
 

 

 

 

INTERNATIONAL TELECOMMUNICATION UNION 

  

ITU-T  J.171
TELECOMMUNICATION 
STANDARDIZATION SECTOR 
OF ITU 

(02/2002) 

 

SERIES J: CABLE NETWORKS AND TRANSMISSION 
OF TELEVISION, SOUND PROGRAMME AND OTHER 
MULTIMEDIA SIGNALS 
IPCablecom 
 

 IPCablecom Trunking Gateway Control Protocol 
(TGCP) 

 

ITU-T Recommendation J.171 
 



 

ITU-T J-SERIES RECOMMENDATIONS 
CABLE NETWORKS AND TRANSMISSION OF TELEVISION, SOUND PROGRAMME AND OTHER 

MULTIMEDIA SIGNALS 

  
General Recommendations J.1�J.9 
General specifications for analogue sound-programme transmission J.10�J.19 
Performance characteristics of analogue sound-programme circuits J.20�J.29 
Equipment and lines used for analogue sound-programme circuits J.30�J.39 
Digital encoders for analogue sound-programme signals J.40�J.49 
Digital transmission of sound-programme signals J.50�J.59 
Circuits for analogue television transmission J.60�J.69 
Analogue television transmission over metallic lines and interconnection with radio-relay links J.70�J.79 
Digital transmission of television signals J.80�J.89 
Ancillary digital services for television transmission J.90�J.99 
Operational requirements and methods for television transmission J.100�J.109 
Interactive systems for digital television distribution J.110�J.129 
Transport of MPEG-2 signals on packetised networks J.130�J.139 
Measurement of the quality of service J.140�J.149 
Digital television distribution through local subscriber networks J.150�J.159 
IPCablecom J.160�J.179 
Miscellaneous J.180�J.199 
Application for Interactive Digital Television J.200�J.209 
  

For further details, please refer to the list of ITU-T Recommendations. 



 

  ITU-T Rec. J.171 (02/2002) i 

ITU-T Recommendation J.171 
 

IPCablecom Trunking Gateway Control Protocol (TGCP) 
 

 

 

Summary 
This Recommendation describes IPCablecom profiles of an Application Programming Interface 
(API) and Trunk Gateway Control Protocol (TGCP) for controlling voice-over-IP (VoIP) PSTN 
Media Gateways from external call control elements. 

 

 

Source 
ITU-T Recommendation J.171 was prepared by ITU-T Study Group 9 (2001-2004) and approved 
under the WTSA Resolution 1 procedure on 13 February 2002. 

 

 

 
 

 



 

ii ITU-T Rec. J.171 (02/2002) 

FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of 
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations 
on them with a view to standardizing telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, 
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these 
topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 
prepared on a collaborative basis with ISO and IEC. 

 

 

 

 

 

NOTE 

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a 
telecommunication administration and a recognized operating agency. 

 

 

 

 

INTELLECTUAL PROPERTY RIGHTS 

ITU draws attention to the possibility that the practice or implementation of this Recommendation may 
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, 
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others 
outside of the Recommendation development process. 

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, 
protected by patents, which may be required to implement this Recommendation. However, implementors are 
cautioned that this may not represent the latest information and are therefore strongly urged to consult the 
TSB patent database. 

 

 

 

 

 ITU 2002 

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the 
prior written permission of ITU. 



 

  ITU-T Rec. J.171 (02/2002) iii 

CONTENTS 
 Page 

1 Scope ............................................................................................................................  1 

2 References ....................................................................................................................  1 
2.1 Normative references .....................................................................................  1 
2.2 Informative .....................................................................................................  1 

3 Terms, definitions, abbreviations and conventions ......................................................  2 
3.1 Definitions......................................................................................................  2 
3.2 Abbreviations .................................................................................................  2 
3.3 Convention .....................................................................................................  3 

Annex A � TGCP Profile 1......................................................................................................  3 
A.1 Scope ..............................................................................................................  3 
A.2 Media Gateway Control Interface (MGCI)....................................................  3 
A.2.1 Model and naming conventions .....................................................................  3 
A.2.2 SDP use ..........................................................................................................  9 
A.2.3 Gateway control functions .............................................................................  9 
A.2.4 States, failover and race conditions................................................................  28 
A.2.5 Return codes and error codes .........................................................................  38 
A.2.6 Reason codes ..................................................................................................  40 
A.3 Media Gateway Control Protocol...................................................................  40 
A.3.1 General description ........................................................................................  40 
A.3.2 Command header............................................................................................  40 
A.3.3 Response header formats................................................................................  52 
A.3.4 Session description encoding .........................................................................  55 
A.3.5 Transmission over UDP .................................................................................  61 
A.3.6 Piggybacking..................................................................................................  62 
A.3.7 Transaction identifiers and three-way handshake ..........................................  63 
A.3.8 Provisional responses .....................................................................................  64 
A.4 Security...........................................................................................................  65 

Annex A.A � Event packages ..................................................................................................  65 

 A.A.1 ISUP trunk package........................................................................................  66 

Appendix A.I � Mode interactions ..........................................................................................  69 

Appendix A.II � Example command encodings......................................................................  70 
A.II.1 NotificationRequest........................................................................................  70 
A.II.2 Notify .............................................................................................................  70 
A.II.3 CreateConnection ...........................................................................................  71 
A.II.4 ModifyConnection .........................................................................................  72 



 

iv ITU-T Rec. J.171 (02/2002) 

 Page 
A.II.5 DeleteConnection (from the Media Gateway Controller)..............................  73 
A.II.6 DeleteConnection (from the trunking gateway).............................................  73 
A.II.7 DeleteConnection (multiple connections from the Media Gateway 

Controller) ......................................................................................................  73 
A.II.8 AuditEndpoint ................................................................................................  73 
A.II.9 AuditConnection ............................................................................................  74 
A.II.10 RestartInProgress ...........................................................................................  75 

Appendix A.III � Example Call Flow......................................................................................  76 

Appendix A.IV � Endpoint requirements ................................................................................  79 
A.IV.1 Connection modes supported .........................................................................  79 

Appendix A.V � Compatibility information............................................................................  79 
A.V.1 NCS compatibility..........................................................................................  79 
A.V.2 MGCP compatibility ......................................................................................  80 

Appendix A.VI � Example event packages .............................................................................  81 
A.VI.1 MF FGD Operator Services Package .............................................................  81 
A.VI.2 MF Terminating Protocol Package ................................................................  84 

Appendix A.VII � Bibliography ..............................................................................................  86 

Annex A.B � TGCP Profile 2 ..................................................................................................  87 

 



 

  ITU-T Rec. J.171 (02/2002) 1 

ITU-T Recommendation J.171 

IPCablecom Trunking Gateway Control Protocol (TGCP) 

1 Scope 
This Recommendation describes IPCablecom profiles of an Application Programming Interface 
(API) and Trunk Gateway Control Protocol (TGCP) for controlling voice-over-IP (VoIP) PSTN 
Media Gateways from external call control elements. 

Annexes to this Recommendation specify profiles for the above purpose. 

2 References  
The following ITU-T Recommendations and other references contain provisions which, through 
reference in this text, constitute provisions of this Recommendation. At the time of publication, the 
editions indicated were valid. All Recommendations and other references are subject to revision; 
users of this Recommendation are therefore encouraged to investigate the possibility of applying the 
most recent edition of the Recommendations and other references listed below. A list of the currently 
valid ITU-T Recommendations is regularly published.  

2.1 Normative references 
� ITU-T Recommendation J.161 (2001), Audio codec requirements for the provision of 

bidirectional audio service over cable television networks using cable modems. 
� ITU-T Recommendation J.162 (2001), Network call signalling protocol for the delivery of 

time - critical services over cable television networks using data modems. 
� ITU-T Recommendation J.170 (2002), IPCablecom security specification. 
� IETF RFC 2327 (1998), SDP: Session Description Protocol.  
NOTE � The reference to a document within this Recommendation does not give it, as a stand-alone 
document, the status of a Recommendation. 

2.2 Informative references 
� IETF Internet Draft (draft-huitema-sgcp-v1-02.txt), Simple Gateway Control Protocol 

(SGCP). 
� IETF Internet Draft (draft-taylor-ipdc-00.txt), IPDC Base Protocol. 
� IETF RFC 1889 (1996) RTP: A Transport Protocol for Real-Time Applications.  

� IETF RFC 1890 (1996), RTP: Profile for Audio and Video Conferences with Minimal 
Control. 

� IETF RFC 2543 (1999), SIP: Session Initiation Protocol. 
� IETF RFC 2326 (1998) Real Time Streaming Protocol (RTSP). 
� ITU-T Recommendation E.180/Q.35 (1998), Technical characteristics of tones for the 

telephone system. 

� ITU-T Recommendation Q.761 (1999), Signalling System No. 7 � ISDN User Part 
functional description. 

� ITU-T Recommendation Q.762 (1999), Signalling System No. 7 � ISDN User Part general 
function of messasges and signals. 

� ITU-T Recommendation H.323 (2000), Packet-based multimedia communications systems. 



 

2 ITU-T Rec. J.171 (02/2002) 

� ITU-T Recommendation H.225.0 (2000), Call signalling protocols and media stream 
packetization for packet-based multimedia communications systems. 

� ITU-T Recommendation H.245 (2001), Control protocol for multimedia communication. 

� IETF RFC 1825 (1995), Security Architecture for the Internet Protocol. 
� IETF RFC 1826 (1995), IP Authentication Header. 

� IETF RFC 2705 (1999), Media Gateway Control Protocol (MGCP) Version 1.0.  

� TCP/IP Illustrated, Volume 1 (2001), The Protocols, Addison-Wesley, 1994. 

� ITU-T Recommendation J.163 (2001), Dynamic quality of service for the provision of real 
time services over cable television networks using cable modems. 

3 Terms, definitions, abbreviations and conventions 

3.1 Definitions 
This Recommendation defines the following terms:  

3.1.1 cable modem: The delivery of high-speed data access to customer locations using 
equipment built in conformance with ITU-T Recs. J.83 and J.112. 

3.1.2 IPCablecom: An ITU-T project that includes an architecture and a series of 
Recommendations that enable the delivery of real-time services over the cable television networks 
using cable modems. 

3.2 Abbreviations 
This Recommendation uses the following abbreviations: 

DNS Domain Name System 

IP Internet Protocol 

IPSec Internet Protocol Security 

ISUP ISDN User Part  

MGC Media Gateway Controller  

MGCP Media Gateway Control Protocol 

MIB Management Information Base 

MTA Media Terminal Adapter  

MWD Maximum Waiting Delay 

NCS Network-based Call Signalling 

NTP Network Time Protocol 

QoS Quality of Service 

RTCP Real-Time Control Protocol 

RTO Retransmission Timeout 

RTP Real-Time Protocol 

SDP Session Description Protocol 

SG Signalling Gateway 

SPI Security Parameters Index 



 

  ITU-T Rec. J.171 (02/2002) 3 

3.3 Convention 
If this Recommendation is implemented, the keywords "MUST" and "SHALL" as well as 
"REQUIRED" are to be interpreted as indicating a mandatory aspect of this specification. 

The key words indicating a certain level of significance of a particular requirements that are used 
throughout this Recommendation are summarized in below. 

"MUST" This word or the adjective "REQUIRED" means that the item is an absolute 
requirement of this specification. 

"MUST NOT" This phrase means that the item is an absolute prohibition of this specification. 

"SHOULD" This word or the adjective "RECOMMENDED" means that there may exist 
valid reasons in particular circumstances to ignore this item, but the full 
implications should be understood and the case carefully weighed before 
choosing a different course. 

"SHOULD NOT" This phrase means that there may exist valid reasons in particular circumstances 
when the listed behavior is acceptable or even useful, but the full implications 
should be understood and the case carefully weighed before implementing any 
behavior described with this label. 

"MAY"  This word or the adjective "OPTIONAL" means that this item is truly optional. 
One vendor may choose to include the item because a particular marketplace 
requires it or because it enhances the product, for example; another vendor may 
omit the same item. 

 

 
Annex A 

 
TGCP Profile 1 

A.1 Scope 
This annex describes an IPCablecom profile of an Application Programming Interface (API) called a 
Media Gateway Control Interface (MGCI) and a corresponding protocol (MGCP) for controlling 
voice-over-IP (VoIP) PSTN gateways from external call control elements. The MGCP assumes a 
call control architecture where the call control "intelligence" is outside the gateways and handled by 
external call control elements. The IPCablecom profile as described in this annex will be referred to 
as the IPCablecom Trunking Gateway Control Protocol (TGCP). 

This annex is based on the IPCablecom network-based call signalling Recommendation (ITU-T Rec. 
J.162), and IETF RFC 2705, Media Gateway Control Protocol (MGCP). This annex, which defines the 
IPCablecom TGCP protocol, constitutes a specification that is independent of MGCP. The TGCP 
profile of MGCP is strictly and solely defined by the contents of this annex. 
NOTE � The specification in this annex is used in North America. 

A.2 Media Gateway Control Interface (MGCI) 
MGCI functions provide for connection control, endpoint control, auditing, and status reporting. 
They each use the same system model and the same naming conventions. 

A.2.1 Model and naming conventions 
The MGCP assumes a connection model where the basic constructs are endpoints and connections. 
Connections are grouped in calls. One or more connections can belong to one call. Connections and 
calls are set up at the initiative of one or several MGCs. It should nonetheless be recognized that in 



 

4 ITU-T Rec. J.171 (02/2002) 

none of these cases is a "connection" established within an IPCablecom network, as the term 
"connection" is understood within the circuit-switched PSTN. The terms "call" and "connection" in 
this context (and throughout this Recommendation) are used for convenience of reference, not to 
indicate any actual technical or other similarity between the IPCablecom network and the PSTN.  

A.2.1.1 Endpoint names 
Endpoint names, a.k.a. endpoint identifiers, have two components, both of which are defined to be 
case insensitive here: 
� the domain name of the gateway managing the endpoint; 
� a local endpoint name within that gateway. 

Endpoint names will be of the form: 
  
local-endpoint-name@domain-name 

where domain-name is an absolute domain-name as defined in IETF RFC 1034 and includes a host 
portion; thus, an example domain-name could be: 
 
MyTrunkingGateway.cablelabs.com 

Also, domain-name may be an IPv4 address in dotted decimal form represented as a text-string and 
surrounded by a left and a right square bracket ("[" and "]") as in "[128.96.41.1]" � please consult 
IETF RFC 821 for details. However, use of IP addresses is generally discouraged.  

Trunking gateways have one or more endpoints (e.g. one for each trunk) associated with them, and 
each of the endpoints is identified by a separate local endpoint name. Just like the domain-name, the 
local endpoint name is case insensitive. Associated with the local endpoint name is an endpoint-type, 
which defines the type of the endpoint, e.g. DS-0, or an analog access line. The type can be derived 
from the local endpoint name. The local endpoint name is a hierarchical name, where the least 
specific component of the name is the leftmost term, and the most specific component is the 
rightmost term. More formally, the local endpoint name must adhere to the following naming rules: 
� The individual terms of the local endpoint name must be separated by a single slash ("/", 

ASCII 2F hex). 
� The individual terms are ASCII character strings composed of letters, digits or other 

printable characters, with the exception of characters used as delimiters in endpoint-names 
("/", "@"), characters used for wild-carding ("*", "$"), and white space characters. 

� Wild carding is represented either by an asterisk ("*") or a dollar sign ("$") for the terms of 
the naming path which are to be wild-carded. Thus, if the full local endpoint name looks like 

  
  term1/term2/term3 

 and one of the terms of the local endpoint name is wild-carded, then the local endpoint name 
looks like this: 

 

  term1/term2/* if term3 is wild-carded. 
  term1/*/* if term2 and term3 are wild-carded. 
 In each of the examples, a dollar sign could have appeared instead of the asterisk. 
� Wild-carding is only allowed from the right: thus if a term is wild-carded, then all terms to 

the right of that term must be wild-carded as well. 
� In cases where mixed dollar sign and asterisk wild cards are used, dollar-signs are only 

allowed from the right: thus if a term had a dollar sign wild card, all terms to the right of that 
term must also contain dollar sign wild cards. 

� A term represented by an asterisk is to be interpreted as: "use all values of this term known 
within the scope of the trunking gateway in question".  



 

  ITU-T Rec. J.171 (02/2002) 5 

� A term represented by a dollar sign is to be interpreted as: "use any one value of this term 
known within the scope of the trunking gateway in question".  

� Each endpoint-type may specify additional detail in the naming rules for that endpoint-type, 
however such rules must not be in conflict with the above.  

It should be noted that different endpoint-types or even different sub-terms, e.g. "lines", within the 
same endpoint-type will result in two different local endpoint names. Consequently, each "line" will 
be treated as a separate endpoint.  

A.2.1.1.1 Trunking gateway endpoint names 
Endpoints in trunking gateways will use the additional naming conventions specified in this clause. 

Trunking gateways will support the following basic endpoint-type: 
• ds A DS-0 trunk.  

The basic endpoint type is expected to be provisioned with additional information about the 
type of signalling supported on the trunk circuit and the switching system role it provides. 

 

Trunk Circuit Endpoints: 

In addition to the naming conventions specified above, local endpoint names for PSTN trunking 
gateway endpoints of type "ds" will adhere to the following: 
� Local endpoint names will consist of a series of terms each separated by a slash ("/") that 

describe the physical hierarchy within the gateway: 
  
 ds/<unit-type1>-<unit #>/<unit-type2>-<unit #>/.../<channel #>  

� The first term (ds) identifies the endpoint naming scheme used and the basic endpoint type. 
� The last term is a decimal number that indicates the channel number1 at the lowest level of 

the hierarchy. 
� Intermediate terms between the first term (ds) and last term (channel number) represent 

intermediate levels of the hierarchy and consist of <unit-type> and <unit #> separated by a 
hyphen ("-") where: 
− the <unit-type> identifies the particular hierarchy level. Values of <unit-type> presently 

defined are: "s", "su", "oc3", "ds3", "e3", "ds2", "e2", "ds1", "e1" where "s" indicates a 
slot number and "su" indicates a sub-unit within a slot. Other values representing 
physical hierarchy levels that have not been included in this list but which follow the 
same basic naming rules will also be allowed; 

− the <unit #> is a decimal number which is used to reference to a particular instance of a 
<unit-type> at that level of the hierarchy. 

� The number of levels and naming of those levels is based on the physical hierarchy within 
the media gateway, as illustrated by the following examples: 
− A Media Gateway that has some number of DS1 interfaces: 

   
  ds/ds1-#/# 

− A Media Gateway that has some number of OC3 interfaces, that contain channelized 
DS3 and DS1 hierarchies: 

   
  ds/oc3-#/ds3-#/ds1-#/# 

− A Media Gateway that contains some number of slots with each slot having some 
number of DS3 interfaces: 

____________________ 
1  Please note the use of the term "channel" as opposed to "time slot". 



 

6 ITU-T Rec. J.171 (02/2002) 

   
 ds/s-#/ds3-#/ds1-#/# 

� Some endpoints may not contain all possible levels of a hierarchy; however, all levels 
supported by a given endpoint are contained in the endpoint naming scheme. For example, a 
DS3 without DS1 framing could be represented by the following naming scheme: 

 
 ds/s-#/ds3-#/# 

However, a DS3 with DS1 framing could not be represented by that naming scheme. 
� Wild-card naming follows the conventions stated in A.2.1.1 with the asterisk character ("*") 

referring to "all", and the dollar character ("$") referring to "any". A range "[N-M]" wild-
carding convention representing a "range" of channels from channel N to channel M 
inclusive is supported as well:  
− it should be noted that the use of the "all" wild-card for the first (ds) term refers to all 

endpoint-types in the media gateway regardless of their type. Use of this feature is 
generally expected to be for administrative purposes, e.g. auditing or restart; 

− a local endpoint name may be under-specified by supplying some smaller than normal 
number of terms starting from the left-hand side of the endpoint name. In that case, 
missing terms to the right of the last term specified are assumed to be the wild-card 
character "*", referring to "all of", unless the terms specified contain the "any of" wild-
card character, in which case missing terms to the right of the last term specified are 
assumed to be the "any of" wild-card character; 

− wherever use of the "all" wild-card is permitted, the range of channels "[N-M]" wild-
card may be used in the last term (i.e. <channel-#>) of the local endpoint name instead. 
The "range" wild-card will then refer to all of the channels from N to M. The rules and 
restrictions that apply to the use of the "all" wild-card also apply to the use of the 
"range" wild-card.  

The following examples illustrate the use of wild-carding: 
ds/ds1-3/* All channels on ds1 number 3 on the media gateway in question. 
ds/ds1-3/$ Any channel on ds1 number 3 on the media gateway in question. 
ds/* All trunk-circuit endpoints on the media gateway in question. 
* All endpoints (regardless of endpoint-type) on the media gateway in question. 
ds/ds1-3/[1-24] Channels 1 to 24 on ds1 number 3 on the media gateway in question. 

The above define the canonical names for endpoints in a trunking gateway. It is expected that 
aliasing may be supported in a future version of this Recommendation, e.g. to support bonding of 
multiple DS-0 trunks for video calls, e.g. on the form "ds/ds1-1/H0-1". 

A.2.1.2 Call names 
Calls are identified by unique identifiers, independent of the underlying platforms or agents. Call 
identifiers are hexadecimal strings, which are created by the MGC. The maximum length of call 
identifiers is 32 characters. 

At a minimum, call identifiers MUST be unique within the collection of MGCs that control the same 
gateways. However, the coordination of these call identifiers between MGC's is outside the scope of 
this Recommendation. When an MGC builds several connections that pertain to the same call, either 
on the same gateway or in different gateways, these connections will all be linked to the same call 
through the call identifier. This identifier then can be used by accounting or management procedures, 
which are outside the scope of MGCP.  



 

  ITU-T Rec. J.171 (02/2002) 7 

A.2.1.3 Connection names 
Connection identifiers are created by the gateway when it is requested to create a connection. They 
identify the connection within the context of an endpoint. Connection identifiers are treated in 
MGCP as hexadecimal strings. The gateway MUST ensure that a proper waiting period, at least 
three minutes, elapses between the end of a connection that used this identifier and its use in a new 
connection for the same endpoint. The maximum length of a connection name is 32 characters. 

A.2.1.4 Names of media gateway controllers and other entities 
The Media Gateway Control Protocol has been designed for enhanced network reliability to allow 
implementation of redundant MGCs. This means that there is no fixed binding between entities and 
hardware platforms or network interfaces. 

MGC names consist of two parts, similar to endpoint names. The local portion of the name does not 
exhibit any internal structure. An example MGC name is: 
 
 mgc1@mgc.whatever.net 

Reliability is provided by the following precautions: 
� Entities such as trunking gateways or MGCs are identified by their domain name, not their 

network addresses. Several addresses can be associated with a domain name. If a command 
cannot be forwarded to one of the network addresses, implementations MUST retry the 
transmission using another address.  

� Entities may move to another platform. The association between a logical name (domain 
name) and the actual platform are kept in the Domain Name System (DNS). MGCs and 
gateways MUST keep track of the record's time-to-live read from the DNS. They MUST 
query the DNS to refresh the information if the time-to-live has expired. 

In addition to the indirection provided by the use of domain names and the DNS, the concept of 
"notified entity" is central to reliability and failover in MGCP. The "notified entity" for an endpoint 
is the MGC currently controlling that endpoint. At any point in time, an endpoint has one, and only 
one, "notified entity" associated with it, and when the endpoint needs to send a command to the 
MGC, it MUST send the command to the current "notified entity" for which endpoint(s) the 
command pertains. Upon startup, the "notified entity" MUST be set to a provisioned value. Most 
commands sent by the MGC include the ability to explicitly name the "notified entity" through the 
use of a "NotifiedEntity" parameter. The "notified entity" will stay the same until either a new 
"NotifiedEntity" parameter is received or the endpoint reboots. If the "notified entity" for an 
endpoint is empty or has not been set explicitly2, the "notified entity" will then default to the source 
address of the last connection handling command or notification request received for the endpoint. 
Auditing will thus not change the "notified entity". 

Clause A.2.4 contains a more detailed description of reliability and failover. 

A.2.1.5 Digit maps 
In MGCP, the MGC can ask the gateway to collect digits dialled by a user. This facility is typically 
used by analog access lines with residential gateways to collect the numbers that a user dials, or it 
can be used for CAS PBX interfaces. Rather than sending each digit to the MGC as the digits are 
detected, the MGC can provide a grammar describing how many digits should be accumulated 
before the MGC is notified. This grammar is known as a digit map.  
None of the trunk types supported by the current version of the TGCP Recommendation have a need 
for digit maps, and digit maps are therefore not part of the current Recommendation.  

____________________ 
2  This could happen as a result of specifying an empty NotifiedEntity parameter. 



 

8 ITU-T Rec. J.171 (02/2002) 

A.2.1.6 Events and signals 
The concept of events and signals is central to MGCP. An MGC may ask to be notified about certain 
events occurring in an endpoint, e.g. off-hook events. An MGC also may request certain signals to 
be applied to an endpoint, e.g. ringback. 

Events and signals are grouped in packages within which they share the same namespace, which we 
will refer to as event names in the following. A package is a collection of events and signals 
supported by a particular endpoint-type. For instance, one package may support a certain group of 
events and signals for ISUP trunks, and another package may support another group of events and 
signals for MF trunks. One or more packages may exist for a given endpoint-type, and each 
endpoint-type has a default package with which it is associated. 

Event names consist of a package name and an event code and, since each package defines a separate 
namespace, the same event codes may be used in different packages. Package names and event codes 
are case-insensitive strings of letters, digits, and hyphens, with the restriction that hyphens shall 
never be the first or last character in a name. Some event codes may need to be parameterized with 
additional data, which is accomplished by adding the parameters between a set of parentheses. The 
package name is separated from the event code by a slash ("/"). The package name may be excluded 
from the event name, in which case the default package name for the endpoint-type in question is 
assumed. For example, for an ISUP trunk circuit with the ISUP package (package name "IT") being 
the default package, the following two event names are considered equal: 
IT/oc Operation Complete in the ISUP package for an ISUP trunk circuit.  
oc Operation Complete in the ISUP package (default) for an ISUP trunk circuit. 

Annex A.A defines an initial set of packages. Additional package names and event codes may be 
defined by and/or registered with IPCablecom. Any change to the packages defined in this 
Recommendation MUST result in a change of the package name, or a change in the TGCP profile 
version number, or possibly both.  

Each package MUST have a package definition, which MUST define the name of the package, and 
the definition of each event belonging to the package. The event definition MUST include the 
precise name of the event, i.e. the event code, a plain text definition of the event and, when 
appropriate, the precise definition of the corresponding signals, for example the exact frequencies of 
audio signals such as ringback or fax tones. Events must further specify if they are persistent (see 
A.2.3.1) and if they contain auditable event-states (see A.2.3.8.1). Signals MUST also have their 
type defined (On/Off, Time-Out, or Brief), and Time-Out signals MUST have a default time-out 
value defined � see A.2.3.1.  

In addition to IPCablecom packages, implementers MAY gain experience by defining experimental 
packages. The package name of experimental packages MUST begin with the two characters "x-" or 
"X-"; IPCablecom MUST NOT register package names that start with these two characters. A 
gateway that receives a command referring to an unsupported package MUST return an error (error 
code 518 � unsupported package). 

