbbb bsss xxxx xxxx xxxx xxxx

A-register 0000 0000 0000 0000 1aaa aaaa aaaa aaaa

ISO/IEC 15444-13:2008 (E)

18 ITU-T Rec. T.812 (08/2007)

The "a" bits are the fractional bits in the A register (the current interval value) and the "x" bits are the fractional bits in
the code register. The "s" bits are spacer bits which provide useful constraints on carry-over, and the "b" bits indicate
the bit positions from which the completed bytes of the compressed image data are removed from the C-register. The
"c" bit is a carry bit. The detailed description of bit stuffing and the handling of carry-over will be given in a later part
of this annex.

C.2.2 Encoding a decision (ENCODE)

The ENCODE procedure determines whether the decision D is a 0 or not. Then a CODE0 or a CODE1 procedure is
called appropriately. Often embodiments will not have an ENCODE procedure, but will call the CODE0 or CODE1
procedures directly to code a 0-decision or a 1-decision. Figure C.3 shows this procedure.

Figure C.3 – ENCODE procedure

C.2.3 Encoding a 1 or a 0 (CODE1 and CODE0)

When a given binary decision is coded, one of two possibilities occurs – the symbol is either the more probable symbol
or it is the less probable symbol. CODE1 and CODE0 are illustrated in Figures C.4 and C.5. In these figures, CX is the
context. For each context, the index of the probability estimate that is to be used in the coding operations and the MPS
value are stored. MPS (CX) is the sense (0 or 1) of the MPS for context CX.

Figure C.4 – CODE1 procedure

Figure C.5 – CODE0 procedure

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 19

C.2.4 Encoding an MPS or LPS (CODEMPS and CODELPS)

The CODELPS (Figure C.6) procedure usually consists of a scaling of the interval to Qe(I(CX)), the probability
estimate of the LPS determined from the index I stored for context CX. The upper interval is first calculated so it can be
compared to the lower interval to confirm that Qe has the smaller size. It is always followed by a renormalization
(RENORME). In the event that the interval sizes are inverted, however, the conditional MPS/LPS exchange occurs and
the upper interval is coded. In either case, the probability estimate is updated. If the SWITCH flag for the index I(CX) is
set, then the MPS(CX) is inverted. A new index I is saved at CX as determined from the next LPS index (NLPS)
column in Table C.2.

Figure C.6 – CODELPS procedure with conditional MPS/LPS exchange

Figure C.7 – CODEMPS procedure with conditional MPS/LPS exchange

ISO/IEC 15444-13:2008 (E)

20 ITU-T Rec. T.812 (08/2007)

Table C.2 – Qe values and probability estimation

Qe_Value
Index

(hexadecimal) (binary) (decimal)
NMPS NLPS SWITCH

0 0x5601 0101 0110 0000 0001 0.503937 1 1 1
1 0x3401 0011 0100 0000 0001 0.304715 2 6 0
2 0x1801 0001 1000 0000 0001 0.140650 3 9 0
3 0x0AC1 0000 1010 1100 0001 0.063012 4 12 0
4 0x0521 0000 0101 0010 0001 0.030053 5 29 0
5 0x0221 0000 0010 0010 0001 0.012474 38 33 0
6 0x5601 0101 0110 0000 0001 0.503937 7 6 1
7 0x5401 0101 0100 0000 0001 0.492218 8 14 0
8 0x4801 0100 1000 0000 0001 0.421904 9 14 0
9 0x3801 0011 1000 0000 0001 0.328153 10 14 0
10 0x3001 0011 0000 0000 0001 0.281277 11 17 0
11 0x2401 0010 0100 0000 0001 0.210964 12 18 0
12 0x1C01 0001 1100 0000 0001 0.164088 13 20 0
13 0x1601 0001 0110 0000 0001 0.128931 29 21 0
14 0x5601 0101 0110 0000 0001 0.503937 15 14 1
15 0x5401 0101 0100 0000 0001 0.492218 16 14 0
16 0x5101 0101 0001 0000 0001 0.474640 17 15 0
17 0x4801 0100 1000 0000 0001 0.421904 18 16 0
18 0x3801 0011 1000 0000 0001 0.328153 19 17 0
19 0x3401 0011 0100 0000 0001 0.304715 20 18 0
20 0x3001 0011 0000 0000 0001 0.281277 21 19 0
21 0x2801 0010 1000 0000 0001 0.234401 22 19 0
22 0x2401 0010 0100 0000 0001 0.210964 23 20 0
23 0x2201 0010 0010 0000 0001 0.199245 24 21 0
24 0x1C01 0001 1100 0000 0001 0.164088 25 22 0
25 0x1801 0001 1000 0000 0001 0.140650 26 23 0
26 0x1601 0001 0110 0000 0001 0.128931 27 24 0
27 0x1401 0001 0100 0000 0001 0.117212 28 25 0
28 0x1201 0001 0010 0000 0001 0.105493 29 26 0
29 0x1101 0001 0001 0000 0001 0.099634 30 27 0
30 0x0AC1 0000 1010 1100 0001 0.063012 31 28 0
31 0x09C1 0000 1001 1100 0001 0.057153 32 29 0
32 0x08A1 0000 1000 1010 0001 0.050561 33 30 0
33 0x0521 0000 0101 0010 0001 0.030053 34 31 0
34 0x0441 0000 0100 0100 0001 0.024926 35 32 0
35 0x02Al 0000 0010 1010 0001 0.015404 36 33 0
36 0x0221 0000 0010 0010 0001 0.012474 37 34 0
37 0x0141 0000 0001 0100 0001 0.007347 38 35 0
38 0x0111 0000 0001 0001 0001 0.006249 39 36 0
39 0x0085 0000 0000 1000 0101 0.003044 40 37 0
40 0x0049 0000 0000 0100 1001 0.001671 41 38 0
41 0x0025 0000 0000 0010 0101 0.000847 42 39 0
42 0x0015 0000 0000 0001 0101 0.000481 43 40 0
43 0x0009 0000 0000 0000 1001 0.000206 44 41 0
44 0x0005 0000 0000 0000 0101 0.000114 45 42 0

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 21

Table C.2 – Qe values and probability estimation

Qe_Value
Index

(hexadecimal) (binary) (decimal)
NMPS NLPS SWITCH

45 0x0001 0000 0000 0000 0001 0.000023 45 43 0
46 0x5601 0101 0110 0000 0001 0.503937 46 46 0

C.2.5 Probability estimation

Table C.2 shows the Qe value associated with each Qe index. The Qe values are expressed as hexadecimal integers, as
binary integers, and as decimal fractions. To convert the 15-bit integer representation of Qe to the decimal probability,
the Qe values are divided by (4/3) * (0x8000).

The estimator can be defined as a finite-state machine – a table of Qe indexes and associated next states for each type of
renormalization (i.e., new table positions) – as shown in Table C.2. The change in state occurs only when the arithmetic
coder interval register is renormalized. This is always done after coding the LPS, and whenever the interval register is
less than 0x8000 (0.75 in decimal notation) after coding the MPS.

After an LPS renormalization, NLPS gives the new index for the LPS probability estimate. If the switch is 1, the MPS
symbol sense is reversed.

The index to the current estimate is part of the information stored for context CX. This index is used as the index to the
table of values in NMPS, which gives the next index for an MPS renormalization. This index is saved in the context
storage at CX. MPS(CX) does not change.

The procedure for estimating the probability on the LPS renormalization path is similar to that of an MPS
renormalization, except that when SWITCH(I(CX)) is 1, the sense of MPS(CX) is inverted.

The final index state 46 can be used to establish a fixed 0.5 probability estimate.

C.2.6 Renormalization in the encoder (RENORME)

Renormalization is very similar in both encoder and decoder, except that in the encoder it generates compressed bits and
in the decoder it consumes compressed bits.

The RENORME procedure for the encoder renormalization is illustrated in Figure C.8. Both the interval register A and
the code register C are shifted, one bit at a time. The number of shifts is counted in the counter CT, and when CT is
counted down to zero, a byte of compressed image data is removed from C by the procedure BYTEOUT.
Renormalization continues until A is no longer less than 0x8000.

Figure C.8 – Encoder renormalization procedure

ISO/IEC 15444-13:2008 (E)

22 ITU-T Rec. T.812 (08/2007)

C.2.7 Compressed image data output (BYTEOUT)

The BYTEOUT routine called from RENORME is illustrated in Figure C.9. This routine contains the bit-stuffing
procedures which are needed to limit carry propagation into the completed bytes of compressed image data. The
conventions used make it impossible for a carry to propagate through more than the byte most recently written to the
compressed image data buffer.

Figure C.9 – BYTEOUT procedure for encoder

The procedure in the block in the lower right section does bit stuffing after a 0xFF byte; the similar procedure on the
left is for the case where bit stuffing is not needed.

B is the byte pointed to by the compressed image data buffer pointer BP. If B is not a 0xFF byte, the carry bit is
checked. If the carry bit is set, it is added to B and B is again checked to see if a bit needs to be stuffed in the next byte.
After the need for bit stuffing has been determined, the appropriate path is chosen, BP is incremented and the new value
of B is removed from the code register "b" bits.

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 23

C.2.8 Initialization of the encoder (INITENC)

The INITENC procedure is used to start the arithmetic coder. After MPS and I are initialized, the basic steps are shown
in Figure C.10.

Figure C.10 – Initialization of the encoder

The interval register and code register are set to their initial values, and the bit counter is set. Setting CT = 12 reflects
the fact that there are three spacer bits in the register which need to be filled before the field from which the bytes are
removed is reached. BP always points to the byte preceding the position BPST where the first byte is placed. Therefore,
if the preceding byte is a 0xFF byte, a spurious bit stuff will occur, but can be compensated for by increasing CT. The
initial settings for MPS and I are shown in Table D.7.

