

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Z.150
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(02/2003)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS
Formal description techniques (FDT) – User Requirements
Notation (URN)

 User Requirements Notation (URN) – Language
requirements and framework

ITU-T Recommendation Z.150

ITU-T Z-SERIES RECOMMENDATIONS
LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
Extended Object Definition Language (eODL) Z.130–Z.139
Tree and Tabular Combined Notation (TTCN) Z.140–Z.149
User Requirements Notation (URN) Z.150–Z.159

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-computer interfaces for the management of telecommunications networks Z.360–Z.369

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Distributed processing environment Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. Z.150 (02/2003) i

ITU-T Recommendation Z.150

User Requirements Notation (URN) – Language requirements and framework

Summary

Scope-objective
This Recommendation with other Recommendations in the Z.150 series defines URN (User
Requirements Notation) for describing user requirement as goals and scenarios in a formal way
without any reference to implementation mechanisms and with optional dependency on component
specification. Such a notation is needed to capture user requirements prior to any design.

Coverage
URN has concepts for the specification of behaviour, structuring, goals, and non-functional
requirements. This Recommendation focuses on language requirements for URN and on providing
the context for a requirements engineering framework. Other Recommendations in the Z.150 series
define the notation for URN.

Applications
URN is applicable within standards bodies and industry. URN helps to describe and communicate
requirements, and to develop reasoning about them. The main applications areas include
telecommunications systems and services, but URN is generally suitable for describing most types of
reactive systems. The range of applications is from goal modelling and requirements description to
high-level design.

Status/Stability
This Recommendation provides the scope and requirements for URN.

The main body of the Recommendation has following attachments:
• Annex A Compliance to this Recommendation;
• Appendix I Requirements engineering activities;
• Appendix II Guidelines for the maintenance of URN;
• Bibliography.

Associated work
This work is associated with languages, notations, and methodological aspects related to other ITU-T
Study Group 17 languages.

Source
ITU-T Recommendation Z.150 (2003) was prepared by ITU-T Study Group 17 (2001-2004) and
approved under the WTSA Resolution 1 procedure on 13 February 2003.

Keywords
Evaluation, formal specification, functional requirements, goal, graphical notation, hierarchical
decomposition, non-functional requirements, requirements engineering activities, scenario,
transformation.

ii ITU-T Rec. Z.150 (02/2003)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2003

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. Z.150 (02/2003) iii

CONTENTS
 Page

1 Scope .. 1
1.1 Motivation .. 1
1.2 Document organization .. 2

2 References... 3

3 Definitions .. 3

4 Abbreviations and acronyms .. 5

5 Scope of URN... 5
5.1 What is URN?... 5
5.2 What is URN-NFR? ... 6
5.3 Why goal-oriented requirements engineering? .. 7
5.4 What is URN-FR? .. 8
5.5 Intended usage .. 8

6 Language requirements for URN-NFR .. 9
6.1 Expressing tentative, ill-defined and ambiguous requirements...................... 9
6.2 Clarifying, exploring, and satisficeing goals and requirements 9
6.3 Expressing and evaluating measurable goals and NFRs 10
6.4 Argumentation.. 10
6.5 Linking high-level business goals to system requirements 10
6.6 Multiple stakeholders, conflict resolution and negotiation support 10
6.7 Requirements prioritization .. 10
6.8 Requirements creep and churn and other evolutionary forces 10
6.9 Integrated treatment of functional and non-functional requirements 10
6.10 Multiple rounds of commitment ... 11
6.11 Life-cycle support... 11
6.12 Traceability... 11
6.13 Ease of use and precision ... 11
6.14 Modularity .. 11
6.15 Reusable requirements.. 12

7 Language requirements for URN-FR ... 12
7.1 System trigger and termination conditions... 12
7.2 System operations and responses ... 12
7.3 Complex and lengthy behaviour... 13
7.4 Relationships among scenarios... 14
7.5 Component definition... 14
7.6 Environment specification.. 14

iv ITU-T Rec. Z.150 (02/2003)

 Page

8 Other language requirements for URN... 15
8.1 Requirements traceability... 15
8.2 Requirements test case specification .. 16
8.3 Performance analysis of requirements.. 17
8.4 Change management .. 17
8.5 Concrete representations .. 17
8.6 Usability ... 18

9 Language requirements summary... 18
9.1 Requirements table format ... 18
9.2 URN requirements table ... 18

Annex A – Compliance to this Recommendation.. 21

Appendix I – Requirements engineering activities .. 22

Appendix II – Guidelines for the maintenance of URN .. 24
II.1 Maintenance of URN.. 24
II.2 Rules for maintenance .. 25
II.3 Change request procedure .. 25

Bibliography... 27

 ITU-T Rec. Z.150 (02/2003) 1

ITU-T Recommendation Z.150

User Requirements Notation (URN) – Language requirements and framework

1 Scope
This Recommendation provides motivation, scope and language requirements for the ITU-T User
Requirements Notation. The specification of compliant notations belongs to other
Recommendations.

The text of this clause is not normative.

1.1 Motivation
A notation is needed that can describe user requirements, goals and scenarios without any reference
to specific inter-component communication facilities or system components and their states, but at
the same time can capture the user requirements prior to design. The focus during the requirements
specification stage is on behaviour and on quality attributes. The notation can also be used during
the high-level design phase when activities or responsibilities specified in the scenarios are
allocated to components. Scenario specification without sub-system component reference would
facilitate reusability of scenarios across a wide range of architectures. The ability of the notation to
straddle requirements specification and high-level design will facilitate negotiations between
stakeholders and implementers.

Before URN was recommended, there was an increasing demand for non-static protocols with
policy-driven negotiation using dynamic entities. Agent-based systems are examples of systems that
require such policy-driven mechanisms. When specifying this kind of protocol, it is not possible to
make an early commitment to messages and components at the requirements capture phase.

There is also the need for detection and avoidance of undesirable interactions between features or
services. Older techniques require large investment in terms of messages and components that need
to be checked for interactions. Using the notation specified in this Recommendation can provide
insights at the requirements level and enable designers to reason about feature interactions early in
the design process.

It is also important to deal with business objectives, goals, and non-functional requirements (NFRs)
in a more systematic manner during requirements analysis and design. NFRs are requirements such
as stringent performance constraints, systems operational costs, reliability, maintainability,
portability, interoperability, robustness, and the like. In software development practice, many NFRs
are stated only informally, making them difficult to analyse, specify and enforce during software
development and to be validated by the user once the final system has been built. Goals and NFRs,
however, do play a crucial role during system development, serving as selection criteria for
choosing among alternatives during requirements analysis, for example, determining where the
system boundaries should be and what functional requirements to include in the system.

Many of the alternative approaches to deal with NFRs originated from the technical work related to
quality metrics. Such approaches attempt to quantify NFRs and then measure to what extent an
existing system or parts of it meet the desired non-functional requirements. Useful metrics exist
for NFRs such as performance, reliability, software complexity, and development process maturity.
Other approaches, which recognise that many NFRs are often difficult, if not impossible, to
quantify, use qualitative-oriented methods such as architectural change scenarios or combinations of
both qualitative and quantitative methods to evaluate systems. These approaches, however, assume
an already existing software system (or parts thereof) that is evaluated for its NFR properties. They
do not assist in the specification of NFRs prior to building the system, nor do they provide support
during the analysis and design of systems. The notation proposed herein deals with NFRs and goals

2 ITU-T Rec. Z.150 (02/2003)

during the process of requirements analysis and system design; it allows for the expression of
conflict between goals, of decisions that resolve conflicts and of the rationale for the trade-off
decisions.

The URN is defined to have the following capabilities:
a) describe scenarios as first class entities without requiring reference to system

subcomponents, specific inter-component communication facilities, or subcomponent
states;

b) capture user requirements when very little design detail is available;
c) facilitate the transition from a requirements specification to a high level design involving

the consideration of alternative architectures and the discovery of further requirements that
must be vetted by the stakeholders;

d) have dynamic refinement capability with the ability to allocate scenario responsibilities to
architectural components;

e) be applicable to the design of policy-driven negotiation protocols involving dynamic
entities;

f) facilitate detection and avoidance of undesirable interactions between features;
g) provide insight at the requirements level that enables designers to reason about feature

interactions and performance trade-offs early in the design process;
h) provide facilities to express, analyse and deal with goals and non-functional requirements;
i) provide facilities to express the relationship between goals and system requirements;
j) provide facilities to capture reusable analysis and design knowledge related to know-how

for addressing non-functional requirements;
k) provide facilities to trace and transform requirements to other languages (especially ITU-T

notations and UML);
l) provide facilities to connect URN elements to external requirements objects;
m) provide facilities to manage evolving requirements.

The previous methods that used informal natural language for capturing requirements can leave too
much open for interpretation and can contain invalid logic. Manual methods are used to validate
these specifications with the result that defects are sometimes not caught until the implementation
phase. Studies of software development have clearly shown that the earlier defects are detected, the
less costly they are to repair. Standardization of a notation supporting requirements engineering
activities aims to make it easier to detect more defects at the requirements definition stage.

These same informal methods have also proven less than satisfactory for negotiating relative
priorities of different business objectives and, in general, for managing trade-offs in the domain of
non-functional requirements. The end result can be the delivery of a product to market that does not
satisfy customers and does not meet business objectives. Standardization of a notation for
requirements engineering activities aims to make it easier to define a product that balances
stakeholder objectives and satisfies customer expectations.

