

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.120
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Amendment 2
(09/2009)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) – Message
Sequence Chart (MSC)

 Message sequence chart (MSC)

Amendment 2: Revised Appendix I – Application
of MSC

Recommendation ITU-T Z.120 (2004) – Amendment 2

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
User Requirements Notation (URN) Z.150–Z.159
Testing and Test Control Notation (TTCN) Z.160–Z.179

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Z.120 (2004)/Amd.2 (09/2009) i

Recommendation ITU-T Z.120

Message sequence chart (MSC)

Amendment 2

Revised Appendix I – Application of MSC

Summary

Amendment 2 to Recommendation ITU-T Z.120 addresses the problem of possible applications of
message sequence charts (MSCs). These application domains are not explicitly defined in the main
part of this Recommendation, which leaves ground for the following interpretation that MSCs can be
used in almost any context, without restriction. This is not the case, and this appendix clarifies
several interpretation issues related to the verification and implementability of MSCs, and shows
some syntactic requirements needed for each of these applications.

Amendment 2 cancels and replaces Amendment 1 (2008) to Recommendation ITU-T Z.120 (2004).

Source

Amendment 2 to Recommendation ITU-T Z.120 (2004) was agreed on 25 September 2009 by ITU-T
Study Group 17 (2009-2012).

Keywords

Implementability, message sequence charts, model-checking, requirements.

ii Rec. ITU-T Z.120 (2004)/Amd.2 (09/2009)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2010

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Z.120 (2004)/Amd.2 (09/2009) iii

CONTENTS

 Page

Amendment 2 – Revised Appendix I – Application of MSC .. 1

I.1 Introduction .. 1

I.2 Problems ... 1

I.3 General undecidable results .. 5

I.4 Syntactical description of MSC subclasses .. 5

I.5 Summary of results ... 10

I.6 Recommendations .. 11

Bibliography... 12

 Rec. ITU-T Z.120 (2004)/Amd.2 (09/2009) 1

Recommendation ITU-T Z.120

Message sequence chart (MSC)

Amendment 2

Revised Appendix I – Application of MSC

(This appendix does not form an integral part of this Recommendation)

I.1 Introduction

This appendix addresses the problem of possible applications of message sequence charts (MSCs).
The main part of this Recommendation states that MSCs are meant to "describe interactions
between a number of independent message passing Instances". In addition to this, MSCs are "a
scenario language", "a graphical language", "a formal language", and are "widely applicable", that
is not "tailored for one single application domain". These application domains are not explicitly
defined in the main part of this Recommendation, which leaves ground for the following
interpretation that MSCs can be used in almost any context, without restriction. This is not the case,
and recent literature has shown that with their whole expressive power, several applications of
MSCs were impracticable.

Among the applications of MSC, the following are frequently addressed:

• model checking,

• comparison of specifications,

• specification and implementation.

This list is not exhaustive, but has been well covered by the literature in the last decade. In
particular, several publications have shown that these applications can be undecidable problems for
MSCs, that is there exists no algorithm that takes as an input any MSC and that terminates with as
output a correct solution. The objective of this appendix is to provide a list of known decision
problems that are impracticable in general for MSCs, and a list of syntactic criteria that ensure
decidability of some of the problems listed.

This appendix is organized as follows. Clause I.2 gives a more precise definition of the model
checking or comparison problems that can be considered for MSCs, and of the notion of
implementation of MSCs. Clause I.4 identifies syntactic subclasses of MSCs called regular MSCs,
local choice MSCs and globally cooperative MSCs for which model checking, comparison, or
implementation problems have a solution.

I.2 Problems

I.2.1 Model checking

The usual definition of model checking is verifying whether a logic formula φ, described with a
specific syntax, is satisfied by a model M. This is written M |= φ. Several popular logics exist. We
can cite linear temporal logic (LTL), computational tree logic (CTL), CTL*, alternating-time
temporal logic (ATL), and the modal μ-calculus. For an introduction to model checking and logics,
interested readers may consult [b-Clarke99], and [b-Holzmann99].

Temporal logics are frequently used to ensure that modelled systems satisfy some safety or liveness
properties. Logics can address properties of global states, or question the structure of the model
itself, and the interpretation of a formula φ depends on the semantics of the logic. Similarly, the

2 Rec. ITU-T Z.120 (2004)/Amd.2 (09/2009)

usual interpretation of model checking is that the formulae address properties of runs and global
states of the model.