C.2.9 Termination of coding (FLUSH)

The FLUSH procedure shown in Figure C.11 is used to terminate the encoding operations and generate the required
terminating marker. The procedure guarantees that the 0xFF prefix to the marker code overlaps the final bits of the
compressed image data. This guarantees that any marker code at the end of the compressed image data will be
recognized and interpreted before decoding is complete.

ISO/IEC 15444-13:2008 (E)

24 ITU-T Rec. T.812 (08/2007)

Figure C.11 – FLUSH procedure

The first part of the FLUSH procedure sets as many bits as possible in the C-register to 1 as shown in Figure C.12. The
exclusive upper bound for the C-register is the sum of the C-register and the interval register. The low order 16 bits of C
are forced to 1, and the result is compared to the upper bound. If C is too big, the leading 1 bit is removed, reducing C
to a value which is within the interval.

Figure C.12 – Setting the final bits in the C register

The byte in the C-register is then completed by shifting C, and two bytes are then removed. If the byte in buffer, B, is a
0xFF then it is discarded. Otherwise, buffer B is output to the bit stream.

NOTE – This is the only normative option for termination in ITU-T Rec. T.88 | ISO/IEC 14492. However, further reduction of
the bit stream is allowed in this Recommendation | International Standard provided correct decoding is assured (see D.4.2).

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 25

Annex D

Coefficient bit modelling
(This annex forms an integral part of this Recommendation | International Standard)

In this annex, the flow charts and tables are normative only in the sense that they are defining an output that alternative
implementations shall duplicate.

This annex defines the modelling and scanning of transform coefficient bits.

Code-blocks (see Annex B in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004) are encoded a bit-plane at a time starting
from the most significant bit-plane with a non-zero element to the least significant bit-plane. For each bit-plane in a
code-block, a special code-block scan pattern is used for each of three coding passes. Each coefficient bit in the bit-
plane appears in only one of the three coding passes called significance propagation, magnitude refinement, and
cleanup. For each pass contexts are created which are provided to the arithmetic coder, CX, along with the decision, D
(see Annex C).

D.1 Code-block scan pattern within code-blocks

Each bit-plane of a code-block is scanned in a particular order. Starting at the top left, the first four coefficients of the
first column are scanned, followed by the first four coefficients of the second column and so on, until the right side of
the code-block is reached. The scan then returns to the left of the code-block and the second set of four coefficients in
each column is scanned. The process is continued to the bottom of the code-block. If the code-block height is not
divisible by 4, the last set of coefficients scanned in each column will contain fewer than 4 members. Figure D.1 shows
an example of the code-block scan pattern for a code-block.

Figure D.1 – Example scan pattern of a code-block bit-plane

D.2 Coefficient bits and significance

D.2.1 General case notations

The encoding procedures specified in this annex produce for each transform coefficient (u, v) of sub-band b the decoded
bits to be encoded which will be used to reconstruct the transform coefficient value qb(u, v) at the decoder. The bits
produced are: a sign bit sb(u, v) and a number Nb(u, v) of magnitude MSBs to be encoded, ordered from most to least
significant: MSBi(b, u, v) is the ith MSB of transform coefficient (u, v) of sub-band b (i = 1, ..., Nb(u, v)). As indicated in
Equation (D-1), the sign bit sb(u, v) has a value of one for negative coefficients and of zero for positive coefficients. The
number Nb(u, v) of MSBs to be encoded includes the number of all zero most significant bit-planes signalled in the
packet header (see B.10.5 in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004).

D.2.2 Notation in the case with ROI

In the use of the RGN marker segment (indicating the presence of an ROI), modifications need to be made to the bits to
be encoded, as well as the number Nb(u, v) of magnitude MSBs to be encoded. These modifications are specified in
clause H.1. In the absence of the RGN marker segment, no modification is required.

ISO/IEC 15444-13:2008 (E)

26 ITU-T Rec. T.812 (08/2007)

D.3 Encoding passes over the bit-planes

Each coefficient in a code-block has an associated binary state variable called its significance state. Significance states
are initialized to 0 (coefficient is insignificant) and may become 1 (coefficient is significant) during the course of the
encoding of the code-block. The "significance state" changes from insignificant to significant (see the subclause below)
at the bit-plane where the most significant magnitude bit equal to 1 is found. The context vector for a given current
coefficient is the binary vector consisting of the significance states of its 8 nearest-neighbour coefficients, as shown in
Figure D.2. Any nearest neighbour lying outside the current coefficient's code-block is regarded as insignificant (i.e., it
is treated as having a zero significance state) for the purpose creating a context vector for encoding the current
coefficient.

Figure D.2 – Neighbour states used to form the context

In general, a current coefficient can have 256 possible context vectors. These are clustered into a smaller number of
contexts according to the rules specified below for context formation. Four different context formation rules are
defined, one for each of the four coding passes: significance coding, sign coding, magnitude refinement coding, and
cleanup coding. These coding operations are performed in three coding passes over each bit-plane: significance and sign
coding in a significance propagation pass, magnitude refinement coding in a magnitude refinement pass, and cleanup
and sign coding in a cleanup pass. For a given coding operation, the context label (or context) provided to the arithmetic
coding engine is a label assigned to the current coefficient's context.

NOTE – Although (for the sake of concreteness) specific integers are used in the tables below for labelling contexts, the tokens
used for context labels are implementation-dependent and their values are not mandated by this Recommendation | International
Standard.

The first bit-plane within the current block with a non-zero element has a cleanup pass only. The remaining bit-planes
are encoded in three coding passes. Each coefficient bit is encoded in exactly one of the three coding passes. Which
pass a coefficient bit is encoded in depends on the conditions for that pass. In general, the significance propagation pass
includes the coefficients that are predicted, or "most likely", to become significant and their sign bits, as appropriate.
The magnitude refinement pass includes bits from already significant coefficients. The cleanup pass includes all the
remaining coefficients.

D.3.1 Significance propagation encoding pass

The eight surrounding neighbour coefficients of a current coefficient (shown in Figure D.2 where X denotes the current
coefficient) are used to create a context vector that maps into one of the 9 contexts shown in Table D.1. If a coefficient
is significant then it is given a 1 value for the creation of the context, otherwise it is given a 0 value. The mapping to the
contexts also depends on the sub-band.

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 27

Table D.1 – Contexts for the significance propagation and cleanup coding passes

LL and LH sub-bands
(vertical high-pass)

HL sub-band
(horizontal high-pass)

HH sub-band
(diagonally high-pass)

Context
labela)

∑ iH ∑ iV ∑ iD ∑ iH ∑ iV ∑ iD ()∑ + ii VH ∑ iD

2 xb) x x 2 x x ≥ 3 8
1 ≥ 1 x ≥ 1 1 x ≥ 1 2 7
1 0 ≥ 1 0 1 ≥ 1 0 2 6
1 0 0 0 1 0 ≥ 2 1 5
0 2 x 2 0 x 1 1 4
0 1 x 1 0 x 0 1 3
0 0 ≥ 2 0 0 ≥ 2 ≥ 2 0 2
0 0 1 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0

a) Note that the context labels are indexed only for identification convenience in this Recommendation | International Standard.
The actual identifiers used is a matter of implementation.

b) "x" indicates a "don't care" state.

The significance propagation pass only includes bits of coefficients that were insignificant (the significance state has yet
to be set) and have a non-zero context. All other coefficients are skipped. The context is delivered to the arithmetic
encoder (along with the coefficient bit to be encoded). If the value of this bit is 1, then the significance state is set to 1
and the immediate next bit to be encoded is the sign bit for the coefficient. Otherwise, the significance state remains 0.
When the contexts of successive coefficients and coding passes are considered, the most current significance state for
this coefficient is used.

D.3.2 Sign bit encoding

The context label for sign bit encoding is determined using another context vector from the neighbourhood.
Computation of the context label can be viewed as a two-step process. The first step summarizes the contribution of the
vertical and the horizontal neighbours. The second step reduces those contributions to one of 5 context labels.

For the first step, the two vertical neighbours (see Figure D.2) are considered together. Each neighbour may have one of
three states: significant positive, significant negative, or insignificant. If the two vertical neighbours are both significant
with the same sign, or if only one is significant, then the vertical contribution is 1 if the sign is positive or –1 if the sign
is negative. If both vertical neighbours are insignificant, or both are significant with different signs, then the vertical
contribution is 0. The horizontal contribution is created in the same way. Once again, if the neighbours fall outside the
code-block they are considered to be insignificant. Table D.2 shows these contributions.

Table D.2 – Contributions of the vertical (and the horizontal) neighbours to the sign context

V0 (or H0) V1 (or H1) V (or H) contribution

significant, positive significant, positive 1
significant, negative significant, positive 0

insignificant significant, positive 1
significant, positive significant, negative 0
significant, negative significant, negative –1

insignificant significant, negative –1
significant, positive insignificant 1
significant, negative insignificant –1

insignificant insignificant 0

The second step reduces the nine permutations of the vertical and horizontal contributions into 5 context labels.
Table D.3 shows these context labels. This context is provided to the arithmetic encoder with the decision. The sign bit
is then logically exclusive ORed with the XORbit in Table D.3 to produce the decision, D (see Annex C). The following
equation is used:

 D = signbit ⊗ XORbit (D-1)

ISO/IEC 15444-13:2008 (E)

28 ITU-T Rec. T.812 (08/2007)

where signbit is the sign bit of the current coefficient (a one bit indicates a negative coefficient, a zero bit a positive
coefficient), D is the value provided to the arithmetic encoder with the context label, and the XORbit is found in
Table D.3 for the current context label.

