
 

 

 

INTERNATIONAL  TELECOMMUNICATION  UNION 

 

 

 

ITU-T  Z.105
TELECOMMUNICATION 
STANDARDIZATION  SECTOR 
OF  ITU 

(11/99) 

 

 

 

 

 

SERIES Z: LANGUAGES AND GENERAL SOFTWARE 
ASPECTS FOR TELECOMMUNICATION SYSTEMS 
Formal description techniques (FDT) – Specification and 
Description Language (SDL) 
 

 

SDL Combined with ASN.1 modules 
(SDL/ASN.1) 

 

ITU-T  Recommendation  Z.105 
(Previously  CCITT  Recommendation) 
 



 

ITU-T  Z-SERIES  RECOMMENDATIONS 

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS 

For further details, please refer to ITU-T List of Recommendations.

  
FORMAL DESCRIPTION TECHNIQUES (FDT)  

Specification and Description Language (SDL) Z.100–Z.109 
Application of Formal Description Techniques Z.110–Z.119 
Message Sequence Chart Z.120–Z.129 

PROGRAMMING LANGUAGES  
CHILL: The ITU-T high level language Z.200–Z.209 

MAN-MACHINE LANGUAGE  
General principles Z.300–Z.309 
Basic syntax and dialogue procedures Z.310–Z.319 
Extended MML for visual display terminals Z.320–Z.329 
Specification of the man-machine interface Z.330–Z.399 

QUALITY OF TELECOMMUNICATION SOFTWARE Z.400–Z.499 
METHODS FOR VALIDATION AND TESTING Z.500–Z.599 
  



 

  Recommendation Z.105    (11/99) i 

ITU-T  RECOMMENDATION  Z.105 
 

SDL COMBINED WITH ASN.1 MODULES (SDL/ASN.1) 

 

 

Summary 

Objective 
This Recommendation defines how Abstract Syntax Notation One (ASN.1) modules can be used in 
combination with Specification and Description Language (SDL). The intention is that the structure 
and the behaviour of systems are described with SDL, while parameters of exchanged messages are 
described with ASN.1. This Recommendation defines a mapping of ASN.1 constructs to already 
existing SDL constructs and contains only a small extension to Recommendation Z.100 to allow 
ASN.1 modules to be used. 

Coverage 
This Recommendation presents a semantic definition for the combination of SDL and ASN.1 
modules. A mapping of the ASN.1 data defined in a module to the corresponding SDL constructs 
defined in Recommendation Z.100 [1] is given, including the operators that can be applied to the 
ASN.1 data. The ASN.1 data items can then be used within SDL (using SDL notation). 

The use of ASN.1 notation embedded in SDL is defined in Recommendation Z.107 [2]. 

Application 
The main area of application of this Recommendation is the specification of telecommunication 
systems. The combined use of SDL and ASN.1 permits a coherent way to specify the structure and 
behaviour of telecommunication systems, together with data, messages and encoding of messages 
that these systems use. 
NOTE – "Specification" in this Recommendation includes definition of requirements in a standard, 
Recommendation, or procurement document, and description of an implementation. 

A specification conforms to this Recommendation if and only if it conforms to the syntactic and 
semantic grammar rules for the formal technical language defined by the Recommendation (which 
includes the referenced ASN.1 and SDL languages). Conformance implies that every possibly 
dynamic interpretation of the specification conforms to the language rules. A specification that uses 
extensions of the language does not conform. 

A tool does not fully support the language if it rejects some constructs of the language or that has a 
static or dynamic interpretation of a specification in the language that does not conform to language 
semantics. 

Status/stability 
This Recommendation replaces the semantic mappings from ASN.1 to SDL defined in 
Recommendation Z.105 (1995). The use of ASN.1 notation embedded in SDL previously defined in 
Recommendation Z.105 (1995) is not defined by this Recommendation. 

Changes to Recommendations X.680 [3], X.681 [4], X.682 [5] and X.683 [6] or Z.100 [1] may 
require modifications to this Recommendation. 

This Recommendation is the complete reference manual describing the combination of SDL and 
ASN.1 modules. 

 



 

ii Recommendation Z.105    (11/99) 

 

Associated work 
ITU-T Recommendation Z.100 (1999), Specification and Description Language (SDL). 
ITU-T Recommendation X.680 (1997), Specification of basic notation. 

ITU-T Recommendation X.681 (1997), Information object specification. 
ITU-T Recommendation X.682 (1997), Constraint specification. 

ITU-T Recommendation X.683 (1997), Parameterization of ASN.1 specifications. 

ITU-T Recommendation Z.107 (1999), SDL with embedded ASN.1. 

 

 

 

 

 

 

Source 
ITU-T Recommendation Z.105 was revised by ITU-T Study Group 10 (1997-2000) and was 
approved under the WTSC Resolution No. 1 procedure on 19 November 1999. 

 

 

 

 

 

 

 

 

 

 



 

  Recommendation Z.105    (11/99) iii 

FOREWORD 

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of 
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of 
the ITU. The ITU-T is responsible for studying technical, operating and tariff questions and issuing 
Recommendations on them with a view to standardizing telecommunications on a worldwide basis. 

The World Telecommunication Standardization Conference (WTSC), which meets every four years, 
establishes the topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on 
these topics. 

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in 
WTSC Resolution No. 1. 

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are 
prepared on a collaborative basis with ISO and IEC. 

 

 

 

 

 

NOTE 

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a 
telecommunication administration and a recognized operating agency. 

 

 

 

 

INTELLECTUAL PROPERTY RIGHTS 

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may 
involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, 
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others 
outside of the Recommendation development process. 

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property, 
protected by patents, which may be required to implement this Recommendation. However, implementors are 
cautioned that this may not represent the latest information and are therefore strongly urged to consult the 
TSB patent database. 

 

 

 

 

 

�  ITU  2000 

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, 
electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU. 



 

iv Recommendation Z.105    (11/99) 

CONTENTS 
 Page 

1 Introduction.................................................................................................................  1 
1.1 Objective.....................................................................................................................  1 

1.2 The characteristics of the combination of SDL and ASN.1 modules .........................  1 

1.3 ASN.1 that can be used in combination with SDL .....................................................  1 

1.4 The structure of this Recommendation .......................................................................  2 

1.5 Conventions used in this Recommendation................................................................  2 

2 References...................................................................................................................  2 

3 Package .......................................................................................................................  3 

4 Definition and use of data ...........................................................................................  4 
4.1 Name mapping............................................................................................................  4 

4.2 Variable and data definitions ......................................................................................  4 
4.2.1 Type assignment ............................................................................................  4 
4.2.2 Value assignment...........................................................................................  5 

4.3 Type expressions.........................................................................................................  5 
4.3.1 Sequence........................................................................................................  5 
4.3.2 Sequenceof.....................................................................................................  6 
4.3.3 Choice............................................................................................................  7 
4.3.4 Enumerated....................................................................................................  7 
4.3.5 Integer and Bit Naming..................................................................................  8 
4.3.6 Subrange ........................................................................................................  9 
4.3.7 BitString.........................................................................................................  9 
4.3.8 OctetString.....................................................................................................  9 

4.4 Range condition ..........................................................................................................  9 

4.5 Value Expressions.......................................................................................................  11 
4.5.1 Choice Primary ..............................................................................................  11 
4.5.2 Composite primary ........................................................................................  11 
4.5.3 String primary................................................................................................  14 
4.5.4 Element set specification ...............................................................................  14 

5 Mapping of ASN.1 types defined in ASN.1 modules using information objects, 
classes and sets............................................................................................................  14 

5.1 Introduction.................................................................................................................  14 

5.2 Object class field value ...............................................................................................  15 

5.3 Objects and object sets................................................................................................  16 

6 Mapping of parameterized ASN.1 types.....................................................................  18 
6.1 Parameterized type assignment...................................................................................  19 



 

  Recommendation Z.105    (11/99) v 

 Page 
6.2 Parameterized value assignment .................................................................................  19 

6.3 Referencing ASN.1 parameterized definitions ...........................................................  20 

6.4 Parameterized object definition together with an information object class ................  20 

7 Additions to package Predefined ................................................................................  21 
 





 

  Recommendation Z.105   (11/99) 1 

Recommendation Z.105 

SDL COMBINED WITH ASN.1 MODULES (SDL/ASN.1) 
(revised in 1999) 

1 Introduction 
This Recommendation defines how ASN.1 modules can be used in combination with SDL. ASN.1 
modules are imported in SDL descriptions so that ASN.1 data definitions are mapped to internal 
SDL representation using equivalent SDL constructs and forming together with the rest of the SDL 
description a complete specification. 