Standardization of a formally defined notation used for capturing user requirements is a move to
make the practice of this activity more rigorous and predictable and the results yielded by this
activity clearer, more consistent, correct, and complete. These results should lead to a reduction of
development costs, earlier delivery of product to market, and increased customer satisfaction.

1.2 Document organization
This Recommendation defines the language requirements for URN regarding both functional and
non-functional aspects.

 ITU-T Rec. Z.150 (02/2003) 3

Clauses 2 to 4 cover background information on references, definitions, and abbreviations and
acronyms.

Clause 5 details the scope of this Recommendation by providing an overview of the requirements
engineering activity that uses the URN, both from functional and non-functional perspectives.

Clauses 6, 7, and 8 provide detailed language requirements for URN-NFR, URN-FR, and other
areas.

Clause 9 summarizes the list of language requirements that the URN must fulfil.

Annex A presents a conformance statement for notations and tools in relation to this
Recommendation.

Two appendices are defined:
• Appendix I introduces general activities in requirements engineering.
• Appendix II describes guidelines for the maintenance of URN.

A bibliography can be found at the end of this Recommendation.

2 References
The following ITU-T Recommendations and other references contain provisions, which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

3 Definitions
This Recommendation defines the following terms:

3.1 additional information: The information stakeholders believe is important for designers
and implementers to know but is not considered when validating a requirements specification.

3.2 behaviour: The sequence of actions with stimulus and responses aspects performed by a
system that may change its state. 2.10/Sup. 1 to Z.100.

3.3 component: A generic and abstract entity that can represent software entities (e.g. objects,
processes, databases, or servers) as well as non-software entities (e.g. actors or hardware).

3.4 dynamic refinement: A modelling mechanism that addresses issues related to structure and
behaviour evolving at run time.

3.5 evaluation: The process used to determine the satisfiability (see 3.19) or satisficeability
(see 3.20) of a solution with respect to its goal(s).

3.6 executability: An attribute of a model that can be interpreted or compiled and run.
Executability applies mainly to functional models such as the one defined using URN-FR.

3.7 feature interaction: A desirable or undesirable interaction between two or more features,
functionalities, services, policies, or scenarios. With respect to scenarios, a feature interaction is the
set of conditions under which the execution of one scenario is affected by the execution of another.
Undesirable feature interactions are also called conflicts.

3.8 functional requirement: A requirement (see 3.16) defining functions of the system under
development.

4 ITU-T Rec. Z.150 (02/2003)

3.9 goal: An objective or concern used to discover and evaluate functional and non-functional
requirements.

3.10 high-level design: A design document describing system functionalities, the system
architecture, and scenarios.

3.11 language requirement: A language requirement, as distinct from requirement (see 3.16), is
a required characteristic of a language.

3.12 non-functional requirement: A requirement (see 3.16) characterizing a system property
such as expected performance, robustness, usability, maintainability, etc. Non-functional
requirements capture business goals/objectives and product quality attributes.

3.13 postcondition: A postcondition expresses the condition following (successful) execution of
a given operation or scenario. A postcondition normally expresses a relationship between the output
variables in terms of the input variables. Where input variables may also be output variables, the
relationship is defined in terms of initial system state and final system state.

3.14 precondition: A precondition expresses the conditions for which an operation or scenario
is defined (i.e. if the conditions are not satisfied, then the result of the operation is not defined). A
precondition normally expresses a relationship between input variables, or the system state prior to
execution.

3.15 quality attribute: A non-functional requirement that relates to systems or products rather
than to a business objective/goal.

3.16 requirement: A requirement, as distinct from a language requirement (see 3.11) and a user
requirement (see 3.25), is an expression of ideas to be embodied in the system or application under
development.

3.17 requirements engineering: The activity of development, elicitation, specification, and
analysis of the stakeholder requirements, which are to be met by systems.

3.18 responsibility: A scenario activity representing something to be performed (operation,
action, task, function, etc.). A responsibility can potentially be associated or allocated to a
component.

3.19 satisfiability: The ability to determine whether a goal can be satisfied according to some
strict criteria. For example, a performance goal may state that a system must generate a response to
a certain event within a specified time, and it is possible to measure the time lapse between the
occurrence of the event and the occurrence of the response.

3.20 satisficeability: The ability to determine whether a goal can be satisfied within acceptable
limits. For "satisfied within acceptable limits" substitute "satisficed". For example, a security goal
may state that a system cannot be accessed by unauthorized persons. Simple measure may ensure
that most people will be unable to access the system. Ever more complex measures may ensure that
a wider range of people will be unable to access the system. The law of diminishing returns applies
here. It is impossible to guarantee that no unauthorized person can access the system.

3.21 scenario: A partial description of system usage defined as a set of partially-ordered
responsibilities a system performs to transform inputs to outputs while satisfying preconditions and
postconditions.

3.22 stakeholder: An individual or organization interested in the success of a product or system.
Stakeholders include customers, users, developers, engineers, managers, manufacturers, testers, and
so on.

3.23 system: A generic term describing a combination of components collaborating among
themselves and with the external environment. A system can also be a new system or a system
extension.

 ITU-T Rec. Z.150 (02/2003) 5

3.24 specification: A clear and accurate description of characteristics of a product or procedures.
A specification is formal when it is written using a formal language. Requirements specifications
focus on the problem domain (the "what"), whereas design specifications focus on the description
of the design in conformance with the requirements specification (the "how").

3.25 user requirement: A desired goal or function that a user or other stakeholders expect the
system to achieve. A user requirement may or may not be a requirement (see 3.16).

4 Abbreviations and acronyms
This Recommendation uses the following abbreviations:

ASN.1 Abstract Syntax Notation One

COTS Commercial-Off-The-Shelf

FR Functional Requirements

GRL Goal-oriented Requirement Language

ISO International Organization for Standardization

ITU International Telecommunication Union

MOF Meta-Object Facility

MSC Message Sequence Chart

NFR Non-Functional Requirements

OMG Object Management Group

RE Requirements Engineering

SDL Specification and Description Language

TTCN Tree and Tabular Combined Notation

UCM Use Case Map

UML Unified Modelling Language

URN User Requirements Notation

URN-FR User Requirements Notation – Functional Requirements

URN-NFR User Requirements Notation – Non-Functional Requirements

W3C World Wide Web Consortium

XML eXtensible Markup Language

5 Scope of URN

5.1 What is URN?
The User Requirements Notation (URN) shall allow software engineers to:
• specify or discover requirements for a proposed system or an evolving system, and
• review such requirements for correctness and completeness.

The URN is intended for use in requirements descriptions in specifications developed by national
and international standards organizations. In the ITU-T, requirements descriptions are often called
Stage 1 descriptions (e.g. in I.130 and Q.65). The URN is also intended for use by commercial
organizations developing requirements specifications for new products and product extensions;
these specifications are not necessarily governed by standards.

6 ITU-T Rec. Z.150 (02/2003)

The URN is used to construct functional and non-functional requirements models. Like most
notations in ITU-T's family of languages, the primary notations of URN shall be graphical, because
graphical presentations are often compact and easy to understand. The Recommendations for URN
specify a non-functional requirements URN (URN-NFR) and a functional requirements URN
(URN-FR) as well as a set of relationships between the URN-NFR and the URN-FR.

The URN is viewed as complementary to notations such as Message Sequence Charts (MSC), the
Specification and Description Language (SDL), TTCN-3, and the Unified Modelling Language
(UML). Information contained in URN models could possibly be linked to these other languages.

5.2 What is URN-NFR?
Business objectives and product quality attributes are modelled using the URN-NFR. Software
engineers use the URN-NFR model to identify and negotiate trade-offs among competing objectives
and quality attributes. An outcome of this exercise is a set of technology and implementation
choices that reflect these trade-offs. The outcome of the URN-NFR modelling exercise sets the
context for the URN-FR modelling exercise.

Non-functional requirements (NFRs, also called quality requirements) are global requirements on
the software system, its development, deployment, maintenance and evolution and operational
processes, such as the systems operational costs, performance, reliability, maintainability,
portability, robustness, and the like. NFRs may originate from objectives related to the business
organization (sometimes called consumer-oriented quality requirements) but also from requirements
on the software system, its development environment and process (sometimes called technically-
oriented quality requirements). Errors of omission or commission in laying down and properly
taking into account such requirements are generally acknowledged to be among the most expensive
and difficult to correct once a software system has been implemented, and have direct impact on the
success of the software system. NFRs are difficult to specify and deal with since they often do not
have precise definitions, and do not have clear-cut criteria of when they have been satisfied. For
example, it is difficult to know how to specify the extensibility requirements of a system, and when
a system has met that requirement. In addition NFRs often conflict with each other; for example,
providing for extensibility by layered system architecture that may adversely affect the performance
of the system.

A URN that addresses NFRs should therefore address such requirements up-front during analysis,
and allow such NFRs to be expressed, even if they are ill-defined and tentative. The URN should
then support further refinement and clarification of these ill-defined and tentative NFRs and, if
possible, allow their quantification to be expressed. It should allow exposing and modelling
conflicts among NFRs during analysis, and provide abilities to evaluate trade-offs among
conflicting requirements, and expose and facilitate negotiation between the involved stakeholders.
A URN should allow relating NFRs to potential alternative elements within the functional
requirements specification such that NFRs can be used as selection criteria among them.