Table D.3 – Sign contexts from the vertical and horizontal contributions

Horizontal
contribution

Vertical
contribution Context label XORbit

1 1 13 0
1 0 12 0
1 –1 11 0
0 1 10 0
0 0 9 0
0 –1 10 1
–1 1 11 1
–1 0 12 1
–1 –1 13 1

D.3.3 Magnitude refinement pass

The magnitude refinement pass includes the bits from coefficients that are already significant (except those that have
just become significant in the immediately preceding significance propagation pass).

The context used is determined by the summation of the significance state of the horizontal, vertical and diagonal
neighbours. These are the states as currently known to the encoder, not the states used before the significance encoding
pass. Further, it is dependent on whether this is the first refinement bit (the bit immediately after the significance and
sign bits) or not. Table D.4 shows the three contexts for this pass.

Table D.4 – Contexts for the magnitude refinement coding passes

∑ ∑ ∑++ iii DVH First refinement for this coefficient Context label

xa) false 16
≥ 1 true 15
0 true 14

a) "x" indicates a "don't care" state.

The context is passed to the arithmetic coder along with the bit stream. The bit returned is the value of the current
coefficient in the current bit-plane.

D.3.4 Cleanup pass

The remaining coefficients were previously insignificant and not handled by the significance propagation pass. The
cleanup pass not only uses the neighbour context, like that of the significance propagation pass, from Table D.1, but
also a run-length context.

During this pass, the neighbour contexts for the coefficients in this pass are recreated using Table D.1. The context label
can now have any value because the coefficients that were found to be significant in the significance propagation pass
are considered to be significant in the cleanup pass. Run-lengths are encoded with a unique single context. If the four
contiguous coefficients in the column being scanned are all encoded in the cleanup pass and the context label for all is 0
(including context coefficients from previous magnitude, significance and cleanup passes), then the unique run-length
context is given to the arithmetic encoder along with the decision, D (see Annex C). If all four contiguous coefficients
in the column remain insignificant, then the decision is 0.

Otherwise, if at least one of the four contiguous coefficients in the column is significant, then the decision is 1. In this
case, the next two bits, encoded with the UNIFORM context (index 46 in Table C.2), denote which coefficient from the
top of the column down is the first to be found significant. The two bits encoded with the UNIFORM context are
encoded MSB then LSB. That coefficient's sign bit is determined as described in D.3.2. The encoding of any remaining
coefficients continues in the manner described in D.3.1.

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 29

If the four contiguous coefficients in a column are not all to be encoded in the cleanup pass or the context bin for any is
non-zero, then the coefficient bits are encoded with the context in Table D.1 as in the significance propagation pass.
The same contexts as the significance propagation are used here (the state is used as well as the model). Table D.5
shows the logic for the cleanup pass.

Table D.5 – Run-length encoder for cleanup passes

Four contiguous coefficients
in a column remaining to

be encoded and each
currently has the 0 context

Symbols with
run-length

context

Four contiguous bits to
be decoded are zero

Symbols decoded
with UNIFORMa)

context

Number of
coefficients
to decode

true 0 true none none
true 1 false

 skip to first coefficient sign
 skip to second coefficient sign
 skip to third coefficient sign
 skip to fourth coefficient sign

MSB LSB
00
01
10
11

3
2
1
0

false none x none rest of column
a) See Annex C.

If there are fewer than four rows remaining in a code-block, then no run-length coding is used. Once again, the
significance state of any coefficient is changed immediately after encoding the first 1 magnitude bit.

D.3.5 Example of coding passes and significance propagation

Table D.6 shows an example of the encoding order for the quantized coefficients of one 4-coefficient column in the
scan. This example assumes all neighbours not included in the table are identically zero, and indicates in which pass
each bit is encoded. The sign bit is encoded after the initial 1 bit and is indicated in the table by the + or – sign. The very
first pass in a new block is always a cleanup pass because there can be no predicted significant, or refinement bits. After
the first pass, the encoded 1 bit of the first coefficient causes the second coefficient to be encoded in the significance
pass for the next bit-plane. The 1 bit encoded for the last coefficient in the second cleanup pass causes the third
coefficient to be encoded in the next significance pass.

Table D.6 – Example of sub-bit-plane coding order and significance propagation

Coding passes 10 1 3 –7 Coefficient value
 + + + – Coefficient sign

 1
0
1
0

0
0
0
1

0
0
1
1

0
1
1
1

Coefficient magnitude
(MSB to LSB)

Cleanup 1+ 0 0 0
Significance 0
Refinement 0
Cleanup 0 1–
Significance 0 1+
Refinement 1 1
Cleanup
Significance 1+
Refinement 0 1 1
Cleanup

D.4 Initializing and terminating

When the contexts are initialized, or re-initialized, they are set to the values in Table D.7.

ISO/IEC 15444-13:2008 (E)

30 ITU-T Rec. T.812 (08/2007)

Table D.7 – Initial states for all contexts

Context Initial index from Table C.1 MPS

UNIFORM 46 0
Run-length 3 0
All zero neighbours (context label 0 in Table D.1) 4 0
All other contexts 0 0

In normal operation (not selective arithmetic coding bypass), the arithmetic coder shall be terminated either at the end
of every coding pass or only at the end of every code-block (see D.4.1). Table D.8 shows two examples of termination
patterns for the coding passes in a code-block. The COD or COC marker signals which termination pattern is used
(see A.6.1 and A.6.2 in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004).

Table D.8 – Arithmetic coder termination patterns

Pass Coding operation termination only
on last pass

Coding operation termination
on every pass

1 cleanup Arithmetic Coder (AC) AC, terminate
2 significance propagation AC AC, terminate
2 magnitude refinement AC AC, terminate
2 cleanup AC AC, terminate
...
final significance propagation AC AC, terminate
final magnitude refinement AC AC, terminate
final cleanup AC, terminate AC, terminate

When multiple terminations of the arithmetic coder are present, the length of each terminated segment is signalled in the
packet header as described in B.10.7 in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004.

NOTE – Termination should never create a byte aligned value between 0xFF90 and 0xFFFF inclusive. These values are available
as in-bit-stream marker values.

D.4.1 Expected codestream termination

The decoder anticipates that the given number of codestream bytes will decode a given number of coding passes before
the arithmetic coder is terminated. During decoding, bytes are pulled successively from the codestream until all the
bytes for those coding passes have been consumed. The number of bytes corresponding to the coding passes is specified
in the packet header. Often at that point there are more symbols to be decoded. Therefore, the decoder shall extend the
input bit stream to the arithmetic coder with 0xFF bytes, as necessary, until all symbols have been decoded.

It is sufficient to append no more than two 0xFF bytes. This will cause the arithmetic coder to have at least one pair of
consecutive 0xFF bytes at its input which is interpreted as an end-of-stream marker (see C.3.4 in ITU-T
Rec. T.800 | ISO/IEC 15444-1:2004). The bit stream does not actually contain a terminating marker. However, the byte
length is explicitly signalled enabling the terminating marker to be synthesized for the arithmetic decoder.

NOTE – Two 0xFF bytes appended in this way is the simplest method. However, other equivalent extensions exist. This might be
important since some arithmetic coder implementations might attach special meaning to the specific termination marker.

D.4.2 Arithmetic coder termination

The FLUSH procedure performs this task (see C.2.9). However, since the FLUSH procedure increases the length of the
codestream, and frequent termination may be desirable, other techniques may be employed. Any technique that places
all of the needed bytes in the codestream in such a way that the decoder need not backtrack to find the position at which
the next segment of the codestream should begin is acceptable.

When the predictable termination flag is set (see COD and COC in A.6.1 and A.6.2 in ITU-T Rec. T.800 |
ISO/IEC 15444-1:2004), the following termination procedure shall be used. Using the notation of C.2, the following
steps can be used:

1) Identify the number of bits in code register, C, which must be pushed out through the byte buffer. This is
given by k = (11 – CT) + 1.

2) While (k > 0):
– shift C left by CT and set CT = 0.

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 31

– execute the BYTEOUT procedure. This sets CT equal to the number of bits cleared out of the C
register.

– subtract CT from k.
3) Execute the BYTEOUT procedure to push the contents of the byte buffer register out to the codestream.

This step shall be skipped if the byte in the byte buffer has a 0xFF byte value.

The relevant truncation length in this case is simply the total number of bytes pushed out onto the codestream.

If the predictable termination flag is not set, the last byte output by the above procedure can generally be modified,
within certain bounds, without affecting the symbols to be decoded. It will sometimes be possible to augment the last
byte to the special value, 0xFF, which shall not be sent. It can be shown that this happens approximately 1/8 of the time.

D.4.3 Length computation

To include coding pass compressed image data into packets, the number of bytes to be included must be determined. If
the coding pass compressed image data is terminated, the algorithm in the previous clause may be used. Otherwise, the
encoder should calculate a suitable length such that corresponding bytes are sufficient for the decoder to reconstruct the
coding passes.

D.5 Error resilience segmentation symbol

A segmentation symbol is a special symbol. Whether it is used or not is signalled in the COD or COC marker segments
(see A.6.1 and A.6.2 in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004). The symbol is coded with the UNIFORM context
of the arithmetic coder at the end of each bit-plane. The correct decoding of this symbol confirms the correctness of the
decoding of this bit-plane, which allows error detection. At the encoder, a segmentation symbol 1010 or 0xA should be
encoded at the end of each bit-plane (at the end of a cleanup pass). If the segmentation symbol is not decoded correctly
at the decoder, then bit errors occurred for this bit-plane.

NOTE – This can be used with or without the predictable termination.

D.6 Selective arithmetic coding bypass

This style of coding allows bypassing the arithmetic coder for the significance propagation pass and magnitude
refinement coding passes starting in the fifth significant bit-plane of the code-block. The COD or COC marker signals
whether or not this coding style is used (see A.6.1 and A.6.2 in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004).