SDL is a language for the specification and description of telecommunication systems. SDL has 
concepts for: 
• structuring systems; 
• defining behaviour of systems; 
• defining data used by systems. 

ASN.1 is a language for the definition of data. Related to ASN.1 are encoding rules, that define how 
ASN.1 values are transferred as bit streams during communication. 

1.1 Objective 
The combination of SDL and ASN.1 permits a coherent way of specifying the structure and 
behaviour of telecommunication systems, together with data, messages, and encoding of messages 
that these systems use. Structure and behaviour can be described using SDL, and data and messages 
using ASN.1. Encoding of these messages can be described by reference to the relevant encoding 
rules that are defined for ASN.1. 

The full use of SDL (including data types) is supported by this Recommendation. 

1.2 The characteristics of the combination of SDL and ASN.1 modules 
Systems described in SDL combined with ASN.1 modules have the following characteristics: 
• structure and behaviour are defined using SDL concepts; 
• parameters of signals are defined by ASN.1 types; 
• data used in signals is defined with ASN.1 type definitions; 
• internal data may be defined by either ASN.1 types or SDL sorts; 
• encoding of data values defined in ASN.1 can be defined by reference to the relevant 

encoding rules. Encoding is not in the scope of this Recommendation. 

1.3 ASN.1 that can be used in combination with SDL 
The use of ASN.1 as defined in Recommendations X.680, X.681, X.682 and X.683 is supported in 
combination with SDL, with a recognition that some ASN.1 constructs cannot be successfully 
mapped to SDL (or at least the mapping has not been identified and specified in this 
Recommendation). The constructs that cannot be mapped to SDL will exist in ASN.1 packages used 
as a source of transformation. During the transformation to SDL they are effectively treated as if not 
present and should not cause any problems for successful transformation of other constructs. Such 
constructs are the extension marker and exception marker defined in Recommendation X.680, which 
may be present in ASN.1 but are ignored in the transformation to SDL. Parts of the ASN.1 grammar 



 

2 Recommendation Z.105   (11/99) 

(1997) related to extension and exception markers are therefore not used in this Recommendation. 
Some constructs of ASN.1 are never transformed to SDL as such, but contain information that can 
direct or be used in the transformation. The prominent examples of such constructs are relational 
constraints as defined in Recommendation X.682, object classes and object sets. 

The use of SDL as defined in Recommendation Z.100 [1] is supported. 

ASN.1 modules that are used in the transformation to SDL can also be used for generation of 
encoders and decoders, provided that encoding rules are defined. The SDL data specification derived 
from ASN.1 modules should not be used for such a purpose since some information that is relevant 
for encoding may be lost in the transformation to SDL. 

1.4 The structure of this Recommendation 
This Recommendation is not self-contained: the mapping defined in this Recommendation is based 
on Recommendation Z.100 and Recommendations X.680, X.681, X.682 and X.683. The language as 
defined in Recommendation Z.100 applies, except that the <package> production rule is extended to 
allow direct use of ASN.1 modules. This Recommendation is structured in the following manner: 

Clause 3 defines the changes to Recommendation Z.100 in order to incorporate ASN.1 modules. 

Clause 4 defines the mapping of X.680 ASN.1 types and values to Recommendation Z.100 data in 
order to incorporate ASN.1 data types and values. 

Clause 5 defines the mapping of ASN.1 types defined using information objects, classes and 
information object sets. The use of X.682 constructs is also treated in this clause. 

Clause 6 defines the mapping of parameterized ASN.1 types to Recommendation Z.100 data in order 
to incorporate parameterized ASN.1 data types. 

Clause 7 defines the additions to the package Predefined needed to support the use of ASN.1. 

1.5 Conventions used in this Recommendation 
The conventions of Recommendation Z.100 normally apply: for example, keywords appear in 
lowercase boldface, and predefined names start with a capital. However, in ASN.1 examples, the 
ASN.1 conventions are used in order to respect ASN.1 rules and improve readability for ASN.1 
users: for example, keywords are in capitals (no boldface). 

2 References 
The following ITU-T Recommendations and other references contain provisions which, through 
reference in this text, constitute provisions of this Recommendation. At the time of publication, the 
editions indicated were valid. All Recommendations and other references are subject to revision; all 
users of this Recommendation are therefore encouraged to investigate the possibility of applying the 
most recent edition of the Recommendations and other references listed below. A list of the currently 
valid ITU-T Recommendations is regularly published. 

[1] ITU-T Recommendation Z.100 (1999), Specification and Description Language 
(SDL-2000). 

[2] ITU-T Recommendation Z.107 (1999), SDL with embedded ASN.1. 

[3] ITU-T Recommendation X.680 (1997) | ISO/IEC 8824-1:1998, Information Technology – 
Abstract Syntax Notation One (ASN.1): Specification of basic notation, plus Amendments 1 
and 2 (1999), and Corrigendum 1 (1999). 



 

  Recommendation Z.105   (11/99) 3 

[4] ITU-T Recommendation X.681 (1997) | ISO/IEC 8824-2:1998, Information Technology – 
Abstract Syntax Notation One (ASN.1): Information object specification, plus Amendment 1 
(1999), and Corrigendum 1 (1999). 

[5] ITU-T Recommendation X.682 (1997) | ISO/IEC 8824-3:1998, Information Technology – 
Abstract Syntax Notation One (ASN.1): Constraint Specification. 

[6] ITU-T Recommendation X.683 (1997) | ISO/IEC 8824-4:1998, Information Technology – 
Abstract Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications, plus 
Amendment 1 (1999). 

[7] ITU-T Recommendation X.690 (1997) | ISO/IEC 8825-1:1998, Information technology – 
ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding 
Rules (CER) and Distinguished Encoding Rules (DER). 

3 Package 

The production <package> is extended as follows: 
 
<package>  ::= 
    <package definition> | <package diagram> | <module definition> 
<module definition>  ::= 
    ModuleDefinition 

where ModuleDefinition is a non-terminal defined in ITU-T X.680: 1997. 

Model 
A <module definition> has the same meaning as a <package definition> where: 
• ModuleIdentifier (without any DefinitiveIdentifier) corresponds to the <package name>; 
• Imports corresponds to the <package reference clause>s; 
• Exports corresponds to the <interface>. 

An ASN.1 package is transformed into the equivalent SDL, before it is considered as a package, and 
before any Z.100 transformations. In this transformation, names are transformed into fully qualified 
identifiers where SDL requires or allows an identifier rather than a name. However, for conciseness 
this is often omitted from the examples in this Recommendation. 

Example 
The ASN.1 module definition 

 
myway DEFINITIONS ::= 
BEGIN 
EXPORTS yes, no; 
yes  BOOLEAN ::= TRUE 
no   BOOLEAN ::= FALSE 
END 

is the same as 
 
package myway; 
public synonym yes, synonym no; 
synonym  yes <<package Predefined>>Boolean = true; 
synonym  no <<package Predefined>>Boolean = false; 
endpackage myway; 



 

4 Recommendation Z.105   (11/99) 

Similarly when the package is used in the <imports> of another package: 
 
IMPORTS yes FROM myway; 

This is the same as the <package reference clause>: 
 
use myway/yes; 

NOTE – Because SDL does not support object identifier values for package identification, ASN.1 modules 
with the same modulereference but different DefinitiveIdentifiers will potentially cause name resolution 
problems. 

