

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.709/Y.1331 Amendment 1

(07/2010)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Digital terminal equipments – General SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS

Internet protocol aspects - Transport

Interfaces for the Optical Transport Network (OTN) Amendment 1

Recommendation ITU-T G.709/Y.1331 (2009) – Amendment 1

ITU-T G-SERIES RECOMMENDATIONS

TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100-G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER- TRANSMISSION SYSTEMS	G.200–G.299
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300–G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	G.400–G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G.499
TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS	G.600–G.699
DIGITAL TERMINAL EQUIPMENTS	G.700–G.799
General	G.700-G.709
Coding of voice and audio signals	G.710–G.729
Principal characteristics of primary multiplex equipment	G.730–G.739
Principal characteristics of second order multiplex equipment	G.740-G.749
Principal characteristics of higher order multiplex equipment	G.750–G.759
Principal characteristics of transcoder and digital multiplication equipment	G.760–G.769
Operations, administration and maintenance features of transmission equipment	G.770–G.779
Principal characteristics of multiplexing equipment for the synchronous digital hierarchy	G.780–G.789
Other terminal equipment	G.790–G.799
DIGITAL NETWORKS	G.800–G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900–G.999
MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER- RELATED ASPECTS	G.1000–G.1999
TRANSMISSION MEDIA CHARACTERISTICS	G.6000–G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS	G.7000–G.7999
PACKET OVER TRANSPORT ASPECTS	G.8000-G.8999
ACCESS NETWORKS	G.9000–G.9999

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T G.709/Y.1331

Interfaces for the Optical Transport Network (OTN)

Amendment 1

Summary

Amendment 1 to Recommendation ITU-T G.709/Y.1331 (2009) contains extensions related to the addition of 40GBASE-R and 100GBASE-R client mappings.

History

Edition	Recommendation	Approval	Study Group
1.0	ITU-T G.709/Y.1331	2001-02-09	15
1.1	ITU-T G.709/Y.1331 (2001) Amend. 1	2001-11-29	15
2.0	ITU-T G.709/Y.1331	2003-03-16	15
2.1	ITU-T G.709/Y.1331 (2003) Amend. 1	2003-12-14	15
2.2	ITU-T G.709/Y.1331 (2003) Cor. 1	2006-12-14	15
2.3	ITU-T G.709/Y.1331 (2003) Amend. 2	2007-11-22	15
2.4	ITU-T G.709/Y.1331 (2003) Cor.2	2009-01-13	15
2.5	ITU-T G.709/Y.1331 (2003) Amend. 3	2009-04-22	15
3.0	ITU-T G.709/Y.1331	2009-12-22	15
3.1	ITU-T G.709/Y.1331 (2009) Cor. 1	2010-07-29	15
3.2	ITU-T G.709/Y.1331 (2009) Amend. 1	2010-07-29	15

i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at <u>http://www.itu.int/ITU-T/ipr/</u>.

© ITU 2011

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

CONTENTS

			Page
1)	Introdu	action	1
2)	Additio	ons	1
	2.1)	Clause 2, References	1
	2.2)	Clause 15.9.2.1.1	1
	2.3)	Clause 17.7.4	2
	2.4)	Clause 17.7.4.1	3
	2.5)	Clause 17.7.5	4
	2.6)	Appendix V	6
	2.7)	Appendix VI	6
	2.8)	Appendix VII	6
	2.9)	Appendix VIII	7
	2.10)	Appendix IX	7
	2.11)	Appendix X	8
	2.12)	Appendix XI	8
	2.13)	Appendix XII	8
	2.14)	Bibliography	8

Recommendation ITU-T G.709/Y.1331

Interfaces for the Optical Transport Network (OTN)

Amendment 1

1) Introduction

This amendment contains extensions to the third edition (12/2009) of Recommendation ITU-T G.709/Y.1331, related to the addition of:

- 40GBASE-R and 100GBASE-R client mappings (clauses 2, 15.9.2.1.1, 17.7.4, 17.7.4.1, 17.7.5, 17.7.5.1, Annex E, Annex F, Appendix VII, and Appendix VIII).

