
INTERNATIONAL TELECOMMUNICATION UNION

)45
4 :����
TELECOMMUNICATION (03/93)
STANDARDIZATION SECTOR
OF ITU

-!.
-!#().%��,!.'5!'%

$!4!��/2)%.4%$��(5-!.
-!#().%
).4%2&!#%��30%#)&)#!4)/.��4%#(.)15%��
3#/0%���!002/!#(��!.$
2%&%2%.#%�-/$%,

)45
4��Recommendation��:����

(Previously “CCITT Recommendation”)

FOREWORD

The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the International Telecom-
munication Union. The ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, established the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

ITU-T Recommendation Z.352 was prepared by the ITU-T Study Group I (1988-1993) and was approved by the WTSC
(Helsinki, March 1-12, 1993).

NOTES

1 As a consequence of a reform process within the International Telecommunication Union (ITU), the CCITT
ceased to exist as of 28 February 1993. In its place, the ITU Telecommunication Standardization Sector (ITU-T) was
created as of 1 March 1993. Similarly, in this reform process, the CCIR and the IFRB have been replaced by the
Radiocommunication Sector.

In order not to delay publication of this Recommendation, no change has been made in the text to references containing
the acronyms “CCITT, CCIR or IFRB” or their associated entities such as Plenary Assembly, Secretariat, etc. Future
editions of this Recommendation will contain the proper terminology related to the new ITU structure.

2 In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

 ITU 1994

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Recommendation Z.352 (03/93) i

CONTENTS

Page

1 Scope of specification technique.. 1

2 Approach .. 1
2.1 Data versus functions.. 1
2.2 Consequences ... 1
2.3 Data design ... 3

3 Reference model... 3
3.1 Overview .. 3
3.2 Scope .. 4
3.3 Subdivision of the external layer .. 6

Annex A – Guidelines for HMI developers ... 6
A.1 Introduction .. 6
A.2 Method.. 7
A.3 Data design ... 10

Appendix I – Additional guidelines for data designs ... 12
I.1 General.. 12
I.2 Design of classes... 12
I.3 Design of identifiers ... 16
I.4 Derived data and level of detail .. 21

ii Recommendation Z.352 (03/93)

SUMMARY

This Recommendation provides a framework for specifying harmonized HMIs.

The Recommendation points out the importance of identifying the right application area and the great impact this choice
will have on the final design of the HMI. Therefore, a data oriented approach, rather than a functional approach, is
proposed.

A three-layered reference model for HMI is introduced and explained. This reference model allows the centralization of
data definitions for HMI and derivation of external presentations in a harmonized manner.

Annex A provides guidelines for how to carry out development of HMIs in accordance with the chosen reference model
and formalism. The development method is not a waterfall-type development process. This annex also provides a
framework for design of data seen at the HMI.

Appendix I provides additional guidelines for data design.

The mapping between the HMI reference model and the TMN functional architecture is under study.

Areas that this Recommendation has relations with and impact on, include:

– mapping to TMN specifications,

– software standardization.

Recommendation Z.352 (03/93) 1

Recommendation Z.352
Recommendation Z.352 (03/93)

DATA ORIENTED HUMAN-MACHINE INTERFACE
SPECIFICATION TECHNIQUE – SCOPE, APPROACH AND REFERENCE MODEL

(Helsinki, 1993)

1 Scope of specification technique

The objective of this specification technique is to specify the data seen at the HMI and the grammar for these data. It is
not the objective to define how the telecommunication networks operate internally.

The specification of the data is used by the end users prior to the implementation:

– to assess what an application is about;

– to ensure that its grammar is correctly understood;

– to ensure that its terminology is well chosen; and

– as a central part of a contract for the implementations.

The specifications should also be applicable as a means for:

– user guidance to the permissible and/or mandatory structure of the data and the explanations of the data;

– accessing the “instances” of the data for that application.

From this it follows that the specifications should be readable by and applicable to both designers and end users.

The designers can be both HMI designers and software designers. The end users can be both OA&M operators inside the
Administrations and external customers administering their own services.

2 Approach

2.1 Data versus functions

Functional specifications identify and decompose the tasks being performed in different functional areas. This
decomposition of activities does not separate the objects that the functions apply to and how these objects are
manipulated.

Data oriented approaches focus on identifying the data to which the functions apply, independently of the functions
themselves. The means of manipulation on the data can most often be defined in a generic way – independently of the
different types of data which are identified. It is very important to recognise that the two approaches tend to study two
different universes of discourses (see Figure 1). Function oriented approaches study and decompose the tasks going to be
performed in an organization. Data oriented approaches study and decompose the application area being administered by
the organization. As a result of the data oriented approach a more coherent view of data is likely to be available for
presentation to the human user.

2.2 Consequences

The implications of choosing one out of the two approaches are profound. The functions or tasks of any organization can
change more rapidly than the data manipulated by these functions or tasks.

The function oriented approaches tend to analyse an old or hypothetical information system. This unavoidably conserves
both existing characteristics and the designers’ preconceptions into the design of the future system.

This observation has several further implications.

2 Recommendation Z.352 (03/93)

T1005160-92/d01

Data oriented
approach

Function oriented
approach

Application area,
e.g. telecommunication

network, etc.

Functions or tasks
of existing or hypothetical

OA&M systems

Data design Function design

Enforcement of data
consistency and the
management of HMI

HMI functions

Data
definitions
and data
instances

HMI

Data base

HMI

NOTES

1 In the function oriented approach the analysts study and decompose the tasks performed by the organization.
For each task the human-machine interfaces are identified and specified. This is illustrated by the arrow labelled
“function design” in the right hand part of the figure. The final function oriented system is implemented by
developing one process for each individual HMI function, using one or several common data bases.

