
 

 
 

 

I n t e r n a t i o n a l  T e l e c o m m u n i c a t i o n  U n i o n  

  

ITU-T  G.9904
TELECOMMUNICATION 
STANDARDIZATION SECTOR 
OF ITU 

(10/2012)  

 

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, 
DIGITAL SYSTEMS AND NETWORKS 

Access networks – In premises networks 

 
 Narrowband orthogonal frequency division 

multiplexing power line communication 
transceivers for PRIME networks 

 

Recommendation  ITU-T  G.9904 

 

 



 

ITU-T G-SERIES RECOMMENDATIONS 

TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS 

  
INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS G.100–G.199 
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER-
TRANSMISSION SYSTEMS 

G.200–G.299 

INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE 
SYSTEMS ON METALLIC LINES 

G.300–G.399 

GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS 
ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC 
LINES 

G.400–G.449 

COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY G.450–G.499 
TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS G.600–G.699 
DIGITAL TERMINAL EQUIPMENTS G.700–G.799 
DIGITAL NETWORKS G.800–G.899 
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM G.900–G.999 
MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER-
RELATED ASPECTS 

G.1000–G.1999 

TRANSMISSION MEDIA CHARACTERISTICS G.6000–G.6999 
DATA OVER TRANSPORT – GENERIC ASPECTS G.7000–G.7999 
PACKET OVER TRANSPORT ASPECTS G.8000–G.8999 
ACCESS NETWORKS G.9000–G.9999 

In premises networks G.9900–G.9999
  

For further details, please refer to the list of ITU-T Recommendations. 

 

 



 

  Rec. ITU-T G.9904 (10/2012) i 

Recommendation ITU-T G.9904 

Narrowband orthogonal frequency division multiplexing power line 
communication transceivers for PRIME networks 

 

 

Summary 

Recommendation ITU-T G.9904 contains the physical layer (PHY) and data link layer (DLL) 
specification for PRIME narrowband orthogonal frequency division multiplexing (OFDM) power 
line communication transceivers for communications via alternating current and direct current 
electric power lines over frequencies in the CENELEC A band.  

This Recommendation uses material from Recommendations ITU-T G.9955, ITU-T G.9956 and 
ITU-T G.9956 Amendment 1; specifically using material from Annex B of ITU-T G.9955, Annex B 
of ITU-T G.9956 and ITU-T G.9956 Amendment 1. New technical material has not been introduced 
in this version. 

The control parameters that determine spectral content, power spectral density (PSD) mask 
requirements and the set of tools to support the reduction of the transmit PSD can be found in 
Recommendation ITU-T G.9901. 

 

 

History 

Edition Recommendation Approval Study Group  

1.0 ITU-T G.9904 2012-10-29 15  
 

 

 

 

 



 

ii Rec. ITU-T G.9904 (10/2012) 

FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication 
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, 
operating and tariff questions and issuing Recommendations on them with a view to standardizing 
telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, 
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on 
these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 
prepared on a collaborative basis with ISO and IEC. 

 

 

 

NOTE 

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a 
telecommunication administration and a recognized operating agency. 

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain 
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the 
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some 
other obligatory language such as "must" and the negative equivalents are used to express requirements. The 
use of such words does not suggest that compliance with the Recommendation is required of any party. 

 

 

 

 

INTELLECTUAL PROPERTY RIGHTS 

ITU draws attention to the possibility that the practice or implementation of this Recommendation may 
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, 
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others 
outside of the Recommendation development process. 

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, 
protected by patents, which may be required to implement this Recommendation. However, implementers 
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the 
TSB patent database at http://www.itu.int/ITU-T/ipr/. 

 

 

 

 ITU 2013 

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the 
prior written permission of ITU. 

http://www.itu.int/ITU-T/ipr/


 

  Rec. ITU-T G.9904 (10/2012) iii 

Table of Contents 

 Page 

1 Scope ............................................................................................................................  1 

2 References.....................................................................................................................  1 

3 Definitions ....................................................................................................................  2 

4 Abbreviations and acronyms ........................................................................................  3 

5 Conventions ..................................................................................................................  6 

6 General description .......................................................................................................  6 

6.1 General description of the architecture ...........................................................  6 

7 Physical layer ................................................................................................................  7 

7.1 Introduction ....................................................................................................  7 

7.2 Overview ........................................................................................................  7 

7.3 PHY parameters ..............................................................................................  8 

7.4 Preamble, header and payload structure .........................................................  8 

7.5 Convolutional encoder ....................................................................................  11 

7.6 Scrambler ........................................................................................................  12 

7.7 Interleaver .......................................................................................................  12 

7.8 Modulation .....................................................................................................  13 

7.9 Electrical specification of the transmitter .......................................................  15 

7.10 PHY service specification ..............................................................................  16 

8 Data link layer specifications........................................................................................  30 

8.1 Overview ........................................................................................................  30 

8.2 Addressing ......................................................................................................  31 

8.3 MAC functional description ...........................................................................  34 

8.4 MAC PDU format ..........................................................................................  54 

8.5 MAC service access point ..............................................................................  77 

8.6 MAC procedures ............................................................................................  95 

8.7 Automatic repeat request (ARQ) ....................................................................  110 

9 Convergence layer ........................................................................................................  114 

9.1 Overview ........................................................................................................  114 

9.2 Common part convergence sublayer (CPCS) .................................................  114 

9.3 NULL specific service convergence sublayer (NULL SSCS) .......................  116 

9.4 IPv4 specific service convergence sublayer (IPv4 SSCS) .............................  117 

9.5 IEC 61334-4-32 specific service convergence sublayer (IEC 61334-4-32 
SSCS) .............................................................................................................  129 

9.6 IPv6 service-specific convergence sublayer (IPv6 SSCS) .............................  133 



 

iv Rec. ITU-T G.9904 (10/2012) 

 Page 

10 Management plane ........................................................................................................  148 

10.1 Introduction ....................................................................................................  148 

10.2 Node management ..........................................................................................  149 

10.3 Firmware upgrade ...........................................................................................  162 

10.4 Management interface description .................................................................  179 

10.5 List of mandatory PIB attributes ....................................................................  184 

Annex A – EVM and SNR calculation ....................................................................................  187 

Annex B – MAC layer constants .............................................................................................  188 

Annex C – Convergence layer constants .................................................................................  189 

Appendix I – Examples of CRC ..............................................................................................  190 

Appendix II – Interleaving matrices ........................................................................................  191 

 

 

 

 

 

 



 

  Rec. ITU-T G.9904 (10/2012) 1 

Recommendation ITU-T G.9904 

Narrowband orthogonal frequency division multiplexing power line 
communication transceivers for PRIME networks 

1 Scope  

This Recommendation contains the physical layer (PHY) and data link layer (DLL) specification 
for PRIME narrowband orthogonal frequency division multiplexing (OFDM) power line 
communication transceivers for communications via alternating current and direct current electric 
power lines over frequencies below 500 kHz. This Recommendation supports indoor and outdoor 
communications over low-voltage lines, medium-voltage lines, through transformer low-voltage to 
medium-voltage and through transformer medium-voltage to low-voltage power lines in both urban 
and in long distance rural communications. This Recommendation addresses grid to utility meter 
applications, advanced metering infrastructure (AMI), and other 'Smart Grid' applications such as 
the charging of electric vehicles, home automation and home area networking (HAN) 
communications scenarios.  

This Recommendation removes the control parameters that determine spectral content, power 
spectral density (PSD) mask requirements, and the set of tools to support reduction of the transmit 
PSD, all of which have been moved to [ITU-T G.9901]. 

2 References  

The following ITU-T Recommendations and other references contain provisions which, through 
reference in this text, constitute provisions of this Recommendation. At the time of publication, the 
editions indicated were valid. All Recommendations and other references are subject to revision; 
users of this Recommendation are therefore encouraged to investigate the possibility of applying the 
most recent edition of the Recommendations and other references listed below. A list of the 
currently valid ITU-T Recommendations is regularly published. The reference to a document within 
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation. 

[ITU-T G.9901]  Recommendation ITU-T G.9901 (2012), Narrowband orthogonal frequency 
division multiplexing power line communication transceivers – Power 
spectral density specification. 

[IEC 61334-4-1] IEC 61334-4-1 Ed.1996, Distribution automation using distribution line 
carrier systems – Part 4: Data communication protocols – Section 1: 
Reference model of the communication system. 

[IEC 61334-4-32] IEC 61334-4-32 Ed.1996, Distribution automation using distribution line 
carrier systems – Part 4: Data communication protocols – Section 32: Data 
link layer – Logical link control (LLC). 

[IEC 61334-4-511] IEC 61334-4-511 Ed. 2000, Distribution automation using distribution line 
carrier systems – Part 4-511: Data communication protocols – Systems 
management – CIASE protocol. 

[IEC 61334-4-512] IEC 61334-4-512, Ed. 1.0:2001, Distribution automation using distribution 
line carrier systems – Part 4-512: Data communication protocols – System 
management using profile 61334-5-1 – Management Information Base (MIB). 

[IEEE 802-2001] IEEE Std 802-2001 (R2007), IEEE Standard for Local and Metropolitan 
Area Networks. Overview and Architecture.  

[IETF RFC 768] IETF RFC 768 (1980), User Datagram Protocol (UDP). 



 

2 Rec. ITU-T G.9904 (10/2012) 

[IETF RFC 791] IETF RFC 791 (1981), Internet Protocol, DARPA Internet Program, Protocol 
Specification. 

[IETF RFC 793] IETF RFC 793 (1981), Transmission Control Protocol (TCP). 

[IETF RFC 1144] IETF RFC 1144 (1990), Compressing TCP/IP Headers for Low-Speed Serial 
Links. 

[IETF RFC 2131] IETF RFC 2131 (1997), Dynamic Host Configuration Protocol (DHCP). 

[IETF RFC 2460] IETF RFC 2460 (1998), Internet Protocol, Version 6 (IPv6) Specification. 

[IETF RFC 2462] IETF RFC 2462 (1998), IPv6 Stateless Address Autoconfiguration. 

[IETF RFC 2464] IETF RFC 2464 (1998), Transmission of IPv6 Packets over Ethernet 
Networks.  

[IETF RFC 3022] IETF RFC 3022 (2001), Traditional IP Network Address Translator 
(Traditional NAT). 

[IETF RFC 3315] IETF RFC 3315 (2003), Dynamic Host Configuration Protocol for IPv6 
(DHCPv6). 

[IETF RFC 4291] IETF RFC 4291 (2006), IP Version 6 Addressing Architecture. 

[IETF RFC 4862] IETF RFC 4862 (2007), Ipv6 Stateless Address Autoconfiguration. 

[IETF RFC 6282] IETF RFC 6282 (2011), Compression Format for IPv6 Datagrams over 
IEEE 802.15.4-Based Networks. 

[EN 50065-1]  CENELEC EN 50065-1 (2011), Signalling on low-voltage electrical 
installations in the frequency range 3 kHz to 148,5 kHz – Part 1: General 
requirements, frequency bands and electromagnetic disturbances. 

[PUB 197]   NIST FIPS PUB 197 (2001), Advanced Encryption Standard (AES). 

[SP 800-38A]  NIST SP 800-38A (2001), Recommendation for Block Cipher Modes of 
Operation. Methods and Techniques.  

[SP 800-57]   NIST SP 800-57 (2007), Recommendation for Key Management – Part 1: 
General (Revised).  

3 Definitions  

3.1 Terms defined elsewhere 

None. 

3.2 Terms defined in this Recommendation 

This Recommendation defines the following terms: 

3.2.1 base node: The master node which controls and manages the resources of a subnetwork. 

3.2.2 beacon slot: The location of the beacon PDU within a frame. 

3.2.3 destination node: A node that receives a frame. 

3.2.4 downlink: Data travelling in the direction from the base node towards the service nodes. 

3.2.5 level (PHY layer): When used in the physical layer (PHY) context, it implies the transmit 
power level. 

3.2.6 level (MAC layer): When used in the medium access control (MAC) context, it implies the 
position of the reference device in switching hierarchy. 



 

  Rec. ITU-T G.9904 (10/2012) 3 

3.2.7 MAC frame: A composite unit of abstraction of time for channel usage. A MAC frame is 
comprised of one or more beacons, one SCP, and zero or one CFP. The transmission of the beacon 
by the base node acts as a delimiter for the MAC frame. 

3.2.8 neighbour node: Node A is neighbour node of node B if A can directly transmit to and 
receive from B. 

3.2.9 node: Any one element of a subnetwork which is able to transmit to and receive from other 
subnetwork elements. 

3.2.10 PHY frame: The set of OFDM symbols and preamble which constitute a single PHY layer 
protocol data unit (PPDU). 

3.2.11 preamble: The initial part of a PHY frame, used for synchronization purposes. 

3.2.12 registration: The process by which a service node is accepted as member of a subnetwork 
and allocated an LNID. 

3.2.13 service node: Any one node of a subnetwork which is not a base node. 

3.2.14 source node: A node that sends a frame. 

3.2.15 subnetwork: A set of elements that can communicate by complying with this 
Recommendation and share a single base node. 

3.2.16 subnetwork address: The property that universally identifies a subnetwork. It is its base 
node EUI-48 address. 

3.2.17 switching: Providing connectivity between nodes that are not neighbour nodes. 

3.2.18 unregistration: The process by which a service node leaves a subnetwork. 

3.2.19 uplink: Data travelling in the direction from the service node towards the base node. 

4 Abbreviations and acronyms 

This Recommendation uses the following abbreviations and acronyms: 

AC Alternating Current 

ADC Analogue-to-Digital Converter 

AES Advanced Encryption Standard 

AMM Advanced Meter Management 

ARQ Automatic Repeat request 

ATM Asynchronous Transfer Mode 

BER Bit Error Rate 

BPDU Beacon PDU 

BPSK Binary Phase Shift Keying 

BSI Beacon Slot Information 

CFP Contention-Free Period 

CID Connection Identifier 

CL Convergence Layer 

ClMTUSize Convergence layer Maximum Transmit Unit Size 

CPCS Common Part Convergence Sublayer 



 

4 Rec. ITU-T G.9904 (10/2012) 

CRC Cyclic Redundancy Check 

CSMA-CA Carrier Sense Multiple Access-Collision Avoidance 

D8PSK Differential Eight-Phase Shift Keying 

DBPSK Differential Binary Phase Shift Keying 

DHCP Dynamic Host Configuration Protocol 

DPSK Differential Phase Shift Keying (general) 

DQPSK Differential Quaternary Phase Shift Keying 

DSK Device Secret Key 

ECB Electronic Code Book 

EMA Exponential Moving Average 

ENOB Effective Number Of Bits 

EUI-48 48-bit Extended Unique Identifier 

EVM Error Vector Magnitude 

FCS Frame Check Sequence 

FEC Forward Error Correction 

FFT Fast Fourier Transform 

FU Firmware Upgrade 

GK Generation Key 

GPDU Generic MAC PDU 

HCS Header Check Sum 

IFFT Inverse Fast Fourier Transform 

IGMP Internet Group Management Protocol 

IPv4 Internet Protocol version 4 

IPv6 Internet Protocol version 6 

KDIV Key Diversifier 

LCID Local Connection Identifier 

LFSR Linear Feedback Shift Register 

LLC Logical Link Control 

LNID Local Node Identifier 

LSID Local Switch Identifier 

LWK Local Working Key 

MAC Medium Access Control 

MK Master Key 

MLME MAC Layer Management Entity 

MOL Maximal Output Level 

MPDU MAC Protocol Data Unit 

MSB Most Significant Bit 



 

  Rec. ITU-T G.9904 (10/2012) 5 

MSDU MAC Service Data Unit 

MSPS Million Samples Per Second 

MTU Maximum Transmission Unit 

NAT Network Address Translation 

NID Node Identifier 

NSK Network Secret Key 

OFDM Orthogonal Frequency Division Multiplexing 

PDU Protocol Data Unit 

PHY Physical Layer 

PIB PLC Information Base 

PLC Power Line Communications 

PLME PHY Layer Management Entity 

PNPDU Promotion Needed PDU 

PPDU PHY Protocol Data Unit 

ppm Parts per million 

PRBS Pseudo-Random Binary Sequence 

PSD Power Spectral Density 

PSDU PHY Service Data Unit 

QoS Quality of Service 

SAP Service Access Point 

SAR Segmentation And Reassembly 

SCP Shared-Contention Period 

SCRC Secure CRC 

SDU Service Data Unit 

SEC Security 

SID Switch Identifier 

SNA Subnetwork Address 

SNK Subnetwork Key (corresponds to either REG.SNK or SEC.SNK) 

SNR Signal to Noise Ratio 

SP Security Profile 

SSCS Service Specific Convergence Sublayer 

SWK Subnetwork Working Key 

TCP Transmission Control Protocol 

TOS Type Of Service 

UI Unique Identifier 

USK Unique Secret Key 

VJ Van Jacobson 



 

6 Rec. ITU-T G.9904 (10/2012) 

WK Working Key 

5 Conventions 

Binary numbers are indicated by the prefix '0b' followed by the binary digits, e.g., '0b0101'. 
Hexadecimal numbers are indicated by the prefix '0x', e.g., '0x0F'. 

Mandatory requirements are indicated with 'shall' in the main body of this Recommendation. 

Optional requirements are clearly indicated. If an option is incorporated in an implementation, it 
shall be applied as specified in this Recommendation. 

roof (.) denotes rounding to the closest higher or equal integer. 

floor (.) denotes rounding to the closest lower or equal integer. 

A mod B denotes the remainder (from 0, 1, …, B-1) obtained when an integer A is divided by an 
integer B. 

6 General description  

This Recommendation provides a solution for power line communications in the bands specified by 
the main body and Annex C of [ITU-T G.9901] using OFDM modulation. This solution focuses on 
providing a very robust communication channel in applications such as advanced meter 
management (AMM). The target transmission rate is in the order of tens of kilobits per second. 

6.1 General description of the architecture  

Figure 6-1 depicts the communication layers and the scope of this Recommendation.  

 

Figure 6-1 – Reference model of ITU-T G.9904 protocol layers 

The convergence layer (CL) classifies traffic associating it with its proper MAC connection. This 
layer performs the mapping of any kind of traffic to be properly included in MAC service data units 
(MSDUs). It may also include compression functions. Several SSCSs are defined to accommodate 
different kinds of traffic into MSDUs. 

The MAC layer provides core MAC functionalities of system access, bandwidth allocation, 
connection establishment/maintenance and topology resolution. 

The PHY layer transmits and receives MPDUs between neighbour nodes using orthogonal 
frequency division multiplexing (OFDM). OFDM is chosen as the modulation technique mainly 
because of the following: 

– its inherent adaptability in the presence of frequency selective channels (which are quite 
common but unpredictable, due to narrowband interference or unintentional jamming); 

– its robustness to impulsive noise , resulting from extended symbol duration and use of FEC; 



 

  Rec. ITU-T G.9904 (10/2012) 7 

– its capacity for achieving high spectral efficiencies with simple transceiver 
implementations. 

7 Physical layer 

7.1 Introduction 

This clause specifies the physical layer (PHY) entity for an OFDM based PLC communications 
scheme in the bands specified in the main body and Annex C of [ITU-T G.9901]. 

Differential modulation is used with three possible constellations: DBPSK, DQPSK or D8PSK. 
Thus, theoretical uncoded speeds of around 47 kbit/s, 94 kbit/s, and 141 kbit/s (without a cyclic 
prefix overhead) could be obtained. 

An additive scrambler is used to avoid the occurrence of long sequences of identical bits. 

Finally, rate ½ convolutional coding will be used along with bit interleaving. This can be disabled 
by higher layers if the channel is good enough and higher throughputs are needed. 

7.2 Overview  

Figure 7-1 shows the PHY layer transmitter block diagram. 

On the transmitter side, the PHY layer receives an MPDU from the MAC layer and generates a 
PHY frame. If decided by higher layers, the PPDU after the CRC block is convolutionally encoded 
and then interleaved (however, it will always be scrambled). The output is differentially modulated 
using a DBPSK, DQPSK or D8PSK scheme. The next step is OFDM, which comprises the inverse 
fast Fourier transform (IFFT ) block and the cyclic prefix generator. 

G.9955(11)_FB-2

CRC scrambler
convolutional

encoder
interleaver

sub-carrier
modulator

IFFT
cyclic
prefix

CRC scrambler
convolutional

encoder
interleaver

sub-carrier
modulator

IFFT
cyclic
prefix

 

Figure 7-1 – PHY layer transmitter 

The structure of the PHY frame is shown in Figure 7-2. Each PHY frame starts with a preamble 
lasting 2.048 ms, followed by a number of OFDM symbols, each lasting 2.24 ms. The first two 
OFDM symbols carry the PHY frame header. The PHY header is also generated as described in 
clause 7.4. The remaining M OFDM symbols carry payload, generated as described in clause 7.4. 
The value of M is signalled in the PHY header, and is at most equal to 63.  

 

Figure 7-2 – PHY frame format 



 

8 Rec. ITU-T G.9904 (10/2012) 

7.3 PHY parameters  

PHY parameters are defined in clause C.2 of [ITU-T G.9901]. 

There are parameters which depend on the modulation of each OFDM subcarrier. 

Table 7-1 shows the PHY data rate during payload transmission, and the maximum MSDU length 
for various modulation and coding combinations. 

Table 7-1 – PHY data rates for each modulation with the FEC on and off 

 DBPSK DQPSK D8PSK 

Convolutional code (½) On Off On Off On Off 

Information bits per subcarrier, NBPSC 0.5 1 1 2 1.5 3 

Information bits per OFDM symbol, NBPS 48 96 96 192 144 288 

Raw data rate (kbit/s approx) 21.4 42.9 42.9 85.7 64.3 128.6 

Maximum MSDU length (in bits) with 
63 symbols 3016 6048 6040 12096 9064 18144 

Maximum MSDU length (in bytes) with 
63 symbols 377 756 755 1512 1133 2268 

Table 7-2 shows the modulation and coding scheme and the size of the header portion of the PHY 
frame  

Table 7-2 – Header parameters 

 DBPSK 

Convolutional code (½) On 

Information bits per subcarrier, NBPSC 0.5 

Information bits per OFDM symbol, NBPS 42 

It is strongly recommended that all frequencies used to generate the OFDM transmit signal come 
from one single frequency reference. The system clock shall have a maximum tolerance of 
±50 ppm, including ageing. 

7.4 Preamble, header and payload structure 

7.4.1 Preamble  

The preamble is used at the beginning of every PPDU for synchronization purposes. In order to 
provide a maximum of energy, a constant envelope signal is used instead of OFDM symbols. There 
is also a need for the preamble to have frequency agility that will allow synchronization in the 
presence of frequency selective attenuation and of course, excellent aperiodic autocorrelation 
properties are mandatory. A linear chirp signal meets all the above requirements. The waveform of 
the preamble is defined as: 

  ( ) ( ) ( )[ ]22/12πcos/ ttfTtrectA=tS oCH μ+⋅⋅  

where T, f0, ff, and μ are defined in clause C.3 of [ITU-T G.9901]. 

rect(·) function is defined as: 

  
( )
( ) otherwise,=trect

<t<,=trect

0

101
 



 

  Rec. ITU-T G.9904 (10/2012) 9 

7.4.2 Pilot structure  

The two OFDM symbols comprising the PHY header shall contain 13 pilot subcarriers which can 
be used to estimate the sampling start error and the sampling frequency offset. 

For subsequent OFDM symbols, one pilot subcarrier is used to provide a phase reference for 
frequency domain DPSK demodulation. 

Pilot subcarrier frequency allocation is shown in Figures 7-3 and 7-4, where Pi is the i-th pilot 
subcarrier and Di is the j-th data subcarrier. 

 

Figure 7-3 – Pilot and data subcarrier allocation (OFDM symbols vs subcarriers) 

G.9955(11)_FB-5

… … … … … … … … … … … …

P1 D1 D7 P2 D8 D14 P3 D15 D21 P4 D22 D28 P5 D29 D35 P6 D36 D42 P7 D43 D49 P8 D50 D56 P9 D57 D63 P10 D64 D70 P11 D71 D77 P12 D78 D84 P13

… … … … … … … … … … … …

117 118 119        125 126 127      133 134 135      141 142 143        149 150 151     157 158 159      165 166 167 173 174 175        181 182

Sub-carrier number(FFT 512)

86 87      93 94 95        101 102 103      109 110 111     

 

Figure 7-4 – Pilot and data subcarrier frequency allocation inside the header 

Pilot subcarriers shall be BPSK modulated by a pseudo-random binary sequence (PRBS) to prevent 
the generation of spectral lines. The phase of the pilot subcarriers is controlled by the PRBS 
sequence which is a cyclic extension of the 127 bit sequence given by: 

Pref0..126 = 

{0,0,0,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,1,1,0,0,0,1,0,1,1,1,0,1,0,1,1, 
0,1,1,0,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,0,1,1,1,0,0,1,1,1,1,0,1,1,0,1,0,0,0,0,1,0,1,0,1,0,1,1,1,1,1,0,1,0,0,
1,0,1,0,0,0,1,1,0,1,1,1,0,0,0,1,1,1,1,1,1,1} 



 

10 Rec. ITU-T G.9904 (10/2012) 

where '1' means 180° phase shift and '0' means 0° phase shift. One bit of the sequence will be used 
per pilot subcarrier, starting with the first pilot subcarrier in the first OFDM symbol, then the next 
pilot subcarrier, and so on. The same process is used for the second OFDM symbol. For subsequent 
OFDM symbols, one element of the sequence is used for the pilot subcarrier (see Figure 7-3). 

The PRBS sequence can be generated by the scrambler defined in Figure 7-5 when the "all-ones" 
initial state is used. 

G.9955(11)_FB-6

Output
Sequence

1 1 1 1 1 11

 

Figure 7-5 – LFSR for use in pilot sequence generation 

The loading of the PRBS sequence shall be initiated at the start of every PPDU, just after the 
preamble. 

7.4.3 PHY header and payload  

The PHY header is composed of two OFDM symbols which are always sent using DBPSK 
modulation and FEC (convolutional coding) 'On'. However the payload is DBPSK, DQPSK or 
D8PSK modulated, depending on the configuration by the MAC layer. The MAC layer selects the 
modulation scheme, e.g., using information from errors in previous transmissions to the same 
receiver(s), or by using the SNR feedback. Thus, the system will then configure itself dynamically 
to provide the best compromise between throughput and efficiency in the communication. This 
includes deciding whether or not FEC (convolutional coding) is used. 

The first two OFDM symbols in the PPDU corresponding to the PHY header are composed of 
84 data subcarriers and 13 pilot subcarriers. After the PHY header, each OFDM symbol in the 
payload carries 96 data subcarriers and one pilot subcarrier. Each data subcarrier carries 1, 2 or 
3 bits. 

The bit stream from each field shall be sent MSB first. See Figure 7-6. 

G.9955(11)_FB-7

8xM

FLUSHING_D

8

PAD

8

PAYLOADHEADER

bits6

MAC_H

54

CRC _Ctrl

8

FLUSHING _H

6

MSDUPROTOCOL

4

LEN

6

PAD _LEN

 

Figure 7-6 – PPDU: PHY header and payload (bits transmitted before encoding) 



 

  Rec. ITU-T G.9904 (10/2012) 11 

PHY HEADER: Each PPDU contains both PHY and MAC header information. It is composed of 
the following fields: 

• PROTOCOL: contains the transmission scheme of the payload. Added by the PHY layer. 

 

Figure 7-7 – "PROTOCOL" field of the PPDU 

• Where RES means "reserved" and the suffix "_F" means FEC is 'On'. 

• LEN: defines the length of the payload (after coding) in OFDM symbols. Added by the 
PHY layer. 

• PAD_LEN: defines the length of the PAD field (before coding) in bytes. Added by the 
PHY layer. 

• MAC_H: MAC layer header. It is included inside the header symbols to protect the 
information contained. The MAC header is generated by the MAC layer and only the first 
54 bits of the MAC header are embedded in the PHY header. 

• CRC_Ctrl: the CRC_Ctrl(m), m = 0..7, contains the CRC checksum over PROTOCOL, 
LEN, PAD_LEN and MAC_H field (PD_Ctrl). The polynomial form of PD_Ctrl is 
expressed as follows: 

  
69

0=m

m
Ctrl(m)xPD  

 The checksum is calculated as follows: the remainder of the division of PD_Ctrl by the 

polynomial 18 +x+x+x 2 forms CRC_Ctrl(m), where CRC_Ctrl(0) is the LSB. The 
generator polynomial is the well-known CRC-8-ATM. Some examples are shown in 
Appendix I. 

• FLUSHING_H: flushing bits needed for convolutional decoding. All bits in this field are 
set to zero to reset the convolutional encoder. Added by the PHY layer. 

PAYLOAD: 

• MSDU: uncoded MAC layer service data unit. 

• FLUSHING_P: flushing bits needed for convolutional decoding. All bits in this field are set 
to zero to reset the convolutional encoder. This field only exists when FEC is 'On'. 

• PAD: In order to ensure that the number of (coded) bits generated in the payload fills an 
integer number of OFDM symbols, pad bits shall be added to the payload before encoding. 
All pad bits shall be set to zero. 

7.5 Convolutional encoder  

The uncoded PHY stream can be convolutionally encoded to form the encoded PHY stream. The 
encoder is a rate ½ convolutional encoder with constraint length K = 7 and code generator 
"polynomials" 1111001 and 1011011. At the beginning, the encoder state is set to zero. At the end 
of the transmission of either the header or the payload, zeroes shall be inserted to flush the encoder 
(8 zeros for the PHY header and 6 zeros for the payload). The bit generated by the first code 
generator is first output. The block diagram of the encoder is shown in Figure 7-8. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DBPSK DQPSK D8PSK RES DBPSK_F DQPSK_F D8PSK_F RES RES RES RES RES RES RES RES RES



 

12 Rec. ITU-T G.9904 (10/2012) 

G.9955(11)_FB-8

Input

First output

Second output

1

1

1

0

1

1

1

1

0

0

0

1

1

1

Z-1 Z-1 Z-1 Z-1 Z-1 Z-1

 

Figure 7-8 – Convolutional encoder 

7.6 Scrambler  

The scrambler block randomizes the bit stream so it reduces the crest factor at the output of the 
IFFT. Scrambling shall always be performed. 

The scrambler block performs an XOR of the input bit stream using a pseudo noise sequence pn 
obtained by a cyclic extension of the 127 element sequence given by: 

Pref0..126 = 

{0,0,0,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,1,1,0,0,0,1,0,1,1,1,0,1,0,1,1,0
,1,1,0,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,0,1,1,1,0,0,1,1,1,1,0,1,1,0,1,0,0,0,0,1,0,1,0,1,0,1,1,1,1,1,0,1,0,0,1,
0,1,0,0,0,1,1,0,1,1,1,0,0,0,1,1,1,1,1,1,1} 

The PRBS sequence can be generated by the scrambler defined in Figure 7-9 when the "all-ones" 
initial state is used. 

G.9955(11)_FB-9

Output
Sequence1 1 1 1 1 11

Input
Sequence

 

Figure 7-9 – LFSR for use in the scrambler block 

Loading of the sequence pn shall be initiated at the start of every PPDU, just after the preamble. 

7.7 Interleaver  

Because of the frequency fading (narrowband interference) of typical power line channels, OFDM 
subcarriers are generally received at different amplitudes. Deep fades in the spectrum may cause 
groups of subcarriers to be less reliable than others, thereby causing bit errors to occur in bursts 
rather than be randomly scattered. If (and only if) coding is used as described in clause 7.4, 
interleaving is applied to randomize the occurrence of bit errors prior to decoding. At the 



 

  Rec. ITU-T G.9904 (10/2012) 13 

transmitter, the coded bits are permuted in a certain way, which ensures that adjacent bits are 
separated by several bits after interleaving. 

Let NCBPS = 2×NBPS be the number of coded bits per OFDM symbol in the cases where 
convolutional coding is used. All coded bits shall be interleaved by a block interleaver with a block 
size corresponding to NCBPS. The interleaver ensures that adjacent coded bits are mapped onto 
non-adjacent data subcarriers. Let v(k), with k = 0,1,…, NCBPS–1, be the coded bits vector at the 
interleaver input. v(k) is transformed into an interleaved vector w(i), with i = 0,1,…, NCBPS–1, by the 
block interleaver as follows: 

  w((NCBPS /s) × (k mod s) + floor(k / s)) = v(k)                k = 0,1,…,NCBPS–1. 

The value of s is determined by the number of coded bits per subcarrier, NCBPSC = 2 × NBPSC. NCBPSC 
is related to NCBPS so that NCBPS = 96×NCBPSC (payload) and NCBPS = 84×NCBPSC (header) 

  s = 8 × (1+ floor(NCBPSC / 2)) for the payload and  

  s = 7 for the header. 

The de-interleaver performs the inverse operation. Hence, if w'(i), with i = 0,1,…, NCBPS–1, is the 
de-interleaver vector input, the vector w'(i) is transformed into a de-interleaved vector v'(k), with 
k = 0,1,…,NCBPS–1, by the block de-interleaver as follows: 

 v'(s × i – (NCBPS–1) × floor(s × i / NCBPS)) = w'(i)                i = 0,1,…,NCBPS–1. 

Descriptive tables showing index permutations can be found in Appendix II for reference. 

7.8 Modulation  

The PPDU payload is modulated as a multicarrier differential phase shift keying signal with one 
pilot subcarrier and 96 data subcarriers that comprise 96, 192 or 288 bits per symbol. The header is 
modulated DBPSK with 13 pilot subcarriers and 84 data subcarriers that comprise 84 bits per 
symbol. 

The bit stream coming from the interleaver is divided into groups of M bits where the first bit of the 
group of M is the most significant bit (MSB). 

Frequency domain differential modulation is performed. Figure 7-10 shows the DBPSK, DQPSK 
and D8PSK mapping. 

G.9955(11)_FB-10

10

0011

01

I

Q

Msb Lsb

DQPSK

101

000110

011

I

010

111

001

100

Msb Lsb

Q

DBPSK

Q

D8PSK

1 0

Q

I

Q

Msb Lsb

 

Figure 7-10 – DBPSK, DQPSK and D8PSK mapping 



 

14 Rec. ITU-T G.9904 (10/2012) 

The next equation defines the M-ary DPSK constellation of M phases: 

  
kjθ

k Ae=s  

where: 

 k is the frequency index representing the k-th subcarrier in an OFDM symbol. 
k = 1 corresponds to the phase reference pilot subcarrier. 

 sk is the modulator output (a complex number) for the k-th given subcarrier. 

 θk stands for the absolute phase of the modulated signal obtained as follows: 

  ( )( ) 2π mod /2π1 kkk ΔbM+θ=θ −  

This equation applies for k > 1 in the payload, the k = 1 subcarrier being the phase reference pilot. 
When the header is transmitted, the pilot allocated in the k-th subcarrier is used as a phase reference 
for the data allocated in the k+1-th subcarrier. 

• { }1...10 −∈ M,,,Δbk  represents the information coded in the phase increment, as supplied by 

the constellation encoder. 

• M = 2, 4, or 8 in the case of DBPSK, DQPSK or D8PSK, respectively. 

 A represents the ring radius from the centre of the constellation.  

The OFDM symbol can be expressed in mathematical form: 

 














 −−






 −− 

426

330

182

86 512
exp427

512
exp85

=k
CP

=k
CPi )N(n

j2π2
i)k,s(+)N(n

j2π2
i),s(k=(n)c  

 i is the time index representing the i-th OFDM symbol; i = 0,1,…M+1 

 n is the sample index; 48 ≤ n ≤ 559 s(k,i) is the complex value from the 
subcarrier modulation block and the symbol * denotes complex conjugate. 

If a complex 512-point IFFT is used, the 96 subcarriers shall be mapped as shown in Figure 7-11. 
The symbol '*' represents complex conjugate. 



 

  Rec. ITU-T G.9904 (10/2012) 15 

...
...

...
..

.
...

...
G.9955(11)_FB-11

F
re

qu
en

cy
 d

om
ai

n 
in

pu
ts

T
im

e 
do

m
ai

n 
ou

tp
ut

s

IFFT

Null

Null

#1*

#97*

Null

Null

#97

#1

Null

Null

511

427

426

330

329

183

182

86

85

0 0

1

2

511

 

Figure 7-11 – Subcarrier mapping 

After the inverse Fourier transform, the symbol is cyclically extended by 48 samples to create the 
cyclic prefix (NCP). 

7.9 Electrical specification of the transmitter 

7.9.1 General 

The following requirements establish the minimum technical transmitter requirements for 
interoperability and adequate transmitter performance. These requirements are specified in 
[ITU-T G.9901]. 

7.9.2 Transmit PSD 

See clause C.4.2 of [ITU-T G.9901]. 

7.9.3 Error vector magnitude (EVM) 

The quality of the injected signal with regard to the artificial mains network impedance shall be 
measured in order to validate the transmitter device. Accordingly, a vector analyser that provides 
EVM measurements (EVM meter) shall be used, see Annex A for an EVM definition. The test set-
up described in Figures 4 and 6 of [EN 50065-1] shall be used in the case of single-phase devices 
and three-phase devices transmitting simultaneously on all phases, respectively. 



 

16 Rec. ITU-T G.9904 (10/2012) 

G.9904(12)_F7-12

M

G

BPF
ADC

EVM
processing

 

Figure 7-12 – EVM meter (block diagram) 

The EVM meter shall include a band pass filter with an attenuation of 40 dB at 50 Hz that ensures 
anti-aliasing for the analogue-to-digital converter (ADC).  

The minimum performance of the ADC is 1 MSPS, 14-bit effective number of bits (ENOB). The 
ripple and the group delay of the band pass filter must be accounted for in EVM calculations. 

7.9.4 Conducted disturbance limits 

See clause C.4.3 of [ITU-T G.9901]. 

7.10 PHY service specification  

7.10.1 General 

The PHY shall have a single 20-bit free-running clock incremented in steps of 10 μsec. The clock 
counts from 0 to 1048575, then overflows back to 0. As a result the period of this clock is 
10.48576 seconds. The clock is never stopped or restarted. Time measured by this clock is the one 
to be used in some PHY primitives to indicate a specific instant in time. 

7.10.2 PHY data plane primitives  

7.10.2.1 General 

G.9955(11)_FB-15bis

MAC PHY

PHY_DATA.indication

PHY_DATA.request

PHY_DATA.confirm

 

Figure 7-13 – Overview of PHY primitives 

The request primitive is passed from the MAC to the PHY to request the initiation of a service. 

The indication and confirm primitives are passed from the PHY to the MAC to indicate an internal 
PHY event that is significant to MAC. This event may be logically related to a remote service 
request or may be caused by an event internal to PHY. 



 

  Rec. ITU-T G.9904 (10/2012) 17 

7.10.2.2 PHY_DATA.request  

7.10.2.2.1 Function  

The PHY_DATA.request primitive is passed to the PHY layer entity to request the sending of a 
PPDU to one or more remote PHY entities using the PHY transmission procedures. It also allows 
setting the time at which the transmission shall be started. 

7.10.2.2.2 Structure  

The semantics of this primitive are as follows: 

 PHY_DATA.request{MPDU, Length, Level, Scheme, Time}. 

The MPDU parameter specifies the MAC protocol data unit to be transmitted by the PHY layer 
entity. It is mandatory for implementations to byte-align the MPDU across the PHY-SAP. This 
implies 2 extra bits (due to the non-byte-aligned nature of the MAC layer header) to be located at 
the beginning of the header. 

The Length parameter specifies the length of the MPDU in bytes. The length shall be 2 bytes long. 

The Level parameter specifies the output signal level according to which the PHY layer transmits 
the MPDU. It may take one of eight values: 

0: maximal output level (MOL) 

1: MOL –3 dB 

2: MOL –6 dB 

… 

7: MOL –21 dB. 

The Scheme parameter specifies the transmission scheme to be used for the MPDU. It may have any 
of the following values: 

0: DBPSK 

1: DQPSK 

2: D8PSK 

3: not used 

4: DBPSK + convolutional code 

5: DQPSK + convolutional code 

6: D8PSK + convolutional code 

7: not used. 

The Time parameter specifies the instant in time in which the MPDU has to be transmitted. It is 
expressed in tens of μsec and may take values from 0 to 220 – 1.  

The Time parameter shall be calculated by the MAC, taking into account the current PHY time 
obtained by PHY_timer.get primitive. The MAC shall account for the fact that no part of the PPDU 
can be transmitted during beacon slots and CFP periods granted to other devices in the network. If 
the Time parameter is set such that these rules are violated, the PHY will return a fail in 
PHY_Data.confirm. 

7.10.2.2.3 Use  

The primitive is generated by the MAC layer entity whenever data is to be transmitted to a peer 
MAC entity or entities. 



 

18 Rec. ITU-T G.9904 (10/2012) 

The reception of this primitive will cause the PHY entity to perform all the PHY-specific actions 
and pass the properly formed PPDU for transfer to the peer PHY layer entity or entities. The next 
transmission shall start when Time = Timer. 

7.10.2.3 PHY_DATA.confirm  

7.10.2.3.1 Function  

The PHY_DATA.confirm primitive has only local significance and provides an appropriate 
response to a PHY_DATA.request primitive. The PHY_DATA.confirm primitive tells the MAC 
layer entity whether or not the MPDU of the previous PHY_DATA.request has been successfully 
transmitted. 

7.10.2.3.2 Structure  

The semantics of this primitive are as follows: 

PHY_DATA.confirm{Result}. 

The Result parameter is used to pass status information back to the local requesting entity. It is used 
to indicate the success or failure of the previous associated PHY_DATA.request. Some results will 
be standard for all implementations: 

0: success 

1: too late (the time for transmission has passed) 

2: invalid length 

3: invalid scheme 

4: invalid level 

5: buffer overrun 

6: busy channel 

7-255: proprietary 

7.10.2.3.3 Use  

The primitive is generated in response to a PHY_DATA.request. 

It is assumed that the MAC layer has sufficient information to associate the confirm primitive with 
the corresponding request primitive. 

7.10.2.4 PHY_DATA.indication  

7.10.2.4.1 Function  

This primitive defines the transfer of data from the PHY layer entity to the MAC layer entity. 

7.10.2.4.2 Structure  

The semantics of this primitive are as follows: 

PHY_DATA.indication{PSDU, Length, Level, Scheme, Time}. 

The PSDU parameter specifies the PHY service data unit as received by the local PHY layer entity. 
It is mandatory for implementations to byte-align the MPDU across the PHY-SAP. This implies 
two extra bits (due to the non-byte-aligned nature of the MAC layer header) to be located at the 
beginning of the header. 

The Length parameter specifies the length of the received PSDU in bytes. The length shall be 
2 bytes long. 



 

  Rec. ITU-T G.9904 (10/2012) 19 

The Level parameter specifies the signal level on which the PHY layer received the PSDU. It may 
take one of sixteen values: 

0: ≤ 70 dBuV 

1: ≤ 72 dBuV 

2: ≤ 74 dBuV 

… 

15: > 98 dBuV 

The Scheme parameter specifies the scheme with which the PSDU is received. It may have any of 
the following values: 

0: DBPSK 

1: DQPSK 

2: D8PSK 

3: not used 

4: DBPSK + convolutional code 

5: DQPSK + convolutional code 

6: D8PSK + convolutional code 

7: not used 

The Time parameter is the time of receipt of the preamble associated with the PSDU. 

7.10.2.4.3 Use  

The PHY_DATA.indication is passed from the PHY layer entity to the MAC layer entity to indicate 
the arrival of a valid PPDU. 

7.10.3 PHY control plane primitives  

Figure 7-14 shows the general structure of PHY control plane primitives. Each primitive may have 
"set", "get" or "confirm" fields. Table 7-3 lists the control plane primitives and the fields associated 
with each of them. Each row lists a control plane primitive. An "X" in a column indicates that the 
associated field is used in the primitive described in that row. 



 

20 Rec. ITU-T G.9904 (10/2012) 

G.9955(11)_FB-15ter

MAC PHY

PHY_XXX.get

PHY_XXX.confirm

MAC PHY

PHY_XXX.set

PHY_XXX.confirm

 

Figure 7-14 – Overview of PHY control plane primitives 

Table 7-3 – Fields associated with PHY control plane primitives 

 set get confirm 

PHY_AGC X X X 

PHY_Timer  X X 

PHY_CD  X X 

PHY_NL  X X 

PHY_SNR  X X 

PHY_ZCT  X X 

7.10.3.1 PHY_AGC.set  

7.10.3.1.1 Function  

The PHY_AGC.set primitive is passed to the PHY layer entity by the MAC layer entity to set the 
automatic gain mode of the PHY layer. 

7.10.3.1.2 Structure  

The semantics of this primitive are as follows: 

PHY_AGC.set {Mode, Gain}. 



 

  Rec. ITU-T G.9904 (10/2012) 21 

The Mode parameter specifies whether or not the PHY layer operates in automatic gain mode. It 
may take one of two values: 

0: Auto 

1: Manual 

The Gain parameter specifies the initial receiving gain in auto mode. It may take one of N values: 

0: min_gain dB 

1: min_ gain + step dB 

2: min_ gain + 2 × step dB 

 …  

N – 1: min_ gain + (N – 1) × step dB 

where min_ gain and N depend on the specific implementation. "step" is also an implementation 
issue but it shall not be more than 6 dB. The maximum Gain value min_ gain + (N – 1) × step shall 
be at least 21 dB. 

7.10.3.1.3 Use  

The primitive is generated by the MAC layer when the receiving gain mode has to be changed. 

7.10.3.2 PHY_AGC.get  

7.10.3.2.1 Function  

The PHY_AGC.get primitive is passed to the PHY layer entity by the MAC layer entity to get the 
automatic gain mode of the PHY layer. 

7.10.3.2.2 Structure  

The semantics of this primitive are as follows: 

PHY_AGC.get{}. 

7.10.3.2.3 Use  

The primitive is generated by the MAC layer when it needs to know the receiving gain mode that 
has been configured. 

7.10.3.3 PHY_AGC.confirm  

7.10.3.3.1 Function  

The PHY_AGC.confirm primitive is passed to the MAC layer entity by the PHY layer entity in 
response to a PHY_AGC.set or PHY_AGC.get command. 

7.10.3.3.2 Structure  

The semantics of this primitive are as follows: 

PHY_AGC.confirm {Mode, Gain}. 

The Mode parameter specifies whether or not the PHY layer is configured to operate in automatic 
gain mode. It may take one of two values: 

0: auto 

1: manual 



 

22 Rec. ITU-T G.9904 (10/2012) 

The Gain parameter specifies the current receiving gain. It may take one of N values: 

0: min_gain dB 

1: min_gain + step dB 

2: min_gain + 2 × step dB 

… 

N – 1: min_gain + (N – 1) × step dB 

where min_gain and N depend on the specific implementation. The parameter step shall not be more 
than 6 dB. The maximum gain value min_gain + (N – 1) × step will be at least 21 dB. 