Package names and event codes support one wild-card notation each. The wild-card character "*" 
(asterisk) can be used to refer to all packages supported by the endpoint in question, and the event 
code "all" to all events in the package in question. For example: 
IT/all refers to all events in the ISUP trunk package for an ISUP trunk circuit. 
*/all for an ISUP trunk circuit; refers to all packages and all events in those packages supported 

by the endpoint in question. 

Consequently, the package name "*" MUST NOT be assigned to a package, and the event code "all" 
MUST NOT be used in any package. 



 

  ITU-T Rec. J.171 (02/2002) 9 

Events and signals are by default detected and generated on endpoints: however, some events and 
signals may be detected and generated on connections in addition to or instead of on an endpoint. 
For example, endpoints may be asked to provide a ringback tone on a connection. In order for an 
event or signal to be able to be detected or generated on a connection, the definition of the 
event/signal MUST explicitly define that the event/signal can be detected or generated on a 
connection.  

When a signal shall be applied on a connection, the name of the connection is added to the name of 
the event, using an "at" sign (@) as a delimiter, as in: 
 
IT/rt@0A3F58 

The wild-card character "*" (asterisk) can be used to denote "all connections" on the affected 
endpoint(s). When this convention is used, the gateway will generate or detect the event on all the 
connections that are connected to the endpoint(s). An example of this convention is: 
 
IT/ma@* 

The wild-card character "$" (dollar sign) can be used to denote "the current connection". This 
convention MUST NOT be used unless the event notification request is "encapsulated" within a 
CreateConnection or ModifyConnection command. When the convention is used, the gateway will 
generate or detect the event on the connection that is currently being created or modified. An 
example of this convention is: 
 
IT/rt@$ 

The connection id, or a wild-card replacement, can be used in conjunction with the "all packages" 
and "all events" conventions. For example, the notation: 
 
*/all@* 

can be used to designate all events on all connections for the affected endpoint(s). 

A.2.2 SDP use 
The MGC uses the MGCP to provide the gateways with the description of connection parameters 
such as IP addresses, UDP port, and RTP profiles. Except where otherwise noted or implied in this 
Recommendation, SDP descriptions MUST follow the conventions delineated in the Session 
Description Protocol (SDP), which is now an IETF-proposed standard documented in IETF RFC 
2327. 

SDP allows for description of multimedia conferences. The TGCP profile will only support the 
setting of audio connections using the media type "audio". 

A.2.3 Gateway control functions 
This clause describes the commands of the MGCP in the form of a remote procedure call (RPC) like 
API, which we will refer to as the media gateway control interface (MGCI). An MGCI function is 
defined for each MGCP command, where the MGCI function takes and returns the same parameters 
as the corresponding MGCP command. The functions shown in this clause provide a high-level 
description of the operation of MGCP and describe an example of an RPC-like API that MAY be 
used for an implementation of MGCP. Although the MGCI API is merely an example API, the 
semantic behaviour defined by MGCI is an integral part of the Recommendation, and all 
implementations MUST conform to the semantics specified for MGCI. The actual MGCP messages 
exchanged, including the message formats and encodings used are defined in A.3. Trunking 
gateways MUST implement those exactly as specified. 

The MGCI service consists of connection handling and endpoint handling commands. The following 
is an overview of the commands: 



 

10 ITU-T Rec. J.171 (02/2002) 

� The MGC can issue a NotificationRequest command to a gateway, instructing the gateway 
to watch for specific events such as seizure or fax tones on a specified endpoint. 

� The gateway will then use the Notify command to inform the MGC when the requested 
events occur on the specified endpoint. 

� The MGC can use the CreateConnection command to create a connection that terminates in 
an endpoint inside the gateway. 

� The MGC can use the ModifyConnection command to change the parameters associated to a 
previously established connection. 

� The MGC can use the DeleteConnection command to delete an existing connection. In some 
circumstances, the DeleteConnection command also can be used by a gateway to indicate 
that a connection can no longer be sustained. 

� The MGC can use the AuditEndpoint and AuditConnection commands to audit the status of 
an "endpoint" and any connections associated with it. Network management beyond the 
capabilities provided by these commands are generally desirable, e.g. information about the 
status of the trunking gateway and each of the trunk circuits. Such capabilities are expected 
to be supported by the use of the Simple Network Management Protocol (SNMP) and 
definition of a MIB, which is outside the scope of this Recommendation. 

� The gateway can use the RestartInProgress command to notify the MGC that the endpoint, 
or a group of endpoints managed by the gateway, is being taken out of service or is being 
placed back in service. 

These services allow a controller (normally the MGC) to instruct a gateway on the creation of 
connections that terminate in an endpoint attached to the gateway, and to be informed about events 
occurring at the endpoint. Currently, a trunking gateway endpoint is limited to a specific trunk circuit 
within a trunking gateway. 

Connections are grouped into "calls". Several connections, that may or may not belong to the same 
call, can terminate in the same endpoint. Each connection is qualified by a "mode" parameter, which 
can be set to "send only" (sendonly), "receive only" (recvonly), "send/receive" (sendrecv), "inactive" 
(inactive), "loopback" (loopback), "continuity test" (conttest), "network loopback" (netwloop) or 
"network continuity test" (netwtest). The "mode" parameter determines if media packets can be sent 
and/or received on the connection; however, RTCP is unaffected. 

Audio signals received from the endpoint will be sent on any connection for that endpoint whose 
mode is either "send only", or "send/receive. 

Handling of the audio signals received on these connections is also determined by the mode 
parameters: 
� Audio signals received in data packets through connections in "inactive", "loopback" or 

"continuity test" mode are discarded. 
� Audio signals received in data packets through connections in "receive only", or 

"send/receive" mode are mixed together and then sent to the endpoint3. 
� Audio signals originating from the endpoint are transmitted over all the connections whose 

mode is "send only", or "send/receive". 
� Audio signals received in data packets through connections in "network loopback" or 

"network continuity test" mode will be sent back on the connection as described below. 

The "loopback" and "continuity test" modes are used during maintenance and continuity test 
operations. There are two variations of continuity test (COT), one specified for general use and one 
used in several national networks. In the first case, the test is a loopback test. The originating switch 

____________________ 
3  TGCP endpoints are currently not required to support mixing however. 



 

  ITU-T Rec. J.171 (02/2002) 11 

will send a tone (the go tone) on the bearer circuit and expect the terminating switch to loopback the 
circuit. If the originating switch sees the same tone returned (the return tone), the COT has passed. If 
not, the COT has failed. In the second case, the go and return tones are different. The originating 
switch sends a certain go tone. The terminating switch detects the go tone, it asserts a different return 
tone in the backwards direction. When the originating switch detects the return tone, the COT is 
passed. If the originating switch does not detects the return tone within a certain period of time, the 
COT has failed. 

If the mode is set to "loopback", the gateway is expected to return the incoming signal from the 
endpoint back into that same endpoint. This is the general procedure. If the mode is set to "continuity 
test", the gateway is informed that the other end of the circuit has initiated a continuity test procedure 
according to procedures specified for several national networks. The gateway will place the circuit in 
the transponder mode required for dual-tone continuity tests. 

Furthermore, when a connection for an endpoint is in "loopback" or "continuity test" mode: 
� audio signals received on any connection for the endpoint will not be sent to the endpoint. 
� audio signals received on the endpoint will not be sent to any connection for the endpoint. 

If the mode is set to "network loopback", the audio signals received from the connection will be 
echoed back on the same connection. The "network loopback" mode SHOULD simply operate as an 
RTP packet reflector. 

The "network continuity test" mode is used for continuity checking across the IP network. An 
endpoint-type specific signal is sent to the endpoints over the IP network, and the endpoint is then 
supposed to echo the signal over the IP network after passing it through the gateway's internal 
equipment to verify proper operation. The signal MUST go through internal decoding and re-
encoding prior to being passed back. For DS-0 endpoints the signal will be an audio signal, and the 
signal MUST NOT be passed on to a circuit connected to the endpoint, regardless of the current 
seizure-state of that circuit.  

New and existing connections for the endpoint MUST NOT be affected by connections placed in 
"network loopback" or "network continuity test" mode. However, local resource constraints may 
limit the number of new connections that can be made.  

Please refer to Appendix A.I for illustrations of mode interactions. 

A.2.3.1 NotificationRequest 
The NotificationRequest command is used to request the gateway to send a notification upon the 
occurrence of specified events in an endpoint. For example, a notification may be requested when 
tones associated with fax communication are detected on the endpoint. The entity receiving this 
notification, usually the MGC, may then decide that a different type of encoding should be used on 
the connections bound to this endpoint and instruct the gateway accordingly4. 
 
ReturnCode 
 ← NotificationRequest(EndpointId 
     [, NotifiedEntity] 
      [, RequestedEvents] 
     , RequestIdentifier 
     [, SignalRequests] 
     [, QuarantineHandling] 
     [, DetectEvents]) 

EndpointId is the identifier for the endpoint(s) in the gateway where NotificationRequest executes. 
The EndpointId follows the rules for endpoint names specified in A.2.1.1. The "any of" wild-card 
MUST NOT be used. 

____________________ 
4  The new instruction would be a ModifyConnection command. 



 

12 ITU-T Rec. J.171 (02/2002) 

NotifiedEntity is an optional parameter that specifies a new "notified entity" for the endpoint.  

RequestIdentifier is used to correlate this request with the notification it may trigger. It will be 
repeated in the corresponding Notify command. 

SignalRequests is a parameter that contains the set of signals that the gateway is asked to apply. 
Unless otherwise specified, signals are applied to the endpoint; however, some signals can be 
applied to a connection. The following are examples of signals5: 
� Continuity test; 
� Set up MF OSS call. 

Signals are divided into different types depending upon their behaviour: 
• On/off (OO) � Once applied, these signals last until they are turned off. This can only 

happen as the result of a new SignalRequests where the signal is turned off (see later). 
Signals of type OO are defined to be idempotent, thus multiple requests to turn a given OO 
signal on (or off) are perfectly valid and MUST NOT result in any errors. Once turned on, it 
MUST NOT be turned off until explicitly instructed to by the MGC, or the endpoint restarts.  

• Time-out (TO) – Once applied, these signals last until they are either cancelled (by the 
occurrence of an event or by not being included in a subsequent [possibly empty] list of 
signals), or a signal-specific period of time has elapsed. A signal that times out will generate 
an "operation complete" event (please see A.A.1 for further definition of this event). A TO 
signal could be "place MF call" timing out after 16 seconds. If an event occurs prior to the 
16 seconds, the signal will, by default, be stopped6. If the signal is not stopped, the signal 
will time out, stop and generate an "operation complete" event, about which the MGC may 
or may not have requested to be notified. If the MGC has asked for the "operation complete" 
event to be notified, the "operation complete" event sent to the MGC will include the 
name(s) of the signal(s) that timed out7. Signal(s) generated on a connection will include the 
name of that connection. Time-out signals have a default time-out value defined for them, 
which may be altered by the provisioning process. Also, the time-out period may be 
provided as a parameter to the signal. A value of zero indicates that the time-out period is 
infinite. A TO signal that fails after being started, but before having generated on "operation 
complete" event will generate an "operation failure" event which will include the name(s) of 
the signal(s) that time out7.  

• Brief (BR) – The duration of these signals is so short that they stop on their own. If a 
signal stopping event occurs, or a new SignalRequests is applied, a currently active BR 
signal will not stop. However, any pending BR signals not yet applied will be cancelled. 

Signals are, by default, applied to endpoints. If a signal applied to an endpoint results in the 
generation of a media stream (audio, video, etc.), the media stream MUST NOT be forwarded on 
any connection associated with that endpoint, regardless of the mode of the connection. For example, 
if a tone is applied to an endpoint involved in an active communication, only the party using the 
endpoint in question will hear the tone. However, individual signals may define a different 
behaviour. 

When a signal is applied to a connection that has received a RemoteConnectionDescriptor (see 
A.2.3.3), the media stream generated by that signal will be forwarded on the connection regardless 
of the current mode of the connection. If a RemoteConnectionDescriptor has not been received, the 
gateway MUST return an error (error code 527 � missing RemoteConnectionDescriptor). 

____________________ 
5  Please refer to Annex A.A for a complete list of signals. 
6  The "Keep signal(s) active" action may override this behaviour. 
7  If parameters were passed to the signal, the parameters will not be reported. 



 

  ITU-T Rec. J.171 (02/2002) 13 

When a (possibly empty) list of signal(s) is supplied, this list completely replaces the current list of 
active time-out signals. Currently active time-out signals that are not provided in the new list MUST 
be stopped and the new signal(s) provided will now become active. Currently active time-out signals 
that are provided in the new list of signals MUST remain active without interruption; thus, the timer 
for such time-out signals will not be affected. Consequently, there is currently no way to restart the 
timer for a currently active time-out signal without turning the signal off first. If the time-out signal 
is parameterized, the original set of parameters will remain in effect, regardless of what values are 
provided subsequently. A given signal MUST NOT appear more than once in a SignalRequests.  

The currently defined signals can be found in Annex A.A. 
RequestedEvents is a list of events that the gateway is requested to detect on the endpoint. Unless 
otherwise specified, events are detected on the endpoint; however, some events can be detected on a 
connection. Examples of events are: 
� seizure; 
� fax tones; 
� operation complete; 
� incoming MF call. 

The currently defined events can be found in Annex A.A. 

To each event is associated one or more actions that define the action that the gateway must take 
when the event in question occurs. The possible actions are: 
� notify the event immediately, together with the accumulated list of observed events; 
� accumulate the event; 
� ignore the event; 
� keep signal(s) active; 
� Embedded NotificationRequest; 
� Embedded ModifyConnection. 

Two sets of requested events will be detected by the endpoint: persistent and non-persistent. 

Persistent events are always detected on an endpoint. If a persistent event is not included in the list of 
RequestedEvents, and the event occurs, the event will be detected anyway, and processed like all 
other events, as if the persistent event had been requested with a Notify action8. Thus, informally, 
persistent events can be viewed as always being implicitly included in the list of RequestedEvents 
with an action to Notify, although no glare detection, etc., will be performed9. Persistent events are 
identified as such through their definition � see Annex A.A. 

Non-persistent events are those events that have to be explicitly included in the RequestedEvents list. 
The (possibly empty) list of requested events completely replaces the previous list of requested 
events. In addition to the persistent events, only the events specified in the requested events list will 
be detected by the endpoint. If a persistent event is included in the RequestedEvents list, the action 
specified will then replace the default action associated with the event for the life of the 
RequestedEvents list, after which the default action is restored. A given event MUST NOT appear 
more than once in a RequestedEvents. 

More than one action can be specified for an event, although a given action can not appear more than 
once for a given event. The matrix in Table A.1 specifies the legal combinations of actions: 

____________________ 
8  Thus, the RequestIdentifier will be the RequestIdentifier of the current NotificationRequest. 
9  Normally, if a request to look for, e.g. off-hook, is made, the request is only successful if the phone is not 

already off-hook. 



 

14 ITU-T Rec. J.171 (02/2002) 

Table A.1/J.171 � Actions legal combinations 

 Notify Accumulate Ignore Keep 
signal(s) 

active 

Embedded 
Notification 

Request 

Embedded 
ModifyConnection

Notify � � � √ � √ 
Accumulate � � � √ √ √ 
Ignore � � � √ � √ 
Keep signal(s) active √ √ √ � √ √ 
Embedded 
NotificationRequest 

� √ � √ � √ 

Embedded 
ModifyConnection 

√ √ √ √ √ � 

If a client receives a request with an invalid action or illegal combination of actions, it MUST return 
an error to the MGC (error code 523-unknown or illegal combination of actions).  

When multiple actions are specified, e.g. "Keep signal(s) active" and "Notify", the individual actions 
are assumed to occur simultaneously.  

The MGC can send a NotificationRequest with an empty RequestedEvents list to the gateway. 
However, persistent events will still be detected and notified . 

The signals being applied by the SignalRequests are synchronized with the collection of events 
specified or implied in the RequestedEvents parameter, except if overridden by the "Keep signal(s) 
active" action. The formal definition is that the generation of all "Time Out" signals MUST stop as 
soon as one of the requested events is detected, unless the "Keep signal(s) active" action is 
associated to the specified event.  

If it is desired that time-out signal(s) continue when a looked-for event occurs, the "Keep signal(s) 
active" action can be used. This action has the effect of keeping all currently active time-out signal(s) 
active, thereby negating the default stopping of time-out signals upon the event's occurrence. 

If signal(s) are desired to start when a looked-for event occurs, the "Embedded NotificationRequest" 
action can be used. The embedded NotificationRequest may include a new list of RequestedEvents, 
and a new SignalRequests. However, the "Embedded NotificationRequest" cannot include another 
"Embedded NotificationRequest". When the "Embedded NotificationRequest" is activated, the list of 
observed events and the quarantine buffer will be unaffected (see A.2.4.3.1).  

The embedded NotificationRequest action allows the MGC to set up a "mini-script" to be processed 
by the gateway immediately following the detection of the associated event. Any SignalRequests 
specified in the embedded NotificationRequest will start immediately. Considerable care must be 
taken to prevent discrepancies between the MGC and the gateway. However, long-term 
discrepancies should not occur as new SignalRequests completely replaces the old list of active time-
out signals, and BR-type signals always stop on their own. Limiting the number of On/Off-type 
signals is encouraged. It is considered good practice for an MGC to occasionally turn on all On/Off 
signals that should be on, and turn off all On/Off signals that should be off.  

If connection modes are desired to be changed when a looked-for event occurs, the "Embedded 
ModifyConnection" action can be used. The embedded ModifyConnection may include a list of 
connection mode changes each consisting of the mode change and the affected connection-id. The 
wild-card "$" can be used to denote "the current connection"; however, this notation MUST NOT be 
used outside a connection handling command � the wild-card refers to the connection in question for 
the connection handling command. 



 

  ITU-T Rec. J.171 (02/2002) 15 

The embedded ModifyConnection action allows the MGC to instruct the endpoint to change the 
connection mode of one or more connections immediately following the detection of the associated 
event. Each of connection mode changes work similarly to a corresponding ModifyConnection 
command. When a list of connection mode changes is supplied, the connection mode changes 
MUST be applied one at a time in left-to-right order. When all the connection mode changes have 
finished, an "operation complete" event parameterized with the name of the completed action will be 
generated (see Annex A.A for details). Should any of the connection mode changes fail, an 
"operation failure" event parameterized with the name of the failed action and connection mode 
change will be generated (see Annex A.A for details) � the rest of the connection mode changes 
MUST NOT be attempted, and the previous successful connection mode changes in the list MUST 
NOT be changed either.  

Finally, the Ignore action can be used to ignore an event, e.g. to prevent a persistent event from 
being notified. However, the synchronization between the event and an active signal will still occur 
by default. 
NOTE � Clause A.2.4.3.1 contains additional details on the semantics of event detection and reporting. The 
reader is encouraged to study it carefully.  

The specific definition of actions that are requested via these SignalRequests is outside the scope of 
the core TGCP Recommendation. This definition may vary from location to location and, hence, 
from gateway to gateway. Consequently, the definitions are provided in event packages, which may 
be provided outside of the core Recommendation. An initial list of event packages can be found in 
Annex A.A. 

The RequestedEvents and SignalRequests generally refer to the same events. In one case, the 
gateway is asked to detect the occurrence of the event and, in the other case, it is asked to generate it. 
There are only a few exceptions to this rule, notably the fax and modem tones, which can be detected 
but can not be signalled. However, we necessarily cannot expect all endpoints to detect all events. 
The specific events and signals that a given endpoint can detect or perform are determined by the list 
of event packages that are supported by that endpoint. Each package specifies a list of events and 
signals that can be detected or applied. A gateway that is requested to detect or to apply an event 
belonging to a package that is not supported by the specified endpoint MUST return an error (error 
code 512 or 513 � not equipped to detect event or generate signal). When the event name is not 
qualified by a package name, the default package name for the endpoint is assumed. If the event 
name is not registered in this default package, the gateway MUST return an error (error code 522 � 
no such event or signal). 

The MGC can send a NotificationRequest whose requested signal list is empty. This has the effect of 
stopping all active time-out signals. It can do so, for example, when tone generation, e.g. ringback, 
should stop. 

QuarantineHandling is an optional parameter that specifies handling options for the quarantine 
buffer (see A.2.4.3.1). It allows the MGC to specify whether quarantined events should be processed 
or discarded. If the parameter is absent, the quarantined events MUST be processed. 

DetectEvents is an optional parameter that specifies a minimum list of events that the gateway is 
requested to detect in the "notification" and "lockstep" state. The list is persistent until a new value is 
specified. Further explanation of this parameter may be found in A.2.4.3.1. 

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and 
consists of an integer number (see A.2.5) optionally followed by commentary. 

A.2.3.2 Notifications 
Notifications are sent via the Notify command by the gateway when an observed event is to be 
notified: 
 



 

16 ITU-T Rec. J.171 (02/2002) 

ReturnCode 
 ← Notify(EndpointId 
   [, NotifiedEntity] 
   , RequestIdentifier 
   , ObservedEvents) 

EndpointId is the name for the endpoint in the gateway, which is issuing the Notify command, as 
defined in A.2.1.1. The identifier MUST be a fully qualified endpoint name, including the domain 
name of the gateway. The local part of the name MUST NOT use the wild-card convention. 

NotifiedEntity is an optional parameter that identifies the entity to which the notification is sent. 
This parameter is equal to the NotifiedEntity parameter of the NotificationRequest that triggered this 
notification. The parameter is absent if there was no such parameter in the triggering request. 
Regardless of the value of the "NotifiedEntity parameter, the notification MUST be sent to the 
current "notified entity" for the endpoint. 

RequestIdentifier is a parameter that repeats the RequestIdentifier parameter of the 
NotificationRequest that triggered this notification. It is used to correlate this notification with the 
notification request that triggered it. Persistent events will be viewed here as if they had been 
included in the last NotificationRequest. When no NotificationRequest has been received, the 
RequestIdentifier used will be zero ("0").  

ObservedEvents is a list of events that the gateway detected and accumulated, either by the 
"accumulate", or "notify" action. A single notification can report a list of events that will be reported 
in the order in which they were detected. The list can only contain persistent events and events that 
were requested in the RequestedEvents parameter of the triggering NotificationRequest. Events that 
were detected on a connection will include the name of that connection. The list will contain the 
events that were either accumulated (but not notified), and the final event that triggered the 
notification.  

ReturnCode is a parameter returned by the MGC. It indicates the outcome of the command and 
consists of an integer number (see A.2.5) optionally followed by commentary. 

A.2.3.3  CreateConnection 
This command is used to create a connection. 
 
ReturnCode  
, ConnectionId 
[, SpecificEndPointId] 
, LocalConnectionDescriptor, 
  ← CreateConnection(CallId          
  , EndpointId 
      [, NotifiedEntity] 
      , LocalConnectionOptions 
      , Mode 
      [, RemoteConnectionDescriptor] 
      [, RequestedEvents] 
      [, RequestIdentifier] 
      [, SignalRequests] 
      [, QuarantineHandling] 
      [, DetectEvents]) 

This function is used when setting up a connection between two endpoints. A connection is defined 
by its attributes and the endpoints it associates. The input parameters in CreateConnection provide 
the data necessary to build one of the two endpoints "view" of a connection. 

CallId is a parameter that identifies the call (or session) to which this connection belongs. This 
parameter is, at a minimum, unique within the collection of MGCs that control the same gateways; 
connections that belong to the same call share the same call-id. The call-id can be used to identify 
calls for reporting and accounting purposes. 



 

  ITU-T Rec. J.171 (02/2002) 17 

EndpointId is the identifier for the endpoint in the gateway where CreateConnection executes. The 
EndpointId can be specified fully by assigning a non-wild-carded value to the parameter EndpointId 
in the function call or it can be under-specified by using the "anyone" wild-card convention. If the 
endpoint is under-specified, the endpoint identifier will be assigned by the gateway and its complete 
value returned in the SpecificEndPointId parameter of the response. The "all" wild-card convention 
MUST NOT be used. 

NotifiedEntity is an optional parameter that specifies a new "notified entity" for the endpoint.  

LocalConnectionOptions is a structure that describes the characteristics of the media data 
connection from the point of view of the gateway executing CreateConnection. It instructs the 
endpoint on send and receive characteristics of the media connection. The basic fields contained in 
LocalConnectionOptions are: 
� Encoding Method: A list of literal names for the compression algorithm 

(encoding/decoding method) used to send and receive media on the connection MUST be 
specified with at least one value. The entries in the list are ordered by preference. The 
endpoint MUST choose exactly one of the codecs, and the codec SHOULD be chosen 
according to the preference indicated. If the endpoint receives any media on the connection 
encoded with a different encoding method, it MAY discard it. The endpoint MUST 
additionally indicate which of the remaining compression algorithms it is willing to support 
as alternatives � see A.3.4.1 for details. A list of permissible encoding methods is specified 
in a separate IPCablecom document. 

� Packetization Period: The packetization period in milliseconds, as defined in the SDP 
standard (IETF RFC 2327), MUST be specified and with exactly one value. The value only 
pertains to media sent. A list of permissible packetization periods is specified in a separate 
IPCablecom Recommendation. 

� Echo Cancellation: Whether echo cancellation should be used on the trunk side or not10. 
The parameter can have the value "on" (when the echo cancellation is requested) or "off" 
(when it is turned off). The parameter is optional. When the parameter is omitted, the 
trunking gateway MUST apply echo cancellation.  

� Type of Service: Specifies the class of service that will be used for sending media on the 
connection by encoding the 8-bit type of service value parameter of the IP header as two 
hexadecimal digits. The parameter is optional. When the parameter is omitted, a default 
value of A0H applies corresponding to an IP precedence bits setting of five. 

� Silence Suppression: Whether silence suppression should be used or not in the send 
direction. The parameter can have the value "on" (when silence is to be suppressed) or "off" 
(when silence is not to be suppressed). The parameter is optional. When the parameter is 
omitted, the default is not to use silence suppression.  

Additionally, the following LocalConnectionOptions fields are used to support the IPCablecom 
security services: 
� Secret: The optional secret is a seed value that MUST be used to derive end-to-end 

encryption keys for the RTP and RTCP security services as specified in ITU-T Rec. J.170. 
The secret SHOULD be encoded as clear-text if it only contains values in the ASCII 
character range 21H to 7EH. Otherwise, the secret MUST be encoded using base64 encoding. 
If no value is supplied, or the parameter is omitted and security services are to be used, the 
endpoint MUST generate a secret on its own11. When a secret is supplied by the MGC, the 
secret SHOULD be used. 

____________________ 
10  Echo cancellation on the packet side is not supported. 
11  This includes both generating a new secret and using a secret supplied in a RemoteConnectionDescriptor. 



 

18 ITU-T Rec. J.171 (02/2002) 

� RTP ciphersuite: A list of ciphersuites for RTP security in order of preference. The entries 
in the list are ordered by preference where the first ciphersuite is the preferred choice. The 
endpoint MUST choose exactly one of the ciphersuites. The endpoint SHOULD additionally 
indicate which of the remaining ciphersuites it is willing to support as alternatives (see 
A.3.4.1 for details). Each ciphersuite is represented as ASCII strings consisting of two 
(possibly empty) substrings separated by a slash ("/"), where the first substring identifies the 
authentication algorithm, and the second substring identifies the encryption algorithm. A list 
of permissible ciphersuites are specified in ITU-T Rec. J.170. 