4 Definition and use of data 
The different definitions of the use of data are described the following way: 

 
ASN.1 Grammar Defining the grammar production rules representing the construction to be 

represented in SDL. 
Model Describing the transformations of the different parts of the ASN.1 grammar into 

SDL productions. 
This part is referencing both the SDL grammar, represented as <SDL grammar 
rule>, and the ASN.1 grammar, represented as ASN1GrammarRule. 

4.1 Name mapping 
ASN.1 Grammar 

ASN.1 names are allowed to contain dash characters ("-"). If this is used in SDL this would be 
interpreted as minus operator. 

Model 
ASN.1 names containing dash characters are mapped to lexically same SDL names except that dash 
characters are converted to underline characters. 

Example 
The ASN.1 name my-example-name is mapped to my_example_name in SDL. 

4.2 Variable and data definitions 

4.2.1 Type assignment 
ASN.1 Grammar 

 
TypeAssignment  ::= typereference "::=" Type 

Model 

If the Type is a typereference, then the TypeAssignment is the same as a <syntype definition> 
containing only the SDL equivalent of the Type. 

If the Type is a constrainedType, then the TypeAssignment is the same as a <syntype definition> 
containing only the SDL equivalent of the Constraint. 
If the Type is a neither a typereference nor a constrainedType the TypeAssignment is represented 
by a <partial type definition> where <properties expression> is empty and where <formal context 
parameters> is omitted. 



 

  Recommendation Z.105   (11/99) 5 

Example 
The ASN.1 type assignment 

 
Mytype ::= AnotherType -- typereference 

is the same as 
 
syntype Mytype = AnotherType endsyntype Mytype; /* full qualification omitted here. */ 

The ASN.1 type assignment 
 
S ::= INTEGER (0..5 | 10) 

is the same as 
 
syntype S = <<package Predefined>>Integer constants 0:5,10 endsyntype S; 

The ASN.1 type assignment 
 
Integerlist ::= SEQUENCE OF INTEGER 

is the same as 
 
value type Integerlist inherits  <<package Predefined>>String 
< <<package Predefined>> Integer>  ( '' = <<package Predefined>>Emptystring ) endvalue type 

Integerlist; 

4.2.2 Value assignment 

ASN.1 Grammar 
 
ValueAssignment ::= valuereference Type "::=" Value 

Model 

A ValueAssignment is represented by a <synonym definition item>. 

Example 
The ASN.1 definition 

 
yes BOOLEAN ::= TRUE 

is the same as 
 
synonym yes <<package Predefined>>Boolean = <<package Predefined>>true; 

4.3 Type expressions 

4.3.1 Sequence 

ASN.1 Grammar 
 
SequenceType   ::= SEQUENCE "{" ComponentTypeList "}"   | 
      SEQUENCE "{"  "}" 
 
ComponentTypeList  ::=    ComponentType   | 
       ComponentTypeList "," ComponentType 



 

6 Recommendation Z.105   (11/99) 

ComponentType   ::= NamedType    | 
      NamedType OPTIONAL   | 
      NamedType DEFAULT Value   | 
      COMPONENTS OF Type 
NamedType   ::=  identifier Type 

Model 

A SequenceType is represented as a <structure definition> containing a <field> for each 
NamedType of the SequenceType. The <field> contains one <field name>, which is the same as the 
ASN.1 identifier of the NamedType, and a <field sort>, which is the Type transformed to an SDL 
<sort identifier>. 
If the ComponentType containing the NamedType is OPTIONAL, the SDL field has the keyword 
optional. 
If the ComponentType containing the NamedType has a DEFAULT Value, the SDL field has the 
keyword default and the value is transformed into the <ground expression> after default. 

A ComponentType that is COMPONENTS OF Type is represented as a list of ordered <field>s, 
one for each field associated to Type. These fields are inserted in the position of the 
COMPONENTS OF Type in the order that the fields exist in the Type. 

Example 
The ASN.1 type: 

 
S ::= SEQUENCE { 
a  INTEGER, 
b  IA5String OPTIONAL, 
c  PrintableString DEFAULT "d"} 

is the same as 
 
value type S struct 
 a <<package Predefined>> Integer; 
 b <<package Predefined>> IA5String optional; 
 c <<package Predefined>> PrintableString default 'd'; 
endvalue type S; 

NOTE 1 – There is no distinction between use of keyword SEQUENCE and SET. This is a relaxation 
compared to Recommendation X.680. 

NOTE 2 – In this Recommendation, tags are not necessary to distinguish between components of the same 
type: ASN.1 automatic tagging is assumed. 

4.3.2 Sequenceof 

ASN.1 Grammar 
 
SequenceOfType ::= SEQUENCE OF Type 
SetOfType  ::= SET OF Type 

Model 
Specifying a SequenceOfType/SetOfType is the same as specifying the predefined abstract String 
or Bag sort having the SDL transform of Type as the first <actual context parameter> and the name 
Emptystring defined as the literal name for the empty string. The abstract sort is the <<package 
Predefined>> String for SEQUENCE OF, and <<package Predefined>> Bag for SET OF. 

If an ASN.1 size constraint is specified for Type, the SequenceOfType (or SetOfType) is a syntype 
having the transformed size constraint as a <range condition> (see 4.4). The parent sort of the 



 

  Recommendation Z.105   (11/99) 7 

syntype is the SequenceOfType (or SetOfType respectively) without the ASN.1 size constraint. 
This parent sort has an implicit and unique name and is defined in the nearest scope unit enclosing 
the occurrence of the SequenceOfType (or SetOfType respectively). 

Example 
The ASN.1definition: 

 
phonenumber ::= SEQUENCE SIZE (8) OF INTEGER (0..9) 

is the same as the three SDL definitions: 
 
value type S1 inherits <<package Predefined>> String <S2> ( '' = Emptystring ) endvalue type S1; 
syntype S2 = <<package Predefined>> Integer constants 0:9 endsyntype; 
syntype phonenumber = S1 constants size (8) endsyntype phonenumber; 

4.3.3 Choice 

ASN.1 Grammar 
 
ChoiceType   ::= CHOICE "{" AlternativeTypeList "}" 
 
AlternativeTypeList ::= 
     NamedType   | 
     AlternativeTypeList "," NamedType 

Model 
A ChoiceType is represented as a <choice definition> containing a <field> for each NamedType of 
the ChoiceType. 

Example 
The ASN.1 choice type 

 
C ::= CHOICE { 
a INTEGER, 
b REAL } 

is the same as 
 
value type C choice 
 a <<package Predefined>> Integer; 
 b <<package Predefined>> Real; 
endvalue type C; 

4.3.4 Enumerated 

ASN.1 Grammar 
 
EnumeratedType  ::= ENUMERATED "{" Enumeration "}" 
 
Enumeration  ::= EnumerationItem | EnumerationItem "," Enumeration 
 
EnumerationItem  ::= identifier | NamedNumber 
 
NamedNumber  ::= identifier "(" SignedNumber ")"| 
     identifier "(" DefinedValue ")" 



 

8 Recommendation Z.105   (11/99) 

Model 
For each EnumerationItem, the identifier is transformed into a <literal signature> that has the same 
name as the EnumerationItem. If the EnumerationItem contains a SignedNumber (or 
DefinedValue), the <literal name> of the <literal signature> is followed by the SDL transform of the 
SignedNumber (or DefinedValue respectively). 