2 In the data oriented approach the analysts study and design common data definitions for the entire information
system. This is illustrated by the arrow labelled “data design” in the left hand part of the figure. The processes that
enforce consistency of the data can be made common for all data. The HMI does not have to be separated for each
task, but can be common for several tasks. Note that the two approaches tend to study two different universes of
discourse, as depicted by the two ovals in the upper part of the figure.

FIGURE 1/Z.352

Alternative approaches to HMI development

Administer

Is administered by

FIG

UE 1/Z.352...[D01] = 17.5 CM (118%)

In the function oriented approaches the sequences of tasks to be performed are frozen into the implemented system;
while the data oriented approaches provide more flexibility for changes in the sequences of tasks.

Both training and usage of systems designed according to the two different approaches tend to be very different. In the
function oriented designs the users learn and use the different functions of the system and learn only implicitly about the
universe of discourse, i.e. application area, and the structure of the data being manipulated by the functions. In the data
oriented approaches the emphasis is put on understanding the application area being administered by the system and
defined by the structure of the data of the system; the training on tasks to be performed is given less priority.

Recommendation Z.352 (03/93) 3

While function analysis can help to identify needs for data, function analysis does not help to identify data for additional
functions, for new users or to identify unrelated data. Therefore, function analysis can constrain rather than support
innovation and the questioning of existing data definitions. While the decomposition of functions can be an aid to the
identification of needs for data, this decomposition is not of relevance in the final documentation of the data.
Nevertheless, it may be useful to record the functional needs and motivation which led to the identification of data along
with the definition of those data.

In the function oriented approaches the data are identified at the lowest level of decomposition of the functions. The
identified data can be inputs to or outputs from the different functions. The identification of data separately in each
function does not address and question the overall structure, design and definition of the data. Hence, the data definitions
can continue to exist unharmonized and defined in such a way that they are unknowingly inefficient in use to the end
users.

In the function oriented approaches separate design phases address the grouping of data into logical file structures,
appropriate for the functions to be performed. These design phases take into account the access to and manipulation of
data, but are usually not capable of reconsidering the overall design of data for that application.

2.3 Data design

In the data oriented approaches the data are identified independently of functions. The analysts and designers:

– observe the application area being administered by the organization;

– design data definitions for that application area.

The primary objective of the data oriented approaches is to design efficient data definitions for the chosen application
area. For the design of data, a deep knowledge of the application area being administered is required and must be
acquired.

The data definitions are important, because they can help the organization understand and perceive its functions and how
it can perform its tasks.

3 Reference model

3.1 Overview

The data oriented approach allows for partitioning all HMI specifications and all software into a layered architecture:

– The external layer handles the presentation and manipulation of data. It also handles mapping to and
subsetting of the application data.

– The application layer is that layer of the HMI reference model which is concerned with the definition of
data and their behaviour.

– The internal layer is outside the scope of HMI. The layer is supposed to take care of the internal storage,
accessing, implementation and communication of data and their behaviour.

Each layer of the layered architecture is partitioned into schemata, processes and populations. Data of each layer are
mapped to data of adjacent layers only. A schema contains the data definitions, including constraints and derivation rules
for the corresponding population data. A population contains the data instances which are enforced by a process
according to the rules expressed in a corresponding schema. Only some aspects of the populations [HMI(s) and Data
base(s)] are depicted in Figure 2. A process implements the enforcement of the rules found in a schema on the data
instances in a corresponding population.

The application layer is a centralized resource of application data and their behaviour. The specification of the common
terminology and grammar of all HMI data is not dispersed into several external functions, but is non-redundantly defined
in the application schema.

4 Recommendation Z.352 (03/93)

T1005170-92/d02

HMI(s) External
processes

External
schemata

Application
schema

Internal
schemata

Application
process

Internal
processes Data

base(s)

External
layer

Application
layer

Internal
layer

Communication

Mapping Mapping

FIGURE 2/Z.352

The three-layered architecture

FIGURE 2/Z.352...[D02] = 5 CM (118%)

3.2 Scope

The scope of the reference model of the HMI work is illustrated in Figure 3. The three-layered architecture is used only
to define and illustrate the scope of the HMI and is not intended to impose restriction on the implementation.

The three layers are:

– the HMI external layer;

– the HMI application layer;

– the HMI internal layer.

The HMI application layer is controlled by one application schema, being a centralized resource, containing the
specification of the structure and the dynamic behaviour of all HMI data.

The HMI external layer can contain several external schemata. The external schemata specify the detailed concrete
syntaxes (layout) at the HMI and the access rights for each presentation.

The mappings between the application schema and the external schemata state the chosen subsetting and derivation for
each presentation.

The internal layer is outside the scope of HMI. The layer is supposed to take care of the internal storage, accessing,
implementation and communication of data and their behaviour.

The end users primarily use (the presentation of) HMI population data (instances), according to the external schema
specifications.

In order to know which presentations are available, the end users need access to the external schemata and their contents.

However, the end users also need access to the definition of the data, their behaviour and interrelations. This information
is provided from the application schema.

The end users do not normally need access to the internal aspects of the systems. The scope of the HMI work is therefore
defined as consisting of the presentation and manipulation of:

– the HMI population data;

– the HMI external schemata;

– the HMI application schema.

The end users’ requirements on the syntax and behaviour of the presentation of the HMI population data give requi-
rements for the (presentation of the) external schemata. The (presentation of the) external schemata give requirements
for the (presentation of the) application schema, which must be capable of specifying (the union of all) HMIs.