� RTCP ciphersuite: A list of ciphersuites for RTCP security in order of preference. The 
entries in the list are ordered by preference where the first ciphersuite is the preferred choice. 
The endpoint MUST choose exactly one of the ciphersuites. The endpoint SHOULD 
additionally indicate which of the remaining ciphersuites it is willing to support as 
alternatives. See A.3.4.1 for details. Each ciphersuite is represented as ASCII strings 
consisting of two (possibly empty) substrings separated by a slash ("/"), where the first 
substring identifies the authentication algorithm, and the second substring identifies the 
encryption algorithm. A list of permissible ciphersuites are specified in ITU-T Rec. J.170. 

Furthermore, TGCP supports IPCablecom Electronic Surveillance (see PKT-SP-ESP-I01-991229). 
When a connection is subject to electronic surveillance, all valid media packets received on the 
connection and all media packets sent on the connect will be replicated and forwarded to an 
Electronic Surveillance Delivery Function12 after inclusion of a Call Content Connection Identifier. 
The replication will follow the connection mode for the connection, except for media generated by 
signals applies to the connection, which will be replicated regardless of the connection mode. For 
example, a connection in "inactive" mode will not generate any intercepted media13, whereas a 
connection in "sendonly" mode will only generate intercepted media in the send direction. 
Replicated packets will not be included in statistics for the connection. The following 
LocalConnectionOptions fields are used to support IPCablecom Electronic Surveillance (see 
PKT-SP-ESP-I01-991229 for details): 
� Call Content Connection Identifier: The Call Content Connection (CCC) Identifier is a 

32-bit value that specifies the Call Content Connection Identifier to be used for connection 
that are subject to electronic surveillance. It will be added to the header of intercepted voice 
packets. 

� Call Content Destination: The Call Content Destination specifies an Ipv4 address followed 
by a colon and a UDP port number. The Call Content Destination specifies the destination IP 
address and port for the call content intercepted. 

The trunking gateway MUST respond with an error (error code 524 � LocalConnectionOptions 
inconsistency) if any of the above rules are violated. All of the above-mentioned default values can 
be altered by the provisioning process. 

RemoteConnectionDescriptor is the connection descriptor for the remote side of a connection, on 
the other side of the IP network. It includes the same fields as the LocalConnectionDescriptor (not to 
be confused with LocalConnectionOptions), i.e. the fields that describe a session according to the 
SDP standard. Clause A.3.4 details the supported use of SDP in the TGCP profile. This parameter 
may have a null value when the information for the remote end is not known. This occurs because 
the entity that builds a connection starts by sending a CreateConnection to one of the two gateways 
involved. For the first CreateConnection issued, there is no information available about the other 
side of the connection. This information may be provided later via a ModifyConnection call.  

____________________ 
12  Note that the replication occurs at the network level � see PKT-SP-ESP-I01-991229 for details. 
13  Assuming no media generating signal was applied to the connection. 



 

  ITU-T Rec. J.171 (02/2002) 19 

The TGCP profile currently assumes that the same media parameters apply to a connection in both 
the send and receive direction. Part of the information in the RemoteConnectionDescriptor is 
therefore redundant and a potential for inconsistency with the LocalConnectionOptions exists. It is 
however purely the responsibility of the MGC to ensure that it issues coherent commands to each 
endpoint to ensure that consistent media parameters are specified. If inconsistency is detected by a 
gateway though, the LocalConnectionOptions will simply take precedence. When codecs are 
changed during a communication, small periods of time may exist where the endpoints use different 
codes. As stated above, trunking gateways MAY discard any media received that is encoded with a 
different codec than what is specified in the LocalConnectionOptions for a connection. 

Mode indicates the mode of operation for this side of the connection. The options are "send only", 
"receive only", "send/receive", "inactive", "network loopback" or "network continuity test". The 
handling of these modes is specified in the beginning of A.2.3. Some endpoints may not be capable 
of supporting all modes � see A.V.1. If the command specifies a mode that the endpoint does not 
support, an error MUST be returned (error code 517 � unsupported mode). Also, if a connection has 
not yet received a RemoteConnectionDescriptor, an error MUST be returned if the connection is 
attempted to be placed in any of the modes "send only", or "send/receive" (error code 527 � missing 
RemoteConnectionDescriptor).  

ConnectionId is a parameter returned by the gateway that uniquely identifies the connection within 
the context of the endpoint in question.  

LocalConnectionDescriptor is a parameter returned by the gateway, which is a session description 
that contains information about, e.g. addresses and RTP ports for "IN" connections as defined in 
SDP. It is similar to the RemoteConnectionDescriptor, except that it specifies this side of the 
connection. Clause A.3.4, details the supported use of SDP in the TGCP profile. 

After receiving a "CreateConnection" command that does not include a 
RemoteConnectionDescriptor parameter, a gateway is in an ambiguous situation for the connection 
in question. Because it has exported a LocalConnectionDescriptor parameter, it potentially can 
receive packets on that connection. Because it has not yet received the other gateway's 
RemoteConnectionDescriptor parameter, it does not know whether the packets it receives have been 
authorized by the MGC. Thus, it must navigate between two risks, i.e. clipping some important 
announcements or listening to insane data. The behaviour of the gateway is determined by the value 
of the mode parameter (subject to security): 
� if the mode was set to "receive only", the gateway MUST accept the voice signals received 

on the connection and transmit them through to the endpoint; 
� if the mode was set to "inactive", "loopback", or "continuity test", the gateway MUST (as 

always) discard the voice signals received on the connection; 
� if the mode was set to "network loopback" or "network continuity test", the gateway MUST 

perform the expected echo or response. The echoed or generated media MUST then be sent 
to the source of the media received. 

Note, that when the endpoint does not have a RemoteConnectionDescriptor for the connection, the 
connection can by definition not be in any of the modes "send only", or "send/receive". 

The RequestedEvents, RequestIdentifier, SignalRequests, QuarantineHandling, and 
DetectEvents parameters are all optional. They can be used by the MGC to effectively include a 
notification request that is executed simultaneously with the creation of the connection. If one or 
more of these parameters is present, the RequestIdentifier MUST be one of them. Thus, the inclusion 
of a notification request can be recognized by the presence of a RequestIdentifier. The rest of the 
parameters may or may not be present. If one of the parameters is not present, it MUST be treated as 
if it was a normal NotificationRequest with the parameter in question being omitted. This may have 
the effect of cancelling signals and of stop looking for events. 



 

20 ITU-T Rec. J.171 (02/2002) 

As an example of use, consider an MGC that wants to place a call to an operator services system 
through an MF trunking gateway. The MGC could: 
� ask the trunking gateway to create a connection, in order to be sure that the media gateway 

has resources for the call; 
� ask the trunking gateway to seize an MF operator services trunk and initiate the call; 
� ask the trunking gateway to notify the MGC when the call has been placed. 

All of the above can be accomplished in a single CreateConnection command by including a 
notification request with the RequestedEvents parameters for the answer event and the 
SignalRequests parameter for the set-up signal. 

When these parameters are present, the creation of the connection and the notification request MUST 
be synchronized, which means that they are both either accepted or refused. In our example, the 
CreateConnection must be refused if the gateway does not have sufficient resources or cannot get 
adequate resources from the local network access. The call initiation notification request must be 
refused in the glare condition if the circuit is already seized. In this example, the call must not be 
placed if the connection cannot be established, and the connection must not be established if the 
circuit is already seized. An error would be returned instead (error code 401 � circuit already seized), 
which informs the MGC of the glare condition. 

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and 
consists of an integer number (see A.2.5) optionally followed by commentary. 

A.2.3.4 ModifyConnection 
This command is used to modify the characteristics of a gateway's "view" of a connection. This 
"view" of the call includes both the local connection descriptor, as well as the remote connection 
descriptor. 
 
ReturnCode 
[, LocalConnectionDescriptor] 
   ← ModifyConnection(CallId 
       , EndpointId 
       , ConnectionId 
       [, NotifiedEntity] 
       [, LocalConnectionOptions] 
       [, Mode] 
       [, RemoteConnectionDescriptor] 
       [, RequestedEvents] 
       [, RequestIdentifier] 
       [, SignalRequests] 
       [, QuarantineHandling] 
       [, DetectEvents]) 

The parameters used are the same as in the CreateConnection command, with the addition of a 
ConnectionId that uniquely identifies the connection within the endpoint. This parameter is returned 
by the CreateConnection command together with the local connection descriptor. It uniquely 
identifies the connection within the context of the endpoint.  

The EndpointId MUST be a fully qualified endpoint name. The local name MUST NOT use the 
wild-card convention. 

The ModifyConnection command can be used to affect connection parameters, subject to the same 
rules and constraints as specified for CreateConnection: 
� Provide information on the other end of the connection through the 

RemoteConnectionDescriptor. 



 

  ITU-T Rec. J.171 (02/2002) 21 

� Activate or deactivate the connection by changing the mode parameter's value. This can 
occur at any time during the connection, with arbitrary parameter values. An activation can, 
for example, be set to the "receive only" mode. 

� Change the parameters of the connection through the LocalConnectionOptions, for 
example, by switching to a different coding scheme, changing the packetization period, or 
modifying the handling of echo cancellation. 

The command will only return a LocalConnectionDescriptor if the local connection parameters, 
such as, e.g. RTP ports, etc. are modified. Thus, if, e.g. only the mode of the connection is changed, 
a LocalConnectionDescriptor will not be returned. If a connection parameter is omitted, e.g. mode or 
silence suppression, the old value of that parameter will be retained if possible. If a parameter 
change necessitates a change in one or more unspecified parameters, the gateway is free to choose 
suitable values for the unspecified parameters that must change14.  

The RTP address information provided in the RemoteConnectionDescriptor specifies the remote 
RTP address of the receiver of media for the connection. This RTP address information may have 
been changed by the MGC15. When RTP address information is given to a trunking gateway for a 
connection, the trunking gateway SHOULD only accept media streams (and RTCP) from the RTP 
address specified as well. Any media streams received from any other addresses SHOULD be 
discarded. ITU-T Rec. J.170 should be consulted for additional security requirements. 

The RequestedEvents, RequestIdentifier, SignalRequests, QuarantineHandling, and 
DetectEvents parameters are optional. The parameters can be used by the MGC to include a 
notification request that is tied to and executed simultaneously with the connection modification. If 
one or more of these parameters is supplied, then RequestIdentifier MUST be one of them.  

When these parameters are present, the connection modification and the notification request MUST 
be synchronized, which means that they are both either accepted or refused. 

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and 
consists of an integer number (see A.2.5) optionally followed by commentary. 

A.2.3.5 DeleteConnection (from the media gateway controller) 
This command is used to terminate a connection. As a side effect, it collects statistics on the 
execution of the connection. 
 
ReturnCode 
, Connection-parameters  
 ← DeleteConnection(CallId 
     , EndpointId 
     , ConnectionId 
     [, NotifiedEntity] 
     [, RequestedEvents] 
     [, RequestIdentifier] 
     [, SignalRequests] 
     [, QuarantineHandling] 
     [, DetectEvents]) 

The endpoint identifier, in this form of the DeleteConnection command, MUST be fully qualified. 
Wild-card conventions MUST NOT be used. 

____________________ 
14  This can for instance happen if a codec change is specified, and the old codec used silence suppression, but 

the new one does not support it. If, e.g. the packetization period furthermore was not specified, and the new 
codec supported the old packetization period, the value of this parameter would not change, as a change 
would not be necessary. 

15  For instance if media needs to traverse a firewall. 



 

22 ITU-T Rec. J.171 (02/2002) 

In the general case where a connection has two ends, this command has to be sent to both gateways 
involved in the connection. After the connection has been deleted, packet network media streams 
previously supported by the connection are no longer available. Any media packets received for the 
old connection are simply discarded and no new media packets for the stream are sent. 

In response to the DeleteConnection command, the gateway returns a list of parameters that describe 
the status of the connection16. These parameters are: 
� Number of packets sent: The total number of RTP data packets transmitted by the sender 

since starting transmission on the connection. The count is not reset if the sender changes its 
synchronization source identifier (SSRC, as defined in RTP) � for example, as a result of a 
Modify command. The value is zero if, e.g. the connection was always set in "receive only" 
mode. 

� Number of octets sent: The total number of payload octets (i.e. not including header or 
padding) transmitted in RTP data packets by the sender since starting transmission on the 
connection. The count is not reset if the sender changes its SSRC identifier � for example, as 
a result of a ModifyConnection command. The value is zero if, e.g. the connection was 
always set in "receive only" mode. 

� Number of packets received: The total number of RTP data packets received by the sender 
since starting reception on the connection. The count includes packets received from 
different SSRC if the sender used several values. The value is zero if, e.g. the connection 
was always set in "send only" mode. 

� Number of octets received: The total number of payload octets (i.e. not including header or 
padding) transmitted in RTP data packets by the sender since starting transmission on the 
connection. The count includes packets received from different SSRC if the sender used 
several values. The value is zero if, e.g. the connection was always set in "send only" mode. 

� Number of packets lost: The total number of RTP data packets that have been lost since the 
beginning of reception. This number is defined to be the number of packets expected less the 
number of packets actually received, where the number of packets received includes any 
which are late or are duplicates. The count includes packets received from different SSRC if 
the sender used several values. Thus, packets that arrive late are not counted as lost, and the 
loss may be negative if there are duplicates. The count includes packets received from 
different SSRC if the sender used several values. The number of packets expected is defined 
to be the extended last sequence number received, less the initial sequence number received. 
The count includes packets received from different SSRC, if the sender used several values. 
The value is zero if, e.g. the connection was always set in "send only" mode.  

� Interarrival jitter: An estimate of the statistical variance of the RTP data packet interarrival 
time measured in milliseconds and expressed as an unsigned integer. The interarrival jitter 
"J" is defined to be the mean deviation (smoothed absolute value) of the difference "D" in 
packet spacing at the receiver compared to the sender for a pair of packets. Detailed 
computation algorithms are found in IETF RFC 1889. The count includes packets received 
from different SSRC if the sender used several values. The value is zero if, e.g. the 
connection was always set in "send only" mode. 

� Average transmission delay: An estimate of the network latency, expressed in milliseconds. 
This is the average value of the difference between the NTP timestamp indicated by the 
senders of the RTCP messages and the NTP timestamp of the receivers, measured when the 
messages are received. The average is obtained by summing all the estimates and then 
dividing by the number of RTCP messages that have been received. It should be noted that 
the correct calculation of this parameter relies on synchronized clocks. Trunking gateway 

____________________ 
16  The values calculated will not include packets that resulted from Electronic Surveillance. 



 

  ITU-T Rec. J.171 (02/2002) 23 

devices MAY alternatively estimate the average transmission delay by dividing the 
measured roundtrip time by two. 

For a more detailed definition of these variables, please refer to IETF RFC 1889. 

The NotifiedEntity, RequestedEvents, RequestIdentifier, SignalRequests, QuarantineHandling, 
and DetectEvents parameters are optional. They can be used by the MGC to transmit a notification 
request that is tied to and executed simultaneously with the deletion of the connection. However, if 
one or more of these parameters are present, RequestIdentifier MUST be one of them. For example, 
when a circuit is disconnected, the gateway might be instructed to delete the connection and to start 
looking for a seizure event. This can be accomplished in a single DeleteConnection command also 
by transmitting the RequestedEvents parameter for the seizure event and an empty SignalRequests 
parameter.  

When these parameters are present, the delete connection and the notification request MUST be 
synchronized, which means that they are both either accepted or refused. 

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and 
consists of an integer number (see A.2.5) optionally followed by commentary. 

A.2.3.6  DeleteConnection (From the Trunking gateway) 
In some circumstances, a gateway may have to clear a connection, for example, because it has lost 
the resource associated with the connection. The gateway can terminate the connection by using a 
variant of the DeleteConnection command: 
 
ReturnCode 
 ← DeleteConnection(CallId, 
     EndpointId, 
     ConnectionId, 
     Reason-code, 
     Connection-parameters) 

The EndpointId, in this form of the DeleteConnection command, MUST be fully qualified. Wild-
card conventions MUST NOT be used. 

The Reason-code is a text string starting with a numeric reason-code and optionally followed by a 
descriptive text string. A list of reason codes can be found in A.2.6. 

In addition to the CallId, EndpointId, and ConnectionId, the trunking gateway will also send the 
connection's parameters, which would have been returned to the MGC in response to a 
DeleteConnection command from the MGC. The reason code indicates the cause of the 
DeleteConnection. 

ReturnCode is a parameter returned by the MGC. It indicates the outcome of the command and 
consists of an integer number (see A.2.5) optionally followed by commentary. 

A.2.3.7 DeleteConnection (Multiple Connections From the Media Gateway Controller) 
A variation of the DeleteConnection function can be used by the MGC to delete multiple 
connections at the same time. The command can be used to delete all connections that relate to a call 
for an endpoint: 
 
ReturnCode 
 ← DeleteConnection(CallId, 
     EndpointId) 

The EndpointId, in this form of the DeleteConnection command, MUST NOT use the "any of" 
wild-card. All connections for the endpoint(s) with the CallId specified will be deleted. The 
command does not return any individual statistics or call parameters. 



 

24 ITU-T Rec. J.171 (02/2002) 

DeleteConnection can also be used by the MGC to delete all connections that terminate in a given 
endpoint: 
 
ReturnCode 
 ← DeleteConnection(EndpointId) 

In this form of the DeleteConnection command, MGC's can take advantage of the hierarchical 
naming structure of endpoints to delete all the connections that belong to a group of endpoints. In 
this case, part of the "local endpoint name" component of the EndpointId can be specified using the 
"all" wild-carding convention, as specified in A.2.1.1. The "any of" wild-carding convention MUST 
NOT be used. The command does not return any individual statistics or call parameters. 

After the connection has been deleted, packet network media streams previously supported by the 
connection are no longer available. Any media packets received for the old connection are simply 
discarded and no new media packets for the stream are sent. 

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and 
consists of an integer number (see A.2.5) optionally followed by commentary. 

A.2.3.8  Auditing  
The MGCP is based upon a centralized call control architecture where a MGC acts as the remote 
controller of client devices that provide voice communications interfaces to users and networks. In 
order to achieve the same or higher levels of availability as the current PSTN, some protocols have 
implemented mechanisms to periodically "ping" subscribers in order to minimize the time before an 
individual outage is detected. In this interest, an MGCP-specific auditing mechanism between the 
trunking gateways and the MGCs in an IPCablecom system is provided to allow the MGC to audit 
endpoint and connection state and to retrieve protocol-specific capabilities of an endpoint. 

Two commands for auditing are defined for the trunking gateways: 

AuditEndPoint: Used by the MGC to determine the status of an endpoint. 

AuditConnection: Used by the MGC to obtain information about a connection. 

Network management beyond the capabilities provided by these commands is generally desirable, 
e.g. information about the status of the trunking gateway as opposed to individual endpoints. Such 
capabilities are expected to be supported by the use of the Simple Network Management Protocol 
(SNMP) and by definition of a MIB for the trunking gateway, both of which are outside the scope of 
this Recommendation.  

A.2.3.8.1 AuditEndPoint 
The AuditEndPoint command can be used by the MGC to find out the status of a given endpoint. 
 
 { ReturnCode  
  [, EndPointIdList] 
  [, NumEndPoints] } | 
 { ReturnCode 
  [, RequestedEvents] 
  [, SignalRequests] 
  [, RequestIdentifier] 
  [, NotifiedEntity] 
  [, ConnectionIdentifiers] 
  [, DetectEvents] 
  [, ObservedEvents] 
  [, EventStates] 
  [, Capabilities] } 
   ← AuditEndPoint(EndpointId 
      [, RequestedInfo] | 
      { [, SpecificEndpointID] 
       [, MaxEndpointIDs] } ) 



 

  ITU-T Rec. J.171 (02/2002) 25 

The EndpointId identifies the endpoint that is being audited. The "any of" wild-card convention 
MUST NOT be used.  

The "all of" wild-card convention can be used to audit a group of endpoints. If this convention is 
used, the gateway MUST return the list of endpoint identifiers that match the wild-card in the 
EndPointIdList parameter, which is simply a list of SpecificEndpointIds � RequestedInfo MUST 
NOT be included in this case. MaxEndPointIDs is a numerical value that indicates the maximum 
number of EndpointIds to return. If additional endpoints exist, the NumEndPoints return parameter 
MUST be present and indicate the total number of endpoints that match the EndpointID specified. In 
order to retrieve the next block of EndpointIDs, the SpecificEndPointID is set to the value of the 
last endpoint returned in the previous EndpointIDList, and the command is issued.  
When the wild-card convention is not used, the (possibly empty) RequestedInfo describes the 
information that is requested for the EndpointId specified � the SpecificEndpointID and 
MaxEndpointID parameters MUST NOT be used then. The following endpoint-specific information 
can then be audited with this command: 

RequestedEvents, SignalRequests, RequestIdentifier, NotifiedEntity, ConnectionIdentifiers, 
DetectEvents, ObservedEvents, EventStates, VersionSupported, and Capabilities. 

The response will, in turn, include information about each of the items for which auditing 
information was requested: 
� RequestedEvents: The current value of RequestedEvents the endpoint is using including the 

action associated with each event. Persistent events are included in the list. 
� SignalRequests: A list of the Time-Out signals that are currently active, On/Off signals that 

are currently "on" for the endpoint (with or without parameter), and any pending Brief 
signals17. Time-Out signals that have timed out, and currently playing Brief signals are not 
included. Parameterized signals are reported with the parameters they were applied with. 

� RequestIdentifier: The RequestIdentifier for the last NotificationRequest received by the 
endpoint (includes notification request embedded in connection handling primitives). If no 
notification request has been received, the value zero will be returned. 

� NotifiedEntity: The current "notified entity" for the endpoint. 
� ConnectionIdentifiers: A comma-separated list of ConnectionIdentifiers for all connections 

that currently exist for the specified endpoint.  
� DetectEvents: The current value of DetectEvents the endpoint is using. Persistent events are 

included in the list. 
� ObservedEvents: The current list of observed events for the endpoint. 
� EventStates: For events that have auditable states associated with them, the event 

corresponding to the state the endpoint is in, e.g. seizure if the MF trunk for the endpoint is 
currently seized. The definition of the individual events will state if the event in question has 
an auditable state associated with it. 

� VersionSupported: A list of protocol versions supported by the endpoint. 
� Capabilities: The capabilities for the endpoint similar to the LocalConnectionOptions 

parameter and including event packages and connection modes. If there is a need to specify 
that some parameters, e.g. silence suppression, are only compatible with some codecs, then 
the gateway will return several capability sets. If an endpoint is queried about a capability it 
does not understand, the endpoint MUST NOT generate an error; instead, the parameter 
MUST be omitted from the response: 

____________________ 
17  Currently, there should be no pending Brief signals. 



 

26 ITU-T Rec. J.171 (02/2002) 

−−−− Compression Algorithm A list of supported codecs. The rest of the parameters will 
apply to all codecs specified in this list.  

−−−− Packetization Period A single value or a range may be specified.  
−−−− Bandwidth A single value or a range corresponding to the range for 

packetization periods may be specified (assuming no silence 
suppression).  

−−−− Echo Cancellation Whether echo cancellation is supported or not18. 
−−−− Silence Suppression Whether silence suppression is supported or not. 
−−−− Type of Service Whether type of service is supported or not.  
−−−− Event Packages A list of event packages supported. The first event package 

in the list will be the default package. 
−−−− Modes  A list of supported connection modes. 
−−−− Security Whether IPCablecom Security services are supported or not. 

If supported, the following parameters may be present as 
well: 
� RTP Ciphersuites: A list of authentication and 

encryption algorithms supported for RTP. 
� RTCP Ciphersuites: A list of authentication and 

encryption algorithms supported for RTCP. 
� Electronic Surveillance: Whether IPCablecom 

Electronic Surveillance is supported or not. 

The MGC may then decide to use the AuditConnection command to obtain further information about 
the connections.  

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and 
consists of an integer number (see A.2.5) optionally followed by commentary. 

If no info was requested and the EndpointId refers to a valid fully-specified EndpointId, the gateway 
simply returns a successful response (return code 200 � transaction executed normally). 

It should be noted, that all of the information returned is merely a snapshot. New commands 
received, local activity, etc. may alter most of the above. For example the seizure state may change 
before the MGC receives the above information. 

A.2.3.8.2 AuditConnection 
Auditing of individual connections on an endpoint can be achieved using the AuditConnection 
command. 
 
 ReturnCode 
 [, CallId] 
 [, NotifiedEntity] 
 [, LocalConnectionOptions] 
 [, Mode] 
 [, RemoteConnectionDescriptor] 
 [, LocalConnectionDescriptor] 
 [, ConnectionParameters] 
  ← AuditConnection(EndpointId 
      , ConnectionId 
      [, RequestedInfo]) 

____________________ 
18  Currently, all TGCP endpoints must support echo cancellation. 



 

  ITU-T Rec. J.171 (02/2002) 27 

The EndpointId identifies the endpoint that is being audited-wild-cards MUST NOT be used. The 
(possibly empty) RequestedInfo describes the information that is requested for the ConnectionId 
within the EndpointId specified. The following connection info can be audited with this command: 
 CallId, NotifiedEntity, LocalConnectionOptions, Mode, ConnectionParameters, 

RemoteConnectionDescriptor, LocalConnectionDescriptor. 

The response will, in turn, include information about each of the items for which auditing info was 
requested: 
� CallId   The CallId for the call to which the connection belongs 
� NotifiedEntity The current "notified entity" for the endpoint. 
� LocalConnectionOptions The LocalConnectionOptions supplied for the connection. 
� Mode   The current connection mode. 
� ConnectionParameters Current connection parameters for the connection. 
� LocalConnectionDescriptor The LocalConnectionDescriptor that the gateway supplied 

for the connection. 
� RemoteConnectionDescriptor The RemoteConnectionDescriptor that was supplied to 

the gateway for the connection. 

The ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command 
and consists of an integer number (see A.2.5) optionally followed by commentary. 

If no information was requested, and the EndpointId refers to a valid endpoint, the gateway simply 
checks that the connection specified exists and, if so, returns a positive response (return code 200 � 
transaction executed). 

A.2.3.9 RestartInProgress 
The RestartInProgress command is used by the gateway to signal that an endpoint, or a group of 
endpoints, is taken out of service or is being placed back in service. 
 
ReturnCode 
[, NotifiedEntity] 
[, VersionSupported] 
  ← RestartInProgress(EndpointId 
      , RestartMethod 
      [, RestartDelay]) 

The EndpointId identifies the endpoints that are taken in or out of service. The "all of" wild-card 
convention can be used to apply the command to a group of endpoints, for example, all endpoints 
that are attached to a specified interface, or even all endpoints that are attached to a given gateway. 
The "any of" wild-card convention MUST NOT be used. 
The RestartMethod parameter specifies the type of restart: 
� A "graceful" restart method indicates that the specified endpoint(s) will be taken out of 

service after the specified "restart delay". The established connections are not yet affected, 
but the MGC should refrain from establishing new connections, and should try to gracefully 
tear down any existing connections.  

� A "cancel-graceful" restart method indicates that a gateway is canceling a previously issued 
"graceful" restart method for the same endpoints. When this command is sent, the gateway 
will immediately begin to allow the establishment of new connections on these endpoints. 

� A "forced" restart method indicates that the specified endpoints are taken out of service 
abruptly. The established connections, if any, are lost.  

� A "restart" method indicates that service will be restored on the endpoints after the specified 
"restart delay". There are no connections that are currently established on the endpoints.  