The definition: 
 
colours ::= ENUMERATED {blue(3),red, yellow(0)}; 

is the same as 
 
value type colours 
 literals blue = 3, red, yellow = 0- 
end value type colours; 

4.3.5 Integer and Bit Naming 

ASN.1 Grammar 
 
IntegerType  ::= INTEGER    | 
     INTEGER "{" NamedNumberList "}" 
 
NamedNumberList ::= NamedNumber   | 
     NamedNumberList "," NamedNumber 
 
NamedNumber  ::=  identifier "(" SignedNumber ")" | 
     identifier "(" DefinedValue ")" 
 
BitStringType  ::= BIT STRING | BIT STRING "{" NamedBitList "}" 
 
NamedBitList  ::= NamedBit | NamedBitList "," NamedBit 
 
NamedBit   ::= identifier "(" number ")"  | 
     identifier "(" DefinedValue ")" 

Model 
Specifying an IntegerType with a NamedNumberList (or BitStringType with a NamedBitList) is 
the same as specifying a <synonym definition> in the nearest enclosing scope unit with one 
<synonym definition item> for each NamedNumber (or NamedBitList respectively). The 
identifier of the NamedNumber (or NamedBit respectively), is transformed into the <synonym 
name>. The <sort> of the <synonym definition item> is <<package Predefined>>Integer in the case 
of a NamedNumber, and <<package Predefined>>Bit in the case of a NamedBit. The 
SignedNumber or DefinedValue or number of the NamedNumber or NamedBitList is used as 
the <ground expression> of the <synonym definition item>. 

Example 
The ASN.1 definition: 

 
Standards ::= SEQUENCE OF INTEGER{z100(0),x680(1),z10x(2)} 

is the same as 
 
value type standards inherits 
 << package Predefined >> String < <<package Predefined>> Integer> (''= EmptyString) 
endvalue type standards; 
synonym z100  Integer = 0; 



 

  Recommendation Z.105   (11/99) 9 

synonym x680  Integer = 1, 
synonym z10x  Integer = 2; 

4.3.6 Subrange 

Model 
Specifying an ASN.1 subrange restriction is represented as specifying the contained <sort> and 
adding the representation of the ASN.1 subrange restriction after the constants keyword in the 
<syntype> (if specified, otherwise the construct is introduced). 

Example 
The ASN.1 definition: 

 
S ::= INTEGER(0..5 | 10) 

is equivalent to 
 
syntype S = <<package Predefined>> Integer constants 0:5, 10 endsyntype S; 

How the <range condition> is derived is described below. 

4.3.7 BitString 

ASN.1 Grammar 
 
BitStringType ::= 

  BIT STRING 
  BIT STRING "{" NamedBitList "}" 

Model 
The ASN.1 BitStringType is mapped to SDL <<package Predefined>> Bitstring. 

4.3.8 OctetString 

ASN.1 Grammar 
 

OctetStringType ::= OCTET STRING 

Model 
The ASN.1 type OctetStringType is mapped to SDL <<package Predefined >>Octetstring. 

4.4 Range condition 

Model 
A range condition defines a set of values. It is used for defining a syntype. It has an associated parent 
sort, which is the sort specified in the syntype definition. A value is within the value set if the 
operator denoted by the operator identifier yields true when applied to the value. 

The operator identifier for a given range condition is thus defined as: 
 
value type A 
operators o: S -> Boolean; 
/* where o is derived from the ASN.1 concrete syntax as explained below */ 
endvalue type A; 



 

10 Recommendation Z.105   (11/99) 

Each Range in the ASN.1 range condition contributes to the properties of the operator defining the 
value set: 

 
o(V) == range1 or range2 or ... or rangeN 

If a syntype is specified without a range condition then the operator result is true. 

In the following explanation of how each Range contributes to the operator result, V denotes the 
argument value. Each contribution must be well-formed, which means that used operators must exist 
with a signature appropriate for the context. 
• If neither of the keywords MIN and MAX are specified in a ClosedRange, a ClosedRange 

contributes with: 

E1 rel1 V and V rel2 E2 
where E1 is Value of LowerEndValue and E2 is Value of UpperEndValue. 
If "<" is specified for LowerEndValue then rel1 is the "<" operator, otherwise it is the "<=" 
operator. 
If "<" is specified for UpperEndValue then rel2 is the "<" operator, otherwise it is the "<=" 
operator. 
If the keyword MIN is specified and the keyword MAX is not specified, Range contributes 
with: 

V rel2 E2 
If the keyword MAX is specified and the keyword MIN is not specified, Range contributes 
with: 

E1 rel1 V 
If both keywords MIN and MAX are specified, the operator always yields true. 

• A ContainedSubType contributes with: 
o1(V) 

where o1 is the implicit operator defining the value set for the Type mentioned in the 
ContainedSubType. 

• A SizeConstraint contributes with: 

o1(length(V)) 
where o1 is the implicit operator defining the value set for the <range condition> mentioned 
in the SizeConstraint. 

• InnerTypeConstraints contributes with either: 
if length(V) = 0 then true else o1(first(V)) and o(Substring(V,2,length(V)-1)) fi; or 
if length(V) = 0 then true else o1(take(V)) and o(del(take(V), V)) fi 

whatever is appropriate for the sort of V. o is the implicit operator InnerTypeConstraints 
contributes to and o1 is the implicit operator for Range specified in InnerTypeConstraints. 
InnerTypeConstraints has a contribution for each contained NamedConstraint that 
specifies constraints of the field (see 4.2.1) denoted by Identifier of the parent sort. 

 The keyword PRESENT is added to the NamedConstraints that have no ending keyword 
(PRESENT, ABSENT or OPTIONAL) and NamedConstraints of the form Identifier 
ABSENT are added for all fields (i.e. Identifiers) not mentioned explicitly in a 
NamedConstraint. The NamedConstraints are added to the InnerTypeConstraints 
before the contributions of each NamedConstraint are derived. 



 

  Recommendation Z.105   (11/99) 11 

If a Range is specified for a NamedConstraint, the contribution is: 

E and if FPresent(V) then o1(V) else true fi 
where E is the present constraint for the field, F (from the operator name FPresent) is the 
name of the optional field and o1 is the implicit operator for the Range. If the Range is 
omitted, the contribution is only the present constraint E. 
The present constraint for a field F is: 

FPresent(V) 
in case the NamedConstraint for the field contains the keyword PRESENT; and 

not FPresent(V) 
in case the NamedConstraint for the field contains the keyword ABSENT. In all other 
cases, the present constraint is true. 

4.5 Value Expressions 

4.5.1 Choice Primary 

ASN.1 Grammar 
 
ChoiceValue ::= identifier ":" Value 

Model 
A ChoiceValue is represented as an <operator application> having the Value as argument. The 
<operator identifier> in the <operator application> contains a <qualifier> representing the Type and 
an operator name being the identifier. 

Example 
The ChoiceValue: 

 
myvalue : Mychoice 

is represented as: 
 
myvalue(Mychoice) 

In case that a ChoiceValue can denote one of several operator applications (i.e. a field of more than 
one choice sort), a qualifier is used: 

 
MyType ::= CHOICE … 
 
myvalue : Mychoice 

which is then represented as: 
 

<< type Mytype >> myvalue(Mychoice) 

4.5.2 Composite primary 
A composite primary is built up of the values for the SDL-representation of respective composite 
types. 



 

12 Recommendation Z.105   (11/99) 

4.5.2.1 Sequence value 

ASN.1 Grammar 
 
SequenceValue    ::= "{" ComponentValueList "}" | "{"  "}" 
ComponentValueList ::= NamedValue | 
   ComponentValueList "," NamedValue 

NOTE − There is no distinction between SetValue and SequenceValue. This is a relaxation compared to 
Recommendation X.680. 