2) Additions

2.1) Clause 2, References

Insert the following reference:

2.2) Clause 15.9.2.1.1

Modify Table 15-8 as follows:

MSB 1 2 3 4	LSB 5678	Hex code (Note 1)	Interpretation	
0000	0001	01	Experimental mapping (Note 3)	
0000	0010	02	Asynchronous CBR mapping, see clause 17.2	
0 0 0 0	0011	03	Bit synchronous CBR mapping, see clause 17.2	
0 0 0 0	0100	04	ATM mapping, see clause 17.3	
0 0 0 0	0101	05	GFP mapping, see clause 17.4	
0 0 0 0	0110	06	Virtual Concatenated signal, see clause 18 (Note 5)	
0000	0111	07	Virtual Concatenated signal, see clause 18 (Note 5) PCS codeword transparent Ethernet mapping: • 1000BASE-X into OPU0-mapping, see clauses 17.7.1 and 17.7.1.1 • 40GBASE-R into OPU3, see clauses 17.7.4 and 17.7.4.1 • 100GBASE-R into OPU4, see clauses 17.7.5 and 17.7.5.1	
0 0 0 0	1000	08	FC-1200 into OPU2e mapping, see clause 17.8.2	
0000	1 0 0 1	09	GFP mapping into Extended OPU2 payload, see clause 17.4.1 (Note 6)	

 Table 15-8 – Payload type code points

[[]IEEE 802.3ba]IEEE Std 802.3ba-2010, Information Technology – Local and metropolitan
area networks – Specific requirements – Part 3: Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) Access Method and Physical Layer
Specifications – Amendment 4: Media Access Control Parameters, Physical
Layers and Management Parameters for 40 Gb/s and 100 Gb/s Operation.

MSB 1 2 3 4	LSB 5678	Hex code (Note 1)	Interpretation	
0000	1010	0A	STM-1 mapping into O D PU0, see clause 17.7.1	
0000	1011	0B	STM-4 mapping into O D PU0, see clause 17.7.1	
0000	1 1 0 0	0C	FC-100 mapping into OPDU0, see clause 17.7.1	
0000	1 1 0 1	0D	FC-200 mapping into ODPU1, see clause 17.7.2	
0000	1110	0E	FC-400 mapping into ODPUflex, see clause 17.9	
0000	1111	0F	FC-800 mapping into O <u>DP</u> Uflex, see clause 17.9	
0001	0000	10	Bit stream with octet timing mapping, see clause 17.6.1	
0001	0 0 0 1	11	Bit stream without octet timing mapping, see clause 17.6.2	
0010	0 0 0 0	20	ODU multiplex structure supporting ODTUjk only, see clause 19 (AMP only)	
0010	0 0 0 1	21	ODU multiplex structure supporting ODTUk.ts or ODTUk.ts and ODTUjk, see clause 19 (GMP capable) (Note 7)	
0101	0101	55	Not available (Note 2)	
0110	0110	66	Not available (Note 2)	
1000	x x x x	80-8F	Reserved codes for proprietary use (Note 4)	
1111	1 1 0 1	FD	NULL test signal mapping, see clause 17.5.1	
1111	1110	FE	PRBS test signal mapping, see clause 17.5.2	
1111	1111	FF	Not available (Note 2)	

Table 15-8 – Payload type code points

2.3) Clause 17.7.4

Modify Tables 17-10A and 17-10B in clause 17.7.4 as follows:

Client signal	Nominal bit rate (kbit/s)	Bit rate tolerance (ppm)	Floor C _{256, min} (Note)	Minimum c ₂₅₆	Nominal c ₂₅₆	Maximum c ₂₅₆	Ceiling C _{256, max} (Note)
<u>Transcoded</u> <u>40GBASE-R</u> (see clause <u>17.7.4.1)</u> For further study	$\frac{1027/1024 \times}{64/66 \times}$ <u>41 250 000</u>	<u>±100</u>	<u>475</u>	<u>475.548</u>	<u>475.605</u>	<u>475.662</u>	<u>476</u>