 

28 ITU-T Rec. J.171 (02/2002) 

� A "disconnected" method indicates that the endpoint has become disconnected and is now 
trying to establish connectivity. The "restart delay" specifies the number of seconds the 
endpoint has been disconnected. Established connections are not affected.  

The optional "restart delay" parameter is expressed as a number of seconds. If the number is absent, 
the delay value should be considered null. In the case of the "graceful" method, a null delay indicates 
that the MGC should simply wait for the natural termination of the existing connections, without 
establishing new connections. The restart delay is always considered null in the case of the "forced" 
and "cancel-graceful" methods. A restart delay of null for the "restart" method indicates that service 
has already been restored. This typically will occur after gateway startup/reboot. To mitigate the 
effects of a gateway IP address change, the MGC MAY wish to resolve the gateway's domain name 
by querying the DNS regardless of the TTL of a current resource record for the restarted gateway. 

Trunking gateways SHOULD send a "graceful" or "forced" RestartInProgress message as a courtesy 
to the MGC when they are taken out of service, e.g. by being shut down, or taken out of service by a 
network management system, although the MGC cannot rely on always receiving such messages. 
Trunking gateways MUST send a "restart" RestartInProgress message with a null delay to their 
MGC when they are back in service according to the restart procedure specified in A.2.4.3.5 � 
MGCs can rely on receiving this message. Also, trunking gateways MUST send a "disconnected" 
RestartInProgress message to their current "notified entity" according to the "disconnected" 
procedure specified in A.2.4.3.6. The "restart delay" parameter MUST NOT be used with the 
"forced" restart method. 

The RestartInProgress message will be sent to the current "notified entity" for the EndpointId in 
question. It is expected that a default MGC, i.e. "notified entity", has been provisioned for each 
endpoint so, after a reboot, the default MGC will be the "notified entity" for each endpoint. Trunking 
gateways MUST take full advantage of wild-carding to minimize the number of RestartInProgress 
messages generated when multiple endpoints in a gateway restart and the endpoints are managed by 
the same MGC. 

ReturnCode is a parameter returned by the MGC. It indicates the outcome of the command and 
consists of an integer number (see A.2.5) optionally followed by commentary. 

A NotifiedEntity may additionally be returned with the response from the MGC: 
� If the response indicated success (return code 200 � transaction executed), the restart 

procedure has completed, and the NotifiedEntity returned is the new "notified entity" for the 
endpoint(s).  

� If the response from the MGC indicated an error, the restart procedure is not yet complete, 
and must therefore be initiated again. If a NotifiedEntity parameter was returned, it then 
specifies the new "notified entity" for the endpoint(s), which must consequently be used 
when retrying the restart procedure. 

Finally, a VersionSupported parameter with a list of supported versions may be returned if the 
response indicated version incompatibility (error code 528).  

A.2.4 States, failover and Race conditions 
In order to implement proper call signalling, the MGC must keep track of the state of the endpoint, 
and the gateway must make sure that events are properly notified to the MGC. Special conditions 
may exist when the gateway or the MGC are restarted: the gateway may need to be redirected to a 
new MGC during "failover" procedures; similarly, the MGC may need to take special action when 
the gateway is taken offline, or restarted. 



 

  ITU-T Rec. J.171 (02/2002) 29 

A.2.4.1 Recaps and highlights 
As mentioned in A.2.1.4, MGCs are identified by their domain name, and each endpoint has one, 
and only one, "notified entity" associated with it at any given point in time. In this clause we recap 
and highlight the areas that are of special importance to reliability and failover in MGCP: 
� An MGC is identified by its domain name, not its network addresses, and several network 

addresses can be associated with a domain name.  
� An endpoint has one, and only one, MGC associated with it at any given point in time. The 

MGC associated with an endpoint is the current value of the "notified entity". 

� The "notified entity" is initially set to a provisioned value. When commands with a 
NotifiedEntity parameter is received for the endpoint, including wild-carded endpoint-
names, the "notified entity" is set to the value specified. If the "notified entity" for an 
endpoint is empty or has not been set explicitly19, the "notified entity" defaults to the source 
address of the last connection handling command or notification request received for the 
endpoint. In this case, the MGC will thus be identified by its network address, which 
SHOULD only be done on exceptional basis. 

� Responses to commands are always sent to the source address of the command, regardless of 
the current "notified entity". When a Notify message needs to be piggybacked with the 
response, the datagram is still sent to the source address of the new command received, 
regardless of the NotifiedEntity for any of the commands. 

� When the "notified entity" refers to a domain name that resolves to multiple IP-addresses, 
endpoints are capable of switching between each of these addresses; however, they cannot 
change the "notified entity" to another domain name on their own. An MGC can however 
instruct them to switch by providing them with a new "notified entity". 

� If an MGC becomes unavailable, the endpoints managed by that MGC will eventually 
become "disconnected". The only way for these endpoints to become connected again is 
either for the failed MGC to become available again, or for another (back-up) MGC to 
contact the affected endpoints with a new "notified entity". 

� When another (back-up) MGC has taken over control of a group of endpoints, it is assumed 
that the failed MGC will communicate and synchronize with the back-up MGC in order to 
transfer control of the affected endpoints back to the original MGC, if so desired. 
Alternatively, the failed MGC could simply become the back-up MGC now. 

We should note that handover conflict resolution between separate MGC's is not provided � we are 
relying strictly on the MGCs knowing what they are doing and communicating with each other 
(although AuditEndpoint can be used to learn about the current "notified entity"). 

A.2.4.2 Retransmission, and detection of lost associations 
The MGCP protocol is organized as a set of transactions, each of which is composed of a command 
and a response. The MGCP messages, being carried over UDP, may be subject to losses. In the 
absence of a timely response (see A.3.5), commands are repeated. Gateways MUST keep in memory 
a list of the responses that they sent to recent transactions, and a list of the transactions that are 
currently being executed. "Recent" is here defined by the value Tthist that specifies the number of 
seconds that responses to old transactions must be kept for. The default value for Tthist is 30 seconds. 

The transaction identifiers of incoming commands are first compared to the transaction identifiers of 
the recent responses. If a match is found, the gateway does not execute the transaction, but simply 
repeats the old response. If a match to a previously responded to transaction is not found, the 
transaction identifier of the incoming command is compared to the list of transactions that have not 

____________________ 
19  This could for instance happen by specifying an empty NotifiedEntity parameter. 



 

30 ITU-T Rec. J.171 (02/2002) 

yet finished executing. If a match is found, the gateway does not execute the transaction, which is 
simply ignored � a response will be provided when the execution of the command is complete. 

This repetition mechanism is used to guard against four types of possible errors: 
� transmission errors, when, e.g. a packet is lost due to noise on a line or congestion in a 

queue; 
� component failure, when, e.g. an interface for an MGC becomes unavailable; 
� MGC failure, when, e.g. all interfaces for a MGC becomes unavailable; 
� failover, when a new MGC is "taking over" transparently. 

The elements should be able to derive from the past history an estimate of the packet loss rate. In a 
properly configured system, this loss rate should be very low, typically less than 1% on average. If 
an MGC or a gateway has to repeat a message more than a few times, it is very legitimate to assume 
that something else than a transmission error is occurring. For example, given a uniformly 
distributed loss rate of 1%, the probability that 5 consecutive transmission attempts fail is 1 in 
100 billion, an event that should occur less than once every 10 days for an MGC that processes 
1000 transactions per second. (Indeed, the number of repetitions that is considered excessive should 
be a function of the prevailing packet loss rate.) When errors are non-uniformly distributed, the 
consecutive failure probability can become somewhat higher. We should note that the "suspicion 
threshold", which we will call "Max1", is normally lower than the "disconnection threshold", which 
we will call "Max2", and which should be set to a larger value. 

A classic retransmission algorithm (see Figure A.1) would simply count the number of successive 
repetitions, and conclude that the association is broken after retransmitting the packet an excessive 
number of times (typically between 7 and 11 times). In order to account for the possibility of an 
undetected or in-progress "failover", we modify the classic algorithm as follows: 
� The gateway MUST always check for the presence of a new MGC. It can be noticed by: 

− receiving a command where the NotifiedEntity points to a new MGC; or  
− receiving a redirection response pointing to a new MGC. 

� If a new MGC is detected, the gateway MUST direct retransmissions of any outstanding 
commands for the endpoint(s) redirected to that new MGC. Responses to new or old 
commands are still transmitted to the source address of the command. 

� Prior to any retransmission, it is checked that the time elapsed since the sending of the initial 
datagram is no greater than Tsmax. If more than Tsmax time has elapsed, the endpoint becomes 
disconnected. 

� If the number of retransmissions to this MGC equals "Max1", the gateway MAY actively 
query the name server in order to detect the possible change of MGC interfaces, regardless 
of the Time To Live (TTL) associated with the DNS record. 

� The gateway may have learned several IP addresses for the MGC. If the number of 
retransmissions for this IP address is larger than "Max1" and lower than "Max2", and there 
are more IP addresses that have not been tried, then the gateway MUST direct the 
retransmissions to the remaining alternate addresses in its local list. 

� If there are no more interfaces to try, and the number of retransmissions is Max2, then the 
gateway SHOULD contact the DNS one more time to see if any other interfaces have 
become available. If not, the endpoint(s) managed by this MGC are now disconnected. 
When an endpoint becomes disconnected, it MUST then initiate the "disconnected" 
procedure as specified in A.2.4.3.6. 



 

  ITU-T Rec. J.171 (02/2002) 31 

T0912530-02

Transmission
to new address: N=0

No

Yes

No

New Call Agent

Timer elapsed

Retransmission: N++

Yes

Response received

(transaction complete)

No

Yes Yes:
(if first address and N=Max1, 
or last address and N=Max2
check DNS)

More
addresses?

Disconnected

Awaiting
response

Ts > Ts max?

Command issued:
N=0, Ts=0

N ≥ Max1?

N > Max2?
No

 

Figure A.1/J.171 � Retransmission algorithm 

In order to adapt to network load automatically, MGCP specifies exponentially increasing timers 
(see A.3.5.2). If the initial time-out is set to 200 milliseconds, the loss of a fifth retransmission will 
be detected after about 6 seconds. This is probably an acceptable waiting delay to detect a failover. 
The retransmissions should continue after that delay not only in order to perhaps overcome a 
transient connectivity problem, but also in order to allow some more time for the execution of a 
failover � waiting a total delay of 30 seconds is probably acceptable.  

It should be noted that there is an intimate relationship between Tsmax, Tthist, and the maximum 
transit time, Tpmax. Specifically, the following relation MUST be satisfied to prevent retransmitted 
commands from being executed more than once: 
 
Tthist ≥ Tsmax + Tpmax 

The default value for Tsmax is 20 seconds. Thus, if the assumed maximum propagation delay is 
10 seconds, then responses to old transactions must be kept for a period of at least 30 seconds. The 
importance of having the sender and receiver agree on these values cannot be overstated.  

The default value for Max1 is 5 retransmissions and the default value for Max2 is 7 retransmissions. 
Both of these values may be altered by the provisioning process. 

Furthermore, the provisioning process MUST be able to disable one or both of the Max1 and Max2 
DNS queries. 

A.2.4.3 Race conditions 
In this clause we describe how MGCP deals with race conditions. 



 

32 ITU-T Rec. J.171 (02/2002) 

First of all, MGCP deals with race conditions through the notion of a "quarantine list" that 
quarantines events and through explicit detection of desynchronization, e.g. for mismatched seizure-
state due to glare for an endpoint. 

Secondly, MGCP does not assume that the transport mechanism will maintain the order of 
commands and responses. This may cause race conditions that may be obviated through a proper 
behaviour of the MGC by a proper ordering of commands. 

Finally, in some cases, many gateways may decide to restart operation at the same time. This may 
occur, for example, if an area loses power or transmission capability during an earthquake or an ice 
storm. When power and transmission capability are re-established, many gateways may decide to 
send RestartInProgress commands simultaneously, which could lead to very unstable operation if not 
carefully controlled. 

A.2.4.3.1 Quarantine list 
MGCP controlled gateways will receive notification requests that ask them to watch for a list of 
events. The protocol elements that determine the handling of these events are the "Requested 
Events" list, and the "Detect Events" list. 

When the endpoint is initialized, the requested events list only consists of persistent events for the 
endpoint. After reception of a command, the gateway starts observing the endpoint for occurrences 
of the events mentioned in the list, including persistent events. 

The events are examined as they occur. The action that follows is determined by the "action" 
parameter associated to the event in the list of requested events. The events that are defined as 
"accumulate" are accumulated in a list of observed events. This will go on until one event is 
encountered that triggers a Notify command which will be sent to the "notified entity". 

The gateway, at this point, will transmit the Notify command and will place the endpoint in a 
"notification state". As long as the endpoint is in this "notification state", the events that are detected 
on the endpoint are stored in a "quarantine" buffer for later processing. The events are, in a sense, 
"quarantined". The events detected are the events specified by the union of the RequestedEvents 
parameter and the most recently received DetectEvents parameter or, in case no DetectEvents 
parameter has been received, the events that are referred to in the RequestedEvents. Persistent events 
are detected as well. 

The endpoint exits the "notification state" when the response to the Notify command is received20. 
The Notify command may be retransmitted in the "notification state", as specified in A.2.4.2. 

When the endpoint exits the "notification state" it resets the list of observed events of the endpoint to 
a null value.  

The TGCP profile mandates the use of "lockstep mode", which implies that the gateway MUST 
receive a new NotificationRequest command after it has sent a Notify command. Until this happens, 
the endpoint is in a "lockstep state", and events that occur and are to be detected are simply stored in 
the quarantine buffer. The events to be quarantined are the same as in the "notification state". Once 
the new NotificationRequest is received and executed successfully, the endpoint exits the "lockstep 
state". 

A gateway can receive at any time a new NotificationRequest command for the endpoint which will 
also have the effect of taking the endpoint out of the "notification state" assuming the 
NotificationRequest executes successfully.  

When a new NotificationRequest is received in the "notification state", the gateway shall ensure that 
the pending Notify is received by the MGC prior to a successful response to the new 
NotificationRequest. It does so by using the "piggybacking" functionality of the protocol and placing 

____________________ 
20  It should be noted that the Notify action cannot be combined with an Embedded NotificationRequest. 



 

  ITU-T Rec. J.171 (02/2002) 33 

the messages (commands and responses) to be sent in order with the oldest message first. The 
messages will then be sent in a single packet to the source of the new NotificationRequest, regardless 
of the source and "notified entity" for the old and new command. The steps involved are the 
following: 
1) the gateway builds a message that carries in a single packet a repetition of the old 

outstanding Notify command and the response to the new NotificationRequest command; 
2) the endpoint is then taken out of the "notification state" without waiting for the response to 

the Notify command; 
3) a copy of the outstanding Notify command is kept until a response is received. If a time-out 

occurs, the Notify will be repeated, in a packet that will also carry a repetition of the 
response to the NotificationRequest: 
� if the packet carrying the response to the NotificationRequest is lost, the MGC will 

retransmit the NotificationRequest. The gateway will reply to this repetition by 
retransmitting in a single packet the outstanding Notify command and the response to 
the NotificationRequest � this datagram will be sent to the source of the 
NotificationRequest; 

� if the gateway has to transmit a new Notify before a response to the previous Notify is 
received, it constructs a packet that piggybacks a repetition of the old Notify, a 
repetition of the response to the last NotificationRequest, and the new Notify � this 
datagram will be sent to current "notified entity". 

After receiving a NotificationRequest command, the "requested events" list is replaced by the newly 
received parameters, and the list of "observed events" is reset to a null value. The subsequent 
behaviour is then conditioned by the value of the QuarantineHandling parameter. The parameter may 
specify that quarantined events are to be discarded, in which case all quarantined events are 
discarded. If the parameter specifies that the quarantined events should be processed, the gateway 
will start processing the list of quarantined events, using the newly received list of "requested 
events". When processing these events, the gateway may encounter an event, which triggers a Notify 
command to be sent. If that is the case, the gateway will immediately transmit a Notify command 
that will report all events that were accumulated in the list of "observed events" up until and 
including the triggering event, leaving the unprocessed events in the quarantine buffer. The endpoint 
then enters the "notification state" again. 

The above procedure applies to all forms of notification requests, regardless of whether they are part 
of a connection handling command or provided as a NotificationRequest command. Connection 
handling commands that do not include a notification request are neither affected by nor do they 
affect the above procedure. 

Figure A.2 illustrates the procedure specified above assuming all transactions execute successfully: 



 

34 ITU-T Rec. J.171 (02/2002) 

T0912540-02

New "RQNT" New "RQNT"

"NTFY" response

Processing quarantine buffer - need to send "NTFY"

Quarantine buffer discarded or processed without need to send "NTFY"

Need to 
send "NTFY"

Outstanding
"NTFY" + 

"RQNT" response?
Yes � 
Piggy-back
"NTFY"

Lockstep
state

Notification
state

Event to be
quarantined

Add to
quarantine

buffer

Process and send
old NTFY + 

RQNT response

Process and send
RQNT response

Normal
state

No � Send "NTFY"

 

Figure A.2/J.171 � Quorantino algorithm 

MGCs SHOULD provide the response to a successful Notify message and the new 
NotificationRequest in the same datagram using the piggybacking mechanism21.  

A.2.4.3.2 Explicit detection 
A key element of the state of several endpoints is the seizure state of a circuit. Although seizure-state 
changing events are persistent in TGCP, race conditions and state mismatch may still occur, for 
example when a circuit is seized while the MGC is in the process of requesting the gateway to look 
for seizure (the "glare" condition well known in telephony � this is however primarily an issue for 
two-way CAS trunks, which are not supported in this version of the Recommendation).  

To avoid this race condition, the gateway MUST check the condition of the endpoint before 
responding to a NotificationRequest. Specifically, it MUST return an error: 
1) if the gateway is requested to notify a "seizure"22 transition while the circuit is already 

seized (error code 401 � circuit seized); 
2) if the gateway is requested to notify an "unseize"23 condition while the circuit is not seized 

(error code 402 � circuit not seized). 

Additionally, individual signal definitions can specify that a signal will only operate under certain 
conditions, e.g. MF operator ringback may only be possible if the circuit is already seized. If such 
prerequisites exist for a given signal, the gateway MUST return the error specified in the signal 
definition if the prerequisite is not met. 

____________________ 
21  Vendors that choose not to follow this Recommendation should examine Media Gateway Controller failure 

scenarios carefully. 
22  For instance by requesting the "sup" event on an MF Terminating BLV/OI trunk with a call already in 

progress. 
23  For instance by requesting the "rel" event on an MF Operator Services trunk without any call in progress. 



 

  ITU-T Rec. J.171 (02/2002) 35 

It should be noted that the condition check is performed at the time the notification request is 
received, whereas the actual event that caused the current condition may have either been reported, 
or ignored earlier, or it may currently be quarantined.  

The other state variables of the gateway, such as the list of requested events or list of requested 
signals, are entirely replaced after each successful NotificationRequest, which prevents any long-
term discrepancy between the MGC and the gateway. 

When a NotificationRequest is unsuccessful, whether it is included in a connection-handling 
command or not, the gateway will simply continue as if the command had never been received. 
although an error is returned. As all other transactions, the NotificationRequest MUST operate as an 
atomic transaction; Thus, any changes initiated as a result of the command MUST be reverted.  

Another race condition can occur when a Notify command is issued shortly before the reception by 
the gateway of a NotificationRequest. The RequestIdentifier is used to correlate Notify commands 
with NotificationRequest commands thereby enabling the MGC to determine if the Notify command 
was generated before or after the gateway received the new NotificationRequest.  

A.2.4.3.3 Transactional semantics 
As the potential transaction completion times increases, e.g. due to external resource reservations, a 
careful definition of the transactional semantics becomes increasingly important. In particular the 
issue of race conditions, specifically as it relates to seizure-state, must be defined carefully.  

An important point to consider is that the seizure-state may in fact change between the time a 
transaction is initiated and the time it completes. More generally, we may say that the successful 
completion of a transaction depends on one or more preconditions where one or more of the pre-
conditions may change dynamically during the execution of the transaction.  

The simplest semantics for this is simply to require that all preconditions MUST be met from the 
time the transaction is initiated until the transaction completes. Thus, if any of the preconditions 
change during the execution of the transaction, the transaction MUST fail. Furthermore, as soon as 
the transaction is initiated, all new events are quarantined. When the outcome of the transaction is 
known, all quarantined events are then processed. 

As an example, consider a transaction that includes a request for the "seizure" event. When the 
transaction is initiated the circuit is "not seized" and this precondition is therefore met. If the seizure-
state changes to "seized" before the transaction completes, the precondition is no longer met, and the 
transaction therefore immediately fails. The "seizure" event will now be stored in the "quarantine" 
buffer which then gets processed. 

A.2.4.3.4 Ordering of commands, and treatment of disorder 
MGCP does not mandate that the underlying transport protocol guarantees the sequencing of 
commands sent to a gateway or an endpoint. This property tends to maximize the timeliness of 
actions, but it has a few drawbacks. For example: 
� Notify commands may be delayed and arrive to the MGC after the transmission of a new 

Notification Request command, 
� If a new NotificationRequest is transmitted before a response to a previous one is received, 

there is no guarantee that the previous one will not be received in second position. 

MGCs and gateways that want to guarantee consistent operation of the endpoints can use the rules 
specified: 
1) When a gateway handles several endpoints, commands pertaining to the different endpoints 

can be sent in parallel, for example following a model where each endpoint is controlled by 
its own process or its own thread. 



 

36 ITU-T Rec. J.171 (02/2002) 

2) When several connections are created on the same endpoint, commands pertaining to 
different connections can be sent in parallel. 

3) On a given connection, there should normally be only one outstanding command (create or 
modify). However, a DeleteConnection command can be issued at any time. In consequence, 
a gateway may sometimes receive a ModifyConnection command that applies to a 
previously deleted connection. Such commands MUST be ignored, and an error returned 
(error code 515 � incorrect connection-id).  

4) On a given endpoint, there should normally be only one outstanding NotificationRequest 
command at any time. The RequestId parameter is used to correlate Notify commands with 
the triggering NotificationRequest. 

5) In some cases, an implicitly or explicitly wild-carded DeleteConnection command that 
applies to a group of endpoints can step in front of a pending CreateConnection command. 
The MGC should individually delete all connections whose completion was pending at the 
time of the global DeleteConnection command. Also, new CreateConnection commands for 
endpoints named by the wild-carding should not be sent until a response to the wild-carded 
DeleteConnection command is received. 

6) When commands are embedded within each other, sequencing requirements for all 
commands MUST be adhered to. For example a CreateConnection command with a 
notification request in it must adhere to the sequencing requirements for CreateConnection 
and NotificationRequest at the same time.  

7) AuditEndpoint and AuditConnection is not subject to any sequencing. 
8) RestartInProgress must always be the first command sent by an endpoint as defined by the 

restart procedure (see A.2.4.3.5). Any other command or response must be delivered after 
this RestartInProgress command (piggybacking allowed). 

9) When multiple messages are piggybacked in a single packet, the messages are always 
processed in order. 

Those of the above rules that specify gateway behaviour MUST be adhered to by trunking gateways; 
however, the trunking gateway MUST NOT make any assumptions as to whether MGC's follow the 
rules or not. Consequently gateways MUST always respond to commands, regardless of whether 
they adhere to the above rules or not.  

A.2.4.3.5 Fighting the restart avalanche 
Let's suppose that a large number of gateways are powered on simultaneously. If they were to all 
initiate a RestartInProgress transaction, the MGC would very likely be swamped, leading to message 
losses and network congestion during the critical period of service restoration. In order to prevent 
such avalanches, the following behaviour MUST be followed: 
1) When a gateway is powered on, it initiates a restart timer to a random value, uniformly 

distributed between 0 and a provisionable maximum waiting delay (MWD), 
e.g. 360 seconds (see below). Care MUST be taken to avoid synchronicity of the random 
number generation between multiple gateways that would use the same algorithm. 

2) The gateway then waits for either the end of this timer, the reception of a command from the 
MGC, or the detection of a local circuit activity, such as for example an seizure transition on 
a trunking gateway. A pre-existing seizure condition results in the generation of a seizure 
event. 

3) When the restart timer elapses, when a command is received, or when an activity or 
pre-existing seizure condition is detected, the gateway initiates the restart procedure. 



 

  ITU-T Rec. J.171 (02/2002) 37 

The restart procedure simply states that the endpoint MUST send a RestartInProgress command to 
the MGC informing it about the restart and furthermore guarantee that the first message (command 
or response) that the MGC sees from this endpoint MUST be this RestartInProgress command. The 
endpoint MUST take full advantage of piggybacking in achieving this. For example, if a circuit 
seizure activity occurs prior to the restart timer expiring, a packet containing the RestartInProgress 
command, and with a piggybacked Notify command for the seizure event will be generated. In the 
case where the restart timer expires without any other activity, the gateway simply sends a 
RestartInProgress message. 

Should the gateway enter the "disconnected" state while carrying out the restart procedure, the 
disconnected procedure specified in A.2.4.3.6 MUST be carried out, except that a "restart" rather 
than "disconnected" message is sent during the procedure. 

It is expected that each endpoint in a gateway will have a provisionable MGC, i.e. "notified entity", 
to direct the initial restart message towards. When the collection of endpoints in a gateway is 
managed by more than one MGC, the above procedure must be performed for each collection of 
endpoints managed by a given MGC. The gateway MUST take full advantage of wild-carding to 
minimize the number of RestartInProgress messages generated when multiple endpoints in a 
gateway restart and the endpoints are managed by the same MGC. 

The value of MWD is a configuration parameter that depends on the type of the gateway. The 
following reasoning can be used to determine the value of this delay on a gateway. 

MGCs are typically dimensioned to handle the peak-hour traffic load, during which, on average, 
60% of the trunks will be busy serving calls whose average duration is typically 3 minutes. The 
processing of a call typically involves 5 to 6 transactions between each endpoint and the MGC. This 
simple calculation shows that the MGC is expected to handle 5 to 6 transactions for each endpoint, 
every 5 minutes on average, or, to put it otherwise, about one transaction per endpoint per minute. 
This suggests that a reasonable value of MWD would be 2 minutes per endpoint. When the value of 
MWD is set for the gateway, the value should be inversely proportional to the number of endpoints 
that are being restarted. For example MWD should be set to 5 seconds for a gateway that handles a 
T1 line, or to 180 milliseconds for a gateway that handles a T3 line. 

A.2.4.3.6 Disconnected endpoints 
In addition to the restart procedure, trunking gateways also have a "disconnected" procedure, which 
is initiated when an endpoint becomes "disconnected" as described in A.2.4.2. It should here be 
noted that endpoints can only become disconnected when they attempt to communicate with the 
MGC. The following steps are followed by an endpoint that becomes "disconnected": 
1) A "disconnected" timer is initialized to a random value, uniformly distributed between 0 and 

a provisionable "disconnected" initial waiting delay (Tdinit), e.g. 15 seconds. Care MUST be 
taken to avoid synchronicity of the random number generation between multiple gateways 
and endpoints that would use the same algorithm. 

2) The gateway then waits for either the end of this timer, the reception of a command from the 
MGC, or the detection of a local circuit activity for the endpoint, such as for example a 
seizure transition. 

