

INTERNATIONAL TELECOMMUNICATION UNION

CCITT Z.100 Annex F1
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

(11/1988)

ANNEX F1 TO RECOMMENDATION Z.100:
SDL FORMAL DEFINITION
INTRODUCTION

SDL FORMAL DEFINITION

 Reedition of CCITT Recommendation Z.100, Annex F1
published in the Blue Book, Fascicle X.3 (1988)

NOTES

1 CCITT Recommendation Z.100, Annex F1 was published in Fascicle X.3 of the Blue Book. This file is an
extract from the Blue Book. While the presentation and layout of the text might be slightly different from the Blue Book
version, the contents of the file are identical to the Blue Book version and copyright conditions remain unchanged (see
below).

2 In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

© ITU 1988, 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written
permission of ITU.

 Fascicle X.3 – Rec. Z.100 Annex F1

CONTENTS OF FASCICLE X.3 OF THE BLUE BOOK

Annex F1 to Recommendation Z.100

SLD Formal Definition. Preface.. 1

PRELIMINARY NOTES

1 The Questions entrusted to each Study Group for the Study Period 1989-1992 can be found in
Contribution No. 1 to that Study Group.

2 In this Fascicle, the expression "Administration" is used for shortness to indicate both a telecommunication
Administration and a recognized private operating agency.

 Fascicle X.3 – Rec. Z.100 Annex F1

Contents

1 Preface 1

2 Motivation 1

 2.1 The Meta Language .. 1

3 Modelling Technique 2

 3.1 Static Semantics.. 3

 3.2 The Dynamic Semantics ... 3

 3.3 Example .. 5

 3.4 Physical Structure of The Formal Definition.. 5

4 How to Use the Formal Definition 7

 4.1 The SDL Users ... 7

 4.2 The Implementors... 7

5 Introduction to Meta-IV 7

 5.1 General Structure .. 7

 5.2 Function Definitions ... 8

 5.3 Variable Definitions.. 9

 5.4 Domains.. 9

 5.4.1 Synonyms.. 10

 5.4.2 Unnamed Trees ... 11

 5.4.3 Branching Constructs .. 12

 5.4.4 Elementary domains.. 13

 5.4.5 Set Domains .. 15

 5.4.6 List Domains ... 17

 5.4.7 Map Domains .. 18

 5.4.8 Pid Domains .. 20

 5.4.9 Reference Domains ... 21

 5.4.10 Optional Domains ... 21

 5.5 The let .and .def Constructs .. 22

 5.7 Auxiliary Statements .. 24

 5.8 Deviations from the notation used in the Formal Definition of CHILL ... 25

 5.9 Example: Demon game specified in Meta-IV... 25

 Fascicle X.3 – Rec. Z.100 Annex F1

FASCICLE X.3

Annex F.1 to Recommendation Z.100

SDL FORMAL DEFINITION

 Fascicle X.3 – Rec. Z.100 Annex F1 1

1 Preface

This Formal definition of SDL provides a language definition which supplements the definition given in the
recommendation text. This annex is for use by those who require a very precise and detailed definition of SDL such as
maintainers of the SDL language and designers of SDL tools.

The formal definition consist of three volumes:

Annex F.1 (This volume)

 Which states the motivation, describes the overall structure, provides guidelines for how to use the
 Formal Definition and describes the notation used.

Annex F.2 Which defines the static properties of SDL

Annex F.3 Which defines the dynamic properties of SDI,

2 Motivation

Natural languages in general are ambiguous and incomplete, that is, more than one interpretation, can be given to some
of the sentences in the language, no matter whether the reader is a computer or a human being.

A definition or specification is formal if its meaning (semantics) is unambiguous and complete. As natural languages
cannot be used for that purpose, special languages, known as specification languages (like SDL and LOTOS) have been
developed. An implementation language like CHILL or PASCAL could also be used as a specification language (for
instance a compiler specifies formally the semantics of another language), but often it is essential to separate the
implementation details, irrelevant for the understanding, from the semantics of a specification.

Formal languages specially suitable for defining languages are known as meta languages. For example, The Backus Naur
form (BNF) is a meta language specially suitable for defining formally the syntax of programming languages.