The first cleanup pass (which is the first bit-plane of a code-block with a non-zero element) and the next three sets of
significance propagation, magnitude refinement, and cleanup coding passes are encoded with the arithmetic coder. The
fourth cleanup pass shall include an arithmetic coder termination (see Table D.9).

Table D.9 – Selective arithmetic coding bypass

Bit-plane number Pass type Coding operations

1 cleanup Arithmetic Coding (AC)
2 significance propagation AC
2 magnitude refinement AC
2 cleanup AC
3 significance propagation AC
3 magnitude refinement AC
3 cleanup AC
4 significance propagation AC
4 magnitude refinement AC
4 cleanup AC, terminate
5 significance propagation raw
5 magnitude refinement raw, terminate
5 cleanup AC, terminate
...

final significance raw
final magnitude refinement raw, terminate
final cleanup AC, terminate

ISO/IEC 15444-13:2008 (E)

32 ITU-T Rec. T.812 (08/2007)

Starting with the fourth significance propagation and magnitude refinement coding passes, the bits that would have been
provided to the arithmetic coder are instead provided directly to the bit stream. After each magnitude refinement pass,
the bit stream has been "terminated" by padding to the byte boundary.

When the predictable termination flag is set (see COD and COC in A.6.1 and A.6.2 in ITU-T Rec. T.800 | ISO/IEC
15444-1:2004) and all the bits from a magnitude refinement pass have been assembled, any remaining bits in the last
byte are filled with an alternating sequence of 0s and 1s. This sequence should start with a 0 regardless of the number of
bits to be padded.

When the termination on each coding pass flag is set (see COD and COC in A.6.1 and A.6.2 in ITU-T Rec.
T.800 | ISO/IEC 15444-1:2004), then the significance propagation passes are terminated in the same way as the
magnitude refinement passes.

The cleanup coding passes continue to provide compressed image data directly to the arithmetic coder and are always
terminated.

The sign bit is computed with Equation (D-2):

 raw_value = signbit (D-2)

where raw_value = 1 is a negative sign bit and raw_value = 0 is a positive sign bit. Table D.9 shows the coding
sequence.

The length of each terminated segment, plus the length of any remaining unterminated passes, is signalled in the packet
header as described in B.10.7 in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004. If termination on each coding pass is
selected (see A.6.1 and A.6.2 in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004), then every pass is terminated (including
both raw passes).

NOTE 1 – Using the selective bypass mode when encoding an image with an ROI may significantly decrease the compression
efficiency.

Bits are packed into bytes from the most significant bit to the least significant bit. Once a complete byte is assembled, it
is emitted to the bit stream. If the value of the byte is a 0xFF a single zero bit is stuffed into the most significant bit of
the next byte. Once all bits of the coding pass have been assembled, the last byte is packed to the byte boundary and
emitted. The last byte shall not be a 0xFF value.

At the decoder, if a 0xFF value is encountered in the bit stream, then the first bit of the next byte is discarded. The
sequence of bits used in the selective arithmetic coding bypass have been stuffed into bytes using a bit-stuffing routine.

NOTE 2 – Since the decoder appends 0xFF values, as necessary, to the bit stream representing the coding pass (see D.4.1),
truncation of the bit stream may be possible. When the predictable termination flag is set (see COD and COC in A.6.1 and A.6.2
in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004), such truncation is not permitted. The last byte cannot be an 0xFF, since the bit-
stuffing routine appends a new byte following the FF, having most significant bit value of 0 and unused bits filled with the
alternating sequence of 0 and 1 value bits.

D.7 Vertically causal context formation

This style of coding constrains the context formation to the current and past code-block scans (four rows of vertically
scanned coefficients). That is, any coefficient from the next code-block scan are considered to be insignificant. The
COD or COC marker signals whether or not this style of coding is used (see A.6.1 and A.6.2 in ITU-T Rec.
T.800 | ISO/IEC 15444-1:2004).

To illustrate, the bit labelled 14 in Figure D.1 is encoded as usual using the neighbour states as specified in Figure D.2,
independent of whether or not contexts are vertically causal. However when vertically causal context formation is used,
the bit labelled 15 is encoded assuming D2 = V1 = D3 = 0 in Figure D.2.

D.8 Flow diagram of the code-block coding

The steps for modelling each bit-plane of each code-block can be viewed graphically in Figure D.3. The decisions made
are in Table D.10 and the bits and context sent to the coder are in Table D.11. These show the context without the
selective arithmetic coding bypass or the vertically causal model.

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 33

Figure D.3 – Flow chart for all coding passes on a code-block bit-plane

Table D.10 – Decisions in the context model flow chart

Decision Question Description

D0 Is this the first significant bit-plane for the code-block? See D.3
D1 Is the current coefficient significant? See D.3.1
D2 Is the context bin zero? (see Table D.1) See D.3.1
D3 Did the current coefficient just become significant? See D.3.1
D4 Are there more coefficients in the significance propagation?
D5 Is the coefficient insignificant? See D.3.3
D6 Was the coefficient coded in the last significance propagation? See D.3.3
D7 Are there more coefficients in the magnitude refinement pass?
D8 Are four contiguous undecoded coefficients in a column each with a 0 context? See D.3.4
D9 Is the coefficient significant or has the bit already been coded during the Significance

Propagation coding pass?
See D.3.4

D10 Are there more coefficients remaining of the four column coefficients?
D11 Are the four contiguous bits all zero? See D.3.4
D12 Are there more coefficients in the cleanup pass?

ISO/IEC 15444-13:2008 (E)

34 ITU-T Rec. T.812 (08/2007)

Table D.11 – Decoding in the context model flow chart

Code Decoded symbol Context Brief explanation Description

C0 – – Go to the next coefficient or column
C1 Newly significant? Table D.1,

9 context labels
Decode significance bit of current coefficient
(significance propagation or cleanup)

See D.3.1

C2 Sign bit Table D.3,
5 context labels

Decode sign bit of current coefficient See D.3.2

C3 Current magnitude
bit

Table D.4,
3 context labels

Decode magnitude refinement pass bit of current
coefficient

See D.3.3

C4 0
1

Run-length context
label

Decode run-length of four zeros
Decode run-length not of four zeros

See D.3.4

C5 00
01
10
11

UNIFORM First coefficient is first with non-zero bit
Second coefficient is first with non-zero bit
Third coefficient is first with non-zero bit
Fourth coefficient is first with non-zero bit

See D.3.4 and
Table C.2

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 35

Annex E

Quantization
 (This annex forms an integral part of this Recommendation | International Standard)

In this annex and all of its subclauses, the flow charts and tables are normative only in the sense that they are defining
an output that alternative implementations shall duplicate.

This annex specifies the quantization of transform coefficients for encoding. Quantization is the process by which the
transform coefficients are reduced in precision.

E.1 Inverse quantization procedure (Informative)

For each transform coefficient (u, v) of a given sub-band b, the decoded transform coefficient value ()vubq , is given by
the following equation:

 () ()() ()
()

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅⋅−= ∑

=

−
vuN

i

iM
ibb

b
bvubMSBvusvuq

,

l
2,,,21, (E-1)

NOTE 1 – qb(u, v) is quantized value of ab(u, v) according to Equation (E-6) and ()vubq , is inverse quantization value
of qb(u, v).

where sb(u, v), Nb(u, v) and MSBi(b, u, v) are given in D.2, and where Mb is retrieved using Equation (E-2), where the
number of guard bits G and the exponent bε are specified in the QCD or QCC marker segments (see A.6.4 and A.6.5 in
ITU-T Rec. T.800 | ISO/IEC 15444-1:2004).

 1−ε+= bb GM (E-2)

Each decoded transform coefficient qb(u, v) of sub-band b is used to generate a reconstructed transform coefficient
Rqb(u, v), as will be described in E.1.1.

NOTE 2 – Encoding only Nb(u, v) (see D.2.1) bit-planes is equivalent to encoding data which has been encoded using a scalar

quantizer with step size ()
b

v,uNM bb Δ⋅−2 for all the coefficients of this code-block. Due to the nature of the three coding
passes (see D.3), Nb(u, v) may be different for different coefficients within the same code-block.

E.1.1 Determination of the quantization step size in Irreversible transformation

For the irreversible transformation, the quantization step size Δb for a given sub-band b is calculated from the dynamic
range Rb of sub-band b, the exponent εb and mantissa μb as given in Equation (E-3).

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ μ
+=Δ ε−

112
12 bR

b bb (E-3)

NOTE 1 – The denominator, 211, in Equation (E-3) is due to the allocation of 11 bits in the codestream for μb, as given in
Table A.30 in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004.

In Equation (E-3), the exponent εb and the mantissa μb are specified in the QCD or QCC marker segments (see A.6.4
and A.6.5 in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004), and the nominal dynamic range Rb (as given by
Equation (E-4)) is the sum of RI (the number of bits used to represent the original tile-component samples which can be
extracted from the SIZ marker – see Table A.11 in A.5.1 in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004) and the base 2
exponent of the sub-band gain (gainb) of the current sub-band b, which varies with the type of sub-band b (levLL,
levLH or levHL, levHH – see F.3.1) and can be found in Table E.1.