3) When the "disconnected" timer elapses, when a command is received, or when a local circuit 
activity is detected, the gateway initiates the "disconnected" procedure for the endpoint. In 
the case of local user activity, a provisionable "disconnected" minimum waiting delay 
(Tdmin) must furthermore have elapsed since the gateway became disconnected or the last 
time it initiated the "disconnected" procedure in order to limit the rate at which the 
procedure is performed. 

4) If the "disconnected" procedure still left the endpoint disconnected, the "disconnected" timer 
is then doubled, subject to a provisionable "disconnected" maximum waiting delay (Tdmax), 
e.g. 600 seconds, and the gateway proceeds with step 2) again.  



 

38 ITU-T Rec. J.171 (02/2002) 

The "disconnected" procedure is similar to the restart procedure in that it now simply states that the 
endpoint MUST send a RestartInProgress command to the MGC informing it that the endpoint was 
disconnected and furthermore guarantee that the first message (command or response) that the MGC 
now sees from this endpoint MUST be this RestartInProgress command. The endpoint MUST take 
full advantage of piggybacking in achieving this. The MGC may then for instance decide to audit the 
endpoint, or simply clear all connections for the endpoint. 

This Recommendation purposely does not specify any additional behaviour for a disconnected 
endpoint. Vendors MAY for instance choose to provide silence, play reorder tone, or even enable a 
downloaded wav file to be played on affected endpoints.  

The default value for Tdinit is 15 seconds, the default value for Tdmin, is 15 seconds, and the default 
value for Tdmax is 600 seconds. 

A.2.5 Return codes and error codes 
All MGCP commands receive a response. The response carries a return code that indicates the status 
of the command. The return code is an integer number, for which three value ranges have been 
defined: 
� value 000 indicates a response acknowledgement24; 
� values between 100 and 199 indicate a provisional response; 
� values between 200 and 299 indicate a successful completion; 
� values between 400 and 499 indicate a transient error; 
� values between 500 and 599 indicate a permanent error. 

____________________ 
24  Response acknowledgement is used for provisional responses (see A.3.8). 



 

  ITU-T Rec. J.171 (02/2002) 39 

The values that have been defined are listed in Table A.2: 

Table A.2/J.171 � Return codes 

Code Meaning 

000 Response acknowledgement. 
100 The transaction is currently being executed. An actual completion message will follow later. 
200 The requested transaction was executed normally. 
250 The connection(s) was deleted. 
400 The transaction could not be executed, due to a transient error. 
401 The phone is already off-hook or circuit already seized 
402 The phone is already on-hook or circuit not seized.  
500 The transaction could not be executed because the endpoint is unknown. 
501 The transaction could not be executed because the endpoint is not ready.  
502 The transaction could not be executed because the endpoint does not have sufficient resources. 
510 The transaction could not be executed because a protocol error was detected. 
511 The transaction could not be executed because the command contained an unrecognized 

extension. 
512 The transaction could not be executed because the gateway is not equipped to detect one of the 

requested events. 
513 The transaction could not be executed because the gateway is not equipped to generate one of the 

requested signals. 
514 The transaction could not be executed because the gateway cannot send the specified 

announcement. 
515 The transaction refers to an incorrect connection-id (may have been already deleted). 
516 The transaction refers to an unknown call-id. 
517 Unsupported or invalid mode. 
518 Unsupported or unknown package. 
519 Endpoint does not have a digit map. 
520 The transaction could not be executed because the endpoint is "restarting". 
521 Endpoint redirected to another MGC. 
522 No such event or signal. 
523 Unknown action or illegal combination of actions. 
524 Internal inconsistency in LocalConnectionOptions. 
525 Unknown extension in LocalConnectionOptions. 
526 Insufficient bandwidth. 
527 Missing RemoteConnectionDescriptor. 
528 Incompatible protocol version. 
529 Internal hardware failure. 
532 Unsupported value(s) in LocalConnectionOptions. 
533 Response too big. 



 

40 ITU-T Rec. J.171 (02/2002) 

A.2.6 Reason codes 
Reason codes are used by the gateway when deleting a connection to inform the MGC about the 
reason for deleting the connection. The reason code is an integer number, and the values have been 
defined in Table A.3: 

Table A.3/J.171 � Reason codes 

Code Meaning 

900 Endpoint malfunctioning 
901 Endpoint taken out of service 
902 Loss of lower layer connectivity (e.g. downstream sync) 

A.3 Media Gateway Control Protocol 
The MGCP implements the media gateway control interface as a set of transactions. The transactions 
are composed of a command and a mandatory response. There are eight types of commands: 
� CreateConnection; 
� ModifyConnection; 
� DeleteConnection; 
� NotificationRequest; 
� Notify; 
� AuditEndpoint; 
� AuditConnection; 
� RestartInProgress. 

The first four commands are sent by the MGC to a gateway. The Notify command is sent by the 
gateway to the MGC. The gateway can also send a DeleteConnection as defined in A.2.3.6. The 
MGC can send either of the Audit commands to the gateway and, finally, the gateway can send a 
RestartInProgress command to the MGC. 

A.3.1 General description 
All commands are composed of a Command header, which for some commands may be followed by 
a session description. 

All responses are composed of a Response header, which for some commands may be followed by a 
session description. 

Headers and session descriptions are encoded as a set of text lines, separated by a carriage return and 
line feed character (or, optionally, a single line-feed character). The headers are separated from the 
session description by an empty line. 

MGCP uses a transaction identifier with a value between 1 and 999999999 to correlate commands 
and responses. The transaction identifier is encoded as a component of the command header and is 
repeated as a component of the response header. 

A.3.2 Command header 
The command header is composed of: 
� a command line identifying the requested action or verb, the transaction identifier, the 

endpoint towards which the action is requested, and the MGCP protocol version; 
� a set of parameter lines composed of a parameter name followed by a parameter value. 



 

  ITU-T Rec. J.171 (02/2002) 41 

Unless otherwise noted or dictated by other referenced standards, each component in the command 
header is case insensitive. This goes for verbs as well as parameters and values, and all comparisons 
MUST treat upper and lower case as well as combinations of these as being equal.  

A.3.2.1 Command line 
The command line is composed of: 
� the name of the requested verb; 
� the identification of the transaction; 
� the name of the endpoint(s) that should execute the command (in notifications or restarts, the 

name of the endpoint(s) that is issuing the command); 
� the protocol version. 

These four items are encoded as strings of printable ASCII characters separated by white spaces, i.e. 
the ASCII space (0x20) or tabulation (0x09) characters. Trunking gateways SHOULD use exactly 
one ASCII space separator; however, they MUST be able to parse messages with additional white 
space characters. 

A.3.2.1.1 Requested verb coding 
Requested verbs are encoded as four letter upper- and/or lower-case ASCII codes (comparisons 
MUST be case insensitive) as defined in Table A.4: 

Table A.4/J.171 � Request verb codes 

Verb Code 

CreateConnection CRCX 
ModifyConnection MDCX 
DeleteConnection DLCX 
NotificationRequest RQNT 
Notify NTFY 
AuditEndpoint AUEP 
AuditConnection AUCX 
RestartInProgress RSIP 

New verbs may be defined in future versions of the protocol. It may be necessary, for experimental 
purposes, to use new verbs before they are sanctioned in a published version of this protocol. 
Experimental verbs should be identified by a four-letter code starting with the letter X (e.g. XPER).  

A gateway that receives a command with an experimental verb it does not support MUST return an 
error (error code 511 � unrecognized extension). 

A.3.2.1.2 Transaction identifiers 
Transaction identifiers are used to correlate commands and responses.  

A trunking gateway supports two separate transaction identifier name spaces:  
� a transaction identifier name space for sending transactions; and  
� a transaction identifier name space for receiving transactions. 

At a minimum, transaction identifiers for commands sent to a given trunking gateway MUST be 
unique for the maximum lifetime of the transactions within the collection of MGCs that control that 
trunking gateway (see A.3.5). Thus, regardless of the sending MGC, trunking gateways can always 



 

42 ITU-T Rec. J.171 (02/2002) 

detect duplicate transactions by simply examining the transaction identifier. The coordination of 
these transaction identifiers between MGCs is however outside the scope of this Recommendation. 

Transaction identifiers for all commands sent from a given trunking gateway MUST be unique for 
the maximum lifetime of the transactions (see A.3.5) regardless of which MGC the command is sent 
to. Thus, an MGC can always detect a duplicate transaction from a trunking gateway by the 
combination of the domain-name of the endpoint and the transaction identifier. The gateway in turn 
can always detect a duplicate response acknowledgement by looking at the transaction id(s). 

The transaction identifier is encoded as a string of up to nine decimal digits. In the command lines, it 
immediately follows the coding of the verb. 

Transaction identifiers have values between 1 and 999999999. An MGCP entity MUST NOT reuse a 
transaction identifier more quickly than three minutes after completion of the previous command in 
which the identifier was used. 

A.3.2.1.3 Endpoint, Media Gateway Controller and NotifiedEntity name coding 
The endpoint names and MGC names are encoded as e-mail addresses, as defined in IETF RFC 821. 
In these addresses, the domain name identifies the system where the endpoint is attached, while the 
left side identifies a specific endpoint on that system. Both components MUST be case insensitive. 

Examples of such names are: 
 

ds/ds1-3/2@TGCP2.whatever.net  Second circuit on the third DS1 in the trunking gateway TGCP2 in the 
"whatever" network. 

MGC@mgc.whatever.net  Media Gateway Controller for the "whatever" network. 

The name of notified entities is expressed with the same syntax, with the possible addition of a port 
number, as in: 
 
MGC@mgc.whatever.net:5234 

In case the port number is omitted, the default MGCP port (2427) will be used. Additional detail on 
endpoint names can be found in A.2.1.1. 

A.3.2.1.4 Protocol version coding 
The protocol version is coded as the keyword "MGCP" followed by a white space and the version 
number, which again is followed by the profile name "TGCP" and a profile version number. The 
version numbers are composed of a major version number, a dot, and a minor version number. The 
major and minor version numbers are coded as decimal numbers. The profile version number 
defined by this Recommendation is 1.0. 

The protocol version for this Recommendation MUST be encoded as: 
 
MGCP 1.0 TGCP 1.0 

The "TGCP 1.0" portion signals that this is the TGCP 1.0 profile of MGCP 1.0. 

An entity that receives a command with a protocol version it does not support, MUST respond with 
an error (error code 528 � Incompatible protocol version). 

A.3.2.2 Parameter lines 
Parameter lines are composed of a parameter name, which in most cases is composed of a single 
upper-case character, followed by a colon, a white space, and the parameter value. Parameter names 
and values are however still case insensitive. The parameters that can be present in commands are 
defined in Table A.5: 



 

  ITU-T Rec. J.171 (02/2002) 43 

Table A.5/J.171 � Command parameters 

Parameter name Code Parameter value 

ResponseAck25 K See description. 
CallId  C Hexadecimal string, at most 32 characters. 
ConnectionId  I Hexadecimal string, at most 32 characters. 
NotifiedEntity  N An identifier, in IETF RFC 821 format, composed of an arbitrary 

string and of the domain name of the requesting entity, possibly 
completed by a port number, as in: 
Call-agent@ca.whatever.net:5234 

RequestIdentifier  X See description. 
LocalConnectionOptions L See description. 
ConnectionMode  M See description. 
RequestedEvents  R See description.  
SignalRequests  S See description. 
ObservedEvents  O See description. 
ConnectionParameters  P See description.  
ReasonCode  E See description. 
SpecificEndPointId  Z An identifier, in IETF RFC 821 format, composed of an arbitrary 

string, optionally followed by an "@" followed by the domain 
name of the trunking gateway to which this endpoint is attached. 

MaxEndPointIds ZM Decimal string, at most 16 characters. 
NumEndPoints ZN Decimal string, at most 16 characters. 
RequestedInfo F See description. 
QuarantineHandling Q See description. 
DetectEvents T See description. 
EventStates ES See description. 
RestartMethod RM See description. 
RestartDelay RD A number of seconds encoded as a decimal number. 
Capabilities A See description. 
VersionSupported VS See description. 

____________________ 
25  The ResponseAck parameter was not shown in A.2.3 as transaction identifiers are not visible in our 

example API. Implementers may choose a different approach. 



 

44 ITU-T Rec. J.171 (02/2002) 

The parameters are not necessarily present in all commands. Table A.6  provides the association 
between parameters and commands. The letter M stands for mandatory, O for optional, and F for 
forbidden: 

Table A.6/J.171 � Parameter association with command request 

Parameter name CRCX MDCX DLCX RQNT NTFY AUEP AUCX RSIP

ResponseAck25 O O O O O O O O 

CallId  M M O F F F F F 
ConnectionId  F M O F F F M F 
RequestIdentifier  O O O M M F F F 
LocalConnectionOptions M O F F F F F F 
ConnectionMode  M O F F F F F F 
RequestedEvents  Oa) O a) O a) O a) F F F F 
SignalRequests  O a) O a) O a) O a) F F F F 
NotifiedEntity  O O O O O F F F 
ReasonCode F F O F F F F F 
ObservedEvents F F F F M F F F 
Connection parameters F F O F F F F F 
SpecificEndpointId F F F F F O F F 
MaxEndPointIds F F F F F O F F 
NumEndPoints F F F F F F F F 
RequestedInfo F F F F F O O F 
QuarantineHandling O O O O F F F F 
DetectEvents O O O O F F F F 
EventStates F F F F F F F F 
RestartMethod F F F F F F F M 
RestartDelay F F F F F F F O 
Capabilities F F F F F F F F 
VersionSupported F F F F F F F F 
RemoteConnectionDescriptor O O F F F F F F 
a) The RequestedEvents and SignalRequests parameters are optional in the NotificationRequest. If these 

parameters are omitted, the corresponding lists will be considered empty. For the connection handling 
commands, this applies as well when a RequestIdentifier is included. 

Trunking gateways and MGCs SHOULD always provide mandatory parameters before optional 
ones; however, trunking gateways MUST NOT fail if this Recommendation is not followed. 

If implementers need to experiment with new parameters, for example when developing a new 
MGCP application, they should identify these parameters by names that begin with the string "X-" or 
"X+", such as for example: 
 
X-FlowerOfTheDay: Daisy 

Parameter names that start with "X+" are mandatory parameter extensions. A gateway that receives a 
mandatory parameter extension that it cannot understand MUST respond with an error (error 
code 511 � unrecognized extension).  



 

  ITU-T Rec. J.171 (02/2002) 45 

Parameter names that start with "X-" are non-critical parameter extensions. A gateway that receives 
a non-critical parameter extension that it cannot understand can safely ignore that parameter. 

It should be noted that experimental verbs are of the form XABC, whereas experimental parameters 
are of the form X-ABC. 

If a parameter line is received with a forbidden parameter, or any other formatting error, the 
receiving entity should respond with the most specific error code for the error in question. The least 
specific error code is 510 � protocol error. Commentary text can always be provided.  

A.3.2.2.1 Response Acknowledgement  
The response acknowledgement parameter is used to support the three-way handshake described in 
A.3.7. It contains a comma-separated list of "confirmed transaction-id ranges". 
NOTE � The ResponseAck parameter was not shown in A.2.3 as transaction identifiers are not visible in our 
example API. Implementers may choose a different approach. 

Each "confirmed transaction-id range" is composed of either one decimal number, when the range 
includes exactly one transaction, or two decimal numbers separated by a single hyphen, describing 
the lower and higher transaction identifiers included in the range. 

An example of a response acknowledgement is: 
 
K: 6234-6255, 6257, 19030-19044 

A.3.2.2.2 RequestIdentifier 
The request identifier correlates a Notify command with the NotificationRequest that triggered it. A 
RequestIdentifier is a hexadecimal string, at most 32 characters. The string "0" is reserved for 
reporting of persistent events in the case where no NotificationRequest has been received yet (see 
A.2.3.2). 

A.3.2.2.3 Local Connection Options 
The local connection options describe the operational parameters that the MGCs instructs the 
gateway to use for a connection. These parameters are: 
� The packetization period in milliseconds, encoded as the keyword "p" followed by a colon 

and a decimal number.  
� The literal name of the compression algorithm, encoded as the keyword "a" followed by a 

colon and a character string.  
� The echo-cancellation parameter, encoded as the keyword "e" followed by a colon and the 

value "on" or "off". 
� The type of service parameter, encoded as the keyword "t" followed by a colon and the value 

encoded as two hexadecimal digits.  
� The silence suppression parameter, encoded as the keyword "s" followed by a colon and the 

value "on" or "off". 

The LocalConnectionOptions parameters used for Security are encoded as follows: 
� The secret is encoded as the keyword "sc-st" followed by a colon, a method, a colon, and the 

actual secret. The method is either the string "clear" if the secret is encoded in clear-text, or 
the string "base64" if the secret is encoded using base64. 

� The RTP ciphersuite is encoded as the keyword "sc-rtp" followed by a colon and an RTP 
ciphersuite string as defined below. A list of values may be specified in which case the 
values will be separated by a semicolon.  



 

46 ITU-T Rec. J.171 (02/2002) 

� The RTCP ciphersuite is encoded as the keyword "sc-rtcp" followed by a colon and an 
RTCP ciphersuite string as defined below. A list of values may be specified in which case 
the values will be separated by a semicolon. 

The RTP and RTCP ciphersuite strings follow the grammar: 

ciphersuite =    [AuthenticationAlgorithm] "/" [EncryptionAlgorithm] 

AuthenticationAlgorithm =  1*( ALPHA / DIGIT / "-" / "_" ) 

EncryptionAlgorithm = 1*( ALPHA / DIGIT | "-" / "_" ) 

where ALPHA, and DIGIT are defined in IETF RFC 2234. White spaces are not allowed within a 
ciphersuite. The following example illustrates the use of ciphersuite: 
 
62/51 

The actual list of IPCablecom supported ciphersuites is provided in ITU-T Rec. J.170. 

When several parameters are present, the values are separated by a comma. It is considered an error 
to include a parameter without a value (error code 524 � LocalConnectionOptions inconsistency). 

Examples of local connection options are: 
 
L: p:10, a:PCMU 
L: p:10, a:PCMU, e:off, t:20, s:on 
L: p:30, a:G729A, e:on, t:A0, s:off 

The type of service hex value "20" implies an IP precedence of 1, and a type of service hex value of 
"A0" implies an IP precedence of 5. 

This set of attributes may be extended by extension attributes. Extension attributes are composed of 
an attribute name, followed by a colon, and a semicolon-separated list of attribute values. The 
attribute name MUST start with the two characters "x+", for a mandatory extension, or "x-", for a 
non-mandatory extension. If a gateway receives a mandatory extension attribute that it does not 
recognize, it MUST reject the command with an error (error code 525 � Unknown extension in 
LocalConnectionOptions). 

The LocalConnectionOptions parameters used for Electronic Surveillance are: 
� The Call Content connection Identifier encoded as the keyword "es-cci" followed by a colon 

and a string of up to 8 hex characters corresponding to a 32-bit identifier for the Call 
Content connection Identifier.  

� The Call Content Destination encoded as the keyword "es-ccd" followed by a colon and an 
IP-address encoded similarly to an IP-address for the domain name portion of an endpoint 
name. The IP-address is followed by a colon and up to 5 decimal characters for a UDP port 
number to use. 

A.3.2.2.4 Capabilities 
Capabilities inform the MGC about its capabilities when audited. The encoding of capabilities is 
based on the Local Connection Options encoding for the parameters that are common to both. In 
addition, capabilities can also contain a list of supported packages, and a list of supported modes. 

The parameters used are: 
� the packetization period in milliseconds, encoded as the keyword "p" followed by a colon 

and a decimal number. A range may be specified as two decimal numbers separated by a 
hyphen. 

� the literal name of the compression algorithm, encoded as the keyword "a" followed by a 
colon and a character string. A list of values may be specified in which case the values will 
be separated by a semicolon. 



 

  ITU-T Rec. J.171 (02/2002) 47 

� the bandwidth in kilobits per second (1000 bits per second), encoded as the keyword "b" 
followed by a colon and a decimal number. A range may be specified as two decimal 
numbers separated by a hyphen. 

� the echo-cancellation parameter, encoded as the keyword "e" followed by a colon and the 
value "on" if echo cancellation is supported; "off" otherwise. 

� the type of service parameter, encoded as the keyword "t" followed by a colon and the value 
"0" if type of service is not supported, all other values indicated support for type of service.  

� the silence suppression parameter, encoded as the keyword "s" followed by a colon and the 
value "on" if silence suppression is supported; "off" otherwise. 

� the event packages supported by this endpoint encoded as the keyword "v" followed by a 
colon and then a semicolon-separated list of package names supported. The first value 
specified will be the default package for the endpoint. 

� the connection modes supported by this endpoint encoded as the keyword "m" followed by a 
colon and a semicolon-separated list of connection modes supported as defined in A.3.2.2.7. 

� the keyword "sc-st" if IPCablecom Security is supported. In that case, the following 
keywords indicate the ciphersuites supported: 
− the keyword "sc-rtp" followed by a colon and a semicolon-separated list of RTP 

AuthenticationAlgorithms, a slash, and a semicolon-separated list of 
EncryptionAlgorithms supported; 

− the keyword "sc-rtcp" followed by a colon and a semicolon-separated list of RTCP 
AuthenticationAlgorithms, a slash, and a semicolon-separated list of 
EncryptionAlgorithms supported. 

When several parameters are present, the values are separated by a comma.  

Examples of capabilities are: 
 
A: a:PCMU;G729A, p:10-100, e:on, s:off, v:IT, 
   m:sendonly;recvonly;sendrecv;inactive 
A: a:G729A; p:30-90, e:on, s:on, v:MT, 
   m:sendonly;recvonly;sendrecv;inactive,  
   sc-st, sc-rtp: 00/51;03 

Note that the codecs and security algorithms are merely examples � separate IPCablecom 
Recommendations detail the actual codecs and algorithms supported, as well as the encoding used 
(see ITU-T Recs. J.170, J.162, and J.161). 
� The keyword "es-cci" if IPCablecom Electronic Surveillance is supported. 

A.3.2.2.5 Connection parameters 
Connection parameters are encoded as a string of type and value pairs, where the type is a two-letter 
identifier of the parameter, and the value a decimal integer. Types are separated from values by an 
"=" sign. Parameters are separated from each other by a comma. 



 

48 ITU-T Rec. J.171 (02/2002) 

The connection parameter types are specified in Table A.7: 

Table A.7/J.171 � Connection parameter types 

Connection 
parameter name 

Code Connection parameter value 

Packets sent PS The number of packets that were sent on the connection 
Octets sent OS The number of octets that were sent on the connection 
Packets received PR The number of packets that were received on the connection 
Octets received OR The number of octets that were received on the connection 
Packets lost PL The number of packets that were not received on the connection, as 

deduced from gaps in the sequence number 
Jitter JI The average inter-packet arrival jitter, in milliseconds, expressed as an 

integer number 
Latency LA Average latency, in milliseconds, expressed as an integer number 

Extension connection parameters names are composed of the string "X-" followed by a two-letter 
extension parameter name. MGCs that receive unrecognized extensions MUST silently ignore these 
extensions.  

An example of a connection parameter encoding is: 
 
P: PS=1245, OS=62345, PR=0, OR=0, PL=0, JI=0, LA=48 

A.3.2.2.6 Reason codes 
Reason codes are three-digit numeric values. The reason code is optionally followed by a white 
space and commentary, e.g.: 
 
900 Endpoint malfunctioning 

A list of reason codes can be found in A.2.6. 

A.3.2.2.7 Connection mode 
The connection mode describes the connection's operation mode. The possible values are indicated 
in Table A.8: 

Table A.8/J.171 � Connection mode values 

Mode Meaning 

M: sendonly The gateway should only send packets 
M: recvonly The gateway should only receive packets 
M: sendrecv The gateway should send and receive packets 
M: inactive The gateway should neither send nor receive packets 

M: loopback The gateway should place the endpoint in Loopback mode 
M: conttest The gateway should place the endpoint in Continuity Test mode 

M: netwloop The gateway should place the endpoint in Network Loopback mode 
M: netwtest The gateway should place the endpoint in Network Continuity Test mode 



 

  ITU-T Rec. J.171 (02/2002) 49 

A.3.2.2.8 Event/signal name coding 
Event/signal names are composed of an optional package name, separated by a slash (/) from the 
name of the actual event. The event name can optionally be followed by an "at" sign (@) and the 
identifier of a connection on which the event should be observed. Event names are used in the 
RequestedEvents, SignalRequests, DetectEvents, ObservedEvents, and EventStates parameters. Each 
event is identified by an event code. These ASCII encodings are not case sensitive. Values such as 
"co", "Co", "CO" or "cO" should be considered equal. 

The following are valid examples of event names: 
 
IT/co1 Originating continuity test in the ISUP trunk package 
co1 Originating continuity test in the ISUP trunk package, assuming that the ISUP 

trunk package is the default package for the endpoint 
IT/rt@0A3F58 Ringback on connection "0A3F58" 

In addition, the wild-card notation of events can be used, instead of individual names, in the 
RequestedEvents and DetectEvents (but not SignalRequests ObservedEvents, or EventStates): 
 
IT/all All events in the ISUP trunk package. 

Finally, the star sign can be used to denote "all connections", and the dollar sign can be used to 
denote the "current" connection. The following are valid examples of such notations: 
 
IT/ma@* The RTP media start event on all connections for the endpoint 
IT/rt@$ Ringback on the current connection 

An initial set of event packages for trunking gateways can be found in Annex A.A. 

A.3.2.2.9 RequestedEvents 
The RequestedEvents parameter provides the list of events that have been requested. The currently 
defined event codes are described in Annex A.A. Each event can be qualified by a requested action, 
or by a list of actions. Not all actions can be combined � please refer to A.2.3.1 for valid 
combinations. The actions, when specified, are encoded as a list of keywords enclosed in parentheses 
and separated by commas. The codes for the various actions are indicated in Table A.9: 

Table A.9/J.171 � Action codes 

Action Code 

Notify immediately  N 
Accumulate A 
Ignore  I 
Keep signal(s) active K 
Embedded NotificationRequest  E 
Embedded ModifyConnection C 



 

50 ITU-T Rec. J.171 (02/2002) 

When no action is specified, the default action is to notify the event. This means that, for example, 
"ft" and "ft(N)" are equivalent. Events that are not listed are discarded, except for persistent events. 
The requested events list is encoded on a single line, with event/action groups separated by commas. 
An example of a RequestedEvents encodings is: 

R: oc(N), of(N) Notify operation complete, notify operation failure. 

The embedded NotificationRequest follows the format: 
 
E ( R( <RequestedEvents>), S( <SignalRequests>) ) 

with each of R, and S being optional and possibly supplied in another order.  

The embedded ModifyConnection action follows the format: 
 
C(M(<ConnectionMode1>( <ConnectionID1> )) , ... , 
 M(<ConnectionModen>(ConnectionIDn ))) 

The following example illustrates the use of embedded ModifyConnection:  
 
R: ma@23B34D(A, C(M(sendrecv($)))), oc(N), of(N) 

On media start on connection "23B34D", change the connection mode of the "current connection" to 
"send receive". Notify events on "operation complete" and "operation failure". 

A.3.2.2.10  SignalRequests 
The SignalRequests parameter provides the name of the signals that have been requested. The 
currently defined signals can be found in Annex A.A. A given signal can only appear once in the list, 
and all signals will, by definition, be applied at the same time.  