Model 
The SequenceValue specification in ASN.1 is mapped to SDL synonym definition. In the mapping 
ComponentValueList is provided to structure data type constructor in SDL. The SDL data type 
constructor requires that all the fields are given as input so that fields that are omitted in 
ComponentValueList have to be provided empty in the SDL The application of structure data type 
constructor will have the same effects in SDL as it would in ASN.1. 

Example 
 
MYTYPE ::= SEQUENCE{ 
 a INTEGER, 
 b INTEGER OPTIONAL, 
 c INTEGER DEFAULT 0, 
 d INTEGER, 
 e INTEGER OPTIONAL, 
 f INTEGER DEFAULT 0. 
} 
myValue MYTYPE ::= {a 1, b 1, c 1, d 1} 

In this example fields a, b and c have a specified value and fields c, d and e are omitted. 
synonym myValue MYTYPE = (. 1, 1, 1, 1, , .); 

The consequences would be that fields a, b, c and d would be set to 1, e would be absent and f would 
get the default value 0. 

4.5.2.2 Sequence of value 

ASN.1 Grammar 
 
SequenceOfValue ::= "{" ValueList "}" | "{"  "}" 
 
ValueList  ::= Value | ValueList "," Value 

NOTE − There is no distinction between SetOfValue and SequenceOfValue. This is a relaxation compared to 
Recommendation X.680. 

Model 
A SequenceOfValue is represented as: 

 
MkString(E1) // MkString(E2)// ... // MkString(En) 

where E1, E2, ..., En are the Values of the SequenceOfValue in the order of appearance. If no 
Values are specified, the SequenceOfValue is represented as the name Emptystring. 

The Type qualifier of the Composite Primary that contains the SequenceOfValue precedes each 
MkString operator or the Emptystring literal respectively. 



 

  Recommendation Z.105   (11/99) 13 

4.5.2.3 Object identifier value 

ASN.1 Grammar 
 
ObjectIdentifierValue ::=  "{" ObjIdComponentList "}" | 
      "{" DefinedValue ObjIdComponentList "}" 
 
ObjIdComponentList ::=  ObjIdComponent | 
      ObjIdComponent ObjIdComponentList 
 
ObjIdComponent  ::=  NameForm  | 
      NumberForm | 
      NameAndNumberForm 
 
NameForm   ::=  identifier 
 
NumberForm  ::=  number | DefinedValue 
 
NameAndNumberForm::=  identifier "(" NumberForm ")" 

Model 
Object identifier value is in ASN.1 used to distinguish between the modules that have same names 
but different object identifiers. Because the module names and object identifiers cannot uniquely be 
mapped to a package identifier that is used in package use clauses, the object identifier component is 
ignored in the transformation to SDL. The identification of appropriate module is thus open to 
manual or tool specific solutions. 

4.5.2.4 Real value 

ASN.1 Grammar 
The value of a real type is in ASN.1 defined by the notation "RealValue": 

 
RealValue ::= 
  NumericRealValue | SpecialRealValue 
NumericRealValue ::=  0 | 
  SequenceValue -- Value of the associated sequence type 
SpecialRealValue ::= 
  PLUS-INFINITY | MINUS-INFINITY 

The form 0 is used for zero values; the alternate form for NumericRealValue shall not be used for 
zero values. 

The associated type for value definition and subtyping purposes is: 
 
SEQUENCE { 
 mantissa INTEGER, 
 base  INTEGER (2|10), 
 exponent INTEGER 
  -- The associated mathematical real number is "mantissa" 
  -- multiplied by "base" raised to the power "exponent" 
 } 

Model 
An ASN.1 NumericalRealValue is mapped to an SDL real sort value with the actual value 
calculated in the transformation. The SpecialRealValue shall be transformed to the largest possible 
positive or negative value respectfully. 



 

14 Recommendation Z.105   (11/99) 

NOTE – The transformation of SpecialRealValue is not in accordance with the intended ASN.1 semantics 
because this is a directive to the encoder/decoder to use a special code indicating the - infinite values. Since 
encoding is not related to data in SDL transformed from ASN.1data, such relaxation should be acceptable. 

Example 
The ASN.1 definition: 

 
r50 REAL ::= { mantissa 5, base 10, exponent 1} 

is the same as: 
 
synonym r50 Real = 50.0; 

4.5.3 String primary 

Model 
An ASN.1 StringValue containing a cstring (ASN.1 name for character string delimited by " at 
both beginning and end) represents a <character string literal identifier> consisting of the Type and a 
<character string literal> with the same <text> as the ASN.1 String Text. The Type for cstring is an 
IA5Type as defined by this Recommendation. 

A StringValue containing a BitStringValue or HexStringValue are mapped to SDL <<package 
Predefined>> Bitstring operators with the same syntax. 

4.5.4 Element set specification 

ASN.1 Grammar 
 
ElementSetSpec ::= Unions | 
  ALL Exclusions 
Unions ::= Intersections | 
  UElems UnionMark Intersections 
UElems ::= Unions 
Intersections ::= IntersectionElements | 
  IElems IntersectionMark IntersectionElements 
IElems ::= Intersections 
IntersectionElements ::= Elements | Elems Exclusions 
Elems ::= Elements 
Exclusions ::= EXCEPT Elements 
UnionMark ::=  "|"   |   UNION 
 IntersectionMark ::=  "^"   |   INTERSECTION 

Model 
Two or more value sets can be combined using this notation. The resulting set is evaluated in the 
transformation and the result is mapped to SDL. 

5 Mapping of ASN.1 types defined in ASN.1 modules using information objects, classes 
and sets 

5.1 Introduction 
Recommendation X.681 provides the ASN.1 notation that allows information object classes as well 
as individual information objects and sets thereof to be defined and given reference names. An 
information object class is a template for a collection of information that makes up the attributes of 
any members of that class. Information objects provide a generic table mechanism within the ASN.1 
language. Such a generic table defines the association of specific sets of field values or types. This 



 

  Recommendation Z.105   (11/99) 15 

feature replaces the earlier MACRO construct (available in ASN.1: 1990) and is primarily used to 
fill-in gaps in a type definition dependant on one or more key fields. 

This clause assumes that all ASN.1 constructs defined in Recommendations X.681, X.682 and X.683 
can be used in ASN.1 modules. It then identifies what information contained in ASN.1 information 
object classes, information objects and information object sets can be useful when mapped to 
appropriate SDL targets. The mappings that are possible and useful are defined. It has to be noted 
that some information will not be represented in SDL because of the differences in nature of the two 
languages. 

5.2 Object class field value 

ASN.1 Grammar 
 
ObjectClassFieldValue ::= 
 OpenTypeFieldVal | 
 FixedTypeFieldVal 
OpenTypeFieldVal ::= Type ":" Value 
FixedTypeFieldVal ::= BuiltinValue | ReferencedValue 

Model 
The ASN.1 object class specification is never mapped to SDL. However, information contained 
therein is essential for mapping those elements that are defined by reference to the class. 

In specification of single ASN.1 type whose fields are defined by reference to a class, only Fixed 
type value and value set fields can be used. The mapping to SDL is done so that the field name is 
mapped from the type that is being transformed and the field type can be found in the referenced 
field of the class specification. Open type field values cannot be mapped to SDL. However, the 
classes were not primarily designed for this kind of use (single ASN.1 type specification) and this 
should not pose a problem in practice. Specification of optional or default values is mapped to SDL 
as specified in this specification. 