An example of linear temporal logic (LTL) formula is:

 φ1 = G(a F b)

With the LTL semantics, if a and b are action names, this property means that it is always true that
when action a is played, then action b is eventually played. A whole description of LTL and other
logics is beyond the scope of this appendix.

Figure I.1 – An MSC description with an alternative

For message sequence charts, the runs of a description are defined by the semantics provided by
[b-ITU-T Z.120 Annex B]. For a given MSC description M, we will denote by L(M) the set of all
runs defined by M. Note also that an MSC description does not only represent a set of runs, but also
a set of basic MSCs, which can be obtained by unfolding loops, replacing alternatives by a single
choice, etc. Consider, for instance, the MSC description of Figure I.1. This description defines two
possible MSCs that are depicted in Figure I.2.

 Rec. ITU-T Z.120 (2004)/Amd.2 (09/2009) 3

Figure I.2 – Basic MSC interpretation of the MSC in Figure I.1

From now on, we will denote by F(M) the set of basic MSCs (bMSCs) described by an MSC
description M.

Frequently, checking a logical formula over runs of a model M is equivalent to verifying joint
properties of runs of the model and of a finite state automaton Rφ computed from the formula. For
instance, an automaton R¬φ1 associated to the negation of formula φ1 above is depicted in Figure I.3.
This automaton describes all runs that do not satisfy φ1. Checking whether a MSC M satisfies φ1
consists in verifying that the set of runs described by M and by the automaton R¬φ1 are disjoint.

Figure I.3 – An automaton R¬φ1 collecting runs that satisfy ¬φ1

To model-check logical properties on message sequence charts specifications, tools have to provide
an answer to a question of the kind:

 (Mc1) L(M) ⊆ Rφ ?

 (Mc2) Rφ ⊆ L(M) ?

 (Mc3) L(M) ∩ Rφ = φ ?

Where M is the MSC description, φ a logical formula, Rφ a finite state automaton that describes sets
of runs that satisfy (or do not satisfy) φ. Here, Mc1 occurs when Rφ models all acceptable
behaviours: the behaviours of the MSC specification should be contained in the behaviours of Rφ
and the user wants a positive answer. Mc2 occurs when Rφ models the bad properties of all
behaviours that should not occur, and the user expects a negative answer. Mc3 occurs when Rφ

4 Rec. ITU-T Z.120 (2004)/Amd.2 (09/2009)

models behaviours that have some undesired property, and the user expects a negative answer.
Within this setting, comparison of the runs of an MSC with a finite state automaton should be a
tractable problem.

I.2.2 Comparison of MSC descriptions

Comparison of MSC descriptions is another problem close to model checking. As there might be
several ways to describe similar behaviours with message sequence charts, the questions of the
equivalence of two descriptions might be interesting. For two MSC descriptions M1 and M2, one
may also want to verify that M2 is an extension of M1, i.e., that all behaviours described by M1 can
be found in M2. This comparison can occur at the level of runs, or at the level of basic MSCs
generated by two MSC specifications. Hence, comparing two MSC specifications M1 and M2
resumes to answering any of the six following questions:

 (EquivL) L(M1) = L(M2) ?

 (RefL) L(M1) ⊆ L(M2) ?

 (IntL) L(M1) ∩ L(M2)= φ ?

 (EquivF) F(M1) = F(M2) ?

 (RefF) F(M1) ⊆ F(M2) ?

 (IntF) F(M1) ∩ F(M2) = φ ?

I.2.3 Specification and implementation

Message sequence charts allow for the description of interactions. It is then tempting to consider
them as a specification or even as a development and programming language. However, not all
MSC descriptions can be implemented. Consider, for instance, the example of Figure I.9. In this
MSC, two systems are performing actions, namely count for instance System1, and recount for
instance System2. Implicitly, in all bMSCs depicted by this description, the number of occurrences
of actions count and recount executed by both instances should be the same. However, the two
systems never communicate. Hence, without providing additional mechanisms to synchronize
System1 and System2, the description of Figure I.9 cannot be implemented.