ISO/IEC 15444-13:2008 (E)

36 ITU-T Rec. T.812 (08/2007)

Table E.1 – Sub-band gains

sub-band b gainb log2(gainb)

levLL 1 0
levLH 2 1
levHL 2 1
levHH 4 2

 ()bIb gainlogRR 2+= (E-4)

The exponent/mantissa pairs (εb,μb) are either signalled in the codestream for every sub-band (expounded quantization)
or else signalled only for the NLLL sub-band and derived for all other sub-bands (derived quantization) (see Table A.30
in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004). In the case of derived quantization, all exponent/mantissa pairs (εb,μb)
are derived from the single exponent/mantissa pair (εo,μo) corresponding to the NLLL sub-band, according to
Equation (E-5):

 (εb,μb) = (εo – NL + nb,μo) (E-5)

where nb denotes the number of decomposition levels from the original tile-component to the sub-band b.
NOTE 2 – For a given sub-band b, a quantized transform coefficient may exceed the dynamic range Rb.

E.1.2 Determination of the quantization step size in reversible transformation

For the reversible transformation, the quantization step size Δb is equal to one (no quantization is performed).

E.2 Scalar coefficient quantization

For irreversible compression, after the irreversible forward discrete wavelet transformation (see Annex F), each of the
transform coefficients ab(u, v) of the sub-band is quantized to the value qb(u, v) according to Equation (E-6).

 () ()()
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢

Δ
⋅=

b

b
bb

)v,u(a
v,uasignv,uq (E-6)

where Δb is the quantization step size. The exponent εb and mantissa corresponding to Δb can be derived from
Equation (E-5), and must be recorded in the codestream in the QCD or QCC markers (see A.6.4 and A.6.5 in ITU-T
Rec. T.800 | ISO/IEC 15444-1:2004).

For reversible compression, the quantization step size is required to be 1. In this case, a parameter εb has to be recorded
in the codestream in the QCD or QCC markers (see A.6.4 and A.6.5 in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004), and
is calculated as:

 () cbIb gainlogR ζ++=ε 2 (E-7)

where RI and gainb are as described in E.1.1, and where ζc is zero if the RCT is not used and ζc is the number of
additional bits added by the RCT if the RCT is used, as described in G.2.

For both reversible and irreversible compression, in order to prevent possible overflow or excursion beyond the nominal
range of the integer representation of ()v,uqb arising, for example during floating point calculations, the number Mb of
bits for the integer representation of qb(u, v) used at the encoder side is defined by Equation (E-2). The number G of
guard bits has to be specified in the QCD or QCC marker (see A.6.4 and A.6.5 in ITU-T Rec. T.800 |
ISO/IEC 15444-1:2004). Typical values for the number of guard bits are G = 1 or G = 2.

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 37

Annex F

Discrete wavelet transformation of tile-components
(This annex forms an integral part of this Recommendation | International Standard)

In this annex, the flow charts and tables are normative only in the sense that they are defining an output that alternative
implementations shall duplicate.

This annex describes the forward discrete wavelet transformation applied to one tile-component.

F.1 Tile-component parameters

Consider the tile-component defined by the coordinates, tcx0, tcx1, tcy0 and tcy1 given in Equation (B-12) in
ITU-T Rec. T.800 | ISO/IEC 15444-1:2004, are reproduced herein:

 ⎥
⎥

⎤
⎢
⎢

⎡
=⎥

⎥

⎤
⎢
⎢

⎡
=⎥

⎥

⎤
⎢
⎢

⎡
=⎥

⎥

⎤
⎢
⎢

⎡
= iiii YRsiz

tytcy
YRsiz

ty
tcy

XRsiz

txtcx
XRsiz

tx
tcx 1

1
0

0
1

1
0

0

Then the coordinates (x, y) of the tile-component (with sample values I(x, y)) lie in the range defined by:

 1010 and tcyytcytcxxtcx <≤<≤ (F-1)

F.2 Discrete wavelet transformations

F.2.1 Low-pass and high-pass filtering

To perform the forward discrete wavelet transformation (FDWT), this Recommendation | International Standard uses a
one-dimensional sub-band decomposition of a one-dimensional array of samples into low-pass coefficients,
representing a downsampled low-resolution version of the original array, and high-pass coefficients, representing a
downsampled residual version of the original array, needed to perfectly reconstruct the original array from the low-pass
array.

F.2.2 Decomposition levels

Each tile-component is transformed into a set of two-dimensional sub-band signals (called sub-bands), each
representing the activity of the signal in various frequency bands, at various spatial resolutions. NL denotes the number
of decomposition levels.

F.2.3 Discrete wavelet filters

This Recommendation | International Standard specifies one reversible transformation and one irreversible
transformation. Given that tile-component samples are integer-valued, a reversible transformation requires the
specification of a rounding procedure for intermediate non-integer-valued transform coefficients.

F.3 Forward transformation

F.3.1 The FDWT procedure

The forward discrete wavelet transformation (FDWT) transforms DC-level shifted tile-component samples I(x, y) into a
set of sub-bands with coefficients ab(ub, vb) (FDWT procedure). The FDWT procedure (see Figure F.1) also takes as
input the number of decomposition levels NL signalled in the COD or COC markers (see A.6.1 and A.6.2 in ITU-T
Rec. T.800 | ISO/IEC 15444-1:2004).

Figure F.1 – Inputs and outputs of the FDWT procedure

ISO/IEC 15444-13:2008 (E)

38 ITU-T Rec. T.812 (08/2007)

As illustrated in Figure F.2, all the sub-bands in the case where NL = 2 can be represented in the following way:

Figure F.2 – The FDWT (NL = 2)

The FDWT procedure starts with the initialization of the variable lev (the current decomposition level) to zero, and
setting the sub-band a0LL(u0LL, v0LL) to the input array I(u, v). The 2D_SD procedure is performed at every level lev,
where the level lev increases by one at each iteration, and until NL iterations are performed. The 2D_SD procedure is
iterated over the levLL sub-band produced at each iteration.

As defined in Annex B (see Equation (B-15) in Annex B in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004), the
coordinates of the sub-band alevLL(u, v) lie in the range defined by:

 1010 tbyvtbyandtbxutbx <≤<≤ (F-2)

Figure F.3 describes the FDWT procedure.

Figure F.3 – The FDWT procedure

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 39

F.3.2 The 2D_SD procedure

The 2D_SD procedure performs a decomposition of a two-dimensional array of coefficients or samples a(lev – 1)LL(u, v)
into four groups of sub-band coefficients alevLL(u, v), alevHL(u, v), alevLH(u, v), and alevHH(u, v).

The total number of coefficients of the levLL sub-band is equal to the sum of the total number of coefficients of the four
sub-bands resulting from the 2D_SD procedure.

Figure F.4 describes the input and output parameters of the 2D_SD procedure.

Figure F.4 – Inputs and outputs of the 2D_SD procedure

Figure F.5 illustrates the sub-band decomposition performed by the 2D_SD procedure.

Figure F.5 – One-level decomposition into four sub-bands (2D_SD procedure)

The 2D_SD procedure first applies the VER_SD procedure to all columns of a(u, v). It then applies the HOR_SD
procedure to all rows of a(u, v). The coefficients thus obtained from a(u, v) are deinterleaved into the four sub-bands
using the 2D_DEINTERLEAVE procedure.

Figure F.6 describes the 2D_SD procedure.

Figure F.6 – The 2D_SD procedure

F.3.3 The VER_SD procedure

The VER_SD procedure performs a vertical sub-band decomposition of a two-dimensional array of coefficients. It takes
as input the two-dimensional array a(lev – 1)LL(u, v), the horizontal and vertical extent of its coefficients as indicated by
u0 ≤ u < u1 and v0 ≤ v < v1 (see Figure F.7) and produces as output a vertically filtered version a(u, v) of the input array,
column by column. The values of u0, u1, v0, v1 used by the VER_SD procedure are those of tbx0, tbx1, tby0, tby1
corresponding to sub-band b = (lev – 1)LL (see definition in Equation (B-15) in Annex B in ITU-T
Rec. T.800 | ISO/IEC 15444-1:2004).

ISO/IEC 15444-13:2008 (E)

40 ITU-T Rec. T.812 (08/2007)

Figure F.7 – Inputs and outputs of the VER_SD procedure

As illustrated in Figure F.8, the VER_SD procedure applies the one-dimensional sub-band decomposition (1D_SD
procedure) to each column of the input array a(u, v), and stores the result back into each column.

Figure F.8 – The VER_SD procedure

F.3.4 The HOR_SD procedure

The HOR_SD procedure performs a horizontal sub-band decomposition of a two-dimensional array of coefficients. It
takes as input a two-dimensional array a(u, v), the horizontal and vertical extent of its coefficients as indicated by
u0 ≤ u < u1 and v0 ≤ v < v1 (see Figure F.9) and produces as output a horizontally filtered version of the input array, row
by row.

Figure F.9 – Inputs and outputs of the HOR_SD procedure

As illustrated in Figure F.10, the HOR_SD procedure applies the one-dimensional sub-band decomposition (1D_SD
procedure) to each row of the input array a(u, v) and stores the result back in each row.

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 41

Figure F.10 – The HOR_SD procedure

F.3.5 The 2D_DEINTERLEAVE procedure

As illustrated in Figure F.11, the 2D_DEINTERLEAVE procedure deinterleaves the coefficients of a(u, v) into four
sub-bands. The arrangement is dependent on the coordinates (u0, v0) of the first coefficient of a(u, v).

The way these sub-bands are formed from the output a(u, v) of the HOR_SD procedure is described by the
2D_DEINTERLEAVE procedure illustrated in Figure F.12.

Figure F.11 – Parameters of 2D_DEINTERLEAVE procedure

ISO/IEC 15444-13:2008 (E)

42 ITU-T Rec. T.812 (08/2007)

Figure F.12 – The 2D_DEINTERLEAVE procedure

F.3.6 The 1D_SD procedure

As illustrated in Figure F.13, the 1D_SD procedure takes as input a one-dimensional array X(i), the extent of its
coefficients as indicated by i0 ≤ i < il. It produces as output an array Y(i), with the same indices (i0, i1).