Sometimes the precise meaning and the degree of achievement of NFRs may become clear only
during the design stage, or even during implementation of the software system. A URN should
therefore also support and guide the process of refining and clarifying NFRs to serve as selection
criteria during these later phases of the software lifecycle. This objective for URN emphasises the
need for linking NFRs to all phases of the software development life cycle, since the degree of
achievement of NFRs may be affected by decisions during all phases. A URN should provide
support for managing, tracing, validating and evolving NFRs, as well as functional requirements
(FRs), during the whole development life cycle.

 ITU-T Rec. Z.150 (02/2003) 7

In order to provide for such a comprehensive life-cycle support for NFRs, two objectives for a URN
are introduced:
• To explicitly support goal-based modelling and reasoning for both functional and non-

functional requirements as a means for relating higher-level business and organizational
objectives to the functional and non-functional aspects of the intended system.

• Since goals that express NFRs are initially often ill-defined, tentative and ambiguous, the
URN should provide support for the process of refining and clarifying such goals to be
more precise. This process support should be part of an engineering process for
requirements, which acknowledges that establishing requirements is a decision making
process with many interrelated activities, and which has relevance during the whole life
cycle of a software system.

5.3 Why goal-oriented requirements engineering?
Broadly speaking, many user requirements are often first stated as desired goals that stakeholders
wish to achieve. Providing for an immediate way of expressing such goals, rather than activities and
entities that support achieving such goals, allows reasoning about alternative ways to achieve
stakeholder goals. Goal-based modelling can therefore be used for the discovery and treatment of
NFRs as well as the development of functional requirements.

Goals that relate to functional requirements enable expressing and reasoning about functional
alternatives for which clear criteria exist and allows an evaluation of the system as to whether or not
it provides for the desired functionality. Goals that relate to NFRs enable expressing a softer notion
of achievement. It is said that an NFR-related goal is satisficed1 when there is sufficient positive
and little negative evidence for their achievement, and that they are unsatisficeable when there is
sufficient negative evidence and little positive support for their satisfiability.

Unlike functional goals where automatic reasoning can (to some extent) establish whether they
were fully achieved or not, NFR-related goals may need humans to intervene in cases when only
weak or conflicting evidence is provided. This calls for evaluation and decision-making that needs
to be made interactively by engineers not only during requirements analysis, but also during the
design and implementation process. During this analysis process, both goals denoting functional
and non-functional requirements are stated up-front, and refined to produce goal graphs. During this
process, the NFR-related goals are used as selection criteria among alternative functional
requirements that achieve the functional goals of the stakeholders in general, and of the system in
particular. During design and implementation, goal graphs are further refined and linked to
architectural, detailed design and implementation functions and structures. Functional requirements-
related goals provide for focal points of alternative design and implementation choices, while NFR-
related goals provide for the selection criteria that are considered for each potential functional
alternative. Selecting one branch of a goal graph for further refinement implies a design choice.

A URN that provides for goal modelling allows the elements of the software system requirement
specification to be linked to their rationales which are to be found in the system's environment. This
allows the capture of "why" elements of the intended specifications "where" proposed, and
reasoning about whether the proposed specification is sufficient for achieving the higher-level
objectives of the system and the organisation. Using goals also allows the requirement process to be
guided in exploring and evaluating alternative system specification, exposing conflicting interests
among stakeholders, and aiding the management and the evolution of requirements, when
objectives change over time. Including support for the process of requirements engineering in the
URN, allows reasoning about high-level objectives while they are still informal and in need of
clarification, and provides support for refining those objectives towards a more precise

1 We use here the notion that a goal can rarely be said to be satisfied. Goal satisficing suggests that the used

solution is expected to satisfy the requirement within acceptable limits.

8 ITU-T Rec. Z.150 (02/2003)

specification. During this refinement process, alternatives may be expressed, evaluated, justified or
rejected both in terms of NFRs, and in terms of pertinent domain knowledge, until the requirements
engineers arrive at a satisfactory specification.

5.4 What is URN-FR?
A URN-FR model shall be an abstract representation of the behaviour of a proposed system and its
environment. The stakeholder can use the URN-FR to specify scenarios; that is, sequences of
responsibilities that must be executed to transform inputs to outputs while satisfying relevant
preconditions and postconditions. Scenarios are also called maps because they are thought of as
roadmaps connecting inputs to outputs. The notation shall allow the user to specify relationships
between scenarios. It is possible to use the notation to specify abstract architectural components and
allocate responsibilities to them but it is not necessary to do so. Responsibilities are connected by
causality flows. A causality flow is the assertion of a causal connection between responsibilities.
That is, the execution of this sequence of responsibilities in some fashion causes or enables the
execution of a subsequent responsibility. The intent behind the notation is to leave the specification
of detailed interactions between responsibilities to more concrete notations such as Message
Sequence Charts. The objective is to allow software engineers to express their domain knowledge in
an intelligible way without letting detailed design considerations get in the way.

A URN-FR shall facilitate negotiations between software engineers and implementors. The aim is
to use the URN-FR model to discover as many questions of policy as possible so that the
stakeholders can rule on these questions prior to implementation. The URN-FR notation can be
used for high-level design as well as for functional requirement specification. Developers can begin
the high-level design phase by iterating the model constructed by the requirements engineers and by
considering additional architectural concerns. If, by doing so, the developers discover new
requirements, they can discuss the matter with the requirements engineers by referring to the model.

When URN-FR is used, a model is evaluated for clarity, consistency, correctness, and completeness
first by visual inspection, but also by formal and algorithmic evaluations.

5.5 Intended usage
A primary purpose of URN is to facilitate the communicating of requirements among pertinent
stakeholders prior and during the system development life cycle in general, and during requirements
analysis in particular. This includes communicating among stakeholders such as clients, standards
bodies, business analysts, intended users of the system, architects, designers, testers, implementors
and the like. If we take standards bodies as example, it will show the significance of utilizing URN
for these bodies. Industry standards are dynamic in nature, continuously evolving to meet
stakeholders' requirements with ever-shorter intervals for standards development. The current
timelines at which a new version of the specification is to be completed to the needed level of
precision, quality and completeness cannot be accommodated using existing specification
techniques. A key assumption is that future standards work must apply techniques that can be
automated or semi-automated. The use of formal documentation techniques using tools will shorten
the standards development cycle, introduce a formal test methodology, and assist in rapid validation
and verification, harmonization, and evolution of the standards.

In addition, during the early phases of requirements elicitation (and high-level design), URN should
support an exploratory mode of work, in which principal alternatives are considered and where
minute details are omitted and left for future elaboration. Such exploratory work is often done in
conjunction with non-technical stakeholders in order to explore feasible directions towards system
specifications (and design). Having achieved agreement on principal directions the URN should
support detailed specifications that may then be undertaken in conjunction with more technically
oriented stakeholders, and that allow for validating of requirements in a formal manner.

 ITU-T Rec. Z.150 (02/2003) 9

These considerations give rise to three objectives on URN:
• The ability to provide for informal (or semi-formal) requirements descriptions that focus on

coarse-grained or abstract goals, behaviours, and structures of the intended system. Such a
description would facilitate the exploring of alternatives and would omit details not
pertinent to such reasoning. This would facilitate the communicating of requirements
among non-technically oriented stakeholders.

• The ability to provide for formal requirements descriptions that do focus on detailed goals,
behaviours, and structures. This would facilitate the communicating of requirements among
technically oriented stakeholders.

• The ability to support the transition from informal (or semi-formal) descriptions to formal
ones, together with the ability to reason about and explore alternative "formalizations"
during that transition. This would provide the basis for communicating among both non-
technically and technically oriented stakeholders.

The URN definition acknowledges the abilities of existing notations (such as SDL, MSC, and
UML) but positions their abilities as belonging to the more formal and detailed requirements
description approaches. The URN definition addresses earlier phases during requirement analysis
when a more exploratory, coarse-grained and informal approach is more suitable, that does not
overwhelm the stakeholders with irrelevant details and provides support for exploring alternatives.

6 Language requirements for URN-NFR
This clause describes the language requirements for a URN that deals mainly with goals and NFRs.

6.1 Expressing tentative, ill-defined and ambiguous requirements
A URN that deals with goals and NFRs shall provide the ability to express tentative and ill-defined
requirements that are difficult, if not impossible, to formalise, and where no clear criteria exist for
their achievement during requirements analysis, or during design and implementation. Expressing
such requirements is of particular importance during the early phase of requirements elicitation
when the understanding that stakeholders have of their objectives is still vague, tentative,
ill-defined, ambiguous, and in need of clarification.

6.2 Clarifying, exploring, and satisficeing goals and requirements
When clarifying and "satisficeing" tentative, ill-defined and ambiguous requirements, and when
exploring alternatives (here called "loose" requirements), a URN-NFR shall provide support for
disambiguating such requirements in a systematic manner. This support shall be provided
throughout iterative refinements, during requirement elicitation and during requirement analysis. It
shall provide support for exploring alternative meanings for loose requirements. In addition, since
no clear-cut criteria exist for when such loose requirements are achieved, there is a need to provide
a more flexible, and fine-grained notion of achievement, such as sufficiently achieved, some
contribution towards achievement, some negative evidence against achievement, and insufficiently
achieved. Alternative solutions would achieve such loose requirements with different degrees of
satisfaction. Accordingly, URN-NFR shall provide support for expressing different degrees of
achievement. Interactive, semi-automatic (that is, not completely automated) analysis facilities,
which "know" when to refer back to the analyst for a subjective opinion during evaluation, can
provide support for evaluating how well solutions satisfy such requirements.