If a user considers that message sequence charts present behaviours at a certain abstraction level,
this kind of description is not a real problem, as using additional messages in implementations of
this description is allowed. Now, if the MSC description is considered as complete, i.e., all message
actions, timers and so on that will be used by any implementation appear in the description, then
some MSC descriptions cannot be implemented.

A general approach to implement a MSC description is to implement the behaviour of each instance
separately (for instance with SDL) [b-Khendek99]. However, it has been shown that not all MSC
descriptions can be implemented this way [b-Alur05], as some additional unspecified behaviours
appear in the generated implementation. When a MSC description can be implemented by
separating all instances behaviours, it will be called a realizable MSC.

Hence, a natural question that arises for a given MSC description M is:

 (Rez) is M realizable ?

In general, there is no procedure to answer the realizability question [b-Alur05]. However, recent
results [b-Genest02], [b-Genest04], and [b-Helouet00] have shown that a slight modification of the
message contents can allow for the implementation of some subclasses of MSCs.

 Rec. ITU-T Z.120 (2004)/Amd.2 (09/2009) 5

I.3 General undecidable results

A problem whose answer can be yes or no is called decidable when there exists an algorithm that
can compute a correct answer for any instance of this problem. If such algorithm does not exist, the
problem is said to be undecidable.

 (Mc1) L(M) ⊆ Rφ ?

 (Mc2) Rφ ⊆ L(M) ?

 (Mc3) L(M) ∩ Rφ = φ ?

 (EquivL) L(M1) = L(M2) ?

 (RefL) L(M1) ⊆ L(M2) ?

 (IntL) L(M1) ∩ L(M2)= φ ?

 (EquivF) F(M1) = F(M2) ?

 (RefF) F(M1) ⊆ F(M2) ?

 (IntF) F(M1) ∩ F(M2) = φ ?

 (Rez) is M realizable ?

are undecidable problems. This does not mean that model checking, comparison or
implementability of MSCs are always untractable problems for MSCs (i.e., they have no
algorithmic solution), but rather that when considering a target application for an MSC description,
users have to make sure that their specification meets some syntactical requirements. Some simple
syntactic criteria allow for the characterization of several kinds of MSC descriptions (or MSC
subclasses) that enable the decidability of some of the problems listed above.

I.4 Syntactical description of MSC subclasses

Due to the undecidability results cited in clause I.3, several applications could be considered as
impossible for message sequence charts. Several restrictions to the use of MSC constructs have
been defined. This clause lists three of them, and for each syntactical subclass lists the possible
applications.

I.4.1 Regular MSCs (RMSCs)

The set of runs of a regular MSC forms a regular language. This means that this set can be
represented by a finite state machine, but also that usual techniques of model checking can be
applied to regular MSC. An MSC description forms a regular MSC description if, in all loops that
can appear in the description, all messages that are sent are acknowledged, either directly or
indirectly, and if the body of the loop does not form disconnected parts of behaviours.

6 Rec. ITU-T Z.120 (2004)/Amd.2 (09/2009)

Z.120(09)Amd.2_FI.4

System1

msc Data

loop

System2

DATA

msc

inst

 instance

loop begin shared all

out to

loop end

 endinstance

 instance

loop begin shared all

in from

 loop end;

 endinstance;

endmsc;

 Data;

System1, System2;

 System1;

 simpleloop ;

 DATA System2;

 ;

;

 System2;

 simpleloop ;

 DATA System1;

Figure I.4 – A non-regular MSC

Consider, for instance, the MSC description of Figure I.4. In message sequence charts, messages are
considered asynchronous. This specification then describes a protocol where instance System1 does
not have to wait for an acknowledgement of DATA messages before sending the next message.
Runs of this MSC cannot be depicted by a finite state automaton. The second condition is illustrated
by the MSC Count of Figure I.9. In this MSC description, all MSCs in F(Count) contain the same
number of occurrences of atomic actions count and recount. The runs of this MSC cannot be
described with a finite state automaton. The MSC Acknowledge of Figure I.5 fulfils the conditions
to be regular.

Figure I.5 – A regular MSC

 Rec. ITU-T Z.120 (2004)/Amd.2 (09/2009) 7

To summarize, the following questions might be solved by appropriate algorithms for the class of
regular MSCs: Mc1, Mc2, Mc3, EquivL, RefL, IntL.