Example 
If the ASN.1 contains the following specification: 

 
EXAMPLE-CLASS ::= CLASS { 
 &TypeField       OPTIONAL, -- class field 1 
 &fixedTypeValueField  INTEGER  OPTIONAL, -- class field 2 
 &variableTypeValueField &TypeField  OPTIONAL, -- class field 3 
 &FixedTypeValueSetField INTEGER  OPTIONAL, -- class field 4 
 &VariableTypeValueSetField &TypeField  OPTIONAL -- class field 5 
} 
WITH SYNTAX { 
 [TYPE-FIELD &TypeField] 
 [FIXED-TYPE-VALUE-FIELD   &fixedTypeValueField] 
 [VARIABLE-TYPE-VALUE-FIELD   &variableTypeValueField] 
 [FIXED-TYPE-VALUE-SET-FIELD   &FixedTypeValueSetField] 
 [VARIABLE-TYPE-VALUE-SET-FIELD  &VariableTypeValueSetField] 
} 
ExampleType ::= SEQUENCE { 
 integerComponent1 EXAMPLE-CLASS.&fixedTypeValueField, -- field 1 
 integerComponent2 EXAMPLE-CLASS.&FixedTypeValueSetField -- field 2 
} 



 

16 Recommendation Z.105   (11/99) 

exampleValue ExampleType ::= { 
 integerComponent1 123,      -- field 1 
 integerComponent2 456      -- field 2 
} 

Things that can be mapped to SDL are ExampleType and exampleValue: 
 

value type ExampleType 
 integerComponent1 <<package Predefined>> Integer,  /* field 1 */ 
 integerComponent2 <<package Predefined>> Integer  /* field 2 */ 
endvalue type ExampleType; 
synonym exampleValue ExampleType = (. 123, 456 .); 

5.3 Objects and object sets 

Model 
Classes are dominantly used in the specification of objects based on the class and sets of such 
objects. All these constructs are then used to define a type that is a generic description of a set of 
types, provided that a constraint specification is naming the object set by which the type is 
constrained. 

In the transformation to SDL the following steps are performed: 
1) the name of the constraining object set is used to identify the objects that shall be mapped to 

SDL, 
2) for each object a value type in SDL is created, 
3) each value type has as many fields as there are fields in the object specification, 
4) the names of fields are derived from names of the matching fields in constrained type 

specification, 
5) the type specification for each field is derived in the following way: if the field is fixed type 

value or type set field, the SDL type is derived from the type of the matching field in the 
referenced object class with a subrange specification derived from the matching field of the 
object specification. If the field type is open in the class specification, the SDL type is 
derived from the field type given in the object specification. If the field is not mentioned in 
the object specification the field is not mapped to the SDL type. 

Several levels of indirection are possible in doing this because field types can be specified by 
reference to some other object class. Also parameterisation can be used in the ASN.1 specification 
and has to be resolved before mapping to SDL is undertaken. 

Example 
Suppose that the following information object class definition is given in an ASN.1 module. 

 
ADDRESS-CLASS-TEMPLATE::= CLASS { 
&whichType    INTEGER(0..3), 
&OptType 
} 
WITH SYNTAX { 
 WHICH &whichType 
 OPT &OptType 
} 



 

  Recommendation Z.105   (11/99) 17 

Suppose also that following information objects are given in the ASN.1 module. 
 
gssi-object  ADDRESS-CLASS-TEMPLATE::= 
{ 
 WHICH   0 

 OPT   Group-Short-Subscriber-Identity 
} 
gssi-ae-object ADDRESS-CLASS-TEMPLATE::= 
{ 
 WHICH   1 
 OPT           GSSI-AE 
} 
vgssi-object  ADDRESS-CLASS-TEMPLATE::= 
{ 
 WHICH   2 
 OPT   Visitor-Group-Short-Subscriber-Identity 
} 
all-object  ADDRESS-CLASS-TEMPLATE::= 
{ 
 WHICH   3 
 OPT   ALL-TYPE 
} 

For completeness the types referenced in object definitions are also specified. 
 
GSSI-AE         ::= SEQUENCE 
{ 
 gssi  Group-Short-Subscriber-Identity, 
 ae  Address-Extension 
} 
ALL-TYPE      ::= SEQUENCE 
{ 
 gssi  Group-Short-Subscriber-Identity, 
 ae  Address-Extension, 
 vgssi  Visitor-Group-Short-Subscriber-Identity 
} 

Suppose also that the objects are specified to form an object set. 
 

Address-Class-Instance-Set ADDRESS-CLASS-TEMPLATE::= 
{ gssi-object | gssi-ae-object | vgssi-object | all-object } 

The definitions above are used to specify a sequence that follows. 
 

Group-Identity-Uplink ::= SEQUENCE 
{ 
group-Identity-Address-Type ADDRESS-CLASS-TEMPLATE.&whichType 
({Address-Class-Instance-Set }), 
opt  ADDRESS-CLASS-TEMPLATE.&OptType 
({Address-Class-Instance-Set }{@.group-Identity-Address-Type }) 
} 



 

18 Recommendation Z.105   (11/99) 

Because the object set is mentioned in the sequence, this actually means that an SDL data type can 
be derived from the ASN.1 module for each object in the set. 

 
value type gssi_object STRUCT 
 group_Identity_Address_Type  <<package Predefined>> Integer constants (0); 
 opt   Group_Short_Subscriber_Identity; 
endvalue type gssi_object; 
/* */ 
 
value type gssi_ae_object STRUCT 
 group_Identity_Address_Type  <<package Predefined>> Integer constants (1); 
 opt   GSSI_AE; 
endvalue type gssi_ae_object; 
/* */ 
 
value type vgssi_object STRUCT 
 group_Identity_Address_Type  <<package Predefined>> Integer constants (2); 
 opt   Visitor_Group_Short_Subscriber_Identity; 
endvalue type vgssi_object; 
/* */ 
 
value type all_object STRUCT 
 group_Identity_Address_Type  <<package Predefined>> Integer constants (3); 
 opt   ALL_TYPE; 
endvalue type all_object; 

6 Mapping of parameterized ASN.1 types 
Recommendation X.683 [6] defines the way to parameterize ASN.1 types. All ASN.1: 1997 
concepts can be parameterized. This feature allows the partial specification of types or values within 
an ASN.1 module with the specification being completed by the addition of the actual parameters at 
instantiation time. 

Recommendation Z.100 defines an equivalent concept of formal context parameters. 

The approach is that parameterized ASN.1 types are mapped to Z.100 types with formal context 
parameters allowing partial specifications to exist without actual parameters and formally analysed. 

There are parameterized assignment statements corresponding to each of the assignment statements 
specified in Recommendations X.680 and X.681. The "ParameterizedAssignment" construct is: 
 

ParameterizedAssignment ::= 
 ParameterizedTypeAssignment | 
 ParameterizedValueAssignment| 
 ParameterizedValueSetTypeAssignment | 
 ParameterizedObjectClassAssignment | 
 ParameterizedObjectAssignment | 
 ParameterizedObjectSetAssignment 

The use of all parameterized assignments is supported within ASN.1 modules. 

Parameterized types and values can be mapped to SDL as defined in 6.1 and 6.2. 

The parameterized assignments that cannot be mapped to SDL types or values with context 
parameters may be used in ASN.1 modules to define other ASN.1 types or values that can be 
mapped to SDL as defined in clause 4. 



 

  Recommendation Z.105   (11/99) 19 

6.1 Parameterized type assignment 

ASN.1 Grammar 
 
ParameterizedTypeAssignment ::= 
 typereference 
 ParameterList 
 "::=" 
 Type 

Model 
The difference between ordinary and parameterized ASN.1 types is that ParameterList follows the 
typereference and formal parameters contained in ParameterList are used in the Type definition. 

A Type defined in ASN.1 using parameters from the ParameterList is mapped to the appropriate 
SDL type (as defined in 4.2.1) provided that ASN.1 parameters are either value or type parameters. 
Such parameters are mapped to <formal context parameters> of the SDL type. ASN.1 type 
parameter is mapped to SDL <sort context parameter> and ASN.1 value parameter is mapped to 
SDL <synonym context parameter>. ASN.1 parameterized types having different parameters have to 
be instantiated in ASN.1 modules after which the resulting type or value can be mapped to SDL. 