Recommendation Z.352 (03/93) 5

T1007640-93/d03

NOTES

1 The scope of HMI is illustrated inside the upper rectangle. In addition to the population data, the scope
of HMI is shown to include the presentation of both the specifications in the external schemata (for the
presentation of the HMI population data) and the common specifications in the application schema (for the
structure and behaviour of the HMI population data).

2 The internal form and storage of data are shown in the bottom rectangle. The end users do not need to
access to the internal form of the data.

3 The screen layouts and partitioning into windows are examples, illustrating the scope of HMI only,
and are not intended to illustrate existing or to impose future recommendations. The screen can contain
graphics as well, but that is not illustrated. Also, the database and the exchange are examples only.

4 Within the rectangles depicting the layers the small parallelograms represent schemata and the small
squares represent processes. The two-way arrows represent population data flowing both ways.

FIGURE 3/Z.352

Scope of reference model

Scope of HMI Subscriber
O. TURAN
Tel. No.

Equipment
Year Colour

908016
908017

1972
1967
1967

B
R
R

Subscriber
Name
Tel. No.

Tel. No.

(Suppressed)

No.

Equipment
Year
Colour

Subscriber
Name
Tel. No.

(1,1)

No.
Equipment

Year (0,1)
Colour

Tel. No.

(1,1)

Presentation of
HMI population data
(instances)

Presentation of
HMI external schemata
(rules)

Presentation of
HMI application schema
(rules)

HMI external layer

HMI application layer

HMI internal layer

Database Exchange
Internal form of
HMI population data
(instances)

(Suppressed)

FIGURE 3/Z.352...[D03] = 21 CM PAGE PLEINE (118%)

6 Recommendation Z.352 (03/93)

3.3 Subdivision of the external layer

The external schema is concerned with the specification of data at the HMI for a specific presentation. A subdivision of
the external schema is provided as follows (see Figure 4):

– the contents schema specifies the structure of the selected data and their relationships for a specific
presentation;

– the layout schema specifies the way in which the data are to be presented to the human user.

The contents of the schemata and the mappings between the schemata provide specifications from the human (designer’s
and user’s) point of view.

These contents and mappings state nothing about the final implementation of the system. For example, all the
specifications can be be compiled into one single functional block.

T1005190-92/d04

Layout
schemata

Contents
schemata

Application
schema

Internal
schemata

HMI(s) Layout
processes

Contents
processes

Application
process

Internal
processes Data

base(s)

External schemata

External processes

FIGURE 4/Z.352

Detailing of the external schemata

FIGURE 4/Z.352...[D04] = 5.5 CM (118%)

Annex A

Guidelines for HMI developers

(This annex forms an integral part of this Recommendation)

A.1 Introduction

This annex contains:

– subclause A.2: Method;

– subclause A.3: Data design.

Recommendation Z.352 (03/93) 7

A.2 Method

A.2.1 Purpose

The purpose of the method is to:

– identify the scope of human-machine interface specifications;

– identify activities which are strictly needed in order to develop human-machine interfaces in accordance
with the reference model of this Recommendation;

– identify necessary sequences of these activities;

– give some guidelines for good data design.

For information on the scope see clause 1. For guidelines on data design see A.3.

A.2.2 Overall development process

This subclause outlines the overall development process for human-machine interfaces. The overall development process
is implied by the three-layered architecture of the reference model, but is not influenced by the chosen formalism of the
human-machine interface specification technique.

The overall development process can be divided into the following activities:

1) surveying and impact analysis;
2) system planning and coordination;
3) application schema development;
4) external schema development;
5) implementation and prototyping.

Introduction and usage of specifications and implementations according to the specifications are considered to be outside
the scope of the overall development process.

A brief introduction of these activities is as follows:

– Activity 1, Surveying and impact analysis, is not the subject of this series of Recommendations. It can
include:

– analysis of the application area;

– analysis of related systems, e.g. involved organizations and tasks;

– development of sketchy designs;

– stating objectives of the new system(s);

– analysis of economic, organizational, personnel and other consequences;

– defining scope, limits and introduction of the future system(s).

– Activity 2, System planning and coordination, is not the subject of this series of Recommendations. It can
include:

– development of proposed organization of work procedures in the user community.

– Activity 3, Application schema development, is the main focus of the data oriented HMI specification
technique. The proposed development process for the application schema is described in A.2.3.

– Activity 4, External schema development, is currently left for further study. It will include:

– specification of the contents of views (contents schemata) of the application schema;

– specification of concrete HMIs (layout schemata).

8 Recommendation Z.352 (03/93)

– Activity 5, Implementation and Prototyping, is not the subject of this series of Recommendations. It can
include

– HMI application software development;

– verification and validation of the developed HMI.

T1007650-93/d05

1 Surveying and impact analysis Overall development process

2 System
2 planning and
2 coordination

3 Application
2 schema
2 development

4 External
2 schema
2 development

5 Implementation
2 and prototyping

Introduction and usage

NOTE – Solid arrows indicate the main data flow. Dashed arrows indicate feedback. Activities 1, 2 and 5 are not the
subject of this series Recommendations.

FIGURE A.1/Z.352

Overall development process

FIGURE A.1/Z.352...[D05] = 8 CM (118%)

A.2.3 Application schema development

An important consideration in the application schema development is the identification of the right application area. For
discussion of this see 2.