Some signals can be qualified by signal parameters. When a signal is qualified by multiple signal 
parameters, the signal parameters are separated by commas. Each signal parameter MUST follow the 
format specified below (white spaces allowed): 

signal-parameter =  signal-parameter-value / 

   signal-parameter-name "="signal-parameter-value / 

   signal-parameter-name "(" signal-parameter-list ")" 

signal-parameter-list =  signal-parameter-value 0*( "," signal-parameter-value ) 

where signal-parameter-value may be either a string or a quoted string, i.e. a string surrounded by 
two double quotes. Two consecutive double quotes in a quoted string will escape a double quote 
within that quoted string. For example, "ab""c" will produce the string ab"c. 

Each signal has one of the following signal-types associated with it (see A.2.3.1): 
� On/Off (OO); 
� Time-out (TO); 
� Brief (BR). 

On/Off signals can be parameterized with a "+" to turn the signal on, or a "-" to turn the signal off. If 
an on/off signal is not parameterized, the signal is turned on. Both of the following will turn the 
"mysignal" signal on: 
 
mysignal(+), mysignal 

Time-out signals can be parameterized with the signal parameter "TO" and a time-out value that 
overrides the default time-out value. If a time-out signal is not parameterized with a time-out value 
the default time-out value will be used. Both of the following will apply the ringback tone signal for 
6 seconds: 



 

  ITU-T Rec. J.171 (02/2002) 51 

 
rt(to=6000) 
rt(to(6000)) 

Individual signals may define additional signal parameters. 

The signal parameters will be enclosed within parentheses, as in the following hypothetical example: 
 
S: display(10/14/17/26, "555 1212", CableLabs) 

When several signals are requested, their codes are separated by a comma, as in: 
 
S: signal1, signal2 

A.3.2.2.11  ObservedEvents 
The observed events parameters provide the list of events that have been observed. The event codes 
are the same as those used in the NotificationRequest.When an event is detected on a connection, the 
observed event will identify the connection the event was detected on using the "@<connection>" 
syntax. Examples of observed events are: 
 
O: ma@A43B81  
O: ft 
O: IT/ft 
O: IT/ft, IT/mt  

A.3.2.2.12  RequestedInfo 
The RequestedInfo parameter contains a comma-separated list of parameter codes, as defined in the 
"Parameter lines" section � A.2.3.8 lists the parameters that can be audited. The following values in 
Table A.10 are supported as well: 

Table A.10/J.171 � RequestedInfo values 

RequestedInfo Parameter Code 

LocalConnectionDescriptor LC 
RemoteConnectionDescriptor RC 

For example, if one wants to audit the value of the NotifiedEntity, RequestIdentifier, 
RequestedEvents, SignalRequests, DetectEvents, EventStates, LocalConnectionDescriptor, and 
RemoteConnectionDescriptor parameters, the value of the RequestedInfo parameter will be: 
 
F: N, X, R, S, T, ES, LC, RC 

The capabilities request, for the AuditEndPoint command, is encoded by the parameter code "A", as 
in: 
 
F: A 

A.3.2.2.13  QuarantineHandling 
The QuarantineHandling parameter contains the keyword "process" or "discard" to indicate the 
treatment of quarantined events, e.g.: 
 
Q: process 

A.3.2.2.14  DetectEvents 
The DetectEvents parameter is encoded as a comma-separated list of events, such as for example: 
 
T: ft, mt 

It should be noted that no actions can be associated with the events. 



 

52 ITU-T Rec. J.171 (02/2002) 

A.3.2.2.15  EventStates 
The EventStates parameter is encoded as a comma-separated list of events, such as for example: 
 
ES: MO/rlc 

It should be noted, that no actions can be associated with the events. 

A.3.2.2.16  RestartMethod 
The RestartMethod parameter is encoded as one of the keywords "graceful", "forced", "restart", or 
"disconnected", as for example: 
 
RM: restart  

A.3.2.2.17  VersionSupported 
The VersionSupported parameter is encoded as a comma-separated list of versions supported, such 
as for example: 
 
VS: MGCP 1.0, MGCP 1.0 TGCP 1.0 

A.3.3 Response header formats 
The response header is composed of a response line optionally followed by headers that encode the 
response parameters.  

The response line starts with the response code, which is a three-digit numeric value. The code is 
followed by a white space, the transaction identifier, and optional commentary preceded by a white 
space, e.g.: 
 
200 1201 OK 

Table A.11 summarizes the response parameters whose presence is mandatory or optional in a 
response header, as a function of the command that triggered the response assuming the command 
succeeded. The reader should still study the individual command definitions though as this table only 
provides summary information. The letter M stands for mandatory, O for optional and F for 
forbidden. 



 

  ITU-T Rec. J.171 (02/2002) 53 

Table A.11/J.171 � Parameter association with command response 

Parameter name CRCX MDCX DLCX RQNT NTFY AUEP AUCX RSIP 

ResponseAck26 Oa) O a) O a) O a) O a) O a) O a) O a) 
CallId F F F F F F O F 
ConnectionId M F F F F O F F 
RequestIdentifier F F F F F O F F 
LocalConnectionOptions F F F F F O O F 
ConnectionMode F F F F F F O F 
RequestedEvents F F F F F O F F 
SignalRequests F F F F F O F F 
NotifiedEntity F F F F F O O O 
ReasonCode F F F F F F F F 
ObservedEvents F F F F F O F F 
ConnectionParameters F F O F F F O F 
Specific Endpoint ID O F F F F O F F 
MaxEndPointIds F F F F F F F F 
NumEndPoints F F F F F O F F 
RequestedInfo F F F F F F F F 
QuarantineHandling F F F F F F F F 
DetectEvents F F F F F O F F 
EventStates F F F F F O F F 
RestartMethod F F F F F F F F 
RestartDelay F F F F F F F F 
Capabilities F F F F F O F F 
VersionSupported F F F F F O F O 
LocalConnection 
Descriptor 

M O F F F F O F 

RemoteConnection 
Descriptor 

F F F F F F O F 

a) The ResponseAck parameter MUST NOT be used with any other responses than a final response 
issued after a provisional response for the transaction in question. In that case, the presence of the 
ResponseAck parameter MUST trigger a Response Acknowledgement message � any ResponseAck 
values provided will be ignored. 

The response parameters are described for each of the commands in the following. 

A.3.3.1 CreateConnection 
In the case of a CreateConnection message, the response line is followed by a Connection-Id 
parameter with a successful response (code 200). A LocalConnectionDescriptor is furthermore 
transmitted with a positive response. The LocalConnectionDescriptor is encoded as a "session 
description", as defined in A.3.4. It is separated from the response header by an empty line, e.g.: 
 

____________________ 
26  The ResponseAck parameter was not shown in A.2.3 as transaction identifiers are not visible in our 

example API. Implementers may choose a different approach. 



 

54 ITU-T Rec. J.171 (02/2002) 

200 1204 OK 
I: FDE234C8 
 
v=0 
o=- 25678 753849 IN IP4 128.96.41.1 
s=- 
c=IN IP4 128.96.41.1 
t=0 0 
m=audio 3456 RTP/AVP 96 
a=rtpmap:96 G726-32/8000 

When a provisional response has been issued previously, the final response may furthermore contain 
the Response Acknowledgement parameter, as in: 
 
200 1204 OK 
K: 
I: FDE234C8 
 
v=0 
o=- 25678 753849 IN IP4 128.96.41.1 
s=- 
c=IN IP4 128.96.41.1 
t=0 0 
m=audio 3456 RTP/AVP 96 
a=rtpmap:96 G726-32/8000 

The final response is acknowledged by a Response Acknowledgement: 
 
000 1204 

A.3.3.2 ModifyConnection 
In the case of a successful ModifyConnection message, the response line is followed by a 
LocalConnectionDescriptor, if the modification resulted in a modification of the session parameters 
(e.g. changing only the mode of a connection does not alter the session parameters). The 
LocalConnectionDescriptor is encoded as a "session description", as defined in A.3.4. It is separated 
from the response header by an empty line. 
 
200 1207 OK 
  
v=0 
o=- 25678 753849 IN IP4 128.96.41.1 
s=- 
c=IN IP4 128.96.41.1 
t=0 0 
m=audio 3456 RTP/AVP 0 

When a provisional response has been issued previously, the final response may furthermore contain 
the Response Acknowledgement parameter as in: 
 
526 1207 No bandwidth 
K:  

The final response is acknowledged by a Response Acknowledgement: 
 
000 1207 OK 

A.3.3.3 DeleteConnection 
Depending on the variant of the DeleteConnection message, the response line may be followed by a 
Connection Parameters parameter line, as defined in A.3.2.2.5. 
 
250 1210 OK 
P: PS=1245, OS=62345, PR=780, OR=45123, PL=10, JI=27, LA=48 

A.3.3.4 NotificationRequest 
A NotificationRequest response does not include any additional response parameters. 



 

  ITU-T Rec. J.171 (02/2002) 55 

A.3.3.5 Notify 
A Notify response does not include any additional response parameters.  

A.3.3.6 AuditEndpoint 
In the case of an AuditEndPoint, the response line may be followed by information for each of the 
parameters requested � each parameter will appear on a separate line. Parameters for which no value 
currently exists will still be provided. Each local endpoint name "expanded" by a wild-card character 
will appear on a separate line using the "SpecificEndPointId" parameter code, e.g.: 
 
200 1200 OK 
Z: ds/ds1-1/1@tgw.whatever.net 
Z: ds/ds1-1/2@tgw.whatever.net 
ZN: 24 
 

or: 
 
200 1200 OK 
A: a:PCMU;G728, p:10-100, e:on, s:off, t:1, v:IT,      
 m:sendonly;recvonly;sendrecv;inactive 
A: a:G729A; p:30-90, e:on, s:on, t:1, v:MT,      
 m:sendonly;recvonly;sendrecv;inactive 

A.3.3.7 AuditConnection  
In the case of an AuditConnection, the response may be followed by information for each of the 
parameters requested. Parameters for which no value currently exists will still be provided. 
Connection descriptors will always appear last and each will be preceded by an empty line, as for 
example:  
 
200 1203 OK 
C: A3C47F21456789F0 
N: [128.96.41.12] 
L: p:10, a:PCMU;G728 
M: sendrecv 
P: PS=622, OS=31172, PR=390, OR=22561, PL=5, JI=29, LA=50 
 
v=0 
o=- 4723891 7428910 IN IP4 128.96.63.25  
s=- 
c=IN IP4 128.96.63.25 
t=0 0 
m=audio 1296 RTP/AVP 96 
a=rtpmap:96 G726-32/8000 

If both a local and a remote connection descriptor are provided, the local connection descriptor will 
be the first of the two. If a connection descriptor is requested, but it does not exist for the connection 
audited, that connection descriptor will appear with the SDP protocol version field only. 

A.3.3.8 RestartInProgress 
The response to a RestartInProgress may include the name of another MGC to contact, for instance 
when the MGC redirects the endpoint to another MGC as in: 
 
521 1204 Redirect 
N: MGC-1@whatever.net 

A.3.4 Session description encoding 
The session description is encoded in conformance with the session description protocol (SDP); 
however, trunking gateways may make certain simplifying assumptions about the session description 
as specified in the following. It should be noted that session descriptions are case sensitive per IETF 
RFC 2327. 



 

56 ITU-T Rec. J.171 (02/2002) 

SDP usage depends on the type of session, as specified in the "media" parameter. Currently, the 
TGCP Recommendation only support media of type "audio". 

A.3.4.1 SDP audio service use 
In a gateway devoted to voice-grade communications, we only have to describe sessions that use 
exactly one media, audio. The parameters of SDP that are relevant for the voice-grade audio 
application are specified below. Trunking gateway MUST support session descriptions that conform 
to these rules and in the following order: 
1) the SDP profile presented below; 
2) IETF RFC 2327 (SDP: Session Description Protocol). 
The SDP profile provided describes the use of the session description protocol in TGCP. The general 
description and explanation of the individual parameters can be found in IETF RFC 2327; however, 
below we detail what values TGCP endpoints need to provide for these fields (send) and what TGCP 
endpoints should do with values supplied or not supplied for these fields (receive). 

Any parameter not specified below SHOULD NOT be provided by any TGCP endpoint, and if such 
a parameter is received, it SHOULD be ignored.  

A.3.4.1.1 Protocol Version (v=) 
 
v=<version> 
v=0 

Send:  MUST be provided in accordance with IETF RFC 2327 (i.e. v=0) 

Receive:  MUST be provided in accordance with IETF RFC 2327. 

A.3.4.1.2 Origin (o=) 
The origin field consists (o=) of 6 sub-fields in IETF RFC 2327: 
 
o=<username> <session-ID> <version> <network-type> <address-type> <address> 
o=–      2987933615  2987933615 IN   IP4  A3C47F2146789F0 

Username 

Send:  Hyphen MUST be used as username when privacy is requested. Hyphen SHOULD be 
used otherwise.27 

Receive: This field SHOULD be ignored. 

Session-ID 

Send:  MUST be in accordance with IETF RFC 2327 for interoperability with non-IPCablecom 
clients. 

Receive: This field SHOULD be ignored. 

Version 

Send:  In accordance with IETF RFC 2327. 

Receive: This field SHOULD be ignored. 

Network Type 

Send: Type "IN" MUST be used. 

Receive: This field SHOULD be ignored. 

____________________ 
27  Since TGCP endpoints do not know when privacy is requested, they SHOULD always use a hyphen. 



 

  ITU-T Rec. J.171 (02/2002) 57 

Address Type  

Send: Type "IP4" MUST be used 

Receive: This field SHOULD be ignored. 

Address 

Send:  MUST be in accordance with IETF RFC 2327 for interoperability with non-IPCablecom 
clients. 

Receive: This field MUST be ignored. 

A.3.4.1.3 Session name (s=) 
 
s=<session-name> 
s=- 

Send:  Hyphen MUST be used as Session name. 

Receive:  This field MUST be ignored. 

A.3.4.1.4 Session and media information (i=) 
 
i=<session-description> 

Send:  For TGCP, the field MUST NOT be used.  

Receive:  This field MUST be ignored. 

A.3.4.1.5 URI (u=) 
 
u= <URI> 

Send:  For TGCP, the field MUST NOT be used. 

Receive:  This field MUST be ignored. 

A.3.4.1.6 E-Mail address and phone number (e=, p=) 
 
e=<e-mail-address> 
p=<phone-number> 

Send:  For TGCP, the field MUST NOT be used. 

Receive:  This field MUST be ignored. 

A.3.4.1.7 Connection data (c=)  
The connection data consists of 3 sub-fields: 
 
c=<network-type> <address-type> <connection-address> 
c=IN        IP4   10.10.111.11 

Network Type 

Send:  Type "IN" MUST be used. 

Receive:  Type "IN" MUST be present. 

Address Type 

Send:  Type "IP4" MUST be used 

Receive:  Type "IP4" MUST be present. 



 

58 ITU-T Rec. J.171 (02/2002) 

Connection Address 

Send:  This field MUST be filled with a unicast IP address at which the application will receive 
the media stream. Thus a TTL value MUST NOT be present and a "number of 
addresses" value MUST NOT be present. The field MUST NOT be filled with a fully-
qualified domain name instead of an IP address. A non-zero address specifies both the 
send and receive address for the media stream(s) it covers. 

Receive:  A unicast IP address or a fully qualified domain name MUST be present. A non-zero 
address specifies both the send and receive address for the media stream(s) it covers. 

A.3.4.1.8 Bandwidth (b=) 
 
b=<modifier> : <bandwidth-value> 
b=AS : 64 

Send: Bandwidth information is optional in SDP but it SHOULD always be included28. When 
an rtpmap or a non well-known codec29 is used, the bandwidth information MUST be 
used.  

Receive: Bandwidth information SHOULD be included. If a bandwidth modifier is not included, 
the receiver MUST assume reasonable default bandwidth values for well-known codecs.  

Modifier 

Send:  Type "AS" MUST be used. 

Receive: Type "AS" MUST be present. 

Bandwidth Value 

Send:  The field MUST be filled with the Maximum Bandwidth requirement of the Media 
stream in kilobits per second. 

Receive:  The maximum bandwidth requirement of the media stream in kilobits per second MUST 
be present. 

A.3.4.1.9 Time, repeat times and time zones (t=, r=, z=) 
 
t=<start-time> <stop-time> 
t=36124033  0 
r=<repeat-interval> <active-duration> <list-of-offsets-from-start-time> 
z=<adjustment-time> <offset> 

Send:  Time MUST be present; start time MAY be zero, but SHOULD be the current time, and 
stop time SHOULD be zero. Repeat Times, and Time Zones SHOULD NOT be used, if 
they are used it should be in accordance with IETF RFC 2327. 

Receive:  If any of these fields are present, they SHOULD be ignored. 

A.3.4.1.10  Encryption Keys 
 
k=<method> 
k=<method> : <encryption-keys> 

____________________ 
28  If this field is not used, the Gate Controller might not authorize the appropriate bandwidth. 
29  A non well-known codec is a codec not defined in the IPCablecom codec (ITU-T Rec. J.161). 



 

  ITU-T Rec. J.171 (02/2002) 59 

Security services for IPCablecom are defined by ITU-T Rec. J.170. The security services specified 
for RTP and RTCP do not comply with those of IETF RFC 1889, IETF RFC 1890, and IETF RFC 
2327. In the interest of interoperability with non-IPCablecom devices, the "k" parameter will 
therefore not be used to convey security parameters. 

Send:  MUST NOT be used. 

Receive:  This field SHOULD be ignored.  

A.3.4.1.11  Attributes (a=) 
 
a=<attribute> : <value> 
a=rtpmap : <payload type> <encoding name>/<clock rate> [/<encoding parameters>] 
a=rtpmap : 0       PCMU / 8000 
a=X-pc-codecs: <alternative 1> <alternative 2> ... 
a=X-pc-secret: <method>:<encryption key> 
a =X-pc-csuites-rtp: <alternative 1> <alternative 2> ... 
a =X-pc-csuites-rtcp: <alternative 1> <alternative 2> ... 
a =X-pc-spi-rtcp: <value> 
a =X-pc-bridge: <number-ports> 
a=<attribute> 
a=recvonly 
a=sendrecv 
a=sendonly 
a= ptime 

Send:  One or more of the "a" attribute lines specified below MAY be included. An attribute 
line not specified below SHOULD NOT be used. 

Receive: One or more of the "a" attribute lines specified below MAY be included and MUST be 
acted upon accordingly. "a" attribute lines not specified below may be present but MUST 
be ignored. 

rtpmap 

Send:  When used, the field MUST be used in accordance with IETF RFC 2327. It MAY be 
used for well-known as well as well as non well-known codecs. The encoding names 
used are provided in a separate IPCablecom Recommendation (see ITU-T Recs. J.161 
and J.170). 

Receive:  The field MUST be used in accordance with IETF RFC 2327. 

X-pc-codecs 

Send:  The field contains a list of alternative codecs that the endpoint is capable of using for this 
connection. The list is ordered by decreasing degree of preference, i.e. the most preferred 
alternative codec is the first one in the list. A codec is encoded similarly to "encoding 
name" in rtpmap. 

Receive:  Conveys a list of codecs that the remote endpoint is capable of using for this connection. 
The codecs MUST NOT be used until signalled through a media (m=) line.  

X-pc-secret 

Send:  The field contains an end-to-end secret to be used for RTP and RTCP security. The 
secret is encoded similarly to the encryption key (k=) parameter of IETF RFC 2327 with 
the following constraints: 

The encryption key MUST NOT contain a ciphersuite, only a passphrase. 

The <method> specifying the encoding of the pass-phrase MUST be either "clear" or "base64" as 
defined in IETF RFC 2045, except for the maximum line length which is not specified here. The 
method "clear" MUST NOT be used if the secret contains any characters that are prohibited in SDP.  



 

60 ITU-T Rec. J.171 (02/2002) 

Receive:  Conveys the end-to-end secret to be used for RTP and RTCP security.  

X-pc-csuites-rtp 
X-pc-csuites-rtcp 

Send:  The field contains a list of ciphersuites that the endpoint is capable of using for this 
connection (respectively RTP and RTCP). The first ciphersuite listed is what the 
endpoint is currently expecting to use. Any remaining ciphersuites in the list represent 
alternatives ordered by decreasing degree of preference, i.e. the most preferred 
alternative ciphersuite is the second one in the list. A ciphersuite is encoded as specified 
below: 

 ciphersuite =    [AuthenticationAlgorithm] "/" [EncryptionAlgorithm]  

 AuthenticationAlgorithm = 1*( ALPHA / DIGIT / "-" / "_" ) 

 EncryptionAlgorithm =   1*( ALPHA / DIGIT / "-" / "_" ) 

 where ALPHA, and DIGIT are defined in IETF RFC 2234. Whitespaces are not allowed 
within a ciphersuite. The following example illustrates the use of ciphersuite: 

 
  62/51 

 The actual list of ciphersuites is provided in ITU-T Rec. J.170. 

Receive:  Conveys a list of ciphersuites that the remote endpoint is capable of using for this 
connection. Any other ciphersuite than the first in the list cannot be used until signaled 
through a new ciphersuite line with the desired ciphersuite listed first. 

X-pc-spi-rtcp: 

Send: The field contains the IPSec Security Parameter Index (SPI) to be used when sending 
RTCP packets to the endpoint for the media stream in question. The SPI is a 32-bit 
identifier encoded as a string of up to 8 hex characters. The field MUST be supplied 
when RTCP security is used. 

Receive: Conveys the IPSec SPI to be used when sending RTCP packets over IPSec. The field 
MUST be present when RTCP security is used.  

X-pc-bridge 

Send:  TGCP endpoints MUST NOT use this attribute.  

Receive:  TGCP endpoints MUST ignore this attribute if received.  

recvonly 

Send:  The field MUST be used in accordance with IETF RFC 2543. 

Receive:  The field MUST be used in accordance with IETF RFC 2543. 

sendrecv 

Send:  The field MUST be used in accordance with IETF RFC 2543. 

Receive:  The field MUST be used in accordance with IETF RFC 2543. 

sendonly 

Send:  The field MUST be used in accordance with IETF RFC 2543, except that the IP address 
and port number MUST NOT be zeroed. 

Receive:  The field MUST be used in accordance with IETF RFC 2543. 

ptime 



 

  ITU-T Rec. J.171 (02/2002) 61 

Send:  The ptime SHOULD always be provided and when used it MUST be used in accordance 
with IETF RFC 2327. When an rtpmap or non well-known codec is used, the ptime 
MUST be provided. 

Receive: The field MUST be used in accordance with IETF RFC 2327. When "ptime" is present, 
the MTA MUST use the ptime in the calculation of QoS reservations. If "ptime" is not 
present, the MTA MUST assume reasonable default values for well-known codecs. 

A.3.4.1.12  Media Announcements (m=) 
Media Announcements (m=) consists of 3 sub-fields: 
 
M=<media> <port> <transport> <format> 
M=audio   3456  RTP/AVP  0 

Media 

Send:  The "audio" media type MUST be used. 

Receive:  The type received MUST be "audio". 

Port 

Send:  MUST be filled in accordance with IETF RFC 2327. The port specified is the receive 
port, regardless of whether the stream is unidirectional or bidirectional. The sending port 
may be different.  

Receive:  MUST be used in accordance with IETF RFC 2327. The port specified is the receive 
port. The sending port may be different. 

Transport 

Send:  The transport protocol "RTP/AVP" MUST be used. 

Receive:  The transport protocol MUST be "RTP/AVP". 

Media Formats 

Send:  Appropriate media type as defined in IETF RFC 2327 MUST be used. 

Receive:  In accordance with IETF RFC 2327. 

A.3.5 Transmission over UDP 

A.3.5.1 Reliable Message Delivery 
MGCP messages are transmitted over UDP. Commands are sent to one of the IP addresses defined in 
the Domain Name System (DNS) for the specified endpoint or MGC. The responses are sent back to 
the source address of the command. However, it should be noted that the response may, in fact, come 
from another IP address than the one to which the command was sent.  

When no port is provisioned for the endpoint30, the commands should be sent to the default MGCP 
port, 2427.  

MGCP messages, carried over UDP, may be subject to losses. In the absence of a timely response, 
commands are repeated. MGCP entities are expected to keep, in memory, a list of the responses sent 
to recent transactions, i.e. a list of all the responses sent over the last Tthist seconds, as well as a list of 
the transactions that are being executed currently. Transaction identifiers of incoming commands are 
compared to transaction identifiers of the recent responses. If a match is found, the MGCP entity 
does not execute the transaction, but simply repeats the response. If no match is found, the MGCP 

____________________ 
30  Each endpoint may be provisioned with a separate MGC address and port. 



 

62 ITU-T Rec. J.171 (02/2002) 

entity examines the list of currently executing transactions. If a match is found, the MGCP entity 
will not execute the transaction, which is simply ignored.  

It is the responsibility of the requesting entity to provide suitable time-outs for all outstanding 
commands and to retry commands when time-outs have been exceeded. A retransmission strategy is 
specified in A.3.5.2.  

Furthermore, when repeated commands fail to get a response, the destination entity is assumed to be 
unavailable. It is the responsibility of the requesting entity to seek redundant services and/or clear 
existing or pending connections as specified in A.2.4. 

A.3.5.2 Retransmission strategy 
This Recommendation avoids specifying any static values for the retransmission timers since these 
values are typically network-dependent. Normally, the retransmission timers should estimate the 
timer by measuring the time spent between sending a command and the return of a response. 
Trunking gateways MUST at a minimum implement a retransmission strategy using exponential 
back-off with configurable initial and maximum retransmission timer values.  

Trunking gateways SHOULD use the algorithm implemented in TCP-IP, which uses two variables 
(see, e.g. TCP/IP Illustrated, Volume 1, The Protocols). 

The average response delay, AAD, estimated through an exponentially smoothed average of the 
observed delays, 
� The average deviation, ADEV, estimated through an exponentially smoothed average of the 

absolute value of the difference between the observed delay and the current average. 

The retransmission timer, RTO, in TCP, is set to the sum of the average delay plus N times the 
average deviation, where N is a constant. 

After any retransmission, the MGCP entity should do the following: 
� it should double the estimated value of the average delay, AAD; 
� it should compute a random value, uniformly distributed between 0.5 AAD and AAD; 
� it should set the retransmission timer (RTO) to the minimum of: 

− the sum of that random value and N times the average deviation; 
− RTOmax, where the default value for RTOmax is 4 seconds. 

This procedure has two effects. Because it includes an exponentially increasing component, it will 
automatically slow down the stream of messages in case of congestion subject to the needs of real-
time communication. Because it includes a random component, it will break the potential 
synchronization between notifications triggered by the same external event. 

The initial value used for the retransmission timer is 200 milliseconds by default and the maximum 
value for the retransmission timer is 4 seconds by default. These default values may be altered by the 
provisioning process. 

A.3.6 Piggybacking 
There are cases when an MGC will want to send several messages at the same time to one or more 
endpoints in a gateway and vice versa. When several messages have to be sent in the same UDP 
packets, they are separated by a line of text that contain a single dot, as in for example: 
 
200 2005 OK 
. 
DLCX 1244 ds/ds1-2/2@tgw.whatever.net MGCP 1.0 TGCP 1.0 
C: A3C47F21456789F0 
I: FDE234C8 



 

  ITU-T Rec. J.171 (02/2002) 63 

The piggybacked messages MUST be processed as if they had been received in separate datagrams; 
however, if a message (command or response) needs to be retransmitted, the entire datagram MUST 
be retransmitted, not just the missing message. The individual messages in the datagram MUST be 
processed in order starting with the first message. 