10 ITU-T Rec. Z.150 (02/2003)

6.3 Expressing and evaluating measurable goals and NFRs
The URN-NFR shall support expressing goals and NFRs that do have clear metrics and
measurements for their achievement, and incorporate such goals and NFRs in the reasoning and
evaluation process. A particular benefit of providing support for both qualitative and quantitative
goals and NFRs is the ability to show how one is traded off for the other. Key issues in many
systems include performance requirements that need support for their evaluation, together with the
ability to document how and why they are traded off for other desired quality requirements of the
system.

6.4 Argumentation
A URN-NFR shall support the recording of arguments for or against each iterative refinement. Such
arguments would then be taken into account when evaluating solutions for their degree of how well
they achieve requirements.

6.5 Linking high-level business goals to system requirements
Since the tentative and ill-defined NFRs are often high-level organizational and system objectives, a
URN-NFR shall support linking such high-level concepts to the more concrete elements of the
requirements specification. Such links are able to provide an understanding of how intended
software systems in fact contribute to the high-level, strategic directions, an organization wishes to
take.

6.6 Multiple stakeholders, conflict resolution and negotiation support
Since requirements may originate from multiple stakeholders, a URN-NFR shall be able to express
the origin of each requirement, and whether the different interests of stakeholders bring synergy or
conflict with each other.

6.7 Requirements prioritization
A URN shall support the prioritization of requirements in general and for stakeholders in particular.
This supports the negotiation process when conflicting requirements arise. Prioritization also allows
expression of the importance of requirements, how they might change over time, and in what way
this may change the focal point of the system development effort.

6.8 Requirements creep and churn and other evolutionary forces
A URN shall support the ability to detect evolution in requirements between the time they are
formulated and the time the product is delivered, in particular when requirements are added or
changed (requirement creep). It shall also support frequent modification of the same requirements
or their priorities (requirement churn). Both have an impact on the requirements specification, and
how changes in the requirements specification affect the rest of the development process.

6.9 Integrated treatment of functional and non-functional requirements
A URN shall enable dealing with both functional and non-functional requirements concurrently. In
particular a URN-NFR needs to express in what way NFRs may serve as selection criteria when
choosing among alternative functional requirements, and for expressing constraints when wishing to
achieve functional requirements during design.

 ITU-T Rec. Z.150 (02/2003) 11

6.10 Multiple rounds of commitment
Moving from high-level objectives to system requirements may need multiple rounds of decision-
making and commitment by stakeholders. Each new round of decision-making is based on
previously adopted decisions that structure the decision space by focusing on certain alternatives
and excluding others. During the course of requirements elicitation and analysis, new requirements
may be introduced that impact existing requirements and commitments. A URN-NFR shall,
therefore, provide support for multiple rounds or layers of decision-making, where each layer
proceeds from commitment points of previous layers.

6.11 Life-cycle support
Requirements and their management are relevant during all phases of system development. One
reason is requirements creep. Another is the need for requirements traceability as discussed below.
Yet another reason is the complexity of the development process itself. System development
typically does not proceed in the neat fashion suggested by the waterfall model. Several
development cycles can proceed in parallel. Even within one development cycle feedback, loops
exist that can trigger re-engineering and a review of commitments to requirements. For all of these
reasons, URN shall support requirements management during all phases.

6.12 Traceability
The URN-NFR shall allow expressing requirements as ill defined and tentative at the beginning and
provide support for refining those requirements to a more precise specification. It shall also support
using requirements to guide the decision making process during the forward engineering of design
and implementation. The design and implementation processes can cause evolution in the
understanding of requirements and possibly trigger reformulations of, or even commitment to,
particular requirements. The system developers must be aware of when their activities impact
requirements and be ready to go back to stakeholders with issues and must ensure that the
requirements specification remains consistent with the design and implementation of the system. By
doing so, the developers will ensure that the requirements specification plays its proper role in
system compliance testing. To accomplish these objectives requires that URN-NFR specifications
be "connectable" to other development process artefacts.

6.13 Ease of use and precision
A URN is used by many different stakeholders during the requirements specification and
development processes. For some stakeholders, ease of use and comprehensibility are paramount,
while for others, precision in expressing requirements is of greater importance. A URN should
provide support for both types of URN users through supporting degrees of formality in its
language and by making clear how a user of a URN can refine from informal expressions of
requirements to more formal ones. One focal point should be ease of use for practitioners and
comprehensibility for customers and intended users of the system, while another focal point should
be the ability to specify requirements more precisely for developers and testers.

6.14 Modularity
A URN-NFR shall support the modular description of goal and NFR models. This will permit the
hierarchical decomposition of large sets of goals and NFRs and will improve overall manageability
and scalability of complex models.

12 ITU-T Rec. Z.150 (02/2003)

6.15 Reusable requirements
A URN-NFR should support the reuse of parts of requirements specifications, which are known to
express certain objectives, when such or similar objectives recur in other projects. Such a
URN-NFR would provide facilities to capture, structure and reuse knowledge related to recurring
requirements. Knowledge about achieving functional and, in particular, non-functional objectives
would be stored in knowledge catalogues together with applicability conditions stating under what
circumstances the knowledge can be reused. Such knowledge could potentially accelerate the
requirement engineering process for particular projects.

7 Language requirements for URN-FR
This clause describes the language requirements for a URN that deals mainly with functional
requirements.

7.1 System trigger and termination conditions
A functional requirements specification, even if it contains nothing else, contains a mapping of
input events and preconditions to output events and postconditions. Preconditions and
postconditions relate to both environmental states and target system states. The environmental set of
preconditions and postconditions are kept separate from the system set by the fact that one set of
scenarios models the environment and one set models the system. The URN-FR is used to model
both the environment and the target system. The start points of the system scenarios are connected
to the end points of scenarios occurring in the environment, and the end points of the system
scenarios are connected to the start points of scenarios occurring in the environment.

The URN-FR shall allow stakeholders to distinguish the many mappings of input events and
preconditions to output events and postconditions for a particular system in whatever degree of
detail seems appropriate.

A URN-FR shall support notation for specifying:
• the set of input events at a scenario start point;
• the set of output events at a scenario end point;
• preconditions at scenario start points;
• postconditions at scenario end points;
• input sources, that is, whether the sources are human or machine;
• output sinks, that is, whether the sinks are human or machine;

The URN-FR shall define a data model so that preconditions, input events, postconditions and
output events can be formally defined and managed.

7.2 System operations and responses
A responsibility is an activity representing something to be performed. A URN-FR shall provide
means to define responsibilities and to reference them.

The URN-FR shall allow users to specify system operations and responses as a causal flow of
responsibilities. The execution of a responsibility is said to cause the execution of a subsequent
responsibility. Inter-responsibility communication is not specified.

A system response is what the system does to transform the input events, under some preconditions,
into output events and then satisfy postconditions. Given the many possible mappings between
input events and preconditions on the one hand, and output events and postconditions on the other,
how to manage the specification of system responses for each of these mappings becomes an issue.

 ITU-T Rec. Z.150 (02/2003) 13

One candidate solution to this issue is to group scenarios according to event classes. The event
classification is based on common processes and criteria of relatedness. An example of an event
class is that of bit patterns on a receiving link where a synchronous data protocol is being used. The
system response may differ somewhat based on which event in the class is received. To express this
difference, notation for condition-based decision-making (branching) must be used. The handling of
preconditions also requires branching. Preconditions express a system state. For example, the
system may be in an operational state relative to a particular event class when it receives the event,
or it may be out of service. Branching is used to express the different response the system makes
depending on its state. Branching is also called OR-forking. The URN-FR shall define a data model
and expression evaluator so that conditions on OR-forks can be formally expressed.

Another name for a candidate URN-FR scenario specification is a map because in its graphical form
it looks like a geographical road map. The flows of responsibilities are paths.

Events in the same class may be handled in much the same way except for slight differences. The
map must show where the common processing segments are as well as where the branching
segments are. It is possible that after a branch, the system handling for two events may again be the
same for a while. The notation shall be capable of expressing this situation and does so using an
OR-join.

The notation shall be able to express parallelizm when specifying the handling of an event. For
example, the detection of a loss of signal on a receiving link causes two parallel actions to be taken.
The first action is to send an alarm out on the transmit link to the far end, and the second action is to
send an alarm to the human user interface.

The notation shall be able to express synchronization when specifying the handling of an event. For
example, some bank vaults can only be opened when two people physically out of touch have
inserted and turned their keys. The system waits until both events have occurred before proceeding.
The notation shall be able to express a wait-forever condition as well as a timed wait with action
attendant on a timeout. Synchronization can be within a scenario or between scenarios.

The notation shall be able to specify repetitive action. Collecting digits during a call-set-up is a
classic example of a repetitive action that can be expressed as a loop. The URN-FR shall define a
data model and expression evaluator so that conditions on loops can be formally expressed.

7.3 Complex and lengthy behaviour
The notation shall allow the user to specify complex and lengthy system responses in a
comprehensible way. One way to support comprehensibility is to support abstraction, that is, hide
irrelevant detail. Another way is to support hierarchical decomposition of the scenario
specifications.