<u>NOTE – Floor C_{m, min} (m = 256) and Ceiling C_{m, max} (m = 256) values represent the boundaries of client/OPU ppm offset combinations (i.e., min. client/max. OPU and max. client/min. OPU). In steady state, given instances of client/OPU offset combinations should not result in generated C_m values throughout this range but rather should be within as small a range as possible. Under transient ppm offset conditions (e.g., AIS to normal signal), it is possible that C_m values outside the range C_{m, max} may be generated and a GMP demapper should be tolerant of such occurrences. Refer to Annex D for a general description of the GMP principles.</u>

Table 17-10B – C_n (n = 8 or 1) for CBR clients close to 40.149G into OPU3

Client signal	Nominal bit rate (kbit/s)	Bit rate tolerance (ppm)	Floor C _{8, min} (Note)	Minimum c ₈	Nominal c ₈	Maximum c ₈	Ceiling C _{8, max} (Note)
For further study <u>Transcoded</u> <u>40GBASE-R</u> (see clause <u>17.7.4.1)</u>	<u>1027/1024 ×</u> <u>64/66 ×</u> <u>41 250 000</u>	<u>±100</u>	<u>15217</u>	<u>15217.529</u>	<u>15219.355</u>	<u>15221.181</u>	<u>15222</u>
			Floor C _{1, min}	Minimum	Nominal	Maximum	Ceiling C _{1, max}
			<u>(Note)</u>	c ₁	c ₁	c ₁	<u>(Note)</u>
For further study			(Note)	c ₁	c ₁	c ₁	(Note)

Table 17-11 – Replacement signal for CBR clients

Client signal	Replacement signal	Bit rate tolerance (ppm)
For further study 40GBASE-R	Continuous 40GBASE-R local fault sequence ordered sets with four PCS lane alignment markers inserted after each 16383 × 4 sixty-six-bit blocks	<u>±100</u>

<u>A 40GBASE-R local fault sequence ordered set is a 66B control block (sync header = 10) with a block type of 0x4B, an "O" code of 0x00, a value of 0x01 to indicate "local fault" in lane 3, and all of the other octets (before scrambling) equal to 0x00.</u>

2.4) Clause 17.7.4.1

Modify clause 17.7.4.1 as follows:

17.7.4.1 40GBASE-R<u>multi-lane processing and</u> transcoding

For further study.

NOTE Refer to Annex B, Appendix VII and Appendix VIII for further information. The 40GBASE-R client signal (64B/66B encoded, nominal aggregate bit-rate of 41 250 000 kbit/s, ± 100 ppm) is recovered using the process described in Annex E for parallel 64B/66B interfaces. The lane(s) of the physical interface are bit-disinterleaved, if necessary, into four streams of 10 312 500 kbit/s. 66B block lock and lane alignment marker lock are acquired on each PCS lane, allowing the 66B blocks to be deskewed and reordered.

The resulting sequence is descrambled and transcoded according to the process described in Annex B into 513B code blocks. Each pair of two 513B code blocks is combined according to the process described in Annex F into a 1027B block, resulting in a bit stream of $1027/1024 \times 40\ 000\ 000\ kbit/s\ \pm100\ ppm\ (40\ 117\ 187.500\ kbit/s\ \pm100\ ppm)$. This process is referred to as "timing transparent transcoding (TTT)", mapping a bit stream which is $1027/1026\ times$ the bit-rate of the aggregate Ethernet signal.

3

In the mapper, the received Ethernet PCS lane BIP may be compared with the expected Ethernet PCS lane BIP as a non-intrusive monitor or section monitor.

The demapper will either insert a compensated Ethernet PCS lane BIP (for path monitoring) or a newly computed PCS lane BIP (for section monitoring) as described in Annex E.