In a data oriented approach the analysts and designers should start by observing and modelling the fundamental entities
which exist within the application area or domain to be managed. Definitions based on these entities are likely to remain
stable, since they themselves do not change as rapidly as tasks and routines managing data about the entities.

Another important consideration is to identify and understand the perspective from which the application area is being
defined, as different perspectives will lead to different application schemata. This is exemplified by the network traffic
management application area. Traffic management can be viewed from the network perspective (an administrator
looking at the traffic between exchanges) or from the exchange perspective (an administrator looking at the traffic being
handled by a single exchange and viewing circuits to other exchanges from the perspective of that exchange).

In the development of an application schema for a large and complex application area (domain), it is inevitable that the
application area has to be divided into sub-areas as it is not feasible to develop one all-embracing application schema.
The manner in which this division of the application area is carried out is likely to affect the effectiveness of the
development process. It is suggested that the division should be carried out in a manner which aims to reduce duplication
of data between application schemata for different sub-areas. The process of dividing the application area into sub-areas
must be seen as an iterative process. It is likely to be affected by the results of other later activities.

Activity 2, Application schema development, can be organized in the sub-activities shown below and illustrated in
Figure A.2:

2.1 development of object classes and references;

2.2 development of attribute classes;

2.3 development of behaviour;

2.4 data coordination.

Recommendation Z.352 (03/93) 9

T1007660-93/d06

1 Surveying and impact analysis

2.1 Development of
2.1 object classes and
2.1 references

2.2 Development of
2.1 attribute classes

2.3 Development of
2.1 behaviour

2.4 Data coordination

FIGURE A.2/Z.352

Application schema development

Application schema development

FIGURE A.2/Z.352...[D06] = 8.5 CM (118%)

The objective of application schema development is to define the object classes, references (relations), attribute classes
and behaviour. The design method consists of identifying them in the given order, but accepts that the process may
require several iterations. These iterations allow a step-by-step refinement process. For example, data items which are
initially perceived to be attributes may be perceived as objects after further investigation.

Activity 2.1, Development of object classes and references: the goal of this activity is to analyse a particular application
area to identify the object classes to be managed from an HMI perspective and the references between these classes.
Object classes may contain object classes in a hierarchy. Graphical documentation of the Application Schema is a
valuable tool for this activity.

The process of identifying object classes and their references involves observation of object instances and their
relationships. Classes are created by a process of generalization, involving the identification of instances with common
characteristics. The designer has to make decisions as to the degree of generalization which should be applied.

Identifier attributes should be considered within this activity. See Appendix I.

Sometimes an application schema needs only to contain specifications for a single moment of time. Often, however, an
Application Schema may also need to contain specifications related to past and/or future states. In this case, when the
time-independent terminology has been decided, the handling of past history or future planned events may be treated as
an extension to the time-independent data definitions. Alternatively, the handling of time may be included in the earliest
data designs. Addition of time-dependent features to the data definitions is likely to have an impact on the definition of
constraints which is carried out in activity 2.3.

Activity 2.2, Development of attribute classes: when the object classes have been identified, the following properties
will be defined:

– attribute classes, defining the inherent characteristics of an object class, e.g. the operating characteristics
controlling the way the resource will operate, the ability of a resource to provide a service to an end user;

– attributes classes which contain subordinate attribute classes, e.g. a subscriber’s name consisting of parts;

– permissible value classes and ranges of value classes of attributes;

– permissible syntaxes for complex value classes of attributes.

10 Recommendation Z.352 (03/93)

Activity 2.3, Development of behaviour: in this activity the following are defined:

– constraints on the values and other data;

– derivation rules for new data from existing data.

This can be achieved using the function construct of the formalism.

Activity 2.4, Data coordination: data coordination is left for further study. It can include:

– comparison of data definitions from different subareas; identification and resolution of overlaps and
inconsistencies;

– updating of a common dictionary.

A.3 Data design

A.3.1 Introduction

This subclause provides a framework, and additional guidelines for data design are found in Appendix I.

A.3.2 Framework

It should be emphasized that data design work is often “first-of-a-kind”, unlike implementation which more often can be
routine work. Hence, the amount of work needed to reach a certain quality of data design can be rather unpredictable.
The development process is not a mechanical transformation of fixed and settled requirements, but is an investigation
into an open environment. Success is dependent on having good knowledge of the application area, being able to foresee
the impact of alternative choices and being able to revise, generalize and systematize diverse phenomena in the
application area.

The HMI specification technique specifies the required common form of all specifications, but provides no substance for
the particular application area. The data designs can obey the required form, but still be bad designs from the point of
view of the end users.

The designers of application schemata/data definitions for HMIs must have in mind:

a) the allowed and implied instances of the definitions;

b) the allowed and implied HMI presentations of these instances.

The defined data classes and instances can describe entities in an application area. Therefore, the designers have to
observe and investigate this application area when designing the data. The identification of the right application area is
no trivial task, e.g. you can easily confuse modelling the old information system rather than modelling its application
area.

The data instances and classes will be used by some users. Therefore, the designers have to observe and investigate the
needs of these users when designing the data. The identification of the real users is no trivial task, e.g. the terminal
operators may only be communicators of information to the final users.

In addition to the investigation of:

– user needs;

– appropriate application area;

the designers will have:

– knowledge of the formalism for the application schema;

– guidelines for good data designs, satisfying a) and b).

The last item will also include knowledge about treatment of time, coordination of applications, reference models for
information systems, etc.

Recommendation Z.352 (03/93) 11

The users’ needs will provide the (informal) guidance to what part of the application area shall be described and
administered. The selection of phenomena in the application area and the understanding of the application area is
dependent on the language constructs used by the observer when registering his observations. The finally selected
phenomena described in the application layer are dependent on the formalism used for this description. The language
constructs for the original observation and the final description may be one and the same.