I.4.2 Local choice MSCs (LMSCs)

An MSC description is called a local choice MSC when, for all alternatives, there is one single
instance which can take the decision of how to continue interactions with other instances.

Consider the example of Figure I.6. MSC Local is a local choice MSC, as for both behaviours in the
alternative, instance System1 chooses how the interaction will continue, by sending a message to
System2. MSC Nonlocal in Figure I.7 is not a local choice MSC, as the decision to perform one of
the alternative scenarios can be taken either by System1 or by System3. There is a chance that an
implementation of such a scenario leads to a deadlock. A deadlock is a situation where two or more
processes are waiting for each other to continue their execution. For the MSC description of
Figure I.7, if the program implementing System1 behaves as in the first part of the alternative, and
the program implementing System3 behaves as in the second part of the alternative, then a deadlock
can occur.

Figure I.6 – A local choice MSC

8 Rec. ITU-T Z.120 (2004)/Amd.2 (09/2009)

Figure I.7 – A non-local choice MSC

Note that local choice property is not purely local to an alternative frame. Consider, for instance, the
example of Figure I.8. According to the semantics of MSCs [b-Reniers99], and [b-ITU-T Z.120
Annex B], instance System3 can decide to send message Acknowledge without waiting for the
decision of System1. However, if message Acknowledge is sent, this means that nothing occurs in
the alt frame on instance System3, and then that the first behaviour of the alternative is ruled out.

 Rec. ITU-T Z.120 (2004)/Amd.2 (09/2009) 9

Figure I.8 – A non-local MSC

An important property of local choice MSCs is that they can be implemented, provided some
additional control information is added to the contents of messages that are exchanged between
instances. For more information, read [b-Helouet00], and [b-Genest02]. Local choice MSCs are a
subclass of globally cooperative MSCs described hereafter.

I.4.3 Globally cooperative MSCs (GCMSCs)

An MSC description is globally cooperative if, in all loops that can appear in the description, the
body of the loop does not form disconnected parts of behaviours running on distinct groups of
instances. MSC Counting in Figure I.9 is not a globally cooperative MSC: the part of the MSC
enclosed in the loop frame contains two atomic actions located on different instances. MSC Data of
Figure I.5 is globally cooperative.

For two globally cooperative MSCs M1 and M2, the following properties are decidable:

 (EquivF) F(M1) = F(M2) ?

 (RefF) F(M1) ⊆ F(M2) ?

 (IntF) F(M1) ∩ F(M2) = φ ?

10 Rec. ITU-T Z.120 (2004)/Amd.2 (09/2009)

When considering two MSC descriptions M1 and M2, whenever M2 is globally cooperative, the
following problems have an algorithmic solution.

 (EquivF) F(M1) = F(M2) ?

 (RefF) F(M1) ⊆ F(M2) ?

There are also generic implementation procedures for globally cooperative MSCs [b-Genest04], but
the drawback is that the obtained implementations can contain deadlocks, which is in general an
undesirable property of a system.

Figure I.9 – A non-globally cooperative MSC

I.5 Summary of results

We recall here the relationship between different classes of MSCs. Local choice MSCs and regular
MSCs are necessarily globally cooperative MSCs. Table I.1 should be read line by line, i.e., for
inclusion of subclasses (⊆), the class mentioned by each line is contained in the class mentioned by
the column.

Table I.1 – Comparison of syntactical subclasses of MSCs

 RMSC LMSC GCMSC MSC

RMSC = ⊆ ⊆

LMSC = ⊆ ⊆

GCMSC = ⊆

MSC =

Table I.2 below recalls the decidability of the problems listed in clause I.2. "Yes" means that the
considered problem is decidable for the class of MSC. "No" means that the considered problem is
undecidable for the class of MSC. Note that for Mc1, Mc2 and Mc3, there is no immediate answer,
as the existence of a decision procedure for local choice and globally cooperative depends on the
nature of the properties considered.