The notation shall support hierarchical decomposition of scenarios. A subscenario container
replaces a sequence of responsibilities in a higher-level scenario. The replaced sequences
(subscenarios) are represented in a lower level scenario. A subscenario shall be similar in form to a
scenario, that is with trigger symbols and termination symbols. The notation shall support the
specification of preconditions at the entry points to a subscenario, as well as postconditions at the
exit points from a subscenario.

The notation shall distinguish between cases: a static container with only one subscenario, and a
dynamic container if two or more subscenarios are defined. In the latter case, a selection policy
(related preconditions) determines which of the alternate subscenarios executes at run-time.

Containers and subscenarios can be used to encapsulate behaviour that is found in many places
within one scenario or across scenarios.

14 ITU-T Rec. Z.150 (02/2003)

7.4 Relationships among scenarios
A URN-FR shall support the description of individual scenarios as well as relationships among
scenarios. Several forms of relationships exist, many of which are discussed in 7.2 and 7.3. One
form of relationship is grouping a set of scenarios that deal with a class of events into a single
specification. Another form of relationship is synchronization among scenarios. A third form of
relationship is the connection of a subscenario to a parent scenario in a hierarchical decomposition.

When a URN-FR specification becomes complex, with many relationships among scenarios, it
becomes essential to be able to recover individual scenarios which can be used to understand
particular behaviour or situations. A URN-FR shall include a mechanizm, based on the data models
discussed in 7.1 and 7.2, to extract individual scenarios from a group or integrated set of scenarios.
Individual scenarios shall be able to express sequence and concurrency. Individual scenarios could
then be transformed into other representations more suitable in later stages of the development
process (e.g., MSC for design, TTCN for testing, etc.).

The URN-FR shall allow the user to express desirable feature interactions and discover undesirable
ones. For example, under certain conditions, a particular service may receive priority treatment,
causing the interruption and delay of a lower priority service under way.

7.5 Component definition
A URN-FR shall allow the user to specify scenarios without reference to components as well as
with reference to them. The URN-FR can thus be used in situations where no component
architecture has yet been defined, and where there is a desire to put no architectural constraints on
implementors. It can also be used where a component architecture has been defined, and the activity
is to define requirements for system evolution.

Component definition internal to the system is more appropriate to high-level design than to
requirements specification because it involves allocation of responsibilities to components.
Allocation of responsibilities to components is a high-level design activity, and many criteria are
applied to determine a good architecture. Nevertheless, software engineers may feel more
comfortable if they can reference entities in the specification. These entities should be considered
abstract, functional entities and not instructions to implementors on responsibility allocation unless
the entities are Commercial-Off-The-Shelf (COTS) components.

Component definition is appropriate when the system environment is specified in terms of existing
components, and the functional model encompasses both the existing components and the new
system.

In general, the functional model focuses on behaviour, and component definition is left to the high-
level design phase.

Components shall also support dynamic aspects used to capture roles in an organization (which can
be filled at different times by different people), to represent mobile entities, or to create/delete
entities dynamically. Such aspects are particularly relevant to agent systems and other advanced
object-oriented applications.

7.6 Environment specification
The stakeholders shall be able to specify the behaviour of the system's environment in URN-FR as
well as the system. All of the capabilities of the URN-FR that can be used to model the system shall
be available for modelling the environment. The environment model then becomes the driver for the
system model and vice versa.

 ITU-T Rec. Z.150 (02/2003) 15

Component definition can come into play here. The system can be identified as a single component
and is connected to existing systems modelled as black box components in the new system's
environment. The value in this level of component definition is that it clarifies what behaviour in
the overall scenario specification belongs to the new system, and what belongs to the system's
environment.

A URN-FR shall also contain a special type of component used to denote actors external to the
system under design, in its environment.

8 Other language requirements for URN

8.1 Requirements traceability
In a software engineering process, traceability is the property that defines how elements contained
in different system models relate to each other. This allows linking model elements that are
semantically related.

In the specific context of the URN, requirement traceability is of particular importance.
Requirement traceability is the property that allows linking system artefacts defined in the different
models as well as design decisions to requirements.

In a software development process, the definition of requirement traceability relations is important
for many reasons:
• To evaluate requirement coverage. An important question that a developer must be able to

answer is: "Are all requirements addressed in the current version of the system?" In order to
answer this question, one must be able to determine precisely the set of requirements that
are referenced in the different system models. If requirements traceability relations have
been maintained during the whole design process, this question can be easily answered.
Moreover, the set of requirements that have not yet been addressed can then be
automatically determined.

• To evaluate the impact of requirements modifications. Another important question that a
developer must be able to answer is: "What are the model elements that are related to a
specific requirement?" This question must often be answered in the case where
modifications are made to requirements. The existence of traceability relationships allows
evaluating the impact of modifications on the different models, and making the changes to
the affected models in a consistent manner. Thus, if a modification is made to a
requirement, say R1, designers can evaluate the impact of the modification by analyzing the
elements of the different models that are linked to R1.

• To allow requirements-based testing. In a scenario-driven (or use case-driven) process,
requirements are associated with specific scenarios. Therefore, in order to test that the
current implementation of a system is correct with respect to a specific requirement, one
must first determine the set of scenarios that are related to the requirement. Then, the set of
scenarios can be executed, and the result of the execution can be analyzed to see if the
requirement is correctly addressed or not. For this purpose, it is important to establish
traceability relations between elements of the scenario descriptions in the URN and
stakeholder requirements.

• To allow the identification of conflicting requirements. The causes of system errors are
various. One important cause of errors is conflicting requirements. This type of error is
often difficult to prevent and is only discovered late in the development process. For this
reason, when an error is found in the system, it is important to be able to trace it back to the
different models, and ultimately to requirements, and see where the error has been
introduced. If the error comes from conflicting requirements, then these requirements can
be precisely identified.

16 ITU-T Rec. Z.150 (02/2003)

• To reduce maintenance efforts. An important part of the cost of system maintenance is
related to the evaluation (or the non-evaluation) of the impact of modifications. If one can
determine precisely the set of model elements that can be impacted by the modification of a
specific requirement (or model element), then the cost of modification could be
significantly reduced.

• To preserve the rationale for design decisions. Knowing the original reasons for design
decisions helps engineers who maintain or enhance systems to evaluate whether
implementation should be changed in the light of new circumstances. Such re-engineering
of implementations may be essential to keeping a product vital and competitive in the
marketplace. The URN-NFR notation should provide the ability to present the rationales for
a specific choice together with the arguments for it, in a concise and readable form.

URN shall support both backward traceability relations from the URN, and more specifically URN
elements, to their source (documents, stakeholders requirements, problem domain analysis, etc.),
and forward traceability relations from the URN to the other models used in the development
process. This forward traceability is preferably achieved by backward traceability relations from the
other models to the URN. If traceability exists between the other models and implementation, the
existence of these two types of traceability relations would transitively ensure a complete
traceability from implementation to the source of requirements.

Since requirements are open-ended, and may include factors that cannot be expressed in URN (e.g.
the colour of a terminal), URN shall provide facilities to connect element of its models to external
requirements objects.

URN model elements shall also be traceable and transformable to elements of other languages in
the ITU-T family of languages and of UML. This also contributes to the support of round-trip
engineering processes where URN is involved.

Traceability within URN models is also important. Operational aspects of goals in URN-NFR
models shall be traceable to responsibilities or scenarios in URN-FR models, and vice-versa.
Performance constraints identified in URN-NFR models shall be traceable to responsibilities,
scenarios, or response-time requirements in URN-FR models, and vice-versa.

8.2 Requirements test case specification
URN shall support the testing of requirements as well as testing based on requirements. A
requirement test case specification describes scenarios found, or expected to be found, in the
URN-FR specification. The URN-FR specification is assumed to include operationalization of
relevant non-functional requirements; hence part of the URN-NFR specification (for example,
quantitative performance attributes) is indirectly tested at the same time. The requirement test case
specification aims to enable the following types of testing:
• Validation testing used to capture individual or small-grained client and user scenarios so

that the integrated set of requirements can be determined to be valid by the clients and
users. Stakeholders can use this type of testing to establish contract satisfaction.

• Conformance testing used to verify designs and implementations against the requirements.
Such test cases should be created in a way that would improve compatibility with the
ITU-T testing language, TTCN-3.

• Regression testing used at the requirements level to ensure a certain degree of compatibility
with key system properties during the evolution of requirements.

• Dynamic assessment is used in dynamic systems that need to assess capabilities of
components and other systems with which they communicate (for instance, does this
unknown component support this quality of service?). This dynamic assessment may
involve testing of the component or other system in question. URN should provide means
for describing such dynamic assessment tests.

 ITU-T Rec. Z.150 (02/2003) 17

The testing of non-functional requirements in general is also desirable but may not be achievable
through the use of scenarios. The URN notation need not be able to support this type of testing.

8.3 Performance analysis of requirements
URN should enable at least a preliminary analysis of performance properties, such as response
delay or throughput capacity, based on workload and environment parameter estimates attached to
the URN-FR specification. Performance properties are of critical importance in
telecommunications, and current work indicates that the analysis is feasible. The necessary
workload parameters that shall be supported by URN include:
• Scenario triggering parameters such as period of initiation, distribution of delays between

initiations, etc.
• Frequencies of alternative paths.
• Processing demands of scenarios, and of operations within scenarios.
• Demands for system services other than processing, made by scenarios and operations.

The environment parameters should approximately describe the processing capacity, network
delays and the services provided by the environment (for instance, a response delay for a remote
service).

Performance requirements such as expected response times shall be expressible in terms of target
fragments of scenarios in URN-FR.