7.10.3.4 PHY_Timer.get  

7.10.3.4.1 Function  

The PHY_Timer.get primitive is passed to the PHY layer entity by the MAC layer entity to get the 
time at which the transmission has to be started. 

7.10.3.4.2 Structure  

The semantics of this primitive are as follows: 

PHY_Timer.get {}. 

7.10.3.4.3 Use  

The primitive is generated by the MAC layer to know the transmission start.  

7.10.3.5 PHY_Timer.confirm  

7.10.3.5.1 Function  

The PHY_Timer.confirm primitive is passed to the MAC layer entity by the PHY layer entity in 
response to a PHY_Timer.get command. 

7.10.3.5.2 Structure  

The semantics of this primitive are as follows: 

PHY_Timer.confirm {Time} 

The Time parameter is specified in tens of microseconds. It may take values of between 0 
and 220 – 1 . 

7.10.3.6 PHY_CD.get  

7.10.3.6.1 Function  

The PHY_CD.get primitive is passed to the PHY layer entity by the MAC layer entity to look for 
the carrier detect signal. The carrier detection algorithm shall be based on preamble detection and 
header recognition (see clause 7.4). 

7.10.3.6.2 Structure  

The semantics of this primitive are as follows: 

PHY_CD.get {}. 

7.10.3.6.3 Use  

The primitive is generated by the MAC layer when it needs to know whether or not the physical 
medium is free. 



 

  Rec. ITU-T G.9904 (10/2012) 23 

7.10.3.7 PHY_CD.confirm  

7.10.3.7.1 Function  

The PHY_CD.confirm primitive is passed to the MAC layer entity by the PHY layer entity in 
response to a PHY_CD.get command. 

7.10.3.7.2 Structure  

The semantics of this primitive are as follows: 

PHY_CD.confirm {cd, rssi, Time, header}. 

The cd parameter may take one of two values: 

0: no carrier detected 

1: carrier detected. 

The rssi parameter is the received signal strength indication and refers to the preamble. It is only 
relevant when cd equals 1. It may take one of sixteen values: 

0: ≤ 70 dBuV 

1: ≤ 72 dBuV 

2: ≤ 74 dBuV 

… 

15: > 98 dBuV 

The Time parameter indicates the instant at which the present PPDU will finish. It is only relevant 
when cd equals 1. When cd equals 0, the time parameter will take a value of 0. If cd equals 1 but the 
duration of the whole PPDU is still not known (i.e., the header has not yet been processed), the 
header parameter will take a value of 1 and the time parameter will indicate the instant at which the 
header will finish, specified in tens of microseconds. In any other case the value of the time 
parameter is the instant at which the present PPDU will finish and it is specified in tens of 
microseconds. Time parameter refers to an absolute point in time so it is referred to the system 
clock. 

The header parameter may take one of two values: 

1: if a preamble has been detected but the duration of the whole PPDU is not yet known 
from decoding the header 

0: in any other case. 

7.10.3.8 PHY_NL.get  

7.10.3.8.1 Function  

The PHY_NL.get primitive is passed to the PHY layer entity by the MAC layer entity to get the 
floor noise level value. 

7.10.3.8.2 Structure  

The semantics of this primitive are as follows: 

PHY_NL.get {}. 

7.10.3.8.3 Use  

The primitive is generated by the MAC layer when it needs to know the noise level present in the 
power line. 



 

24 Rec. ITU-T G.9904 (10/2012) 

7.10.3.9 PHY_NL.confirm  

7.10.3.9.1 Function  

The PHY_NL.confirm primitive is passed to the MAC layer entity by the PHY layer entity in 
response to a PHY_NL.get command. 

7.10.3.9.2 Structure  

The semantics of this primitive are as follows: 

PHY_NL.confirm {noise}. 

The noise parameter may take one of sixteen values: 

0: ≤ 50 dBuV 

1: ≤ 53 dBuV 

2: ≤ 56 dBuV 

… 

15: > 92 dBuV 

7.10.3.10 PHY_SNR.get  

7.10.3.10.1 Function  

The PHY_SNR.get primitive is passed to the PHY layer entity by the MAC layer entity to get the 
value of the signal-to-noise ratio, defined as the ratio of the measured received signal level to noise 
level of the last received PPDU. The calculation of the SNR is described in Annex A. 

7.10.3.10.2 Structure  

The semantics of this primitive are as follows: 

PHY_SNR.get {} 

7.10.3.10.3 Use  

The primitive is generated by the MAC layer when it needs to know the SNR in order to analyse 
channel characteristics and invoke management procedures for robustness, if required.  

7.10.3.11 PHY_SNR.confirm  

7.10.3.11.1 Function  

The PHY_SNR.confirm primitive is passed to the MAC layer entity by the PHY layer entity in 
response to a PHY_SNR.get command. 

7.10.3.11.2 Structure  

The semantics of this primitive are as follows: 

PHY_SNR.confirm{SNR} 

The SNR parameter refers to the signal-to-noise ratio, defined as the ratio of the measured received 
signal level to noise level of the last received PPDU. It may take one of eight values. The mapping 
of the 3-bit index to the actual SNR value, as calculated in Annex A is given below: 

0: ≤ 0 dB 

1: ≤ 3 dB 

2: ≤ 6 dB 

… 

7: > 18 dB 



 

  Rec. ITU-T G.9904 (10/2012) 25 

7.10.3.12 PHY_ZCT.get  

7.10.3.12.1 Function  

The PHY_ZCT.get primitive is passed to the PHY layer entity by the MAC layer entity to get the 
zero cross time of the mains and the time between the last transmission or reception and the zero 
cross of the mains. 

7.10.3.12.2 Structure  

The semantics of this primitive are as follows: 

PHY_ZCT.get {} 

7.10.3.12.3 Use  

The primitive is generated by the MAC layer when it needs to know the zero cross time of the 
mains, e.g., in order to calculate the phase to which the node is connected. 

7.10.3.13 PHY_ZCT.confirm  

7.10.3.13.1 Function  

The PHY_ZCT.confirm primitive is passed to the MAC layer entity by the PHY layer entity in 
response to a PHY_ZCT.get command. 

7.10.3.13.2 Structure  

The semantics of this primitive are as follows: 

PHY_ZCT.confirm {Time}. 

The Time parameter is the instant in time at which the last zero-cross event took place. 

7.10.4 PHY management primitives  

PHY layer management primitives enable the PHY layer to interface to the MAC layer. 
Implementation of these primitives is optional. Refer to Figure 7-14 for the general structure of the 
PHY layer management primitives. 

Table 7-4 – PHY layer management primitives 

Primitive set get confirm 

PLME_RESET X  X 

PLME_SLEEP X  X 

PLME_RESUME X  X 

PLME_TESTMODE X  X 

PLME_GET  X X 

7.10.4.1 PLME_RESET.request  

7.10.4.1.1 Function  

The PLME_RESET.request primitive is invoked to request the PHY layer to reset its present 
functional state. As a result of this primitive, the PHY should reset all internal states and flush all 
buffers to clear any queued receive or transmit data. All the SET primitives are invoked by the 
PLME, and addressed to the PHY to set parameters in the PHY. The GET primitive is also sourced 
by the PLME, but is used only to read PHY parameters. 



 

26 Rec. ITU-T G.9904 (10/2012) 

7.10.4.1.2 Structure  

The semantics of this primitive are as follows: 

PLME_RESET.request{}. 

7.10.4.1.3 Use  

The upper layer management entities will invoke this primitive to tackle any system level anomalies 
that require aborting any queued transmissions and restart all operations from the initialization state. 

7.10.4.2 PLME_RESET.confirm  

7.10.4.2.1 Function  

The PLME_RESET.confirm is generated in response to a corresponding PLME_RESET.request 
primitive. It provides indication if the requested reset was performed successfully or not. 

7.10.4.2.2 Structure  

The semantics of this primitive are as follows: 

PLME_RESET.confirm{Result}. 

The Result parameter shall have one of the following values: 

0: Success 

1: Failure (the requested reset failed due to internal implementation issues). 

7.10.4.2.3 Use  

The primitive is generated in response to a PLME_RESET.request. 

7.10.4.3 PLME_SLEEP.request  

7.10.4.3.1 Function  

The PLME_SLEEP.request primitive is invoked to request the PHY layer to suspend its present 
activities including all reception functions. The PHY layer should complete any pending 
transmission before entering into a sleep state.  

7.10.4.3.2 Structure  

The semantics of this primitive are as follows: 

PLME_SLEEP.request{}. 

7.10.4.3.3 Use  

This primitive is designed to help optimize power consumption. 

7.10.4.4 PLME_SLEEP.confirm  

7.10.4.4.1 Function  

The PLME_SLEEP.confirm is generated in response to a corresponding PLME_SLEEP.request 
primitive and provides information if the requested sleep state has been entered successfully or not. 

7.10.4.4.2 Structure  

The semantics of this primitive are as follows: 

PLME_SLEEP.confirm{Result}. 



 

  Rec. ITU-T G.9904 (10/2012) 27 

The Result parameter shall have one of the following values: 

0: success 

1: failure (the requested sleep failed due to internal implementation issues) 

2: PHY layer is already in sleep state. 

7.10.4.4.3 Use  

The primitive is generated in response to a PLME_SLEEP.request 

7.10.4.5 PLME_RESUME.request  

7.10.4.5.1 Function  

The PLME_RESUME.request primitive is invoked to request the PHY layer to resume its 
suspended activities. As a result of this primitive, the PHY layer shall start its normal transmission 
and reception functions.  

7.10.4.5.2 Structure  

The semantics of this primitive are as follows: 

PLME_RESUME.request{}. 

7.10.4.5.3 Use  

This primitive is invoked by upper layer management entities to resume normal PHY layer 
operations, assuming that the PHY layer is presently in a suspended state as a result of previous 
PLME_SLEEP.request primitive.  

7.10.4.6 PLME_RESUME.confirm  

7.10.4.6.1 Function  

The PLME_RESUME.confirm is generated in response to a corresponding 
PLME_RESUME.request primitive and provides information about the requested resumption 
status. 

7.10.4.6.2 Structure  

The semantics of this primitive are as follows: 

PLME_RESUME.confirm{Result}. 

The Result parameter shall have one of the following values: 

0: success 

1: failure (the requested resume failed due to internal implementation issues) 

2: PHY layer is already in fully functional state. 

7.10.4.6.3 Use  

The primitive is generated in response to a PLME_RESUME.request 

7.10.4.7 PLME_TESTMODE.request  

7.10.4.7.1 Function  

The PLME_TESTMODE.request primitive is invoked to enter the PHY layer into test mode 
(specified by the mode parameter). A specific functional mode out of the various possible modes is 
provided as an input parameter. Following the receipt of this primitive, the PHY layer should 
complete any pending transmissions in its buffer before entering the requested test mode. 



 

28 Rec. ITU-T G.9904 (10/2012) 

7.10.4.7.2 Structure  

The semantics of this primitive are as follows: 

PLME_TESTMODE.request{enable, mode, modulation, pwr_level}. 

The enable parameter starts or stops the test mode and may take one of two values: 

0: stop test mode and return to normal functional state 

1: transit from present functional state to test mode. 

The mode parameter enumerates specific functional behaviours to be exhibited while the PHY is in 
test mode. It may have either of the two values: 

0: continuous transmit 

1: transmit with 50% duty cycle. 

The modulation parameter specifies which modulation scheme is used during transmissions. It may 
take any of the following 8 values: 

0: DBPSK 

1: DQPSK 

2: D8PSK 

3: not used 

4: DBPSK + convolutional code 

5: DQPSK + convolutional code 

6: D8PSK + convolutional code 

7: not used 

The pwr_level parameter specifies the relative level at which the test signal is transmitted. It may 
take either of the following values: 

0: maximal output level (MOL) 

1: MOL – 3 dB 

2: MOL – 6 dB 

… 

7: MOL – 21 dB 

7.10.4.7.3 Use  

This primitive is invoked by a management entity when specific tests are required to be performed. 

7.10.4.8 PLME_TESTMODE.confirm  

7.10.4.8.1 Function  

The PLME_TESTMODE.confirm is generated in response to a corresponding 
PLME_TESTMODE.request primitive to indicate if the transition to "Testmode" was successful or 
not. 

7.10.4.8.2 Structure  

The semantics of this primitive are as follows: 

PLME_TESTMODE.confirm{Result}. 



 

  Rec. ITU-T G.9904 (10/2012) 29 

The Result parameter shall have one of the following values: 

0: success 

1: failure (transition to "Testmode" failed due to internal implementation issues) 

2: PHY layer is already in "Testmode" 

7.10.4.8.3 Use  

The primitive is generated in response to a PLME_TESTMODE.request. 

7.10.4.9 PLME_GET.request  

7.10.4.9.1 Function  

The PLME_GET.request queries information about a given PIB attribute. 

7.10.4.9.2 Structure  

The semantics of this primitive are as follows: 

PLME_GET.request{PIBAttribute} 

The PIBAttribute parameter identifies specific attributes as enumerated in ID fields of tables that 
enumerate PIB attributes. 

7.10.4.9.3 Use  

This primitive is invoked by the management entity to query one of the available PIB attributes. 

7.10.4.10 PLME_GET.confirm  

7.10.4.10.1 Function  

The PLME_GET.confirm primitive is generated in response to the corresponding 
PLME_GET.request primitive.  

7.10.4.10.2 Structure  

The semantics of this primitive are as follows: 

PLME_GET.confirm{status, PIBAttribute, PIBAttributeValue} 

The status parameter reports the result of requested information and can have one of the values in 
Table 7-5. 

Table 7-5 – Values of the status parameter in PLME_GET.confirm primitive 

Result Description 

Done = 0 Parameter read successfully 

Failed = 1 Parameter read failed due to internal implementation reasons. 

BadAttr = 2 Specified PIBAttribute is not supported 

The PIBAttribute parameter identifies specific attributes as enumerated inID fields of tables that 
enumerate PIB attributes. 

The PIBAttributeValue parameter specifies the value associated with a given "PIBAttribute". 

7.10.4.10.3 Use  

This primitive is generated by the PHY layer in response to a PLME_GET.request primitive. 



 

30 Rec. ITU-T G.9904 (10/2012) 

8 Data link layer specifications 

8.1 Overview 

A subnetwork can be logically seen as a tree structure with two types of nodes: the base node and 
service nodes. 

• Base node: it is at the root of the tree structure and acts as a master node that provides all 
subnetwork elements with connectivity. It manages the subnetwork resources and 
connections. There is only one base node in a subnetwork. The base node is initially the 
subnetwork itself and any other node should follow a registration process to enrol itself on 
the subnetwork. 

• Service nodes: they are either leaves or branch points of the tree structure. They are initially 
in a disconnected functional state and follow the registration process in clause 8.6.1 to 
become part of the subnetwork. Service nodes have two functions in the subnetwork: 
keeping connectivity to the subnetwork for their application layers and switching other 
nodes' data to propagate connectivity. 

Devices elements that exhibit base node functionality continue to do so as long as they are not 
explicitly reconfigured by mechanisms that are beyond the scope of this Recommendation. Service 
nodes, on the other hand, change their behaviour dynamically from "terminal" functions to "switch" 
functions and vice-versa. The changing of functional states occurs in response to certain pre-defined 
events on the network. Figure 8-1 shows the functional state transition diagram of a service node.  

The three functional states of a service node are disconnected, terminal and switch. 

• Disconnected: is the initial functional state for all service nodes. When disconnected, a 
service node is not able to communicate data or switch other nodes' data; its main function 
is to search for a subnetwork within its reach and try to register on it. 

• Terminal: when in this functional state a service node is able to establish connections and 
communicate data, but it is not able to switch other nodes' data. 

• Switch: when in this functional state a service node is able to perform all terminal 
functions. Additionally, it is able to forward data to and from other nodes in the same 
subnetwork. It is a branch point on the tree structure. 

 

Figure 8-1 – Service node states 



 

  Rec. ITU-T G.9904 (10/2012) 31 

The events and associated processes that trigger changes from one functional state to another are 
given below. 

• Registration: the process by which a service node includes itself in the base node's list of 
registered nodes. Its successful completion means that the service node is part of a 
subnetwork. Thus, it represents the transition between disconnected and terminal. 

• Unregistration: the process by which a service node removes itself from the base node's list 
of registered nodes. Unregistration may be initiated by either the service node or base node. 
A service node may unregister itself to find a better point of attachment, i.e., change the 
switch node through which it is attached to the network. A base node may unregister a 
registered service node as a result of failure of any of the MAC procedures. Its successful 
completion means that the service node is disconnected and no longer part of a subnetwork. 

• Promotion: the process by which a service node is qualified to switch (repeat, forward) data 
traffic from other nodes and act as a branch point on the subnetwork tree structure. A 
successful promotion represents the transition between terminal and switch. When a service 
node is disconnected it cannot directly transition to switch. 

• Demotion: the process by which a service node ceases to be a branch point on the 
subnetwork tree structure. A successful demotion represents the transition between switch 
and terminal. 

8.2 Addressing 

8.2.1 General 

Each node has a 48-bit universal MAC address, defined in [IEEE 802-2001] and called EUI-48. 
Every EUI-48 is assigned during the manufacturing process and it is used to uniquely identify a 
node during the registration process. 

The EUI-48 of the base node uniquely identifies its subnetwork. This EUI-48 is called the 
subnetwork address (SNA). 

The local switch identifier (LSID) is a unique 8-bit identifier for each switch node inside a 
subnetwork. The subnetwork base node assigns an LSID during the promotion process. A switch 
node is universally identified by the SNA and LSID. LSID = 0x00 is reserved for the base node. 
LSID = 0xFF is reserved to mean "unassigned" or "invalid" in certain specific fields (see 
Table 8-13). This special use of the 0xFF value is always made explicit when describing those 
fields and it shall not be used in any other field. 

During its registration process, every service node receives a 14-bit local node identifier (LNID). 
The LNID identifies a single service node among all service nodes that directly depend on a given 
switch. The combination of a service node's LNID and SID (its immediate switch's LSID) forms a 
22-bit node identifier (NID). The NID identifies a single service node in a given subnetwork. 
LNID = 0x0000 cannot be assigned to a terminal, as it refers to its immediate switch. 
LNID = 0x3FFF is reserved for broadcast and multicast traffic (see clause 8.2.3 for more 
information). In certain specific fields, the LNID = 0x3FFF may also be used as "unassigned" or 
"invalid" (see Tables 8-1 and 8-9). This special use of the 0x3FFF value is always made explicit 
when describing the said fields and it shall not be used in this way in any other field. 

During connection establishment a 9-bit local connection identifier (LCID) is reserved. The LCID 
identifies a single connection in a node. The combination of NID and LCID forms a 31-bit 
connection identifier (CID). The CID identifies a single connection in a given subnetwork. Any 
connection is universally identified by the SNA and CID. LCID values are allocated with the 
following rules: 

 LCID=0x000 to 0x0FF, for connections requested by the base node. The allocation shall be 
made by the base node. 



 

32 Rec. ITU-T G.9904 (10/2012) 

 LCID=0x100 to 0x1FF, for connections requested by a service node. The allocation shall 
be made by a service node. 

The full addressing structure and field lengths are shown in Figure 8-2. 

 

Figure 8-2 – Addressing structure 

When a service node in terminal state starts promotion process, the base node allocates a unique 
switch identifier which is used by this device after transition to the switch state as SID of this 
switch. The promoted service node continues to use the same NID that it used before promotion, 
i.e., it maintains the SID of its next level switch for addressing all traffic generated/destined to its 
local application processes. To maintain distinction between the two switch identifiers, the switch 
identifier allocated to a service node during its promotion is referred to as a local switch identifier 
(LSID). Note that the LSID of a switch device will be an SID of devices that connects to the 
subnetwork through it. 

Each service node has a level in the topology tree structure. Service nodes which are directly 
connected to the base node have level 0. The level of any service node not directly connected to the 
base node is the level of its immediate switch plus one.  

8.2.2 Example of address resolution  

Figure 8-3 shows an example where disconnected service nodes are trying to register on the base 
node. In this example, addressing will have the following nomenclature: (SID, LNID). Initially, the 
only node with an address is base node A, which has an NID=(0, 0). 

 

Figure 8-3 – Example of address resolution: phase 1 

Every other node of the subnetwork will try to register on the base node. Only B, C, D and E nodes 
are able to register on this subnetwork and get their NIDs. Figure 8-4 shows the status of nodes after 
the registration process. Since they have registered on the base node, they get the SID of the base 
node and a unique LNID. The level of newly registered nodes is 0 because they are connected 
directly to the base node. 



 

  Rec. ITU-T G.9904 (10/2012) 33 

 

Figure 8-4 – Example of address resolution: phase 2 

Nodes F, G and H cannot connect directly to the base node which is currently the only switch in the 
subnetwork. F, G and H will send promotion needed PDU (PNPDU) broadcast requests which will 
result in nodes B and D requesting promotion for themselves in order to extend the subnetwork 
range. During promotion, they will both be assigned unique SIDs. Figure 8-5 shows the new status 
of the network after the promotion of nodes B and D. Each switch node will still use the NID that 
was assigned to it during the registration process for its own communication as a terminal node. The 
new SID shall be used for all switching functions. 

 

Figure 8-5 – Example of address resolution: phase 3 

On completion of the B and D promotion process, nodes F, G and H shall start their registration 
process and have a unique LNID assigned. Every node on the subnetwork will then have a unique 
NID to communicate like a terminal, and switch nodes will have unique SIDs for switching 
purposes. The level of newly registered nodes is 1 because they register with level 0 nodes. On the 
completion of topology resolution and address allocation, the example subnetwork would be as 
shown in Figure 8-6. 

 

Figure 8-6 – Example of address resolution: phase 4 

T=(0, 1)

A: Base Node

B: Terminal C: Terminal

S=(0, 0)

T=(0, 3)
D: Terminal

T=(0, 4) T=(0, 2)
E: Terminal

F:Disconnected G:Disconnected H:Disconnected

Level = 0



 

34 Rec. ITU-T G.9904 (10/2012) 

8.2.3 Broadcast and multicast addressing 

Multicast and broadcast addresses are used for communicating data to multiple nodes. There are 
several broadcast and multicast address types depending on the context associated with the traffic 
flow. Table 8-1 describes different broadcast and multicast addressing types and the SID and LNID 
fields associated with each one. 

Table 8-1 – Broadcast and multicast address 

Type LNID Description 

Broadcast 0x3FFF Using this address as a destination, the packets should reach every 
node of the subnetwork. 

Multicast 0x3FFE This type of address refers to multicast groups. The multicast 
group is defined by the LCID. 

Unicast not 0x3FFF not 
0x3FFE 

The address of this type refers to the only node of the subnetwork 
whose SID and LNID match the address fields. 

8.3 MAC functional description 

8.3.1 Service node start-up 

A service node is initially disconnected. The only functions that may be performed in a 
disconnected functional state are: reception of any beacons on the channel and sending of the 
PNPDUs. Each service node shall maintain a switch table that is updated with the reception of a 
beacon from any new switch node. Based on local implementation policies, a service node may 
select any switch node from the switch table and proceed with the registration process with that 
switch node. The criteria for selecting a switch node from the switch table is beyond the scope of 
this Recommendation.  

A service node shall listen on the channel for at least macMinSwitchSearchTime before deciding 
that no beacon is being received. It may optionally add some random variation to 
macMinSwitchSearchTime, but this variation cannot be more than 10per cent of 
macMinSwitchSearchTime. If no beacons are received in this time, the service node shall broadcast 
a PNPDU. The PNPDU shall be broadcast with the most robust modulation scheme to ensure 
maximum coverage. A service node seeking promotion of any of the terminal nodes in its proximity 
shall not transmit more than macMaxPromotionPdu PNPDUs per macPromotionPduTxPeriod units 
of time. The service nodes shall also ensure that the broadcast of PNPDUs is randomly spaced. 
There must always be a random time separation between successive broadcasts. 

So as not to flood the network with PNPDUs, especially in cases where several devices are powered 
up at the same time, the terminal nodes shall reduce the PNPDU transmission rate by a factor of 
PNPDUs received from other sources. For example, if a node receives one PNPDU when it is 
transmitting its own PNPDUs, it shall reduce its own transmissions to no more than 
macMaxPromotionPdu/2 per macPromotionPduTxPeriod units of time. Likewise, if it receives 
PNPDUs from two different sources, it shall slow down its rate to no more than 
macMaxPromotionPdu/3 per macPromotionPduTxPeriod units of time. 

On the selection of a specific switch node, a service node shall start a registration process by 
transmitting the REG control packet (clause 8.4.5.3) to the base node. The switch node through 
which the service node intends to carry out its communication is indicated in the REG control 
packet. 



 

  Rec. ITU-T G.9904 (10/2012) 35 

8.3.2 Starting and maintaining subnetworks 

Base nodes are primarily responsible for setting up and maintaining a subnetwork. In order to 
execute the latter, the base node shall perform the following: 

• Beacon transmission: The base node and all the switch nodes on the subnetwork shall 
broadcast beacons at fixed intervals of time. The base node shall always transmit exactly 
one beacon per frame. Switch nodes shall transmit beacons with a frequency prescribed by 
the base node at the time of their promotion.  

• Promotion and demotion of terminals and switches: All promotion requests generated by 
terminal nodes upon receipt of the PNPDUs are directed to the base node. The base node 
maintains a table of all the switch nodes on the subnetwork and allocates a unique SID to 
new incoming requests. Upon receipt of multiple promotion requests, the base node can, at 
its own discretion, reject some of the requests. Likewise, the base node is responsible for 
demoting registered switch nodes. The demotion may either be initiated by the base node 
(based on an implementation-dependent decision process) or be requested by the switch 
node itself. 

• Registration management: The base node receives registration requests from all new nodes 
trying to be part of the subnetwork it manages. The base node shall process each 
registration request it receives and respond with an accept or reject message. When the base 
node accepts the registration of a service node, it shall allocate a unique NID to it to be used 
for all subsequent communication on the subnetwork. Likewise, the base node is 
responsible for deregistering any registered service nodes. The unregistration may be 
initiated by the base node (based on an implementation-dependent decision process) or 
requested by the service node itself.  

• Connection set-up and management: The MAC layer specified in this Recommendation is 
connection-oriented, implying that data exchange is necessarily preceded by connection 
establishment. The base node is always required for all connections on the subnetwork, 
either as an end point of the connection or as a facilitator (direct connections; clause 8.3.6) 
of the connection.  

• Channel access arbitration: The usage of the channel by devices conforming to this 
Recommendation may be controlled and contention-free at certain times and open and 
contention-based at others. The base node prescribes which usage mechanism shall be in 
force at what time and for how long. Furthermore, the base node shall be responsible for 
assigning the channel to specific devices during contention-free access periods.  

• Distribution of random sequence for deriving encryption keys. When using security 
profile 1 (see clause 8.3.8.2.2), all control messages in this MAC specification shall be 
encrypted before transmission. Besides control messages, data transfers may be optionally 
encrypted as well. The encryption key is derived from a 128-bit random sequence. The base 
node shall periodically generate a new random sequence and distribute it to the entire 
subnetwork, thus helping to maintain the subnetwork security infrastructure. 

• Multicast group management: The base node shall maintain all multicast groups on the 
subnetwork. This shall require the processing of all join and leave requests from any of the 
service nodes and the creation of unsolicited join and leave messages from base node 
application requests.  

Additional information regarding promotion and connection procedures can be found in 
clauses 8.6.3 and 8.6.6. 



 

36 Rec. ITU-T G.9904 (10/2012) 

8.3.3 Channel access 

8.3.3.1 General 

Devices on a subnetwork access the channel based on specific guidelines laid down in this clause. 
Time is divided into composite units of abstraction for channel usage, called MAC frames. The 
service nodes and base node on a subnetwork can access the channel in the shared- contention 
period (SCP) or request a dedicated contention-free period (CFP).  

CFP channel access needs devices to request allocation from the base node. Depending on channel 
usage status, the base node may grant access to the requesting device for a specific duration or deny 
the request. 

SCP channel access does not require any arbitration. However, the transmitting devices need to 
respect the SCP timing boundaries in a MAC frame. The composition of a MAC frame in terms of 
SCP and CFP is communicated in every frame as part of the beacon. 

A MAC frame is comprised of one or more beacons, one shared-contention period and zero or one 
contention-free period (CFP). When present, the length of the CFP is indicated in the BPDU. 

 

Figure 8-7 – Structure of a MAC frame 

8.3.3.2 Beacon 

8.3.3.2.1 General 

A BPDU is transmitted by the base node every (MACFrameLength – MACBeaconLength) symbols. 
The switch nodes also transmit the BPDU to maintain their part of the subnetwork. They transmit 
BPDUs at regular times, but the transmission frequency does not need to be the same as that of the 
base node, i.e., a switch node may not transmit its BPDU in every frame.  

A beacon is always MACBeaconLength symbols long. This length is the beacon duration excluding 
the PHY PREAMBLE overhead. Since the BPDU is to be received by all devices in the originating 
switch domain, it is transmitted with the most robust PHY modulation scheme and FEC coding at 
the maximum output power level implemented in the device. Details of the BPDU structure and 
contents are given in clause 8.4.4. 

All service nodes shall track beacons as explained in clause 8.3.4.1. 

8.3.3.2.2 Beacon slots 

A single frame may contain macBeaconsPerFrame BPDUs. The unit of time in which a BPDU is 
transmitted, is referred to as a beacon slot. All beacon slots are located at the beginning of a frame, 
as shown in Figure 8-7 above. The first beacon slot in every frame is reserved for the base node. 
The number of beacon slots in a frame may change from one frame to another and is indicated by 
the base node in its BPDU. 

The switch nodes are allocated a beacon slot at the time of their promotion. Following the PRO 
control packet, the base node transmits the BSI control packet that would list specific details on 
which beacon slot should be used by the new switch device.  

The number of beacon slots in a frame should be increased from 1 to at least 2 on the promotion of 
the first switch device on a subnetwork by the base node. Similarly, a base node cannot decrease the 
number of beacon slots in the subnetwork to 1 when there is a switch node on its subnetwork. 



 

  Rec. ITU-T G.9904 (10/2012) 37 

With the registration of each new switch on the subnetwork, the base node may change the beacon 
slot or BPDU transmission frequency (or both) of already registered switch devices. When such a 
change occurs, the base node transmits a beacon slot information (BSI) control packet to each 
individual switch device that is affected. The switch device addressed in the BSI packet sends an 
acknowledgement back to the base node. Switch devices are required to relay the BSI control 
packet that is addressed to switch devices connected through them. During the reorganization of 
beacon slots, if there is a change in the beacon-slot count per frame, the base node should transmit 
an FRA (FRAme) control packet to the entire subnetwork. The FRA control packet is an indication 
of change in the overall frame structure. In this specific case, it would imply an increase in SCP 
slots and a decrease in the number of beacon slots. 

Switch devices that receive an FRA control packet should relay it to their entire control domain 
because FRA packets are broadcast information about changes to frame structures. 

This is required for the entire subnetwork to have a common understanding of frame structure, 
especially in regions where the controlling switch devices transmit BPDUs at frequencies below 
once per frame.  

Figure 8-8 below shows a sample beacon-slot change sequence for an existing switch device. The 
example shows a beacon-slot change triggered by the promotion of a terminal device (PRO_ACK). 
In this case, the promotion is followed by a change in both the number of beacon slots per frame 
and of the specific beacon-slot parameters already allocated to a switch.  

  

Figure 8-8 – Example of control packet sequencing following a promotion 

8.3.3.2.3 Beacon-slot allocation policy 

The beacon-slot allocation policy shall ensure that during promotion a service node never receives a 
BSI control packet that enforces it to transmit a beacon consecutive to every beacon of the node it is 
registered to. 

This behaviour shall be ensured if the BSI information follows one or more of the following rules 
(BCN represents the information of the beacons the service node is registered to): 

• BSI.SLT is not consecutive to BCN.POS 

• BSI.SEQ is not equal to any BCN.SEQ in a superframe 

• BSI.FRQ is greater than BCN.FRQ. 

8.3.3.2.4 Beacon superframes 

When changing the frame structure, to add or remove beacon slots or to change which beacon slot a 
switch should use, it is necessary to indicate when such a change should occur. All nodes must 
change at the same time otherwise there will be collisions with the beacons etc. 

Terminal Base Node Switch
PRO_ACK 

BSI_ACK 

FRA_BCN_IND 
BSI_IND 



 

38 Rec. ITU-T G.9904 (10/2012) 

To solve this problem a beacon superframe is defined. Each beacon contains a 5 bit sequence 
number. Thus 32 frames form a superframe. Any messages which contain changes to the structure 
or usage of the frame include a sequence number for when the change should occur. The changes 
requested should only happen when the beacon sequence number matches the sequence number in 
the change request. 

8.3.3.3 Shared-contention period 

8.3.3.3.1 General 

Shared-contention period (SCP) is the time when any of the devices on the subnetwork can transmit 
data. The SCP starts immediately after the end of the beacon slot(s) in a frame. Collisions resulting 
from simultaneous attempt to access the channel are avoided by the CSMA-CA mechanism 
specified in this clause.  

The length of the SCP may change from one frame to another and is indicated by information in the 
beacon. At all times, the SCP is at least MACMinSCPLength symbols long. The maximum 
permissible length of an SCP in a frame is (MACFrameLength – MACBeaconLength) symbols. 
Maximum length SCPs can only occur when there are no dedicated channel access grants to any of 
the devices (no CFP) on a subnetwork that has no switch nodes (only one beacon slot). 

The use of SCP is not restricted to frames in which beacons are received. In lower levels of the 
subnetwork, the controlling switch node may transmit beacons at a much lower frequency than once 
per frame. For these parts of the subnetwork, the frame structure would still continue to be the same 
in frames where no beacons are transmitted. Thus, the service nodes in that segment may still use 
SCP at their discretion.  

8.3.3.3.2 CSMA-CA algorithm 

The CSMA-CA algorithm implemented in devices works as shown in Figure 8-9. 

Implementations start with a random backoff time (macSCPRBO) based on the priority of data 
queued for transmission. MACPriorityLevels levels of priority need to be defined in each 
implementation, with a lower value indicating higher priority. In the case of data aggregation, the 
priority of aggregate bulk is governed by the highest priority data it contains. The MacSCPRBO for 
a transmission attempt is given below: 

 macSCPRBO = random (0, MIN ((2(Priority+txAttempts) +1), (macSCPLength/2))) 

Before a backoff period starts, a device should ensure that the remaining SCP time is long enough 
to accommodate the backoff, the number of iterations for channel-sensing (based on data priority) 
and the subsequent data transmission. If this is not the case, backoff should be aborted till the SCP 
starts in the next frame. Aborted backoffs that start in a subsequent frame should not carry 
macSCPRBO values of earlier attempts. macSCPRBO values should be regenerated on the 
resumption of the transmission attempt in the SCP time of the next frame. 



 

  Rec. ITU-T G.9904 (10/2012) 39 

 G.9904(12)_F8-9

CSMA-CA Req

macSCPChSenseCount
= Priority + 1

·
·
·

      txAttempts = 0
       = 0
      burstLen = 0

chSenseCount

Wait for start of 
next SCP

Delay for 
symbol times

macSCPRBO

NO

Query channel state

Is Channel Idle?
NO

YES

NO

macSCPRBO
= random (0,MIN ((2 +1), (macSCPLength/2))(Priority+txAttempts)

(
)  

remaining SCP

macSCPRBO + Iteration
delay + Tx time £

Tx data

chSenseCount
macSCPChSenseCount

==

txAttempts txAttempts = + 1

chSenseCount = 0

NO

chSenseCount chSenseCount = + 1

YES

Failure notice

Delay for symbolsburstLen 

burstLen =Length of ongoing
burst (indicated by PHY)

Delay for 3msec 

YES

txAttempts ==
macSCPMaxTxAttempts

YES

 

Figure 8-9 – Flow chart for the CSMA-CA algorithm 

On completion of the macSCPRBO symbol time, implementations perform channel-sensing. 
Channel sensing shall be performed one or more times depending on the priority of data to be 
transmitted. The number of times for which an implementation has to perform channel-sensing 
(macSCPChSenseCount) is defined by the priority of the data to be transmitted with the following 
relation: 

macSCPChSenseCount = Priority + 1 

and each channel sense should be separated by a 3 ms delay. 

When a channel is sensed to be idle on all macSCPChSenseCount occasions, an implementation 
may conclude that the channel status is idle and carry out its transmission immediately. 

During any of the macSCPChSenseCount channel-sensing iterations, if the channel is sensed to be 
occupied, implementations should reset all working variables. The local counter tracking the 
number of times a channel is found to be busy should be incremented by one and the CSMA-CA 
process should restart by generating a new macSCPRBO. The remaining steps, starting with the 
backoff, should follow as above. 



 

40 Rec. ITU-T G.9904 (10/2012) 

If the CSMA-CA algorithm restarts macSCPMaxTxAttempts number of times due to ongoing 
transmissions from other devices on the channel, the transmission shall abort by informing the 
upper layers of CSMA-CA failure. 

8.3.3.3.3 MAC control packets 

MAC control packets should be transmitted in the SCP with a priority of one. Refer to priorities in 
clause 8.4.2.3. 

8.3.3.4 Contention-free period 

Each MAC frame may optionally have a contention-free period where devices are allocated channel 
time on an explicit request to do so. If no device on a subnetwork requests contention-free channel 
access, the CFP_ALC_REQ_S may be entirely absent and the MAC frame would only comprise the 
SCP. All CFP_ALC_REQ_S requests coming from terminal or switch nodes are addressed to the 
base node. Intermediate switch nodes along the transmission path merely act on the allocation 
decision by the base node. A single MAC frame may contain up to MACCFPMaxAlloc 
non-overlapping contention-free periods. 

Base nodes may allocate overlapping times to multiple requesting service nodes. Such allocations 
may lead to potential interference. Thus, a base node should make such allocations only when 
devices that are allocated channel access for concurrent usage are sufficiently separated.  

Service nodes make channel allocation requests in a CFP MAC control packet. The base node acts 
on this request and responds with a request acceptance or denial. In the case of request acceptance, 
the base node shall respond with the location of allocation time within the MAC frame, the length 
of allocation time and number of future MAC frames from which the allocation pattern will take 
effect. The allocation pattern remains effective unless there is an unsolicited location change of the 
allocation period from the base node (as a result of a channel allocation pattern reorganization) or 
the requesting service node sends an explicit de-allocation request using a CFP MAC control 
packet. 

Changes resulting from action taken on a CFP MAC control message that impact overall MAC 
frame structure are broadcast to all devices using an FRA MAC control message. 

In a multi-level subnetwork, when a service node that is not directly connected to the base node 
makes a request for the CFP, the base node shall allocate CFPs to all the intermediate switch nodes 
so that the entire transit path from the source service node to the base node has contention-free 
time-slots reserved. The base node shall transmit multiple CFP control packets. The first of these 
CFP_ALC_IND will be for the requesting service node. Each of the rest will be addressed to an 
intermediate switch node. 

8.3.4 Tracking switches and peers 

8.3.4.1 Tracking switches 

Service nodes should keep track of all neighbouring switch nodes by maintaining a list of the 
beacons received. Such tracking shall keep a node updated on reception signal quality from switch 
nodes other than the one to which it is connected, thus making it possible to change connection 
points (switch node) to the subnetwork if link quality to the existing point of connectivity degrades 
beyond an acceptable level.  

Note that such a change of point of connectivity may be complex for switch nodes because of 
devices connected through them. However, at certain times, network dynamics may justify a 
complex reorganization rather than continue with existing limiting conditions. 



 

  Rec. ITU-T G.9904 (10/2012) 41 

8.3.4.2 Tracking disconnected nodes 

Terminals shall process all received PNPDUs. When a service node is disconnected, it does not 
have information on current MAC frame structure so the PNPDUs may not necessarily arrive 
during the SCP. Thus, terminals shall also keep track of PNPDUs during the CFP or beacon slots. 

On processing a received PNPDU, a terminal node may decide to ignore it and not generate any 
corresponding promotion request (PRO_REQ_S). A terminal node shall ignore no more than 
MACMaxPRNIgnore PNPDUs from the same device. Receiving multiple PNPDUs from the same 
device indicates that there is no other device in the vicinity of the disconnected node, implying that 
there will be no possibility of this new device connecting to any subnetwork if the terminal node 
does not request promotion for itself.  

8.3.5 Switching 

8.3.5.1 General 

On a subnetwork, the base node cannot communicate with every node directly. Switch nodes relay 
traffic to/from the base node so that every node on the subnetwork is effectively able to 
communicate with the base node. Switch nodes selectively forward traffic that originates from or is 
destined to one of the service nodes in its control hierarchy. All other traffic is discarded by 
switches, thus reducing traffic flow on the network.  

Different names of MAC header and packets are used in this clause. Please refer to clause 8.4.2 to 
find their complete specification. 

8.3.5.2 Switching table 

Each switch node maintains a table of other switch nodes that are connected to the subnetwork 
through it. Maintaining this information is sufficient for switching because traffic to/from the 
terminal nodes will also contain the identity of their respective switch nodes (PKT.SID). Thus, the 
switching function is simplified in that maintaining an exhaustive listing of all terminal nodes 
connected through it is not necessary. 

Switch nodes start with no entries in their switching table. The switching table is dynamically 
updated by keeping track of promotion and demotion control packets flowing on the network. A 
new entry is created for every promotion acknowledgement (PRO_ACK) that has a PKT.SID 
matching either the SID of the switch node itself or any of the existing entries in the switching 
table. Likewise, an entry corresponding to a PRO.NSID field is deleted when a demotion request is 
acknowledged (PRO_DEM_x).  



 

42 Rec. ITU-T G.9904 (10/2012) 

 

Figure 8-10 – Switching tables example 

Figure 8-10 shows an example subnetwork where entries in the switching table of individual switch 
nodes are highlighted. In this example, when service node G receives a PRO_REQ_B packet for 
promotion, it turns into a switch node. Its switch identifier will be (PRO.NSID, 0) = (3, 0). The 
receipt and acceptance of PRO_REQ_B is acknowledged with a PRO_ACK by G. The intermediate 
switch node B will sniff HDR.DO=0, PKT.CTYPE=3, PKT.SID=1 and PRO.N=0, to conclude that 
this is a PRO_ACK from one of the service nodes in its own switching hierarchy. Node B will 
forward this packet towards the base node and it will add PRO.NSID to its switching table, as 
shown in Figure 8-11. 

 

Figure 8-11 – Fill in the switching table 

Removing a switch table entry is more complex because of retries. Upon receipt of a demotion 
acknowledgement (PRO_DEM_x), the switching table entry corresponding to the LSID is marked 
as to be removed and a timer is started with a value of ((macMaxCtlReTx + 1) × macCtlReTxTimer) 
seconds. This timer ensures that all retransmit packets which might use the LSID have left the 
subnetwork. When the timer expires the switch table entry is removed. 



 

  Rec. ITU-T G.9904 (10/2012) 43 

8.3.5.3 Switching process 

Switch nodes forward traffic to their control domain in a selective manner. The received data shall 
fulfil the conditions listed below for it to be switched. If the conditions are not met, the data shall be 
silently discarded. 

Downlink packets (HDR.DO=1) shall meet any of the following conditions in order to be switched: 

• Destination node of the packet is connected to the subnetwork through this switch node, 
i.e., PKT.SID is equal to this switch node's SID or its switching table contains an entry for 
PKT.SID. 

• The packet has broadcast destination (PKT.LNID = 0x3FFF) and was sent by the switch 
this node is registered through (PKT.SID=SID of this switch node). 

• The packet has a multicast destination (PKT.LNID=0x3FFE), it was sent by the switch this 
node is registered through (PKT.SID=SID of this switch node) and at least one of the 
service nodes connected to the subnetwork through this switch node is a member of the said 
multicast group, i.e., LCID specifies a group that is requested by any downstream node in 
its hierarchy. 

Uplink packets (HDR.DO=0) shall meet either of the following conditions in order to be switched: 

• The packet source node is connected to the subnetwork through this switch node, i.e. 
PKT.SID is equal to this switch node's SID or its switching table contains an entry for 
PKT.SID. 

• The packet has a broadcast or multicast destination (PKT.LNID = 0x3FFF or 0x3FFE) and 
was transmitted by a node registered through this switch node (PKT.SID=LSID of this 
switch node). 

If a packet meets previous conditions, it shall be switched. For unicast packets, the only operation to 
be performed during switching is queueing it to be resent in a MAC PDU with the same HDR.DO. 

In the case of broadcast or multicast packets, the PKT.SID must be replaced with: 

• the switch node's LSID for downlink packets 

• the switch node's SID for uplink packets. 

8.3.5.4 Switching of broadcast packets 

The switching of broadcast MAC frames operates in a different manner to the switching of unicast 
MAC frames. Broadcast MAC frames are identified by PKT.LNID=0x3FFF. 

When HDR.DO=0, i.e., the packet is an uplink packet, it is unicast to the base node. A switch which 
receives such a packet should apply the scope rules to ensure that it comes from a lower level and, if 
so, switch it upwards towards the base. The rules given in clause 8.3.5.3 must be applied. 

When HDR.DO=1, i.e., the packet is a downlink packet, it is broadcast to the next level. A switch 
which receives such a packet should apply the scope rules to ensure that it comes from the higher 
level and, if so, switch it further to its subnetwork. The most robust PHY modulation scheme and 
FEC coding at the maximum output power level implemented in the device should be used so that 
all the devices directly connected to the switch node can receive the packet. The rules given in 
clause 8.3.5.3 must be applied. The service node should also pass the packet up to its MAC SAP to 
applications which have registered to receive broadcast packets using the MAC_JOIN service. 

When the base node receives a broadcast packet with HDR.DO=0, it should pass the packet up its 
MAC SAP to applications which have registered to receive broadcast packets. The base node 
should also transmit the packet as a downlink packet, i.e., HDR.DO=1, using the most robust PHY 
modulation scheme and FEC coding at the maximum output power level and following the rules 
given in clause 8.3.5.3. 



 

44 Rec. ITU-T G.9904 (10/2012) 

8.3.5.5 Switching of multicast packets 

8.3.5.5.1 General 

Multicast packet switching operates in a very similar way to broadcast packet switching. Multicast 
is an extension of broadcast. If a switching node does not implement multicasting, it should handle 
all multicast packets as broadcast packets. 

Different names of MAC header and packets are used in this clause. Refer to clause 8.4.2 to find 
proper definitions. 