 Rec. ITU-T Z.120 (2004)/Amd.2 (09/2009) 11

Table I.2 – Decidable problems for MSC subclasses

 Mc1 Mc2 Mc3 EquivL EquivF RefL RefF IntL IntF Rez

MSC No No No No No No No No No No

RMSC Yes Yes Yes Yes Yes Yes Yes Yes Yes No

LMSC ? ? ? Yes Yes Yes Yes Yes Yes No

GCMSC ? ? ? Yes Yes Yes Yes Yes Yes No

Table I.3 below recalls the different classes of MSC that can be implemented. Implementation
mechanisms can use additional information on message to ensure correctness of implementation.
The notion of correctness is also subject to several interpretations. Some implementation
approaches (see for instance [b-Genest04]) consider that an MSC description and an
implementation are only compared according to their correct runs, and do not consider deadlocked
executions of the implementation. This way, an implementation that can deadlock can be
considered as correct. For each subclass of MSC in Table I.3, we indicate whether an
implementation mechanism has been proposed, and the restrictions (presence of deadlocks).

Table I.3 – Implementation of MSCs

 Implementation

MSC ?

RMSC ?

LMSC With additional control information on messages

GCMSC With deadlocks

I.6 Recommendations

We give here a list of recommendations according to the targeted application for a MSC
specification.

I.6.1 Model checking

If the targeted application is model-checking of message sequence charts, the MSC description
should remain regular, that is, for every loop:

• All messages sent from an instance I1 to an instance I2 should be acknowledged, either
directly or indirectly.

• If the loop comports two atomic actions located on different instances, then there must be a
direct or indirect message exchange between the instances where these actions are located.

I.6.2 Comparison of MSC specifications

If the targeted application is a comparison of specifications, then the message sequence charts used
should remain globally cooperative; that is, for every loop, each instance or group of instance must
either send or receive a message from the rest of the instances participating to the loop.

I.6.3 Implementation

If the targeted application is implementation of specifications, then the message sequence charts
used should remain local choice; that is, for every alternative, the parts of the MSC in the scope of
each part of this alternative should start with events located on a single instance.

12 Rec. ITU-T Z.120 (2004)/Amd.2 (09/2009)

Bibliography

[b-ITU-T Z.120 Annex B] Recommendation ITU-T Z.120 Annex B (1998), Formal semantics of
message sequence charts.

[b-Alur05] Alur Rajeev, Etessami Kousha, and Yannakakis Mihalis (2005),
Realizability and verification of MSC graphs, Theoretical Computer
Science. 331(1): 97-114.

[b-Clarke99] Clarke Edmund M., Grumberg Orna, and Peled Doron (1999), Model
Checking, MIT Press, December.

[b-Khendek99] Abdalla Miguel, Khendek Ferhat, and Butler Greg (1999), New
Results on Deriving SDL Specifications from MSCs, in the
Proceedings of SDL Forum'99, Elsevier Science B. V., R. Dssouli,
G.v. Bochmann and Y. Lahav (eds.), Montreal, Canada, June 21-25.

[b-Genest02] Genest Blaise, Muscholl Anca, Seidl Helmut, and Zeitoun Marc
(2002), Infinite-State High-Level MSCs: Model-Checking and
Realizability, Proceedings of ICALP, pp. 657-668.

[b-Genest04] Genest Blaise, Kuske Dietrich, and Muscholl Anca (2004), A Kleene
Theorem for a Class of Communicating Automata with Effective
Algorithms, Proceedings of DLT 2004, pp. 30-48, LNCS 3340.

[b-Helouet00] Hélouët Loïc, and Jard Claude (2000), Conditions for synthesis of
communicating automata from HMSCs, 5th International Workshop
on Formal Methods for Industrial Critical Systems (FMICS), Berlin,
3-4 April.

[b-Holzmann99] Holzmann Gerard J., and Smith Margaret H. (1999), Software Model
Checking, Proceedings of FORTE 1999, pp. 481-497.

[b-Reniers99] Mauw Sjouke, and Reniers Michel A. (1999), Operational Semantics
for MSC'96, Computer Networks and ISDN Systems
31(17):1785-1799, Elsevier Science B.V.

Printed in Switzerland
Geneva, 2010

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.120 Amendment 2 (09/2009) – Message sequence chart (MSC) Amendment 2: Revised Appendix I - Application of MSC
	Summary
	Source
	Keywords
	FOREWORD
	CONTENTS
	Amendment 2 Revised Appendix I – Application of MSC
	I.1 Introduction
	I.2 Problems
	I.3 General undecidable results
	I.4 Syntactical description of MSC subclasses
	I.5 Summary of results
	I.6 Recommendations
	I.6.1 Model checking

	Bibliography