In spite of the ambiguity of natural languages, natural languages are usually more readable for human beings than formal
languages and can more easily express rationale giving a framework in which the formal specification can be understood.
For these reasons both a definition in natural language and a definition in a formal specification language often are given.

This annex constitutes a formal definition of SDL. If any properties of an SDL concept defined in this document,
contradicts the properties defined in Z.100 and the concept is consistently defined in Z.100, then the definition in Z.100
takes precedence and this formal definition requires correction.

2.1 The Meta Language

The meta language used in this Formal Definition is Meta-IV [1). The reasons for choosing this language are the
following:

 • It builds upon a very strong and extensively researched mathematical foundation.

 • It has very convenient and powerful facilities for object manipulations.

 • It has a “programming like” notation which means that it is oriented towards programmers and
implementors.

 • It is in the process of being standardised within the European Community.

 • It is well reported in books, proceedings and scientific journals and it has been used in the CCITT manual
The Formal Definition of CHILL [2)- which also contains a summary of the Meta-IV notation.

 • Meta-IV tools are available which allow for syntax checking, visibility analysis, document generation,
cross referencing etc.

In section 5, an informal introduction to the parts of Meta-IV used in the Formal Definition can be found. A complete
definition of Meta-IV can be found in [1].

 Fascicle X.3 – Rec. Z.100 Annex F1 2

3 Modelling Technique

When considering what is meant by “semantics of SDL” it is convenient (conceptually) to decompose the language
definition into several parts:

 • The definition of the syntax rules.

 • The definition of the static semantic rules (so-called well-formedness conditions) such as which names it
is allowed to use at a given place, which kind of values it is allowed to assign to variables etc.

 • The definition of the semantics of the constructs in the language when they are interpreted (the dynamic
semantics).

There is no need for including the syntax rules in the Formal Definition as the BNF rules and Syntax diagrams found in
Z.100 already serve as formal definitions of the syntax rules, which means that the input to the Formal Definition is a
syntactically correct SAL specification. The input is represented by an Abstract Syntax. This abstract syntax is based on
the SDL textual concrete syntax parse-tree (BNF rules) with irrelevant details such as separators and lexical rules
removed. Therefore, this Abstract syntax is not the Abstract Syntax of Z.100 appearing in the recommendations which is
an abstraction of the SDL model concept.

For example the Abstract Syntax production rule:

expresses that a Transistion string consists of a non-empty list of Action statements and an optional Terminator statement
(the italicised letters also occur in the production rule). The complete set of production rules (so-called Domain
Definitions) defining the SDL-syntax on an abstract form is called AS0. In some respect it defines the language syntax on
a more basic level than the syntax rules found in Z.100 since the concrete textual syntax in Z.100 contains a lot of
semantic information (it is context sensitive) as opposed to AS0. It should be noted that AS0 is an abstraction of the
concrete textual syntax. The concrete graphical syntax has not been used for reasons of economy in time and space rather
than any difficulty in the task.

As an example a signal list in Z.100 is defined to be:

whereas the corresponding definitions in ASo are:

A Signallist consists of a list of Signaliterns. A Signalitem is either an identifier or a signal list identifier. As opposed to
the context sensitive BNF production <signal item> no distinction is made between a signal identifier and a timer
identifier in ASo because syntactically they are both identifiers as opposed to signal lists which are distinguished by the
use of parenthesis.

The starting point for the FD is syntactically correct SDL-specifications. The tasks of the Formal Definition are to

 • Define the well-formedness conditions for SDL-specifications. This task, referred to as the Static
Semantics, constitutes Annex F.2

 • Define the dynamic properties for SDL-specifications. This task, referred to as the Dynamic Semantics,
constitutes Annex F.3

The steps are shown in figure 1. The result from the Static Semantics (i.e. AS1) is explained below.

Figure 1: Objectives of Static Semantics and Dynamic Semantics

 Fascicle X.3 – Rec. Z.100 Annex F1 3

The step of translating from the concrete textual syntax to AS0 is not formally defined, but is derived from the
correspondance between names in the two syntaxes as previously illustrated for Signallist.

3.1 Static Semantics

In Z.100, the dynamic semantics of the various constructs are defined in terms of an Abstract Syntax.. Common
subsections, Concrete textual grammar and Concrete graphical grammar define the concrete syntax rules, state the
appropriate well-formedness conditions and relate the concrete syntax rules to the abstract syntax in 2.100. It is defined
using Meta-W (in the common subsections Abstract grammar). The same abstract syntax is used in the Formal Definition
(where it is referred to as AS1). A summary of this abstract syntax can be found in Annex B of Z.100.