T1007670-93/d07

Observed
application

area
Development Application

schema

User needs and designer knowledge

FIGURE A.3/Z.352

Development of HMI data
FIGURE A.3/Z.352...[D07] = 3.5 CM (118%)

Even though users’ needs are taken as input to the development, the development is considered to be a function (many-
to-one mapping) from the observed application area to the final application schema. Hence, there are no alternative
descriptions of the same fact. This statement disregards the permission to add alternative synonymous names in step 7-10
below.

The character of the development function is dependent on the formalism used for observing the application area and
writing the application schema. Unfortunately, the function may also be dependent on choices made in the development
method used and on the data definitions already contained in the application schema.

One way to perform the mapping from the observed application area to the application schema can be:

1) select example entity instances from the application area, including their references;

2) design application schema proposals for each instance example;

3) study similarities between the schema proposals and try to unify them;

4) redefine the examples according to new schema proposals;

5) create an integrated schema for all proposals and finalize the iteration;

6) select the relevant portion of the overall schema to be carried further;

7) assign suitable end user names to the the final schema (objects and references);

8) add and design identifier attributes;

9) add and design other attributes;

10) add and design values, constraints and derivation rules.

The last step will include the definition of derived data, providing overview of other data.

Note that steps 1) and 6) are pure selection functions (one-to-one mappings) and are not many-to-one “abstractions”/
“generalization”. If we allow some instances to be schemata (i.e. prototypes) for other instances, then step 2) can be
considered empty or as a one-to-one mapping as well.

The reason for considering the development function from the application area as basically being a selection process is
that we want to stick to an isomorphic mapping between a description and its described world. If not, we have to know
the entire development function in order to interpret correctly the data against the claimed described world; having the
data only, we would have no certain knowledge of the structure of the described world.

In some applications there is no described application area, e.g. in an electronic mail system the data may constitute the
real world itself. The treatment of time can be integrated in the above steps or added as a separate step.

12 Recommendation Z.352 (03/93)

While most data definitions are defining data about an application area of the information system, e.g. about the
telecommunication network, there is nothing prohibiting the description mapping from being nested. Therefore, the
information system itself can be described inside the EDP system. Hence, we can describe information handling
processes, information flow, control flow, etc. Some of the described processes can be automatic, others can be manual.

From the previous paragraph we recognise that to do information flow analysis is in principle nothing different from
designing data definitions about the application area of the information system. To define information flow is just to
describe another application area. The two application areas are related. And the two application areas can be defined by
using the same kind of formalism. This does not prohibit the development of rather generic data definitions which are
applicable for defining aspects of the information systems. However, since the information systems must be capable of
describing any application area and of handling information about everything in the application areas, the language
constructs for defining information systems have to be just as general as those for an arbitrary application area.

Appendix I

Additional guidelines for data designs

(This appendix does not form an integral part of this Recommendation)

I.1 General

In the following, we will give some practical guidelines for data design, without going into the theoretical and
philosophical aspects of data definitions. The guidelines are divided into three classes:

A Design of classes (see I.2)

B Design of identifiers (see I.3)

C Derived data and level of detail (see I.4)

The screen layouts and implied data definitions are provided as examples only. Object class labels are underlined,
attribute labels are not. If the class labels are put at the same line, the objects can exist independently of each other, but
there can be a reference from an object in the leftmost class to objects in the rightmost class. If the rightmost class label
is put at the line below that of the previous class, then the line shift indicates containment. Containment of attributes
within object classes and within attribute groups are similarly indicated by lineshifts.

I.2 Design of classes

A1 Existential independence. The identification of the existence of objects must be done by observing which can exist
independently of each other.

Example

A Subscriber line is usually associated with a Telephone number. In this example we can assume that there can
be only one Telephone number for each Subscriber line and vice versa. Then it is tempting, but discouraged, to
identify the Subscriber line by using the Telephone number as an identification attribute:

Subscriber line

Telephone number

06 809100

Recommendation Z.352 (03/93) 13

However, the Subscriber line can be allocated (and must be identified) prior to the allocation of the Telephone
number. Therefore, the Subscriber line and the Telephone number should be treated as two independent, but
related objects classes. The relation can have the cardinality 1:1:

Subscriber line Telephone number

Name Name

1234 06 809100

Motivation for this choice can be found when studying the life history of the object instances. If the Subscriber
line was identified by the Telephone number only, as shown in the previous example, we would have to
introduce unnecessary dependencies, sequences and renaming work in the routines for administering the
telecommunication network.

A renaming of the Subscriber line when a Telephone number is allocated to it or is released from it, can also
destroy the possibility to keep record of the history of the objects.

Further motivation for the above choice can be found when studying the references to the objects. E.g. if a
reference is stated (e.g from Cable pair to the Name of Telephone number), then the renaming (of the
Subscriber line, identified by different Telephone numbers), can introduce much manual or automatic work to
update the cross-references. Note that the above discussion does not prohibit the existence of a direct derived
relation from the Telephone number to the Cable pair(s) in the Subscriber line. See example C3.

From the above concerns we recommend not to make the reference from Cable pair to Telephone number a
primitive (underived) reference:

Telephone number Subscriber line Cable pair

Name Name Name

06 809100 1234 A-B 1 15
B-C 3 1

A2 Attributes versus object classes. When we assign attributes to objects, we have to ensure that this information
cannot exist independently of the object.