Performance results will be delays along defined processing paths, or the range of possible
throughputs of some scenarios. The intention of the analysis is to estimate the degree of
conformance with stated performance requirements, and to identify problem areas and sensitivities.
The data and the results are expected to be approximate. The analysis can be performed in various
ways:
• Point analysis considers one set of conditions.
• Sensitivity analysis considers a range of conditions, and the variation of performance

measures with parameter values. This could include sensitivity of the system to its
workload parameters or to the environment.

8.4 Change management
It should be possible to version-control URN models and manage evolving requirements. To that
end, URN shall provide identifiers for the elements of its models as well as descriptions of
document versions.

8.5 Concrete representations
In order to provide aids for communicating requirements, URN shall support the graphical
representation of requirements models as well as a tool-oriented interchange format.

The graphical representation allows the modelling of requirements in an iconic and spatial manner
which facilitates an intuitive understanding, and emphasizes the informal aspect of the URN. It
includes textual annotations for elements which are not intrinsically graphical, such as data and
parameters. These annotations shall be traceable to URN graphical elements and be displayable on
conventional media (paper or computer screen).

The tool-oriented interchange representation provides for the ability to exchange requirement data
between different tools in a standardized manner. W3C's XML and ITU-T's ASN.1 are examples of
candidate target interchange formats.

A particular abstract representation of the URN language, achieved using abstract grammars, meta-
models based on OMG's MOF, or other means, is not defined by this Recommendation.

18 ITU-T Rec. Z.150 (02/2003)

8.6 Usability
URN shall be usable by various stakeholders. Usability is subjective and is therefore difficult to
measure so that evaluation of how usable is URN, is also subjective. However, the usability of a
URN, and of the tools that implement it, is a key aspect of acceptability of URN.

9 Language requirements summary
The purpose of this clause is to summarize the language requirements that the URN shall fulfil.

9.1 Requirements table format
Table 1 presents the table format used to list each of the language requirements defined for the
URN (FR and NFR) notations.

Each language requirement possesses a unique identifier (ID) and is typed. A language requirement
is of type FR if it relates exclusively to functional requirements. A language requirement is of type
NFR if it relates exclusively to non-functional requirements. A language requirement is of type
URN if it is common to both functional and non-functional requirements. Language requirements
are also defined as being essential (E), i.e. it shall be implemented in this study period, or desirable
(D), i.e. it could be delayed to a future study period. Each language requirement is cross-referenced
to the clauses where the language requirement is discussed (Ref), and to the objectives to which it
contributes (see 1.1). A language requirement is expressed as a capability the URN has.

Table 1/Z.150 – Language requirements table format

ID Language Requirement Type E/D Ref Obj

789 Support requirements engineering URN E 1.2 a,b,c,d

In the artificial example of Table 1, an essential language requirement of type URN is provided. Its
identifier is 789, it is discussed in 1.2, and it contributes to the objectives a, b, c, and d discussed
in 1.1.

9.2 URN requirements table
Table 2 lists each of the language requirements defined for the URN (FR and NFR).

Table 2/Z.150 – URN language requirement table

ID Language Requirement Type E/D Ref Obj

1 Specify tentative and ill-defined requirements NFR E 6.1, 6.12 h
2 Specify refinement of goals and NFRs NFR E 6.2, 6.12 h
3 Specify alternative refinement of goals and NFRs NFR E 6.2 h
4 Specify alternative functional (operational) requirements NFR E 6.2 h
5 Specify satisficeability of goals and NFRs NFR E 6.2 h
6 Support (qualitative) goals and NFRs that do not have clear

metrics and measurements for their achievements
NFR E 6.3 h

7 Support quantitative goals and NFRs NFR E 6.3 h
8 Specify tradeoffs in goals and NFRs NFR E 6.3 h
9 Specify argumentation during modelling NFR E 6.4 h

10 Specify business, organizational, and system objectives NFR E 6.5 h

 ITU-T Rec. Z.150 (02/2003) 19

Table 2/Z.150 – URN language requirement table

ID Language Requirement Type E/D Ref Obj

11 Specify links between high-level objectives and lower-level
specifications

NFR E 6.5 h, i

12 Specify multiple stakeholders' requirements and interests NFR E 6.6 h
13 Specify synergies and conflicts among goals and NFRs NFR E 6.6 f, g, h
14 Support requirements priorities NFR E 6.7 h
15 Support negotiation for solving conflicting goals and NFRs NFR E 6.6, 6.7 h
16 Support requirements evolution and changes NFR E 6.8 m
17 Handle functional and non-functional requirements

concurrently
NFR E 6.9 i

18 Specify selection criteria when choosing among alternative
functional requirements

NFR E 6.9 h

19 Support incremental commitments of requirements NFR E 6.10 h, m
20 Support requirements management during all development

phases
NFR E 6.11 h, m

21 Have model elements that are identifiable and connectable to
artefacts in external models

NFR E 6.12 i

22 Support multiple levels of formality NFR E 6.13 b, h
23 Provide ease of use for customers and system users URN E 6.13, 8.6 h
24 Provide precise requirements for developers and testers NFR E 6.13 h
25 Support modular descriptions of goal and NFR models NFR E 6.14 h
26 Support the reuse of goals, NFRs, and knowledge in general NFR D 6.15 j
27 Support the mapping of input events and preconditions to

output events and postconditions in various degrees of detail
FR E 7.1 a

28 Specify the set of input events at a scenario start point FR E 7.1 a
29 Specify the set of output events at a scenario end point FR E 7.1 a
30 Specify preconditions at scenario start points FR E 7.1 a
31 Specify postconditions at scenario end points FR E 7.1 a
32 Specify input sources (human or machine) FR E 7.1 a
33 Specify output sinks (human or machine) FR E 7.1 a
34 Specify responsibilities and references to these

responsibilities
FR E 7.2 a

35 Specify system operations as causal flows of responsibilities
(paths)

FR E 7.2 a, b

36 Specify alternative paths FR E 7.2, 7.4 a
37 Specify common paths FR E 7.2, 7.4 a
38 Specify condition-based decision-making at branching points FR E 7.2 a
39 Define a data model and expression evaluator to express and

evaluate conditions at branching points
FR E 7.2 a, c, f

40 Specify parallel or concurrent paths FR E 7.2 a
41 Specify synchronisation of paths within a scenario FR E 7.2 a

20 ITU-T Rec. Z.150 (02/2003)

Table 2/Z.150 – URN language requirement table

ID Language Requirement Type E/D Ref Obj

42 Specify synchronisation between paths from multiple
scenarios

FR E 7.2, 7.4 a

43 Specify timed synchronization, with a timeout path FR E 7.2 a, d
44 Specify repetitive actions within a scenario FR E 7.2 a
45 Support hierarchical decomposition of scenarios FR E 7.3, 7.4 a
46 Specify subscenarios as scenarios FR E 7.3 a
47 Specify subscenario preconditions and postconditions FR E 7.3 a
48 Specify scenario containers with multiple subscenarios FR E 7.3 a, d
49 Define a data model and expression evaluator to select

subscenarios in dynamic containers
FR E 7.3 a, d, f

50 Group-related scenarios FR E 7.4 a
51 Extract individual scenarios from grouped scenarios FR E 7.4 a, f, g
52 Specify individual scenarios using a data model and

initializations
FR E 7.2, 7.3,

7.4
a, f, g

53 Express desirable feature interactions in scenarios FR E 7.4 g
54 Detect undesirable feature interactions in scenarios FR E 7.4 f
55 Specify components and references to these components FR E c
56 Specify scenarios without reference to components FR E 7.5 a
57 Specify scenarios where scenario elements are allocated to

components
FR E 7.5 c, d

58 Specify abstract components and COTS FR E 7.5 c
59 Specify dynamic entities FR E 7.5 d, e
60 Specify system boundaries FR E 7.6 c, d
61 Specify the behaviour of the system's environment FR E 7.6 c
62 Specify actors external to the system FR E 7.6 c
63 Support backward traceability from URN to source

documents
URN E 8.1 k

64 Support forward traceability from URN to the other models
used in the development process

URN E 8.1 k

65 Support facilities to connect URN elements to external
requirements objects

URN E 8.1 l, m

66 Enable transformations to elements of other languages in the
ITU-T family of languages and of UML

URN D 8.1 k

67 Support traceability between operational aspects of goal/NFR
models and responsibilities/scenarios in scenario models

URN E 8.1 i

68 Support traceability between performance constraints in NFR
models and responsibilities/scenarios/response-time
requirements in scenario models

URN E 8.1 g, i

69 Support the testing of requirements URN E 8.2 f, h
70 Support testing based on requirements FR E 8.2 f, k
71 Enable preliminary analysis of performance properties URN E 8.3 g

 ITU-T Rec. Z.150 (02/2003) 21

Table 2/Z.150 – URN language requirement table

ID Language Requirement Type E/D Ref Obj

72 Attach performance/workload annotations to scenario
elements

FR E 8.3 g

73 Specify the environment's processing capacity, network
delays, and services provided

FR E 8.3 g

74 Specify response times in terms of target fragments of
scenarios

FR E 8.3 g

75 Specify identifiers for the model elements URN E 8.4 k, l, m
76 Specify document versions URN E 8.4 m
77 Support a graphical representation of requirements URN E 8.5 a, h
78 Support a tool-oriented interchange format URN E 8.5 a, h
79 Support textual annotations traceable to graphical elements URN E 8.5 a, g, h
80 Support textual annotations displayable on conventional

media
URN E 8.5 a, h

Annex A

Compliance to this Recommendation

Descriptions that claim to be compliant to ITU-T Rec. Z.150 (URN) shall conform to the notation
grammars defined by ITU-T Recommendations for URN-NFR and URN-FR (whose language
requirements are stated in Z.150), with the semantics as defined in these Recommendations. A
description is non-compliant if it includes notation grammar which is not allowed by these
Recommendations or has analyzable semantics which can be shown to differ from these
Recommendations.