For 40GBASE-R client mapping, 1-bit timing information (C_1) is not needed.

The demapper will recover from the output of the GMP processor 1027B block lock, and then transdecode each 1027B block to sixteen 66B blocks as described in Annex E. Transdecoded lane alignment markers are constructed with either a compensated BIP-8 or newly calculated BIP-8 depending on whether the interface is provisioned for path or section monitoring. The 66B blocks are then re-distributed round-robin to PCS lanes. If the number of PCS lanes is greater than the number of physical lanes of the egress interface, the appropriate numbers of PCS lanes are bit-multiplexed onto the physical lanes of the egress interface.

2.5) Clause 17.7.5

a) Modify Tables 17-12A and 17-12B in clause 17.7.5 as follows:

Client signal	Nominal bit rate (kbit/s)	Bit rate tolerance (ppm)	Floor C _{640, min} <u>(Note)</u>	Minimum c ₆₄₀	Nominal c ₆₄₀	Maximum c ₆₄₀	Ceiling C _{640, max} (Note)
For further study 100GBASE-R (see clause 17.7.5.1)	<u>103 125 000</u>	<u>±100</u>	<u>188</u>	<u>188.131</u>	<u>188.154</u>	<u>188.177</u>	<u>189</u>
$\frac{17.1.5.11}{\text{NOTE} - \text{Floor } C_{\text{m, min}} \text{ (m} = 640 \text{) and Ceiling } C_{\text{m, max}} \text{ (m} = 640 \text{) values represent the boundaries of client/OPU ppm}}{offset combinations (i.e., min. client/max. OPU and max. client/min. OPU). In steady state, given instances of client/OPU offset combinations should not result in generated C_m values throughout this range but rather should be within as small a range as possible. Under transient ppm offset conditions (e.g., AIS to normal signal), it is possible that C_m values outside the range C_m, min. to C_m, max may be generated and a GMP demapper should be tolerant of such occurrences. Refer to Annex D for a general description of the GMP principles.$							

Table $17-12A - C_m$ (m = 640) for CBR clients close to 104.134G into OPU4

Table $17-12B - C_n$ (n = 8 or 1) for CBR clients close to 104.134G into OPU4

Client signal	Nominal bit rate (kbit/s)	Bit rate tolerance (ppm)	Floor C _{8, min} (Note)	Minimum c ₈	Nominal c ₈	Maximum c ₈	Ceiling C _{8, max} (Note)
For further study100GBAS <u>E-R</u> (see clause 17.7.5.1)	103 125 000	<u>±100</u>	<u>15050</u>	<u>15050.518</u>	15052.324	<u>15054.131</u>	<u>15055</u>
			Floor C _{1, min} (Note)	Minimum c ₁	Nominal c ₁	Maximum c ₁	Ceiling C _{1, max} (Note)
For further study							
$\frac{\text{NOTE} - \text{Floor } C_{n, \min} (n = 8, 1) \text{ and } \text{Ceiling } C_{n, \max} (n = 8, 1) \text{ values represent the boundaries of client/OPU ppm offset}}{\text{combinations } (i.e., \min. \text{ client/max. } OPU \text{ and } \max. \text{ client/min. } OPU). In steady state, given instances of client/OPU offset}{\text{combinations should not result in generated } C_n \text{ values throughout this range but rather should be within as small a range}}{\text{as possible. Under transient ppm offset conditions (e.g., AIS to normal signal), it is possible that C_n \text{ values outside the}}{\text{range } C_{n, \min} \text{ to } C_{n, \max} \text{ may be generated and a GMP demapper should be tolerant of such occurrences. Refer to Annex D}}{\text{for a general description of the GMP principles.}}}$							

Table 17-13 – Replacement signal for CBR clients

Client signal	Replacement signal	Bit rate tolerance (ppm)
For further study 100GBASE-R (see clause 17.7.5.1)	Continuous 100GBASE-R local fault sequence ordered sets with 20 PCS lane alignment markers inserted after each 16383 × 20 sixty-six-bit blocks	<u>±100</u>