Example 
The ASN.1 type definition 

 
TemplateMessage {INTEGER : minSize, INTEGER : maxSize, IndicatorType } ::= SEQUENCE 
{ 
 asp  INTEGER, 
 pdu  OCTET STRING(SIZE(minSize..maxSize)), 
 indicator IndicatorType 
} 

is mapped to SDL type 
value type TemplateMessage 
<synonym minSize <<package Predefined>> Integer; synonym maxSize <<package Predefined>> 
Integer; value type IndicatorType> 
 asp  Integer; 
 pdu  <<package Predefined>>Octetstring (SIZE(minSize:maxSize)); 
 indicator IndicatorType; 
endvalue type; 

6.2 Parameterized value assignment 

ASN.1 Grammar 
 

ParameterizedValueAssignment ::= 
 valuereference 
 ParameterList 
 Type 
 "::=" 
 Value 

Model 
A ParameterizedValueAssignment is represented by a <synonym definition item> with items from 
the ParameterList mapped to its <formal context parameters>. For the parameters, the conditions 
mentioned in 6.1 apply. 



 

20 Recommendation Z.105   (11/99) 

Example 
The ASN.1 value assignment 

 
genericBirthdayGreeting { IA5String : name } IA5String ::= { "Happy birthday, ", name, "!!" } 

is mapped to 
 
synonym genericBirthdayGreeting <synonym name <<package Predefined>> IA5String > 
 
<<package Predefined>> IA5String = 'Happy birthday,'//name//'!! '; 

6.3 Referencing ASN.1 parameterized definitions 

Model 
Parameterized types and values are used in ASN.1 to define simple ASN.1 types and values by 
providing an ActualPameterList. The resulting types and values can be mapped to SDL as defined 
in clause 3. If the parameterized definition was such that it was possible to map it to SDL, ASN.1 
references to such definitions can be mapped to SDL instantiations of the type with context 
parameters so that elements of ActualPameterList are mapped to <actual context parameters>. 

Example 
The parameterized type used in the example in 6.1 can be used to define a simple ASN.1 as follows: 

 
ActualMessage ::= TemplateMessage{10, 20, BOOLEAN} 

This can be mapped to SDL type 
 
value type ActualMessage : TemplateMessage <<<< 10, 20, <<<<<<<<package Predefined>>>>>>>> Boolean >>>> 

The parameterized value genericBirthdayGreeting can be instantiated in ASN.1 in the following 
way: 

 
greeting1 IA5String ::= genericBirthdayGreeting { "John" }, which can be mapped to SDL as 
 
synonym greeting1 <<package Predefined>> IA5String = 'John' 

6.4 Parameterized object definition together with an information object class 
What follows is an example of the parameterized object definition together with an information 
object class and its mapping to SDL. 

 
MESSAGE-PARAMETERS ::= CLASS { 
 &maximum-priority-level  INTEGER, 
 &maximum-message-buffer-size INTEGER 
} 
WITH SYNTAX { 
 THE MAXIMUM PRIORITY LEVEL IS  &maximum-priority-level 
 THE MAXIMUM MESSAGE BUFFER SIZE IS &maximum-message-buffer-size 
} 
Message-PDU { MESSAGE-PARAMETERS : param } ::= SEQUENCE { 
 priority-level INTEGER (0..param.&maximum-priority-level), 
 message  BMPString (SIZE (0..param.&maximum-message-buffer-size)) 
} 



 

  Recommendation Z.105   (11/99) 21 

my-message-parameters MESSAGE-PARAMETERS ::= { 
 THE MAXIMUM PRIORITY LEVEL IS 10 
 THE MAXIMUM MESSAGE BUFFER SIZE IS  2000 
} 
MY-Message-PDU ::= Message-PDU { my-message-parameters } 

The resulting SDL type would be: 
 
value type MY_Message_PDU STRUCT 
 priority_level <<package Predefined>> INTEGER (0..10); 
 message <<package Predefined>> BMPString (SIZE (0..2000)); 
end value type; 

7 Additions to package Predefined 
The following definitions shall be added to the package Predefined in order to support the 
combination of ASN.1 modules with SDL. 
 

syntype NumericChar = Character constants 
' ', '0', '1', '2', '3', '4', '5', '6', 
'7', '8', '9' endsyntype; 
/* */ 

/*  NumericString sort  */ 
/*  Definition   */ 
value type NumericString 
 inherits String < NumericChar > ( '' = emptystring ) 
 adding  
  operators ocs in nameclass 
   '''' ( ('0':'9') or '''''' or (' ') )+ '''' -> this NumericString; 
/* character strings of any length of any characters from a space ' ' to a '9' */ 
axioms 
 for all c in NumericChar nameclass ( 
 for all cs, cs1, cs2 in ocs nameclass ( 
 spelling(cs) == spelling(c)         ==> cs == mkstring(c); 
/* string 'A' is formed from character 'A' etc. */ 
 spelling(cs) == spelling(cs1) // spelling(cs2), 
 length(spelling(cs2)) == 1          ==> cs == cs1 // cs2; 
 )); 
endvalue type NumericString; 
/* */ 

syntype PrintableChar = Character constants 
' ', '0', '1', '2', '3', '4', '5', '6', 
'7', '8', '9', 'A', 'B', 'C', 'D', 'E', 
'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 
'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 
'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 
'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 
't', 'u', 'v', 'w', 'x', 'y', 'z', '''', 
'(', ')', '+', ',', '-', '.', '/', ':', 
'=', '?' 
constants; 
/* */ 



 

22 Recommendation Z.105   (11/99) 

/* PrintableString sort  */ 
/* Definition   */ 
value type PrintableString 
 inherits String < PrintableChar > ( '' = emptystring ) 
 adding  
  operators ocs in nameclass 
      '''' ( (' ':'&') or '''''' or ('(': '?') )+ '''' -> this PrintableString; 
/* character strings of any length of any characters from a space ' ' to a '?' */ 
axioms 
 for all c in PrintableChar nameclass ( 
 for all cs, cs1, cs2 in ocs nameclass ( 
 spelling(cs) == spelling(c)        ==> cs == mkstring(c); 
/* string 'A' is formed from character 'A' etc. */ 
 spelling(cs) == spelling(cs1) // spelling(cs2), 
 length(spelling(cs2)) == 1         ==> cs == cs1 // cs2; 
 )); 
endvalue type PrintableString; 

/* */ 
syntype TeletexChar = Character constants 

/* characters specified in X.680 clause 34.1 table 3 */ endsyntype; 
/* */ 

/* TeletexString sort  */ 
/*   Definition   */ 
value type TeletexString 
 inherits String < TeletexChar > ( '' = emptystring ) 
 adding  
  operators ocs in nameclass 
   /* characters specified in X.680 clause 34.1 table 3  */ -> this TeletexString; 
axioms 
 for all c in TeletexChar nameclass ( 
 for all cs, cs1, cs2 in ocs nameclass ( 
 spelling(cs) == spelling(c)        ==> cs == mkstring(c); 
/* string 'A' is formed from character 'A' etc. */ 
 spelling(cs) == spelling(cs1) // spelling(cs2), 
 length(spelling(cs2)) == 1         ==> cs == cs1 // cs2; 
 )); 
endvalue type TeletexString; 
syntype VideotexChar = Character constants 

/* characters specified in X.680 clause 34.1 table 3 */ endsyntype; 
/* */ 

/* VideotexString sort  */ 
/*    Definition   */ 
value type VideotexString 
 inherits String < VideotexChar > ( '' = emptystring ) 
 adding  
  operators ocs in nameclass 
  /* characters specified in X.680 clause 34.1 table 3 */ -> this VideotexString; 
axioms 
 for all c in VideotexChar nameclass ( 
 for all cs, cs1, cs2 in ocs nameclass ( 
 spelling(cs) == spelling(c)        ==> cs == mkstring(c); 
/* string 'A' is formed from character 'A' etc. */ 
 spelling(cs) == spelling(cs1) // spelling(cs2), 
 length(spelling(cs2)) == 1         ==> cs == cs1 // cs2; 
 )); 
endvalue type VideotexString; 