Figure F.13 – Parameters of the 1D_SD procedure

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 43

For signals of length one (i.e., i0 = il – 1), the 1D_SD procedure sets the value of Y(i0) to Y(i0) = X(i0) if i0 is an even
integer, and to Y(i0) = 2X(i0) if i0 is an odd integer.

For signals of length greater than or equal to two (i.e., i0 < il – 1), as illustrated in Figure F.14, the 1D_SD procedure
first uses the 1D_EXTD procedure to extend the signal X beyond its left and right boundaries resulting in the extended
signal Xext, and then uses the 1D_FILTD procedure to filter the extended signal Xext and produce the desired filtered
signal Y.

Figure F.14 – The 1D_SD procedure

F.3.7 The 1D_EXTD procedure

The 1D_EXTD procedure is identical to the 1D_EXTR procedure, except for the values of the
7-9lefti ,

7-9righti ,
3-5lefti

and
3-5righti parameters, which are given in Tables F.1 and F.2.

Table F.1 – Extension to the left

i0 3-5lefti
7-9lefti

even 2 4
odd 1 3

Table F.2 – Extension to the right

il 3-5righti
7-9righti

odd 2 4
even 1 3

F.3.8 The 1D_FILTD procedure

This Recommendation | International Standard specifies one irreversible procedure (1D_FILTD9-7I) and one reversible
filtering procedure (1D_FILTD5-3R), depending on whether the 9-7 irreversible or 5-3 reversible wavelet transformation
is selected.

As illustrated in Figure F.15, both procedures take as input an extended 1D signal Xext, the index of the first
coefficient i0, and the index of the coefficient i1 immediately following the last coefficient (i1 – 1). They both produce
an output signal, Y. The even-indexed coefficients of the Y signal are a low-pass downsampled version of the extended
signal Xext, while the odd-indexed coefficients of the signal Y are a high-pass downsampled version of the extended
signal Xext.

Figure F.15 – Parameters of the 1D_FILTD procedure

ISO/IEC 15444-13:2008 (E)

44 ITU-T Rec. T.812 (08/2007)

F.3.8.1 The 1D_FILTD5-3R procedure

The reversible transformation described in this subclause is the reversible lifting-based implementation of filtering by
the 5-3 reversible wavelet filter. The reversible transformation is defined using lifting-based filtering. The odd-indexed

coefficients of output signal Y are computed first for all values of n such that ⎥⎥

⎤
⎢⎢

⎡<≤−⎥⎥
⎤

⎢⎢

⎡
2

1
2

l0 in
i

, as given in

Equation (F-3):

 () () () ()
⎥⎦

⎥
⎢⎣

⎢ ++
−+=+

4
222

1212
nXnX

nXnY extext
ext (F-3)

Then the even-indexed coefficients of output signal Y are computed from the even-indexed values of extended signal

Xext and the odd-indexed coefficients of signal Y for all values of n such that ⎥⎥

⎤
⎢⎢

⎡<≤⎥⎥
⎤

⎢⎢

⎡
22
l0 in

i
 as given in Equation (F-4):

 () () () ()
⎥⎦
⎥

⎢⎣
⎢ +++−+=

4
2121222 nYnYnXnY ext (F-4)

The values of Y(k) such that i0 ≤ k < il form the output of the 1D_FILTD5-3R procedure (see Annex F in ITU-T
Rec. T.800 | ISO/IEC 15444-1:2004).

F.3.8.2 The 1D_FILTD9-7I procedure

The irreversible transformation described in this subclause is the lifting-based DWT implementation of filtering by the
9-7 irreversible filter.

Equation (F-5) describes the four lifting steps (1 through 4) and the two scaling steps (5 and 6) of the 1D filtering
performed on the extended signal Xext(n) to produce the i1 – i0 coefficients of signal Y. These steps are performed in the
following order.

Firstly, step 1 is performed for all values of n such that 1
2

2
2

l0 +⎥⎥
⎤

⎢⎢

⎡<≤−⎥⎥
⎤

⎢⎢

⎡ in
i

.

Then, step 2 is performed for all values of n such that 1
2

1
2

l0 +⎥⎥
⎤

⎢⎢

⎡<≤−⎥⎥
⎤

⎢⎢

⎡ in
i

, and uses values calculated at step 1.

Then, step 3 is performed for all values of n such that ⎥⎥

⎤
⎢⎢

⎡<≤−⎥⎥
⎤

⎢⎢

⎡
2

1
2

l0 in
i

, and uses values calculated at steps 1 and 2.

Then, step 4 is performed for all values of n such that ⎥⎥

⎤
⎢⎢

⎡<≤⎥⎥
⎤

⎢⎢

⎡
22
l0 in

i
, and uses values calculated at steps 2 and 3.

Finally, step 5 is performed for all values of n such that ⎥⎥

⎤
⎢⎢

⎡<≤⎥⎥
⎤

⎢⎢

⎡
22
l0 in

i
 and uses values calculated at step 3, and step 6

is performed for all values of n such that ⎥⎥

⎤
⎢⎢

⎡<≤⎥⎥
⎤

⎢⎢

⎡
22
l0 in

i
 and uses values calculated at step 4.

() () () ()() []
() () () ()() []
() () () ()() []

() () () ()() []
() () []
() () () []⎪

⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=
+=+

++−δ+=
++γ++=+
++−β+=

++α++=+

6212
51212
4121222
32221212
2121222
12221212

STEPnYK/nY
STEPnKYnY
STEPnYnYnYnY
STEPnYnYnYnY
STEPnYnYnXnY
STEPnXnXnXnY

ext

extextext

 (F-5)

where the values of the lifting parameters α, β, γ, δ, and K are defined in Table F.3.

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 45

Table F.3 – Definition of lifting parameters for the 9-7 irreversible filter

Parameter Exact expression Approximate value

α –g4 / g3 –1.586 134 342 059 924
β g3 / r1 –0.052 980 118 572 961
γ r1 / s0 0.882 911 075 530 934
δ s0 / t0 0.443 506 852 043 971
K 1 / t0 1.230 174 104 914 001

The values of Y(k) such that i0 ≤ k < il form the output of the 1D_FILTD9-7I procedure (see Annex F in ITU-T
Rec. T.800 | ISO/IEC 15444-1:2004).

F.4 Sub-sampling of components

It has become common practice in some compression applications to utilize component sub-sampling in conjunction
with certain decorrelating transforms. A typical example is the use of an RGB to YCrCb decorrelation transformation
followed by sub-sampling of the chrominance (Cr, Cb) components. While this is an effective way to reduce the amount
of image data to encode for DCT-based compression algorithms (ITU-T Rec. T.81 | ISO/IEC 10918-1), it is not
recommended for use in this Recommendation | International Standard.

The multi-resolution nature of the wavelet transformation described in this Recommendation | International Standard
may be used to achieve the same effect as that obtained from component sub-sampling. For example, if the 1HL, 1LH,
and 1HH sub-bands of a component's wavelet decomposition are discarded and all other sub-bands retained, a 2:1
sub-sampling has been achieved in the horizontal and vertical dimensions of the component. This technique provides
the same benefits as explicitly sub-sampling the component prior to any wavelet transform.

Furthermore, it frequently proves to be beneficial in terms of image quality to retain a few of the wavelet coefficients in
the 1HL, 1LH, and 1HH sub-bands, while still discarding the vast majority. In such cases the number of coefficients is
still approximately reduced 2:1, but the resultant decoded imagery will exhibit better quality with fewer compression
artifacts. Using a sub-sampling technique denies encoders from making such choices and can impair decoded image
quality.

NOTE – Annex F.4 is identical to J.13 in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004.

F.5 Visual frequency weighting

The human visual system plays an important role in the perceived image quality of compressed images. It is therefore
desirable to allow system designers and users to take advantage of the current knowledge of visual perception, e.g., to
utilize models of the visual system's varying sensitivity to spatial frequencies, as measured in the contrast sensitivity
function (CSF). Since the CSF weight is determined by the visual frequency of the transformation coefficient, there will
be one CSF weight per sub-band in the wavelet transform. The design of the CSF weights is an encoder issue and
depends on the specific viewing condition under which the decoded image is to be viewed.

In many cases, only one set of CSF weights is chosen and applied according to the viewing condition. This application
of visual frequency weighting is referred to as fixed visual weighting. In the case of embedded coders, as the coding bit
stream may be truncated later, the viewing conditions at different stages of embedding may be very different. At low bit
rates, the quality of the compressed image is poor and the detailed features of the image are not available. The image is
usually viewed at a relatively large distance and the observers are more interested in the global features. As more and
more bits are received, the image quality improves, and the details of the image are revealed. The image is usually
examined at a closer distance, or is even magnified for close examination, which is equivalent to decreasing the viewing
distance. Thus, different sets of CSF weights are called for at different stages of the embedding. This adjustable
application of visual frequency weighting is referred to as visual progressive coding. It is clear that fixed visual
weighting can be viewed as a special case of visual progressive coding.

In fixed visual weighting, a set of CSF weights, {wi}, is chosen according to the final viewing condition, where wi is the
weight for the ith sub-band. The set of CSF weights can be incorporated in one of the following two ways.

F.5.1 Modify quantization step size

At the encoder, the quantization step size qi of the transformation coefficients of the ith sub-band is adjusted to be
inversely proportional to the CSF weight wi. The smaller the CSF weight, the larger the quantization step size. The
CSF-normalized quantization indices are then treated uniformly in the R-D optimization process, which is not modified
to take into account any changes in the quantization step size. The CSF weights do not need to be transmitted to the
decoder. The information is included in the quantization step sizes, which are explicitly transmitted for each sub-band.