A software tool that claims to support Z.150 (here after calleda "tool") should be capable of
creating, editing, presenting and analysing compliant Z.150 descriptions.

A tool that implements the graphical or textual Z.150 (URN) is a valid Z.150 (URN) tool, but it is
not required to handle both.

A tool that handles a subset of Z.150 is a valid Z.150 URN, URN-FR or URN-NFR (according to
the definitions used in this Recommendation) tool only if it supports all essential features of URN,
URN-FR or URN-NFR respectively. When a tool supports only URN-FR or only URN-NFR, it is
expected to be used in a framework with a tool for URN-NFR and URN-FR respectively.

A tool is not valid if its compliance analysis function fails to detect non-compliance of a description
with Z.150. If the tool handles a superset notation, then it is allowed to categorize non-compliance
as a warning rather than a failure.

A conformance statement clearly identifying the Z.150 language features and requirements not
supported should accompany any tool that handles a subset of Z.150.

22 ITU-T Rec. Z.150 (02/2003)

Appendix I

Requirements engineering activities

This appendix discusses the major set of activities related to requirements engineering and how
these relate to an approach oriented towards goals and scenarios.

Requirement analysis, and more broadly speaking, requirements engineering (RE), covers multiple
intertwined activities to arrive at a requirements specification of the intended system. We can
suggest the following major activities involved:
• Domain or early requirements analysis;
• Eliciting requirements;
• Modelling and analyzing requirements;
• Documenting and communicating requirements among stakeholders over the system life-

cycle;
• Agreeing on and validating requirements;
• Specification;
• Specification analysis;
• Verifying, managing and evolving requirements.

Each of these activities has distinct concerns and may be helped by a goal-oriented and process-
oriented URN.

Domain or early requirements analysis: During this phase, the existing environment in which the
system should be built is studied, and the relevant stakeholders, who are affected by the intended
system, are identified. This may include the intended users, the clients who commissioned the
system, 3rd parties, and stakeholders within the development organisation, international standards
bodies, and the like. At this early stage, the stakeholders' interests, and how they might be addressed
or compromised by various system-and-environment alternatives, is explored. Each alternative may
explore different boundaries between the software-to-be and its environment.

Providing for goals (and to a certain extent, for a representation of stakeholders) within the
URN-NFR, allows capturing the high-level objectives of pertinent stakeholders. Linking those goals
to elements of the requirements specification, design and implementation, aids in better
understanding and managing of how changes in these high-level objectives affect the system during
development, maintenance and evolution. Capturing and linking goals in such a way also aids in
dealing with understanding how software systems either facilitate or hinder co-operation among
organisations that wish to create alliances in order to pursue co-operative objectives.

Eliciting requirements: During this phase, alternative models for the target system are further
elaborated and explored such that stakeholders' objectives are met. Particular requirements and
assumptions on the various organizational actors who would interact with the intended software
system, the system, and, to a certain extent, pertinent high-level components of the system, are
established. Often the users of systems are not able to articulate their requirements. Describing the
tasks, scenarios or use cases for the current and/or the intended system can help users in making
their requirements explicit.

Goals, and the ability to refine them towards potential alternative system specifications, may
provide guidance when eliciting requirements. Knowledge-based approaches that capture know-
how about achieving goals may be invoked during the elicitation process, to suggest further goal
refinements and certain functional, structural and organizational requirements for achieving goals.
The synergy between scenarios and goals is discussed in the literature. Linking goals to scenarios
facilitates checking if all goals have been met, thus establishing completeness of the requirements

 ITU-T Rec. Z.150 (02/2003) 23

specification. The ability to ask "why" for scenarios may provide opportunities to identify new
goals, while "how else" questions may yield alternative scenarios for achieving goals.

Modelling and analysis: This is an activity that is found during all phases of requirements
engineering and appears to be a core process in requirements engineering. The existing system
needs to be modelled in one way or another, while the hypothetical alternative systems need to be
modelled as well. Models serve as the basic common interface for the various requirements
engineering activities. Models also provide the basis for documentation and evolution.

The ability to provide goals as an explicit modelling construct, together with the ability to refine
goals and link them to various requirements, design and implementation-related modelling
elements, facilitates making clear how these elements produced in each phase relate to elements of
previous phases. In addition, linking elements may provide an anchor point for reasoning about
design decisions, justifying or refuting them during the development process. Goals and process
support thus provide good groundwork for dealing with requirements evolution and change over the
life cycle of the system, i.e., requirements management.

Documenting and communicating requirements: This activity deals with capturing the various
decisions made during the RE process, together with their underlying rationale and assumption, and
with effectively communicating requirements among stakeholders. Part of the documentation effort
that becomes increasingly recognized as crucial, is requirement management which is the ability not
only to write requirements, but also to do so in a form that is readable and traceable over the life
cycle.

Similarly to the modelling and analysis support, the ability to provide for goals and link them to
requirements, design and implementation, provides traceability links from the source of
requirements (i.e. stakeholders' goals) to the requirements specification, design and implementation.
Goals would appear in all phases and would be related through refinements links, from high-level
organizational goals to low-level design goals. This would also allow for managing change during
the development life cycle. Documenting NFRs, within a semi-formal or formal framework, also
improves the ability to communicate pertinent NFRs among the relevant stakeholders by clustering
them together systematically in hierarchical manners, rather than having them spread out informally
within text-based documentation.

Achieving agreement on and validation of requirements: Since the source for requirements of a
system are the various stakeholders affected and/or involved, disagreement among stakeholders
may lead to differences in expectations of what the intended system should provide. This problem is
compounded when stakeholders have divergent goals that they wish to have achieved by the
system. Explicitly describing the stakeholders' objectives, and how they relate to the system's
requirements specification, is a necessary precondition for detecting, negotiating and resolving
conflicts among stakeholders. Another aspect of "agreement", besides dealing with conflicts among
stakeholders, is the validation of system requirements. This involves the agreement of stakeholders
that the documented requirements are in fact meeting their stated objectives.

Capture of goals with the URN allows early detection of apparent conflicting system requirements
and may, as a result, help to initiate negotiations for arriving at compromises and agreement.
Conflicts among organizational and system-related goals may surface during the detailed
requirements specification, but also during the design and implementation phase when particular
choices for achieving certain goals exclude the ability for achieving others. Life-cycle support
within the URN would then enable identifying and dealing with such conflicts. Negotiation
techniques may focus on trying to identify the most important goals of stakeholders, and ensure that
they are met, such that the best trade-off among alternatives receives agreement from all parties
involved. Goals may aid in determining how, and how well, the objectives of stakeholders were in
fact met by the requirements specification.

24 ITU-T Rec. Z.150 (02/2003)

Specification and specification analysis: These are activities where requirements and assumptions
are formulated in precise ways, and checked for deficiencies (such as inadequacies, incompleteness,
or inconsistencies) and for feasibility in terms of resources required, development costs etc.

Goals in general, and NFRs-related goals in particular, may aid here in selecting among alternative
specification elements, and in justifying such specification decisions. Analysis of specifications
may then be placed in the context of organizational goals that are (or are not) achieved throughout
the detailed specification. Furthermore, prioritizing goals may allow choosing particular areas
within the system where precise and formal specification is more desirable than in other, often less
crucial areas, where a semi-formal, or perhaps informal, specification is sufficient. Often, security
or performance NFRs play a role when formal methods are needed to prove such properties for the
system.

Evolution: The requirements are modified to accommodate corrections, environmental changes, or
new objectives. During evolution, both functional behaviour and architecture elements need to
accommodate changes in the requirements specification which often originate from changed
organizational objectives.
As already elaborated earlier, having the ability to describe rationales for the existence of elements
within the specification, design and implementation, supports tracing how changes in the objectives
of the organization affect the rest of the development. Similarly, how changes in design and
implementation artefacts, may affect organizational objectives and their corresponding
stakeholders.

A URN should permit the expression of different degrees of formality to reflect the shift in
understanding as the users apply refinements to the model during the course of analysis and
specification. For example, during early requirements stage, emphasis may be given to relationships
among functional and non-functional elements, and stakeholders and their objectives, rather than
precise definitions of those elements while, during later stages of requirements, more formality
would be necessary for providing more precise requirements descriptions.

Appendix II

Guidelines for the maintenance of URN

II.1 Maintenance of URN
This appendix describes the terminology and rules for maintenance of Z.150 agreed at the Study
Group 17 meeting in November 2002, and the associated "change request procedure".

Terminology:
a) An error is an internal inconsistency within Z.150.
b) A textual correction is a change to text or diagrams of Z.150 that corrects clerical or

typographical errors.
c) An open item is a concern identified but not resolved. An open item may be identified

either by a Change Request, or by agreement of the Study Group or Working Party.
d) A deficiency is an issue identified where the semantics of URN are not (clearly) defined by

Z.150.
e) A clarification is a change to the text or diagrams of Z.150, which clarifies previous text or

diagrams that could be ambiguously understood without the clarification. The clarification
should attempt to make Z.150 correspond to the semantics of URN as understood by the
Study Group or Working Party.