Errors encountered in a message that was piggybacked MUST NOT affect any of the other messages 
received in that packet � each message is processed on its own.  

A.3.7 Transaction identifiers and three-way handshake 
Transaction identifiers are integer numbers in the range from 1 to 999 999 999. MGCs may decide to 
use a specific number space for each of the gateways that they manage, or to use the same number 
space for all gateways that belong to some arbitrary group. MGCs may decide to share the load of 
managing a large gateway between several independent processes. These processes will share the 
same transaction number space. There are multiple possible implementations of this sharing, such as 
having a centralized allocation of transaction identifiers, or pre-allocating non-overlapping ranges of 
identifiers to different processes. The implementations MUST guarantee that unique transaction 
identifiers are allocated to all transactions that originate from any MGC sent to a particular gateway 
within a period of Tthist seconds. Gateways can simply detect duplicate transactions by looking at the 
transaction identifier only. 

The Response Acknowledgement parameter can be found in any command. It carries a set of 
"confirmed transaction-id ranges" for final responses received � provisional responses MUST NOT 
be confirmed. 

MGCP gateways may choose to delete the copies of the responses to transactions whose id is 
included in "confirmed transaction-id ranges" received in a message; however, the fact that the 
transaction was executed MUST still be retained for Tthist seconds. Also, when a Response 
Acknowledgement message31 is received, the response that is being acknowledged by it can be 
deleted. Gateways should silently discard further commands from that MGC when the transaction-id 
falls within these ranges, and the response was issued less than Tthist seconds ago. 

Let termnew and termold be the endpoint-name in respectively a new command, cmdnew, and some old 
command, cmdold. The transaction-ids to be confirmed in cmdnew SHOULD then be determined as 
follows: 
1) If termnew does not contain any wild-cards: 

a) Unconfirmed responses to old commands where termold equals termnew. 
b) Optionally, one or more unconfirmed responses where termold contained the "any-of" 

wild-card, and the endpoint-name returned in the response was termnew. 
c) Optionally, one or more unconfirmed responses where termold contained the "all" wild-

card, and termnew is covered by the wild-card in termold. 
d) Optionally, one or more unconfirmed responses where termold contained the "any-of" 

wild-card, no endpoint-name was returned, and termnew is covered by the wild-card in 
termold. 

2) If termnew contains the "all" wild-card: 
a) Optionally, one or more unconfirmed responses where termold contained the "all" wild-

card, and termnew is covered by the wild-card in termold. 
3) If termnew contains the "any of" wild-card: 

a) Optionally, one or more unconfirmed responses where termold contained the "all" wild-
card, and termnew is covered by the wild-card in termold if the "any of" wild-card in 
termnew was replaced with the "all" wild-card. 

____________________ 
31  As opposed to a command with a Response Acknowledgement parameter. 



 

64 ITU-T Rec. J.171 (02/2002) 

A given response SHOULD NOT be confirmed in two separate messages. 

The following examples illustrate the use of these rules: 
� If termnew is "ds/ds1-2/1" and termold is "ds/ds1-2/1" then the old response can be confirmed 

per rule 1a. 
� If termnew is "ds/ds1-1/3" and termold is "*" then the old response can be confirmed per 

rule 1c. 
� If termnew is "ds/ds1-2/*" and termold is "*" then the old response can be confirmed per 

rule 2a.  
� If termnew is "ds/ds1-2/$" and termold is "ds/ds1-2/*" then the old response can be confirmed 

per rule 3a. 

The "confirmed transaction-id ranges" values SHOULD NOT be used if more than Tthist seconds 
have elapsed since the gateway issued its last response to that MGC, or when a gateway resumes 
operation. In this situation, commands should be accepted and processed, without any test on the 
transaction-id. 

Also, a response SHOULD NOT be confirmed if the response was received more than Tthist seconds 
ago.  

Messages that confirm responses may be transmitted and received in disorder. The gateway shall 
retain the union of the confirmed transaction-ids received in recent commands. 

A.3.8 Provisional responses 
In some cases, transaction completion times may be significantly longer than otherwise. TGCP uses 
UDP as the transport protocol and reliability is achieved by selective time-out-based retransmissions 
where the time-out is based on an estimate of the sum of the network round-trip time and transaction 
completion time. Significant variance in the transaction completion time is therefore problematic 
when rapid message loss detection without excessive overhead is desired. 

In order to overcome this problem, a provisional response MUST therefore be issued if, and only if, 
the transaction completion time exceeds some small period of time. The provisional response 
acknowledges the receipt of the command although the outcome of the command may not yet be 
known, e.g. due to a pending resource reservation. As a guideline, a transaction that requires external 
communication to complete, e.g. network resource reservation, should issue a provisional response. 
Furthermore, if a duplicate CreateConnection or ModifyConnection command is received, and the 
transaction has not yet finished executing, a provisional response MUST then be sent back. 

Pure transactional semantics would imply, that provisional responses should not return any other 
information than the fact that the transaction is currently executing, however an optimistic approach 
allowing some information to be returned enables a reduction in the delay that would otherwise be 
incurred in the system.  

Provisional responses MUST only be sent in response to a CreateConnection or ModifyConnection 
command. In order to reduce the delay in the system, a connection identifier and session description 
MUST be included in the provisional response to the CreateConnection command. If a session 
description will be returned by the ModifyConnection command, the session description MUST be 
included in the provisional response here as well. If the transaction completes successfully, the 
information returned in the provisional response MUST be repeated in the final response. It is 
considered a protocol error not to repeat this information or to change any of the previously supplied 
information in a successful response. If the transaction fails, an error code is returned � the 
information returned previously is no longer valid.  



 

  ITU-T Rec. J.171 (02/2002) 65 

A currently executing CreateConnection or ModifyConnection transaction MUST be cancelled if a 
DeleteConnection command for the endpoint is received. In that case, a response for the cancelled 
transaction SHOULD still be returned automatically, and a response for the cancelled transaction 
MUST be returned if a retransmission of the cancelled transaction is detected. 

When a provisional response is received, the time-out period for the transaction in question MUST 
be set to a significantly higher value for this transaction (Ttlongtran). The purpose of this timer is 
primarily to detect endpoint failure. The default value of Ttlongtran is 5 seconds; however, the 
provisioning process may alter this. 

When the transaction finishes execution, the final response is sent and the by now obsolete 
provisional response is deleted. In order to ensure rapid detection of a lost final response, final 
responses issued after provisional responses for a transaction MUST be acknowledged. The endpoint 
MUST therefore include an empty "ResponseAck" parameter in those, and only those, final 
responses. The presence of the "ResponseAck" parameter in the final response will trigger a 
"Response Acknowledgement" response to be sent back to the endpoint. The "Response 
Acknowledgement" response will include the transaction-id of the response it acknowledges in the 
response header. Receipt of this "Response Acknowledgement" response is subject to the same time-
out and retransmission strategies and procedures as responses to commands (see A.2.4), i.e. the 
sender of the final response will retransmit it if the "Response Acknowledgement" is not received in 
time. The "Response Acknowledgment " response is never acknowledged. 

A.4 Security 
If unauthorized entities could use the MGCP, they would be able to set up unauthorized calls or 
interfere with authorized calls. Security is not provided as an integral part of MGCP. Instead MGCP 
assumes the existence of a lower layer providing the actual security.  

Security requirements and solutions for TGCP are provided in ITU-T Rec. J.170, which should be 
consulted for further information.  

 

 
Annex A.A 

 
Event packages 

This annex to Annex A defines an initial set of event packages for the various types of endpoints 
currently defined by IPCablecom for trunking gateways.  

Each package defines a package name for the package and event codes and definitions for each of 
the events in the package. In the tables of events/signals for each package, there are five columns: 
� Code  The package unique event code used for the event/signal. 
� Description  A short description of the event/signal. 
� Event A check mark appears in this column if the event can be requested by the 

MGC. Alternatively, one or more of the following symbols may appear: 
− "P"  indicating that the event is persistent; 
− "S" indicating that the event is an event-state that may be audited; 
− "C" indicating that the event/signal may be detected/applied on a connection. 

� Signal If nothing appears in this column for an event, then the event cannot be 
signaled on command by the MGC. Otherwise, the following symbols 
identify the type of event: 



 

66 ITU-T Rec. J.171 (02/2002) 

− "OO" On/Off signal. The signal is turned on until commanded by the MGC to 
turn it off, and vice versa. 

− "TO" Time-out signal. The signal lasts for a given duration unless it is superseded 
by a new signal. Default time-out values are supplied. A value of zero 
indicates that the time-out period is infinite. The provisioning process may 
alter these default values. 

− "BR" Brief signal. The event has a short, known duration. 
� Additional info  Provides additional information about the event/signal, e.g. the default 

duration of TO signals. 

Unless otherwise stated, all of the events/signals are detected/applied on endpoints and audio 
generated by them is not forwarded on any connection the endpoint may have. Audio generated by 
events/signals that are detected/applied on a connection will however be forwarded on the associated 
connection irrespective of the connection mode. 

A.A.1 ISUP trunk package 
Package name: IT. 

Table A.A.1/J.171 � ISUP trunk package events and signals 

Code Description Event Signal Additional information 

co1 Continuity tone 1 √ TO Time-out = 3 seconds 
co2 Continuity tone 2 √ TO Time-out = 3 seconds 
ft Fax tone √ �  
ld Long duration 

connection 
C �  

ma Media start C �  
mt Modem tone √ �  
oc Operation complete √ �  
of Operation failure √ �  
ro Reorder tone � TO Time-out = 30 seconds 
rt Ringback tone � C, TO Time-out = 180 seconds 

TDD Telecommunications 
Device for the Deaf 
(TDD) tones  

√   

The definition of the individual events and signals are as follows: 

Continuity Tone 1 (co1): A tone at 2010 Hz per ITU-T Rec. Q.724. To conform with current 
continuity testing practice, the event SHOULD NOT be generated until the tone has been removed. 
The tone is of type TO � the continuity test will only be applied for the specified period of time. The 
provisioning process may alter the default value.  

Continuity Tone 2 (co2): A tone at 1780 Hz per ITU-T Rec. Q.724. To conform with current 
continuity testing practice, the event SHOULD NOT be generated until the tone has been removed. 
The tone is of type TO � the continuity test will only be applied for the specified period of time. The 
provisioning process may alter the default value. 

The continuity tones are used when the MGC wants to initiate a continuity test. There are two types 
of tests: single tone and dual tone. The party originating the continuity check signals and detects the 



 

  ITU-T Rec. J.171 (02/2002) 67 

appropriate tones for the trunk in question. For instance, for a continuity test from a 4-wire to a 
2-wire circuit the following messages could be used: 

Originating gateway 
 
RQNT 1234 ds/ds3-1/ds1-6/17@tgw1.example.net 
X: AB123FE0 
S: co2 
R: co1 

Terminating gateway 
 
CRCX 1234 ds/ds1-4/7@tgw2.example.net 
C: A3C47F21456789F0 
L: p:10, a:PCMU 
M: conttest 

The originating gateway sends the requested signal, and looks for the return of the appropriate tone 
for the trunk in question. When it detects that tone and deems the continuity check to be successful, 
it generates the "co1" event which in the example will be notified to the MGC. If the test does not 
succeed prior to the time-out, an "operation complete" event will be generated and in this case sent to 
the MGC. Similarly, if an error occurs prior to the time-out, an "operation failure" event will be 
generated. The "oc" and "of" events will be parameterized with the name of the event/signal they 
report, i.e. "co1" in this case.  

Fax tone (ft): The fax tone event is generated whenever a fax communication is detected � see 
e.g. ITU-T Rec. T.30, or V.21.  

Long duration connection (ld): The "long duration connection" is detected when a connection has 
been established for more than a certain period of time. The default value is 1 hour; however, this 
may be changed by the provisioning process. 

The event may be detected on a connection. When no connection is specified, the event applies to all 
connections for the endpoint, regardless of when the connections are created. 

Media start (ma): The media start event occurs on a connection when the first valid32 RTP media 
packet is received on the connection. This event can be used to synchronize a local signal, 
e.g. ringback, with the arrival of media from the other party.  

The event may be detected on a connection. When no connection is specified, the event applies to all 
connections for the endpoint, regardless of when the connections are created. 

Modem tones (mt): The modem tone event is generated whenever a modem communication is 
detected � see e.g. ITU-T Rec. V.8. 

Operation complete (oc): The operation complete event is generated when the gateway was asked 
to apply one or several signals of type TO on the endpoint, and one or more of those signals 
completed without being stopped by the detection of a requested event such as "continuity tone 1". 
The completion report may carry as a parameter the name of the signal that came to the end of its 
live time, as in:  
 
O: IT/oc(IT/co1) 

When the reported signal was applied on a connection, the parameter supplied will include the name 
of the connection as well, as in: 
 
O: IT/oc(IT/rt@0A3F58) 

____________________ 
32  When authentication and integrity security services are used, an RTP packet is not considered valid until it 

has passed the security checks. 



 

68 ITU-T Rec. J.171 (02/2002) 

When the operation complete event is requested, it cannot be parameterized with any event 
parameters. When the package name is omitted, the default package name is assumed. 

The operation complete event may additionally be generated as defined in the base protocol, 
e.g. when an embedded ModifyConnection command completes successfully, as in33: 
 
O: IT/oc(B/C) 

Operation failure (of): In general, the operation failure event may be generated when the endpoint 
was asked to apply one or several signals of type TO on the endpoint, and one or more of those 
signals failed prior to timing out. The completion report may carry as a parameter the name of the 
signal that failed, as in:  
 
O: IT/of(IT/co2) 

When the reported signal was applied on a connection, the parameter supplied will include the name 
of the connection as well, as in: 
 
O: IT/of(IT/rt@0A3F58) 

When the operation failure event is requested, event parameters can not be specified. When the 
package name is omitted, the default package name is assumed. 
The operation failure event may additionally be generated as specified in the base protocol, e.g. 
when an embedded ModifyConnection command fails, as in33:  
 
O: IT/of(B/C(M(sendrecv(AB2354)))) 

Reorder tone (ro): Reorder tone, a.k.a congestion tone, is specified in ITU-T Rec. E.180/Q.35. 

Ring back tone (rt): Audible Ring Tone is specified in ITU-T Rec. E.180/Q.35. The definition of 
the tone is defined by the national characteristics of the Ringback Tone, and MAY be established via 
provisioning. The ringback signal can be applied to both an endpoint and a connection.  

Telecommunications Device for the Deaf (TDD) tones: The TDD event is generated whenever a 
TDD communication is detected � see e.g. ITU-T Rec. V.18. 

____________________ 
33  Note the use of "B" here as the prefix for the parameter reported. 



 

  ITU-T Rec. J.171 (02/2002) 69 

Appendix A.I 
 

Mode interactions 

An MGCP connection can establish one or more media streams. These streams are either incoming 
(from a remote endpoint) or outgoing (generated at the circuit endpoint). The "connection mode" 
parameter establishes the direction and generation of these streams. When there is only one 
connection to an endpoint, the mapping of these streams is straightforward; the circuit endpoint plays 
the incoming stream over the circuit and generates the outgoing stream from the circuit signal, 
depending on the mode parameter.  

However, when several connections are established to an endpoint, there can be many incoming and 
outgoing streams. Depending on the connection mode used, these streams may interact differently 
with each other and the streams going to/from the endpoint.  

Table A.I.1 below describes how different connections should be mixed when one or more 
connections are concurrently "active". An active connection is here defined as a connection that is in 
one of the following modes:  
� "send/receive"; 
� "send only"; 
� "receive only". 

Table A.I.1/J.171 � Mixing of different connections when one ore more connections are 
concurrently active 

Connection A mode  

sendonly recvonly sendrecv loopback/ 
conttest inactive netwloop/ 

netwtest 

sendonly 
Aout= Hin 
Bout= Hin 
Hout=NA 

Aout=NA 
Bout=Hin 
Hout= Ain 

Aout=Hin 
Bout=Hin 
Hout=Ain 

Aout=NA 
Bout=NA 
Hout=cot 

Aout= NA 
Bout= Hin 
Hout=NA 

Aout=Ain 
Bout= Hin 
Hout=NA 

recvonly  
Aout= NA 
Bout= NA 

Hout=Ain+Bin 

Aout= Hin 
Bout= NA 

Hout=Ain+Bin 

Aout=NA 
Bout=NA 
Hout=cot 

Aout=NA 
Bout=NA 
Hout= Bin 

Aout= Ain 
Bout= NA 
Hout= Bin 

sendrecv   
Aout= Hin 
Bout= Hin 

Hout=Ain+Bin 

Aout=NA 
Bout=NA 
Hout=cot 

Aout= NA 
Bout= Hin 
Hout= Bin 

Aout= Ain 
Bout= Hin 
Hout= Bin 

loopback/ 
conttest    

Aout=NA 
Bout=NA 
Hout=cot 

Aout= NA 
Bout= NA 
Hout= cot 

Aout= NA 
Bout= NA 
Hout= cot 

inactive     
Aout= NA 
Bout= NA 
Hout= NA 

Aout= Ain 
Bout= NA 
Hout=NA 

C
on

ne
ct

io
n 

B
 m

od
e 

netwloop/ 
netwtest      

Aout= Ain 
Bout= Bin 
Hout=NA 



 

70 ITU-T Rec. J.171 (02/2002) 

Connections in "network loopback", "network continuity test", or "inactive" modes are not affected 
by connections in the "active" modes. Table A.I.1 uses the following conventions: 
� Ain is the incoming media stream from Connection A; 
� Bin is the incoming media stream from Connection B; 
� Hin is the incoming media stream from the Trunk; 
� Aout is the outgoing media stream to Connection A; 
� Bout is the outgoing media stream to Connection B; 
� Hout is the outgoing media stream to the endpoint, where "cot" indicates continuity test, 

whether in the "continuity test" or "loopback" mode; 
� NA indicates No Stream whatever. 

 

 
Appendix A.II 

 
Example command encodings 

This appendix provides examples of commands and responses shown with the actual encoding used. 
Examples are provided for each command. All commentary shown in the commands and responses 
is optional. 

A.II.1 NotificationRequest 
The first example illustrates a NotificationRequest that will initiate a continuity test and look for the 
verification of the test. The "notified entity" for the endpoint will be set to 
"ca@ca1.whatever.net:5678" and the RequestIdentifier will be repeated in the corresponding Notify 
command: 
 
RQNT 1201 ds/ds1-1/2@tgw-2567.whatever.net MGCP 1.0 TGCP 1.0 
N: mgc@mgc1.whatever.net:5678 
X: 0123456789AC 
R: co1, oc(N), of(N) 
S: co1 

The response indicates that the transaction was successful: 
 
200 1201 OK 

A.II.2 Notify 
The example below illustrates a Notify message that notifies a successful continuity test as indicated 
by the observed events. Since a "notified entity" was specified in the triggering NotificationRequest, 
it is repeated here. Also, the RequestIdentifier is included to correlate this Notify command with the 
NotificationRequest command that triggered: 
 
NTFY 2002 ds/ds1-1/2@tgw-2567.whatever.net MGCP 1.0 TGCP 1.0 
N: mgc@mgc1.whatever.net:5678 
X: 0123456789AC 
O: co1 

The Notify response indicates that the transaction was successful: 
 
200 2002 OK 



 

  ITU-T Rec. J.171 (02/2002) 71 

A.II.3 CreateConnection 
The first example illustrates a CreateConnection command to create a connection on the endpoint 
specified. The connection will be part of the specified CallId. The LocalConnectionOptions specify 
that G.711 µ-law will be the codec used and the packetization period will be 10 ms. The connection 
mode will be "receive only":  
 
CRCX 1204 ds/ds1-1/17@tgw2.whatever.net MGCP 1.0 TGCP 1.0 
C: A3C47F21456789F0 
L: p:10, a:PCMU 
M: recvonly 

The response indicates that the transaction was successful, and a connection identifier for the newly 
created connection is therefore included. A session description for the new connection is included as 
well � note that it is preceded by an empty line. 
 
200 1204 OK 
I: FDE234C8 
 
v=0 
o=- 25678 753849 IN IP4 128.96.41.1 
s=- 
c=IN IP4 128.96.41.1 
t=0 0 
m=audio 3456 RTP/AVP 0  

The second example illustrates a CreateConnection command containing a notification request and a 
RemoteConnectionDescriptor: 
 
CRCX 1205 ds/ds1-1/1@tgw.whatever.net MGCP 1.0 TGCP 1.0 
C: A3C47F21456789F0 
L: p:10, a:PCMU 
M: recvonly 
X: 0123456789AD 
R: MO/sup(addr(K0, 4,1,1, s2), id(K0,0,0,7,3,2,5,5,5,1,2,3,4,s0)) 
S: MO/ans 
 
v=0 
o=- 25678 753849 IN IP4 128.96.41.1 
s=- 
c=IN IP4 128.96.41.1 
t=0 0 
m=audio 3456 RTP/AVP 0 

The response indicates that the transaction failed, because the trunk was already seized. 
Consequently, neither a connection-id nor a session description is returned: 
 
401 2005 Circuit already seized  

Our third example illustrates the use of the provisional response and the three-way handshake: 
 
CRCX 1206 ds/ds1-1/1@tgw.whatever.net MGCP 1.0 TGCP 1.0 
K: 1205 
C: A3C47F21456789F0 
L: p:10, a:PCMU 
M: inactive 
 
v=0 
o=- 25678 753849 IN IP4 128.96.41.1 
s=- 
c=IN IP4 128.96.41.1 
t=0 0 
m=audio 3456 RTP/AVP 0  



 

72 ITU-T Rec. J.171 (02/2002) 

A provisional response is returned initially: 
100 1206 Pending 
I: DFE233D1 
 
v=0 
o=- 4723891 7428910 IN IP4 128.96.63.25 
s=- 
c=IN IP4 128.96.63.25 
t=0 0 
m=audio 3456 RTP/AVP 0  

A little later, the final response is received: 
200 1206 OK 
K: 
I: DFE233D1 
 
v=0 
o=- 4723891 7428910 IN IP4 128.96.63.25 
s=- 
c=IN IP4 128.96.63.25 
t=0 0 
m=audio 3456 RTP/AVP 0  

The MGC acknowledges the final response as requested: 
000 1206 

and the transaction is complete. 

A.II.4 ModifyConnection 
The first example shows a ModifyConnection command that simply sets the connection mode of a 
connection to "send/receive" � the "notified entity" is set as well: 
 
MDCX 1209 ds/ds1-1/21@tgw.whatever.net MGCP 1.0 TGCP 1.0 
C: A3C47F21456789F0 
I: FDE234C8 
N: mgc@mgc1.whatever.net  
M: sendrecv 

The response indicates that the transaction was successful: 
 
200 1209 OK 

In the second example, we pass a session description and include a notification request with the 
ModifyConnection command. The endpoint will start playing ring-back tones to the PSTN until it 
detects audio on the connection specified for the ring-back signal: 
MDCX 1210 ds/ds1-1/3@abc5.whatever.net MGCP 1.0 TGCP 1.0 
C: A3C47F21456789F0 
I: FDE234C8 
M: recvonly 
X: 0123456789AE 
R: ma@ FDE234C8 
S: rt 
 
v=0 
o=- 4723891 7428910 IN IP4 128.96.63.25 
s=- 
c=IN IP4 128.96.63.25 
t=0 0 
m=audio 3456 RTP/AVP 0  

The response indicates that the transaction was successful:  
200 1206 OK 



 

  ITU-T Rec. J.171 (02/2002) 73 

A.II.5 DeleteConnection (from the Media Gateway Controller) 
In this example, the MGC simply instructs the trunking gateway to delete the connection FDE234C8 
on the endpoint specified: 
 
DLCX 1210 ds/ds1-1/1@tgw.whatever.net MGCP 1.0 TGCP 1.0 
C: A3C47F21456789F0 
I: FDE234C8 

The response indicates success, and that the connection was deleted. Connection parameters for the 
connection are therefore included as well: 
 
250 1210 OK 
P: PS=1245, OS=62345, PR=780, OR=45123, PL=10, JI=27, LA=48 

A.II.6 DeleteConnection (from the trunking gateway) 
In this example, the trunking gateway sends a DeleteConnection command to the MGC to instruct it 
that a connection on the specified endpoint has been deleted. The ReasonCode specifies the reason 
for the deletion, and connection parameters for the connection are provided as well: 
 
DLCX 1210 ds/ds1-1/1@tgw-2567.whatever.net MGCP 1.0 TGCP 1.0 
C: A3C47F21456789F0 
I: FDE234C8 
E: 900 – Hardware error 
P: PS=1245, OS=62345, PR=780, OR=45123, PL=10, JI=27, LA=48 

The MGC sends a success response to the gateway: 
 
200 1210 OK 

A.II.7 DeleteConnection (multiple connections from the Media Gateway Controller) 
In the first example, the MGC instructs the trunking gateway to delete all connections related to call 
"A3C47F21456789F0" on the specified endpoint: 
 
DLCX 1210 ds/ds1-1/6@tgw-2567.whatever.net MGCP 1.0 TGCP 1.0 
C: A3C47F21456789F0 

The response indicates success and that the connection(s) were deleted: 
 
250 1210 OK 

In the second example, the MGC instructs the trunking gateway to delete all connections related to 
all of the endpoints specified: 
 
DLCX 1210 ds/ds1-1/*@tgw-2567.whatever.net MGCP 1.0 TGCP 1.0 

The response indicates success: 
 
250 1210 OK 

A.II.8 AuditEndpoint 
In the first example, the MGC wants to learn what endpoints are present on the trunking gateway 
specified, hence the use of the "all of" wild-card for the local portion of the endpoint-name. The 
MGC only wants two endpoint names: 
 
AUEP 1200 *@tgw-2567.whatever.net MGCP 1.0 TGCP 1.0 
ZM: 2 

The trunking gateway indicates success and includes a list of up to two endpoint names. A total of 24 
endpoint names matched the wild-card specified: 
 



 

74 ITU-T Rec. J.171 (02/2002) 

200 1200 OK 
Z: ds/ds1-1/1@tgw-2567.whatever.net 
Z: ds/ds1-1/2@tgw-2567.whatever.net 
ZN: 24 

In the second example, the capabilities of one of the endpoints is requested: 
 
AUEP 1201 ds/ds1-1/1@tgw-2567.whatever.net MGCP 1.0 TGCP 1.0 
F: A 

The response indicates success and the capabilities as well. Two codecs are supported, but with 
different capabilities. Consequently, two separate capability sets are returned: 
 
200 1201 OK 
A: a:PCMU, p:10-100, e:on, s:off, v:IT, m:sendonly;recvonly;sendrecv; 
    inactive;loopback;conttest;netwloop;netwtest 
A: a:G728, p:30-90, e:on, s:on, v:IT, m: sendonly;recvonly;sendrecv; 
     inactive;loopback;conttest;netwloop 

In the third example, the MGC audits all possible information for the endpoint: 
 
AUEP 2002 ds/ds1-1/1@tgw-2567.whatever.net MGCP 1.0 TGCP 1.0 
F: R, S,X,N,I,T,O,ES 

The response indicates success: 
 
200 2002 OK 
R: IT/ft,mt(N)  
S:  
X: 0123456789B1 
N: [128.96.41.12] 
I: 32F345E2 
T: ft 
O:  
ES:  

The list of requested events contains two events. Where no package name is specified, the default 
package is assumed. The same goes for actions, so the default action � Notify � must therefore be 
assumed for the "IT/ft" event. The omission of a value for the "SignalRequests" means there are 
currently no active signals. The current "notified entity" refers to an IP-address and only a single 
connection exists for the endpoint. The current value of DetectEvents is "ft", and the list of 
ObservedEvents is empty as is the EventStates.  