8.3.5.5.2 Multicast switching table 

Switch nodes which implement multicast should maintain a multicast switching table. This table 
contains a list of multicast group LCIDs that have members connected to the subnetwork through 
the switch node. The LCID of multicast traffic in both downlink and uplink directions is checked 
for a matching entry in the multicast switching table. Multicast traffic is only switched if an entry 
corresponding to the LCID is available in the table; otherwise, the traffic is silently discarded. 

A multicast switching table is established and managed by examining the multicast join and leave 
messages (MUL control packet) which pass through the switch. Note that multiple service nodes 
from a switch node's control hierarchy may be members of the same group.  

On a successful group join from a service node in its control hierarchy, a switch node adds a new 
multicast switch entry for the group LCID, where necessary. 

When a successful group leave is indicated, the switch removes the NID from the multicast switch 
entry. If the multicast switch entry then has no NID associated with it, the multicast switch entry is 
immediately removed. 

switch nodes shall also examine the Keep-Alive packets being passed upwards. When a service 
node that is also a member of a multicast group fails the Keep-Alive process, its NID is removed 
from any multicast switch entries and, if necessary, the multicast switch entry is removed. 

Switch nodes should use a timer to trigger the actual removal of switch entries. The timer is started 
when it is decided that an entry should be removed. This timer has the value ((macMaxCtlReTx + 1) 
× macCtlReTxTimer). Only once the timer has expired is the multicast switch entry removed. This 
allows the terminal node a short amount of time to flush any remaining multicast packets before the 
connection is removed and the switch node implementation is simplified since it only needs to 
process MUL_LEAVE_B or MUL_LEAVE_S (refers to clause 8.4.5.9), but not both. 

8.3.5.5.3 Switching process of multicast packets 

The multicast packet switching process depends on the packet direction. 

When HDR.DO=0 and PKT.LNID=0x3FFE, i.e., the packet is an uplink multicast packet, it is 
unicast towards the base node. A switch node that receives such a packet should apply the scope 
rules to ensure it comes from a lower hierarchical level and, if so, switch it upwards towards the 
base node. No LCID-based filtering is performed. All multicast packets are switched, regardless of 
any multicast switch entries for the LCID. The coding rate most applicable to the unicast may be 
used and the rules given in clause 8.3.5.3 shall be applied. 

When HDR.DO=1 and PKT.LNID=0x3FFE, i.e., the packet is a downlink multicast packet, the 
multicast switching table is used. If there is an entry with the LCID corresponding to PKT.LCID in 
the packet, the packet is switched downwards to the part of subnetwork controlled by this switch. 
The most robust PHY modulation scheme and FEC coding at the maximum output power level 
should be used so that all its devices in the lower level can receive the packet. The rules given in 
clause 8.3.5.3 shall be applied. If the service node is also a member of the multicast group, it should 
also pass the packet up its MAC SAP to applications which have registered to receive the multicast 
packets for that group. 



 

  Rec. ITU-T G.9904 (10/2012) 45 

When the base node receives a multicast packet with HDR.DO=0 and it is a member of the 
multicast group, it should pass the packet up its MAC SAP to applications which have registered to 
receive multicast packets for that group. The base node should switch the multicast packet if there is 
an appropriate entry in its multicast switching table for the LCID, transmitting the packet as a 
downlink packet, i.e., HDR.DO=1, using the most robust PHY modulation scheme and FEC coding 
at the maximum output power level. The rules given in clause 8.3.5.3 shall be used. 

8.3.6 Direct connections  

8.3.6.1 Direct connection establishment 

The direct connection establishment is a little different from a normal connection although the same 
packets and processes are used. It is different because the initial connection request may not be 
acknowledged until it is already acknowledged by the target node. It is also different because the 
CON_REQ_B packets shall carry information for the "direct switch" to update the "direct switching 
table". 

A direct switch is not different from a general switch. It is only a logical distinction of identifying 
the first common switch between two service nodes that need to communicate with each other. Note 
that in the absence of such a common switch, the base node would be the direct switch. 

There are two different scenarios for using directed connections. These scenarios use the network 
shown in Figure 8-12.  

The first is when the source node does not know the destination service node's EUI-48 address. The 
service node initiates a connection to the base node and the base node convergence layer redirects 
the connection to the correct service node.  



 

46 Rec. ITU-T G.9904 (10/2012) 

 

Figure 8-12 – Directed connection to an unknown service node 

The steps to establish a direct connection, as shown in Figure 8-12, shall be: 

• When node I tries to establish a connection with node F, it shall send a normal connection 
request (CON_REQ_S).  

• Then, due to the fact that the base node knows that F is the target service node, it should 
send a connection request to F (CON_REQ_B). This packet will carry information for 
direct switch B to include the connection in its direct switching table. 

• F may accept the connection. (CON_REQ_S). 

• Now that the connection with F is fully established, the base node will accept the 
connection with I (CON_REQ_B). This packet will carry information for the direct switch 
B to include in its direct switching table. 

After finishing this connection-establishment process, the direct switch (node B) should contain a 
direct switching table with the entries shown in Table 8-2. 

Table 8-2 – Direct connection example: node B's direct switching table 

Uplink Downlink 

SID LNID LCID DSID DLNID DLCID NAD 

1 1 N 3 1 M 0 

3 1 M 1 1 N 1 



 

  Rec. ITU-T G.9904 (10/2012) 47 

The direct switching table should be updated every time a switch receives a control packet that 
meets the following requirements: 

• it is CON_REQ_B packet: HDR.DO=1, CON.TYPE=1 and CON.N=0 

• it contains "direct" information: CON.D=1 

• the direct information is for itself: CON.DSSID is the SID of the switch itself. 

Then, the direct switching table is updated with the information: 

• uplink (SID, LNID, LCID) = (PKT.SID, PKT.LNID, CON.LCID); 

• downlink (SID, LNID, LCID, NAD) = (CON.DCSID, CON.DCLNID, CON.DCLCID, 
CON.DCNAD). 

The connection closing packets should be used to remove the entries. 

The second scenario for using directed connections is when the initiating service node already 
knows the destination service node's EUI-48 address. In this case, rather than using the base node's 
address, it uses the service node's address. In this case, the base node convergence layer is not 
involved. The base node MAC layer connects service node I directly to service node F. The 
resulting switch table entries are identical to the previous example. The exchange of signals is 
shown in Figure 8-13. 

 

Figure 8-13 – Example of direct connection: connection establishment  
to a known service node 



 

48 Rec. ITU-T G.9904 (10/2012) 

8.3.6.2 Direct connection release 

The release of a direct connection is shown in Figure 8-14. The signalling is very similar to 
connection establishment for a direct connection. The D fields are used to tell the direct switch 
which entries it should remove. The direct switching table should be updated every time a switch 
receives a control packet that meets the following requirements: 

• it is CON_CLOSE_B packet: HDR.DO=1, CON.TYPE=1 and CON.N=1 

• it contains "direct" information: CON.D=1 

• the direct information is for itself: CON.DSSID is the SID of the switch itself. 

Then, the direct switching table entry with the following information is removed: 

• uplink (SID, LNID, LCID) = (PKT.SID, PKT.LNID, CON.LCID); 

• downlink (SID, LNID, LCID, NAD) = (CON.DCSID, CON.DCLNID, CON.DCLCID, 
CON.DCNAD). 

 

Figure 8-14 – Release of a direct connection 

8.3.6.3 Direct connection switching 

As explained in clause 8.3.5.3, the normal switching mechanism is intended to be used for 
forwarding communication data between the base node and each service node. The "direct 
switching" is a mechanism to let two nodes communicate with each other, switching the packets in 
a local way, i.e., without passing through the base node. It is not a different form of packet-
switching, but rather an additional feature of the general switching process. 



 

  Rec. ITU-T G.9904 (10/2012) 49 

The first shared switch in the paths that go from two service nodes to the base node will be called 
the "direct switch" for the connections between the said nodes. This is the switch that will have the 
possibility of performing the direct switching to make the two nodes communicate efficiently. As a 
special case, every switch is the "direct switch" between itself and any node that is lower down in 
the hierarchy. 

The "direct switching table" is a table every switch should contain in order to perform direct 
switching. Each entry on this table is a direct connection that must be switched directly. It is 
represented by the origin CID and the destination CID of the direct connection. It is not a record of 
every connection identifier lower down in its hierarchy, but contains only those that should be 
directly switched by it. The destination node's ability to receive aggregated packets shall also be 
included in the "direct switching table" in order to fill the PKT.NAD field. 

8.3.6.4 Direct switching operation 

If a switch receives an uplink (HDR.DO=0) MAC frame that is to be switched (see clause 8.3.5.3 
for the requirements) and its address is in the direct switching table, then the procedure is as 
follows: 

• change the (SID, LNID, LCID, NAD) by the downlink part of the entry in the direct 
switching table; 

• queue the packet to be transmitted as a downlink packet (HDR.DO=1). 

8.3.7 Packet aggregation 

8.3.7.1 General 

The GPDU may contain one or more packets. The functionality of including multiple packets in a 
GPDU is called packet aggregation. Packet aggregation is an optional part of this Recommendation 
and devices do not need to implement it for compliance with this Recommendation. It is however 
suggested that devices should implement packet aggregation in order to improve MAC efficiency.  

To maintain compatibility between devices that implement packet aggregation and ones that do not, 
there must be a guarantee that no aggregation takes place for packets whose data transit path 
from/to the base node crosses (an) intermediate service node(s) that do(es) not implement this 
function. Information about the aggregation capability of the data transit path is exchanged during 
the registration process (8.6.1). A registering service node notifies this capability to the base node in 
the REG.CAP_PA field (1 bit, see Table 8-8) of its REG_REQ message. It gets feedback from the 
base node on the aggregation capability of the whole Downlink transit path in the REG.CAP_PA 
field of the REG_RSP message. 

Based on initial information exchanged on registration, each subsequent data packet in either 
direction contains aggregation information in the PKT.NAD field. In the Downlink direction, the 
base node will be responsible for filling PKT.NAD based on the value it communicated to the 
destination service node in the REG.CAP_PA field of the REG_RSP message. Likewise, for uplink 
data, the source service node will fill PKT.NAD based on the REG.CAP_PA field received in the 
initial REG_RSP from the base node. The last switch shall use the PKT.NAD field to avoid packet 
aggregation when forwarding the packet to destination service nodes without packet aggregation 
capability. Intermediate switch nodes should have information about the aggregation capability in 
their switching table and shall not aggregate packets when it is known that next level switch node 
does not support this feature.  

Devices that implement packet aggregation shall ensure that the size of the MSDU comprising the 
aggregates does not exceed the maximum capacity of the most robust transmission scheme of a 
PHY burst. The most robust transmission scheme refers to the most robust combination of 
modulation scheme and convolutional coding. 



 

50 Rec. ITU-T G.9904 (10/2012) 

8.3.7.2 Packet aggregation when switching 

Switch nodes maintain information on the packet aggregation capability of all entries in their 
switching table, i.e., of all switches that are connected to the subnetwork through them. This 
capability information is then used during traffic switching to/from the connected switch nodes. 

The packet aggregation capability of a connecting switch node is registered at each transit switch 
node at the time of its promotion by sniffing relevant information in the PRO_ACK message. 

• If the PKT.SID in a PRO_ACK message is the same as the switching node, the node being 
promoted is connected directly to the said switch node. The aggregation capability of this 
new switch node is registered as the same as indicated in PKT.NAD of the PRO_ACK 
packet. 

• If the PKT.SID in a PRO_ACK message is different from the SID of the switching node, it 
implies that the node being promoted is indirectly connected to this switch. The aggregation 
capability for this new switch node will thus be the same as the aggregation capability 
registered for its immediate switch, i.e., PKT.SID.  

Aggregation while switching packets in the uplink direction is performed if the node performing the 
switch knows that its uplink path is capable of handling aggregated packets, based on capability 
information exchanged during registration (REG.CAP_PA field in REG_RSP message).  

Downlink packets are aggregated by analysing the following: 

• If the PKT.SID is the same as the switching node, then it is the last switching level and the 
packet will arrive at its destination. In this case, the packet may be aggregated if 
PKT.NAD=0. 

• If the PKT.SID is different, this is not the last level and another switch will receive the 
packet. The information of whether or not the packet could be aggregated should be 
extracted from the switching table. 

8.3.8 Security  

8.3.8.1 General 

The security functionality provides the MAC layer with privacy, authentication and data integrity 
through a secure connection method and a key management policy. All packets must use the 
negotiated security profile. The only exceptions to this rule are the REG and SEC control messages, 
and the BPDU and PNPDU PDUs which are transferred non-encrypted. 

8.3.8.2 Security profiles 

Several security profiles are provided for managing different security needs, which can arise in 
different network environments. This version of the Recommendation lists two security profiles and 
leaves scope for adding up to two new security profiles in future versions.  

8.3.8.2.1 Security profile 0 

Communications which have the security profile 0 are based on the transmission of MAC SDUs 
without encryption. This profile may be used in application scenarios where either sufficient 
security is provided by upper communication layers or where security is not a major requirement 
for application use-case. 



 

  Rec. ITU-T G.9904 (10/2012) 51 

8.3.8.2.2 Security profile 1 

8.3.8.2.2.1 General 

Security profile 1 is based on 128-bit AES encryption of data and its associated CRC. This profile is 
specified with the aim of fulfilling all security requirements: 

• Privacy is guaranteed by the encryption itself and by the fact that the encryption key is kept 
secret. 

• Authentication is guaranteed by the fact that each node has its own secret key known only 
by the node itself and the base node. 

• Data integrity is guaranteed by the fact that the payload CRC is encrypted. 

8.3.8.2.2.2 Cryptographic primitives 

The cryptographic algorithm used in this Recommendation is the AES, as specified in [PUB 197]. 
The specification describes the algorithm with three possible key sizes; the 128-bit secret key 
represents a good level of security for preserving privacy up to 2030 and beyond, as specified in 
[SP 800-57], page 66, Table 4. 

AES is used according to the so-called ECB, as specified in [SP 800-38A]. It is a block-ciphering 
mode where plain text is divided into 128-bit blocks. Padding is applied if the last block is smaller 
than 128 bits. Padding is implemented with the addition of a bit equal to 1 and as many zeroes as 
necessary to reach a length of the string to be encrypted as a multiple of 128 bits. Encryption is 
performed one block at a time using the same working key for all the data.  

8.3.8.2.2.3 Key derivation algorithm 

The method for deriving working keys from secret keys is to apply the AES algorithm to a constant 
(C) as plain text and generation key (GK) as an encryption key. If the constant is shorter than 
128 bits, it must be aligned to the LSB, as shown in Figure 8-15. The various key derivation 
equations specified in the following clauses follow the convention: 

Generated Key = AES_enc (Generation Key, Constant) 

 

Figure 8-15 – Key derivation concept 

8.3.8.3 Negotiation of the security profile 

All MAC data, including signalling PDUs (all MAC control packets defined in clause 8.4.5) use the 
same security profile. This profile is negotiated during the device registration. In the REG_REQ 
message the terminal indicates a security profile it is able to support in the field REG.SPC. The base 
node may accept this security profile and so accept the registration, sending back a REG_RSP with 
the same REG.SPC value. The base node may also accept the registration, however it sets 
REG.SPC to 0 indicating that security profile 0 is to be used. Alternatively, the base node may 
reject the registration if the terminal does not provide an acceptable security profile.  



 

52 Rec. ITU-T G.9904 (10/2012) 

It is recommended that the terminal first attempts to register using the highest security profile it 
supports and only use lower security profiles when the base node rejects the registration request. 

8.3.8.4 Key hierarchy 

8.3.8.4.1 Security profile 0 

Not applicable. 

8.3.8.4.2 Security profile 1 

Service nodes and base nodes use a set of three working keys to encrypt all data. The keys and their 
respective usage are: 

Initial working key (WK0): This key has limited scope and is used to decrypt the REG.SNK and 
REG.AUK fields of the REG_RSP message. The WK0 is thus used by a service node in a 
disconnected functional state. This key is computed using the following formula: 

WK0 = AES_enc (USK, 0) 

Working key (WK): This key is used to encrypt all the unicast data that is transmitted from the base 
node to a service node and vice versa. Each registered service node would have a unique WK that is 
known only to the base node and itself. The WK is computed as follows: 

WK = AES_enc (USK, Random sequence received in SEC.RAN) 

Subnetwork working key (SWK): The SWK is shared by the entire subnetwork. To ensure the 
security of this key, it is never transmitted over the physical channel, but is computed from other 
keys which are transmitted encrypted in REG and non-encrypted in SEC control packets. The SWK 
shall be used to encrypt the following: 

• broadcast data, including MAC broadcast control packets 

• multicast data 

• unicast data that is transacted over direct connections, i.e., not involving the base node. 

The SWK is computed as follows: 

SWK = AES_enc (SNK, Random sequence received in SEC.SNK) 

The WK and the SWK have a limited validity time related to the random sequence generation 
period. The random sequence is regenerated and distributed by the base node at least every 
MACRandSeqChgTime seconds through the SEC control packet. If a device does not receive an 
update of a random sequence within 2 × MACRandSeqChgTime, it should consider the WK and 
SWK as no longer valid. Lack of availability of WK will render service node to very limited 
functionality of unregistering from the subnetwork. It is therefore advised that in such cases, service 
nodes should unregister from the network and initiate a re-registration procedure. 

The key derivation procedures have been designed to be indirect and multi-staged to ensure 
security. The parameters involved in the derivation of the working keys are defined below. 

Master key (MK1, MK2). Two master keys (MK1 and MK2) are defined in this Recommendation. 
MK1 is used to compute the DSK. MK2 is used to compute the KDIV. Both of these keys are 
administered on the base node by implementation-dependent means that are beyond the scope of 
this Recommendation. Specifying two master keys makes the USK generation a two stage process, 
i.e., derivation of DSK and KDIV in the first stage and using them to derive the USK in the second 
stage. Note that the DSK and KDIV are unique to each registering service node. 

Device secret key (DSK). DSK is unique to each service node on the subnetwork and is hard-coded 
in the device during production. The DSK is constant for the entire life of the service node. The 
base node uses MK1 to derive service node-specific DSK using the following equation: 

DSK = AES_enc (MK1, UI) 



 

  Rec. ITU-T G.9904 (10/2012) 53 

Key diversifier (KDIV). This quantity is also unique to each service node, but unlike DSK, it does 
not have to be a fixed constant for the entire life of the service node. The KDIV is provisioned on 
each service node by means that are beyond the scope of this Recommendation. The base node 
computes device-specific KDIV using the equation:  

KDIV = AES_enc (MK2, UI) 

Unique secret key (USK). The USK is used to derive WK0 and WK as defined in the above 
equations. The USK is in turn computed by applying AES to KDIV, using DSK as the generation 
key, as shown in the equation below. Note that this is a single-step process in service nodes because 
both KDIV and DSK are already known or provisioned, but a three-step process in the base node. 
The first two steps in the base node comprise deriving the DSK and KDIV using the MK1 and 
MK2, respectively.  

USK = AES_enc (DSK, KDIV) 

Unique identifier (UI): The UI of a service node shall be its EUI-48. 

8.3.8.5 Key distribution and management 

The security profile for data traffic is negotiated when a device is registered. The REG control 
packet contains specific fields to indicate the security profile for respective devices. All connections 
to/from the device would be required to follow the security profile negotiated at the time of 
registration. There cannot be a difference in security profiles across multiple connections involving 
the same device. The only exception to this would be the base node. 

The SWK used as a working key for non-unicast traffic and direct connections is never transmitted 
in non-encrypted form over the physical channel. The SEC broadcast messages transmitted by the 
base node (and relayed by all switch nodes) at regular intervals contain random keys for both 
unicast and non-unicast traffic. When a device initially registers on a subnetwork, the REG response 
from the base node contains the random sequence used to derive WK for unicast traffic. The REG 
message is followed by a unicast SEC message from the base node to the registering device. 

8.3.8.6 Encryption 

8.3.8.6.1 Security profile 0 

Not applicable. 

8.3.8.6.2 Security profile 1 

Connections working with "Security profile 1" would always transmit a CRC with every packet. 
This field shall be called SCRC (security CRC) and is calculated over the unencrypted packet 
payload. The SCRC helps confirm the integrity of the packet on its decryption at the receiving end. 

The SCRC shall be calculated as the remainder of the division (Modulo 2) by the generator 
polynomial g(x)=x8+x2+x+1 of the polynomial x8 multiplied by the unencrypted packet payload. 

The data block obtained by the concatenation of the unencrypted payload of the packet and the 
calculated SCRC is padded with a 1 followed by as many zeroes as necessary to reach a multiple of 
128 and then divided into 128-bit blocks. The 1 inserted as the first padding bit is useful to detect 
the start of the padding at the receiver without notification of the number of padded bits. 

Each 128-bit block is encrypted with the AES algorithm using a valid working key. The result of 
this encryption process is the encrypted payload of the packet. 



 

54 Rec. ITU-T G.9904 (10/2012) 

 

Figure 8-16 – Security profile 1 encryption algorithm 

8.4 MAC PDU format 

8.4.1 General 

There are different types of MAC PDUs for different purposes. 

8.4.2 Generic MAC PDU 

8.4.2.1 General 

Most subnetwork traffic comprises generic MAC PDUs (GPDU). GPDUs are used for all data 
traffic and most control traffic. All MAC control packets are transmitted as GPDUs. 

GPDU composition is shown in Figure 8-17. It is composed of a generic MAC header followed by 
one or more MAC packets and a 32 bit CRC appended at the end. 

 

Figure 8-17 – Generic MAC PDU format 

8.4.2.2 Generic MAC header 

The generic MAC header format is represented in Table 8-3. The size of the generic MAC header is 
3 bytes. Table 8-3 enumerates each field of a generic MAC header. 

 

Figure 8-18 – Generic MAC header 



 

  Rec. ITU-T G.9904 (10/2012) 55 

Table 8-3 – Generic MAC header fields 

Name Length Description 

Unused 2 bits Unused bits which are always 0; included for alignment with MAC_H field in 
the PPDU header (see clause 7.4.3). 

HDR.HT 2 bits Header type 
HDR.HT = 0 for GPDU 

Reserved 5 bits Always 0 for this version of the Recommendation. Reserved by ITU-T. 

HDR.DO 1 bit Downlink/uplink 
• HDR.DO=1 if the MAC PDU is downlink 
• HDR.DO=0 if the MAC PDU is uplink 

HDR.LEV
EL 

6 bits Level of the PDU in switching hierarchy 
The packets between the level 0 and the base node are of HDR.LEVEL=0. The 
packets between levels k and k-1 are of HDR.LEVEL=k. 
• If HDR.DO=0, HDR.LEVEL represents the level of the transmitter of this 

packet. 
• If HDR.DO=1, HDR.LEVEL represents the level of the receiver of this 

packet. 

HDR.HCS 8 bits Header check sequence 
A field for detecting errors in the header and checking that this MAC PDU is 
from this subnetwork. The transmitter shall calculate the CRC of the SNA 
concatenated with the first 2 bytes of the header and insert the result into the 
HDR.HCS field (the last byte of the header). The CRC shall be calculated as 
the remainder of the division (Modulo 2) of the polynomial M(x)·x8 by the 
generator polynomial g(x)=x8+x2+x+1. M(x) is the input polynomial, which is 
formed by the bit sequence of the concatenation of the SNA and the header 
excluding the HDR.HCS field, and the MSB of the bit sequence is the 
coefficient of the highest order of M(x). 

8.4.2.3 Packet structure 

A packet is comprised of a packet header and packet payload. Figure 8-19 shows the structure. 

 

Figure 8-19 – Packet structure 

Packet header is 6 bytes in length and its composition is shown in Figure 8-20. Table 8-4 
enumerates the description of each field. 

 

Figure 8-20 – Packet header 

To simplify, the text contains references to the PKT.NID fields as the composition of the PKT.SID 
and PKT.LNID. The field PKT.CID is also described as the composition of the PKT.NID and the 
PKT.LCID. The composition of these fields is described in Figure 8-21. 



 

56 Rec. ITU-T G.9904 (10/2012) 

 

Figure 8-21 – PKT.CID structure 

Table 8-4 – Packet header fields 

Name Length Description 

Reserved 3 bits Always 0 for this version of the Recommendation. Reserved by ITU-T. 

PKT.NAD 1 bit No aggregation at destination 
• If PKT.NAD=0 the packet may be aggregated with other packets at 

destination. 
• If PKT.NAD=1 the packet may not be aggregated with other packets at 

destination. 

PKT.PRIO 2 bits Indicates a packet priority between 0 and 3 

PKT.C 1 bits Control 
• If PKT.C=0 it is a data packet. 
• If PKT.C=1 it is a control packet. 

PKT.LCID / 
PKT.CTYPE 

9 bits Local connection identifier or control type 
• If PKT.C=0, PKT.LCID represents the local connection identifier of a data 

packet. 
• If PKT.C=1, PKT.CTYPE represents the type of the control packet. 

PKT.SID 8 bits Switch identifier 
• If HDR.DO=0, PKT.SID represents the SID of the packet source. 
• If HDR.DO=1, PKT.SID represents the SID of the packet destination. 

PKT.LNID 14 bits Local node identifier 
• If HDR.DO=0, PKT.LNID represents the LNID of the packet source.  
• If HDR.DO=1, PKT.LNID represents the LNID of the packet destination. 

PKT.SPAD 1bit Indicates if padding is inserted while encrypting payload. Note that this bit is 
only of relevance when security profile 1 (see clause 8.3.8.2.2) is used. 

PKT.LEN 9 bits Length of the packet payload in bytes 

8.4.2.4 CRC 

The CRC is the last field of the GPDU. It is 32 bits long. It is used to detect transmission errors. The 
CRC shall cover the concatenation of the SNA with the GPDU except for the CRC field itself. 

The input polynomial M(x) is formed as a polynomial whose coefficients are bits of the data being 
checked (the first bit to check is the highest order coefficient and the last bit to check is the 
coefficient of order zero). The generator polynomial for the CRC is 
G(x)=x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1. The remainder R(x) is calculated as the 
remainder from the division of M(x)·x32 by G(x). The coefficients of the remainder will then be the 
resulting CRC. 



 

  Rec. ITU-T G.9904 (10/2012) 57 

8.4.3 Promotion needed PDU 

If a node is disconnected and it does not have connectivity with any existing switch node, it shall 
send notifications to its neighbours to indicate the need for the promotion of any available terminal 
node. Figure 8-22 represents the promotion needed MAC PDU (PNPDU) that must be sent on an 
irregular basis in this situation. 

 

Figure 8-22 – Promotion need MAC PDU 

Table 8-5 shows the promotion need MAC PDU fields. 

Table 8-5 – Promotion need MAC PDU fields 

Name Length Description 

Unused 2 bits Unused bits which are always 0; included for alignment with MAC_H field in 
the PPDU header (see clause 7.4.3). 

HDR.HT 2 bits Header type 
HDR.HT = 1 for the promotion need MAC PDU 

Reserved 4 bits Always 0 for this version of the Recommendation. Reserved by ITU-T. 

PNH.SNA 48 bits Subnetwork address 
The EUI-48 of the base node of the subnetwork the service node is trying to 
connect to. FF:FF:FF:FF:FF:FF to ask for the promotion in any available 
subnetwork. 
SNA[0] is the most significant byte of the OUI/IAB and SNA[5] is the least 
significant byte of the extension identifier, as defined in: 
http://standards.ieee.org/regauth/oui/tutorials/EUI-48.html.  
The above notation is applicable to all EUI-48 fields in the specification. 

PNH.PNA 48 bits Promotion need address. The EUI-48 of the node that needs the promotion. It is 
the EUI-48 of the transmitter. 

PNH.HCS 8 bits Header check sequence. A field for detecting errors in the header. The transmitter 
shall calculate the PNH.HCS of the first 13 bytes of the header and insert the 
result into the PNH.HCS field (the last byte of the header). It shall be calculated 
as the remainder of the division (Modulo 2) of the polynomial M(x)·x8 by the 
generator polynomial g(x)=x8+x2+x+1. M(x) is the input polynomial, which is 
formed by the bit sequence of the header excluding the PNH.HCS field, and the 
MSB of the bit sequence is the coefficient of the highest order of M(x). 

As it is always transmitted by unsynchronized nodes and therefore, prone to creating collisions, it is 
a special reduced size header. It is broadcast to any other terminal node and shall therefore be 
transmitted with the most robust scheme of the PHY layer. 

http://standards.ieee.org/regauth/oui/tutorials/EUI48.html


 

58 Rec. ITU-T G.9904 (10/2012) 

8.4.4 Beacon PDU 

Beacon PDU (BPDU) is transmitted by every switch device on the subnetwork, including the base 
node. The purpose of this PDU is to circulate information on MAC frame structure and therefore 
channel access to all devices that are part of this subnetwork. The BPDU is transmitted at definite 
fixed intervals of time and is also used as a synchronization mechanism by service nodes. 
Figure 8-23 below shows contents of a beacon transmitted by the base node and each switch device.  

 

Figure 8-23 – Beacon PDU structure 

Table 8-6 shows the beacon PDU fields. 

Table 8-6 – Beacon PDU fields 

Name Length Description 

Unused 2 bits Unused bits which are always 0; included for alignment with MAC_H field in 
the PPDU header (see clause 7.4.3). 

HDR.HT 2 bits Header type 
HDR.HT = 2 for Beacon PDU 

Reserved 1 bit Always 0 for this version of the Recommendation. Reserved by ITU-T. 

BCN.QLTY 3 bits Quality of round-trip connectivity from this switch node to the base node. 
BCN.QLTY=7 for best quality (base node or very good switch node), 
BCN.QLTY=0 for worst quality (switch having unstable connection to 
subnetwork) 

BCN.SID 8 bits Switch identifier of transmitting switch 

BCN.CNT 3 bits Number of beacon slots in this frame 

BCN.SLT 3 bits Beacon slot in which this BPDU is transmitted 
BCN.SLT=0 is reserved for the base node 

BCN.CFP 10 bits Offset of CFP from start of frame 
BCN.CFP=0 indicates absence of CFP in a frame. 

Reserved 1 bit Always 0 for this version of the Recommendation. Reserved by ITU-T. 

BCN.LEVEL 6 bits Hierarchy of transmitting switch in the subnetwork 



 

  Rec. ITU-T G.9904 (10/2012) 59 

Table 8-6 – Beacon PDU fields 

Name Length Description 

BCN.SEQ 5 bits Sequence number of this BPDU in the superframe. Incremented for every 
beacon the base node sends and is propagated by switch through its BPDU so 
that the entire subnetwork has the same notion of sequence number at a given 
time. 

BCN.FRQ 3 bits Transmission frequency of this BPDU. Values are interpreted as follows: 
0 = 1 beacon every frame 
1 = 1 beacon every 2 frames 
2 = 1 beacon every 4 frames 
3 = 1 beacon every 8 frames 
4 = 1 beacon every 16 frames 
5 = 1 beacon every 32 frames 
6 = Reserved by ITU-T 
7 = Reserved.by ITU-T. 

BCN.SNA 48 bits Subnetwork identifier in which the switch transmitting this BPDU is located. 

BCN.UPCOST 8 bits Total uplink cost from the transmitting switch node to the base node. The cost 
of a single hop is calculated based on the modulation scheme used on that hop 
in the uplink direction. Values are derived as follows: 
8PSK = 0 
QPSK = 1 
BPSK = 2 
8PSK_F = 1 
QPSK_F = 2 
BPSK_F = 4. 
The base node will transmit in its beacon a BCN.UPCOST of 0. A switch 
node will transmit in its beacon the value of BCN.UPCOST received from its 
upstream switch node, plus the cost of the upstream uplink hop to its upstream 
switch. When this value is larger than what can be held in BCN.UPCOST the 
maximum value of BCN.UPCOST should be used. 

BCN.DNCOST 8 bits Total downlink cost from the base node to the transmitting switch node. The 
cost of a single hop is calculated based on the modulation scheme used on that 
hop in the downlink direction. Values are derived as follows: 
8PSK 0 
QPSK 1 
BPSK 2 
8PSK_F 1 
QPSK_F 2 
BPSK_F 4. 
The base node will transmit in its beacon a BCN.DNCOST of 0. A switch 
node will transmit in its beacon the value of BCN.DNCOST received from its 
upstream switch node, plus the cost of the upstream downlink hop from its 
upstream switch. When this value is larger than what can be held in 
BCN.DNCOST the maximum value of BCN.DNCOST should be used. 

CRC 32 bits The CRC shall be calculated with the same algorithm as the one defined for 
the CRC field of the MAC PDU (see clause 8.4.2.4 for details). This CRC 
shall be calculated over the complete BPDU except for the CRC field itself. 



 

60 Rec. ITU-T G.9904 (10/2012) 

The BPDU is also used to detect when the uplink switch is no longer available either by a change in 
the characteristics of the medium or because of failure etc. If a service node fails to receive 
Nmiss-beacon in a row it should declare the link to its switch as unusable. The service node should stop 
sending beacons itself if it is acting as a switch. It should close all existing MAC connections. The 
service node then enters the initial unregistered functional state and searches for a subnetwork join. 
This mechanism complements the keep-alive mechanism which is used by a base node and its 
switches to determine when a service node is lost.  

8.4.5 MAC control packets 

8.4.5.1 General 

MAC control packets enable a service node to communicate control information with their switch 
node, base node and vice versa. A control packet is transmitted as a GPDU and is identified with the 
PKT.C bit set to 1 (See clause 8.4.2 for more information about the fields of the packets). 

There are several types of control messages. Each control message type is identified by the field 
PKT.CTYPE. Table 8-7 lists the types of control messages. The packet payload (see clause 8.4.2.3) 
shall contain the information carried by the control packets. This information differs depending on 
the packet type. 

Table 8-7 – MAC control packet types 

Type 
(PKT.CTYPE) 

Packet 
name 

Packet description 

1 REG Registration management 

2 CON Connection management 

3 PRO Promotion management 

4 BSI Beacon slot indication 

5 FRA Frame structure change 

6 CFP Contention-free period request 

7 ALV Keep-alive 

8 MUL Multicast management 

9 PRM PHY robustness management 

10 SEC Security information 

8.4.5.2 Control packet retransmission  

For recovery from lost control messages, a retransmit scheme is defined. MAC control transactions 
comprising of exchange of more than one control packet may follow the retransmission mechanism 
described in this clause. 

The retransmission scheme shall be applied to the following packets when they require a response: 

• CON_REQ_S, CON_REQ_B 

• CON_CLS_S, CON_CLS_B 

• REG_RSP 

• PRO_REQ_B 

• BSI_IND 

• MUL_JOIN_S, MUL_JOIN_B 

• MUL_LEAVE_S, MUL_LEAVE_B. 



 

  Rec. ITU-T G.9904 (10/2012) 61 

Devices involved in a MAC control transaction using the retransmission mechanism shall keep 
count of the number of times a message has been retransmitted and maintain a retransmit timer. 

At the requester of a control message transaction: 

• When the first message in a transaction is transmitted, the retransmit timer is started with 
the value macCtlReTxTimer and the retransmit count is set to 0.  

If a response message is received the retransmit timer is stopped and the transaction is considered 
complete. Note that it is possible to receive further response messages. These would be messages 
that encountered network delays. 

• If the retransmit timer expires, the retransmit counter is incremented. If the retransmit 
counter is less than macMaxCtlReTx the control message is retransmitted. If the counter is 
equal to the maximum number of retransmits, the failure result corresponding to the 
respective MAC-SAP should be returned to the calling entity. Implementations may also 
choose to inform their local management entity of such a failure. If the retransmission is 
done by the service node, the device should return to the disconnected state. 

At the responder of a control message transaction: 

• The receiver of a message must determine itself if this message is a retransmit. If so, no 
local action is needed other than sending a reply to the response. 

If the received message is not a retransmit, the message should be processed and a response 
returned to the sender. 

• For transactions which use three messages in the transaction, e.g., promotion as shown in 
clause 8.6.3, the responder should perform retransmits in exactly the same way as the 
requester. This ensures that if the third message in the transaction is lost, the message will 
be retried and the transaction completed. 

The following message sequence charts show some examples of retransmission. Figure 8-24 shows 
two successful transactions without requiring retransmits. 

 

Figure 8-24 – Two transactions without requiring retransmits 



 

62 Rec. ITU-T G.9904 (10/2012) 

Figure 8-25 shows a more complex example, where messages are lost in both directions causing 
multiple retransmits before the transaction completes. 

 

Figure 8-25 – Transaction with packet loss requiring retransmits 

Figure 8-26 shows the case of a delayed response causing duplication at the initiator of the control 
transaction. 

 

Figure 8-26 – Duplicate packet detection and elimination 



 

  Rec. ITU-T G.9904 (10/2012) 63 

8.4.5.3 REG control packet (PKT.CTYPE=1) 

This control packet is used to negotiate the registration process. The description of data fields of 
this control packet is described in Table 8-8 and Figure 8-27. The meaning of the packets differs 
depending on the direction of the packet. This packet interpretation is explained in Table 8-9. These 
packets are used during the registration and unregistration processes, as explained in clauses 8.6.1 
and 8.6.2. 

The PKT.SID field is used in this control packet as the switch where the service node is registering. 
The PKT.LNID field is used in this control packet as the local node identifier being assigned to the 
service node during the registration process negotiation. 

The REG.CAP_PA field is used to indicate the packet aggregation capability as discussed in 
clause 8.3.7. In the uplink direction, this field is an indication from the registering terminal node 
about its own capabilities. For the downlink response, the base node evaluates whether or not all the 
devices in the cascaded chain from itself to this terminal node have the packet-aggregation 
capability. If they do, the base node shall set REG.CAP_PA=1; otherwise REG.CAP_PA=0. 

G.9904(12)_F8-27

MSB

REG.N REG.R REG.SPC Reserved
REG.

CAP_SW
REG.

CAP_PA
REG.

CAP_CFP
REG.

CAP_DC
REG.

CAP_MC
REG.

CAP_PRM
REG.

CAP_ARQ REG.TIME

REG.EUI48[47..40]

REG.EUI48[31..24]

REG.EUI48[15..8]

REG.EUI48[39..32]

REG.SNK[127..112]

REG.SNK[111..96]

REG.SNK[95..80]

REG.SNK[79..64]

REG.SNK[63..48]

REG.SNK[47..32]

REG.SNK[31..16]

REG.SNK[15..0]

REG.AUK[127..112]

REG.AUK[111..96]

REG.AUK[95..80]

REG.AUK[79..64]

REG.AUK[63..48]

REG.AUK[47..32]

REG.AUK[31..16]

REG.AUK[15..0]

REG.EUI48[23..16]

REG.EUI48[7..0]

 

Figure 8-27 – REG control packet structure 



 

64 Rec. ITU-T G.9904 (10/2012) 

 

Table 8-8 – REG control packet fields 

Name Length Description 

REG.N 1 bit Negative 
• REG.N=1 for the negative register 
• REG.N=0 for the positive register 
(see Table 8-9) 

REG.R 1 bit Roaming 
• REG.R=1 if node already registered and wants to perform roaming to 

another switch. 
• REG.R=0 if node not yet registered and wants to perform a clear 

registration process. 

REG.SPC 2 bits Security profile capability for data PDUs: 
• REG.SPC=0 No encryption capability 
• REG.SPC=1 Security profile 1 capable device 
• REG.SPC=2 Security profile 2 capable device (not yet specified) 
• REG.SPC=3 Security profile 3 capable device (not yet specified). 

Reserved 2 bits Reserved by ITU-T. Should be set to 0 for this version of the protocol. 

REG.CAP_SW 1 bit Switch capable 
1 if the device is able to behave as a switch node 
0 if the device is not 

REG.CAP_PA 1 bit Packet aggregation capability 
1 if the device has packet aggregation capability (uplink) 
if the data transit path to the device has packet aggregation capability 
(downlink); 
0 otherwise. 

REG.CAP_CFP 1 bit Contention-free period capability 
1 if the device is able to perform the negotiation of the CFP; 
0 if the device cannot use the contention-free period in a negotiated way. 

REG.CAP_DC 1 bit Direct connection capability 
1 if the device is able to perform direct connections 
0 if the device is not able to perform direct connections 

REG.CAP_MC 1 bit Multicast capability 
1 if the device is able to use multicast for its own communications 
0 if the device is not able to use multicast for its own communications 

REG.CAP_PRM 1 bit PHY robustness management capable 
1 if the device is able to perform PHY robustness management 
0 if the device is not able to perform PHY robustness management 

REG.CAP_ARQ 1 bit ARQ capable 
1 if the device is able to establish ARQ connections 
0 if the device is not able to establish ARQ connections 



 

  Rec. ITU-T G.9904 (10/2012) 65 

Table 8-8 – REG control packet fields 

Name Length Description 

REG.TIME 3 bits Time to wait for an ALV_B messages before assuming the service node 
has been unregistered by the base node. For all messages except 
REG_RSP this field should be set to 0. For REG_RSP its value means: 
ALV.TIME = 0 => 32 seconds 
ALV.TIME = 1 => 64 seconds 
ALV.TIME = 2 => 128 seconds  ~  2.1 minutes 
ALV.TIME = 3 => 256 seconds  ~  4.2 minutes 
ALV.TIME = 4 => 512 seconds  ~  8.5 minutes 
ALV.TIME = 5 => 1024 seconds  ~  17.1 minutes 
ALV.TIME = 6 => 2048 seconds  ~  34.1 minutes 
ALV.TIME = 7 => 4096 seconds  ~  68.3 minutes. 

REG.EUI-48 48 bit EUI-48 of the node 
EUI-48 of the node requesting the registration 

REG.SNK 128 bits Encrypted subnetwork key that shall be used to derive the subnetwork 
working key  

REG.AUK 128 bits Encrypted authentication key. This is a random sequence meant to act as 
an authentication mechanism. 

Table 8-9 – REG control packet types 

Name HDR.DO PKT.LNID REG.N REG.R Description 

REG_REQ 0 0x3FFF 0 R 

Registration request 
• If R=0 any previous connection from 

this node should be lost; 
• If R=1 any previous connection from 

this node should be maintained. 

REG_RSP 1 < 0x3FFF 0 R 
Registration response. This packet assigns 
the PCK.LNID to the service node. 

REG_ACK 0 < 0x3FFF 0 R 
Registration acknowledged by the service 
node. 

REG_REJ 1 0x3FFF 1 0 Registration rejected by the base node. 

REG_UNR_S 0 < 0x3FFF 1 0 

• After a REG_UNR_B: unregistration 
acknowledge 

• Alone: unregistration request initiated 
by the node 

REG_UNR_B 1 < 0x3FFF 1 0 

• After a REG_UNR_S: unregistration 
acknowledge 

• Alone: unregistration request initiated 
by the base node 

Fields REG.SNK and REG.AUK are of significance only for REG_RSP and REG_ACK messages 
with security profile 1 (REG.SCP=1). For all other message-exchange variants using the REG 
control packet, these fields shall not be present reducing the length of payload. 

In REG_RSP message, the REG.SNK and REG.AUK shall always be inserted encrypted 
with WK0.  



 

66 Rec. ITU-T G.9904 (10/2012) 

In the REG_ACK message, the REG.SNK field shall be set to zero. The contents of the REG.AUK 
field shall be derived by decrypting the received REG_RSP message with WK0 and re-encrypting 
the decrypted REG.AUK field with SWK derived from the decrypted REG.SNK and random 
sequence previously received in SEC control packets. 

8.4.5.4 CON control packet (PKT.CTYPE = 2) 

This control packet is used for negotiating the connections. The description of the fields of this 
packet is given in Table 8-10 and Figure 8-28 The meaning of the packet differs depending on the 
direction of the packet and on the values of the different types. Table 8-11 shows the different 
interpretation of the packets. The packets are used during the connection establishment and closing. 
These processes are explained in more detail in clause 8.6.6. 

 

Figure 8-28 – CON control packet structure 

Note that Figure 8-28 shows the complete message with all optional parts. When CON.D is 0, 
CON.DCNAD, CON.DSSID, CON.DCLNID, CON.DCLID, CON.DCSID and the reserved field 
between CON.DCNAD and CON.DSSID will not be present in the message. Thus, the message will 
be 6 octets smaller. Similarly, when CON.E is zero, the field CON.EUI-48 will not be present, 
making the message 6 octets smaller.  

Table 8-10 – CON control packet fields 

Name Length Description 

CON.N 1 bit Negative 
• CON.N=1 for the negative connection 
• CON.N=0 for the positive connection 

CON.D 1 bit Direct connection 
• CON.D=1 if information about direct connection is carried by 

this packet 
• CON.D=0 if information about direct connection is not carried 

by this packet 

CON.ARQ 1 bit ARQ mechanism enable 
• CON.ARQ=1 if ARQ mechanism is enabled for this 

connection 
• CON.ARQ=0 if ARQ mechanism is not enabled for this 

connection 



 

  Rec. ITU-T G.9904 (10/2012) 67 

Table 8-10 – CON control packet fields 

Name Length Description 

CON.E 1 bit EUI-48 presence 
• CON.E = 1 to have a CON.EUI-48 
• CON.E = 0 to not have a CON.EUI-48 so that this connection 

establishment is for reaching the base node CL. 

Reserved 3 bits Reserved by ITU-T. 
This shall be 0 for this version of the protocol. 

CON.LCID 9 bits Local connection identifier 
The LCID is reserved in the connection request. LCIDs from 0 to 
255 are assigned by the connection requests initiated by the base 
node. LCIDs from 256 to 511 are assigned by the connection 
requests initiated by the local node. 
This is the identifier of the connection being managed with this 
packet. This is not the same as the PKT.LCID of the generic 
header, which does not exist for control packets. 

CON.EUI-48 48 bits 
(Present if 
CON.E=1) 

EUI-48 of destination/source service node/base node for 
connection request 
When not performing a directed connection, this field should not 
be included. When performing a directed connection, it may 
contain the SNA, indicating that the base node convergence layer 
should determine the EUI-48. 
• CON.D = 0, Destination EUI-48 
• CON.D = 1, Source EUI-48 

Reserved 7 bits 
(Present if 
CON.D=1) 

Reserved by ITU-T. 
This shall be 0 for this version of the protocol. 

CON.DCLCI
D 

9 bits 
(Present if 
CON.D=1) 

Direct connection LCID 
This field represents the LCID of the connection identifier to 
which the one being established shall be directly switched. 

CON.DCNA
D 

1 bit 
(Present if 
CON.D=1) 

Reserved by ITU-T. Direct connection not aggregated at 
destination. 
This field represents the content of the PKT.NAD field after a 
direct connection switch operation. 

Reserved 1 bits 
(Present if 
CON.D=1) 

Reserved by ITU-T. 
This shall be 0 for this version of the protocol. 

CON.DCLNI
D 

14 bits 
(Present if 
CON.D=1) 

Direct connection LNID 
This field represents the LNID part of the connection identifier to 
which the one being established shall be directly switched. 

CON.DSSID 8 bits 
(Present if 
CON.D=1) 

Direct switch SID 
This field represents the SID of the switch that should learn this 
direct connection and perform direct switching. 