Example

If for each Circuit we want to register which Circuit group it is related to, and several circuits can be related to
the same Circuit Group, then the Circuit group has to be considered a separate object class a), and not to be an
attribute only b).

a) b)

Circuit Circuit group Circuit

Name Name Name Circuit group

A-B 1 A-B 1 A-B 1 A-B 1
A-B 2 A-B 1 A-B 2 A-B 1
A-B 3 A-B 2 A-B 3 A-B 2
B-E 1 B-E 1 B-E 1 B-E 1

Note that in alternative a) we can look up a Circuit group directly without (having to state) a search through
the circuits.

14 Recommendation Z.352 (03/93)

A3 Decoupling. Different facts should be kept apart in separate attributes and not be coded in the same values.

Example

Suppose that persons can change over time from being short to tall, and change between being thin and thick.
Then this information should be coded into two different attributes:

Height (with value set):

– short;

– tall.

Figure (with value set):

– thin;

– thick.

This will allow one piece of information to be changed and separate logic to be written without affecting the
other. A more unfortunate data design would be to have a single attribute:

Size (with value set):

– small (short and thin);

– round (short and thick);

– long (tall and thin);

– large (tall and thick).

A4 Interrelated application areas. It is of great importance to identify and delimit the right application area for the
Application Schema; however, it is not prohibited to define and to interrelate data from different application areas.

Example

Suppose we want to define data about traffic routing in the telecommunication network. The object classes
from the network application area can be Destination, Route, Circuit group, etc. This does not prohibit
defining an object class “Parameter set” from the domain of the information system or organization
administering the network. The “Parameter set” can be identified by a time stamp and/or a user name. The
objects from this class can identify the combinations of Destination, Route, Circuit group, etc., which are put
into operation or are registered simultaneously.

Note that the entire information system can be defined this way, including information handling processes,
information queues, input-output relations, information flow, etc.

A5 Number of classes. By replacing one class by several object classes you put more constraints on the populated data;
by merging several classes into one class you can relax on the constraints.

Example

a) If Telephone number and Subscriber line are merged into one class Number, and the reference between
the two classes is replaced by a recursive reference from Number-to-Number, then the end user is free to
choose if he will relate Cable pairs directly to (Telephone) Number or indirectly via. (Subscriber line)
Number and the recursive relation.

b) If both Telephone number and Subscriber line are kept/introduced as separate classes, then the end user is
constrained to relate the objects in the intended way.

We will make no recommendation as to which choice to make. Either alternative can be wanted in different
cases. However, the HMI designer should be conscious about the implications of his designs.

Recommendation Z.352 (03/93) 15

A6 Merged presentations. The class definitions should be made such that the required objects can be conveniently
presented in an integrated list.

Example

A company has two kinds of customers, Persons and Organizations. Then the only available presentation of all
customers is:

Company Person

Name Name

First name Family name

A C A
H A
B B
R J

Organization

Name

AA
BB
CC

Example

If the company wants to create an integrated ordered list of all its Customers, then this can be done as follows:

Company Person
Customer

A 1 C A

Organization

2 AA
3 BB

Person

4 H A
5 B B
6 R J

Organization

7 CC

Note that the attribute labels are suppressed, only the object class labels are shown.

We see that the list becomes complex, due to the different designs of identifiers of Persons and Organizations.
If Persons and Organizations are merged into one single class PersOrg, then the problem disappears. This also
requires that First name and Family name are merged into one long attribute only.

Example

Company PersOrg
Customer

A 1 C A
2 AA
3 BB
4 H A
5 B B
6 R J
7 CC

All the above examples are valid choices. However, the designer should be aware of the user needs and
implications of either choice.

16 Recommendation Z.352 (03/93)

I.3 Design of identifiers

B1 Local identifiers. If one object instance is contained in a superior object, then this subordinate object is identified
relative to the superior object.

Example

The Circuit object class is defined (in this example only) to be subordinate to the Circuit group object class.
Therefore, in this example a subordinate Circuit cannot exist independently of a superior Circuit group.

Circuit has the identifying attribute Name. Circuit group has a different identifying attribute also called Name.

The Circuit Name has numerical values within the superior Circuit group. The Circuit group Name has
alphanumerical values. For example:

Circuit group Circuit

Name Name

A-B 1 1
A-B 2 2
A-C 1 1
B-E 1 1

Note that there are two circuits in Circuit group A-B 1 and no circuit in Circuit group A-C 1. Hence, the
presentation is a tree and not a flat table.

B2 Independent identifiers. If one object class is not defined to be subordinate to the other, but is related to the other
(perhaps at the same level), then the identifying attributes also have to be independent of each other.

Example

Circuit group Circuit

Name Name

A-B 1 A-B Z1
A-B Z3

A-B 2 A-B Z2
A-C 1
B-E 1 B-E Z1

Note in the above example that:

– the Circuit Name has to be made unique by adding the names of the two connected exchanges, e.g. A-B;

– in principle the two exchanges in the Circuit Name could be different from those in the Circuit group
Name;

– the numbers in the Circuit Name are different from those in the Circuit group Name, even if they
coincidently may look similar;

– the numbers in the Circuit Name are no more assigned locally to the Circuit group Name; hence, the
Circuit in the third line in the example had to be assigned a number different from that of the previous
example in order to distinguish the circuits in the first and third line;

– a Z is added to tell that all these circuits are traffic circuits; even and odd numbers tell the traffic direction.

Note that defining data locally to other data (e.g. B1) can be very beneficial if the objects can exist only when
the superior object exist. However, in B2 the name of a circuit has to be changed when its usage is changed,
which makes it difficult to trace the history of a certain object. See also B8 and B9.