A 100GBASE-R local fault sequence ordered set is a 66B control block (sync header = 10) with a block type of 0x4B, an "O" code of 0x00, a value of 0x01 to indicate "local fault" in lane 3, and all of the other octets (before scrambling) equal to 0x00.

b) Add new clause 17.7.5.1 as follows:

17.7.5.1 100GBASE-R multi-lane processing

The 100GBASE-R client signal (64B/66B encoded, nominal aggregate bit-rate of 103 125 000 kbit/s \pm 100 ppm) is recovered using the process described in Annex E for parallel 64B/66B interfaces. The lane(s) of the physical interface are bit-disinterleaved, if necessary, into twenty streams of 5 161 250 kbit/s. 66B block lock and lane alignment marker lock are acquired on each PCS lane, allowing the 66B blocks to be deskewed and reordered.

In the mapper, the received Ethernet PCS lane BIP may be compared with the expected Ethernet PCS lane BIP as a non-intrusive monitor or section monitor.

The demapper will either pass through the PCS lane BIP from the ingress (for path monitoring), or insert a newly computed PCS lane BIP (for section monitoring) as described in Annex E.

For 100GBASE-R client mapping, 1-bit timing information (C₁) is not needed.

5

The demapper will recover from the output of the GMP processor 64B/66B block lock per the state diagram in Figure 49-12 of [IEEE 802.3] or Figure 82-10 of [IEEE 802.3ba]. If the interface is provisioned to use BIP-8 for section monitoring, BIP-8 is recalculated in each lane alignment marker. The 66B blocks are re-distributed round-robin to PCS lanes. If the number of PCS lanes is greater than the number of physical lanes of the egress interface, the appropriate numbers of PCS lanes are bit-multiplexed onto the physical lanes of the egress interface.

2.6) Appendix V

Delete existant Appendix V.

2.7) Appendix VI

Modify Appendix VI as follows:

Change this appendix to Appendix V, renumbering all figures and references to this appendix.

2.8) Appendix VII

Modify Appendix VII as follows:

- *a)* Change this appendix to Annex E, renumbering all clauses, figures, tables and references to this appendix, as necessary.
- *b) Modify the first paragraph in clause VII.1 as follows:*

IEEE 40GBASE-R and 100GBASE-R interfaces currently being specified by thein [IEEE P802 802.3ba]-2010 task force will beare parallel interfaces intended for short-reach (up to 40 km) interconnection of Ethernet equipment.

- *c) Modify the second and the third dash items in clause VII.3 as follows:*
- recover 64B/66B block lock per the state diagram in Figure 49-12 of [IEEE 802.3] (or Figure 82-10 of [b-IEEE 802.3ba]-D2.2);
- recover lane alignment marker framing on each PCS lane per the state diagram in Figure <u>82-11 of [b-IEEE 802.3ba]-D2.2</u>.
- *d) Modify the last paragraph in clause VII.3 as follows:*

After 64B/66B block lock recovery per the state diagram in Figure 49-12 of [IEEE 802.3] (or Figure 82-10 of [b-IEEE 802.3ba]-D2.2), these 66B blocks are re-distributed to PCS lanes at the egress interface. The 66B blocks (including PCS lane alignment markers) resulting from the decoding process are distributed round-robin to PCS lanes. If the number of PCS lanes is greater than the number of physical lanes of the egress interface, the appropriate numbers of PCS lanes are bit-multiplexed onto the physical lanes of the egress interface.

e) Modify the first paragraph in clause VII.3.1 as follows:

PCS lane alignment markers have the values shown in Table VII.1 for 40GBASE-R signals which use PCS lane numbers 0-3. Note that these values will need to be aligned with the published IEEE 802.3ba amendment once it is approved.

f) Modify the first paragraph in clause VII.3.2 as follows:

PCS lane alignment markers have the values shown in Table VII.2 for 100GBASE-R signals which use PCS lane numbers 0-19. Note that these values will need to be aligned with the published IEEE 802.3ba amendment once it is approved.