CON.DCSID 8 bits 
(Present if 
CON.D=1) 

Direct connection SID 
This field represents the SID part of the connection identifier to 
which the one being established shall be directly switched. 



 

68 Rec. ITU-T G.9904 (10/2012) 

Table 8-10 – CON control packet fields 

Name Length Description 

CON.TYPE 8 bits Connection type 
The connection type (see Annex C) specifies the convergence 
layer to be used for this connection. They are treated transparently 
through the MAC common part sublayer and are used only to 
identify which convergence layer may be used. 

CON.DLEN 8 bits Length of CON.DATA field in bytes 

CON.DATA (variable) Connection specific parameters 
These connection specific parameters are convergence layer 
specific. They should be defined in each convergence layer to 
define the parameters that are specific to the connection. These 
parameters are handled in a transparent way by the common part 
sublayer. 

Table 8-11 – CON control packet types 

Name HDR.DO CON.N Description 

CON_REQ_S 0 0 Connection establishment request initiated by the service node. 

CON_REQ_B 1 0 

The base node will consider that the connection is established 
with the identifier CON.LCID. 
• After a CON_REQ_S: connection accepted 
• Alone: Connection establishment request 

CON_CLS_S 0 1 

The service node considers this connection closed: 
• After a CON_REQ_B: connection rejected by the node 
• After a CON_CLS_B: connection closing acknowledge 
• Alone: connection closing request 

CON_CLS_B 1 1 

The base node will consider that the connection is no longer 
established. 
• After a CON_REQ_S: connection establishment rejected by 

the base node 
• After a CON_CLS_S: connection closing acknowledge 
• Alone: connection closing request 

8.4.5.5 PRO control packet (PKT.CTYPE = 3) 

This control packet is used to promote a service node from the terminal function to switch function. 
The description of the fields of this packet is given in Table 8-12, Figures 8-29 and 8-30. The 
meaning of the packet differs depending on the direction of the packet and on the values of the 
different types. Table 8-13 shows the different interpretation of the packets. The promotion process 
is explained in more detail in 8.6.3. 



 

  Rec. ITU-T G.9904 (10/2012) 69 

  

Figure 8-29 – PRO_REQ_S control packet structure 

 

Figure 8-30 – PRO control packet structure 

Note that Figure 8-29 includes all fields as used by a PRO_REQ_S message. All other messages are 
much smaller, containing only PRO.N, PRO.RC, PRO.TIME and PRO.NSID as shown in 
Figure 8-30. 

Table 8-12 – PRO control packet fields 

Name Length Description 

PRO.N 1 bit Negative 
PRO.N=1 for the negative promotion 
PRO.N=0 for the positive promotion 

Reserved 1 bit Reserved by ITU-T. 
This shall be 0 for this version of the protocol. 

PRO.RQ 3 bits Receive quality of the PNPDU message received from the service node 
requesting the terminal to promote.  

PRO.TIME 3 bits The ALV.TIME which is being used by the terminal which will 
become a switch. Upon receipt of this time in a PRO_REQ_B the 
service node should reset the keep-alive timer in the same way as 
receiving an ALV_B. 

PRO.NSID 8 bits New switch identifier. 
This is the assigned switch identifier of the node whose promotion is 
being managed with this packet. This is not the same as the PKT.SID 
of the packet header, which must be the SID of the switch this node is 
connected to, as a terminal node. 

PRO.PNA 0 or 48 
bits 

Promotion need address, contains the EUI-48 of the terminal requesting 
the service node promotes to become a switch. 
This field is only included in the PRO_REQ_S message. 

PRO.UPCOST 0 or 8 bits Total uplink cost from the terminal node to the base node. This value is 
calculated in the same way a switch node calculates the value it places 
into its own beacon PDU.  
This field is only included in the PRO_REQ_S message. 



 

70 Rec. ITU-T G.9904 (10/2012) 

Table 8-12 – PRO control packet fields 

Name Length Description 

PRO.DNCOST 0 or 8 bits Total downlink cost from the base node to the terminal node. This 
value is calculated in the same way a switch node calculates the value it 
places into its own beacon PDU.  
This field is only included in the PRO_REQ_S message. 

Reserved 4 bits Reserved by ITU-T. Should be set to 0 for this version of the protocol. 

PRO.SWC_DC 1 bit Direct connection switching capability 
1 if the device is able to behave as a direct switch in direct connections 
0 otherwise 

PRO.SWC_MC 1 bit Multicast switching capability 
1 if the device is able to manage the multicast traffic when behaving as 
a switch 
0 otherwise 

PRO.SWC_PRM 1 bit PHY robustness management switching capability 
1 if the device is able to perform PRM for the terminal nodes when 
behaving as a switch. 
0 if the device is not able to perform PRM when behaving as a switch. 

PRO.SWC_ARQ 1 bit ARQ buffering switching capability 
1 if the device is able to perform buffering for ARQ connections while 
switching. 
0 if the device is not able to perform buffering for ARQ connections 
while switching. 

Table 8-13 – PRO control packet types 

Name HDR.DO PRO.N PRO.NSID Description 

PRO_REQ_S 0 0 0xFF Promotion request initiated by the service node. 

PRO_REQ_B 1 0 < 0xFF 

The base node will consider that the service node 
has promoted with the identifier PRO.NSID. 
• After a PRO_REQ: promotion accepted 
• Alone: promotion request initiated by the base 

node 

PRO_ACK 0 0 < 0xFF Promotion acknowledge 

PRO_REJ 1 1 0xFF 
The base node will consider that the service node 
is demoted. It is sent after a PRO_REQ to reject it. 

PRO_DEM_S 0 1 < 0xFF 

The service node considers that it is demoted: 
• After a PRO_DEM_B: demotion accepted 
• After a PRO_REQ_B: promotion rejected 
• Alone: demotion request. 

PRO_DEM_B 1 1 < 0xFF 

The base node considers that the service node is 
demoted.  
• After a PRO_DEM_S: demotion accepted 
• Alone: demotion request 



 

  Rec. ITU-T G.9904 (10/2012) 71 

BSI control packet (PKT.CTYPE = 4) 

The beacon slot information (BSI) control packet is only used by the base node and switch nodes. It 
is used to exchange information that is further used by a switch node to transmit its beacon. The 
description of the fields of this packet is given in Table 8-14 and Figure 8-31. The meaning of the 
packet differs depending on the direction of the packet and on the values of the different types. 
Table 8-15 represents the different interpretation of the packets. The promotion process is explained 
in more detail in clause 8.6.3. 

 

Figure 8-31 – BSI control packet structure 

Table 8-14 – BSI control packet fields 

Name Length Description 

Reserved 5 bits Reserved by ITU-T. In this version, this field should be initialized to 0. 

BSI.FRQ 3 bits Transmission frequency of Beacon slot, encoded as: 
 FRQ = 0 => 1 beacon every frame 
 FRQ = 1 => 1 beacon every 2 frames 
 FRQ = 2 => 1 beacon every 4 frames 
 FRQ = 3 => 1 beacon every 8 frames 
 FRQ = 4 => 1 beacon every 16 frames 
 FRQ = 5 => 1 beacon every 32 frames 
 FRQ = 6 => Reserved by ITU-T 
 FRQ = 7 => Reserved by ITU-T. 

BSI.SLT 3 bits Beacon slot to be used by target switch 

BSI.SEQ 5 bits The Beacon sequence number when the specified change takes effect. 

Table 8-15 – BSI control message types 

Name HDR.DO Description 

BSI_ACK 0 Acknowledgement of receipt of BSI control message 

BSI_IND 1 Beacon-slot change command 

8.4.5.6 FRA control packet (PKT.CTYPE = 5) 

This control packet is broadcast from the base node and relayed by all switch nodes to the entire 
subnetwork. It is used to circulate information on the change of frame structure at a specific time in 
future. The description of fields of this packet is given in Table 8-16 and Figure 8-32. Table 8-17 
shows the different interpretation of the packets.  

 

Figure 8-32 – FRA control packet structure 



 

72 Rec. ITU-T G.9904 (10/2012) 

Table 8-16 – FRA control packet fields 

Name Length Description 

FRA.TYP 2 bits 0: Beacon count change 
1: CFP duration change 

Reserved 4 bits Reserved by ITU-T. In this version, this field should be initialized to 0. 

FRA.CFP 10 bits Offset of CFP from the start of frame 

FRA.SEQ 5 bits The beacon sequence number when the specified change takes effect. 

FRA.BCN 3 bits Number of beacons in a frame 

Table 8-17 – FRA control packet types 

Name FRA.TYP Description 

FRA_BCN_IND 0 
Indicates changes to frame structure due to change in the beacon-slot 
count 

FRA_CFP_IND 1 
Indicates changes to frame structure due to change in CFP duration as a 
result of grant of CFP or end of CFP period for any requesting service 
node in the subnetwork. 

8.4.5.7 CFP control packet (PKT.CTYPE = 6) 

This control packet is used for dedicated contention-free channel access time allocation to 
individual terminal or switch nodes. The description of the fields of this packet is given in 
Table 8-18 and Figure 8-33. The meaning of the packet differs depending on the direction of the 
packet and on the values of the different types. Table 8-19 represents the different interpretation of 
the packets. 

 

Figure 8-33 – CFP control packet structure 

Table 8-18 – CFP control message fields 

Name Length Description 

CFP.N 1 bit 0: denial of allocation/de-allocation request 
1: acceptance of allocation/de-allocation request 

CFP.DIR 1 bit Indicate direction of allocation. 
0: allocation is applicable to uplink (towards base node) direction 
1: allocation is applicable to downlink (towards service node) direction 

CFP.SEQ 5 bits The beacon sequence number when the specified change takes effect. 

CFP.LCID 9 bits LCID of requesting connection 

CFP.LEN 7 bits Length (in symbols) of requested/allocated channel time per frame. 

CFP.POS 9 bits Offset (in symbols) of allocated time from beginning of frame. 



 

  Rec. ITU-T G.9904 (10/2012) 73 

Table 8-18 – CFP control message fields 

Name Length Description 

CFP.TYPE 2 bits 0: channel allocation packet 
1: channel de-allocation packet 
2: channel change packet 

CFP.LNID 14 bits LNID of service node that is the intended user of the allocation. 

Table 8-19 – CFP control packet types 

Name 
CFP.
TYP 

HDR. 
DO 

Description 

CFP_ALC_REQ_S 0 0 Service node makes channel allocation request 

CFP_ALC_IND 0 1 
• After a CFP_ALC_REQ_S: requested channel is allocated 
• Alone: unsolicited channel allocation by base node 

CFP_ALC_REJ 0 1 Requested channel allocation is denied 

CFP_DALC_REQ 1 0 Service node makes channel de-allocation request 

CFP_DALC_RSP 1 1 Base node confirms de-allocation 

CFP_CHG_IND 2 1 Change of location of allocated channel within the CFP 

8.4.5.8 ALV control packet (PKT.CTYPE = 7) 

The ALV control message is used for keep-alive signalling between a service node, the service 
nodes above it and the base node. The message exchange is bidirectional, that is, a message is 
periodically exchanged in each direction. The structure of these messages are shown in Figure 8-34 
and Table 8-20. The different keep-alive message types are shown in Table 8-21. These messages 
are sent periodically, as described in clause 8.6.5. 

 

Figure 8-34 – ALV control packet structure 



 

74 Rec. ITU-T G.9904 (10/2012) 

Table 8-20 – ALV control message fields 

Name Length Description 

ALV.RXCNT 3 bits Modulo 8 counter to indicate the number of received ALV messages. 

ALV.TXCNT 3 bits Modulo 8 counter to indicate the number of transmitted ALV messages. 

Reserved 7 bits Reserved by ITU-T. Should always be encoded as 0 in this version of the 
Recommendation. 

ALV.TIME 3 bits Time to wait for ALV_B messages before assuming the service node has 
been unregistered by the base node. 
ALV.TIME = 0 =>  32 seconds 
ALV.TIME = 1 =>  64 seconds 
ALV.TIME = 2 =>  128 seconds  ~  2.1 minutes 
ALV.TIME = 3 =>  256 seconds  ~  4.2 minutes 
ALV.TIME = 4 =>  512 seconds  ~  8.5 minutes 
ALV.TIME = 5 => 1024 seconds  ~  17.1 minutes 
ALV.TIME = 6 => 2048 seconds  ~  34.1 minutes 
ALV.TIME = 7 => 4096 seconds  ~  68.3 minutes 

ALV.SSID 8 bits For a terminal, this should be 0xFF. For a switch, this is its switch identifier. 

Table 8-21 – Keep-alive control packet types 

Name HDR.DO Description 

ALV_S 0 Keep-alive message from a service node 

ALV_B 1 Keep-alive message from the base node 

8.4.5.9 MUL control packet (PKT.CTYPE = 8) 

The MUL message is used to control multicast group membership. The structure of this message 
and the meanings of the fields are described in Table 8-22 and Figure 8-35. The message can be 
used in different ways as described in Table 8-23. 

 

Figure 8-35 – MUL control packet structure 



 

  Rec. ITU-T G.9904 (10/2012) 75 

Table 8-22 – MUL control message fields 

Name Length Description 

MUL.N 1 bit Negative 
• MUL.N = 1 for the negative multicast connection, i.e., multicast group 

leave. 
• MUL.N = 0 for the positive multicast connection, i.e., multicast group 
 join. 

Reserved 6 bits Reserved by ITU-T. 
This shall be 0 for this version of the protocol. 

MUL.LCID 9 bits Local connection identifier 
The LCID indicates which multicast distribution group is being managed with 
this message. 

MUL.TYPE 8 bits Connection type 
The connection type specifies the convergence layer to be used for this 
connection. They are treated transparently through the MAC common part 
sublayer and are used only to identify which convergence layer may be used. 
See Annex C. 

MUL.DLEN 8 bits Length of data in bytes in the MUL.DATA field 

MUL.DATA (variable) Connection specific parameters 
These connection specific parameters are convergence layer specific. They 
should be defined in each convergence layer to define the parameters that are 
specific to the connection. These parameters are handled in a transparent way 
by the common part sublayer. 

Table 8-23 – MUL control message types 

Name HDR.DO MUL.N Description 

MUL_JOIN_S 0 0 
Multicast group join request initiated by the service node, or 
an acknowledgement when sent in response to a 
MUL_JOIN_B. 

MUL_JOIN_B 1 0 

The base node will consider that the group has been joined 
with the identifier MUL.LCID. 
• After a MUL_JOIN_S: join accepted 
• Alone: group join request 

MUL_LEAVE_S 0 1 

The service node leaves the multicast group: 
• After a MUL_JOIN_B: join rejected by the node 
• After a MUL_LEAVE_B: group leave acknowledge 
• Alone: group leave request. 

MUL_LEAVE_B 1 1 

The base node will consider that the service node is no longer 
a member of the multicast group. 
• After a MUL_JOIN_S: group join rejected by the base 

node 
• After a MUL_LEAVE_S: group leave acknowledge 
• Alone: group leave request. 



 

76 Rec. ITU-T G.9904 (10/2012) 

8.4.5.10 PRM control packet (PKT.CTYPE = 9) 

The PHY robustness management packets are used to control the parameters that affect the 
robustness and efficiency of the PHY. These packets are sent to notify to the peer of the need to 
improve robustness of the transmission, or to notify the peer that the reception quality is so good 
that a less robust and so more efficient modulation scheme can be transmitted. 

The fields of the PRM control packet are described in Table 8-24 and Figure 8-36 and the types of 
messages are described in Table 8-25. 

 

Figure 8-36 – PHY control packet structure 

Table 8-24 – PRM control message fields 

Name Length Description 

PRM.R 1 bit Response 
• PRM.R=1 if this message is a response 
• PRM.R=0 if this message is a request 

PRM.N 1 bit Negative 
• PRM.N=1 if the operation could not be performed 
• PRM.N=0 if the operation was performed 

Reserved 3 bits Reserved by ITU-T. Should always be encoded as 0 in this version of the 
Recommendation. 

PRM.SNR 3 bits Indicates the SNR at the end that initiates a change request, obtained using 
PHY_SNR primitive (see clause 7.10.3.10). 

Table 8-25 – PRM control message types 

Name PRM.R PRM.N Description 

PRM_REQ 0 0 PHY modulation management request 

PRM_ACK 1 0 PHY modulation management acknowledge 

PRM_REJ 1 1 PHY modulation management rejected 

8.4.5.11 SEC control packet (PKT.CTYPE = 10) 

The SEC control message is broadcast unencrypted by the base node and all switch nodes to the rest 
of the subnetwork in order to circulate the random sequence used to generate working keys. The 
random sequence used by devices in a subnetwork is dynamic and changes from time to time to 
ensure a robust security framework. The structure of this message is shown in Table 8-26 and 
Figure 8-37. Further details of security mechanisms are given in clause 8.3.8. 



 

  Rec. ITU-T G.9904 (10/2012) 77 

G.9904(12)_F8-37

MSB

SEC.RAN[127...112]

SEC.RAN[111...96]

SEC.RAN[95...80]

SEC.RAN[79...64]

SEC.RAN[63...48]

SEC.RAN[47...32]

SEC.RAN[31...16]

SEC.RAN[15...0]

SEC.SNK[127...112]

SEC. [111...96]SNK

SEC. [95...80]SNK

SEC. [79...64]SNK

SEC. [63...48]SNK

SEC. [47...32]SNK

SEC. [31...16]SNK

SEC. [15...0]SNK

SEC.SEQSEC.
USEReserved

LSB
 

Figure 8-37 – SEC control packet structure 

Table 8-26 – SEC control message fields 

Name Length Description 

SEC.RAN 128 bits Random sequence to be used to derive WK. 

SEC.SNK 128 bits Random sequence to be used to derive SWK.  

Reserved 2 bits Reserved by ITU-T. Should always be encoded as 0 in this version of the 
Recommendation. 

SEC.USE 1 bits When 1 indicates the random sequences are already in use. 
When 0 indicates that SE.SEQ should be used to determine when to start using 
these random sequences.  

SEC.SEQ 5 bits The beacon sequence number when the specified change takes effect. 

8.5 MAC service access point 

8.5.1 General 

The MAC service access point provides several primitives to allow the convergence layer to interact 
with the MAC layer. This clause aims to explain how the MAC may be used. An implementation of 
the MAC may not use all the primitives listed here; it may use other primitives; or it may have a 
function-call based interface rather than message-passing, etc. These are all implementation issues 
which are beyond the scope of this Recommendation.   



 

78 Rec. ITU-T G.9904 (10/2012) 

The .request primitives are passed from the CL to the MAC to request the initiation of a service. 
The .indication and .confirm primitives are passed from the MAC to the CL to indicate an internal 
MAC event that is significant to the CL. This event may be logically related to a remote service 
request or may be caused by an event internal to the local MAC. The .response primitive is passed 
from the CL to the MAC to provide a response to a .indication primitive. Thus, the four primitives 
are used in pairs, the pair .request and .confirm and the pair .indication and .response. This is shown 
in Figures 8-38 to 8-41. 

 

Figure 8-38 – Establishment of a connection 

 

Figure 8-39 – Failed establishment  
of a connection 

 

Figure 8-40 – Release of a connection 

 

Figure 8-41 – Transfer of data 

Table 8-27 represents the list of available primitives in the MAC-SAP: 

Table 8-27 – List of MAC primitives 

Service node primitives  Base node primitives 

MAC_ESTABLISH.request  MAC_ESTABLISH.request 

MAC_ESTABLISH.indication  MAC_ESTABLISH.indication 

MAC_ESTABLISH.response  MAC_ESTABLISH.response 

MAC_ESTABLISH.confirm  MAC_ESTABLISH.confirm 

MAC_RELEASE.request  MAC_RELEASE.request 

MAC_RELEASE.indication  MAC_RELEASE.indication 

MAC_RELEASE.response  MAC_RELEASE.response 

MAC_RELEASE.confirm  MAC_RELEASE.confirm 

MAC_JOIN.request  MAC_JOIN.request 

MAC_JOIN.Response  MAC_JOIN.response 

MAC_JOIN.indication  MAC_JOIN.indication 

MAC_JOIN.confirm  MAC_JOIN.confirm 

MAC_LEAVE.request  MAC_LEAVE.request 



 

  Rec. ITU-T G.9904 (10/2012) 79 

Table 8-27 – List of MAC primitives 

Service node primitives  Base node primitives 

MAC_LEAVE.indication  MAC_LEAVE.indication 

MAC_LEAVE.confirm  MAC_LEAVE.confirm 

MAC_DATA.request  MAC_REDIRECT.response 

MAC_DATA.confirm  MAC_DATA.request 

MAC_DATA.indication  MAC_DATA.confirm 

  MAC_DATA.indication 

8.5.2 Service node and base node signalling primitives 

8.5.2.1 General 

The following subclauses describe primitives which are available in both the service node and base 
node MAC-SAP. These are signalling primitives only and they are used for establishing and 
releasing MAC connections. 

8.5.2.2 MAC_ESTABLISH 

8.5.2.2.1 General 

The MAC_ESTABLISH primitives are used to manage a connection establishment. 

8.5.2.2.2 MAC_ESTABLISH.request 

The MAC_ESTABLISH.request primitive is passed to the MAC layer entity to request the 
connection establishment. 

The semantics of this primitive are as follows: 

MAC_ESTABLISH.request{EUI-48, Type, Data, DataLength, ARQ, CfBytes} 

The EUI-48 parameter of this primitive is used to specify the address of the node to which this 
connection will be addressed. The MAC will internally transfer this to an address used by the MAC 
layer. When the CL of a service node wishes to connect to the base node, it uses the EUI-48 
00:00:00:00:00:00. However, when the CL of a service node wishes to connect to another service 
node on the subnetwork, it uses the EUI-48 of that service node. This will then trigger a direct 
connection establishment. However, whether a normal or a directed connection is established is 
transparent to the service node MAC SAP. As the EUI-48 of the base node is the SNA, the 
connection could also be requested from the base node using the SNA. 

The Type parameter is an identifier used to define the type of the convergence layer that should be 
used for this connection (see Annex C). This parameter is 1 byte long and will be transmitted in the 
CON.TYPE field of the connection request. 

The Data parameter is a general purpose buffer to be interchanged for the negotiation between the 
local CL and the remote CL. This parameter will be transmitted in the CON.DATA field of the 
connection request. 

The DataLength parameter is the length of the Data parameter in bytes. 

The ARQ parameter indicates whether or not the ARQ mechanism should be used for this 
connection. It is a Boolean type with a value of true indicating that ARQ will be used. 



 

80 Rec. ITU-T G.9904 (10/2012) 

The CfBytes parameter is used to indicate whether or not the connection should use the contention 
or contention-free channel access scheme. When CfBytes is zero, contention-based access should be 
used. When CfBytes is not zero, it indicates how many bytes per frame should be allocated to the 
connection using CFP packets. 

8.5.2.2.3 MAC_ESTABLISH.indication 

The MAC_ESTABLISH.indication is passed from the MAC layer to indicate that a connection 
establishment was initiated by a remote node. 

The semantics of this primitive are as follows: 

MAC_ESTABLISH.indication{ConHandle, EUI-48, Type, Data, DataLength, CfBytes} 

The ConHandle is a unique identifier interchanged to uniquely identify the connection being 
indicated. It only has a valid meaning in the MAC SAP, and is used to have a reference to this 
connection between different primitives. 

The EUI-48 parameter indicates which device on the subnetwork wishes to establish a connection. 

The Type parameter is an identifier used to define the type of the convergence layer that should be 
used for this connection. This parameter is 1 byte long and it is received in the CON.TYPE field of 
the connection request. 

The Data parameter is a general purpose buffer to be interchanged for the negotiation between the 
remote CL and the local CL. This parameter is received in the CON.DATA field of the connection 
request. 

The DataLength parameter is the length of the data parameter in bytes. 

The CfBytes parameter is used to indicate if the connection should use the contention or contention-
free channel access scheme. When CfBytes is zero, contention-based access will be used. When 
CfBytes is not zero, it indicates how many bytes per frame the connection would like to be 
allocated. 

8.5.2.2.4 MAC_ESTABLISH.response 

The MAC_ESTABLISH.response is passed to the MAC layer to respond with a 
MAC_ESTABLISH.indication. 

The semantics of this primitive are as follows: 

MAC_ESTABLISH.response{ConHandle, Answer, Data, DataLength} 

The ConHandle parameter is the same as the one that was received in the 
MAC_ESTABLISH.indication. 

The Answer parameter is used to notify the MAC of the action to be taken for this connection 
establishment. This parameter may have one of the values in Table 8-28. 

The Data parameter is a general purpose buffer to be interchanged for the negotiation between the 
remote CL and the local CL. This parameter is received in the CON.DATA field of the connection 
response. 

The DataLength parameter is the length of the data parameter in bytes. 

Data may be passed to the caller even when the connection is rejected, i.e., answer has the value 1. 
The data may then optionally contain more information as to why the connection was rejected.  



 

  Rec. ITU-T G.9904 (10/2012) 81 

Table 8-28 – Values of the answer parameter in MAC_ESTABLISH.response primitive 

Answer Description 

Accept = 0 The connection establishment is accepted. 

Reject = 1 The connection establishment is rejected. 

8.5.2.2.5 MAC_ESTABLISH.confirm 

The MAC_ESTABLISH.confirm is passed from the MAC layer as the remote answer to a 
MAC_ESTABLISH.request. 

The semantics of this primitive are as follows: 

MAC_ESTABLISH.confirm{ConHandle, Result, EUI-48, Type, Data, DataLength} 

The ConHandle is a unique identifier to uniquely identify the connection being indicated. It has a 
valid meaning only in the MAC SAP, used to have a reference to this connection between different 
primitives. The value is only valid if the Result parameter is 0. 

The Result parameter indicates the result of the connection establishment process. It may have one 
of the values in Table 8-29. 

The EUI-48 parameter indicates which device on the subnetwork wishes to establish a connection. 

The Type parameter is an identifier used to define the type of the convergence layer that should be 
used for this connection. This parameter is 1 byte long and it is received in the CON.TYPE field of 
the connection request. 

The Data parameter is a general purpose buffer to be interchanged for the negotiation between the 
remote CL and the local CL. This parameter is received in the CON.DATA field of the connection 
response. 

The DataLength parameter is the length of the data parameter in bytes. 

Data may be passed to the caller even when the connection is rejected, i.e., the result has the 
value 1. The data may then optionally contain more information as to why the connection was 
rejected.  

Table 8-29 – Values of the result parameter in MAC_ESTABLISH.confirm primitive 

Result Description 

Success = 0 The connection establishment was successful. 

Reject = 1 The connection establishment failed because it was rejected by the remote node. 

Timeout = 2 The connection establishment process timed out. 

No bandwidth = 3 There is insufficient available bandwidth to accept this contention-free 
connection. 

No Such Device = 4 A device with the destination address cannot be found.  

Redirect failed =5 The base node attempted to perform a redirect which failed. 

Not Registered = 6 The service node is not registered. 

No More LCIDs = 7 All available LCIDs have been allocated. 



 

82 Rec. ITU-T G.9904 (10/2012) 

8.5.2.3 MAC_RELEASE 

8.5.2.3.1 General 

The MAC_RELEASE primitives are used to release a connection.  

8.5.2.3.2 MAC_RELEASE.request 

The MAC_RELEASE.request is a primitive used to initiate the release process of a connection. 

The semantics of this primitive are as follows: 

MAC_RELEASE.request{ConHandle} 

The ConHandle parameter specifies the connection to be released. This handle is the one that was 
obtained during the MAC_ESTABLISH primitives. 

8.5.2.3.3 MAC_RELEASE.indication 

The MAC_RELEASE.indication is a primitive used to indicate that a connection is being released. 
It may be released because of a remote operation or because of a connectivity problem. 

The semantics of this primitive are as follows: 

MAC_RELEASE.indication{ConHandle, Reason} 

The ConHandle parameter specifies the connection being released. This handle is the one that was 
obtained during the MAC_ESTABLISH primitives. 

The Reason parameter may have one of the values given in Table 8-30. 

Table 8-30 – Values of the reason parameter in MAC_RELEASE.indication primitive 

Reason Description 

Success = 0 The connection release was initiated by a remote service. 

Error = 1 The connection was released because of a connectivity problem. 

8.5.2.3.4 MAC_RELEASE.response 

The MAC_RELEASE.response is a primitive used to respond to a connection release process. 

The semantics of this primitive are as follows: 

MAC_RELEASE.response{ConHandle, Answer} 

The ConHandle parameter specifies the connection being released. This handle is the one that was 
obtained during the MAC_ESTABLISH primitives. 

The Answer parameter may have one of the values given in Table 8-31. This parameter may not 
have the value "Reject = 1" because a connection release process cannot be rejected. 

Table 8-31 – Values of the answer parameter in MAC_RELEASE.response primitive 

Answer Description 

Accept = 0 The connection release is accepted. 

After sending the MAC_RELEASE.response the ConHandle is no longer valid and should not be 
used. 



 

  Rec. ITU-T G.9904 (10/2012) 83 

8.5.2.3.5 MAC_RELEASE.confirm 

The MAC_RELEASE.confirm primitive is used to confirm that the connection release process has 
finished. 

The semantics of this primitive are as follows: 

MAC_RELEASE.confirm{ConHandle, Result} 

The ConHandle parameter specifies the connection released. This handle is the one that was 
obtained during the MAC_ESTABLISH primitives. 

The Result parameter may have one of the values given in Table 8-32. 

Table 8-32 – Values of the result parameter in MAC_RELEASE.confirm primitive 

Result Description 

Success = 0 The connection release was successful. 

Timeout = 2 The connection release process timed out. 

Not Registered = 6 The service node is no longer registered. 

After the reception of the MAC_RELEASE.confirm the ConHandle is no longer valid and should 
not be used. 

8.5.2.4 MAC_JOIN 

8.5.2.4.1 General 

The MAC_JOIN primitives are used to join to a broadcast or multicast connection and allow the 
reception of such packets. 

8.5.2.4.2 MAC_JOIN.request 

The MAC_JOIN.request primitive is used: 

• by all nodes to join broadcast traffic of a specific CL and start receiving these packets; 

• by service nodes to join a particular multicast group; 

• by the base node to invite a service node to join a particular multicast group.  

Depending on which device makes the join-request, this SAP can have two different variants. The 
first variant shall be used on base nodes and the second on service nodes. 

The semantics of this primitive are as follows: 

MAC_JOIN.request{Broadcast, ConHandle, EUI-48, Type, Data, DataLength} 

MAC_JOIN.request(Broadcast, Type, Data, Datalength} 

The Broadcast parameter specifies whether the JOIN operation is being performed for a broadcast 
connection or for a multicast operation. It should be 1 for a broadcast operation and 0 for a 
multicast operation. In the case of broadcast operation, EUI-48, Data, DataLength are not used. 

ConHandle indicates the handle to be used with for this multicast join. In case of first join request 
for a new multicast group, ConHandle will be set to 0. For any subsequent EUI additions to an 
existing multicast group, ConHandle will serve as index to respective multicast group. 

The EUI-48 parameter is used by the base node to specify the address of the node to which this join 
request will be addressed. The MAC will internally transfer this to an address used by the MAC 
layer. When the CL of a service node initiates the request, it uses the EUI-48 00:00:00:00:00:00.  



 

84 Rec. ITU-T G.9904 (10/2012) 

The Type parameter defines the type of the convergence layer that will send/receive the data 
packets. This parameter is 1 byte long and will be transmitted in the MUL.TYPE field of the join 
request. 

The Data parameter is a general purpose buffer to be interchanged for the negotiation between the 
remote CL and the local CL. This parameter is received in the MUL.DATA field of the connection 
request. In case the CL supports several multicast groups, this Data parameter will be used to 
uniquely identify the group 

The DataLength parameter is the length of the Data parameter in bytes. 

If "Broadcast" is 1, the MAC will immediately issue a MAC_JOIN.confirm primitive, as it does not 
need to perform any end-to-end operation. For a multicast operation the MAC_JOIN.confirm is 
only sent once signalling with the uplink service node/base node is complete. 

8.5.2.4.3 MAC_JOIN.confirm 

The MAC_JOIN.confirm primitive is received to confirm that the MAC_JOIN.request operation 
has finished. 

The semantics of this primitive are as follows: 

MAC_JOIN.confirm{ConHandle, Result} 

The ConHandle is a unique identifier to uniquely identify the connection being indicated. It has a 
valid meaning only in the MAC SAP, used to have a reference to this connection between different 
primitives. The value is only valid if the result parameter is 0. When the MAC receives packets on 
this connection, they will be passed upwards using the MAC_DATA.indication primitive with this 
ConHandle.  

The Result parameter indicates the result of multicast group join process. It may have one of the 
values given in Table 8-33. 

Table 8-33 – Values of the Result parameter in MAC_JOIN.confirm primitive 

Result Description 

Success = 0 The connection establishment was successful. 

Reject = 1 The connection establishment failed because it was rejected by the upstream service 
node/base node. 

Timeout = 2 The connection establishment process timed out. 

8.5.2.4.4 MAC_JOIN.indication 

On the base node, the MAC_JOIN.indication is passed from the MAC layer to indicate that a 
multicast group join was initiated by a service node. On a service node, it is used to indicate that the 
base node is inviting to join a multicast group. 

Depending on the device type, this primitive shall have two variants. The first variant below shall 
be used in base nodes and the second variant is for service nodes: 

MAC_JOIN.indication{ConHandle, EUI-48, Type, Data, DataLength} 

MAC_JOIN.indication(ConHandle, Type, Data, Datalen} 

The ConHandle is a unique identifier interchanged to uniquely identify the multicast group being 
indicated. It has a valid meaning only in the MAC SAP, used to have a reference to this connection 
between different primitives. 

The EUI-48 parameter indicates which device on the subnetwork wishes to establish a connection. 



 

  Rec. ITU-T G.9904 (10/2012) 85 

The Type parameter is an identifier used to define the type of the convergence layer that should be 
used for this request. This parameter is 1 byte long and it is received in the MUL.TYPE field of the 
connection request. 

The Data parameter is a general purpose buffer to be interchanged for the negotiation between the 
remote CL and the local CL. This parameter is received in the MUL.DATA field of the connection 
request. 

The DataLength parameter is the length of the Data parameter in bytes. 

8.5.2.4.5 MAC_JOIN.response 

The MAC_JOIN.response is passed to the MAC layer to respond with a MAC_ JOIN.indication. 
Depending on the device type, this primitive could have either of the two forms given below. The 
first one shall be used in service node and the second on in base node implementations. 

The semantics of this primitive are as follows: 

MAC_JOIN.response{ConHandle, Answer} 

MAC_JOIN.response (ConHandle, EUI, Answer) 

The ConHandle parameter is the same as the one that was received in the MAC_ JOIN.indication. 

EUI is the EUI-48 of the service node that requested the multicast group join.  

The Answer parameter is used to notify the MAC of the action to be taken for this join request. This 
parameter may have one of the values depicted below. 

Table 8-34 – Values of the answer parameter in MAC_ESTABLISH.response primitive 

Answer Description 

Accept = 0 The multicast group join is accepted. 

Reject = 1 The multicast group join is rejected. 

8.5.2.5 MAC_LEAVE 

8.5.2.5.1 General 

The MAC_LEAVE primitives are used to leave a broadcast or multicast connection. 

8.5.2.5.2 MAC_LEAVE.request 

The MAC_LEAVE.request primitive is used to leave multicast or broadcast traffic. Depending on 
the device type, this primitive could have either of the two forms given below. The first one shall be 
used in service node and the second on in base node implementations. 

The semantics of this primitive are as follows: 

MAC_LEAVE.request{ConHandle} 

MAC_LEAVE.request{ConHandle, EUI} 

The ConHandle parameter specifies the connection to be left. This handle is the one that was 
obtained during the MAC_JOIN primitives. 

EUI is the EUI-48 of the service node that has requested to be removed from the multicast group. 

8.5.2.5.3 MAC_LEAVE.confirm 

The MAC_LEAVE.confirm primitive is received to confirm that the MAC_LEAVE.request 
operation has finished. 



 

86 Rec. ITU-T G.9904 (10/2012) 

The semantics of this primitive are as follows: 

MAC_LEAVE.confirm{ConHandle, Result} 

The ConHandle parameter specifies the connection released. This handle is the one that was 
obtained during the MAC_JOIN primitives. 

The Result parameter may have one of the values in Table 8-35. 

Table 8-35 – Values of the result parameter in MAC_LEAVE.confirm primitive 

Result Description 

Success = 0 The connection leave was successful. 

Timeout = 2 The connection leave process timed out. 

After the reception of the MAC_LEAVE.confirm, the ConHandle is no longer valid and should not 
be used. 

8.5.2.5.4 MAC_LEAVE.indication 

The MAC_LEAVE.indication primitive is used to leave multicast or broadcast traffic. Depending 
on the device type, this primitive could have either of the two forms given below. The first one shall 
be used in service node and the second one in base node implementations. 

The semantics of this primitive are as follows: 

MAC_LEAVE.indication{ConHandle} 

MAC_LEAVE.indication{ConHandle, EUI} 

The ConHandle parameter is the same as that received in MAC_JOIN.confirm or 
MAC_JOIN.indication. This handle is the one that was obtained during the MAC_JOIN primitives. 

EUI is the EUI-48 of the service node that has requested to be removed from the multicast group. 

8.5.3 Base node signalling primitives 

8.5.3.1 General 

This clause specifies MAC-SAP primitives that are only available in the base node. 

8.5.3.2 MAC_REDIRECT.response 

The MAC_REDIRECT.response primitive is used to answer to a MAC_ESTABLISH.indication 
and redirects the connection from the base node to another service node on the subnetwork. 

The semantics of this primitive are as follows: 

MAC_REDIRECT.reponse{ConHandle, EUI-48, Data, DataLength} 

The ConHandle is the one passed in the MAC_ESTABLISH.indication primitive to which it is 
replying. 

EUI-48 indicates the service node to which this connection establishment should be forwarded. The 
base node should perform a direct connection set-up between the source of the connection 
establishment and the service node indicated by EUI-48.  

The Data parameter is a general purpose buffer to be interchanged for the negotiation between the 
remote CL and the base node CL. This parameter is received in the CON.DATA field of the 
connection request. 

The DataLength parameter is the length of the data parameter in bytes. 

Once this primitive has been used, the ConHandle is no longer valid. 



 

  Rec. ITU-T G.9904 (10/2012) 87 

8.5.4 Service and base nodes data primitives 

8.5.4.1 General 

The following subclauses describe how a service node or base node passes data between the 
convergence layer and the MAC layer. 

8.5.4.2 MAC_DATA.request 

The MAC_DATA.request primitive is used to initiate the transmission process of data over a 
connection. 

The semantics of the primitive are as follows: 

MAC_DATA.request{ConHandle, Data, DataLength, Priority} 

The ConHandle parameter specifies the connection to be used for the data transmission. This handle 
is the one that was obtained during the connection establishment primitives. 

The Data parameter is a buffer of octets that contains the CL data to be transmitted through this 
connection. 

The DataLength parameter is the length of the data parameter in octets. 

Priority indicates the priority of the data to be sent when using the CSMA access scheme, i.e., the 
parameter only has meaning when the connection was established with CfBytes = 0.  

8.5.4.3 MAC_DATA.confirm 

The MAC_DATA.confirm primitive is used to confirm that the transmission process of the data has 
completed.  

The semantics of the primitive are as follows: 

MAC_DATA.confirm{ConHandle, Data, Result} 

The ConHandle parameter specifies the connection that was used for data transmission. This handle 
is the one that was obtained during the connection establishment primitives. 

The Data parameter is a buffer of octets that contains the CL data to be transmitted through this 
connection. 

The Result parameter indicates the result of the transmission. This can take one of the values given 
in Table 8-36. 

Table 8-36 – Values of the result parameter in MAC_DATA.confirm primitive 

Result Description 

Success = 0 The send was successful. 

Timeout = 2 The send process timed out. 

8.5.4.4 MAC_DATA.indication 

The MAC_DATA.indication primitive notifies the reception of data through a connection to the 
CL. 

The semantics of the primitive are as follows: 

MAC_DATA.indication{ConHandle, Data, DataLength} 

The ConHandle parameter specifies the connection where the data was received. This handle is the 
one that was obtained during the connection establishment primitives. 

The Data parameter is a buffer of octets that contains the CL data received through this connection. 



 

88 Rec. ITU-T G.9904 (10/2012) 

The DataLength parameter is the length of the Data parameter in octets. 

8.5.5 MAC layer management entity SAPs 

8.5.5.1 General 

The following primitives are all optional.  

The aim is to allow an external management entity to control registration and promotion of the 
service node, and demotion and unregistration of a service node. The MAC layer would normally 
perform this automatically, however, in some situations/applications it could be advantageous if this 
could be externally controlled. Indications are also defined so that an external entity can monitor the 
status of the MAC.  

8.5.5.2 MLME_REGISTER 

8.5.5.2.1 General 

The MLME_REGISTER primitives are used to perform registration and to indicate when 
registration has been performed.  

8.5.5.2.2 MLME_REGISTER.request 

The MLME_REGISTER.request primitive is used to trigger the registration process to a 
subnetwork through a specific switch node. This primitive may be used for enforcing the selection 
of a specific switch node that may not necessarily be used if the selection is left automatic. The base 
node MLME function does not export this primitive. 

The semantics of the primitive could be either of the following: 

MLME_REGISTER.request{ } 

Invoking this primitive without any parameter simply invokes the registration process in the MAC 
and leaves the selection of the subnetwork and switch node to MAC algorithms. Using this 
primitive enables the MAC to perform fully automatic registration if such a mode is implemented in 
the MAC. 

MLME_REGISTER.request{SNA} 

The SNA parameter specifies the subnetwork to which registration should be performed. Invoking 
the primitive in this format commands the MAC to only register to the specified subnetwork. 

MLME_REGISTER.request{SID} 

The SID parameter is the SID (switch identifier) of the switch node through which registration 
needs to be performed. Invoking the primitive in this format commands the MAC to register only to 
the specified switch node. 

8.5.5.2.3 MLME_REGISTER.confirm 

The MLME_REGISTER.confirm primitive is used to confirm the status of completion of the 
registration process that was initiated by an earlier invocation of the corresponding request 
primitive. The base node MLME function does not export this primitive. 

The semantics of the primitive are as follows: 

MLME_REGISTER.confirm{Result, SNA, SID} 

The Result parameter indicates the result of the registration. This can take one of the values given in 
Table 8-37. 



 

  Rec. ITU-T G.9904 (10/2012) 89 

Table 8-37 – Values of the result parameter in MLME_REGISTER.confirm primitive 

Result Description 

Done = 0 Registration to a specified SNA through a specified switch is completed successfully. 

Timeout =2 Registration request timed out. 

Rejected=1 Registration request is rejected by the base node of a specified SNA. 

NoSNA=8 Specified SNA is not within range. 

NoSwitch=9 Switch node with specified EUI-48 is not within range. 

The SNA parameter specifies the subnetwork to which registration is performed. This parameter is 
of significance only if Result=0. 

The SID parameter is the SID (switch identifier) of the switch node through which registration is 
performed. This parameter is of significance only if Result=0. 

8.5.5.2.4 MLME_REGISTER.indication 

The MLME_REGISTER.indication primitive is used to indicate a status change in the MAC. The 
service node is now registered to a subnetwork.  

The semantics of the primitive are as follows: 

MLME_REGISTER.indication{SNA, SID} 

The SNA parameter specifies the subnetwork to which registration is performed.  

The SID parameter is the SID (switch identifier) of the switch node through which registration is 
performed.  

8.5.5.3 MLME_UNREGISTER 

8.5.5.3.1 General 

The MLME_UNREGISTER primitives are used to perform deregistration and to indicate when 
deregistration has been performed.  

8.5.5.3.2 MLME_UNREGISTER.request 

The MLME_UNREGISTER.request primitive is used to trigger the unregistration process. This 
primitive may be used by management entities if they require the node to unregister for some reason 
(e.g., register through another switch node or to another subnetwork). The base node MLME 
function does not export this primitive. 

The semantics of the primitive are as follows: 

MLME_UNREGISTER.request{} 

8.5.5.3.3 MLME_UNREGISTER.confirm 

The MLME_UNREGISTER.confirm primitive is used to confirm the status of the completion of the 
unregister process initiated by an earlier invocation of the corresponding request primitive. The base 
node MLME function does not export this primitive. 

The semantics of the primitive are as follows: 

MLME_UNREGISTER.confirm{Result} 

The Result parameter indicates the result of the registration. This can take one of the values given in 
Table 8-38. 



 

90 Rec. ITU-T G.9904 (10/2012) 

Table 8-38 – Values of the result parameter in MLME_UNREGISTER.confirm primitive 

Result Description 

Done = 0 Unregister process completed successfully. 

Timeout =2 Unregister process timed out. 

Redundant=10 The node is already in disconnected functional state and does not need to unregister. 

On generation of MLME_UNREGISTER.confirm, the MAC layer shall not perform any automatic 
actions that may invoke the registration process again. In such cases, it is up to the management 
entity to restart the MAC functionality with appropriate MLME_REGISTER primitives. 

8.5.5.3.4 MLME_UNREGISTER.indication 

The MLME_UNREGISTER.indication primitive is used to indicate a status change in the MAC. 
The service node is no longer registered to a subnetwork.  

The semantics of the primitive are as follows: 

MLME_UNREGISTER.indication{} 

8.5.5.4 MLME_PROMOTE 

8.5.5.4.1 General 

The MLME_PROMOTE primitives are used to perform promotion and to indicate when promotion 
has been performed.  

8.5.5.4.2 MLME_PROMOTE.request 

The MLME_PROMOTE.request primitive is used to trigger the promotion process in a service 
node that is in a terminal functional state. This primitive may be used by management entities to 
enforce promotion in cases where the node's default functionality does not automatically start the 
process. Implementations may use such triggered promotions to improve the subnetwork topology 
from time to time. 

The semantics of the primitive are as follows: 

MLME_PROMOTE.request{} 

The value of PRO.PNA in the promotion message sent to the base node is undefined and 
implementation-specific. 

8.5.5.4.3 MLME_PROMOTE.confirm 

The MLME_PROMOTE.confirm primitive is used to confirm the status of completion of a 
promotion process that was initiated by an earlier invocation of the corresponding request primitive.  

The semantics of the primitive are as follows: 

MLME_PROMOTE.confirm{Result} 

The Result parameter indicates the result of the registration. This can take one of the values given in 
Table 8-39. 



 

  Rec. ITU-T G.9904 (10/2012) 91 

Table 8-39 – Values of the result parameter in MLME_PROMOTE.confirm primitive 

Result Description 

Done = 0 Node is promoted to switch function successfully. 

Timeout =1 Promotion process timed out. 