 

  Recommendation Z.105   (11/99) 23 

 
syntype IA5Char = Character endsyntype; 
 
syntype IA5String = Charstring endsyntype; 
 
value type GeneralChar 
   literals /* All G and all C sets + SPACE + DELETE X.680 clause 34.1 table 3*/ 

operators 
 gchr  ( Integer ) -> this GeneralChar; 

endvalue type; 
 
value type UniversalChar 
   literals /* see X.680 clause 34.6 */ 

operators 
 uchr  ( Integer ) -> this UniversalChar; 

endvalue type; 
/* */ 

/* UniversalCharString sort  */ 
 
/*   Definition   */ 
 
value type UniversalCharString 
 inherits String < UniversalChar > ( '' = emptystring ) 
 adding  
  operators ocs in nameclass 
      /* see X.680 clause 34.6 */ -> this UniversalCharString; 
axioms 
 for all c in UniversalChar nameclass ( 
 for all cs, cs1, cs2 in ocs nameclass ( 
 spelling(cs) == spelling(c)        ==> cs == mkstring(c); 
/* string 'A' is formed from character 'A' etc. */ 
 spelling(cs) == spelling(cs1) // spelling(cs2), 
 length(spelling(cs2)) == 1         ==> cs == cs1 // cs2; 
 )); 
endvalue type UniversalCharString; 

/* */ 

/* UTF8String sort  */ 
syntype UTF8String = UniversalCharString endsyntype; 

/* */ 

/* GeneralCharString sort  */ 
/*    Definition   */ 
value type GeneralCharString 
 inherits String < GeneralChar > ( '' = emptystring ) 
 adding  
  operators ocs in nameclass 
  /* All G and all C sets + SPACE + DELETE X.680 clause 34.1 table 3 */ 
     -> this GeneralCharString; 
/* character strings of any length of any characters from a space ' ' to a '?' */ 

axioms 
 for all c in GeneralChar nameclass ( 
 for all cs, cs1, cs2 in ocs nameclass ( 
 spelling(cs) == spelling(c)        ==> cs == mkstring(c); 
/* string 'A' is formed from character 'A' etc. */ 
 spelling(cs) == spelling(cs1) // spelling(cs2), 
 length(spelling(cs2)) == 1         ==> cs == cs1 // cs2; 
 )); 



 

24 Recommendation Z.105   (11/99) 

endvalue type GeneralCharString; 
/* */ 
syntype GraphicChar = GeneralChar constants 
/*All G+SPACE+DELETE as specified in X.680 clause 34.1 table 3 */ 
endsyntype; 
/* */ 

/*  GraphicCharString sort  */ 
/*     Definition   */ 
value type GraphicCharString 
 inherits String < GraphicChar > ( '' = emptystring ) 
 adding  
  operators ocs in nameclass 
  /* All G + SPACE + DELETE as specified in X.680 clause 34.1 table 3*/ 
 -> this GraphicCharString; 
axioms 
 for all c in GraphicChar nameclass ( 
 for all cs, cs1, cs2 in ocs nameclass ( 
 spelling(cs) == spelling(c)        ==> cs == mkstring(c); 
 spelling(cs) == spelling(cs1) // spelling(cs2), 
 length(spelling(cs2)) == 1         ==> cs == cs1 // cs2; 
 )); 
endvalue type GraphicCharString; 
 

syntype VisibleChar = Character constants 
/* characters specified in X.680 clause 34.1 table 3 */ 
endsyntype; 
/* */ 

/* VisibleString sort  */ 
/*   Definition   */ 
value type VisibleString 
 inherits String < VisibleChar > ( '' = emptystring ) 
 adding  
  operators ocs in nameclass 
   /* characters specified in X.680 clause 34.1 table 3 */ 
  -> this VisibleString; 
axioms 
 for all c in VisibleChar nameclass ( 
 for all cs, cs1, cs2 in ocs nameclass ( 
 spelling(cs) == spelling(c)        ==> cs == mkstring(c); 
/* string 'A' is formed from character 'A' etc. */ 
 spelling(cs) == spelling(cs1) // spelling(cs2), 
 length(spelling(cs2)) == 1         ==> cs == cs1 // cs2; 
 )); 
endvalue type VisibleString; 
 

syntype BMPChar = UniversalChar CONSTANTS /* see X.680 clause 34.12 */  
endsyntype; 
/* */ 

/* BMPCharString sort  */ 
/*  Definition   */ 
value type BMPCharString 
 inherits String < BMPChar > ( '' = emptystring ) 
 adding  
  operators ocs in nameclass 
      /* see X.680 clause 34.12 */ -> this BMPCharString; 



 

  Recommendation Z.105   (11/99) 25 

axioms 
 for all c in BMPChar nameclass ( 
 for all cs, cs1, cs2 in ocs nameclass ( 
 spelling(cs) == spelling(c)        ==> cs == mkstring(c); 
/* string 'A' is formed from character 'A' etc. */ 
 spelling(cs) == spelling(cs1) // spelling(cs2), 
 length(spelling(cs2)) == 1         ==> cs == cs1 // cs2; 
 )); 
endvalue type BMPCharString; 

/* */ 
 
value type NULL 
literals NULL 
 
endvalue type;







 

 

ITU-T  RECOMMENDATIONS  SERIES 

Series A Organization of the work of the ITU-T 

Series B Means of expression: definitions, symbols, classification 

Series C General telecommunication statistics 

Series D General tariff principles 

Series E Overall network operation, telephone service, service operation and human factors 

Series F Non-telephone telecommunication services 

Series G Transmission systems and media, digital systems and networks 

Series H Audiovisual and multimedia systems 

Series I Integrated services digital network 

Series J Transmission of television, sound programme and other multimedia signals 

Series K Protection against interference 

Series L Construction, installation and protection of cables and other elements of outside plant 

Series M TMN and network maintenance: international transmission systems, telephone circuits, 
telegraphy, facsimile and leased circuits 

Series N Maintenance: international sound programme and television transmission circuits 

Series O Specifications of measuring equipment 

Series P Telephone transmission quality, telephone installations, local line networks 

Series Q Switching and signalling 

Series R Telegraph transmission 

Series S Telegraph services terminal equipment 

Series T Terminals for telematic services 

Series U Telegraph switching 

Series V Data communication over the telephone network 

Series X Data networks and open system communications 

Series Y Global information infrastructure 

Series Z Languages and general software aspects for telecommunication systems 

*18097* 
Printed in Switzerland 

Geneva, 2000 


	ITU-T Rec. Z.105 (11/99) SDL Combined with ASN.1 modules (SDL/ASN.1)
	Summary
	Source
	FOREWORD
	CONTENTS
	SDL COMBINED WITH ASN.1 MODULES (SDL/ASN.1)
	1 Introduction
	1.1 Objective
	1.2 The characteristics of the combination of SDL and ASN.1 modules
	1.3 ASN.1 that can be used in combination with SDL
	1.4 The structure of this Recommendation
	1.5 Conventions used in this Recommendation

	2 References
	3 Package
	4 Definition and use of data
	4.1 Name mapping
	4.2 Variable and data definitions
	4.3 Type expressions
	4.4 Range condition
	4.5 Value Expressions

	5 Mapping of ASN.1 types defined in ASN.1 modules using information objects, classes and sets
	5.1 Introduction
	5.2 Object class field value
	5.3 Objects and object sets

	6 Mapping of parameterized ASN.1 types
	6.1 Parameterized type assignment
	6.2 Parameterized value assignment
	6.3 Referencing ASN.1 parameterized definitions
	6.4 Parameterized object definition together with an information object class

	7 Additions to package Predefined