ISO/IEC 15444-13:2008 (E)

46 ITU-T Rec. T.812 (08/2007)

This approach needs to explicitly specify the quantizer. Therefore, it may not be very suitable for embedded coding,
especially for embedded coding from lossy all the way to lossless.

F.5.2 Modify the embedded coding order

The quantization step sizes are not modified but the distortion weights fed into the R-D optimization are altered instead.
This effectively controls the relative significance of including different numbers of bit-planes from the embedded bit
stream of each code-block. The frequency-weighting table does not need to be transmitted explicitly. This approach is
recommended since it produces similar results in F.5.1 and is compatible with lossless compression. This approach
affects only the compressor and it is compatible with all quantization strategies, including implicit quantization.

F.5.3 Visual progressive coding (VIP)

If the visual frequency weights are to be changed during the embedded coding process, it is very clumsy to change the
coefficient values or quantization step sizes. Furthermore, the performance of the subsequent entropy coder may
degrade due to the changing statistics of the binary representation. An elegant way to implement the visual progressive
coding (VIP) is to change, on the fly, the order in which code-block sub-bit-planes should appear in the overall
embedded bit stream based on the visual weights, instead of changing the coefficient values or quantization step sizes.
In other words, the coding order rather than the coding content is affected by the visual weights.

A series of visual weighting sets for different bit rate ranges are denoted as follows:

() () () () (){ }
() () () () (){ }

() () () () (){ } ,...,,,,:
...

;...,,,,:
;...,,,,:

mwmwmwmWwithmrmsetWeighting

1w1w1w1Wwith1r1setWeighting
0w0w0w0Wwith0r0setWeighting

n10

n10

n10

=

=
=

 (F-6)

where r(j) represents a bit-rate at which the weighting factors are changed, r(0) < r(1) <... < r(m), and wi(j) is the weight
applied to sub-band i over the bit rate range from r(j) to r(j + 1). Each set of visual weights will take effect within a
certain bit rate range. If m = 0, i.e., there is only one set of visual weights, it degenerates to the fixed visual weighting
case. The sets of visual weights, W(0) to W(m), will be used to determine the embedding order in their corresponding
bit rate ranges. For high bit rate embedding, especially embedded coding from lossy all the way to lossless, the final
visual weights W(m) need to be all ones (as no weighting for lossless coding). Visual progressive coding can adjust the
visual weights to achieve good visual quality for all bit rates.

The VIP weighting affects only the encoder and no signalling is required at the decoder.

The encoder is expected to compute the order in which code-block sub-bit-planes should appear in the layered hierarchy
of the overall bit stream, based upon rate-distortion criteria. A simple implementation of progressive visual weighting
changes the distortion metric progressively based on the visual weights during bit stream formation. Since bit stream
formation is driven by post-compression R-D optimization, progressively changing visual weights effectively controls
the embedding order of code-block sub-bit-planes on the fly.

F.5.4 Recommended frequency weighting tables

Table F.4 specifies three sets of CSF weights which were designed for the luminance component based on the CSF
value at the mid-frequency of each sub-band. The viewing distance is supposed to be 1000, 2000, and 4000 samples
(e.g., corresponding to 10 inches for 100 dpi, 200 dpi, and 400 dpi print or display), respectively. Note that the tables
are intended for a 5-level wavelet decomposition.

Table F.4 does not include the weight for the lowest frequency sub-band, nLL, which is always 1. Levels 1, 2, …, 5
denote the sub-band levels in low to high frequency order. (HL, LH, HH) denotes the three frequency orientations
within each sub-band.

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 47

Table F.4 – Recommended frequency weighting

Viewing distance 1000 Viewing distance 2000 Viewing distance 4000
Level

HL LH HH HL LH HH HL LH HH

1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 0.731668
3 1 1 1 1 1 0.727203 0.564344 0.564344 0.285968
4 1 1 0.727172 0.560841 0.560841 0.284193 0.179609 0.179609 0.043903
5 0.560805 0.560805 0.284173 0.178494 0.178494 0.043631 0.014774 0.014774 0.000573

For colour images, the frequency weighting tables of the Y, Cr, and Cb components should differ in order to take
advantage of the properties of the human visual system. For example, it is usually desirable to emphasize the luminance
component more than the chrominance components. Table F.5 specifies three sets of CSF weights for luminance and
chrominance components.

Table F.5 – Recommended frequency weighting for multiple component (colour) images

Viewing distance 1000 Viewing distance 1700 Viewing distance 3000
Component

L
e
v
e
l

HL LH HH HL LH HH HL LH HH

1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 0.921045 0.921045 0.848324
4 0.998276 0.998276 0.996555 0.861593 0.861593 0.742342 0.410628 0.410628 0.182760

Y
(Y0)

5 0.756353 0.756353 0.573057 0.307191 0.307191 0.108920 0.038487 0.038487 0.003075
1 0.883196 0.883196 0.833582 0.818766 0.818766 0.745875 0.717086 0.717086 0.613777
2 0.793487 0.793487 0.712295 0.689404 0.689404 0.579220 0.539437 0.539437 0.403353
3 0.650482 0.650482 0.531700 0.501652 0.501652 0.362279 0.319773 0.319773 0.185609
4 0.450739 0.450739 0.309177 0.280068 0.280068 0.152290 0.124021 0.124021 0.044711

Cb
(Y1)

5 0.230503 0.230503 0.113786 0.097816 0.097816 0.031179 0.023308 0.023308 0.003413
1 0.910877 0.910877 0.872378 0.860885 0.860885 0.803172 0.780091 0.780091 0.695128
2 0.841032 0.841032 0.776180 0.757626 0.757626 0.665951 0.631632 0.631632 0.509729
3 0.725657 0.725657 0.625103 0.598537 0.598537 0.470893 0.428659 0.428659 0.287593
4 0.552901 0.552901 0.418938 0.388492 0.388492 0.248566 0.211871 0.211871 0.100658

Cr
(Y2)

5 0.336166 0.336166 0.200507 0.177435 0.177435 0.077130 0.060277 0.060277 0.014977

ISO/IEC 15444-13:2008 (E)

48 ITU-T Rec. T.812 (08/2007)

Annex G

DC level shifting and multiple component transformations
(This annex forms an integral part of this Recommendation | International Standard)

In this annex, the flow charts and tables are normative only in the sense that they are defining an output that alternative
implementations shall duplicate.

This annex specifies DC level shifting that converts the source proper source samples into the signed values.

This annex also describes two different multiple component transformations. These multiple component transformations
are used to improve compression efficiency. They are not related to multiple component transformations used to map
colour values for display purposes. One multiple component transformation is reversible and may be used for lossy or
lossless coding. The other is irreversible and may only be used for lossy coding.

G.1 DC level shifting of tile-components

Figure G.1 shows the flow of DC level shifting in the system with a multiple component transformation.

Figure G.1 – Placement of the DC level shifting with component transformation

Figure G.2 shows the flow of DC level shifting in the system without a multiple component transformation.

Figure G.2 – Placement of the DC level shifting without component transformation

G.1.1 DC level shifting of tile-components

DC level shifting is performed on samples of components that are unsigned only. It is performed prior to computation
of a forward multiple component transformation (RCT or ICT), if one is used. Otherwise, it is performed prior to the
wavelet transformation described in Annex F. If the MSB of Ssizi from the SIZ marker segment (see A.5.1 in ITU-T
Rec. T.800 | ISO/IEC 15444-1:2004) is zero, all samples I(x, y) of the ith component are level shifted by subtracting the
same quantity from each sample as follows:

 () () iSsizy,xIy,xI 2−← (G-1)

G.2 Forward reversible multiple component transformation (RCT)

The use of the reversible multiple component transformation is signalled in the COD marker segment (see A.6.1 in
ITU-T Rec. T.800 | ISO/IEC 15444-1:2004). The RCT shall be used only with the 5-3 reversible filter. The RCT is a
decorrelating transformation applied to the first three components of an image (indexed as 0, 1 and 2). The three
components input into the RCT shall have the same separation on the reference grid and the same bit-depth.

NOTE – While the RCT is reversible, and thus capable of lossless compression, it may be used in truncated codestream to
provide lossy compression.

Prior to applying the Forward RCT, the image component samples are DC level shifted, for unsigned components.

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 49

The Forward RCT is applied to components I0(x, y), I1(x, y), I2(x, y) as follows:

 () () () ()
⎥⎦

⎥
⎢⎣

⎢ ++
=

4
2 210

0
y,xIy,xIy,xI

y,xY (G-2)

 () () ()y,xI–y,xIy,xY 121 = (G-3)

 () () ()yxIyxIyxY ,–,, 102 = (G-4)

If I0, I1 and I2 are normalized to the same precision, then Equations (G-3) and (G-4) result in a numeric precision of Y1
and Y2 that is one bit greater than the precision of the original components. This increase in precision is necessary to
ensure reversibility.

G.3 Forward irreversible multiple component transformation (ICT)

This subclause specifies an irreversible multiple component transformation. The use of the irreversible component
transformation is signalled in the COD marker segment (see A.6.1 in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004). The
ICT shall be used only with the 9-7 irreversible filter. The ICT is a decorrelating transformation applied to the first three
components of an image (indexed as 0, 1 and 2). The three components input into the ICT shall have the same
separation on the reference grid and the same bit-depth.

The Forward ICT is applied to image component samples I0(x, y), I1(x, y), I2(x, y), as follows:

 () () () ()yxIyxIyxIyxY ,114.0,587.0,299.0, 2100 +−−= (G-5)

 () () () ()yxIyxIyxIyxY ,5.0,331260.0,16875.0, 2101 +−−= (G-6)

 () () () ()yxIyxIyxIyxY ,08131.0,41869.0,5.0, 2102 −−= (G-7)

NOTE – If the first three components are Red, Green and Blue components, then the Forward ICT is of a YCbCr transformation.