A.II.9 AuditConnection 
The first example shows an AuditConnection command where we audit the CallId, NotifiedEntity, 
LocalConnectionOptions, ConnectionMode, LocalConnectionDescriptor, and the Connection 
Parameters: 
 
AUCX 2003 ds/ds1-1/18@tgw-2567.whatever.net MGCP 1.0 TGCP 1.0 
I: 32F345E2 
F: C,N,L,M,LC,P 

The response indicates success and includes information for the RequestedInfo: 
 
200 2003 OK 
C: A3C47F21456789F0 
N: mgc@mgc1.whatever.net 
L: p:10, a:PCMU 
M: sendrecv 
P: PS=395, OS=22850, PR=615, OR=30937, PL=7, JI=26, LA=47 
 
v=0 
o=- 4723891 7428910 IN IP4 128.96.63.25 



 

  ITU-T Rec. J.171 (02/2002) 75 

s=- 
c=IN IP4 128.96.63.25 
t=0 0 
m=audio 1296 RTP/AVP 0  

In the second example, we request to audit RemoteConnectionDescriptor and 
LocalConnectionDescriptor: 
 
AUCX 1203 ds/ds1-1/2@tgw.whatever.net MGCP 1.0 TGCP 1.0 
I: FDE234C8 
F: RC,LC 

The response indicates success, and includes information for the RequestedInfo. In this case, no 
RemoteConnectionDescriptor exists; hence, only the protocol version field is included for the 
RemoteConnectionDescriptor: 
 
200 1203 OK 
  
v=0 
o=- 4723891 7428910 IN IP4 128.96.63.25 
s=- 
c=IN IP4 128.96.63.25 
t=0 0 
m=audio 1296 RTP/AVP 0 
 
v=0 

A.II.10 RestartInProgress 
The first example illustrates a RestartInProgress message sent by a trunking gateway to inform the 
MGC that the specified endpoint will be taken out of service in 300 seconds: 
 
RSIP 1200 ds/ds1-1/1@tgw-2567.whatever.net MGCP 1.0 TGCP 1.0 
RM: graceful 
RD: 300 

The MGCs response indicates that the transaction was successful: 
 
200 1200 OK 

In the second example, the RestartInProgress message sent by the trunking gateway informs the 
MGC that all of the trunking gateway's endpoints are being placed in service in 0 seconds, i.e. they 
are back in service. The delay could have been omitted as well:  
 
RSIP 1204 *@tgw-2567.whatever.net MGCP 1.0 TGCP 1.0 
RM: restart 
RD: 0 

The MGCs response indicates success, and furthermore provides the endpoints in question with a 
new "notified entity": 
 
200 1204 OK 
N: MGC-1@whatever.net 

Alternatively, the command could have failed with a new "notified entity" as in: 
 
521 1204 OK 
N: MGC-1@whatever.net 

In that case, the command would then have to be retried in order to satisfy the "restart procedure" 
(see A.2.4.3.5), this time going to MGC "MGC-1@whatever.net". 

 

 



 

76 ITU-T Rec. J.171 (02/2002) 

Appendix A.III 
 

Example Call Flow 

In this appendix we provide an example call flow between an on-net user using an unspecified MTA 
and signalling protocol34 and an off-net user accessed through a trunking gateway using the TGCP 
protocol and a signalling gateway supporting SS7 ISUP signalling. It should be noted that this call 
flow, although a valid one, is merely an example that may or may not be used in practice.  

In the call flow below in Figure A.III.1, CMS refers to the Call Management Server, MGC refers to 
the MGC, TGW refers to the trunking gateway, and SG refers to the signalling gateway: 

 
MTA CMS MGC TGW SG 

Place call 
(E.164) 

→    

    Call Setup →      
        Create Connection(SDP1) 

+ Notification Request     
→  

     ←    Ack(SDP2)     
        ΙΑΜΙΑΜΙΑΜΙΑΜ        → 
     ←    Notify     
     Ack + 

Modify Connection + 
Notification Request    

→     

     COT          → 
        ←          ACM 
    ←    Alerting      

←    Alerting    ←     ANM 
        ModifyConnection   →  
     ←    Ack  
    ← Answer      

←    Answer       
     (Call Established)         

Hang up →       
    Release →         
     REL          → 
        Delete Connection    →  
        ←    Ack(Perf data)  
     ←       RLC 
        (Call end ) ) ) )      

Figure A.III.1 � Example call flow 

During these exchanges the TGCP profile of MGCP is used by the MGC to control the trunking 
gateway. An unspecified protocol is assumed between the MTA, CMS and MGC.  

____________________ 
34  This could be either NCS or DCS. 



 

  ITU-T Rec. J.171 (02/2002) 77 

We assume that the MTA indicates (directly or indirectly) to the MGC its desire to establish a voice 
communication to an E.164 telephone number and that it includes a session description with this 
request. The CMS looks up the requested E.164 number and determines that it needs to place an off-
net and therefore contacts the appropriate MGC. The MGC decides that it needs to place the call 
through trunking gateway tgw.whatever.net. Furthermore, the MGC decides that continuity 
testing should be performed for this call. 

The first command is a combined CreateConnection and NotificationRequest command sent to the 
trunking gateway: 
 
CRCX 2001 ds/ds1-1/6@tgw.whatever.net MGCP 1.0 TGCP 1.0 
C: A3C47F21456789F0 
L: p:10, a:PCMU 
M: inactive 
X: 0123456789B0 
R: co2, oc, of 
S: co1 
 
v=0 
o=- 25678 753849 IN IP4 128.96.41.1 
s=- 
c=IN IP4 128.96.41.1 
t=0 0 
m=audio 3456 RTP/AVP 0  

The trunking gateway, at that point, is instructed to start the continuity test and to look for the 
outcome of the test and report it. The generation of the continuity test signal and the detection of its 
success (or failure) via the event mechanism are synchronized, so when the "co2" event occurs, the 
"co1" test will stop. The create connection portion of the command instructs to create an inactive 
connection on the endpoint specified using G.711 with a packetization period of 10 ms. Also, the 
command includes the session description received from the originating MTA. 

The egress trunking gateway will acknowledge the command, sending in the session description its 
own parameters such as address, ports and RTP profile as well as the connection identifier for the 
new connection: 
 
200 2001 OK 
I: 32F345E2 
 
v=0 
o=- 4723891 7428910 IN IP4 128.96.63.25 
s=- 
c=IN IP4 128.96.63.25 
t=0 0 
m=audio 1297 RTP/AVP 0  

The MGC sends an SS7 IAM message through the signalling gateway to the switch connected to the 
trunk the call is being placed on. Included in this message is an indication that continuity testing is to 
be performed. 

Subsequently, we assume the continuity test succeeds resulting in the "co2" event being generated 
and notified to the MGC: 
 
NTFY 3001 ds/ds1-1/6@tgw.whatever.net MGCP 1.0 TGCP 1.0 
X: 0123456789B0 
O: co2 

The MGC sends an SS7 COT indicating "continuity check successful" to the remote switch and 
Ack's the Notify command received. It also piggybacks a combined ModifyConnection and 
NotificationRequest command instructing the gateway to place the connection in "receive only" 
mode and to start looking for fax and modem tones: 



 

78 ITU-T Rec. J.171 (02/2002) 

 
200 3001 OK  
. 
MDCX 2006 ds/ds1-1/6@tgw.whatever.net MGCP 1.0 TGCP 1.0 
C: A3C47F21456789F0  
I: 32F345E2 
M: recvonly 
X: 0123456789B0 
R: ft,mt 

At this stage, the MGC has established a half-duplex transmission path. The phone attached to the 
ingress MTA will be able to receive the signals, such as tones or announcements, that may be 
generated in case of any errors, as well as the initial speech that most likely will be generated when 
the egress user answers the phone.  

The MGC then receives an SS7 ACM message indicating the called party is being alerted, and 
subsequently an SS7 ANM message indicating the called party has answered. The MGC places the 
connection in full-duplex mode by sending the following ModifyConnection command to the 
trunking gateway: 
 
MDCX 2007 ds/ds1-1/6@tgw.whatever.net MGCP 1.0 TGCP 1.0 
C: A3C47F21456789F0  
I: 32F345E2 
M: sendrecv 

The trunking gateway immediately responds to the command: 
 
200 2007 OK 

In parallel, the MGC informs the originating MTA about the call answer event and records the call 
answer time.  

At this point, the call is fully established. 

At some later point in time, the phone attached to the originating MTA, in our scenario, goes on-
hook and a hang-up event is relayed to the MGC (either directly or indirectly through the CMS as 
shown here) instructing the MGC that the call should end.  

The MGC verifies that the call in fact should be disconnected, e.g. there is no facility-hold, and it 
therefore sends an SS7 REL message to the remote switch, and also a DeleteConnection command to 
the trunking gateway: 
 
DLCX 2009 ds/ds1-1/6@tgw.whatever.net MGCP 1.0 TGCP 1.0 
C: A3C47F21456789F0  
I: 32F345E2 

The trunking gateways will respond with an acknowledgement that includes the connection 
parameters for the connection: 
 
250 2009 OK 
P: PS=1245, OS=62345, PR=780, OR=45123, PL=10, JI=27, LA=48 

A confirmation to the call tear-down in the form of an SS7 RLC message is also received by the 
MGC which finally records the end of the call. 

 

 



 

  ITU-T Rec. J.171 (02/2002) 79 

Appendix A.IV 
 

Endpoint requirements 

This appendix defines a set of TGCP endpoint specific requirements.  

A.IV.1 Connection modes supported 
Table A.IV.1 lists the connection modes that a given TGCP endpoint MUST support:  

Table A.IV.1 � List of connection modes that must be apported by a TGCP endpoint 

Endpoint 
type 

Additional endpoint 
info 

se
nd

on
ly

 

re
cv

on
ly

 

se
nd

re
cv

 

in
ac

tiv
e 

lo
op

ba
ck

 

co
nt

te
st

 

ne
tw

lo
op

 

ne
tw

te
st

 

DS-0 ISUP trunk √ √ √ √ √ √ √ √ 
DS-0 MF trunk √ √ √ √ � � √ √ 

 

 

 
Appendix A.V 

 
Compatibility information  

This appendix provides TGCP protocol compatibility information. 

A.V.1 NCS compatibility 
This version of TGCP is based on and aligned with ITU-T Rec. J.162 as much as possible. Since 
TGCP and NCS address different types of gateways, a couple of differences do exist. The following 
summarizes these differences: 
� Connection modes: NCS and TGCP share a common set of connection modes, but each 

also has a set of connection modes the other does not support: 
− NCS supports the connection modes "conference" and "replicate" which TGCP does 

not; 
− TGCP supports the connection modes "continuity test" and "loopback" which NCS does 

not.  
� Digit maps: TGCP does not support digit maps; however, NCS does. This has a couple of 

implications, e.g.: 
− there is no TGCP command that can accept a digit map as a parameter; 
− the "Accumulate according to digit map" action is not supported in TGCP; 
− the "digit map" cannot be audited. 

� Dynamic Quality of Service: NCS supports IPCablecom Dynamic of Quality of Service 
signalling, however TGCP does not. 



 

80 ITU-T Rec. J.171 (02/2002) 

In addition to the above, the following non-protocol-related differences exist between NCS and 
TGCP: 
� Event packages: The initial event packages in TGCP and NCS are different.  
� Endpoint naming scheme: The endpoint naming scheme for TGCP and NCS endpoints are 

slightly different. 

A.V.2 MGCP compatibility 
TGCP (and NCS) is furthermore a profile of IETF RFC 2705 MGCP 1.0; however, TGCP has 
introduced a couple of additions as well. The following lists TGCP additions that are currently not 
included in MGCP: 
� Endpoint naming scheme: A specific endpoint naming scheme has been introduced for 

DS-0 endpoints. The rules for wild-carding are more restrictive than in MGCP, and also 
introduces the "range" concept for DS-0 endpoints. 

� Embedded ModifyConnection: A new Embedded ModifyConnection action has been 
introduced. 

� Security: IPCablecom Security services are supported in TGCP. This affects the 
LocalConnectionOptions, Capabilities, and SDP. 

� Endpoint name retrieval: The AuditEndpoint command has been extended with a 
capability to return the number of endpoints that match a wild-card as well as mechanism for 
block-wise retrieval of these endpoint names. Besides extending the AuditEndpoint 
command, this implies the introduction of two new parameter names: MaxEndPointIds and 
NumEndPoints. 

� Supported versions: The RestartInProgress response and the AuditEndpoint command have 
been extended with a VersionSupported parameter to enable MGCs and gateways to 
determine which protocol versions each support. 

� Error codes: Two new error codes have been introduced: 532 and 533. 
� Usage of SDP: A new SDP usage profile is included in TGCP. Most notably, the profile and 

all example use specifically require strict SDP compliance, regardless of the usefulness of 
the included fields. Also, IPCablecom-specific extensions have been added to SDP. 

� Provisional response: Additional detail and recommendation of the provisional response 
mechanism has been included in TGCP. A Response Acknowledgement response (000) has 
been introduced, an empty ResponseAck parameter has been permitted in final responses 
that follow provisional responses, and a procedure for the mechanism specified. 

� Signal parameters: Signal parameter syntax has been extended to allow for the usage of 
balanced parentheses within signal parameters. All Time-Out signals can have their time-out 
value altered by a signal parameter. 

� Event packages: TGCP introduces a set of new event packages. 
Finally, it should be noted, that TGCP provides interpretations of and in some cases additional 
recommendation or clarification of the base MGCP protocol behaviour that may or may not reflect 
the intended MGCP behaviour.  

 

 



 

  ITU-T Rec. J.171 (02/2002) 81 

Appendix A.VI 
 

Example event packages  

A.VI.1 MF FGD Operator Services package 

Package name: MO 
The codes in Table A.VI.1 are used to identify events and signals for the "MO" package for one-way 
outgoing MF Operator Services trunks "Operator Services Signalling". MF FGC Operator Services 
signalling is supported as well. This package will be used for general operator service trunks as well 
as dedicated emergency services trunks: 

Table A.VI.1/J.171 � Codes used to identify no package events and signals 

Code Description Event Signal Additional information 

ans Call answer P �  
ft Fax tone √ �  

ld Long duration 
connection 

C �  

mt Modem tone √ �  

orbk Operator ringback  √ �  

rbz Reverse make busy P �  
rcl Operator recall � BR  
rel Release call P BR  
res Resume call � BR  
rlc Release complete P, S BR  

sup(<addr>, <id>) Call setup � TO Variable time-out 
sus Suspend call � BR  
swk Start wink  √ �  

TDD Telecommuniations 
Devices for the Deaf 
(TDD) tones  

√   

oc Operation complete √   

of Operation failure √   

The definition of the individual events and signals are as follows: 

Call answer (ans): Call Answer occurs at the time of the OSS ANI request, i.e. the call may not 
necessarily have been cut-thru to an operator. After Call Answer occurs, facility-hold will be 
established, i.e. only the OSS can now release the trunk.  

Fax tone (ft): The fax tone event is generated whenever a fax call is detected � see e.g. ITU-T Rec. 
T.30, or V.21.  

Long duration connection (ld): The "long duration connection" is detected when a connection has 
been established for more than a certain period of time. The default value is 1 hour; however, this 
may be changed by the provisioning process. 

The event may be detected on a connection. When no connection is specified, the event applies to all 
connections for the endpoint, regardless of when the connections are created. 



 

82 ITU-T Rec. J.171 (02/2002) 

Modem tone (mt): The modem tone event is generated whenever a modem call is detected � see e.g. 
ITU-T Rec. V.8. 

Operator ringback (orbk): This event will be generated when the OSS requests that the calling 
party be alerted35.  

Reverse make busy (rbz): This event occurs when the OSS marks the trunk. A release event will be 
generated when the trunk is no longer busy. 

Operator recall (rcl): This signal may be applied to invoke operator recall, e.g. due to customer 
hook-flash to bring the operator back.  

Release call (rel): Release call may be signaled to the media gateway; however, if facility-hold is 
established, then the call will not be disconnected until the OSS releases it. The media gateway 
generates a "release call" event when the OSS is considered to have released the trunk. In this case 
the event may be parameterized with one of the cause codes in Table A.VI.2 indicating the reason 
for the release: 

Table A.VI.2/J.171 � Release call cause codes 

Cause code Reason 

0 Normal release 
3 No route to destination 
8 Preemption 

19 No answer 
21 Call rejected 
27 Destination out of order 
28 Invalid number format (e.g. address incomplete) 
38 Network out of order 

111 Protocol/signalling error, unspecified (e.g. time-out) 

Resume call (res): This signal indicates that the other party resumed the call, i.e. the party went off-
hook. 

Release complete (rlc): The endpoint and MGC use the release complete event/signal to confirm the 
call has been released and the trunk is available for another call. 

Call setup (sup(<addr>, <id>)): Set up a call to the operator service system using the address and 
identification information provided. The address information will be of the form: 
 
addr(MF1, MF2, …, MFn) 

and the identification information will be of the form: 
 
id(MF1, MF2, …, MFn) 

where each of MFi will be one of the following MF digit symbols in Table A.VI.3: 

____________________ 
35  If the calling party is on-hook, ringing will typically be applied, where as reorder tone will typically be 

applied in case the calling party is off-hook. 



 

  ITU-T Rec. J.171 (02/2002) 83 

Table A.VI.3/J.171 � MF digit symbols 

Symbol MF digit Symbol MF digit 
0 MF 0 K0 MF K0 or KP 

1 MF 1 K1 MF K1 

2 MF 2 K2 MF K2 

3 MF 3 S0 MF S0 or ST 

4 MF 4 S1 MF S1 

5 MF 5 S2 MF S2 

6 MF 6 S3 MF S3 

7 MF 7 K0 MF K0 or KP 

8 MF 8   

9 MF 9   

Thus, an example call set-up signal could be: 
 
sup(addr(K0, 5,5,5,1,2,1,2, SO), id(K0, 5,5,5,1,2,3,4, SO)) 

Suspend call (sus): This signal indicates that the other party suspended the call, i.e. the party went 
on-hook. 

Start wink (swk): A media Gateway Controller can request the Media Gateway to notify it when the 
wink start signal occurs.  

Telecommunications Device for the Deaf (TDD) tones: The TDD event is generated whenever a 
TDD call is detected � see e.g. ITU-T Rec. V.18. 

Operation complete (oc): The operation complete event is generated when the gateway was asked 
to apply one or several signals of type TO on the endpoint, and one or more of those signals 
completed without being stopped by the detection of a requested event such as off-hook transition or 
dialed digit. The completion report may carry as a parameter the name of the signal that came to the 
end of its live time, as in:  
 
O: MO/oc(MO/sup) 

When the operation complete event is requested, it cannot be parameterized with any event 
parameters. When the package name is omitted, the default package name is assumed. 

Operation failure (of): In general, the operation failure event may be generated when the endpoint 
was asked to apply one or several signals of type TO on the endpoint, and one or more of those 
signals failed prior to timing out. The completion report may carry as a parameter the name of the 
signal that failed, as in:  
 
O: MO/of(MO/sup) 

When the operation failure event is requested, event parameters can not be specified. When the 
package name is omitted, the default package name is assumed. 



 

84 ITU-T Rec. J.171 (02/2002) 

A.VI.2 MF Terminating Protocol package 

Package name: MT 
In this version of the TGCP Recommendation, the package can only be used for busy-line 
verification (BLV) and operator interrupt (OI) on one-way incoming MF terminating trunks 
dedicated to BLV and OI36.  

The codes in Table A.VI.4 are used to identify events and signals for the "MT" package for one-way 
incoming "MF Terminating trunk circuits" used for BLV and OI: 

Table A.VI.4/J.171 � Codes used to identity MT package events and signals 

Code Description Event Signal Additional information 

ans Call answer � BR  
bz Busy tone � TO Time-out = 30 seconds 
hf Hook-flash � BR  
inf Information digits √   

oc Operation complete √ �  

of Operation failure √ �  

oi Operator interrupt √ �  

pst Permanent signal tone � TO Time-out = infinite 
rel Release call P BR  
res Resume call � BR  
rlc Release complete P, S BR  
ro Reorder tone � TO Time-out = 30 seconds 

sup Call setup P �  
sus Suspend call � BR  

The definition of the individual events and signals are as follows: 
NOTE � For specific technical details of the tones used, see ITU-T Rec. E.180/Q.35. 

Call answer (ans): The call answer signal informs the endpoint that the verified party has answered. 
This includes the case where the verified party was already off-hook. The endpoint is expected to 
pass on answer supervision to the OSS. 

Busy tone (bz): Station Busy. 

Hook flash (hf): This signal indicates that the verified party performed a hook-flash.  

Information digits (inf (<inf-digits>): Used on an incoming MF trunk to indicate digits received. 
The parameter value <inf-digits> are all of the digits accumulated up to and including the digit 
delimiter, i.e. ST, ST', ST'', or ST'''. 

The value of <inf-digits> is a comma-separated list of MF digits: 
 
MF1, MF2, …, MFn 

where each of the MFI will be one of the following MF digit symbols in Table A.VI.5:  

____________________ 
36  Note that when Operator Services are provided by an off-net provider, the OSS may not have access to 

subscriber databases to determine whether BLV and OI should be allowed or not. 



 

  ITU-T Rec. J.171 (02/2002) 85 

Table A.VI.5/J.171 � MF digit symbols 

Symbol MF digit Symbol MF digit 

0 MF 0 K0 MF K0 or KP 

1 MF 1 K1 MF K1 

2 MF 2 K2 MF K2 

3 MF 3 S0 MF S0 or ST 

4 MF 4 S1 MF S1 

5 MF 5 S2 MF S2 

6 MF 6 S3 MF S3 

7 MF 7 K0 MF K0 or KP 

8 MF 8   

9 MF 9   

Thus, an example signal or event might look like: 
 
inf(k0, 5,5,5,1,2,3,4, s0) 

An example where the inter-digit timer expired after the 5,5,5 would appear as follows: 
 
inf(k0, 5,5,5) 

Operation complete (oc): See the definition of "operation complete" in the ISUP trunk package. 

Operation failure (of): See the definition of "operation failure" in the ISUP trunk package. 

Operator interrupt (oi): The operator interrupt event occurs when the operator attempts to interrupt 
the call and generates the "operator interrupt" tone. Since no standard tone is defined for this, the 
event is here defined to occur when a certain level of energy is detected on the trunk corresponding 
to a transition from line noise to voice or tones. It should be noted that it is hereby not possible to 
detect a transition back to line noise from voice/tones.  

Permanent signal tone (pst): Release call (rel): The MGC may use the release signal to release the 
call37. In this case, the release signal may not be parameterized. 

The endpoint may in turn use the event to inform the MGC that it has released the call � in this case 
the event may be parameterized with one of the cause codes in Table A.VI.6 indicating the reason 
for the release: 

____________________ 
37  Note that the verifying operator normally controls release of completed no-test connections and the 

suspend signal should thus typically be used. 



 

86 ITU-T Rec. J.171 (02/2002) 

Table A.VI.6/J.171 � Release call cause codes 

Cause code Reason 

0 Normal release 
3 No route to destination 
8 Preemption 

19 No answer 
21 Call rejected 
27 Destination out of order 
28 Invalid number format (e.g. address incomplete) 
38 Network out of order 

111 Protocol/signalling error, unspecified (e.g. time-out) 

Resume call (res): This signal indicates that the verified party resumed the call, i.e. the party went 
off-hook. 

Release complete (rlc): The endpoint and MGC use the release complete event/signal to confirm the 
call has been released and the trunk is available for another call. 
Call set-up (sup): A "sup" event is used to indicate when an incoming call arrives (corresponding to 
the incoming off-hook event). The event is provided without parameters.  

Suspend call (sus): This signal indicates that the verified party suspended the call, i.e. the party went 
on-hook. 

 

 
Appendix A.VII 

 
Bibliography 

 

� Bellcore Notes on the Networks, Bellcore, SR-2275. 

� Compatibility Information for Feature Group D Switched Access Service, Bellcore, 
TR-NPL-000258, Issue 1, October 1985. 

� Interoffice LATA Switching Systems Generic Requirements (LSSGR): Verification 
Connections (25-05-0903), Bellcore, TR-TSY-000531, Issue 2, July 1987. 

� Signalling for Analog Interfaces, Bellcore, LSSGR GR-506-CORE, Issue 1, June 1996. 

� Switching System Generic Requirements for Call Control Using the Integrated Services 
Digital Network User Part (ISDNUP), Bellcore, LSSGR GR-317-CORE, Issue 2, 
December 1997. 

� Custom Call-Handling Features (FSD 80 Series), Bellcore, OSSGR GR-1176-CORE, 
Issue 1, March 1999. 

� IETF RFC 1827 (1995), IP Encapsulating Security Payload (ESP). 
� IETF RFC 2974 (Experimental), Session Announcement Protocol. 
� RTP Parameters, http://www.iana.org/assignments/rtp-parameters. 

 

 

http://www.isi.edu/in-notes/iana/assignments/rtp-parameters


 

  ITU-T Rec. J.171 (02/2002) 87 

Annex A.B 
 

TGCP Profile 2 

 

For further study based on ITU-T Rec. H.248. 





 

 



 

Geneva, 2002 

SERIES OF ITU-T RECOMMENDATIONS 

Series A Organization of the work of ITU-T 

Series B Means of expression: definitions, symbols, classification 

Series C General telecommunication statistics 

Series D General tariff principles 

Series E Overall network operation, telephone service, service operation and human factors 

Series F Non-telephone telecommunication services 

Series G Transmission systems and media, digital systems and networks 

Series H Audiovisual and multimedia systems 

Series I Integrated services digital network 

Series J Cable networks and transmission of television, sound programme and other multimedia 
signals 

Series K Protection against interference 

Series L Construction, installation and protection of cables and other elements of outside plant 

Series M TMN and network maintenance: international transmission systems, telephone circuits, 
telegraphy, facsimile and leased circuits 

Series N Maintenance: international sound programme and television transmission circuits 

Series O Specifications of measuring equipment 

Series P Telephone transmission quality, telephone installations, local line networks 

Series Q Switching and signalling 

Series R Telegraph transmission 

Series S Telegraph services terminal equipment 

Series T Terminals for telematic services 

Series U Telegraph switching 

Series V Data communication over the telephone network 

Series X Data networks and open system communications 

Series Y Global information infrastructure and Internet protocol aspects 

Series Z Languages and general software aspects for telecommunication systems 

  


	ITU-T Rec. J.171 (02/2002) IPCablecom Trunking Gateway Control Protocol (TGCP)
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Terms, definitions, abbreviations and conventions
	3.1 Definitions
	3.2 Abbreviations
	3.3 Convention

	Annex A - TGCP Profile 1
	A.1 Scope
	A.2 Media Gateway Control Interface (MGCI)
	A.3 Media Gateway Control Protocol
	A.4 Security
	Annex A.A - Event packages
	Appendix A.I - Mode interactions
	Appendix A.II - Example command encodings
	Appendix A.III - Example Call Flow
	Appendix A.IV - Endpoint requirements
	Appendix A.V - Compatibility information
	Appendix A.VI - Example event packages
	Appendix A.VII - Bibliography
	Annex A.B - TGCP Profile 2