Recommendation Z.352 (03/93) 17

B3 Scope of identifiers. Even “global identifiers” are local to some “system” object. The “system” object should be
identified and the scope of the “global identifiers” should be settled, in order to be able to communicate data with the
environment of the system.

Example

This example illustrates two perspectives. First an Exchange is chosen to be ‘the system’. Second, the entire
Network is chosen to be the ‘system’. The exchange becomes a component in this larger ‘system’.

In the first option all objects were observed from one/each Exchange only, then these objects (e.g. Circuit
groups) can be identified locally to this Exchange. Hence, there is no need for coordination to the assignment
of identifiers of objects outside the Exchange. In the second option Circuit group is labelled and observed
directly from the ‘Network’, then this class must be different from the Circuit group class seen from Exchange,
since no class or instance can be labelled or identified and seen from two or more superior object classes or
objects. The reference from the Network Circuit group to the Exchange Circuit group is called a Terminated
circuit group.

System

Name Exchange

Name Circuit group

Name Circuit

Name

Network A B 1 1
2

B 2 1
C 1
E 1 1

Circuit group

Name Terminated circuit group

Name

Exchange Circuit group

A-B 1 A B 1
A-B 2 A B 2
A-C 1 A C 1
A-E 1 A E 1

Alternatively, the references to Exchange Circuit groups could be made by using ‘backward local naming’:

Network

Name Circuit group

Name Terminated circuit group Exchange

Name Name

Network A-B 1 B1 A etc.

This presentation can be derived from the same Application Schema. However, while the Exchange name in
the previous example is selected from the Terminated circuit group, this Exchange Name is selected from the
Exchange itself. This allows for the addressing and modification of the Name of the Exchange (not only the
reference to it, as in the first example) and modifications of other information about the Exchange in this
presentation.

18 Recommendation Z.352 (03/93)

B4 Use of subclasses. It is recommended not to use the notion of subclass, but to consider different classes to have
different instances and different identifications.

Example

Company Person Individual

Name Customer

Name Name Name

IBM 1 John Smith A
2 John Smith A
3 Bill Jones B

ND 1 Bill Jones B

The identifiers of the class Person do not apply for all objects of the class Individual, which may also include
Organizations, etc. Therefore, the Individual is assigned a Name which is harmonizing the identifier values for
all its object instances. However, for each Person it is required that there is an Individual. But, it is not stated
that the Person and the Organization Roles of an Individual exclude each other.

Customer can be considered a view of Person from the point of view of one Company, as long as there is
registered one Customer for each Person only. In this perspective, it could be tempting to use the Person Name
to identify the corresponding Customer. However, if we allow the Customer and the Person to exist
independently of each other, then they should be assigned different identifiers, even if they may be connected
by a 1:1 reference. Ref. also example A1.

If we extend the definitions to allow several customers for each Person, then it would be very unfortunate if
we previously had used the same identifier for both classes and would have to rename all customers. See
Customer 1 and 2, corresponding to the one Person John Smith.

If we allow each Customer to be seen from a separate (daughter) Company (after a merger), then the need for
identifying the customers independently becomes obvious. See Customer IBM 3 and ND 1 for the same Person
Bill Jones.

We recognise that it is important to design the data in such a way that they are prepared for evolution, and that
they do not cause confusion.

Note that according to the above line of thinking, Person cannot be defined to be a subclass of Individual,
because the Name of Individual is not inherited. However, if the inheritable attributes of Individual are
collected in a contained class (cardinality (1,1) of Individual, then Person can inherit from this contained class.
Similarly for Customer and Person.

NOTE – The notion of subclasses/inheritance is defined and used in different ways in different approaches:

a) A statement to copy specifications from one class to another, while the instantiations of the subclasses and
superclasses are independent; this is the chosen approach in the Data Oriented HMI Specification Technique.

b) Each instance of the subclass is also a member of all its superior classes, in the set theoretic way.

c) One individual (e.g. John Smith) of a (super)class (e.g. Person) can belong to several of its subclasses (e.g. Customer
and Employee) simultaneously.

d) Membership in one subclass (e.g. Woman) can exclude membership in another subclass (e.g. Man) of a common
superclass (e.g. Person).

To express the alternatives, a formalism would need different statements or combinations of statements.

B4 recommends not to use subclasses for object classes when specifying HMIs. However, subclasses for
copying specifications can be beneficial for attributes.

Recommendation Z.352 (03/93) 19

In a) we can easily copy too much; if not artificial classes to be copied are created.

In b) we are not able to relate two instances of a subclass to one instance of the superclass.

c) can better be treated by the reference notion which is missing in many object oriented approaches.

d) requires conditional statements, which will have to be elaborated in future extensions of the formalism.

B5 Attributes locally to object classes. If one attribute is used within one object class only, then there is no need for the
coordination of the assignment of attribute values to objects outside this class. At the HMIs we will not allow identifiers
to span over several object classes.

Example

If Circuit group and Circuit are two different classes, then their identifying attributes should be independent of
each other, allowing the same values to be used for identifying different objects in the distinct classes.

Circuit group Circuit

Name Name

A-B 1 A-B 1
A-B 2

A-B 2 A-B 3
A-C 1
B-E 1 B-E 1

Note that when making references between two independent objects, which are not related by containment,
then the full Name of the referenced object has to be provided, even if a part of the referenced Name is
identical to the Name of current object.

B6 Complex identifiers. In B1 we have seen objects being named locally to a superior object. However, we should
recognise that the identification mechanisms can be more complex.