 ITU-T Rec. Z.150 (02/2003) 25

f) A modification is a change to the text or diagrams of Z.150 that changes the semantics of
URN.

g) A deprecated feature is a feature of URN that is to be removed from URN in the next
revision of Z.150.

h) An extension is a new feature which must not change the semantics of features defined in
Z.150.

II.2 Rules for maintenance
In the following text, references to Z.150 shall be considered to include annexes, appendices, and
supplements, as well as any addendum, amendment or corrigendum or Implementors guide.
a) When an error or deficiency is detected in Z.150, it must be corrected or clarified. The

correction of an error should imply as small a change as possible. Error corrections and
clarifications will be put into the Master list of Changes for Z.150 and come into effect
immediately.

b) Except for error corrections and resolution of open items from the previous study period,
modifications and extensions should only be considered as the result of a request for change
that is supported by a substantial user community. A request for change should be followed
by investigation by the Study Group or Working Party in collaboration with representatives
of the user group, so that the need and benefit are clearly established and it is certain that an
existing feature of URN is unsuitable.

c) Modifications and extensions not resulting from error correction shall be widely publicised
and the views of users and toolmakers canvassed before the change is adopted. Unless there
are special circumstances requiring such changes to be implemented as soon as possible,
such changes will not be recommended until Z.150 is revised.

d) Until a revised Z.150 is published, a Master list of Changes to Z.150 will be maintained
covering Z.150 and all annexes, except the formal definition. Appendices, addenda,
corrigenda, Implementors' guides or supplements will be issued, as decided by the Study
Group. To ensure effective distribution of the Master list of Changes to Z.150, it will be
published as COM Reports, and by appropriate electronic means.

e) For deficiencies in Z.150, the formal definition should be consulted. This may lead to either
a clarification or correction that is recorded in the Master list of changes to Z.150.

II.3 Change request procedure
The change request procedure is designed to enable URN users from within and outside ITU-T to
ask questions about the precise meaning of Z.150, make suggestions for changes to URN or Z.150,
and to provide feedback on proposed changes to URN. The URN experts' group shall publish
proposed changes to URN before they are implemented.

Requests for changes should either use the Change Request Form (see next page) or provide the
information listed by the form. The kind of request should be clearly indicated (error correction,
clarification, simplification, extension, modification or deprecated feature). It is also important that
for any change other than an error correction, the amount of user support for the request is
indicated.

The ITU-T Study Group responsible for Z.150 should formally process all change requests at
scheduled meetings. For corrections or clarifications, the changes may be put on the list of
corrections without consulting users. Otherwise, a list of open items is compiled. The information
should be distributed to users:
• as ITU-T white contribution reports;
• as electronic mail to URN mailing lists (such as the ITU-T list URN@itu.int);

26 ITU-T Rec. Z.150 (02/2003)

• by others means as agreed by the Study Group 17 experts.

Study Group experts should determine the level of support and opposition for each change, and
evaluate reactions from users. A change will only be put on the accepted list of changes if there is
substantial user support for the proposal and no serious objections to it are received from more than
just a few users. Finally all accepted changes will be incorporated into a revised Z.150. Users
should be aware that until changes have been incorporated and approved by Study Group
responsible for Z.150 they are not recommended by ITU-T.

URN Change Request Form

Please fill in the following details

Character of change: � error correction � clarification

 � simplification � extension

 � modification � decommission

Short summary of change request

Short justification of the change request

Have you consulted other users � yes � no

� yes � no Is this view shared in your
organization � 11-100 � over 100

� 1-5 � 6-10 How many users do you represent?

� 11-100 � over 100

Your name and address:

Please attach further sheets with details if necessary

URN (Z.150) Rapporteur, c/o ITU-T, Place des Nations, CH-1211, Geneva 20, Switzerland.
Fax: +41 22 730 5853, e-mail: URN.rapporteur@itu.int

 ITU-T Rec. Z.150 (02/2003) 27

Bibliography

This bibliography contains references to related ITU-T standards and to literature on requirements
engineering and related topics.

• AMYOT, D. and MUSSBACHER G., URN: Towards a New Standard for the Visual
Description of Requirements, In: 3rd SDL and MSC Workshop (SAM'02), Aberystwyth,
U.K. 2002.

• GOTEL, O. and FINKELSTEIN, A., An analysis of the requirements traceability problem,
In: First Int. Conference on Requirements Engineering (ICRE'94), Colorado Springs, USA,
94-101, 1994.

• ISO 13407:1999, Human-centred design processes for interactive systems. Technical
Committee/Sub-Committee: TC159/SC4. Geneva.

• ISO 14598-5:1998 Information Technology Software Product Evaluation – Part 5: Process
for Evaluation. Technical Committee/Sub-Committee: JT1/SC7. Geneva.

• ITU-T Recommendation I.130 (1988), Method for the characterization of
telecommunication services supported by an ISDN and network capabilities of ISDN.

• ITU-T Recommendation Q.65 (2000), The unified functional methodology for the
characterization of services and network capabilities including alternative object-oriented
techniques.

• ITU-T Recommendation Q.1200 (1997), General series Intelligent Networks
Recommendation Structure.

• ITU-T Recommendation Z.100 (2002), Specification and Description Language (SDL).

• ITU-T Recommendation Z.100 Supplement 1 (1997), SDL+methodology: Use of MSC and
SDL (with ASN.1).

• ITU-T Recommendation Z.105 (2003), SDL Combined with ASN.1 modules (SDL/ASN.1).

• ITU-T Recommendation Z.109 (1999), SDL combined with UML.

• ITU-T Recommendation Z.110 (2000), Criteria for use of formal description techniques
by ITU-T.

• ITU-T Recommendation Z.120 (1999), Message sequence chart (MSC).

• ITU-T Recommendation Z.140 (2003), Testing and Test Control Notation version 3
(TTCN-3): Core language.

• ITU-T, Draft Recommendation Z.450, Quality Aspects of Protocol-related
Recommendations.

• LIU, L. and YU, E., From Requirements to Architectural Design –Using Goals and
Scenarios. In: From Software Requirements to Architectures Workshop (STRAW 2001),
Toronto, Canada, 2001.

• NIELSEN, J., Usability engineering. San Francisco, USA. Morgan Kaufmann, 1993.

• NUSEIBEH, B. and EASTERBROOK, S. Requirements Engineering: A Roadmap. In:
Finkelstein, A. (ed.) The Future of Software Engineering. Special track of the 2nd Int.
Conference on Software Engineering (ICSE'2000), ACM Press, 2000.

• OMG (2002), Meta Object Facility Specification (MOF), version 1.4.
http://www.omg.org/technology/documents/formal/mof.htm

28 ITU-T Rec. Z.150 (02/2003)

• OMG (2001), Unified Modeling Language Specification (UML), version 1.4.
http://www.omg.org/technology/documents/formal/uml.htm

• VAN LAMSWEERDE, A. Requirements Engineering in the Year 00: A Research
Perspective. In: Proc. 22nd Int. Conference on Software Engineering (ICSE'2000).
Limerick, June 2000, ACM press.

• W3C, Extensible Markup Language (XML) 1.0 (Second Edition).
http://www.w3.org/TR/REC-xml

Geneva, 2003

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.150 (02/2003) User Requirements Notation (URN) - Language requirements and framework
	Summary
	Source
	Keywords
	FOREWORD
	CONTENTS
	1 Scope
	1.1 Motivation
	1.2 Document organization

	2 References
	3 Definitions
	4 Abbreviations and acronyms
	5 Scope of URN
	5.1 What is URN?
	5.2 What is URN-NFR?
	5.3 Why goal-oriented requirements engineering?
	5.4 What is URN-FR?
	5.5 Intended usage

	6 Language requirements for URN-NFR
	6.1 Expressing tentative, ill-defined and ambiguous requirements
	6.2 Clarifying, exploring, and satisficeing goals and requirements
	6.3 Expressing and evaluating measurable goals and NFRs
	6.4 Argumentation
	6.5 Linking high-level business goals to system requirements
	6.6 Multiple stakeholders, conflict resolution and negotiation support
	6.7 Requirements prioritization
	6.8 Requirements creep and churn and other evolutionary forces
	6.9 Integrated treatment of functional and non-functional requirements
	6.10 Multiple rounds of commitment
	6.11 Life-cycle support
	6.12 Traceability
	6.13 Ease of use and precision
	6.14 Modularity
	6.15 Reusable requirements

	7 Language requirements for URN-FR
	7.1 System trigger and termination conditions
	7.2 System operations and responses
	7.3 Complex and lengthy behaviour
	7.4 Relationships among scenarios
	7.5 Component definition
	7.6 Environment specification

	8 Other language requirements for URN
	8.1 Requirements traceability
	8.2 Requirements test case specification
	8.3 Performance analysis of requirements
	8.4 Change management
	8.5 Concrete representations
	8.6 Usability

	9 Language requirements summary
	9.1 Requirements table format
	9.2 URN requirements table

	Annex A - Compliance to this Recommendation
	Appendix I - Requirements engineering activities
	Appendix II - Guidelines for the maintenance of URN
	II.1 Maintenance of URN
	II.2 Rules for maintenance
	II.3 Change request procedure
	Bibliography