In case of end-to-end path monitoring the lane alignment markers transported over the OPU4 are distributed unchanged to the PCS lanes. In the case of section monitoring the lane alignment markers are located as defined in state diagram in Figure 82-11 of [b-IEEE 802.3ba] D2.2 and the

6 Rec. ITU-T G.709/Y.1331 (2009)/Amd.1 (07/2010)

BIP-8 is newly calculated for each PCS lane as defined in clause 82.2.8 of [b-IEEE 802.3ba]-D2.2. This value overwrites BIP₃ and the complement overwrites BIP₇.

g) Modify the sixth paragraph in clause VII.4 as follows:

It will then be up to the Ethernet receiver to handle bit errors within the OTN section that might have altered the PCS alignment marker encodings (for details refer to clause 82.2.198.3 and Figure 82-11 in [b-IEEE 802.3ba]).

h) Modify the eighth, ninth and tenth paragraphs in clause VII.4.1 as follows:

The OTN BIP-8 is calculated similar to the PCS BIP-8 as described in clause 82.2.8 of [b-IEEE 802.3ba] D2.2-with the exception that the calculation will be done over unscrambled PCS lane data, the original received lane alignment marker and before transcoding. Figure VII.2 shows the byte location of the OTN BIP-8 in the transcoded lane marker.

The transcoded lane marker is transmitted together with the transcoded data blocks over the OTN section as defined in Annex B. At the OTN egress after transdecoding and before scrambling, the ingress alignment marker is recreated using M_0 , M_1 , M_2 and ingress BIP₃ of the transcoded alignment marker followed by the bit-wise inversion of these bytes. This recreated alignment marker together with the transdecoded and unscrambled data blocks is used to calculate the expected OTN BIP-8 for each PCS lane (refer to clause 82.2.8 of [b-IEEE 802.3ba]-D2.2). The expected value will be XORed with the received OTN BIP-8. This error mask will have a "1" for each bit of the OTN BIP-8 which is wrong, and a "0" for each bit which is correct.

The egress BIP₃ for each PCS lane is calculated over the transdecoded and scrambled data blocks including the transdecoded alignment marker (refer to clause VII.4) following the process depicted in clause 82.2.8 of [b-IEEE 802.3ba]-D2.2. This is the value that is transmitted in case of section monitoring.

i) Modify the last paragraph in clause VII.4.2 as follows:

An invalid 66B block will be converted to an error control block before transcoding or direct adaptation. An invalid 66B block is one which does not have a sync header of "01" or "10", or one which has a sync header of "10", is not a valid PCS lane alignment marker and has a control block type field which does not appear in Figure B.2-(and for 40GBASE-R and 100GBASE-R, is not a valid PCS lane alignment marker) or has one of the values 0x2d, 0x33, 0x66, or 0x55 which are not used for 40GBASE-R or 100GBASE-R. An error control block has sync bits of "10", a block type code of 0x1e, and 8 seven-bit/E/error control characters. This will prevent the Ethernet receiver from interpreting a sequence of bits containing this error as a valid packet.

2.9) Appendix VIII

Modify Appendix VIII as follows:

Change this appendix to Annex F, renumbering all clauses, figures, tables and references to this appendix, as necessary.

2.10) Appendix IX

Modify Appendix IX as follows:

Change this appendix to Appendix VI, renumbering all tables and references to this appendix, as necessary.