Rejected=2 The base node rejected promotion request. 

Redundant=10 This device is already functioning as a switch node. 

8.5.5.4.4 MLME_PROMOTE.indication 

The MLME_PROMOTE.indication primitive is used to indicate a status change in the MAC. The 
service node is now operating as a switch.  

The semantics of the primitive are as follows: 

MLME_PROMOTE.indication{} 

8.5.5.5 MLME_DEMOTE 

8.5.5.5.1 General 

The MLME_DEMOTE primitives are used to perform demotion and to indicate when demotion has 
been performed.  

8.5.5.5.2 MLME_DEMOTE.request 

The MLME_DEMOTE.request primitive is used to trigger a demotion process in a service node 
that is in a switch functional state. This primitive may be used by management entities to enforce 
demotion in cases where the node's default functionality does not automatically perform the 
process.  

The semantics of the primitive are as follows: 

MLME_DEMOTE.request{} 

8.5.5.5.3 MLME_DEMOTE.confirm 

The MLME_DEMOTE.confirm primitive is used to confirm the status of completion of a demotion 
process that was initiated by an earlier invocation of the corresponding request primitive.  

The semantics of the primitive are as follows: 

MLME_DEMOTE.confirm{Result} 

The Result parameter indicates the result of the demotion. This can take one of the values given in 
Table 8-40. 

Table 8-40 – Values of the result parameter in MLME_DEMOTE.confirm primitive 

Result Description 

Done = 0 Node is demoted to terminal function successfully. 

Timeout =1 Demotion process timed out. 

Redundant=10 This device is already functioning as a terminal node. 

When a demotion has been triggered using the MLME_DEMOTE.request, the terminal will remain 
demoted. 



 

92 Rec. ITU-T G.9904 (10/2012) 

8.5.5.5.4 MLME_DEMOTE.indication 

The MLME_DEMOTE.indication primitive is used to indicate a status change in the MAC. The 
service node is now operating as a terminal.  

The semantics of the primitive are as follows: 

MLME_DEMOTE.indication{} 

8.5.5.6 MLME_RESET 

8.5.5.6.1 General 

The MLME_RESET primitives are used to reset the MAC into a known "good" status.  

8.5.5.6.2 MLME_RESET.request 

The MLME_RESET.request primitive results in the flushing of all transmit and receive buffers and 
the resetting of all state variables. As a result of invoking of this primitive, a service node will 
transit from its present functional state to the disconnected functional state. 

The semantics of the primitive are as follows: 

MLME_RESET.request{} 

8.5.5.6.3 MLME_RESET.confirm 

The MLME_RESET.confirm primitive is used to confirm the status of the completion of a reset 
process that was initiated by an earlier invocation of the corresponding request primitive. On the 
successful completion of the reset process, the MAC entity shall restart all functions starting from 
the search for a subnetwork (clause 8.3.1). 

The semantics of the primitive are as follows: 

MLME_RESET.confirm{Result} 

The Result parameter indicates the result of the reset. This can take one of the values given below. 

Table 8-41 – Values of the result parameter in MLME_RESET.confirm primitive 

Result Description 

Done = 0 MAC reset completed successfully. 

Failed =1 MAC reset failed due to internal implementation reasons. 

8.5.5.7 MLME_GET 

8.5.5.7.1 General 

The MLME_GET primitives are used to retrieve individual values from the MAC, such as statistics.  

8.5.5.7.2 MLME_GET.request 

The MLME_GET.request queries information about a given PIB attribute. 

The semantics of the primitive are as follows: 

MLME_GET.request{PIBAttribute} 

The PIBAttribute parameter identifies specific attributes as listed in the Id fields of tables that list 
PIB attributes (clause 10.2.3). 



 

  Rec. ITU-T G.9904 (10/2012) 93 

8.5.5.7.3 MLME_GET.confirm 

The MLME_GET.confirm primitive is generated in response to the corresponding 
MLME_GET.request primitive. 

The semantics of this primitive are as follows: 

MLME_GET.confirm{status, PIBAttribute, PIBAttributeValue} 

The status parameter reports the result of requested information and can have one of the values 
given in Table 8-42. 

Table 8-42 – Values of the status parameter in MLME_GET.confirm primitive 

Result Description 

Done = 0 Parameter read successfully. 

Failed =1 Parameter read failed due to internal implementation reasons. 

BadAttr=11 Specified PIBAttribute is not supported. 

The PIBAttribute parameter identifies specific attributes as listed in Id fields of tables that list PIB 
attributes (clause 10.2.2). 

The PIBAttributeValue parameter specifies the value associated with a given PIBAttribute. 

8.5.5.8 MLME_LIST_GET 

8.5.5.8.1 General 

The MLME_LIST_GET primitives are used to retrieve a list of values from the MAC. 

8.5.5.8.2 MLME_LIST_GET.request 

The MLME_LIST_GET.request queries a list of values pertaining to a specific class. This special 
class of PIB attributes are listed in clause 10.2.3.5.  

The semantics of the primitive are as follows: 

MLME_LIST_GET.request{PIBListAttribute} 

The PIBListAttribute parameter identifies a specific list that is requested by the management entity. 
The possible values of PIBListAttribute are listed in clause 10.2.3.5. 

8.5.5.8.3 MLME_LIST_GET.confirm 

The MLME_LIST_GET.confirm primitive is generated in response to the corresponding 
MLME_LIST_GET.request primitive. 

The semantics of this primitive are as follows: 

MLME_LIST_GET.confirm{status, PIBListAttribute, PIBListAttributeValue} 

The status parameter reports the result of requested information and can have one of the values 
given in Table 8-43. 



 

94 Rec. ITU-T G.9904 (10/2012) 

Table 8-43 – Values of the status parameter in MLME_LIST_GET.confirm primitive 

Result Description 

Done = 0 Parameter read successfully. 

Failed =1 Parameter read failed due to internal implementation reasons. 

BadAttr=11 Specified PIBListAttribute is not supported. 

The PIBListAttribute parameter identifies a specific list as listed in the Id field of Table 10-7. 

The PIBListAttributeValue parameter contains the actual listing associated with a given 
PIBListAttribute. 

8.5.5.9 MLME_SET 

8.5.5.9.1 General 

The MLME_SET primitives are used to set configuration values in the MAC. 

8.5.5.9.2 MLME_SET.request 

The MLME_SET.requests information about a given PIB attribute. 

The semantics of the primitive are as follows: 

MLME_SET.request{PIBAttribute, PIBAttributeValue} 

The PIBAttribute parameter identifies a specific attribute as listed in the Id fields of tables that list 
PIB attributes (clause 10.2.3). 

The PIBAttributeValue parameter specifies the value associated with given PIBAttribute. 

8.5.5.9.3 MLME_SET.confirm 

The MLME_SET.confirm primitive is generated in response to the corresponding 
MLME_SET.request primitive. 

The semantics of this primitive are as follows: 

MLME_SET.confirm{Result} 

The Result parameter reports the result of requested information and can have one of the values 
given in Table 8-44. 

Table 8-44 – Values of the result parameter in MLME_SET.confirm primitive 

Result Description 

Done = 0 Given value successfully set for specified attribute. 

Failed =1 Failed to set the given value for specified attribute. 

BadAttr=11 Specified PIBAttribute is not supported. 

OutofRange=12 Specified PIBAttributeValue is out of acceptable range. 

ReadOnly=13 Specified PIBAttributeValue is read only. 



 

  Rec. ITU-T G.9904 (10/2012) 95 

8.6 MAC procedures 

8.6.1 Registration 

The initial service node start-up (clause 8.3.1) is followed by a registration process. A service node 
in a disconnected functional state shall transmit a REG control packet to the base node in order to 
get itself included in the subnetwork. Since no LNID or SID is allocated to a service node at this 
stage, the PKT.LNID field shall be set to all-ones and the PKT.SID field shall contain the SID of 
the switch node through which it seeks attachment to the subnetwork.  

Base nodes may use a registration request as an authentication mechanism. However this 
Recommendation does not recommend or forbid any specific authentication mechanism and leaves 
this choice to implementations. 

For all successfully accepted registration requests, the base node shall allocate an LNID that is 
unique within the domain of the switch node through which the attachment is realized. This LNID 
shall be indicated in the PKT.LNID field of response (REG_RSP). The assigned LNID, in 
combination with the SID of the switch node through which the service node is registered, would 
form the NID of the registering node. 

Registration is a three-way process. The REG_RSP shall be acknowledged by the receiving service 
node with a REG_ACK message. 

Figure 8-42 represents a successful registration process and Figure 8-43 shows a registration request 
that is rejected by the base node. Details on specific fields that distinguish one registration message 
from the other are given in Table 8-9. 

The REG control packet, in all its usage variants, is transmitted unencrypted, but specified fields 
(REG.SNK and REG.AUK) are encrypted with context-specific encryption keys as explained in 
clause 8.4.5.3. The encryption of REG.AUK in REG_RSP, its decryption at the receiving end and 
subsequent encrypted retransmission using a different encryption key authenticates that the 
REG_ACK is from the intended destination. 

 

Figure 8-42 – Registration process accepted 



 

96 Rec. ITU-T G.9904 (10/2012) 

 

Figure 8-43 – Registration process rejected 

When assigning an LNID, the base node shall not reuse an LNID released by an unregister process 
until after (macMaxCtlReTx +1) × macCtlReTxTimer seconds, to ensure that all retransmit packets 
have left the subnetwork. Similarly, the base node shall not reuse an LNID freed by the keep-alive 
process until Tkeep_alive seconds have passed, using the last known acknowledged Tkeep_alive value, or 
if larger, the last unacknowledged Tkeep_alive, for the service node using the LNID. 

During network start-up where the whole network is powered on at once, there will be considerable 
contention for the medium. It is recommended, but optional, that randomness is added to the first 
transmission of REQ_REQ and all subsequent retransmissions. A random delay of maximum 
duration of 10% of macCtlReTxTimer may be imposed before the first REG_REQ message and a 
similar random delay of up to 10% of macCtlReTxTimer may be added to each retransmission. 

8.6.2 Unregistration process 

At any point in time, either the base node or the service node may decide to close an existing 
registration. This version of the Recommendation does not provide provision for rejecting an 
unregister request. The service node or base node that receives an unregister request shall 
acknowledge its receipt and take appropriate actions.  

Following a successful unregister, a service node shall move back from its present functional state 
to a disconnected functional state and the base node may re-use any resources that were reserved for 
the unregistering node. 

Figure 8-44 shows a successful unregister process initiated from a service node and Figure 8-45 
shows an unregister process initiated from the base node. Details on specific fields that identify 
unregister requests in REG control packets are given in Table 8-9 

 

Figure 8-44 – Unregistering process initiated by a terminal node 



 

  Rec. ITU-T G.9904 (10/2012) 97 

 

Figure 8-45 – Unregistering process initiated by the base node 

8.6.3 Promotion process 

A node that cannot reach any existing switch may send promotion-needed frames so that a terminal 
can be promoted and begin to switch. During this process, a node that cannot reach any existing 
switch may send PNPDUs so that a nearby terminal can be promoted and begin to act as a switch. 
During this process, a terminal will receive PNPDUs and at its discretion, generate PRO_REQ 
control packets to the base node. 

The base node examines the promotion requests during a period of time. It may use the address of 
the new terminal, provided in the promotion-request packet, to decide whether or not to accept the 
promotion. It will decide which node shall be promoted, if any, sending a promotion response. The 
other nodes will not receive any answer to the promotion request to avoid subnetwork saturation. 
Eventually, the base node may send a rejection if any special situation occurs. If the subnetwork is 
specially preconfigured, the base node may send terminal node promotion requests directly to a 
terminal node. 

When a terminal node requests promotion, the PRO.NSID field in the PRO_REQ_S message shall 
be set to all-ones. The PRO.NSID field shall contain an LSID allocated to the promoted node in the 
PRO_REQ_B message. The acknowledging switch node shall set the PRO.NSID field in its 
PRO_ACK to the newly allocated LSID. This final PRO_ACK shall be used by intermediate switch 
nodes to update their switching tables as described in clause 8.3.5.2. 

When reusing LSIDs that have been released by a demotion process, the base node should not 
allocate the LSID until after (macMaxCtlReTx + 1) × macCtlReTxTimer seconds to ensure all 
retransmit packets that might use that LSID have left the subnetwork. Similarly, the base node shall 
not reuse an LNID freed by the keep-alive process until Tkeep_alive seconds have passed, using the 
last known acknowledged Tkeep_alive value, or if larger, the last unacknowledged Tkeep_alive, for the 
service node using the LNID. 



 

98 Rec. ITU-T G.9904 (10/2012) 

 

Figure 8-46 – Promotion process initiated by a service node 

 

 

Figure 8-47 – Promotion process rejected by the base node 



 

  Rec. ITU-T G.9904 (10/2012) 99 

 

Figure 8-48 – Promotion process initiated by the base node 

 

Figure 8-49 – Promotion process rejected by a service node 

8.6.4 Demotion process 

The base node or a switch node may decide to discontinue a switching function at any time. The 
demotion process provides such a mechanism. The PRO control packet is used for all demotion 
transactions.  

The PRO.NSID field shall contain the SID of the switch node that is being demoted as part of the 
demotion transaction. The PRO.PNA field is not used in any demotion process transaction and its 
contents are not interpreted at either end. 

Following the successful completion of a demotion process, a switch node shall immediately stop 
the transmission of beacons and change from a switch functional state to a terminal functional state. 
The base node may reallocate the LSID and beacon slot used by the demoted switch after 
(macMaxCtlReTx + 1) × macCtlReTxTimer seconds to other terminal nodes requesting promotion. 

The present version of this Recommendation does not specify any explicit message to reject a 
demotion requested by a peer at the other end. 



 

100 Rec. ITU-T G.9904 (10/2012) 

 

Figure 8-50 – Demotion process initiated by a service node 

 

Figure 8-51 – Demotion process initiated by the base node 

8.6.5 Keep-alive process 

The keep-alive process is used to detect when a service node has left the subnetwork because of 
changes to the network configuration or because of fatal errors it cannot recover from.  

When the service node receives the REG_RSP packet it uses the REG.TIME field to start a timer 
Tkeep_alive. For every ALV_B it receives, it restarts this timer using the value from ALV.TIME. It 
should also send an ALV_S to the base node. If the timer ever expires, the service node assumes it 
has been unregistered by the base node. The message PRO_REQ does also reset the keep-alive 
timer to the PRO.TIME value. 

Each switch along the path of an ALV_B message should keep a copy of the PRO.TIME and then 
ALV.TIME for each switch node below it in the tree. When the switch does not receive an ALV_S 
message from a service node below it for Tkeep_alive as defined in PRO.TIME and ALV.TIME it 
should remove the switch node entry from its switch table. See clause 8.3.5.2 for more information 
on the switching table. Additionally a switch node may use the REG.TIME and ALV.TIME to also 
consider every service node registration status and take it into account for the switching table.  

For every ALV_S or ALV_B message sent by the base node or service node, the counter 
ALV.TXCNT should be incremented before the message is sent. This counter is expected to wrap 
around. For every ALV_B or ALV_S message received by the service node or the base node the 
counter ALV.RXCNT should be incremented. This counter is also expected to wrap around. These 
two counters are placed into the ALV_S and ALV_B messages. The base node should keep an 
ALV.TXCNT and ALV.RXCNT separated counter for each service node. These counters are reset 
to zero in the registration process. 

The algorithm used by the base node to determine when to send ALV_B messages to registered 
service nodes and how to determine the value ALV.TIME and REG.TIME is not specified here.  



 

  Rec. ITU-T G.9904 (10/2012) 101 

8.6.6 Connection management 

8.6.6.1 Connection establishment 

Connection establishment works end-to-end, connecting the application layers of communicating 
peers. Owing to the tree topology, most connections in a subnetwork will involve the base node at 
one end and a service node at the other. However, there may be cases when two service nodes 
within a subnetwork need to establish connections. Such connections are called direct connections 
and are described in clause 8.3.6. 

All connection establishment messages use the CON control packet. The various control packets 
types and specific fields that unambiguously identify them are given in Table 8-11. 

Each successful connection established on the subnetwork is allocated an LCID. The base node 
shall allocate an LCID that is unique for a given LNID.  

NOTE – Either of the negotiating ends may decide to reject a connection establishment request. The receipt 
of a connection rejection does not amount to any restrictions on making future connection requests; it may 
however be advisable.  

 

Figure 8-52 – Connection establishment initiated by a service node 

 

Figure 8-53 – Connection establishment rejected by the base node 

 

Figure 8-54 – Connection establishment initiated by the base node 



 

102 Rec. ITU-T G.9904 (10/2012) 

 

Figure 8-55 – Connection establishment rejected by a service node 

8.6.6.2 Connection closing 

Either peer at both ends of a connection may decide to close the connection at any time. The CON 
control packet is used for all messages exchanged in the process of closing a connection. Only the 
CON.N field in the CON control packet is relevant in closing an active connection.  

A connection closure request from one end is acknowledged by the other end before the connection 
is considered closed. The present version of this Recommendation does not have any explicit 
message for rejecting a connection termination requested by a peer at the other end. 

Figures 8-56 and 8-57 show message exchange sequences in a connection closing process. 

 

Figure 8-56 – Disconnection initiated by a service node 

  

Figure 8-57 – Disconnection initiated by the base node 

8.6.7 Multicast group management 

8.6.7.1 General 

The joining and leaving of a multicast group can be initiated by the base node or the service node. 
The MUL control packet is used for all messages associated with multicast and the usual retransmit 
mechanism for control packets is used. These control messages are unicast between the base node 
and the service node. 



 

  Rec. ITU-T G.9904 (10/2012) 103 

8.6.7.2 Group join 

Multicast group join may be initiated from either the base node or service node. A device shall not 
start a new join procedure before an existing join procedure started by itself is completed. 

Certain applications may require the base node to selectively invite certain service nodes to join a 
specific multicast group. In such cases, the base node starts a new group and invites service nodes 
as required by application. 

Successful and failed group joins initiated from the base node are shown in Figures 8-58 and 8-59. 

 

Figure 8-58 – Successful group join initiated by the base node 



 

104 Rec. ITU-T G.9904 (10/2012) 

 

Figure 8-59 – Failed group join initiated by the base node 

Successful and failed group joins initiated from the service node are shown in Figures 8-60 
and 8-61. 



 

  Rec. ITU-T G.9904 (10/2012) 105 

 

Figure 8-60 – Successful group join initiated by the service node 



 

106 Rec. ITU-T G.9904 (10/2012) 

 

Figure 8-61 – Failed group join initiated by the service node 

8.6.7.3 Group leave 

Leaving a multicast group operates in the same way as connection removal. Either the base node or 
service node may decide to leave the group. A notable difference in the group leave process as 
compared to a group join is that there is no message sequence for rejecting a group leave request.  



 

  Rec. ITU-T G.9904 (10/2012) 107 

 

Figure 8-62 – Leave initiated by the service node 

 

Figure 8-63 – Leave initiated by the base node 

8.6.8 PHY robustness management 

8.6.8.1 General 

The PHY layer has several parameters that affect the performance of the transmission: power 
transmission, modulation schema (constellation mapping and convolutional encoding). The 
transmitter needs feedback about the reception quality to adjust its transmission parameters. This 
feedback is sent using PRM control packets. 

8.6.8.2 Use of the PHY robustness notification for detecting robustness needs 

There are several sources of information that may be used to detect whether or not the robustness of 
the PHY is the right one: 

• received packets with invalid CRC; 

• ARQ retransmissions; 

• control packet retransmissions;  

• PRM requests sent by other nodes to the same switch node (in the case of node-to-switch 
notifications); 

• PRM responses. 



 

108 Rec. ITU-T G.9904 (10/2012) 

This information may be used to decide when to notify that the robustness of the PHY should be 
changed. This notification may be performed from a service node to a switch node and from a 
switch node to a service node. For this purpose, the base node works as the root switch in exactly 
the same way the other switch nodes do. 

8.6.8.3 PHY robustness notification 

 

 

Figure 8-64 – PHY robustness management requested by the switch node 

 

 

Figure 8-65 – PHY robustness management requested by the service node 

8.6.8.4 PHY robustness changing 

From the PHY point of view there are several parameters that may be adjusted and which affect the 
transmission robustness: the transmission power and modulation parameters (convolutional 
encoding and constellation). As a general rule the following rules should be followed: 

• Increase robustness: increase the power and if it is not possible, improve the modulation 
scheme robustness (reducing throughput). 

• Reduce robustness: reduce the modulation scheme robustness (increasing throughput) and 
if it is not possible, reduce the transmission power. 



 

  Rec. ITU-T G.9904 (10/2012) 109 

8.6.9 Channel allocation and de-allocation 

Figure 8-66 below shows a successful channel allocation sequence. All channel allocation requests 
are forwarded to the base node. Note that in order to assure a contention-free channel allocation 
along the entire path, the base node allocates non-overlapping times to intermediate switch nodes. 
In a multi-level subnetwork, the base node may also reuse the allocated time at different levels. 
While reusing the said time, the base node needs to ensure that the levels that use the same time 
slots have sufficient separation so that there is no possible interference. 

  

Figure 8-66 – Successful allocation of a CFP period 

Figure 8-67 below shows a channel de-allocation request from a terminal device and the resulting 
confirmation from the base node. 

  

Figure 8-67 – Successful channel de-allocation sequence 

Figure 8-68 below shows a sequence of events that may lead to a base node re-allocation 
contention-free slot to a terminal device that already has slots allocated to it. In this example, a 
de-allocation request from Terminal-2 resulted in two changes: firstly, in the global frame structure, 
this change is conveyed to the subnetwork in the FRA_CFP_IND packet; secondly, it is specific to 
the time slot allocated to Terminal-1 within the CFP.  



 

110 Rec. ITU-T G.9904 (10/2012) 

  

Figure 8-68 – De-allocation of channel to one device results in the change  
of the CFP allocated to another 

8.7 Automatic repeat request (ARQ) 

8.7.1 General 

Devices complying with this Recommendation may either implement an ARQ scheme as described 
in this clause or no ARQ at all. This Recommendation provides low-complexity switch and terminal 
devices that choose not to implement any ARQ mechanism at all.  

8.7.2 Initial negotiation 

ARQ is a connection property. During the initial connection negotiation, the originating device 
indicates its preference for ARQ or non-ARQ in the CON.ARQ field. The responding device at the 
other end can indicate its acceptance or rejection of the ARQ in its response. If both devices agree 
to use ARQ for the connection, all traffic in the connection will use ARQ for acknowledgements, as 
described in clause 8.7.3. If the responding device rejects the ARQ in its response, the data flowing 
through this connection will not use ARQ.  

8.7.3 ARQ mechanism 

8.7.3.1 General 

The ARQ mechanism works between directly connected peers (original source and final 
destination), as long as both of them support ARQ implementation. This implies that even for a 
connection between the base node and a terminal (connected via one or more intermediate switch 
devices), ARQ works on an end-to-end basis. The behaviour of switch nodes in an ARQ-enabled 
connection is described in clause 8.7.4. When using ARQ, a unique packet identifier is associated 
with each packet, to aid in acknowledgement. The packet identifier is 6 bits long and can therefore 
denote 64 distinct packets. ARQ windowing is supported, with a maximum window size of 32 
(5 bits), as described in clause 8.7.3.3. 

8.7.3.2 ARQ PDU 

8.7.3.2.1 General 

The ARQ subheader is placed inside the data packets, after the packet header and before the 
ORIGINAL packet payload.  

 

Figure 8-69 – MAC data PDU with ARQ subheader 



 

  Rec. ITU-T G.9904 (10/2012) 111 

For an ARQ PDU, the PKT.LEN field in the packet header will be set as the ARQ subheader length 
plus the original packet payload length. By doing this, the intermediate switching node can correctly 
parse the whole PDU length without the knowledge that this PDU is ARQ-enabled, so that it can 
transparently relay the ARQ PDU based on the addressing information alone. 

The ARQ subheader contains a set of bytes; each byte containing different subfields. The most 
significant bit of each byte, the M bit, indicates if there are more bytes in the ARQ subheader. 

 

Figure 8-70 – ARQ subheader only with the packet id 

Figure 8-70 shows an ARQ subheader with the first M bit of 0 and so the subheader is a single byte 
and contains only the packet ID for the transmitted packet. 

 

Figure 8-71 – ARQ subheader with ARQ.INFO 

Figure 8-71 has the M bit in the first byte of the ARQ subheader set, and so the subheader contains 
multiple bytes. The first byte contains the packet ID of the transmitted packet and then follows the 
ARQ.INFO which is a list of one or more bytes, where each byte could have one of the following 
meanings: 

 

Figure 8-72 – ARQ.ACK byte fields 

 

Figure 8-73 – ARQ.WIN byte fields 

 

Figure 8-74 – ARQ.NACK byte fields 

If there are multiple packets lost, an ARQ.NACK is sent for each of them, from the first packet lost 
to the last packet lost. When there are several ARQ.NACK they implicitly acknowledge the packets 
before the first ARQ.NACK, and the packets in between the ARQ.NACKs. If an ARQ.ACK is 
present, it must be placed at the end of the ARQ subheader, and should refer to an ARQ.ACKID 
that is later than any other ARQ.NACKID, if present. If there is at least an ARQ.NACK and an 
ARQ.ACK they also implicitly acknowledge any packet in the middle between the last 
ARQ.NACKID and the ARQ.ACK. 

For interoperability, a device should be able to receive any well-formed ARQ subheader and should 
process at least the first ARQ.ACK or ARQ.NACK field.  

The subfields have the following meanings as described in Table 8-45. 



 

112 Rec. ITU-T G.9904 (10/2012) 

Table 8-45 – ARQ fields 

Field Description 

ARQ.FLUSH ARQ.FLUSH = 1 If an ACK must be sent immediately. 
ARQ.FLUSH = 0 If an ACK is not needed. 

ARQ.PKTID TheID of the current packet, if the packet is empty (with no data) this is the ID of the 
packet that will be sent next. 

ARQ.ACKID The identifier with the next packet expected to be received. 

ARQ.WINSIZE The window size available from the last acknowledged packet. After a connection is 
established its window is 1. 

ARQ.NACKID Ids of the packets that need to be retransmitted. 

8.7.3.2.2 ARQ subheader example 

 

Figure 8-75 – Example of an ARQ subheader with all the fields present 

In this example all the ARQ subheader fields are present. To make it understandable, since both 
nodes are both transmitters and receivers, the side receiving this header will be called A and the 
other side transmitting B. The message has the packet ID of 23 if it contains data; otherwise the 
next data packet to be sent has the packet ID of 23. Since the flush bit is set it needs to be 
ACKed/NACKed. 

B requests the retransmission of packets 45, 47, 48, 52, 55, 56 and 57. ACK = 60, so it has received 
packets <45, 46, 49, 50, 51, 53, 54, 58 and 59.  

The window is 16 and it has received and processed up to packet 44 (first NACK = 45), so A can 
send all packets <= 60; that is, as well as sending the requested retransmits, it can also send packet 
ID = 60. 

8.7.3.3 Windowing 

A new connection between two peer devices starts with an implicit initial receiver window size of 1 
and a packet identifier 0. This window size is a limiting case and the transaction (to start with) 
would behave like a "Stop and Wait" ARQ mechanism.  

Upon receipt of an ARQ.WIN, the sender would adapt its window size to ARQ.WINSIZE. This 
buffer size is counted from the first packet completely ACK-ed, so if there is a NACK list and then 
an ACK the window size defines the number of packets from the first NACK-ed packet that could 
be sent. If there is just an ACK in the packet (without any NACK) the window size determines the 
number of packets that can be sent from that ACK. 

An ARQ.WINSIZE value of 0 may be transmitted back by the receiver to indicate congestion at its 
end. In such cases, the transmitting end should wait for at least ARQCongClrTime before 
re-transmitting its data. 



 

  Rec. ITU-T G.9904 (10/2012) 113 

8.7.3.4 Flow control 

The transmitter must manage the ACK sending algorithm by the flush bit; it is up to it having a 
proper ARQ communication. The receiver is only forced to send ACKs when the transmitter has 
sent a packet with the flush bit set, although the receiver could send more ACKs even if not forced 
to do it, because the flow control is only a responsibility of the transmitter.  

These are the requisites to be interoperable, but the algorithm is up to the manufacturer. It is 
strongly recommended to piggyback data-ACK information in outgoing packets, to avoid the 
transmission of unnecessary packets just for ACK-ing. 

8.7.3.5 Algorithm recommendation 

No normative algorithm is specified. 

8.7.3.6 Usage of ARQ in resource limited devices 

Resource-limited devices may have a low memory and simple implementation of ARQ. They may 
want to use a window of 1 packet. They will work as a "Stop and Wait" mechanism. 

The ARQ subheader to be generated may be one of the following: 

If there is nothing to acknowledge: 

 

Figure 8-76 – Stop and wait ARQ subheader with only packet ID 

If there is something to acknowledge carrying data: 

 

Figure 8-77 – Stop and wait ARQ subheader with an ACK 

If there is something to acknowledge but without any data in the packet: 

 

Figure 8-78 – Stop and wait ARQ subheader without data and with an ACK 

The ARQ.WINSIZE is not generally transmitted because the window size is already 1 by default, it 
may only be transmitted to handle congestion and to resume the transmission again. 

8.7.4 ARQ packets switching 

All switch nodes shall support transparent bridging of ARQ traffic, whether or not they support 
ARQ for their own transmission and reception. In this mode, switch nodes are not required to buffer 
the packets of the ARQ connections for retransmission. 

Some switch nodes may buffer the packets of the ARQ connections, and perform retransmission in 
response to NACKs for these packets. The following general principles shall be followed: 

• The acknowledged packet identifiers shall have end-to-end coherency. 

• The buffering of packets in switch nodes and their retransmissions shall be transparent to 
the source and destination nodes, i.e., a source or destination node shall not be required to 
know whether or not an intermediate switch has buffered packets for switched data. 



 

114 Rec. ITU-T G.9904 (10/2012) 

9 Convergence layer 

9.1 Overview 

Figure 9-1 shows the overall structure of the convergence layer. 

 

Figure 9-1 – Structure of the convergence layer 

The convergence layer is separated into two sublayers. The common part convergence sublayer 
(CPCS) provides a set of generic services. The service-specific convergence sublayer (SSCS) 
contains services that are specific to one communication profile. There are several SSCSs, typically 
one per communication profile, but only one CPCS. The use of CPCS services is optional in that a 
certain SSCS will use the services it needs from the CPCS, and omit services which are not needed. 

9.2 Common part convergence sublayer (CPCS) 

9.2.1 General 

This Recommendation defines only one CPCS service: segmentation and reassembly (SAR). 

9.2.2 Segmentation and reassembly (SAR) 

9.2.2.1 General 

CPCS SDUs which are larger than 'ClMTUSize-1' bytes are segmented at the CPCS. CPCS SDUs 
which are equal or smaller than 'ClMTUSize-1' bytes may also optionally be segmented. 
Segmentation means breaking up a CPCS SDU into smaller parts to be transferred by the MAC 
layer. At the peer CPCS, the smaller parts (segments) are put back together (i.e., reassembled) to 
form the complete CPCS SDU. All segments except the last segment of a segmented SDU must be 
the same size and at most ClMTUSize bytes in length. Segments may be decided to be smaller than 
'ClMTUSize-1' bytes, e.g., when the channel is poor. The last segment may of course be smaller 
than 'ClMTUSize-1' bytes.  

In order to keep SAR functionality simple, the ClMTUSize is a constant value for all possible 
modulation/coding combinations at the PHY layer. The value of ClMTUSize is such that with any 
modulation/coding combination it is always possible to transmit a single segment in one PPDU. 
Therefore, there is no need for discovering a specific MTU between peer CPCSs or modifying the 
SAR configuration for every change in the modulation/coding combination. In order to increase 
efficiency, a service node which supports packet aggregation may combine multiple segments into 
one PPDU when communicating with its peer.  



 

  Rec. ITU-T G.9904 (10/2012) 115 

Segmentation always adds a 1-byte header to each segment. The first 2 bits of an SAR header 
identify the type of segment. The semantics of the rest of the header information then depend on the 
type of segment. The structure of different header types is shown in Figure 9-2 and individual fields 
are explained in Table 9-1. Not all fields are present in each SAR header. Either SAR.NSEGS or 
SAR.SEQ is present, but not both. 

Figure 9-2 – Segmentation and reassembly headers 

Table 9-1 – SAR header fields 

Name Length Description 

SAR.TYPE 2 bits Type of segment. 
• 0b00: first segment 
• 0b01: intermediate segment 
• 0b10: last segment 
• 0b11: reserved by ITU-T. 

SAR.NSEGS 6 bits 'Number of Segments' – 1  

SAR.SEQ 6 bits Sequence number of segment 

Every segment (except for the first one) includes a sequence number so that the loss of a segment 
could be detected in reassembly. The sequence numbering shall start from zero with every new 
CPCS SDU. The first segment which contains an SAR.SEQ field must have SAR.SEQ = 0. All 
subsequent segments from the same CPCS SDU shall increase this sequence number so that the 
SAR.SEQ field adds one with every transmission. 

The value SAR.NSEGS indicates the total number of segments, minus one. So when SAR.NSEGS 
= 0, the CPCS SDU is sent in one segment. SAR.NSEGS = 63 indicates there will be 64 segments 
to form the full CPCS SDU. When SAR.NSEGS = 0, it indicates that this first segment is also the 
last segment. No further segment with SAR.TYPE = 0b01 or 0b10 is to be expected for this 
one-segment CPCS SDU.  

SAR at the receiving end shall buffer all segments and deliver only fully reassembled CPCS SDUs 
to the SSCS above. Should reassembly fail due to a segment not being received or too many 
segments being received, etc., SAR shall not deliver any incomplete CPCS SDU to the SSCS 
above.  

9.2.2.2 SAR constants 

Table 9-2 shows the constants for the SAR service. 

Table 9-2 – SAR constants 

Constant Value 

ClMTUSize 256 bytes 

ClMaxAppPktSize Max value (SAR.NSEGS) x ClMTUSize 



 

116 Rec. ITU-T G.9904 (10/2012) 

9.3 NULL specific service convergence sublayer (NULL SSCS) 

9.3.1 Overview 

Null SSCS provides the MAC layer with a transparent path to upper layers, being as simple as 
possible and minimizing overheads. It is intended for applications that do not need any special 
convergence capability. 

The unicast and multicast connections of this SSCS shall use the SAR service, as defined in 
clause 9.2.2. If they do not need the SAR service, they shall still include the SAR header (notifying 
just one segment). 

The CON.TYPE and MUL.TYPE (see Annex C) for unicast connections and multicast groups shall 
use the same type that has already been defined for the application that makes use of this null SSCS. 

9.3.2 Primitives 

Null SSCS primitives are just a direct mapping of the MAC primitives. A full description of every 
primitive is avoided, because the mapping is direct and they will work as the ones of the MAC 
layer. 

The directly mapped primitives have exactly the same parameters as the ones in the MAC layer and 
perform the same functionality. The set of primitives that are directly mapped are shown below. 

Table 9-3 – Primitive mapping between the null SSCS primitives  
and the MAC layer primitives 

Null SSCS mapped to … … a MAC primitive 

CL_NULL_ESTABLISH.request MAC_ESTABLISH.request 

CL_NULL_ESTABLISH.indication MAC_ESTABLISH.indication 

CL_NULL_ESTABLISH.response MAC_ESTABLISH.response 

CL_NULL_ESTABLISH.confirm MAC_ESTABLISH.confirm 

CL_NULL_RELEASE.request MAC_RELEASE.request 

CL_NULL_RELEASE.indication MAC_RELEASE.indication 

CL_NULL_RELEASE.response MAC_RELEASE.response 

CL_NULL_RELEASE.confirm MAC_RELEASE.confirm 

CL_NULL_JOIN.request MAC_JOIN.request 

CL_NULL_JOIN.indication MAC_JOIN.indication 

CL_NULL_JOIN.response MAC_JOIN.response 

CL_NULL_JOIN.confirm MAC_JOIN.confirm 

CL_NULL_LEAVE.request MAC_LEAVE.request 

CL_NULL_LEAVE.indication MAC_LEAVE.indication 

CL_NULL_LEAVE.response MAC_LEAVE.response 

CL_NULL_LEAVE.confirm MAC_LEAVE.confirm 

CL_NULL_DATA.request MAC_DATA.request 

CL_NULL_DATA.indication MAC_DATA.indication 

CL_NULL_DATA.confirm MAC_DATA.confirm 

CL_NULL_SEND.request MAC_SEND.request 

CL_NULL_SEND.indication MAC_SEND.indication 

CL_NULL_SEND.confirm MAC_SEND.confirm 



 

  Rec. ITU-T G.9904 (10/2012) 117 

9.4 IPv4 specific service convergence sublayer (IPv4 SSCS) 

9.4.1 Overview 

The IPv4 SSCS provides an efficient method for transferring IPv4 packets over the ITU-T G.9904 
subnetworks. Several conventions do apply: 

• A service node can send IPv4 packets to the base node or to other service nodes.  

• It is assumed that the base node acts as a router between the ITU-T G.9904 subnetwork and 
any other network. The base node could also act as an NAT. How the base node connects to 
the other networks is beyond the scope of this Recommendation.  

• In order to keep implementations simple, only one single route is supported per local IPv4 
address. 

• Service Nodes may use statically configured IPv4 addresses or DHCP to obtain IPv4 
addresses.  

• The base node performs IPv4 to EUI-48 address resolution. Each service node registers its 
IPv4 address and EUI-48 address with the base node (see clause 9.4.2). Other service nodes 
can then query the base node to resolve an IPv4 address into an EUI-48 address. This 
requires the establishment of a dedicated connection with the base node for address 
resolution. 

• The IPv4 SSCS performs the routing of IPv4 packets. In other words, the IPv4 SSCS will 
decide whether the packet should be sent directly to another service node or forwarded to 
the configured gateway.  

• Although IPv4 is a connectionless protocol, the IPv4 SSCS is connection-oriented. Once 
address resolution has been performed, a connection is established between the source and 
destination service node for the transfer of IPv4 packets. This connection is maintained 
while traffic is being transferred and may be closed after a period of inactivity. 

• The CPCS (see clause 9.2) SAR sublayer shall always be present with the IPv4 
convergence layer. Generated MSDUs are at most 'ClMTUSize' bytes long and upper layer 
PDU messages are not expected to be longer than ClMaxAppPktSize. 

• Optionally TCP/IPv4 headers may be compressed. Compression is negotiated as part of the 
connection establishment phase. 

• The broadcasting of IPv4 packets is supported using the MAC broadcast mechanism. 

• The multicasting of IPv4 packets is supported using the MAC multicast mechanism. 

The IPv4 SSCS has a number of connection types. For address resolution there is a connection to 
the base node. For IPv4 data transfer there is one connection per destination node: with the base 
node that acts as the IPv4 gateway to other networks or to/with any other node in the same 
subnetwork. This is shown in Figure 9-3. 

G.9904(12)_F9-3

A: Base node

B: Switch C: Terminal D: Switch E: Terminal

F: Terminal G: Terminal H: Terminal

IPv4 SSCS address resolution connection
IPv4 SSCS data transfer connection  

Figure 9-3 – IPv4 SSCS connection example  



 

118 Rec. ITU-T G.9904 (10/2012) 

Here, nodes B, E and F have address resolution connections to the base node. Node E has a data 
connection to the base node and node F. Node F also has a data connection to node B. The figure 
does not show broadcast and multicast connections. 

9.4.2 Address resolution 

9.4.2.1 General 

The IPv4 layer will present the IPV4 SSCS with an IPv4 packet to be transferred. The IPV4 SSCS 
is responsible for determining which service node the packet should be delivered to using the IPv4 
addresses in the packet. The IPV4 SSCS must then establish a connection to the destination if one 
does not already exist so that the packet can be transferred. Three classes of IPv4 addresses can be 
used and the following subclauses describe how these addresses are resolved into EUI-48 addresses. 

9.4.2.2 Unicast addresses 

9.4.2.2.1 General 

IPv4 unicast addresses must be resolved into unicast EUI-48 addresses. The base node maintains a 
database of IPv4 addresses and EUI-48 addresses. Address resolution then operates by querying this 
database. A service node must establish a connection to the address resolution service running on 
the base node, using the connection type value TYPE (see Annex C) TYPE_CL_IPv4_AR. No data 
should be passed in the connection establishment. Using this connection, the service node can use 
two mechanisms as defined in the following paragraphs. 

9.4.2.2.2 Address registration and unregistration 

A service node uses the AR_REGISTER_S message to register an IPv4 address and the 
corresponding EUI-48 address; this means a request from the base node to record inside its 
registration table, the IPv4 address and its corresponding service node EUI-48. The base node will 
acknowledge an AR_REGISTER_B message. The service node may register multiple IPv4 
addresses for the same EUI-48 address.  

A service node uses the AR_DEREGISTER_S message to unregister an IPv4 address and the 
corresponding EUI-48 address; this means requests from the base node to delete inside its 
registration table, the entry corresponding to the concerned IPv4 address. The base node will 
acknowledge it with an AR_DEREGISTER_B message. 

When the IPv4 address resolution connection between the service node and the base node is closed, 
the base node should remove all addresses associated with that connection. 

9.4.2.2.3 Address look-up 

A service node uses the AR_LOOKUP_S message to perform a look-up. The message contains the 
IPv4 address to be resolved. The base node will respond with an AR_LOOKUP_B message that 
contains an error code and, if there is no error, the EUI-48 address associated with the IPv4 address. 
If the base node has multiple entries in its database for the same IPv4 address, the possible returned 
EUI-48 address is undefined. 

9.4.2.3 Broadcast address 

The IPv4 broadcast address 255.255.255.255 maps to a MAC broadcast connection with an LCID 
equal to LCI_CL_IPv4_BROADCAST. All IPv4 broadcast packets will be sent to this connection. 
When an IPv4 broadcast packet is received on this connection, the IPv4 address should be examined 
to determine if it is a broadcast packet for the subnetwork in which the node has an IPv4 address. 
Only broadcast packets from member subnets should be passed up the IPv4 protocol stack. 



 

  Rec. ITU-T G.9904 (10/2012) 119 

9.4.2.4 Multicast addresses 

Multicast IPv4 addresses are mapped to an ITU-T G.9904 MAC multicast connection by the base 
node using an address resolution protocol. 

To join a multicast group, AR_MCAST_REG_S is sent from the service node to the base node with 
the IPv4 multicast address. The base node will reply with an AR_MCAST_REG_B that contains 
the LCID value assigned to the said multicast address. However, the base node may also allocate 
other LCIDs which are not in use. The service node can then join a multicast group (see 
clause 8.6.7.2) for the given LCID to receive IPv4 multicast packets. These LCID values can be 
reused so that multiple IPv4 destination multicast addresses can be seen on the same LCID. To 
leave the multicast group, AR_MCAST_UNREG_S is sent from the service node to the base node 
with the IPv4 multicast address. The base node will acknowledge it with an 
AR_MCAST_UNREG_B message.  

When a service node wants to send an IPv4 multicast datagram, it just uses the appropriate LCID. If 
the service node has not joined the multicast group, it first needs to learn the LCID to be used. The 
process with AR_MCAST_REG_{S|B} messages as described above can be used. While IPv4 
multicast packets are still being sent, the service node remains registered to the multicast group. 
Tmcast_reg after the last IPv4 multicast datagram was sent, the service node should unregister from the 
multicast group, by means of AR_MCAST_UNREG_{S|B} messages. The nominal value of 
Tmcast_reg is 10 minutes; however, other values may be used. 

9.4.2.5 Retransmission of address resolution packets 

The connection between the service node and the base node for address resolution is not reliable if 
the MAC ARQ is not used. The service node is responsible for making retransmissions if the base 
node does not respond in one second. It is not considered an error when the base node receives the 
same registration requests multiple times or is asked to remove a registration that does not exist. 
These conditions can be the result of retransmissions. 

9.4.3 IPv4 packet transfer 

For packets to be transferred, a connection needs to be established between the source and 
destination nodes. The IPV4 SSCS will examine each IPv4 packet to determine the destination 
EUI-48 address. If a data connection to the destination already exists, the packet is sent. To 
establish this, IPv4 SSCS keeps a table for each connection, with the information shown in 
Table 9-4 (see [IETF RFC 1144]). To use this table, it is first necessary to determine if the IPv4 
destination address is in the local subnetwork or if a gateway has to be used. The netmask 
associated with the local IPv4 address is used to determine this. If the IPv4 destination address is 
not in the local subnetwork, the address of the default gateway is used instead of the destination 
address when the table is searched.  

Table 9-4 – IPV4 SSCS table entry 

Parameter Description 

CL_IPv4_Con.Remote_IP Remote IPv4 address of this connection 

 CL_IPv4_Con.ConHandle MAC connection handle for the connection 

CL_IPv4_Con.LastUsed Timestamp of last packet received/transmitted 

CL_IPv4_Con.HC Header compression scheme being used 

CL_IPv4_CON.RxSeq Next expected receive sequence number 

CL_IPv4_CON.TxSeq Sequence number for next transmission 



 

120 Rec. ITU-T G.9904 (10/2012) 

The IPV4 SSCS may close a connection when it has not been used for an implementation-defined 
time period. When the connection is closed the entry for the connection is removed at both ends of 
the connection. 

When a connection to the destination does not exist, more work is necessary. The address resolution 
service is used to determine the EUI-48 address of the remote IPv4 address if it is local or the 
gateway associated with the local address if the destination address is in another subnetwork. When 
the base node replies with the EUI-48 address of the destination service node, a MAC connection is 
established with the remote device. The TYPE value of this connection is 
TYPE_CL_IPv4_UNICAST. The data passed in the request message is defined in clause 9.4.7.4. 
The local IPv4 address is provided so that the remote device can add the new connection to its 
cache of connections for sending data in the opposite direction. The use of Van Jacobson (VJ) 
header compression is also negotiated as part of the connection establishment. Once the connection 
has been established, the IPv4 packet can be sent.  

When the packet is addressed to the IPv4 broadcast address, the packet has to be sent using the 
MAC broadcast service. When the IPV4 SSCS is opened, a broadcast connection is established for 
transferring all broadcast packets. The broadcast IPv4 packet is simply sent to this connection. Any 
packet received on this broadcast connection is passed to the IPv4 protocol stack. 

9.4.4 Segmentation and reassembly 

The IPV4 SSCS should support IPv4 packets with an MTU of 1500 bytes. This requires the use of 
SAR (see clause 9.2.2).  

9.4.5 Header compression 

Van Jacobson TCP/IP header compression is an optional feature in the IPv4 SSCS. The use of VJ 
compression is negotiated as part of the connection establishment phase of the connection between 
two service nodes.  