G.4 Chrominance component sub-sampling and the reference grid

The relationship between the components and the reference grid is signalled in the SIZ marker (see Annex A.5.1 in
ITU-T Rec. T.800 | ISO/IEC 15444-1:2004) and described in Annex B.2 in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004.

ISO/IEC 15444-13:2008 (E)

50 ITU-T Rec. T.812 (08/2007)

Annex H

Coding of images with regions of interest
(This annex forms an integral part of this Recommendation | International Standard)

In this annex and all of its subclauses, the flow charts and tables are normative only in the sense that they are defining
an output that alternative implementations shall duplicate.

This annex describes the region of interest (ROI) technology. An ROI is a part of an image that is coded earlier in the
codestream than the rest of the image (the background). The coding is also done in such a way that the information
associated with the ROI precedes the information associated with the background. The method used (and described in
this annex) is the Maxshift method.

H.1 Description of the Maxshift method

H.1.1 Encoding of ROI

The encoding of the quantized transform coefficients is done in a similar way to encoding without any ROIs. At the
encoder side, an ROI mask is created describing which quantized transform coefficients must be encoded with better
quality (even up to losslessly) in order to encode the ROI with better quality (up to lossless). The ROI mask is a bit map
describing these coefficients. See H.2 for details on how the mask is generated.

The quantized transform coefficients outside of the ROI mask, called background coefficients, are scaled down so that
the bits associated with the ROI are placed in higher bit-planes than the background. This means that when the entropy
coder encodes the quantized transform coefficients, the bit-planes associated with the ROI are coded before the
information associated with the background.

The method can be described using the following steps:
1) Generate ROI mask, M(x, y) (see H.2).
2) Find the scaling value s (see H.1.2).

3) Add s LSBs to each coefficient ()vuqb , . The number M´b of magnitude bit-planes will then be:

 sMM bb +=′ (H-1)

where Mb is given by Equation (E-2) and the new value of each coefficient is given by:

 () () s
bb v,uqv,uq 2⋅= (H-2)

4) Scale down all background coefficients given by M(x, y) using the scaling value s (see H.1.2). Thus, if
()vuqb , is a background coefficient given by M(x, y), then:

 () ()
s

b
b

v,uq
v,uq

2
= (H-3)

5) Write the scaling value s into the codestream using the SPrgn parameter of the RGN marker segment.

After these steps, the quantized transform coefficients are entropy coded as usual.

H.1.2 Selection of scaling value, s, at encoder side

The scaling value, s, may be chosen so that Equation (H-4) holds, where max(Mb) is the largest number of magnitude
bit-planes, see Equation (E-1), for any background coefficient, qBG(x, y) in any code-block in the current component.

 ()bMmaxs ≥ (H-4)

This guarantees that the scaling value used will be sufficiently large to ensure all the significant bits associated with the
ROI will be in higher bit-planes than all the significant bits associated with the background.

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 51

H.2 Remarks on region of interest coding

The ROI functionality described in H.1 depends only on the scaling value chosen on the encoder side and hence only on
the amplitude of the coefficients on the decoder side. It is up to the encoder to generate a mask that corresponds to the
coefficients that need to be encoded with better quality to yield an ROI with better quality than the background.
Subclause H.2.1 describes how to generate the ROI mask for a particular region in the image. Subclause H.2.2 describes
how to generate the mask in the case of multi-component images and H.2.3 describes how to generate the ROI mask for
disjoint regions.

H.2.1 Region of interest mask generation

To achieve an ROI with better quality than the rest of the image while maintaining a fair amount of compression, bits
need to be saved by sending less information for the background. To do this, an ROI mask is calculated. The mask is a
bit-plane indicating a set of quantized transform coefficients whose coding is sufficient in order for the receiver to
reconstruct the desired region with better quality than the background (up to lossless).

To illustrate the concept of ROI mask generation, let us restrict ourselves to a single ROI and a single image
component, and identify the samples that belong to the ROI in the image domain by a binary mask, M(x, y), where:

 () ()
()⎩

⎨
⎧

=
ROIaffectingwithoutsacrificedbecan,onaccuracy0

neededis,tcoefficienwavelet1
yx

yx
y,xM (H-5)

The mask is a map of the ROI in the wavelet domain so that it has a non-zero value inside the ROI and 0 outside. In
each step, the LL sub-band of the mask is then updated row by row and then column by column. The mask will then
indicate which coefficients are needed at this step so that the inverse wavelet transformation will reproduce the
coefficients of the previous mask.

For example, the last step of the inverse wavelet transformation is a composition of two sub-bands into one. Then to
trace this step backwards, one finds the coefficients of both sub-bands that are needed. The step before that is a
composition of four sub-bands into two. To trace this step backwards, the coefficients in the four sub-bands that are
needed to give a perfect reconstruction of the coefficients included in the mask for two sub-bands are found.

All steps are then traced backwards to give the mask. If the coefficients corresponding to the mask are transmitted and
received, and the inverse wavelet transformation calculated on them, the desired ROI will be reconstructed with better
quality than the rest of the image (up to lossless if the ROI coefficients were coded losslessly).

Given below is a description of how the expansion of the mask is acquired from the various filters. Similar methods can
be used for other filters.

H.2.1.1 Region of interest mask generation using the 5-3 reversible filter

In order to get the optimal set of quantized coefficients to be scaled, the following equations described in this subclause
should be used.

To see what coefficients need to be in the mask, the inverse wavelet transformation is studied. Equations (F-5) and (F-6)
in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004 give the coefficients needed to reconstruct X(2n) and X(2n + 1) losslessly.
It can immediately be seen that these are L(n), L(n + 1), H(n – 1), H(n), H(n + 1) (see Figure H.1). Hence if X(2n) and
X(2n + 1) are in the ROI, the listed low and high sub-band coefficients are in the mask. Notice that X(2n) and X(2n + 1)
are even and odd indexed points respectively, relative to the origin of the reference grid.

Figure H.1 – The inverse wavelet transformation with the 5-3 reversible filter

H.2.1.2 Region of interest mask generation using the 9-7 irreversible filter

Successful decoding does not depend upon the selection of samples to be scaled. In order to get the optimal set of
quantized coefficients to be scaled, the following equations described in this subclause should be used.

ISO/IEC 15444-13:2008 (E)

52 ITU-T Rec. T.812 (08/2007)

To see what coefficients need to be in the mask, the inverse wavelet transformation is studied as in H.2.1.1. Figure H.2
shows this X(2n) and X(2n + 1) are even and odd indexed points respectively, related to the origin of the reference grid.

Figure H.2 – The inverse wavelet transformation with the 9-7 irreversible filter

The coefficients needed to reconstruct X(2n) and X(2n + 1) losslessly can immediately be seen to be L(n – 1) to L(n + 2)
and H(n – 2) to H(n + 2). Hence if X(2n) and X(2n + 1) are in the ROI, those Low and High sub-band coefficients are in
the mask.

H.2.2 Multi-component remark

For the case of colour images, the method applies separately in each colour component. If some of the colour
components are down-sampled, the mask for the down-sampled components is created in the same way as the mask for
the non-down-sampled components.

H.2.3 Disjoint regions remark

If the ROI consists of disjoint parts, then all parts have the same scaling value s.

ISO/IEC 15444-13:2008 (E)

 ITU-T Rec. T.812 (08/2007) 53

Annex I

JP2 file format syntax
(This annex forms an integral part of this Recommendation | International Standard.

This annex is optional for the entry level encoder)

There is no additional file format syntax of JP2 file format.

This annex is identical to Annex I in ITU-T Rec. T.800 | ISO/IEC 15444-1:2004.

Printed in Switzerland
Geneva, 2008

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. T.812 (08/2007) Information technology - JPEG 2000 image coding system: An entry level JPEG 2000 encoder
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	1.1 Context
	1.2 Requirements

	2 References
	2.1 Identical Recommendations | International Standards

	3 Definitions
	4 Abbreviations and symbols
	4.1 Abbreviations
	4.2 Symbols

	5 General description
	5.1 Codestream
	5.2 Coding principles

	6 Encoder requirements
	6.1 General
	6.2 Encoder function definition
	6.3 Implementation
	6.4 Codestream description

	7 Optional file format requirements
	Annex A – Codestream syntax
	Annex B – Image and compressed image data ordering
	Annex C – Arithmetic entropy coding
	C.1 Binary encoding
	C.2 Description of the arithmetic encoder
	Annex D – Coefficient bit modelling
	D.1 Code-block scan pattern within code-blocks
	D.2 Coefficient bits and significance
	D.3 Encoding passes over the bit-planes
	D.4 Initializing and terminating
	D.5 Error resilience segmentation symbol
	D.6 Selective arithmetic coding bypass
	D.7 Vertically causal context formation
	D.8 Flow diagram of the code-block coding
	Annex E – Quantization
	E.1 Inverse quantization procedure (Informative)
	E.2 Scalar coefficient quantization
	Annex F – Discrete wavelet transformation of tile-components
	F.1 Tile-component parameters
	F.2 Discrete wavelet transformations
	F.3 Forward transformation
	F.4 Sub-sampling of components
	F.5 Visual frequency weighting
	Annex G – DC level shifting and multiple component transformations
	G.1 DC level shifting of tile-components
	G.2 Forward reversible multiple component transformation (RCT)
	G.3 Forward irreversible multiple component transformation (ICT)
	G.4 Chrominance component sub-sampling and the reference grid
	Annex H – Coding of images with regions of interest
	H.1 Description of the Maxshift method
	H.2 Remarks on region of interest coding
	Annex I – JP2 file format syntax