Example

A Circuit group can be identified by the two exchanges (in alphabetic order) which it connects.

Circuit group Exchange

Name Name

A-B 1 A
B

We see that information can (and sometimes have to) be seemingly redundantly defined.

Note that we have suppressed the reference attribute from Circuit group to Exchange, because a separate
column for the reference attribute would not contain any new information added to the column for the Name of
the referenced Exchanges. This suppression may have consequences for the end user dialogue. See end of B4.

20 Recommendation Z.352 (03/93)

B7 Attribute groups. The identifying attribute of an object can be an attribute group. At the HMI we are not restricted to
identifying objects by using one attribute only.

Example

System

Name Circuit

Nom

Exchange 1 Exchange 2 No.
PTN A B 1

It is recommended to sort out the different pieces of information in separate attributes, and not to code much
information in one complex value.

B8 Stability of identifiers. Identifier attributes can contain data that convey information about properties of the objects,
but should only contain data that cannot be changed throughout the lifetime of the object.

Example

Circuit

Name

A-B Z1

Note that contrary to B7 where the attribute Name is decomposed into parts, in this example the value of the
attribute Name is decomposed into parts.

If the use of a Circuit can be changed from that of being a traffic circuit (Z) to becoming a leased circuit, a
traffic circuit in the other direction, used for other services, etc., then it is very unwise to have this modifiable
information in the identifying attribute.

The example shows an unfortunate coding of information into the value of one single attribute, where the Z
tells about the usage of the Circuit and odd and even numbers tells about traffic directions. See also B2.

B9 Instability of identifiers. Sometimes we have to include bad data designs, because of the commonly accepted usage
which we are unable to change.

Example

Person

Name

Christian name Family name Address

Street N°

John Smith Kings road 11

In this case the Address of the Person can change while the Address is a part of the identifying attribute.

Recommendation Z.352 (03/93) 21

B10 Duplicates. Sometimes it can be necessary and convenient at the HMI to allow the registering of data which are
currently not uniquely identified.

Example

Address Person

Name Name

K. str. 5 John Smith
John Smith

At a later moment of time we can receive information that permits the entries to become unique. In order to
handle text and graphics files we may have similar needs to handle significant duplicates.

Another example is the presentation of similar icons representing different exchange instances, without
providing data that distinguish the exchanges on that map, except for the positioning of the icons.

I.4 Derived data and level of detail

C1 Granularity versus efficiency. When we assign attributes to objects, we have to ensure that the attributes provide the
necessary flexibility and the required efficiency.

Example

a) b)

Circuit group Circuit group

Name Circuit Name Date Circuit

Nom Date Name

A-B 1 1 900223 A-B 1 900223 1
2 900224 2

A-B 2 1 900224 A-B 2 900224 1
A-C 1 A-C 1 900224
B-E 1 1 900224 B-E 1 900224 1

In example a) a different Date can be registered for when each Circuit was put into operation. This provides
much flexibility for the registering of individual dates, but requires much work for the registering of all the
dates.

In example b) the start dates can be registered for each Circuit group only. This provides less flexibility for
registering individual information for each Circuit, but requires much less work for the HMI operators.

22 Recommendation Z.352 (03/93)

C2 Derived attributes. The HMI data definitions shall not contain basic data only, but also all derived data shown at
the HMIs.

Example

When looking up a Circuit group, it can be beneficial to the users to see the “# of idle circ.” contained in the
Circuit group, rather than having to search through all its circuits for those which are Idle.

Circuit group

Name # idle circuit Circuit

Name Status

A-B 1 1 1
2 Idle

A-B 2 0 1

A-C 1 0

B-E 1 1 1 Idle

C3 Derived references. The HMI data definitions can contain derived references.

Example

Telephone number Subscriber line Cable pair

Name Name Name

06 808011 9876543 A-B 31
B-C 15

Cable pair

Name

A-B 31
B-C 15

See more details in A1.

A derived reference is a reference which is derived from other data; e.g. if there is a path class-1, ref-2, class-2,
ref-3, ..., class-n, then there can be introduced a direct derived reference ref-1-n from class-1 to class-n (if so
defined), and similarly for the corresponding instances.

Note that derived data do not have to be physically stored in the internal layer, but all data used in the external
layer have to be defined in the application layer. Therefore, the three layers behave as a consistent whole.

C4 Derived objects. The HMI data definitions can contain derived objects.

Example

Link Circuit

Name Name

A-B A-B 1
A-B 2
A-B 3

A-C

B-E B-E 1

The Link object class can be introduced as a derived object to provide an overview of all circuits between
two exchanges only. We assume that there can be only one Link between two exchanges.

	ITU-T Rec. Z.352 (03/93) DATA ORIENTED HUMAN-MACHINE INTERFACE SPECIFICATION TECHNIQUE - SCOPE, APPROACH AND REFERENCE
	FOREWORD
	CONTENTS
	SUMMARY
	DATA ORIENTED HUMAN-MACHINE INTERFACE SPECIFICATION TECHNIQUE - SCOPE, APPROACH AND REFERENCE MODEL
	1 Scope of specification technique
	2 Approach
	2.1 Data versus functions
	2.2 Consequences
	2.3 Data design

	3 Reference model
	3.1 Overview
	3.2 Scope
	3.3 Subdivision of the external layer

	Annex A
	Guidelines for HMI developers
	A.1 Introduction
	A.2 Method
	A.3 Data design

	Appendix I
	Additional guidelines for data designs
	I.1 General
	I.2 Design of classes
	I.3 Design of identifiers
	I.4 Derived data and level of detail