VJ compression is designed for use over a point-to-point link layer that can inform the 
decompressor when packets have been corrupted or lost. When there are errors or lost packets, the 
decompressor can then resynchronize with the compressor. Without this resynchronization process, 
erroneous packets will be produced and passed up the IPv4 stack.  

The MAC layer does not provide the facility of detecting lost packets or reporting corrupt packets. 
Thus, it is necessary to add this functionality in the IPV4 SSCS. The IPV4 SSCS maintains two 
sequence numbers when VJ compression is enabled for a connection. These sequence numbers are 
8 bits in size. When transmitting an IPv4 packet, the CL_IPv4_CON.TxSeq sequence number is 
placed in the packet header, as shown in clause 9.4.3. The sequence number is then incremented. 
Upon receipt of a packet, the sequence number in the received packet is compared against 
CL_IPv4_CON.RxSeq. If they differ, TYPE_ERROR, as defined in [IETF RFC1144], is passed to 
the decompressor. The CL_IPv4_CON.RxSeq value is always updated to the value received in the 
packet header. 

Header compression should never be negotiated for broadcast or multicast packets. 

9.4.6 Quality of service mapping 

The ITU-T G.9904 MAC specifies that the contention-based access mechanism supports four 
priority levels (1-4). Level 1 is used for MAC signalling messages, but not exclusively so. 

IPv4 packets include a type of service (TOS) field in the header to indicate the QoS the packet 
would like to receive. Three bits of the TOS indicate the IP precedence. The following table 
specifies how the IP precedence is mapped into the ITU-T G.9904 MAC priority. 



 

  Rec. ITU-T G.9904 (10/2012) 121 

Table 9-5 – Mapping IPv4 precedence to ITU-T G.9904 MAC priority 

IP precedence MAC priority 

000 – Routine 4 

001 – Priority 4 

010 – Immediate 3 

011 – Flash 3 

100 – Flash Override 2 

101 – Critical 2 

110 – Internetwork Control 1 

111 – Network Control 1 

9.4.7 Packet formats and connection data 

9.4.7.1 General 

This clause defines the format of IPV4 SSCS PDUs. 

9.4.7.2 Address resolution PDUs 

9.4.7.2.1 General 

The following PDUs are transferred over the address resolution connection between the service 
node and the base node. The following clauses define AR.MSG values in the range of 0 to 11. All 
higher values are reserved for later versions of this Recommendation. 

9.4.7.2.2 AR_REGISTER_S 

Table 9-6 shows the address resolution register message sent from the service node to the base 
node. 

Table 9-6 – AR_REGISTER_S message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_REGISTER_S = 0 

AR.IPv4 32-bits IPv4 address to be registered 

AR.EUI-48 48-bits EUI-48 to be registered 

9.4.7.2.3 AR_REGISTER_B 

Table 9-7 shows the address resolution register acknowledgment message sent from the base node 
to the service node. 

Table 9-7 – AR_REGISTER_B message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_REGISTER_B = 1 

AR.IPv4 32-bits Registered IPv4 address 

AR.EUI-48 48-bits EUI-48 registered 



 

122 Rec. ITU-T G.9904 (10/2012) 

The AR.IPv4 and AR.EUI-48 fields are included in the AR_REGISTER_B message so that the 
service node can perform multiple overlapping registrations. 

9.4.7.2.4 AR_UNREGISTER_S 

Table 9-8 shows the address resolution unregister message sent from the service node to the base 
node. 

Table 9-8 – AR_UNREGISTER_S message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type. 
• For AR_UNREGISTER_S = 2 

AR.IPv4 32-bits IPv4 address to be unregistered 

AR.EUI-48 48-bits EUI-48 to be unregistered 

9.4.7.2.5 AR_UNREGISTER_B 

Table 9-9 shows the address resolution unregister acknowledgment message sent from the base 
node to the service node. 

Table 9-9 – AR_UNREGISTER_B message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_UNREGISTER_B = 3 

AR.IPv4 32-bits Unregistered IPv4 address 

AR.EUI-48 48-bits Unregistered EUI-48 

The AR.IPv4 and AR.EUI-48 fields are included in the AR_UNREGISTER_B message so that the 
service node can perform multiple overlapping unregistrations. 

9.4.7.2.6 AR_LOOKUP_S 

Table 9-10 shows the address resolution look-up message sent from the service node to the base 
node. 

Table 9-10 – AR_LOOKUP_S message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_LOOKUP_S = 4 

AR.IPv4 32-bits IPv4 address to look up 

9.4.7.2.7 AR_LOOKUP_B 

Table 9-11 shows the address resolution look-up response message sent from the base node to the 
service node. 



 

  Rec. ITU-T G.9904 (10/2012) 123 

Table 9-11 – AR_LOOKUP_B message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_LOOKUP_B = 5 

AR.IPv4 32-bits IPv4 address looked up 

AR.EUI-48 48-bits EUI-48 for IPv4 address 

AR.Status 8-bits Look-up status, indicating if the address was found or an error occurred: 
• 0 = found, AR.EUI-48 valid 
• 1 = unknown, AR.EUI-48 undefined. 

The look-up may fail if the requested address has not been registered. In that case, AR.Status will 
have a value other than zero and the contents of AR.EUI-48 will be undefined. The look-up is only 
successful when AR.Status is zero. In that case, the EUI-48 field contains the resolved address. 

9.4.7.2.8 AR_MCAST_REG_S 

Table 9-12 shows the multicast address resolution register message sent from the service node to 
the base node. 

Table 9-12 – AR_MCAST_REG_S message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_MCAST_REG_S = 8 

AR.IPv4 32-bits IPv4 multicast address to be registered 

9.4.7.2.9 AR_MCAST_REG_B 

Table 9-13 shows the multicast address resolution register acknowledgment message sent from the 
base node to the service node. 

Table 9-13 – AR_MCAST_REG_B message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_MCAST_REG_B = 9 

AR.IPv4 32-bits IPv4 multicast address registered 

Reserved 2-bits Reserved by ITU-T. Should be encoded as 0 

AR.LCID 6-bits LCID assigned to this IPv4 multicast address 

The AR.IPv4 field is included in the AR_MCAST_REG_B message so that the service node can 
perform multiple overlapping registrations. 

9.4.7.2.10 AR_MCAST_UNREG_S 

Table 9-14 shows the multicast address resolution unregister message sent from the service node to 
the base node. 



 

124 Rec. ITU-T G.9904 (10/2012) 

Table 9-14 – AR_MCAST_UNREG_S message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_MCAST_UNREG_S = 10 

AR.IPv4 32-bits IPv4 multicast address to be unregistered 

9.4.7.2.11 AR_MCAST_UNREG_B 

Table 9-15 shows the multicast address resolution unregister acknowledgment message sent from 
the base node to the service node. 

Table 9-15 – AR_MCAST_UNREG_B message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_MCAST_UNREG_B = 11 

AR.IPv4 32-bits IPv4 multicast address unregistered 

The AR.IPv4 field is included in the AR_MCAST_UNREG_B message so that the service node can 
perform multiple overlapping unregistrations. 

9.4.7.3 IPv4 packet format 

9.4.7.3.1 General 

The following PDU formats are used for transferring IPv4 packets between service nodes. Two 
formats are defined. The first format is for when header compression is not used. The second format 
is for Van Jacobson header compression. 

9.4.7.3.2 IPv4 packet format, no negotiated header compression 

When no header compression has been negotiated, the IPv4 packet is simply sent as is, without any 
header. 

Table 9-16 – IPv4 packet format without negotiated header compression 

Name Length Description 

IPv4.PKT n-octets The IPv4 packet 

9.4.7.3.3 IPv4 packet format with VJ header compression 

With Van Jacobsen header compression, a one-octet header is needed before the IPv4 packet. 

Table 9-17 – IPv4 packet format with VJ header compression negotiated 

Name Length Description 

IPv4.Type 2-bits Type of compressed packet: 
• IPv4.Type = 0 – TYPE_IP 
• IPv4.Type = 1 – UNCOMPRESSED_TCP 
• IPv4.Type = 2 – COMPRESSED_TCP 
• IPv4.Type = 3 – TYPE_ERROR. 

IPv4.Seq 6-bits Packet sequence number  

IPv4.PKT n-octets The IPv4 packet 



 

  Rec. ITU-T G.9904 (10/2012) 125 

The IPv4.Type value TYPE_ERROR is never sent. It is a pseudo packet type used to tell the 
decompressor that a packet has been lost. 

9.4.7.4 Connection data 

9.4.7.4.1 General 

When a connection is established between service nodes for the transfer of IPv4 packets, data is 
also transferred in the connection request packets. This data allows the negotiation of compression 
and notification of the IPv4 address. 

9.4.7.4.2 Connection data from the initiator 

Table 9-18 shows the connection data sent by the initiator. 

Table 9-18 – Connection signalling data sent by the initiator 

Name Length Description 

Reserved 6-bits Reserved by ITU-T. Should be encoded as 0 in this version of the IPV4 SSCS 
protocol. 

Data.HC 2-bit Header compression 
• Data.HC = 0 – No compression requested 
• Data.HC = 1 – VJ Compression requested 
• Data.HC = 2, 3 – Reserved by ITU-T.  

Data.IPv4 32-bits IPv4 address of the initiator 

If the device accepts the connection, it should copy the Data.IPv4 address into a new table entry 
along with the negotiated Data.HC value. 

9.4.7.4.3 Connection data from the responder 

Table 9-19 shows the connection data sent in response to the connection request. 

Table 9-19 – Connection signalling data sent by the responder 

Name Length Description 

Reserved 6-bits Should be encoded as zero in this version of the IPV4 SSCS protocol. 

Data.HC 2-bit Header compression negotiated: 
• Data.HC = 0 – No compression permitted 
• Data.HC = 1 – VJ Compression negotiated 
• Data.HC = 2,3 – Reserved by ITU-T. 

A header compression scheme can only be used when it is supported by both service nodes. The 
responder may only set Data.HC to 0 or the same value as that received from the initiator. When the 
same value is used, it indicates that the requested compression scheme has been negotiated and will 
be used for the connection. Setting Data.HC to 0 allows the responder to deny the request for that 
header compression scheme or force the use of no header compression. 

9.4.8 Service access point 

9.4.8.1 General 

This clause defines the service access point used by the IPv4 layer to communicate with the IPV4 
SSCS. 



 

126 Rec. ITU-T G.9904 (10/2012) 

9.4.8.2 Opening and closing the IPv4 SSCS 

9.4.8.2.1 General 

The following primitives are used to open and close the IPv4 SSCS. The IPv4 SSCS may be opened 
once only. The IPv4 layer may close the IPv4 SSCS when the IPv4 interface is brought down. The 
IPv4 SSCS will also close the IPv4 SSCS when the underlying MAC connection to the base node 
has been lost.  

9.4.8.2.2 CL_IPv4_ESTABLISH.request 

The CL_IPv4_ESTABLISH.request primitive is passed from the IPv4 layer to the IPV4 SSCS. It is 
used when the IPv4 layer brings the interface up. 

The semantics of this primitive are as follows: 

 CL_IPv4_ESTABLISH.request{} 

On receiving this primitive, the IPV4 SSCS will form the address resolution connection to the base 
node and join the broadcast group used for receiving/transmitting broadcast packets.  

9.4.8.2.3 CL_IPv4_ESTABLISH.confirm 

The CL_IPv4_ESTABLISH.confirm primitive is passed from the IPV4 SSCS to the IPv4 layer. It is 
used to indicate that the IPv4 SSCS is ready to access IPv4 packets to be sent to peers. 

The semantics of this primitive are as follows: 

 CL_IPv4_ESTABLISH.confirm{} 

Once the IPv4 SSCS has established all the necessary connections and is ready to transmit and 
receive IPv4 packets, this primitive is passed to the IPv4 layer. If the IPV4 SSCS encounters an 
error while opening, it responds with a CL_IPv4_RELEASE.confirm primitive, rather than a 
CL_IPv4_ESTABLISH.confirm. 

9.4.8.2.4 CL_IPv4_RELEASE.request 

The CL_IPv4_RELEASE.request primitive is used by the IPv4 layer when the interface is put 
down. The IPV4 SSCS closes all connections so that no more IPv4 packets are received and all 
resources are released. 

The semantics of this primitive are as follows: 

 CL_IPv4_RELEASE.request{} 

Once the IPV4 SSCS has released all its connections and resources it returns a 
CL_IPv4_RELEASE.confirm. 

9.4.8.2.5 CL_IPv4_RELEASE.confirm 

The CL_IPv4_RELEASE.confirm primitive is used by the IPv4 SSCS to indicate to the IPv4 layer 
that the IPv4 SSCS has been closed. This can be as a result of a CL_IPv4_RELEASE.request 
primitive, a CL_IPv4_ESTABLISH.request primitive, or because the MAC layer indicates the 
address resolution connection has been lost, or the service node itself is no longer registered.  

The semantics of this primitive are as follows: 

 CL_IPv4_RELEASE.confirm{Result} 

The result parameter has the meanings defined in Table C.3. 



 

  Rec. ITU-T G.9904 (10/2012) 127 

9.4.8.3 Unicast address management 

9.4.8.3.1 General 

The primitives defined here are used for address management, i.e., the registration and 
unregistration of IPv4 addresses associated with this IPv4 SSCS. 

When there are no IPv4 addresses associated with the IPv4 SSCS, the IPv4 SSCS will only send 
and receive broadcast and multicast packets; unicast packets may not be sent. However, this is 
sufficient for BOOTP/DHCP operation to allow the device to gain an IPv4 address. Once an IPv4 
address has been registered, the IPv4 layer can transmit unicast packets that have a source address 
equal to one of its registered addresses. 

9.4.8.3.2 CL_IPv4_REGISTER.request 

This primitive is passed from the IPv4 layer to the IPv4 SSCS to register an IPv4 address. 

The semantics of this primitive are as follows: 

 CL_IPv4_REGISTER.request{IPv4, netmask, gateway} 

The IPv4 address is the address to be registered.  

The netmask is the network mask, used to mask the network number from the address. The netmask 
is used by the IPv4 SSCS to determine whether the packet should be delivered directly or the 
gateway should be used. 

The gateway is an IPv4 address of the gateway to be used for packets with the IPv4 local address 
but the destination address is not in the same subnetwork as the local address. 

Once the IPv4 address has been registered to the base node, a CL_IPv4_REGISTER.confirm 
primitive is used. If the registration fails, the CL_IPv4_RELEASE.confirm primitive will be used. 

9.4.8.3.3 CL_IPv4_REGISTER.confirm 

This primitive is passed from the IPv4 SSCS to the IPv4 layer to indicate that a registration has 
been successful. 

The semantics of this primitive are as follows: 

 CL_IPv4_REGISTER.confirm{IPv4} 

The IPv4 address is the address that was registered.  

Once registration has been completed, the IPv4 layer may send IPv4 packets using this source 
address. 

9.4.8.3.4 CL_IPv4_UNREGISTER.request 

This primitive is passed from the IPv4 layer to the IPv4 SSCS to unregister an IPv4 address. 

The semantics of this primitive are as follows: 

 CL_IPv4_UNREGISTER.request{IPv4} 

The IPv4 address is the address to be unregistered.  

Once the IPv4 address has been unregistered to the base node, a CL_IPv4_UNREGISTER.confirm 
primitive is used. If the unregistration fails, the CL_IPv4_RELEASE.confirm primitive will be 
used. 



 

128 Rec. ITU-T G.9904 (10/2012) 

9.4.8.3.5 CL_IPv4_UNREGISTER.confirm 

This primitive is passed from the IPv4 SSCS to the IPv4 layer to indicate that an unregistration has 
been successful. 

The semantics of this primitive are as follows: 

 CL_IPv4_UNREGISTER.confirm{IPv4} 

The IPv4 address is the address that was unregistered.  

Once unregistration has been completed, the IPv4 layer may not send IPv4 packets using this source 
address. 

9.4.8.4 Multicast group management 

9.4.8.4.1 General 

This clause describes the primitives used to manage multicast groups. 

9.4.8.4.2 CL_IPv4_IGMP_JOIN.request 

This primitive is passed from the IPv4 layer to the IPv4 SSCS. It contains an IPv4 multicast address 
that is to be joined. 

The semantics of this primitive are as follows: 

 CL_IPv4_IGMP_JOIN.request{IPv4 } 

The IPv4 address is the IPv4 multicast group that is to be joined.  

When the IPv4 SSCS receives this primitive, it will arrange for IPv4 packets sent to this group to be 
multicast in the ITU-T G.9904 network and receive packets using this address to be passed to the 
IPv4 stack. If the IPv4 SSCS cannot join the group, it uses the CL_IPv4_IGMP_LEAVE.confirm 
primitive. Otherwise the CL_IPv4_IGMP_JOIN.confirm primitive is used to indicate success. 

9.4.8.4.3 CL_IPv4_IGMP_JOIN.confirm 

This primitive is passed from the IPv4 SSCS to the IPv4. It contains a result status and an IPv4 
multicast address that was joined. 

The semantics of this primitive are as follows: 

 CL_IPv4_IGMP_JOIN.confirm{IPv4} 

The IPv4 address is the IPv4 multicast group that was joined. The IPv4 SSCS will start forwarding 
IPv4 multicast packets for the given multicast group.  

9.4.8.4.4 CL_IPv4_IGMP_LEAVE.request 

This primitive is passed from the IPv4 layer to the IPv4 SSCS. It contains an IPv4 multicast address 
to be left. 

The semantics of this primitive are as follows: 

 CL_IPv4_IGMP_LEAVE.request{IPv4} 

The IPv4 address is the IPv4 multicast group to be left. The IPv4 SSCS will stop forwarding IPv4 
multicast packets for this group and may leave the ITU-T G.9904 MAC multicast group.  

9.4.8.4.5 CL_IPv4_IGMP_LEAVE.confirm 

This primitive is passed from the IPv4 SSCS to the IPv4. It contains a result status and an IPv4 
multicast address that was left. 



 

  Rec. ITU-T G.9904 (10/2012) 129 

The semantics of this primitive are as follows: 

 CL_IPv4_IGMP_LEAVE.confirm{IPv4, Result} 

The IPv4 address is the IPv4 multicast group that was left. The IPv4 SSCS will stop forwarding 
IPv4 multicast packets for the given multicast group.  

The result takes a value from Table C.3. 

This primitive can be used by the IPv4 SSCS as a result of a CL_IPv4_IGMP_JOIN.request, 
CL_IPv4_IGMP_LEAVE.request or because of an error condition resulting in the loss of the 
ITU_T G.9904 MAC multicast connection. 

9.4.8.5 Data transfer 

9.4.8.5.1 General 

The following primitives are used to send and receive IPv4 packets. 

9.4.8.5.2 CL_IPv4_DATA.request 

This primitive is passed from the IPv4 layer to the IPv4 SSCS. It contains one IPv4 packet to be 
sent. 

The semantics of this primitive are as follows: 

 CL_IPv4_DATA.request{IPv4_PDU} 

The IPv4_PDU is the IPv4 packet to be sent. 

9.4.8.5.3 CL_IPv4_DATA.confirm 

This primitive is passed from the IPv4 SSCS to the IPv4 layer. It contains a status indication and an 
IPv4 packet that has just been sent. 

The semantics of this primitive are as follows: 

 CL_IPv4_DATA.confirm{IPv4_PDU, Result} 

The IPv4_PDU is the IPv4 packet that was to be sent. 

The result value indicates whether the packet was sent or an error occurred. It takes a value from 
Table C.3. 

9.4.8.5.4 CL_IPv4_DATA.indicate 

This primitive is passed from the IPv4 SSCS to the IPv4 layer. It contains an IPv4 packet that has 
just been received. 

The semantics of this primitive are as follows: 

 CL_IPv4_DATA.indicate{IPv4_PDU } 

The IPv4_PDU is the IPv4 packet that was received. 

9.5 IEC 61334-4-32 specific service convergence sublayer (IEC 61334-4-32 SSCS) 

9.5.1 General 

For all the service required, the IEC 61334-4-32 SSCS supports the DL_DATA primitives as 
defined in the IEC 61334-4-32 standard. IEC 61334-4-32 should be read at the same time as this 
clause, which is not standalone text. 



 

130 Rec. ITU-T G.9904 (10/2012) 

9.5.2 Overview 

The IEC 61334-4-32 SSCS provides convergence functions for applications that use 
IEC 61334-4-32 services. Implementations conforming to this SSCS shall offer all LLC basic and 
management services as specified in [IEC 61334-4-32], clauses 2.2.1 and 2.2.3. Additionally, the 
IEC 61334-4-32 SSCS specified in this clause provides extra services that help mapping this 
connection-less IEC 61334-4-32 LLC protocol to the connection-oriented nature of the MAC. 

• A service node can only exchange data with the base node and not with other service nodes. 
This meets all the requirements of [IEC 61334-4-32], which has similar restrictions. 

• Each IEC 61334-4-32 SSCS session establishes a dedicated ITU-T G.9904 MAC 
connection for exchanging unicast data with the base node.  

• The service node SSCS session is responsible for initiating this connection to the base 
node. The base node SSCS cannot initiate a connection to a service node. 

• Each IEC 61334-4-32 SSCS listens to an ITU-T G.9904 broadcast MAC connection 
dedicated to the transfer of IEC 61334-4-32 broadcast data from the base node to the 
service nodes. This broadcast connection is used when applications in the base node using 
IEC 61334-4 32 services make a transmission request with the Destination_address used for 
broadcast or the broadcast SAP functions are used. When there are multiple SSCS sessions 
within a service node, one ITU-T G.9904 broadcast MAC connection is shared by all the 
SSCS sessions. 

• A CPCS session is always present with an IEC 61334-4-32 SSCS session. The SPCS 
sublayer functionality is as specified in clause 9.2.2. Thus, the MSDUs generated by 
IEC 61334-4-32 SSCS are always less than ClMTUSize bytes and application messages 
shall not be longer than ClMaxAppPktSize. 

9.5.3 Address allocation and connection establishment 

Each 4-32 connection will be identified with the "Application unique identifier" that will be 
communicating through this 4-32 connection. It is the scope of the communication profile based on 
these lower layers to define the nature and rules for, this unique identifier. As long as the 
specification of the 4-32 convergence layer concerns this identifier, it will be called the "Device 
Identifier". 

The protocol stack as defined in IEC 61334 defines a destination address to identify each device in 
the network. This destination address is specified beyond the scope of the IEC 61334-4 32 
document. However, it is used by the document. So that ITU-T G.9904 devices can make use of 
the 4-32 layer, this destination address is also required and is specified here. For more information 
about this destination address, please see [IEC 61334-4-1] clause 4.3, MAC addresses. 

The destination address has a scope of one ITU-T G.9904 subnetwork. The base node 4-32 SSCP 
layer is responsible for allocating these addresses dynamically and associating the device identifier 
of the service nodes SSCP session device with the allocated destination address, according to the 
IEC 61334-4-1 standard. The procedure is as follows: 

When the service node IEC 61334-4-32 SSCS session is opened by the application layer, it passes 
the device identifier of the device. The IEC 61334-4-32 SSCS session then establishes its unicast 
connection to the base node. This unicast connection uses the ITU-T G.9904 MAC TYPE value 
TYPE_CL_432, as defined in Table C.1. The connection request packet sent from the service node 
to the base node contains a data parameter. This data parameter contains the device identifier. The 
format of this data is specified in clause 9.5.4.2.  

On receiving this connection request at the base node, the base node allocates a unique subnetwork 
destination address to the service nodes SSCS session. The base node sends back an ITU-T G.9904 
MAC connection response packet that contains a data parameter. This data parameter contains the 
allocated destination address and the address being used by the base node itself. The format of this 



 

  Rec. ITU-T G.9904 (10/2012) 131 

data parameter is defined in clause 9.5.4.2. A 4-32 CL SAP primitive is used in the base node to 
indicate this new service node SSCS session mapping of the device identifier and 
Destination_address to the 4-32 application running in the base node. 

On receiving the connection establishment and the Destination_address passed in the ITU-T G.9904 
MAC connection establishment packet, the 4-32 SSCS session confirms to the application that the 
convergence layer session has been opened and indicates the Destination_address allocated to the 
service node SSCS session and the address of the base node. The service node also opens an 
ITU-T G.9904 MAC broadcast connection with the LCID equal to LCI_CL_432_BROADCAST, as 
defined in Table C.2, if no other SSCS session has already opened such a broadcast connection. 
This connection is used to receive broadcast packets sent by the base node 4-32 convergence layer 
to all service node 4-32 convergence layer sessions. 

If the base node has allocated all its available Destination_addresses, due to the exhaustion of the 
address space or implementation limits, it should simply reject the connection request from the 
service node. The service node may try to establish the connection again. However, to avoid 
overloading the ITU-T G.9904 subnetwork with such requests, it should limit such connection 
establishments to one attempt per minute when the base node rejects a connection establishment. 

When the unicast connection between a service node and the base node is closed (e.g., because the 
convergence layer on the service node is closed or the ITU-T G.9904 MAC level connection 
between the service node and the base node is lost), the base node will de-allocate the 
Destination_address allocated to the service node SSCS session. The base node will use a 4-32 CL 
SAP (CL_432_Leave.indication) primitive to indicate the de-allocation of the Destination_address 
to the 4-32 application running on the base node.  

9.5.4 Connection establishment data format 

9.5.4.1 General 

As described in clause 9.5.3, the MAC ITU-T G.9904 connection data is used to transfer the device 
identifier to the base node and the allocated Destination_address to the service node SSCS session. 
This clause describes the format used for this data. 

9.5.4.2 Service node to base node 

The service node session passes the device identifier to the base node as part of the connection 
establishment request. The format of this message is shown in Table 9-20. 

Table 9-20 – Connection signalling data sent by the service node 

Name Length Description 

Data.SN n-Octets Device identifier  
"COSEM logical device name" of the "Management logical device" of the 
DLMS/COSEM device as specified in the DLMS/COSEM, which will be 
communicating through this 4-32 connection. 

9.5.4.3 Base node to service node 

The base node passes the allocated Destination_address to the service node session as part of the 
connection establishment request. It also gives its own address to the service node. The format of 
this message is shown in Table 9-21. 



 

132 Rec. ITU-T G.9904 (10/2012) 

Table 9-21 – Connection signalling data sent by the base node 

Name Length Description 

Reserved 4-bits Reserved by ITU-T. Should be encoded as zero in this version of the 
Recommendation. 

Data.DA 12-bits Destination_address allocated to the service node  

Reserved 4-bits Reserved by ITU-T. Should be encoded as zero in this version of the 
Recommendation. 

Data.BA 12-bits Base_address used by the base node 

9.5.5 Packet format 

The packet formats are used as defined in [IEC 61334-4-32], clause 4, LLC protocol data unit 
structure (LLC_PDU). 

9.5.6 Service access point 

9.5.6.1 Opening and closing the convergence layer at the service node 

9.5.6.1.1 CL_432_ESTABLISH.request 

This primitive is passed from the application to the 4-32 convergence layer. It is used to open a 
convergence layer session and initiate the process of registering the device identifier with the base 
node and the base node allocating a Destination_address to the service node session. 

The semantics of this primitive are as follows: 

 CL_432_ESTABLISH.request{ DeviceIdentifier } 

The device identifier is that of the device to be registered with the base node. 

If the device identifier is registered and the convergence layer session is successfully opened, the 
primitive CL_432_ESTABLISH.confirm is used. If an error occurs the primitive 
CL_432_RELEASE.confirm is used. 

9.5.6.1.2 CL_432_ESTABLISH.confirm 

This primitive is passed from the 4-32 convergence layer to the application. It is used to confirm the 
successful opening of the convergence layer session and that data may now be passed over the 
convergence layer. 

The semantics of this primitive are as follows: 

 CL_432_ESTABLISH.confirm{ DeviceIdentifier, Destination_address, Base_address } 

The device identifier is used to identify which CL_432_ESTABLISH.request this 
CL_432_ESTABLISH.confirm is for.  

The Destination_address is the address allocated to the service node 4-32 session by the base node. 

The Base_address is the address being used by the base node. 

9.5.6.1.3 CL_432_RELEASE.request 

This primitive is passed from the application to the 4-32 convergence layer. It is used to close the 
convergence layer and release any resources it may be holding. 

The semantics of this primitive are as follows: 

 CL_432_RELEASE.request{Destination_address} 

The Destination_address is the address allocated to the service node 4-32 session which is to be 
closed. 



 

  Rec. ITU-T G.9904 (10/2012) 133 

The convergence layer will use the primitive CL_432_RELEASE.confirm when the convergence 
layer session has been closed. 

9.5.6.1.4 CL_432_RELEASE.confirm 

This primitive is passed from the 4-32 convergence layer to the application. The primitive tells the 
application that the convergence layer session has been closed. This could be because of a 
CL_432_RELEASE.request or because an error has occurred, forcing the closure of the 
convergence layer session. 

The semantics of this primitive are as follows: 

 CL_432_RELEASE.confirm{Destination_address, Result} 

The handle identifies the session which has been closed. 

The result parameter has the meanings defined in Table C.3. 

9.5.6.2 Opening and closing the convergence layer at the base node 

No service access point primitives are defined at the base node for opening or closing the 
convergence layer. None are required since the 4-32 application in the base node does not need to 
pass any information to the 4-32 convergence layer in the base node. 

9.5.6.3 Base node indications 

9.5.6.3.1 General 

The following primitives are used in the base node 4-32 convergence layer to indicate events to the 
4-32 application in the base node. They indicate when a service node session has joined or left the 
network. 

9.5.6.3.2 CL_432_JOIN.indicate 

 CL_432_JOIN.indicate{ Device Identifier, Destination_address} 

The device identifier is that of the device connected to the service node that has just joined the 
network. 

The Destination_address is the address allocated to the service node by the base node. 

9.5.6.3.3 CL_432_LEAVE.indicate 

 CL_432_LEAVE.indicate{Destination_address} 

The Destination_address is the address of the service node session that has just left the network. 

9.5.6.4 Data transfer primitives 

The data transfer primitives are used as defined in [IEC 61334-4-32], clauses 2.2, 2.3, 2.4 and 2.11, 
LLC service specification. As stated earlier, ITU-T G.9904 SSCS make the use of IEC 61334-4-32 
DL_Data service (.req, .conf, .ind) for carrying out all the data involved during data transfer. 

9.6 IPv6 service-specific convergence sublayer (IPv6 SSCS) 

9.6.1 Overview 

9.6.1.1 General 

The IPv6 convergence layer provides an efficient method for transferring IPv6 packets over the 
ITU-T G.9904 network.  

A service node can pass IPv6 packets to the base node or directly to other service nodes.  



 

134 Rec. ITU-T G.9904 (10/2012) 

By default, the base node acts as a router between the ITU-T G.9904 subnetwork and the backbone 
network. All the base nodes must have at least this connectivity capability. Any other node inside 
the subnetwork can also act as a gateway. The base node could also act as an NAT router. However 
given the abundance of IPv6 addresses this is not expected. How the base node connects to the 
backbone is beyond the scope of this standard. 

9.6.1.2 IPv6 unicast addressing assignment 

• IPv6 service nodes (and base nodes) shall support the standard IPv6 protocol, as described 
in [IETF RFC 2460].  

• IPv6 service nodes (and base nodes) shall support the standard IPv6 addressing 
architecture, as described in [IETF RFC 4291]. 

• IPv6 service nodes (and base nodes) shall support global unicast IPv6 addresses, link-local 
IPv6 addresses and multicast IPv6 addresses, as described in [IETF RFC 4291].  

• IPv6 service nodes (and base nodes) shall support automatic address configuration using 
stateless address configuration [IETF RFC 2462]. They may also support automatic address 
configuration using stateful address configuration [IETF RFC 3315] and they may support 
manual configuration of IPv6 addresses. The decision for which address configuration 
scheme to use is deployment specific. 

• The service node shall support DHCPv6 client, when base nodes have to support a 
DHCPv6 server as described in [IETF RFC 3315] for stateless address configuration. 

9.6.1.3 Address management in ITU-T G.9904 subnetworks 

Packets are routed in ITU-T G.9904 subnetworks according to the node identifier NID. The node 
identifier is a combination of a service node's LNID and SID (see clause 8.2). The base node is 
responsible for assigning the LNID to service nodes. During the registration process which leads to 
LNID assignment to the related service node, the base node registers the service node EUI-48, and 
the assigned LNID together with the SID. 

At the convergence layer level, addressing is performed using the EUI-48 of the related service 
node. The role of the convergence sublayer is to resolve the IPv6 address into EUI-48 of the service 
node. This is done using the address resolution service set of the base node.  

9.6.1.4 Role of the base node 

At the convergence sublayer level, the base node maintains a table containing all the IPv6 unicast 
addresses and the EUI-48 related to them. One of the roles of the base node is to perform IPv6 to 
EUI-48 address resolution. Each service node belonging to the subnetwork managed by the base 
node registers its IPv6 address and EUI-48 address with the base node. Other service nodes can then 
query the base node to resolve an IPv6 address into an EUI-48 address. This requires the 
establishment of a dedicated connection to the base node for address resolution, which is shared by 
both IPv4 and IPv6 address resolution. 

Optionally UDP/IPv6 headers may be compressed. Compression is negotiated as part of the 
connection establishment phase. Currently, there is one header compression technique described in 
the present Recommendation that is used for the transmission of IPv6 packets over IEEE 802.15.4 
networks, as defined in [SP 800-57]. This is also known as LOWPAN_IPHC1. 

The multicasting of IPv6 packets is supported using the MAC multicast mechanism. 



 

  Rec. ITU-T G.9904 (10/2012) 135 

9.6.2 IPv6 convergence layer 

9.6.2.1 Overview 

9.6.2.1.1 General 

The convergence layer has a number of connection types. For address resolution there is a 
connection to the base node. For IPv6 data transfer there is one connection per destination node: the 
base node that acts as the IPv6 gateway to the outside world or another node in the same 
subnetwork. This is shown in Figure 9-4. 

G.9904(12)_F9-4

A: Base node
S=(0, 0)

B: Switch C: Terminal D: Switch E: Terminal

F: Terminal G: Terminal H: Terminal

Address resolution connection
IPv6 data connection  

Figure 9-4 – Example of IPv6 connection 

Here, nodes B, E and F have address resolution connections to the base node. Node E has a data 
connection to the base node and node F. Node F also has a data connection to node B. The figure 
does not show broadcast-traffic and multicast-traffic connections. 

9.6.2.1.2 Routing in the subnetwork 

Routing IPv6 packets is the scope of the convergence layer. In other words, the convergence layer 
will decide whether the packet should be sent directly to another service node or forwarded to the 
configured gateway depending on the IPv6 destination address. 

Although IPv6 is a connectionless protocol, the IPv6 convergence layer is connection-oriented. 
Once address resolution has been performed, a connection is established between the source and 
destination service nodes for the transfer of IP packets. This connection is maintained all the time 
that the traffic is being transferred and may be removed after a period of inactivity. 

9.6.2.1.3 SAR 

The CPCS sublayer shall always be present with the IPv6 convergence layer allowing segmentation 
and reassembly facilities. The SAR sublayer functionality is given in clause 9.2. Thus, the MSDUs 
generated by the IPv6 convergence layer are always less than ClMTUSize bytes and application 
messages are expected to be no longer than ClMaxAppPktSize. 

9.6.3 IPv6 address configuration 

9.6.3.1 Overview 

The service nodes may use statically configured IPv6 addresses, link local addresses, stateless or 
stateful auto-configuration according to [IETF RFC 2462], or DHCPv6 to obtain IPv6 addresses. 
All the nodes shall support the unicast link local address, in addition to other configured addresses 
below, and multicast addresses, if ever the node belongs to multicast groups. 



 

136 Rec. ITU-T G.9904 (10/2012) 

9.6.3.2 Interface identifier 

In order to make use of stateless address auto configuration and link local addresses it is necessary 
to define how the interface identifier, as defined in [IETF RFC 4291], is derived. Each ITU-T 
G.9904 node has a unique EUI-48. This EUI-48 is converted into an EUI-64 in the same way as for 
Ethernet networks as defined in [IETF RFC 2464]. This EUI-64 is then used as the interface 
identifier.  

9.6.3.3 IPv6 link local address configuration 

The IPv6 link local address of an ITU-T G.9904 interface is formed by appending the interface 
identifier as defined above to the prefix FE80::/64.  

9.6.3.4 Stateless address configuration 

An IPv6 address prefix used for stateless auto configuration, as defined in [IETF RFC4862], of an 
ITU-T G.9904 interface shall have a length of 64 bits. The IPv6 prefix is obtained by the service 
nodes from the base node via router advertisement messages, which are sent periodically or on 
request by the base node.  

9.6.3.5 Stateful address configuration 

An IPv6 address can be alternatively configured using DHCPv6, as described in [IETF RFC 3315]. 
DHCPv6 can provide a device with addresses assigned by a DHCPv6 server and other configuration 
information, which are carried in options. 

9.6.3.6 Multicast address 

IPv6 service nodes (and base nodes) shall support the multicast IPv6 addressing, as described in 
[IETF RFC 4291], clause 2.7. 

9.6.3.7 Address resolution 

9.6.3.7.1 Overview 

The IPv6 layer will present the convergence layer with an IPv6 packet to be transferred. The 
convergence layer is responsible for determining which service node the packet should be delivered 
to, using the IPv6 addresses in the packet. The convergence layer shall then establish a connection 
to the destination if one does not already exist so that the packet can be transferred. Two classes of 
IPv6 addresses can be used and the following clause describes how these addresses are resolved 
into G.9904 EUI-48 addresses. It should be noted that IPv6 does not have a broadcast address. 
However broadcasting is possible using multicast all nodes addresses. 

9.6.3.7.2 Unicast address 

9.6.3.7.2.1 General 

IPv6 unicast addresses shall be resolved into ITU-T G.9904 unicast EUI-48 addresses. The base 
node maintains a central database node of IPv6 addresses and EUI-48 addresses. Address resolution 
functions are performed by querying this database. The service node shall establish a connection to 
the address resolution service running on the base node, using the TYPE value 
TYPE_CL_IPv6_AR. No data should be passed in the connection establishment signalling. Using 
this connection, the service node can use two mechanisms as defined in the present 
Recommendation. 

9.6.3.7.2.2 Address registration and deregistration 

A service node uses the AR_REGISTERv6_S message to register an IPv6 address and the 
corresponding EUI-48 address. The base node will acknowledge an AR_REGISTERv6_B message. 
The service node may register multiple IPv6 addresses for the same EUI-48.  



 

  Rec. ITU-T G.9904 (10/2012) 137 

A service node uses the AR_UNREGISTERv6_S message to unregister an IPv6 address and the 
corresponding EUI-48 address. The base node will acknowledge an AR_UNREGISTERv6_B 
message. 

When the address resolution connection between the service node and the base node is closed, the 
base node should remove all addresses associated with that connection. 

9.6.3.7.2.3 Address look-up 

A service node uses the AR_LOOKUPv6_S message to perform a look-up. The message contains 
the IPv6 address to be resolved. The base node will respond with an AR_LOOKUPv6_B message 
that contains an error code and, if there is no error, the EUI-48 associated with the IPv6 address. If 
the base node has multiple entries in its database node for the same IPv6 address, the possible EUI-
48 returned is undefined. 

It should be noted that, for the link local addresses, due to the fact that the EUI-48 can be obtained 
from the IPv6 address, the look-up can simply return this value by extracting it from the IPv6 
address. 

9.6.3.7.3 Multicast address 

Multicast IPv6 addresses are mapped to connection handles (ConnHandle) by the convergence 
layer. 

To join a multicast group, CL uses the MAC_JOIN.request primitive with the IPv6 address 
specified in the data field. A corresponding MAC_JOIN.confirm primitive will be generated by the 
MAC after completion of the join process. The MAC_JOIN.confirm primitive will contain the 
result (success/failure) and the corresponding ConnHandle to be used by the CL. The MAC layer 
will handle the transfer of data for this connection using the appropriate LCIDs. To leave the 
multicast group, the CL at the service node shall use the MAC_LEAVE.request{ConnHandle} 
primitive. 

To send an IPv6 multicast packet, the CL will simply send the packet to the group using the 
allocated ConnHandle. The ConnHandle is maintained while there are more packets to be sent. 
However, after Tmcast_reg seconds of not sending an IPv6 multicast packet to the group, the node 
should release the ConnHandle by using the MAC_LEAVE.request primitive. The nominal value of 
Tmcast_reg is 10 minutes; however, other values may be used. 

9.6.3.7.4 Retransmission of address resolution packets 

The connection between the service node and the base node for address resolution is not reliable. 
The MAC ARQ is not used. The service node is responsible for making retransmissions if the base 
node does not respond in one second. It is not considered an error when the base node receives the 
same registration requests multiple times or is asked to remove a registration that does not exist. 
These conditions can be the result of retransmissions. 

9.6.4 IPv6 packet transfer 

For packets to be transferred, a connection needs to be established between the source and 
destination nodes. The IPv6 convergence layer will examine each IP packet to determine the 
destination EUI-48 address. If a connection to the destination has already been established, the 
packet is simply sent. To establish this, the convergence layer keeps a table for each connection it 
has with the information shown in Table 9-22. To use this table, it is first necessary to determine if 
the remote address is in the local subnetwork or if a gateway has to be used. The netmask associated 
with the local IP address is used to determine this. If the destination address is not in the local 
subnetwork, the address of the gateway is used instead of the destination address when the table is 
searched.  



 

138 Rec. ITU-T G.9904 (10/2012) 

Table 9-22 – IPv6 convergence layer table entry 

Parameter Description 

CL_IPv6_Con.Remote_IP Remote IP address of this connection 

 CL_IPv6_Con.ConHandle MAC connection handle for the connection 

CL_IPv6_Con.LastUsed Timestamp of last packet received/transmitted  

CL_IPv6_Con.HC Header compression scheme being used 

The convergence layer may close a connection when it has not been used for an implementation-
defined time period. When the connection is closed, the entry for the connection is removed at both 
ends of the connection. 

When a connection to the destination does not exist, more work is necessary. The address resolution 
service is used to determine the EUI-48 address of the remote IP address if it is local or the gateway 
associated with the local address if the destination address is in another subnetwork. When the base 
node replies with the EUI-48 address of the destination service node, a MAC connection is 
established to the remote device. The TYPE value of this connection is 
TYPE_CL_IPv6_UNICAST. The data passed in the request message is defined in clause 9.6.8.3. 
The local IP address is provided so that the remote device can add the new connection to its cache 
of connections for sending data in the opposite direction. The use of header compression is also 
negotiated as part of the connection establishment. Once the connection has been established, the IP 
packet can be sent. 

9.6.5 Segmentation and reassembly 

The IPv6 convergence layer should support IPv6 packets with an MTU of 1500 bytes. This requires 
the use of the common part convergence sublayer segmentation and reassembly service.  

9.6.6 Compression 

It is assumed that any ITU-T G.9904 device is capable of LOWPAN_IPHC IPv6 header 
compression/decompression. It may also be capable of performing UDP 
compression/decompression. Thus UDP/IPv6 compression is negotiated.  

No negotiation can take place for multicast packet. Nodes can only make use of mandatory 
compression capabilities. 

Depending of the type of IPv6 address carried by the packet and the capabilities which are 
negotiated between the nodes involved in the data exchanges, IPv6 header compression is 
performed. 

All the service nodes and the base node shall support IPv6 header compression using source and 
destination addresses stateless compression as defined in [SP 800-57]. Source and destination IPv6 
addresses using stateful compression and IPv6 next header compression are negotiable. 

9.6.7 Quality of service mapping 

The ITU-T G.9904 MAC specifies that the contention-based access mechanism supports four 
priority levels (1-4). Level 1 is used for MAC signalling messages, but not exclusively so. 

IPv6 packets include a traffic class field in the header to indicate the QoS the packet would like to 
receive. This traffic class can be used in the same way as IPv4 TOS (see [IETF RFC 791]). That is, 
three bits of the TOS indicate the IP precedence. The following table specifies how the IP 
precedence is mapped into the ITU-T G.9904 MAC priority. 



 

  Rec. ITU-T G.9904 (10/2012) 139 

Table 9-23 – Mapping IPv6 precedence to ITU-T G.9904 MAC priority 

IP Precedence MAC Priority 

000 – Routine 4 

001 – Priority 4 

010 – Immediate 3 

011 – Flash 3 

100 – Flash override 2 

101 – Critical 2 

110 – Internetwork control 1 

111 – Network control 1 

NOTE – At the MAC layer level the priority as stated in the packet header field is the value assigned in this 
table minus 1, as the range of PKT.PRIO field is from 0 to 3. 

9.6.8 Packet formats and connection data 

9.6.8.1 Overview  

This clause defines the format of convergence layer PDUs. 

9.6.8.2 Address resolution PDU 

9.6.8.2.1 General 

The following PDUs are transferred over the address resolution connection between the service 
node and the base node. The following clauses define a number of AR.MSG values. All other 
values are reserved for later versions of this standard. 

9.6.8.2.2 AR_REGISTERv6_S 

Table 9-24 shows the address resolution register message sent from the service node to the base 
node. 

Table 9-24 – AR_REGISTERv6_S message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_REGISTERv6_S = 16 

AR.IPv6 128-bits IPv6 address to be registered 

AR.EUI-48 48-bits EUI-48 to be registered 

9.6.8.2.3 AR_REGISTERv6_B 

Table 9-25 shows the address resolution register acknowledgment message sent from the base node 
to the service node. 



 

140 Rec. ITU-T G.9904 (10/2012) 

Table 9-25 – AR_REGISTERv6_B message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_REGISTERv6_B = 17 

AR.IPv6 128-bits IPv6 address registered 

AR.EUI-48 48-bits EUI-48 registered 

The AR.IPv6 and AR.EUI-48 fields are included in the AR_REGISTERv6_B message so that the 
service node can perform multiple overlapping registrations. 

9.6.8.2.4 AR_UNREGISTERv6_S 

Table 9-26 shows the address resolution unregister message sent from the service node to the base 
node. 

Table 9-26 – AR_UNREGISTERv6_S message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_UNREGISTERv6_S = 18 

AR.IPv6 128-bits IPv6 address to be unregistered 

AR.EUI-48 48-bits EUI-48 to be unregistered 

9.6.8.2.5 AR_UNREGISTERv6_B 

Table 9-27 shows the address resolution unregister acknowledgment message sent from the base 
node to the service node. 

Table 9-27 – AR_UNREGISTERv6_B message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_UNREGISTERv6_B = 19 

AR.IPv6 128-bits IPv6 address unregistered 

AR.EUI-48 48-bits EUI-48 unregistered 

The AR.IPv6 and AR.EUI-48 fields are included in the AR_UNREGISTERv6_B message so that 
the service node can perform multiple overlapping unregistrations. 

9.6.8.2.6 AR_LOOKUPv6_S 

Table 9-28 shows the address resolution look-up message sent from the service node to the base 
node. 