2.11) Appendix X

Modify Appendix X as follows:

- *a)* Change this appendix to Appendix VII, renumbering all tables and references to this appendix, as necessary.
- *b) Modify the first and second paragraphs in Appendix X as follows:*

The purpose of the OTM-0.4v4 interface, as defined in 8.1.3, is to enable the re-use of modules developed for Ethernet 100GBASE-LR4 or 100GBASE-ER4 interfaces. These modules have corresponding optical specifications for OTU4 interfaces with the optical parameters as specified for the application codes 4I1-9D1F and 4L1-9C1F, respectively, in [ITU-T G.959.1]. These modules have a four-lane WDM interface to and from a transmit/receive pair of G.652 optical fibres, and connect to the host board via a 10-lane electrical interface. The conversion between 10 and 4 lanes is performed using an IEEE 802.3ba PMA sublayer as specified in [b-IEEE 802.3ba] D2.2-clause 83. The specification of the 10-lane electrical chip-to-module interface (CAUI) is found in [b-IEEE 802.3ba] D2.2-Annex 83B. The application of the OTL4.10 interface is illustrated in Figure X.1:

Each OTL4.10 lane carries two bit-multiplexed logical lanes of an OTU4 as described in Annex C. The logical lane format has been chosen so that the [b-IEEE 802.3ba] 10:4 PMA (gearbox) will convert the OTU4 signal between a format of 10 lanes of OTL4.10 and four lanes of OTL4.4. Each OTL4.4 lane carries five bit-multiplexed logical lanes of an OTU4 as described in Annex C.

2.12) Appendix XI

Modify Appendix XI as follows:

Change this appendix to Appendix VIII, renumbering all tables and references to this appendix, as necessary.

2.13) Appendix XII

Modify Appendix XII as follows:

Change this appendix to Appendix IX, renumbering all tables and references to this appendix, as necessary.

2.14) Bibliography

Modify the Bibliography as follows:

[b-IEEE 802.3ba] IEEE 802.3 ba, 40 Gb/s and 100 Gb/s Ethernet TaskForce.

ITU-T Y-SERIES RECOMMENDATIONS

GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS

GLOBAL INFORMATION INFRASTRUCTURE	
General	Y.100-Y.199
Services, applications and middleware	Y.200-Y.299
Network aspects	Y.300-Y.399
Interfaces and protocols	Y.400-Y.499
Numbering, addressing and naming	Y.500-Y.599
Operation, administration and maintenance	Y.600-Y.699
Security	Y.700-Y.799
Performances	Y.800-Y.899
INTERNET PROTOCOL ASPECTS	
General	Y.1000-Y.1099
Services and applications	Y.1100-Y.1199
Architecture, access, network capabilities and resource management	Y.1200-Y.1299
Transport	Y.1300-Y.1399
Interworking	Y.1400-Y.1499
Quality of service and network performance	Y.1500-Y.1599
Signalling	Y.1600-Y.1699
Operation, administration and maintenance	Y.1700-Y.1799
Charging	Y.1800-Y.1899
IPTV over NGN	Y.1900-Y.1999
NEXT GENERATION NETWORKS	
Frameworks and functional architecture models	Y.2000-Y.2099
Quality of Service and performance	Y.2100-Y.2199
Service aspects: Service capabilities and service architecture	Y.2200-Y.2249
Service aspects: Interoperability of services and networks in NGN	Y.2250-Y.2299
Numbering, naming and addressing	Y.2300-Y.2399
Network management	Y.2400-Y.2499
Network control architectures and protocols	Y.2500-Y.2599
Future networks	Y.2600-Y.2699
Security	Y.2700-Y.2799
Generalized mobility	Y.2800-Y.2899
Carrier grade open environment	Y.2900-Y.2999

For further details, please refer to the list of ITU-T Recommendations.

SERIES OF ITU-T RECOMMENDATIONS

- Series A Organization of the work of ITU-T
- Series D General tariff principles
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Construction, installation and protection of cables and other elements of outside plant
- Series M Telecommunication management, including TMN and network maintenance
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Terminals and subjective and objective assessment methods
- Series Q Switching and signalling
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks, open system communications and security
- Series Y Global information infrastructure, Internet protocol aspects and next-generation networks
- Series Z Languages and general software aspects for telecommunication systems