Table 9-28 – AR_LOOKUPv6_S message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_LOOKUPv6_S = 20 

AR.IPv6 128-bits IPv6 address to look up 



 

  Rec. ITU-T G.9904 (10/2012) 141 

9.6.8.2.7 AR_LOOKUPv6_B 

Table 9-29 shows the address resolution look-up response message sent from the base node to the 
service node. 

Table 9-29 – AR_LOOKUPv6_B message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_LOOKUPv6_B = 21 

AR.IPv6 128-bits IPv6 address looked up 

AR.EUI-48 48-bits EUI-48 for IPv6 address 

AR.Status 8-bits Look-up status, indicating if the address was 
found or an error occurred. 
0 = found, AR.EUI-48 valid 
1 = unknown, AR.EUI-48 undefined 

The look-up may fail if the requested address has not been registered. In this case, AR.Status will 
have a value equal to 1, and the contents of AR.EUI-48 will be undefined. The look-up is only 
successful when AR.Status is zero. In that case, the EUI-48 field contains the resolved address. 

9.6.8.2.8 AR_MCAST_REGv6_S 

Table 9-30 shows the multicast address resolution register message sent from the service node to 
the base node. 

Table 9-30 – AR_MCAST_REGv6_S message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_MCAST_REGv6_S = 24 

AR.IPv6 128-bits IPv6 multicast address to be registered 

9.6.8.2.9 AR_MCAST_REGv6_B 

Table 9-31 shows the multicast address resolution register acknowledgment message sent from the 
base node to the service node. 

Table 9-31 – AR_MCAST_REGv6_B message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_MCAST_REGv6_B = 25 

AR.IPv6 128-bits IPv6 multicast address registered 

Reserved 2-bits Reserved by ITU-T. Should be encoded as 0 

AR.LCID 6-bits LCID assigned to this IPv6 multicast address 

The AR.IPv6 field is included in the AR_MCAST_REGv6_B message so that the service node can 
perform multiple overlapping registrations. 



 

142 Rec. ITU-T G.9904 (10/2012) 

9.6.8.2.10 AR_MCAST_UNREGv6_S 

Table 9-32 shows the multicast address resolution unregister messages sent from the service node to 
the base node. 

Table 9-32 – AR_MCAST_UNREGv6_S message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_MCAST_UNREGv6_S = 26 

AR.IPv6 128-bits IPv6 multicast address to be unregistered 

9.6.8.2.11 AR_MCAST_UNREGv6_B 

Table 9-33 shows the multicast address resolution unregister acknowledgment message sent from 
the base node to the service node. 

Table 9-33 – AR_MCAST_UNREGv6_B message format 

Name Length Description 

AR.MSG 8-bits Address resolution message type 
• For AR_MCAST_UNREGv6_B = 27 

AR.IPv6 128-bits IPv6 multicast address unregistered 

The AR.IPv6 field is included in the AR_MCAST_UNREGv6_B message so that the service node 
can perform multiple overlapping unregistrations. 

9.6.8.3 IPv6 packet format 

9.6.8.3.1 General 

The following PDU formats are used for transferring IPv6 packets between service nodes.  

9.6.8.3.2 No negotiated header compression 

When no header compression takes place, the IP packet is simply sent as it is, without any header. 

Table 9-34 – IPv6 packet format without negotiated header compression 

Name Length Description 

IPv6.PKT n-octets The IPv6 packet 

9.6.8.3.3 Header compression 

When LOWPAN_IPHC1 header compression takes place, and the next header compression is 
negotiated, the UDP/IPv6 packet is sent as shown in Table 9-35. 



 

  Rec. ITU-T G.9904 (10/2012) 143 

Table 9-35 – UDP/IPv6 packet format with LOWPAN_IPHC1 header 
compression and LOWPAN_NHC 

Name Length Description 

IPv6.IPHC 2-octet Dispatch + LOWPAN_IPHC encoding. With bit 
5=1 indicating that the next is compressed, using 
LOWPAN_NHC format 

IPv6.ncIPv6 n.m-octets Non-compressed IPv6 fields (or elided) 

IPv6.HC_UDP 1-octet Next header encoding  

IPv6.ncUDP n.m-octets Non-compressed UDP fields 

Padding 0.m-octets Padding to byte boundary 

IPv6.DATA n-octets UDP data 

Note that these fields are not necessarily aligned to byte boundaries. For example the IPv6.ncIPv6 
field can be any number of bits. The IPv6.IPHC_UDP field follows directly afterwards, without any 
padding. Padding is only applied at the end of the complete compressed UDP/IPv6 header so that 
the UDP data is byte aligned. 

When the IPv6 packet contains data other than UDP the following packet format is used as shown 
in Table 9-36. 

Table 9-36 – IPv6 packet format with LOWPAN_IPHC negotiated header compression 

Name Length Description 

IPv6.IPHC 2-octet HC encoding. Bits 5 contain 0 indicating the next 
header byte is not compressed. 

IPv6.ncIPv6 n.m-octets Non-compressed IPv6 fields 

Padding 0.m-octets Padding to byte boundary 

IPv6.DATA n-octets IP data 

9.6.8.4 Connection data 

9.6.8.4.1 Overview 

When a connection is established between service nodes for the transfer of IP packets, data is also 
transferred in the connection request packets. This data allows the negotiation of compression and 
notification of the IP address. 

9.6.8.4.2 Connection data from the initiator 

Table 9-37 shows the connection data sent by the initiator. 



 

144 Rec. ITU-T G.9904 (10/2012) 

Table 9-37 – IPv6 connection signalling data sent by the initiator 

Name Length Description 

Reserved 6-bits Reserved by ITU-T. Should be encoded as zero in this 
version of the convergence layer protocol 

Data.HCNH 2-bit Header compression negotiated 
• Data.HC = 0 – No compression requested 
• Data.HC = 1 – LOWPAN_NH 
• Data.HC = 2 – stateful address compression 
• Data.HC = 3 – LOWPAN_NH and stateful address 

compression  

Data.IPv6 128-bits IPv6 address of the initiator 

If the device accepts the connection, it should copy the Data.IPv6 address into a new table entry 
along with the negotiated Data.HC value. 

9.6.8.4.3 Connection data from the responder 

Table 9-38 shows the connection data sent in response to the connection request. 

Table 9-38 – IPv6 connection signalling data sent by the responder 

Name Length Description 

Reserved 6-bits Reserved by ITU-T. Should be encoded as zero in this 
version of the convergence layer protocol 

Data.HC 2-bit Header compression negotiated 
• Data.HC = 0 – No compression requested: NOTE – 

When stateless address compression is used, all nodes 
shall support it. When the stateless address 
compression is not used then the node notifies by this 
value, its compression capability. 

• Data.HC = 1 – LOWPAN_NH 
• Data.HC = 2 – stateful address compression 
• Data.HC = 3 – LOWPAN_NH and stateful address 

compression 

All nodes support stateless address compression. 

The next header compression scheme and stateful address compression can only be used when it is 
supported by both service nodes. The responder may only set Data.HC to the same value as that 
received from the initiator or a value lower than the one received. When the same value is used, it 
indicates that the requested compression scheme has been negotiated and will be used for the 
connection. Setting Data.HC to a lower value allows the responder to deny the request for that 
header compression scheme. 

9.6.9 Service access point 

9.6.9.1 Overview 

This clause defines the service access point used by the IPv6 layer to communicate with the IPv6 
convergence layer. 



 

  Rec. ITU-T G.9904 (10/2012) 145 

9.6.9.2 Opening and closing the convergence layer 

The following primitives are used to open and close the convergence layer. The convergence layer 
may be opened once only. The IPv6 layer may close the convergence layer when the IPv6 interface 
is brought down. The convergence layer will also close the convergence layer when the underlying 
MAC connection to the base node has been lost.  

9.6.9.2.1 CL_IPv6_Establish.request 

The CL_IPv6_ESTABLISH.request primitive is passed from the IPv6 layer to the IPv6 
convergence layer. It is used when the IPv6 layer brings the interface up. 

The semantics of this primitive are as follows: 

 CL_IPv6_ESTABLISH.request{} 

On receiving this primitive, the convergence layer will form the address resolution connection to 
the base node.  

9.6.9.2.2 CL_IPv6_Establish.confirm 

The CL_IPv6_ESTABLISH.confirm primitive is passed from the IPv6 convergence layer to the 
IPv6 layer. It is used to indicate that the convergence layer is ready to access IPv6 packets to be sent 
to peers. 

The semantics of this primitive are as follows: 

 CL_IPv6_ESTABLISH.confirm{} 

Once the convergence layer has established all the necessary connections and is ready to transmit 
and receive IPv6 packets, this primitive is passed to the IPv6 layer. If the convergence layer 
encounters an error while opening, it responds with a CL_IPv6_RELEASE.confirm primitive, 
rather than a CL_IPv6_ESTABLISH.confirm. 

9.6.9.2.3 CL_IPv6_Release.request 

The CL_IPv6_RELEASE.request primitive is used by the IPv6 layer when the interface is put 
down. The convergence layer closes all connections so that no more IPv6 packets are received and 
all resources are released. 

The semantics of this primitive are as follows: 

 CL_IPv6_RELEASE.request{} 

Once the convergence layer has released all its connections and resources it returns a 
CL_IPv6_RELEASE.confirm. 

9.6.9.2.4 CL_IPv6_Release.confirm 

The CL_IPv6_RELEASE.confirm primitive is used by the IPv6 convergence layer to indicate to the 
IPv6 layer that the convergence layer has been closed. This can be as a result of a 
CL_IPv6_RELEASE.request primitive, a CL_IPv6_ESTABLISH.request primitive, or because the 
MAC layer indicates the address resolution connection has been lost, or the service node itself is no 
longer registered.  

The semantics of this primitive are as follows: 

 CL_IPv6_RELEASE.confirm{Result} 

The result parameter has the meanings defined in Table C.3.  



 

146 Rec. ITU-T G.9904 (10/2012) 

9.6.9.3 Unicast address management 

9.6.9.3.1 General 

The primitives defined here are used for address management, i.e., the registration and 
unregistration of IPv6 addresses associated with this convergence layer. 

When there are no IPv6 addresses associated with the convergence layer, the convergence layer will 
only send and receive multicast packets; unicast packets may not be sent. However, this is sufficient 
for various address discovery protocols to be used to gain an IPv6 address. Once an IPv6 address 
has been registered, the IPv6 layer can transmit unicast packets that have a source address equal to 
one of its registered addresses. 

9.6.9.3.2 CL_IPv6_Register.request 

This primitive is passed from the IPv6 layer to the IPv6 convergence layer to register an IPv6 
address. 

The semantics of this primitive are as follows: 

 CL_IPv6_REGISTER.request{ipv6, netmask, gateway} 

The IPv6 address is the address to be registered.  

The netmask is the network mask, used to mask the network number from the address. The netmask 
is used by the convergence layer to determine whether the packet should deliver directly or the 
gateway should be used. 

The IPv6 address of the gateway, to which packets with destination addresses that are not in the 
same subnetwork as the local address, are to be sent. 

Once the IPv6 address has been registered to the base node, a CL_IPv6_REGISTER.confirm 
primitive is used. If the registration fails, the CL_IPv6_RELEASE.confirm primitive will be used. 

9.6.9.3.3 CL_IPv6_Register.confirm 

This primitive is passed from the IPv6 convergence layer to the IPv6 layer to indicate that a 
registration has been successful. 

The semantics of this primitive are as follows: 

 CL_IPv6_REGISTER.confirm{ipv6} 

The IPv6 address is the address that was registered.  

Once registration has been completed, the IPv6 layer may send IPv6 packets using this source 
address. 

9.6.9.3.4 CL_IPv6_Unregister.request 

This primitive is passed from the IPv6 layer to the IPv6 convergence layer to unregister an IPv6 
address. 

The semantics of this primitive are as follows: 

 CL_IPv6_UNREGISTER.request{ipv6} 

The IPv6 address is the address to be unregistered.  

Once the IPv6 address has been unregistered to the base node, a CL_IPv6_UNREGISTER.confirm 
primitive is used. If the registration fails, the CL_IPv6_RELEASE.confirm primitive will be used. 

9.6.9.3.5 Unregister.confirm 

This primitive is passed from the IPv6 convergence layer to the IPv6 layer to indicate that 
unregistration has been successful. 



 

  Rec. ITU-T G.9904 (10/2012) 147 

The semantics of this primitive are as follows: 

 CL_IPv6_UNREGISTER.confirm{ipv6} 

The IPv6 address is the address that was unregistered.  

Once unregistration has been completed, the IPv6 layer may not send IPv6 packets using this source 
address. 

9.6.9.4 Multicast group management 

9.6.9.4.1 General 

This clause describes the primitives used to manage multicast groups. 

9.6.9.4.2 CL_IPv6_MUL_Join.request 

This primitive is passed from the IPv6 layer to the IPv6 convergence layer. It contains an IPv6 
multicast address that is to be joined. 

The semantics of this primitive are as follows: 

 CL_IPv6_MUL_JOIN.request{IPv6 } 

The IPv6 address is the IPv6 multicast group that is to be joined.  

When the convergence layer receives this primitive, it will arrange for IP packets sent to this group 
to be multicast in the ITU-T G.9904 network and receive packets using this address to be passed to 
the IPv6 stack. If the convergence layer cannot join the group, it uses the 
CL_IPv6_MUL_LEAVE.confirm primitive. Otherwise the CL_IPv6_MUL_JOIN.confirm 
primitive is used to indicate success. 

9.6.9.4.3 CL_IPv6_MUL_Join.confirm 

This primitive is passed from the IPv6 convergence layer to the IPv6. It contains a result status and 
an IPv6 multicast address that was joined. 

The semantics of this primitive are as follows: 

 CL_IPv6_MUL_JOIN.confirm{IPv6} 

The IPv6 address is the IPv6 multicast group that was joined. The convergence layer will start 
forwarding IPv6 multicast packets for the given multicast group.  

9.6.9.4.4 CL_IPv6_MUL_Leave.request 

This primitive is passed from the IPv6 layer to the IPv6 convergence layer. It contains an IPv6 
multicast address to be left. 

The semantics of this primitive are as follows: 

 CL_IPv6_MUL_LEAVE.request{IPv6} 

The IPv6 address is the IPv6 multicast group to be left. The convergence layer will stop forwarding 
IPv6 multicast packets for this group and may leave the ITU-T G.9904 MAC multicast group.  

9.6.9.4.5 CL_IPv6_MUL_Leave.confirm 

This primitive is passed from the IPv6 convergence layer to the IPv6. It contains a result status and 
an IPv6 multicast address that was left. 

The semantics of this primitive are as follows: 

 CL_IPv6_MUL_LEAVE.confirm{IPv6, Result} 

The IPv6 address is the IPv6 multicast group that was left. The convergence layer will stop 
forwarding IPv6 multicast packets for the given multicast group.  



 

148 Rec. ITU-T G.9904 (10/2012) 

The result takes a value from Table C.3. 

This primitive can be used by the convergence layer as a result of a CL_IPv6_MUL_JOIN.request, 
CL_IPv6_MUL_LEAVE.request or because of an error condition resulting in the loss of the 
ITU-T G.9904 MAC multicast connection. 

9.6.9.5 Data transfer 

9.6.9.5.1 General 

The following primitives are used to send and receive IPv6 packets. 

9.6.9.5.2 CL_IPv6_DATA.request  

This primitive is passed from the IPv6 layer to the IPv6 convergence layer. It contains one IPv6 
packet to be sent. 

The semantics of this primitive are as follows: 

 CL_IPv6_DATA.request{IPv6_PDU} 

The IPv6_PDU is the IPv6 packet to be sent. 

9.6.9.5.3 CL_IPv6_DATA.confirm 

This primitive is passed from the IPv6 convergence layer to the IPv6 layer. It contains a status 
indication and an IPv6 packet that has just been sent. 

The semantics of this primitive are as follows: 

 CL_IPv6_DATA.confirm{IPv6_PDU, Result} 

The IPv6_PDU is the IPv6 packet that was to be sent. 

The result value indicates whether the packet was sent or an error occurred. It takes a value from 
Table C.3. 

9.6.9.5.4 CL_IPv6_DATA.indicate 

This primitive is passed from the IPv6 convergence layer to the IPv6 layer. It contains an IPv6 
packet that has just been received. 

The semantics of this primitive are as follows: 

 CL_IPv6_DATA.indicate{IPv6_PDU } 

The IPv6_PDU is the IPv6 packet that was received. 

10 Management plane 

10.1 Introduction 

This clause specifies the management plane functionality. Figure 10-1 below highlights the position 
of the management plane in the overall protocol architecture.  



 

  Rec. ITU-T G.9904 (10/2012) 149 

 

Figure 10-1 – Management plane: Introduction 

All nodes shall implement the management plane functionality enumerated in this clause. The 
management plane enables a local or remote control entity to perform actions on a node.  

The present version of this Recommendation enumerates management plane functions for node 
management and firmware upgrade. Future versions may include additional management functions. 

• To enable access to management functions on a service node, the base node shall open a 
management connection after successful completion of registration (refer to clause 10.4). 

• The base node may open such a connection either immediately on successful registration or 
some time later.  

• Unicast management connections shall be identified with CON.TYPE = 
TYPE_CL_MGMT.  

• Multicast management connections can also exist. At the time of writing, multicast 
management connections shall only be used for firmware upgrade. 

• There shall be no broadcast management connection. 

• In case a service node supports ARQ connections, the base node shall preferentially try to 
open an ARQ connection for management functions. 

• Management plane functions shall use NULL SSCS as specified in clause 9.3. 

10.2 Node management 

10.2.1 General 

Node management is accomplished through a set of attributes. Attributes are defined for both PHY 
and MAC layers. The set of these management attributes is called a PLC information base (PIB). 
Some attributes are read-only while others are read-write. 

M
anagem

ent P
lane



 

150 Rec. ITU-T G.9904 (10/2012) 

PIB attribute identifiers are 16 bit values. This allows up to 65535 PIB attributes to be specified.  

• PIB attribute identifier values from 0 to 32767 are open to be standardized. No proprietary 
attributes may have identifiers in this range. 

• Values in the range 32768 to 65535 are open for vendor-specific usage. 

PIB attribute identifiers in the standard range (0 to 32767) that are not specified in this version are 
reserved for future use. 

NOTE – The PIB attribute tables below indicate the types of each attribute. For integer types the size of the 
integer has been specified in bits. An implementation may use a larger integer for an attribute; however, it 
must not use a smaller size. 

10.2.2 PHY PIB attributes 

10.2.2.1 General 

The PHY layer implementation in each device may optionally maintain a set of attributes which 
provide detailed information about its working. The PHY layer attributes are part of the PLC 
information base (PIB). 

10.2.2.2 Statistical attributes 

The PHY may provide statistical information for management purposes. The next table lists the 
statistics that the PHY should make available to management entities across the PLME_GET 
primitive. TheID field in this table is the service parameter of the PLME_GET primitive specified 
in clause 7.10.4.9. 

Table 10-1 – PHY read-only variables that provide statistical information 

Attribute name Size 
(in bits) 

Id Description 

phyStatsCRCIncorrectCount 16 0x00A0 Number of bursts received on the PHY layer for 
which the CRC was incorrect.  

phyStatsCRCFailCount 16 0x00A1 Number of bursts received on the PHY layer for 
which the CRC was correct, but the Protocol field 
of the PHY header had an invalid value. This count 
would reflect the number of times corrupt data was 
received and the CRC calculation failed to detect 
it. 

phyStatsTxDropCount 16 0x00A2 Number of times that the PHY layer received new 
data to transmit (PHY_DATA.request) and had to 
either overwrite existing data in its transmit queue 
or drop the data in new requests due to a full 
queue.  

phyStatsRxDropCount 16 0x00A3 Number of times when the PHY layer received 
new data on the channel and had to either 
overwrite existing data in its receive queue or drop 
the newly received data due to full queue. 

phyStatsRxTotalCount 32 0x00A4 Total number of PPDUs correctly decoded. Useful 
for PHY layer test cases, to estimate the FER. 



 

  Rec. ITU-T G.9904 (10/2012) 151 

Table 10-1 – PHY read-only variables that provide statistical information 

Attribute name Size 
(in bits) 

Id Description 

phyStatsBlkAvgEvm 16 0x00A5 Exponential moving average of the EVM over the 
past 16 PPDUs, as returned by the PHY_SNR 
primitive. Note that the PHY_SNR primitive 
returns a 3-bit number in dB scale. So first each 
3-bit dB number is converted to linear scale 
(number k goes to 2^(k/2)), yielding a 7 bit number 
with 3 fractional bits. The result is just 
accumulated over 16 PPDUs and reported. 

phyEmaSmoothing 8 0x00A8 Smoothing factor divider for values that are 
updated as the exponential moving average 
(EMA). Next value is  
Vnext = S×NewSample+(1–S)×Vprev 

Where  
S=1/(2^phyEMASmoothing) 

10.2.2.3 Implementation attributes 

It is possible to implement PHY functions conforming to this Recommendation in multiple ways. 
The multiple implementation options provide some degree of unpredictability for the MAC layers. 
PHY implementations may optionally provide specific information on parameters which are of 
interest to the MAC across the PLME_GET primitive. A list of such parameters which maybe 
queried across the PLME_GET primitives by the MAC is provided in Table 10-2. All of the 
attributes listed in Table 10-2 are implementation constants and shall not be changed. 

Table 10-2 – PHY read-only parameters, providing information on specific implementation 

Attribute name 
Size  

(in bits) 
Id Description 

phyTxQueueLen 10 0x00B0 Number of concurrent MPDUs that the PHY transmit 
buffers can hold.  

phyRxQueueLen 10 0x00B1 Number of concurrent MPDUs that the PHY receive 
buffers can hold.  

phyTxProcessingDelay 20 0x00B2 Time elapsed from the instance when data is received 
on the MAC-PHY communication interface to the 
time when it is put on the physical channel. This shall 
not include communication delay over the MAC-PHY 
interface. 
Value of this attribute is in unit of microseconds. 

phyRxProcessingDelay 20 0x00B3 Time elapsed from the instance when data is received 
on the physical channel to the time when it is made 
available to the MAC across the MAC-PHY 
communication interface. This shall not include 
communication delay over the MAC-PHY interface. 
Value of this attribute is in unit of microseconds. 

phyAgcMinGain 8 0x00B4 Minimum gain for the AGC <= 0dB. 



 

152 Rec. ITU-T G.9904 (10/2012) 

Table 10-2 – PHY read-only parameters, providing information on specific implementation 

Attribute name 
Size  

(in bits) 
Id Description 

phyAgcStepValue 3 0x00B5 Distance between steps in dB <= 6dB. 

phyAgcStepNumber 8 0x00B6 Number of steps so that phyAgcMinGain  
+( (phyAgcStepNumber – 1) × phyAgcStepValue) ≥ 
21 dB. 

10.2.3 MAC PIB attributes 

10.2.3.1 General 

NOTE – Note that the "M"(Mandatory) column in the tables below specifies if the PIB attributes are 
mandatory for all devices (both service node and base node, specified as "All"), only for service nodes 
("SN"), only for base nodes ("BN") or not mandatory at all ("No"). 

10.2.3.2 MAC variable attributes 

MAC PIB variables include the set of PIB attributes that influence the functional behaviour of an 
implementation. These attributes may be defined externally to the MAC, typically by the 
management entity and implementations may allow changes to their values during normal running, 
i.e., even after the device start-up sequence has been executed. 

An external management entity can have access to these attributes through the MLME_GET 
(clause 8.5.5.7) and MLME_SET (clause 8.5.5.9) set of primitives. TheID field in the following 
table would be the PIBAttribute that needs to be passed to the MLME SAP while working on these 
parameters. 

Table 10-3 – Table of MAC read-write variables 

Attribute name Id Type M Valid range Description Def. 

macMinSwitchSearch 
Time 

0x0010 Integer8 No 16-32 seconds Minimum time for 
which a service node 
in the disconnected 
status should scan the 
channel for beacons 
before it can 
broadcast PNPDUs. 
This attribute is not 
maintained in base 
nodes. 

24 

macMaxPromotionPdu 0x0011 Integer8 No 1-4 Maximum number of 
PNPDUs that may be 
transmitted by a 
service node in a 
period of 
macPromotionPduTx
Period seconds. 
This attribute is not 
maintained in base 
nodes.  

2 



 

  Rec. ITU-T G.9904 (10/2012) 153 

Table 10-3 – Table of MAC read-write variables 

Attribute name Id Type M Valid range Description Def. 

macPromotionPduTx 
Period 

0x0012 Integer8 No 2-8 seconds Time quantum for 
limiting a number of 
PNPDUs transmitted 
from a service node. 
No more than 
macMaxPromotionPd
u may be transmitted 
in a period of 
macPromotionPduTx
Period seconds. 

5 

macBeaconsPerFrame 0x0013 Integer8 BN 1-5 Maximum number of 
beacon slots that may 
be provisioned in a 
frame. 
This attribute is 
maintained in base 
nodes. 

5 

macSCPMaxTxAttempts 0x0014 Integer8 No 2-5 Number of times the 
CSMA algorithm 
would attempt to 
transmit requested 
data when a previous 
attempt was withheld 
due to the PHY 
indicating channel 
busy.  

5 

macCtlReTxTimer 0x0015 Integer8 No 2-20 seconds Number of seconds 
for which a MAC 
entity waits for 
acknowledgement of 
receipt of the MAC 
control packet from 
its peer entity. On 
expiry of this time, 
the MAC entity may 
retransmit the MAC 
control packet. 

15 

macMaxCtlReTx 0x0018 Integer8 No 3-5 Maximum number of 
times a MAC entity 
will try to retransmit 
an unacknowledged 
MAC control packet. 
If the retransmit count 
reaches this 
maximum, the MAC 
entity shall abort 
further attempts to 
transmit the MAC 
control packet. 

3 



 

154 Rec. ITU-T G.9904 (10/2012) 

Table 10-3 – Table of MAC read-write variables 

Attribute name Id Type M Valid range Description Def. 

macEMASmoothing 0x0019 Integer8 All 0-7 Smoothing factor 
divider for values that 
are updated as the 
exponential moving 
average (EMA). Next 
value is  
Vnext = 
S×NewSample+(1–
S)×Vprev 

Where  
S=1/(2^macEMASmo

othing). 

3 

Table 10-4 – Table of MAC read-only variables 

Attribute name Id Type M Valid range Description Def. 

macSCPRBO 0x0016 Integer8 No 1-15 symbols Random backoff period 
for which an 
implementation should 
delay the start of channel-
sensing iterations when 
attempting to transmit 
data in the SCP. 
This is a 'read-only' 
attribute. 

– 

macSCPChSenseCount 0x0017 Integer8 No 2-5 Number of times for 
which an implementation 
has to perform channel-
sensing. 
This is a 'read-only' 
attribute. 

– 

10.2.3.3 Functional attributes 

Some PIB attributes belong to the functional behaviour of the MAC. They provide information on 
specific aspects. A management entity can only read their present value using the MLME_GET 
primitives. The value of these attributes cannot be changed by a management entity through the 
MLME_SET primitives.  

TheID field in the table below would be the PIBAttribute that needs to be passed MLME_GET SAP 
for accessing the value of these attributes. 



 

  Rec. ITU-T G.9904 (10/2012) 155 

Table 10-5 – Table of MAC read-only variables that provide functional information 

Attribute name Id Type M 
Valid 
range 

Description 

macLNID 0x0020 Integer16 SN 0-16383 LNID allocated to this node at 
time of its registration. 

MacLSID 0x0021 Integer8 SN 0-255 LSID allocated to this node at 
time of its promotion. This 
attribute is not maintained if a 
node is in a terminal functional 
state. 

MacSID 0x0022 Integer8 SN 0-255 SID of the switch node through 
which this node is connected to 
the subnetwork. This attribute is 
not maintained in a base node. 

MacSNA 0x0023 EUI-48 SN  Subnetwork address to which 
this node is registered.  
The base node returns the SNA it 
is using. 

MacState 0x0024 Enumerate SN  Present functional state of the 
node  

0 DISCONNECTED 

1 TERMINAL 

2 SWITCH 

3 BASE 

MacSCPLength 0x0025 Integer16 SN  The SCP length, in symbols, in 
the present frame. 

MacNodeHierarchy 
Level 

0x0026 Integer8 SN 0-63 Level of this node in subnetwork 
hierarchy. 

MacBeaconSlotCount 0x0027 Integer8 SN 0-7 Number of beacon slots 
provisioned in the present frame 
structure. 

macBeaconRxSlot 0x0028 Integer8 SN 0-7 Beacon slot on which this 
device's switch node transmits its 
beacon. This attribute is not 
maintained in a base node. 

MacBeaconTxSlot 0x0029 Integer8 SN 0-7 Beacon slot in which this device 
transmits its beacon. This 
attribute is not maintained in 
service nodes that are in a 
terminal functional state. 

MacBeaconRxFrequency 0x002A Integer8 SN 0-31 Number of frames between the 
reception of two successive 
beacons. A value of 0x0 
indicates beacons are received in 
every frame. This attribute is not 
maintained in base nodes. 



 

156 Rec. ITU-T G.9904 (10/2012) 

Table 10-5 – Table of MAC read-only variables that provide functional information 

Attribute name Id Type M 
Valid 
range 

Description 

MacBeaconTxFrequency 0x002B Integer8 SN 0-31 Number of frames between 
transmissions of two successive 
beacons. A value of 0x0 
indicates beacons are transmitted 
in every frame. This attribute is 
not maintained in service nodes 
that are in a terminal functional 
state. 

MacCapabilities 0x002C Integer16 All Bit-map Bitmap of MAC capabilities of a 
given device. This attribute shall 
be maintained on all devices. 
Bits in sequence of right-to-left 
shall have the following 
meaning: 
Bit 0: switch capable; 
Bit 1: packet aggregation; 
Bit 2: contention-free period; 
Bit 3: direct connection; 
Bit 4: multicast; 
Bit 5: PHY robustness 
management; 
Bit 6: ARQ; 
Bit 7: reserved by ITU-T; 
Bit 8: direct connection 
switching; 
Bit 9: multicast switching 
capability; 
Bit 10: PHY robustness 
management switching 
capability; 
Bit 11: ARQ buffering switching 
capability; 
Bits 12 to 15: reserved by 
ITU-T. 

10.2.3.4 Statistical attributes 

The MAC layer shall provide statistical information for management purposes. Table 10-6 lists the 
statistics that the MAC shall make available to management entities across the MLME_GET 
primitive. 

TheID field in the table below would be the PIBAttribute that needs to be passed to the 
MLME_GET SAP for accessing the value of these attributes. 



 

  Rec. ITU-T G.9904 (10/2012) 157 

Table 10-6 – Table of MAC read-only variables that provide statistical information 

Attribute name Id M Type Description 

macTxDataPktCount 0x0040 No Integer32 Count of successfully transmitted MSDUs. 

MacRxDataPktCount 0x0041 No Integer32 Count of successfully received MSDUs whose 
destination address was this node. 

MacTxCtrlPktCount 0x0042 No Integer32 Count of successfully transmitted MAC control 
packets. 

MacRxCtrlPktCount 0x0043 No Integer32 Count of successfully received MAC control 
packets whose destination address was this 
node. 

MacCSMAFailCount 0x0044 No Integer32 Count of failed CSMA transmitted attempts. 

MacCSMAChBusyCount 0x0045 No Integer32 Count of number of times this node had to back 
off SCP transmission due to a channel busy 
state. 

10.2.3.5 MAC list attributes 

The MAC layer shall make certain lists available to the management entity across the 
MLME_LIST_GET primitive. These lists are given in Table 10-7. Although a management entity 
can read each of these lists, it cannot change the contents of any of them.  

TheID field in the table below would be the PIBListAttribute that needs to be passed to the 
MLME_LIST_GET primitive for accessing the value of these attributes. 

Table 10-7 – Table of read-only lists made available by MAC layer  
through the management interface 

List attribute 
Name 

Id M Description 

macListRegDevices 0x0050 BN List of registered devices. This list is maintained by the base node 
only. Each entry in this list shall comprise the following 
information. 

   Entry element Type Description 

   regEntryID EUI-48 EUI-48 of the registered 
node 

   regEntryLNID Integer16 LNID allocated to this 
node 

   regEntryState TERMINAL=
1, 
SWITCH=2 

Functional state of this 
node 

   regEntryLSID Integer16 SID allocated to this node 

   regEntrySID Integer16 SID of switch through 
which this node is 
connected 

   regEntryLevel Interger8 Hierarchy level of this 
node 



 

158 Rec. ITU-T G.9904 (10/2012) 

Table 10-7 – Table of read-only lists made available by MAC layer  
through the management interface 

List attribute 
Name 

Id M Description 

   regEntryTCap Integer8 Bitmap of MAC 
capabilities of terminal 
functions in this device  
Bits in sequence of right-
to-left shall have the 
following meaning: 
Bit 0: switch capable; 
Bit 1: packet aggregation; 
Bit 2: contention-free 
period; 
Bit 3: direct connection; 
Bit 4: multicast; 
Bit 5: PHY robustness 
management; 
Bit 6: ARQ; 
Bit 7: reserved by ITU-T. 

   regEntrySwCap Integer8 Bitmap of MAC switching 
capabilities of this device 
Bits in sequence of right-
to-left shall have the 
following meaning: 
Bit 0: direct connection 
switching capability; 
Bit 1: multicast switching; 
Bit 2:PHY robustness 
management switching 
capability; 
Bit 3:ARQ buffering 
switching capability; 
Bit 4 to 7: reserved by 
ITU-T. 

macListActiveConn 0x0051 BN List of active non-direct connections. This list is maintained by 
the base node only. 

   Entry element Type Description 

   connEntrySID Integer16 SID of switch through 
which the service node is 
connected. 

   connEntryLNID Integer16 NID allocated to service 
node 

   connEntryLCID Integer8 LCID allocated to this 
connection 

   connEntryID EUI-48 EUI-48 of service node 



 

  Rec. ITU-T G.9904 (10/2012) 159 

Table 10-7 – Table of read-only lists made available by MAC layer  
through the management interface 

List attribute 
Name 

Id M Description 

macListMcast 
Entries 

0x0052 No List of entries in multicast switching table. This list is not 
maintained by service nodes in a terminal functional state. 

  Entry element Type Description 

  mcastEntryLCID Integer8 LCID of the multicast 
group 

  mcastEntry 
Members 

Integer16 Number of child nodes 
(including the node itself) 
that are members of this 
group. 

macListSwitchTabl
e 

0x0053 SN List the switch table. This list is not maintained by service nodes 
in a terminal functional state. 

  Entry element Type Description 

  stblEntryLSID Integer16 SID of attached switch 
node 

macListDirectConn 0x0054 No List of direct connections that are active. This list is maintained 
only in the base node. 

  Entry element Type Description 

  dconnEntrySrcSID Integer16 SID of switch through 
which the source service 
node is connected 

  dconEntrySrcLNID Integer16 NID allocated to the 
source service node 

  dconnEntrySrcLCI
D 

Integer8 LCID allocated to this 
connection at the source 

  dconnEntrySrcID EUI-48 EUI-48 of source service 
node 

  dconnEntryDstSID Integer16 SID of switch through 
which the destination 
service node is connected 

  dconnEntryDstLNI
D 

Integer16 NID allocated to the 
destination service node 

  dconnEntryDstLCI
D 

Integer8 LCID allocated to this 
connection at the 
destination 

  dconnEntryDstID EUI-48 EUI-48 of destination 
service node 

  dconnEntryDSID Integer16 SID of switch that is the 
direct switch 

  dconnEntryDID EUI-48 EUI-48 of direct switch 



 

160 Rec. ITU-T G.9904 (10/2012) 

Table 10-7 – Table of read-only lists made available by MAC layer  
through the management interface 

List attribute 
Name 

Id M Description 

macListDirectTable 0x0055 No List the direct switch table 

   Entry element Type Description 

   dconnEntrySrcSID Integer16 SID of switch through 
which the source service 
node is connected 

   dconEntrySrcLNID Integer16 NID allocated to the 
source service node 

   dconnEntrySrcLCI
D 

Integer8 LCID allocated to this 
connection at the source 

   dconnEntryDstSID Integer16 SID of switch through 
which the destination 
service node is connected 

   dconnEntryDst 
LNID 

Integer16 NID allocated to the 
destination service node 

   dconnEntryDst 
LCID 

Integer8 LCID allocated to this 
connection at the 
destination 

   dconnEntryDID EUI-48 EUI-48 of direct switch 

macListAvailable 
Switches 

0x0056 SN List of switch nodes whose beacons are received. 

  Entry Element Type Description 

  slistEntrySNA EUI-48 EUI-48 of the subnetwork 

  slistEntryLSID Integer16 SID of this switch 

  slistEntryLevel Integer8 Level of this switch in 
subnetwork hierarchy 

  slistEntryRxLvl Integer8EMA Received signal level for 
this switch 

  slistEntryRxSNR Integer8 EMA Signal to noise ratio for 
this switch 

macListPhyComm 0x0057 All List of PHY communication parameters. This table is maintained 
in every node. For terminal nodes it contains only one entry for 
the switch the node is connected through. For other nodes this 
contains also entries for every directly connected child node. 

   Entry element Type Description 

   phyCommEUI EUI-48 EUI-48 of the other device

   phyCommTxPwr Integer8 Tx power of GPDU 
packets sent to the device 

   phyCommTxCod Integer8 Tx coding of GPDU 
packets sent to the device 

   phyCommRxCod Integer8 Rx coding of GPDU 
packets received from the 
device 



 

  Rec. ITU-T G.9904 (10/2012) 161 

Table 10-7 – Table of read-only lists made available by MAC layer  
through the management interface 

List attribute 
Name 

Id M Description 

   phyCommRxLvl Integer8EMA Rx power level of GPDU 
packets received from the 
device 

   phyCommSNR Integer8EMA SNR of GPDU packets 
received from the device 

   phyCommTxPwr 
Mod 

Integer8 Number of times the Tx 
power was modified 

   phyCommTxCod 
Mod 

Integer8 Number of times the Tx 
coding was modified 

   phyCommRxCod 
Mod 

Integer8 Number of times the Rx 
coding was modified 

10.2.3.6 Action PIB attributes 

Some of the conformance tests require triggering certain actions on service nodes. The following 
table lists the set of action attributes that need to be supported by all implementations. 

Table 10-8 – Action PIB attributes 

Attribute name Id M 
Size  

(in bits) 
Description 

MACActionTxData 0x0060 SN 8 Total number of PPDUs correctly 
decoded. Useful for the PHY layer to 
estimate FER. 

MACActionConnClose 0x0061 SN 8 Trigger to close one of the open 
connections 

MACActionRegReject 0x0062 SN 8 Trigger to reject incoming registration 
request 

MACActionProReject 0x0063 SN 8 Trigger to reject incoming promotion 
request 

MACActionUnregister 0x0064 SN 8 Trigger to unregister from the subnetwork 

10.2.4 Application PIB attributes 

The following PIB attributes are used for general administration and maintenance of an 
ITU-T G.9904 compliant device. These attributes do not affect the communication functionality, 
but enable easier administration. 

These attributes shall be supported by both base node and service node devices. 



 

162 Rec. ITU-T G.9904 (10/2012) 

Table 10-9 – Applications PIB attributes 

Attribute Name 
Size  

(in bits) 
Id Description 

AppFwVersion 128 0x0075 Textual description of firmware version running on device 

AppVendorId 16 0x0076 PRIME Alliance-assigned unique vendor identifier  

AppProductId 16 0x0077 Vendor-assigned unique identifier for specific product 

10.3 Firmware upgrade 

10.3.1 General 

The present clause specifies firmware upgrade. Devices supporting ITU-T G.9904 may have several 
firmware inside them, at least one supporting the application itself, and one related to the 
ITU-T G.9904 protocol. Although it is possible that the application can perform the firmware 
upgrade of all the firmware images of the device, for instance DLMS/COSEM image transfer, using 
COSEM image transfer object, supporting ITU-T G.9904 firmware upgrade is mandatory in order 
to process the ITU-T G.9904 firmware upgrade independently of the application.  

10.3.2 Requirements and features 

This clause specifies the firmware upgrade application, which is unique and mandatory for base 
nodes and service nodes.  

The most important features of the firmware upgrade mechanism are listed below. See the 
following clauses for more information. The following refer to the FU mechanism: 

• It shall be a part of the management plane and therefore use the NULL SSCS, as specified 
in clause 9.3. 

• It is able to work in unicast (default mode) and multicast (optional mode). The control 
messages are always sent using unicast connections, whereas data can be transmitted using 
both unicast and multicast. No broadcast should be used to transmit data. 

• It may change the data packet sizes according to the channel conditions. The packet size 
will not be changed during the download process. 

• It is able to request basic information from the service nodes at any time, such as device 
model, firmware version and FU protocol version. 

• It shall be able to be aborted at any time. 

• It shall check the integrity of the downloaded FW after completing the reception. In case of 
failure, the firmware upgrade application shall request a new retransmission.  

• The new firmware shall be executed in the service nodes only if they are commanded to do 
so. The FU application shall have to be able to set the moment when the reset takes place. 

• Must be able to reject the new firmware after a "test" period and switch to the old version. 
The duration of this test period has to be fixed by the FU mechanism. 



 

  Rec. ITU-T G.9904 (10/2012) 163 

10.3.3 General description 

10.3.3.1 General 

The firmware upgrade mechanism is able to work in unicast and multicast modes. All control 
messages are sent using unicast connections, whereas the data can be sent via unicast (by default) or 
multicast (only if supported by the manufacturer). Note that in order to ensure correct reception of 
the FW when service nodes from different vendors are upgraded, data packets shall not be sent via 
broadcast. Only unicast and multicast are allowed. A node will reply only to messages sent via 
unicast. See clause 10.3.5 for a detailed description of the control and information messages used by 
the FU mechanism. 

The unicast and multicast connections are set up by the base node. In the case of supporting 
multicast, the base node shall request the nodes from a specific vendor to join a specific multicast 
group, which is exclusively created to perform the firmware upgrade and is removed after finishing 
it. 

As said before, it is up to the vendor to use unicast or multicast for transmitting the data. In the case 
of unicast data transmission, please note that the use of ARQ is an optional feature. Some examples 
showing the traffic between the base node and the service nodes in unicast and multicast are 
provided in clause 10.3.6. 

After completing the firmware download, each service node is committed by the base node to 
perform an integrity check on it. The firmware download will be restarted if the firmware image 
results are corrupted. In another case, the service nodes will wait until they are commanded by the 
base node to execute the new firmware.  

The FU mechanism can set up the instant when the recently downloaded firmware is executed on 
the service nodes. Thus, the base node can choose to restart all nodes at the same time or in several 
steps. After restart, each service node runs the new firmware for a time period specified by the FU 
mechanism. If this period expires without receiving any confirmation from the base node, or the 
base node decides to abort the upgrade process, the service nodes will reject the new firmware and 
switch to the old version. In any other case (a confirmation message is received) the service nodes 
will consider the new firmware as the only valid version and delete the old one. 

This is done in order to leave an "open back-door" in case the new firmware is defect or corrupt. 
Please note that the service nodes are not allowed to discard any of the stored firmware versions 
until the final confirmation from the base node arrives or until the safety time period expires. The 
two last firmware upgrade steps explained above are shown in clause 10.3.5. See clause 10.3.5.3 for 
a detailed description of the control messages. 



 

164 Rec. ITU-T G.9904 (10/2012) 

G.9904(12)_F10-2

Service node 1
(TW version 1)

Service node 2
(TW version 1)

Service node 2
(TW version 1)

Base node

Firmware upgrade
(version 1 > version 2)

FU_STATE_RSP

FU_STATE_RSPFU_STATE_RSP

FU_ONFIRM_REQ

FU_EXEC_REQFU_EXEC_REQ

Time specified in
FU_EXEC_REQ

(RestartTimer) Restart Restart

Time specified in
FU_EXEC_REQ
(RestartTimer)

Service node 1
(TW version 2)

Service node 2
(TW version 2)

SafetyTimer SafetyTimer

Restart

 
NOTE – In normal circumstances, both service nodes should either accept or reject the new firmware version. Both possibilities are 
shown above simultaneously for academic purposes. 

Figure 10-2 – Restarting the nodes and running the new firmware 

10.3.3.2 Segmentation 

The firmware image is the information to be transferred, in order to process a firmware upgrade. 
The size of the firmware image will be called "ImageSize", and is measured in bytes. This image is 
divided into smaller elements called pages that are easier to be transferred in packets. The 
"PageSize" may be one of the following: 32 bytes, 64 bytes, 128 bytes or 192 bytes. This implies 
that the number of pages in a firmware image is calculated by the following formula: 

   

Every page will have a size specified by PageSize, except the last one that will contain the 
remaining bytes up to ImageSize. 

The PageSize is configured by the base node and notified during the initialization of the firmware 
upgrade process, and imposes a condition in the size of the packets being transferred by the 
protocol.  

10.3.4 Firmware upgrade PIB attributes 

The following PIB attributes shall be supported by service nodes to support the firmware download 
application. 

Table 10-10 – FU PIB attributes 

Attribute name 
Size 

(in bits) 
Id Description 

AppFwdlRunning 16 0x0070 Indicates if a firmware download is in progress or not. 
0 = No firmware download 
1 = Firmware download in progress 

AppFwdlRxPktCount 16 0x0071 Count of firmware download packets that have been 
received until the time of query 

1+







=

PageSize

ImageSize
PageCount



 

  Rec. ITU-T G.9904 (10/2012) 165 

10.3.5 State machine 

10.3.5.1 General 

A service node using the firmware upgrade service will be in one of five possible states: Idle, 
Receiving, Complete, Countdown and Upgrade. These states, the events triggering them and the 
resulting actions/output messages are detailed below. 

Table 10-11 – FU state machine 

FU State Description Event 
Output (or action to be 

performed) 
Next state 

Idle The FU application 
is doing nothing. 

Receive 
FU_INFO_REQ 

FU_INFO_RSP. Idle 

Receive 
FU_STATE_REQ 

FU_STATE_RSP  
(.State = 0). 

Idle 

Receive 
FU_MISS_REQ 

FU_STATE_RSP  
(.State = 0). 

Idle 

Receive 
FU_CRC_REQ 

FU_STATE_RSP  
(.State = 0). 

Idle 

Receive 
FU_INIT_REQ  

FU_STATE_RSP  
(.State = 1). 

Receiving 

Receive FU_DATA (ignore). Idle 

Receive 
FU_EXEC_REQ 

FU_STATE_RSP  
(.State = 0). 

Idle 

Receive 
FU_CONFIRM_REQ 

FU_STATE_RSP  
(.State = 0). 

Idle 

Receive 
FU_KILL_REQ 

FU_STATE_RSP  
(.State = 0). 

Idle 



 

166 Rec. ITU-T G.9904 (10/2012) 

Table 10-11 – FU state machine 

FU State Description Event 
Output (or action to be 

performed) 
Next state 

Receiving The FU application 
is receiving the 

firmware image. 

Complete FW received 
and CRC OK  

(if CRC of the complete 
image is OK, switch to 
Complete without sending 
any additional messages) 

Complete 
 

  Receive 
FU_INFO_REQ 

FU_INFO_RSP. Receiving 

  Receive 
FU_STATE_REQ 

FU_STATE_RSP  
(.State = 1). 

Receiving 

  Receive 
FU_MISS_REQ 

FU_MISS_LIST or 
FU_MISS_BITMAP. 

Receiving 

  Receive 
FU_CRC_REQ 

FU_CRC_RSP 
(FU_STATE_RSP if the 
Bitmap is not complete) 

Receiving 

  Receive 
FU_INIT_REQ  

FU_STATE_RSP  
(.State = 1) 

Receiving 

  Receive FU_DATA (receiving data, normal 
behaviour). 

Receiving 

  Receive 
FU_EXEC_REQ 

FU_STATE_RSP  
(.State = 1). 

Receiving 

  Receive 
FU_CONFIRM_REQ 

FU_STATE_RSP  
(.State = 1). 

Receiving 

  Receive 
FU_KILL_REQ 

FU_STATE_RSP (.State = 
0); (switch to Idle). 

Idle 



 

  Rec. ITU-T G.9904 (10/2012) 167 

Table 10-11 – FU state machine 

FU State Description Event 
Output (or action to be 

performed) 
Next state 

Complete Upgrade 
completed, image 
integrity OK, the 
service node is 

waiting to reboot 
with the new FW 

version. 

Receive 
FU_INFO_REQ 

FU_INFO_RSP. Complete 

Receive 
FU_STATE_REQ 

FU_STATE_RSP  
(.State = 2). 

Complete 

Receive 
FU_MISS_REQ 

FU_STATE_RSP  
(.State = 2). 

Complete 

Receive 
FU_CRC_REQ 

FU_STATE_RSP  
(.State = 2). 

Complete 

Receive 
FU_INIT_REQ  

FU_STATE_RSP  
(.State = 2). 

Complete 

Receive FU_DATA (ignore). Complete 

Receive 
FU_EXEC_REQ with 
RestartTimer != 0 

FU_STATE_RSP  
(.State = 3). 

Countdown 

Receive 
FU_EXEC_REQ with 
RestartTimer = 0 

FU_STATE_RSP  
(.State = 4). 

Upgrade 

Receive 
FU_CONFIRM_REQ 

FU_STATE_RSP  
(.State = 2). 

Complete 

Receive 
FU_KILL_REQ 

FU_STATE_RSP (.State = 
0); (switch to Idle). 

Idle 

Countdown Waiting until 
RestartTimer 

expires. 

RestartTimer expires (switch to Upgrade). Upgrade 

Receive 
FU_INFO_REQ 

FU_INFO_RSP. Countdown 

Receive 
FU_STATE_REQ 

FU_STATE_RSP  
(.State = 3). 

Countdown 

Receive 
FU_MISS_REQ 

FU_STATE_RSP  
(.State = 3). 

Countdown 

Receive 
FU_CRC_REQ 

FU_STATE_RSP  
(.State = 3). 

Countdown 

Receive 
FU_INIT_REQ  

FU_STATE_RSP  
(.State = 3). 

Countdown 

Receive FU_DATA (ignore). Countdown 

Receive 
FU_EXEC_REQ with 
RestartTimer != 0 

FU_STATE_RSP (.State = 
3); (update RestartTimer 
and SafetyTimer). 

Countdown 

Receive 
FU_EXEC_REQ with 
RestartTimer = 0 

FU_STATE_RSP (.State = 
4); (update RestartTimer 
and SafetyTimer). 

Upgrade 

Receive 
FU_CONFIRM_REQ 

FU_STATE_RSP  
(.State = 3). 

Countdown 

Receive 
FU_KILL_REQ 

FU_STATE_RSP (.State = 
0); (switch to Idle). 

Idle 



 

168 Rec. ITU-T G.9904 (10/2012) 

Table 10-11 – FU state machine 

FU State Description Event 
Output (or action to be 

performed) 
Next state 

Upgrade The FU 
mechanism reboots 
using the new FW 
image and tests it 
for SafetyTimer 

seconds. 

SafetyTimer expires FU_STATE_RSP (.State = 
0); (switch to Idle, FW 
rejected). 

Idle 

Receive 
FU_INFO_REQ 

FU_INFO_RSP. Upgrade 

Receive 
FU_STATE_REQ 

FU_STATE_RSP  
(.State = 4). 

Upgrade 

Receive 
FU_MISS_REQ 

FU_STATE_RSP  
(.State = 4). 

Upgrade 

Receive 
FU_CRC_REQ 

FU_STATE_RSP  
(.State = 4). 

Upgrade 

Receive 
FU_INIT_REQ  

FU_STATE_RSP  
(.State = 4). 

Upgrade 

Receive FU_DATA (ignore). Upgrade 

Receive 
FU_EXEC_REQ 

FU_STATE_RSP  
(.State = 0). 

Upgrade 

Receive 
FU_CONFIRM_REQ  

FU_STATE_RSP (.State = 
0); (switch to Idle, FW 
accepted). 

Idle 

Receive 
FU_KILL_REQ 

FU_STATE_RSP (.State = 
0); (switch to Idle, FW 
rejected). 

Idle 

The state diagram is represented below. Please note that only the most relevant events are shown in 
the state transitions. See clause 10.3.5 for a detailed description of each state's behaviour and the 
events and actions related to them. A short description of each state is provided in clause 10.3.5.2. 



 

  Rec. ITU-T G.9904 (10/2012) 169 

G.9904(12)_F10-3

FU_CONFIR
M_REQ

(

)

FU_S
TATE_RSP

FU_KILL_REQ

(

)

FU_STATE_RSP

(

)

FU
_S

TA
TE

_R
SP

(

)

F
U

_S
TA

T
E

_R
S

P

FU
_K

IL
L

_R
E

Q

FU
_K

IL
L

_R
E

Q

(

)

FU_STATE_RSP

FU_KILL_REQ

FU_KILL_REQ

(

)

FU_STATE_RSP FU_DATA

(Receive data CRC / not ok)

FU_EXEC_REQ.RestartTimer != 0
( )FU_STATE_RSP

FU_EXEC_REQ.RestartTimer != 0
( )FU_STATE_RSP

FU_EXEC_REQ.RestartTimer = 0

F
U

_E
X

E
C

_R
E

Q
(

)

(F
W

 in
te

g r
i ty

 / 
c h

ec
k 

/ C
R

C
 n

ot
 o

k)

F
U

_S
TA

T
E

_R
SP

R
ec

ep
tio

n 
co

m
pl

et
ed

 a
nd

 C
R

C
 o

k

R
estartTim

er expired

Safet
yTim

er 
exp

ire
d

(

)

FU_STATE_RSP

F
U

_E
X

E
C

_R
E

Q
.R

estartTim
er !=

 0

(

)

FU
_STA

T
E

_R
SP

IDLE

RECEIVING

COMPLETECOUNTDOWN

[FW 2]

[FW 1]

UPGRADE
[FW 2] [FW 1]

[FW 1][FW 1]

: BN  SN
: SN  BN




FU_KILL_REQ
FU_STATE_RSP

: Internal events
: Running FW version

Receive
[FW i]  

Figure 10-3 – Firmware upgrade mechanism, state diagram 

10.3.5.2 State description 

10.3.5.2.1 Idle 

The service nodes are in "Idle" state when they are not performing a firmware upgrade. The 
reception of an FU_INIT_REQ message is the only event that forces the service node to switch to 
the next state ("Receiving"). FU_KILL_REQ aborts the upgrade process and forces the service 
nodes to switch from any state to "Idle". 

10.3.5.2.2 Receiving 

The service nodes receive the firmware image via FU_DATA messages. Once the download is 
complete, the integrity of the image is checked by the base node using FU_CRC_REQ and the 
service node responds with FU_CRC_RSP. This final CRC on the complete FW image is 
mandatory. If the CRC results are OK, the service node responds with FU_CRC_RSP and then 
switches to "Complete" state. If the CRC is wrong, the service node reports this to the base node via 
FU_CRC_RSP, drops the complete FW image, updates the bitmap accordingly and waits for packet 
retransmission. 

Please remember that the service node will change from "Receiving" to "Complete" state only if the 
complete FW has been downloaded and the CRC has been successful. 



 

170 Rec. ITU-T G.9904 (10/2012) 

10.3.5.2.3 Complete 

A service node in "Complete" state waits until the reception of an FU_EXEC_REQ message. The 
service node may switch either to "Countdown" or "Upgrade" depending on the field RestartTimer, 
which specifies in which instant the service node has to reboot using the new firmware. If 
RestartTimer = 0, the service node immediately switches to "Upgrade"; else, the service node 
switches to "Countdown". 

10.3.5.2.4 Countdown 

A service node in "Countdown" state waits a period of time specified in the RestartTimer field of a 
previous FU_EXEC_REQ message. When this timer expires, it automatically switches to 
"Upgrade". 

FU_EXEC_REQ can be used in "Countdown" state to reset RestartTimer and SafetyTimer. In this 
case, both timers have to be specified in FU_EXEC_REQ because both will be overwritten. Note 
that it is possible to force the node to immediately switch from the "Countdown" to "Upgrade" state 
setting RestartTimer to zero. 

10.3.5.2.5 Upgrade 

A service node in "Upgrade" state shall run the new firmware during a time period specified in 
FU_EXEC_REQ.SafetyTimer. If it does not receive any confirmation at all before this timer 
expires (or if it receives an FU_KILL_REQ message), the service node discards the new FW, 
reboots with the old version and switches to "Idle" state. In any other case it discards the old FW 
version and switches to "Idle" state. 

10.3.5.3 Control packets 

10.3.5.3.1 FU_INIT_REQ 

The base node sends this packet in order to configure a service node for the Firmware upgrade. If 
the service node is in "Idle" state, it will change its state from "Idle" to "Receiving" and will answer 
with FU_STATE_RSP. In any other case it will just answer by sending FU_STATE_RSP. 

The content of FU_INIT_REQ is shown below. 

Table 10-12 – Fields of FU_INIT_REQ 

Field Length Description 

Type 4 bits 0 = FU_INIT_REQ. 

Version 2 bits 0 for this version of the protocol 

PageSize 2 bits 0 for a PageSize=32 
1 for a PageSize=64 
2 for a PageSize=128 
3 for a PageSize=192 

ImageSize 32 bits Size of the firmware upgrade image in bytes 

CRC 32 bits CRC of the firmware upgrade Image 
The input polynomial M(x) is formed as a polynomial whose coefficients are 
bits of the data being checked (the first bit to check is the highest order 
coefficient and the last bit to check is the coefficient of order zero). The 
generator polynomial for the CRC is 
G(x)=x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1. The remainder 
R(x) is calculated as the remainder from the division of M(x)·x32 by G(x). The 
coefficients of the remainder will then be the resulting CRC. 



 

  Rec. ITU-T G.9904 (10/2012) 171 

10.3.5.3.2 FU_EXEC_REQ 

This packet is used by the base node to command a service node in "Complete" state to restart using 
the new firmware, once the complete image has been received by the service node. 
FU_EXEC_REQ specifies when the service node has to restart and how long the "safety" period 
shall be, as explained in clause 10.3.5.2.5. Additionally, FU_EXEC_REQ can be used in 
"Countdown" state to reset the restart and the safety timers. 

Depending on the value of RestartTimer, a service node in "Complete" state may change either to 
"Countdown" or to "Upgrade" state. In any case, the service node answers with FU_STATE_RSP. 

In "Countdown" state, the base node can reset RestartTimer and SafetyTimer with an 
FU_EXEC_REQ message (both timers must be specified in the message because both will be 
overwritten). 

The content of this packet is described below. 

Table 10-13 – Fields of FU_EXEC_REQ 

Field Length Description 

Type 4 bits 1 = FU_EXEC_REQ 

Version 2 bits 0 for this version of the protocol 

Reserved 2 bits Reserved by ITU-T and set to 0. 

RestartTimer 16 bits 0..65536 seconds; time before restarting with new FW 

SafetyTimer 16 bits 0..65536 seconds; time to test the new FW. It starts when the 
"Upgrade"state is entered. 

10.3.5.3.3 FU_CONFIRM_REQ 

This packet is sent by the base node to a service node in "Upgrade" state to confirm the current FW. 
If the service node receives this message, it discards the old FW version and switches to "Idle" 
state. The service node answers with FU_STATE_RSP when receiving this message. 

In any other state, the service node answers with FU_STATE_RSP without performing any 
additional actions. 

This packet contains the fields described below. 

Table 10-14 – Fields of FU_CONFIRM_REQ 

Field Length Description 

Type 4 bits 2 = FU_CONFIRM_REQ 

Version 2 bits 0 for this version of the protocol 

Reserved 2 bits Reserved by ITU-T and set to 0. 

10.3.5.3.4 FU_STATE_REQ 

This packet is sent by the base node in order to get the firmware upgrade state of a service node. 
The service node will answer with FU_STATE_RSP. 

This packet contains the fields described below. 



 

172 Rec. ITU-T G.9904 (10/2012) 

Table 10-15 – Fields of FU_STATE_REQ 

Field Length Description 

Type 4 bits 3 = FU_STATE_REQ 

Version 2 bits 0 for this version of the protocol 

Reserved 2 bits Reserved by ITU-T and set to 0. 

10.3.5.3.5 FU_KILL_REQ 

The base node sends this message to terminate the firmware upgrade process. A service node 
receiving this message will automatically switch to "Idle" state and optionally delete the 
downloaded data. The service node replies sending FU_STATE_RSP. 

The content of this packet is described below. 

Table 10-16 – Fields of FU_KILL_REQ 

Field Length Description 

Type 4 bits 4 = FU_KILL_REQ 

Version 2 bits 0 for this version of the protocol 

Reserved 2 bits Reserved by ITU-T and set to 0. 

10.3.5.3.6 FU_STATE_RSP  

This packet is sent by the service node as an answer to FU_STATE_REQ, FU_KILL_REQ, 
FU_EXEC_REQ, FU_CONFIRM_REQ or FU_INIT_REQ messages received through the unicast 
connection. It is used to notify the firmware upgrade state in a service node. 

Additionally, FU_STATE_RSP is used as a default response to all events that happen in states 
where they are not foreseen (e.g., FU_EXEC_REQ in "Receiving" state, FU_INIT_REQ in 
"Upgrade"...). 

This packet contains the fields described below. 

Table 10-17 – Fields of FU_STATE_RSP 

Field Length Description 

Type 4 bits 5 = FU_STATE_RSP 

Version 2 bits 0 for this version of the protocol 

Reserved 2 bits Reserved by ITU-T and set to 0.  

State 4 bits 0 for idle 
1 for receiving 
2 for complete 
3 for countdown 
4 for upgrade 
5 to 15 reserved by ITU-T. 

Reserved 4 bits Reserved by ITU-T and set to 0. 

CRC 32 bits CRC as the one received in the CRC field of FU_INIT_REQ. 

Received 32 bits Number of received pages (this field should only be present if the state is 
"Receiving"). 



 

  Rec. ITU-T G.9904 (10/2012) 173 

10.3.5.3.7 FU_DATA 

This packet is sent by the base node to transfer a page of the firmware image to a service node. No 
answer is expected by the base node. 

This packet contains the fields described below. 

Table 10-18 – Fields of FU_DATA 

Field Length Description 

Type 4 bits 6 = FU_DATA 

Version 2 bits 0 for this version of the protocol 

Reserved 2 bits Reserved by ITU-T and set to 0. 

PageIndex 32 bits Index of the page being transmitted 

Reserved 8 bits Padding byte for 16-bit devices. Set to 0 by default. 

Data Variable Data of the page 
The length of this data is PageSize (32, 64, 128 or 192) bytes for every page, 
except the last one that will have the remaining bytes of the image. 

10.3.5.3.8 FU_MISS_REQ 

This packet is sent by the base node to a service node to request information about the pages that 
are still to be received. 

If the service node is in "Receiving" state it will answer with an FU_MISS_BITMAP or 
FU_MISS_LIST message. If the service node is in any other state it will answer with an 
FU_STATE_RSP. 

This packet contains the fields described below. 

Table 10-19 – Fields of FU_MISS_REQ 

Field Length Description 

Type 4 bits 7 = FU_MISS_REQ 

Version 2 bits 0 for this version of the protocol 

Reserved 2 bits Reserved by ITU-T and set to 0. 

PageIndex 32 bits Starting point to gather information about missing pages  

10.3.5.3.9 FU_MISS_BITMAP 

This packet is sent by the service node as an answer to an FU_MISS_REQ. It carries the 
information about the pages that are still to be received. 

This packet will contain the fields described below. 



 

174 Rec. ITU-T G.9904 (10/2012) 

Table 10-20 – Fields of FU_MISS_BITMAP 

Field Length Description 

Type 4 bits 8 = FU_MISS_BITMAP 

Version 2 bits 0 for this version of the protocol 

Reserved 2 bits Reserved by ITU-T and set to 0. 

PageIndex 32 bits Page index of the page represented by the first bit of the bitmap. It should 
be the same as the PageIndex field in FU_MISS_REQ messages, or a 
posterior one. If it is posterior, it means that the pages in between are 
already received. In this case, if all pages after the PageIndex specified in 
FU_MISS_REQ have been received, the service node shall start looking 
from the beginning (PageIndex = 0). 

Bitmap Variable This bitmap contains the information about the status of each page. 
The first bit (most significant bit of the first byte) represents the status of 
the page specified by PageIndex. The next bit represents the status of the 
PageIndex+1 and so on. 
A '1' represents that a page is missing, a '0' represents that the page is 
already received. 
After the bit that represents the last page in the image, it is allowed to 
overflow including bits that represent the missing status of the page with 
index zero. 
The maximum length of this field is PageSize bytes. 

It is up to the service node to decide to send this type of packet or an FU_MISS_LIST message. It is 
usually more efficient to transmit this kind of packet when the number of missing packets is not 
very low. But it is up to the implementation to transmit one type of packet or the other. The base 
node should understand both. 

10.3.5.3.10 FU_MISS_LIST 

This packet is sent by the service node as an answer to an FU_MISS_REQ. It carries the 
information about the pages that are still to be received. 

This packet will contain the fields described below. 

Table 10-21 – Fields of FU_MISS_LIST 

Field Length Description 

Type 4 bits 9 = FU_MISS_LIST 

Version 2 bits 0 for this version of the protocol 

Reserved 2 bits Reserved by ITU-T and set to 0. 

PageIndexList Variable List of pages that are still to be received. Each page is represented by its 
PageIndex, coded as a 32 bit integer. 
These pages should be sorted in ascending order (low to high), being 
possible to overflow to the PageIndex equal to zero to continue from the 
beginning. 
The first page index should be the same as the PageIndex field in 
FU_MISS_REQ, or a posterior one. If it is posterior, it means that the 
pages in between are already received (by posterior it is allowed to 
overflow to the page index zero, to continue from the beginning). 
The maximum length of this field is PageSize bytes. 



 

  Rec. ITU-T G.9904 (10/2012) 175 

It is up to the service node to decide to transmit this packet type or an FU_MISS_BITMAP 
message. It is usually more efficient to transmit this kind of packet when the missing packets are 
very sparse, but it is implementation-dependent to transmit one type of packet or the other. The base 
node should understand both. 

10.3.5.3.11 FU_INFO_REQ 

This packet is sent by a base node to request information from a service node, such as manufacturer, 
device model, firmware version and other parameters specified by the manufacturer. The service 
node will answer with one or more FU_INFO_RSP packets. 

This packet contains the fields described below. 

Table 10-22 – Fields of FU_INFO_REQ 

Field Length Description 

Type 4 bits 10 = FU_INFO_REQ 

Version 2 bits 0 for this version of the protocol 

Reserved 2 bits Reserved by ITU-T and set to 0. 

InfoIdList Variable List of identifiers with the information to retrieve 
Each identifier is 1 byte long. 
The maximum length of this field is 32 bytes. 

The following identifiers are defined: 

Table 10-23 – InfoId possible values 

InfoId Name Description 

0 Manufacturer Universal identifier of the manufacturer 

1 Model Model of the product working as service node 

2 Firmware Current firmware version being executed 

128-255 Manufacturer specific Range of values that are manufacturer specific 

10.3.5.3.12 FU_INFO_RSP 

This packet is sent by a service node as a response to an FU_INFO_REQ message from the base 
node. A service node may have to send more than one FU_INFO_RSP when replying to an 
information request by the base node. 

This packet contains the fields described below. 

Table 10-24 – Fields of FU_INFO_RSP 

Field Length Description 

Type 4 bits 11 = FU_INFO_RSP 

Version 2 bits 0 for this version of the protocol 

Reserved 2 bits Reserved by ITU-T and set to 0. 

InfoData 0-192 bytes Data with the information requested by the base node. It may contain several 
entries (one for each requested identifier), each entry has a maximum size of 
32 bytes. The maximum size of this field is 192 bytes (6 entries). 

The InfoData field can contain several entries, the format of each entry is specified below. 



 

176 Rec. ITU-T G.9904 (10/2012) 

Table 10-25 – Fields of each entry of InfoData in FU_INFO_RSP 

Field Length Description 

InfoId 8 bits Identifier of the information as specified in 0 

Reserved 3 bits Reserved by ITU-T and set to 0. 

Length 5 bits Length of the data field (If length is 0 it means that the specified InfoId is not 
supported by the specified device). 

Data 0-30 bytes Data with the information provided by the service node. 
Its content may depend on the meaning of the InfoId field. No value may be 
longer than 30 bytes. 

10.3.5.3.13 FU_CRC_REQ 

FU_CRC_REQ is sent by the base node to command a service node to perform a CRC on the 
complete firmware image. The CRC on the complete FW image is mandatory. The CRC specified 
in FU_CRC_REQ.CRC is the same as in FU_INIT_REQ.  

The service node replies with FU_CRC_RSP if it is in "Receiving" state, in any other case it replies 
with FU_STATE_RSP. The base node shall not send an FU_CRC_REQ if the image download is 
not complete (that is, the bitmap is not complete). Should the base node have an abnormal 
behaviour and send FU_CRC_REQ before completing the FW download, the service node would 
reply with FU_STATE_RSP.  

Please note that in "Idle" state, the CRC field from FU_STATE_RSP will be a dummy (because no 
FU_INIT_REQ has been received yet). The base node will ignore this field if the service node is in 
"Idle" state. 

This packet contains the fields described below. 

Table 10-26 – Fields of FU_CRC_REQ 

Field Length Description 

Type 4 bits 12 = FU_CRC_REQ 

Version 2 bits 0 for this version of the protocol 

Reserved 2 bits Reserved by ITU-T and set to 0. 

SectionSize 32 bits Size of the firmware upgrade image in bytes 

CRC 32 bits CRC of the firmware upgrade image 
The input polynomial M(x) is formed as a polynomial whose coefficients are 
bits of the data being checked (the first bit to check is the highest order 
coefficient and the last bit to check is the coefficient of order zero). The 
generator polynomial for the CRC is 
G(x)=x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1. The 
remainder R(x) is calculated as the remainder from the division of M(x)·x32 
by G(x). The coefficients of the remainder will then be the resulting CRC. 

10.3.5.3.14 FU_CRC_RSP 

This packet is sent by the service node as a response to an FU_CRC_REQ message sent by the base 
node. 

This packet contains the fields described below. 



 

  Rec. ITU-T G.9904 (10/2012) 177 

Table 10-27 – Fields of FU_CRC_RSP 

Field Length Description 

Type 4 bits 13 = FU_CRC_RSP 

Version 2 bits 0 for this version of the protocol 

CRC_Result 1 bit Result of the CRC: 
"0" check failed 
"1" check OK. 

Reserved 1 bit Reserved by ITU-T and set to 0. 

10.3.6 Examples 

The figures below are examples of the traffic generated between the base node and the service node 
during the firmware upgrade process.  



 

178 Rec. ITU-T G.9904 (10/2012) 

 

Figure 10-4 – Init service node and complete FW image 

Figure 10-4 shows the initialization of the process, the FW download and the integrity check of the 
image. In the example above, the downloaded FW image is supposed to be complete before sending 
the last FU_MISS_REQ. The base node sends it to verify its bitmap. In this example, 
FU_MISS_LIST has an empty PageIndexList field, which means that the FW image is complete. 



 

  Rec. ITU-T G.9904 (10/2012) 179 

 

Figure 10-5 – Execute upgrade and confirm/reject new FW version 

Figure 10-5 shows how to proceed after completing the FW download. The base node commands 
the service node to reboot either immediately ("Immediate Firmware Start", RestartTimer = 0) or 
after a defined period of time ("Delayed Firmware start", RestartTimer != 0). After reboot, the base 
node can either confirm the recently downloaded message sending an FU_CONFIRM_REQ or 
reject it (sending an FU_KILL_REQ or letting the safety period expire by doing nothing). 

10.4 Management interface description 

10.4.1 General 

Management functions defined in earlier clauses shall be available over an abstract management 
interface specified in this clause. The management interface can be accessed over diverse media. 
Each physical media shall specify its own management plane communication profile over which 
management information is exchanged. It is mandatory for implementations to support the 
ITU-T G.9904 management plane communication profile. All other "management plane 
communication profiles" are optional and may be mandated by certain "application profiles" to use 
in specific cases. 

This Recommendation describes two communication profiles, one of which is over this 
specification's NULL SSCS and the other over a serial link.  

   



 

180 Rec. ITU-T G.9904 (10/2012) 

With these two communication profiles, it shall be possible to address the following use-cases: 

1. Remote access of management interface over NULL SSCS. This shall enable base node's 
use as a supervisory gateway for all devices in a subnetwork. 

2. Local access of management interface (over peripherals like RS232, USBSerial etc.) in a 
service node. Local access shall fulfil cases where a co-processor exists for supervisory 
control of the processor or when manual access is required over the local physical interface 
for maintenance. 

Management data comprises of a 2 byte header followed by payload information corresponding to 
the type of information carried in the message. The header comprises of a 10 bit length field and a 6 
bit message_id field.  

 

Figure 10-6 – Management data frame format 

Table 10-28 – Management data frame fields 

Name Length Description 

MGMT.LEN 10 bits Length of payload data following the 2 byte header. 
LEN=0 implies there is no payload data following this header and the 
TYPE field contains all required information to perform appropriate 
action. 
NOTE – The length field may be redundant in some communication 
profiles (e.g., when transmitted over ITU-T G.9904), but it is required in 
others. Therefore for the sake of uniformity, it is always included in 
management data. 

MGMT.TYPE 6 bits Type of management information carried in corresponding data. Some 
message_ids have standard semantics which should be respected by all 
ITU-T G.9904 compliant devices while others are reserved for local use 
by vendors. 
0x00 – Get PIB attribute query 
0x01 – Get PIB attribute response 
0x02 – Set PIB attribute command 
0x03 – Reset all PIB statistics attributes 
0x04 – Reboot destination device 
0x05 – Firmware upgrade protocol message 
0x06 – 0x0F: Reserved by ITU-T. Vendors should not use these values for 
local purposes. 
0x10 – 0x3F: Reserved for vendor-specific use 

10.4.2 Payload format of management information 

10.4.2.1 Get PIB attribute query 

This query is issued by a remote management entity that is interested in knowing the values of PIB 
attributes maintained on a compliant device with this Recommendation. 

The payload may comprise of a query on either a single PIB attribute or multiple attributes. For 
reasons of efficiency queries on multiple PIB attributes may be aggregated in one single command. 



 

  Rec. ITU-T G.9904 (10/2012) 181 

Given that the length of a PIB attribute identifier is constant, the number of attributes requested in a 
single command is derived from the overall MGMT.LEN field in the header. 

The format of payload information is shown in the following figure. 

 

Figure 10-7 – Get PIB attribute query load 

Fields of a GET request are summarized in the table below: 

Table 10-29 – GET PIB attribute request fields 

Name Length Description 

PIB attribute ID 2 bytes 16 bit PIB attribute identifier 

Index 1 byte Index of entry to be returned for corresponding PIB attributeIDs. This 
field is only of relevance while returning PIB list attributes. 
Index = 0; if PIB attribute is not a list 
Index = 1 to 255; return list record at given index 

10.4.2.2 Get PIB attribute response 

This data is sent out from a compliant device of this Recommendation in response to a query of one 
or more PIB attributes. If a certain queried PIB attribute is not maintained on the device, it shall still 
respond to the query with a value field containing all-ones in the response. 

The format of the payload is shown in the following figure. 

 

Figure 10-8 – Get PIB attribute response.Payload 

Fields of a GET request are summarized in table below: 

Table 10-30 – GET PIB attribute response fields 

Name Length Description 

PIB attribute ID 2 bytes 16 bit PIB attribute identifier 

Index 1 byte Index of entry returned for corresponding PIB attributeIDs. This field 
is only of relevance while returning PIB list attributes. 
Index = 0; if PIB attribute is not a list 
Index = 1 to 255; returned list record is at given index  

PIB attribute value 'a' bytes Values of requested PIB attributes. In the case of a list attribute, the 
value shall comprise of an entire record corresponding to a given 
index of PIB attributes. 



 

182 Rec. ITU-T G.9904 (10/2012) 

Table 10-30 – GET PIB attribute response fields 

Name Length Description 

Next 1 byte Index of next entry returned for corresponding PIB AttributeIDs. 
This field is only of relevance while returning PIB list attributes. 
Next = 0; if PIB attribute is not a list or if no records follow the one 
being returned for a list PIB attribute, i.e., given record is last entry in 
list. 
Next = 1 to 255; index of next record in list maintained for given PIB 
attribute.  

Response to a PIB attribute query can span across several MAC GPDUs. This shall always be the 
case when an aggregated (comprising of several PIB attributes) PIB query's response if longer than 
the maximum segment size is allowed to be carried over the NULL SCSS. 

10.4.2.3 Set PIB attribute 

This management data shall be used to set specific PIB attributes. Such management payload 
comprises of a 2 byte PIB attribute identifier, followed by the relevant length of PIB attribute 
information corresponding to that identifier. For reasons of efficiency, it shall be possible to 
aggregate a SET command on several PIB attributes in one GPDU. The format of such an 
aggregated payload is shown in Figure 10-9 below: 

 

Figure 10-9 – Set PIB attribute query payload 

For cases where the corresponding PIB attribute is only a trigger (all ACTION PIB attributes), there 
shall be no associated value and the request data format shall be as shown below: 

 

Figure 10-10 – Set PIB attribute response payload 

It is assumed that the management entity sending out this information has already determined if the 
corresponding attributes are supported at the target device. This may be achieved by a previous 
query and its response. 

10.4.2.4 Reset statistics 

This command has optional payload. In case there is no associated payload, the receiving device 
shall reset all of its PIB statistical attributes.  

For cases when a remote management entity only intends to perform the reset of selective PIB 
statistical attributes, the payload shall contain a list of attributes that need to be reset. The format 
shall be the same as shown in clause 10.4.2.1. 

Since there is no confirmation message going back from the device complying with this 
Recommendation, the management entity needs to send a follow-up PIB attribute query, in case it 
wants to confirm the successful completion of appropriate action. 



 

  Rec. ITU-T G.9904 (10/2012) 183 

10.4.2.5 Reboot device 

There is no corresponding payload associated with this command. The command is complete in 
itself. The receiving compliant device with this Recommendation shall reboot itself upon receipt of 
this message. 

It is mandatory for all implementations compliant with this Recommendation to support this 
command and its corresponding action. 

10.4.2.6 Firmware upgrade 

The payload in this case shall comprise of firmware upgrade commands and responses described in 
clause 10.3 of the Recommendation. 

10.4.3 NULL SSCS communication profile 

This communication profile enables the exchange of management information described in previous 
clauses over the NULL SSCS. 

The management entities at both transmitting and receiving ends are applications making use of the 
NULL SSCS enumerated in clause 9.3 of this Recommendation. Data is therefore exchanged as 
MAC generic PDUs. 

10.4.4 Serial communication profile 

10.4.4.1 Physical layer 

The PHY layer may be any serial link (e.g., RS232, USB Serial). The serial link is required to work 
8N1 configuration at one of the following data rates: 

9600 bps, 19200 bps, 38400 bps, 57600 bps 

10.4.4.2 Data encapsulation for management messages 

In order to ensure robustness, the stream of data is encapsulated in HDLC-type frames which 
include a 2 byte header and a 4 byte CRC. All data is encapsulated between a starting flag-byte 
0x7E and an ending flag-byte 0x7E as shown in Figure 10-11 below:  

 

Figure 10-11 – Data encapsulation for management messages 

If any of the intermediate data characters has the value 0x7E, it is preceded by an escape byte 0x7D, 
followed by a byte derived from XORing the original character with byte 0x20. The same is done if 
there is a 0x7D within the character stream. An example of such a case is shown here: 

Msg to Tx:     0x01 0x02 0x7E   0x03 0x04 0x7D   0x05 0x06 

Actual Tx sequence: 0x01 0x02 0x7D 0x5E 0x03 0x04 0x7D 0x5D 0x05 0x06 

               Escape       Escape 

               sequence      sequence 

The 32 bit CRC at the end of the frame covers both 'Header' and 'Payload' fields. The CRC is 
calculated over the original data to be transmitted, i.e., before byte stuffing of the escape sequences 
described above is performed. The CRC calculation is as follows: 



 

184 Rec. ITU-T G.9904 (10/2012) 

The input polynomial M(x) is formed as a polynomial whose coefficients are bits of the data being 
checked (the first bit to check is the highest order coefficient and the last bit to check is the 
coefficient of order zero). The generator polynomial for the CRC is 
G(x)=x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1. The remainder R(x) is calculated as 
the remainder from the division of M(x)·x32 by G(x). The coefficients of the remainder will then be 
the resulting CRC. 

10.5 List of mandatory PIB attributes 

10.5.1 General 

PIB attributes listed in this clause shall be supported by all implementations. PIB attributes that are 
not listed in this clause are optional and vendors may implement them at their choice. In addition to 
the PIB attributes, the management command to reboot a certain device (as specified in 
clause 10.4.2.5) shall also be universally supported. 

10.5.2 Mandatory PIB attributes common to all device types 

10.5.2.1 PHY PIB attribute 

(See Table 10-1.) 

Table 10-31 – PHY PIB common mandatory attributes 

Attribute name Id 

phyStatsRxTotalCount 0x00A4 

phyStatsBlkAvgEvm 0x00A5 

phyEmaSmoothing 0x00A8 

10.5.2.2 MAC PIB attributes 

(See Tables 10-3, 10-5 and 10-7.) 

Table 10-32 – MAC PIB common mandatory attributes 

Attribute name Id 

macEMASmoothing 0x0019 

macCapabilities 0x002C 

macListPhyComm 0x0057 

10.5.2.3 Application PIB attributes 

(See Table 10-9.) 

Table 10-33 – Applications PIB common mandatory attributes 

Attribute name Id 

appFwVersion 0x0075 

appVendorId 0x0076 

appProductId 0x0077 



 

  Rec. ITU-T G.9904 (10/2012) 185 

10.5.3 Mandatory base node attributes 

10.5.3.1 MAC PIB attributes 

(See Tables 10-3 and 10-7.) 

Table 10-34 – MAC PIB base node mandatory attributes 

Attribute name Id 

macBeaconsPerFrame 0x0013 

macListRegDevices 0x0050 

macListActiveConn 0x0051 

10.5.4 Mandatory service node attributes 

10.5.4.1 MAC PIB attributes 

(See Tables 10-5, 10-7 and 10-8.) 

Table 10-35 – MAC PIB service node mandatory attributes 

Attribute name Id 

macLNID 0x0020 

macLSID 0x0021 

macSID 0x0022 

macSNA 0x0023 

macState 0x0024 

macSCPLength 0x0025 

macNodeHierarchyLevel 0x0026 

macBeaconSlotCount 0x0027 

macBeaconRxSlot 0x0028 

macBeaconTxSlot 0x0029 

macBeaconRxFrequency 0x002A 

macBeaconTxFrequency 0x002B 

macListSwitchTable 0x0053 

macListAvailableSwitches 0x0056 

MACActionTxData 0x0060 

MACActionConnClose 0x0061 

MACActionRegReject 0x0062 

MACActionProReject 0x0063 

MACActionUnregister 0x0064 



 

186 Rec. ITU-T G.9904 (10/2012) 

10.5.4.2 Application PIB attributes 

(See Table 10-10.) 

Table 10-36 – APP PIB service node mandatory attributes 

Attribute name Id 

appFwdlRunning 0x0070 

appFwdlRxPktCount 0x0071 

 
  



 

  Rec. ITU-T G.9904 (10/2012) 187 

Annex A 
 

EVM and SNR calculation 

(This annex forms an integral part of this Recommendation.) 

This annex describes calculations of the EVM by a reference receiver, assuming accurate 
synchronization and FFT window placement. 

Let  

 denotes that the FFT output for symbol i and k are the frequency tones. 

 represents the decision on the received information symbol coded in the 
phase increment. 

M = 2, 4 or 8 in the case of DBPSK, DQPSK or D8PSK, respectively. 

The EVM definition is then given by; 

ܯܸܧ = ∑ ∑ ൤ܾܽݏ ൬ݎ௞௜ − ௞ିଵ௜ݎ ݁ିቀ௝ଶగெ ቁ∆௕ೖషభ൰൨ଶଽ଻௞ୀଶ௅௜ୀଵ ∑ ∑ ௞௜൯൧ଶଽ଻௞ୀଶ௅௜ୀଵݎ൫ݏܾܽൣ  

In the above, abs(.) refers to the magnitude of a complex number. L is the number of OFDM 
symbols in the payload of the most recently received PPDU, over which the EVM is calculated. 

The SNR is then defined as the reciprocal of the EVM above. 

 
  

{ }97,..,2,1; =kr i
k

Δbk∈{0 ,1 , . . . ,M − 1}



 

188 Rec. ITU-T G.9904 (10/2012) 

Annex B 
 

MAC layer constants 

(This annex forms an integral part of this Recommendation.) 

This clause defines all the MAC layer constants. 

Table B.1 – Table of MAC constants 

Constant Value Description 

MACBeaconLength 4 symbols Length of beacon in symbols 

MACMinSCPLength 64 symbols Minimum length of SCP 

MACPriorityLevels 4 Number of levels of priority supported by the system 

MACCFPMaxAlloc 32 Maximum contention-free periods that may be allocated 
within a frame 

MACFrameLength 276 symbols Length of a frame in number of symbols 

MACRandSeqChgTime 32767 seconds 
(approx 
9 hours) 

Maximum duration of time after which the base node should 
circulate a new random sequence to the subnetwork for 
encryption functions. 

MACMaxPRNIgnore 3 Maximum number of promotion-needed messages a terminal 
can ignore. 

Nmiss-beacon 5 Number of times a service node does not receive an expected 
beacon before considering its switch node as unavailable. 

ARQMaxTxCount 5 Maximum transmission count before declaring a permanent 
failure. 

ARQCongClrTime 2 sec When the receiver has indicated congestion, this time must be 
waited before retransmitting the data. 

ARQMaxCongInd 7 After ARQMaxCongInd consecutive transmissions which 
failed due to congestion, the connection should be declared 
permanently dead.  

ARQMaxAckHoldTime 7 sec Time the receiver may delay sending an ACK in order to 
allow consolidated ACKs or piggyback the ACK with a data 
packet. 

 
  



 

  Rec. ITU-T G.9904 (10/2012) 189 

Annex C 
 

Convergence layer constants  

(This annex forms an integral part of this Recommendation.) 

The following TYPE values are defined for use by the convergence layers from clause 9. 

Table C.1 – TYPE value assignments 

TYPE symbolic name Value 

TYPE_CL_IPv4_AR 1 

TYPE_CL_IPv4_UNICAST 2 

TYPE_CL_432 3 

TYPE_CL_MGMT 4 

TYPE_CL_IPv6_AR 5 

TYPE_CL_IPv6_UNICAST 6 

The following LCID values apply for broadcast connections defined by the convergence layers 
from clause 9. 

Table C.2 – LCID value assignments 

LCID Symbolic Name Value MAC scope 

LCI_CL_IPv4_BROADCAST 1 Broadcast. 

LCI_CL_432_BROADCAST 2 Broadcast. 

The following result values are defined for convergence layer primitives. 

Table C.3 – Result values for convergence layer primitives 

Result Description 

Success = 0 The SSCS service was successfully performed. 

Reject = 1 The SSCS service failed because it was rejected by the base node. 

Timeout = 2 A timed out occurs during the SSCS service processing. 

Not Registered = 6 The service node is not currently registered to a subnetwork. 

 

 
  



 

190 Rec. ITU-T G.9904 (10/2012) 

Appendix I 
 

Examples of CRC 

(This appendix does not form an integral part of this Recommendation.) 

The table below gives the CRCs calculated for several specified strings. 

Table I.1 – Examples of CRCs calculated  
for various ASCII strings 

String CRC-8 

'T' 0xab 

"THE" 0xa0 

0x03, 0x73 0x61 

0x01, 0x3f 0xa8 

"123456789" 0xf4 

 
  



 

  Rec. ITU-T G.9904 (10/2012) 191 

Appendix II 
 

Interleaving matrices 

(This appendix does not form an integral part of this Recommendation.) 

Header interleaving matrix: 

 
12 11 10 9 8 7 6 5 4 3 2 1 

24 23 22 21 20 19 18 17 16 15 14 13 

36 35 34 33 32 31 30 29 28 27 26 25 

48 47 46 45 44 43 42 41 40 39 38 37 

60 59 58 57 56 55 54 53 52 51 50 49 

72 71 70 69 68 67 66 65 64 63 62 61 

84 83 82 81 80 79 78 77 76 75 74 73 

 

DBPSK (FEC ON) interleaving matrix: 

 
12 11 10 9 8 7 6 5 4 3 2 1 

24 23 22 21 20 19 18 17 16 15 14 13 

36 35 34 33 32 31 30 29 28 27 26 25 

48 47 46 45 44 43 42 41 40 39 38 37 

60 59 58 57 56 55 54 53 52 51 50 49 

72 71 70 69 68 67 66 65 64 63 62 61 

84 83 82 81 80 79 78 77 76 75 74 73 

96 95 94 93 92 91 90 89 88 87 86 85 

 



 

192 Rec. ITU-T G.9904 (10/2012) 

DQPSK (FEC ON) interleaving matrix: 

 
12 11 10 9 8 7 6 5 4 3 2 1 

24 23 22 21 20 19 18 17 16 15 14 13 

36 35 34 33 32 31 30 29 28 27 26 25 

48 47 46 45 44 43 42 41 40 39 38 37 

60 59 58 57 56 55 54 53 52 51 50 49 

72 71 70 69 68 67 66 65 64 63 62 61 

84 83 82 81 80 79 78 77 76 75 74 73 

96 95 94 93 92 91 90 89 88 87 86 85 

108 107 106 105 104 103 102 101 100 99 98 97 

120 119 118 117 116 115 114 113 112 111 110 109 

132 131 130 129 128 127 126 125 124 123 122 121 

144 143 142 141 140 139 138 137 136 135 134 133 

156 155 154 153 152 151 150 149 148 147 146 145 

168 167 166 165 164 163 162 161 160 159 158 157 

180 179 178 177 176 175 174 173 172 171 170 169 

192 191 190 189 188 187 186 185 184 183 182 181 

 

D8PSK (FEC ON) interleaving matrix: 

 
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 

54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 

72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 

90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 

108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 

126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 

144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 

162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 

180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 

198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 

216 215 214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 

234 233 232 231 230 229 228 227 226 225 224 223 222 221 220 219 218 217 

252 251 250 249 248 247 246 245 244 243 242 241 240 239 238 237 236 235 

270 269 268 267 266 265 264 263 262 261 260 259 258 257 256 255 254 253 

288 287 286 285 284 283 282 281 280 279 278 277 276 275 274 273 272 271 

 



 

 

 
 



 

Printed in Switzerland 
Geneva, 2013 

 

SERIES OF ITU-T RECOMMENDATIONS 

Series A Organization of the work of ITU-T 

Series D General tariff principles 

Series E Overall network operation, telephone service, service operation and human factors 

Series F Non-telephone telecommunication services 

Series G Transmission systems and media, digital systems and networks 

Series H Audiovisual and multimedia systems 

Series I Integrated services digital network 

Series J Cable networks and transmission of television, sound programme and other multimedia signals 

Series K Protection against interference 

Series L Construction, installation and protection of cables and other elements of outside plant 

Series M Telecommunication management, including TMN and network maintenance 

Series N Maintenance: international sound programme and television transmission circuits 

Series O Specifications of measuring equipment 

Series P Terminals and subjective and objective assessment methods 

Series Q Switching and signalling 

Series R Telegraph transmission 

Series S Telegraph services terminal equipment 

Series T Terminals for telematic services 

Series U Telegraph switching 

Series V Data communication over the telephone network 

Series X Data networks, open system communications and security 

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks 

Series Z Languages and general software aspects for telecommunication systems 

  

 


	ITU-T Rec. G.9904 (10/2012) – Narrowband orthogonal frequency division multiplexing power line communication transceivers for PRIME networks
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	4 Abbreviations and acronyms
	5 Conventions
	6 General description
	6.1 General description of the architecture

	7 Physical layer
	7.1 Introduction
	7.2 Overview
	7.3 PHY parameters
	7.4 Preamble, header and payload structure
	7.5 Convolutional encoder
	7.6 Scrambler
	7.7 Interleaver
	7.8 Modulation
	7.9 Electrical specification of the transmitter
	7.10 PHY service specification

	8 Data link layer specifications
	8.1 Overview
	8.2 Addressing
	8.3 MAC functional description
	8.4 MAC PDU format
	8.5 MAC service access point
	8.6 MAC procedures
	8.7 Automatic repeat request (ARQ)

	9 Convergence layer
	9.1 Overview
	9.2 Common part convergence sublayer (CPCS)
	9.3 NULL specific service convergence sublayer (NULL SSCS)
	9.4 IPv4 specific service convergence sublayer (IPv4 SSCS)
	9.5 IEC 61334-4-32 specific service convergence sublayer (IEC 61334-4-32 SSCS)
	9.6 IPv6 service-specific convergence sublayer (IPv6 SSCS)

	10 Management plane
	10.1 Introduction
	10.2 Node management
	10.3 Firmware upgrade
	10.4 Management interface description
	10.5 List of mandatory PIB attributes

	Annex A – EVM and SNR calculation
	Annex B – MAC layer constants
	Annex C – Convergence layer constants
	Appendix I – Examples of CRC
	Appendix II – Interleaving matrices