In addition to defining the well-formedness conditions, the Static Semantics must therefore define how the AS0
representation of a specification is transformed into the AS1 representation, that is, given an AS0 representation, an AS1
representation is returned by the Static Semantics if the AS0 representation was well-formed. The Static Semantics can be
regarded as an “abstract cortnpiler” where the AS0 representation is the source language and the AS1 representation is the
object language.

In addition to AS0 and AS1, the Static Semantics uses some internal utility domains, known as the Semantic Domains,
which hold the information required at any place about a given entity. For example, when a process definition is
transformed, information about its formal parameters is kept in the Semantic Domains and the information is retrieved
during trans-formation of the Create Request action. The AS0 domains could have been used for that purpose, as the
Semantic Domains anyway are deduced from AS0, but a tree representation is not useful when information of a certain
entity (say a process definition) occurring some-where in the tree is required. Therefore Semantic Domains are usually
mappings modelling tables.

For instance, the Semantic Domains include a mapping (further explained in section 5.4.7) of identifiers into some
descriptor containing information about the identifiers:

where Qual is the identifier representation used internally in the Formal Definition and Descr is any descriptor. The
descriptor may for instance be a process descriptor;

expressing that a Process Descriptor contains a list of Parameter Descriptors, information about the Valid input signal set
and information about the Output signals. The definitions of these three (sub)descriptors are not shown here.

The transformation itself is performed by a set of Meta-IV functions using the three Domains AS0, AS1 and the Semantic
Domains.

3.2 The Dynamic Semantics

The task of the Dynamic Semantics is to define the behaviour of an SDL specification on AS1 form.

The Dynamic Semantics is divided into three major sections:

 • The Model for the underlying system (the abstract SDL-machine)

 • The Interpretation of the process graphs

 • Transformation of AS1 into a more appropriate representation; that is, a mapping is constructed (a
Semantic Domain) which contains the information required during the interpretation such as information
about the sort of variable, possible communication paths between processes, equivalence classes for types
etc. The mapping is named Entity-diet (or more correctly, the domain of the mapping is named
Entity-diet).

Concurrency in SDL in the Dynamic Semantics is modelled by using Meta-processes; that is concurrently executing
Meta-processes in Meta-IV model concurrently executing processes in SDL.

Six different Meta-process types are used:

 • system

 To handle the signal routing and the creation of sdl-processes.

 • path

 To handle the non-deterministic delay of channels.

 Fascicle X.3 – Rec. Z.100 Annex F1 4

 • timer

 To keep track of the current time and handle time-outs.

 • view

 To keep track of all revealed variables.

 • sdl-process

 To interpret the behaviour of an SDL-process.

 • input-port

 Which handles the queueing of signals in an SDL-process. For each instance of sdlprocess there exists
exactly one instance of input-port

The four Meta-process types system, path, timer and view can, as a whole, be regarded as modelling the underlying
system.

There is no shared data between Meta-processes - they interact by transmitting values conveyed by instances (objects) of
Communication Domains (correspond to the SDL concept signals).

Communication Domains are defined in the same way as other domains; for example, objects of the Communication
Domain Input-Signal are directed to an sdl-process instance from its attached input-port instance. The Communication
Domain is defined like this:

Instances of Input-Signal convey the identifier of the SDL signal which is sent, the list of values conveyed by the SDL
signal and the PID value of the sender.

Figure 2 shows the complete “Meta-process interaction scheme”. The communication mechanism is synchronous and the
notation is known as CSP (see [3] and [4]) (Communicating Sequential Processes).

Figure 2: Communication scheme

 Fascicle X.3 – Rec. Z.100 Annex F1 5

3.3 Example

Figure 3 shows the communication between meta-processes in the formal definition for the following (partial) SDL-
process, when a signal (“b”) arrives from the environment, and the process responds by sending a signal (“a”) back to the
environment:

...

state S;

 input b;

 output a;

...

The communication is informally illustrated by means of a message sequence chart. Path(1) and Path(2) denotes two
instances of the path-processor, corresponding to the path from the environment to the sdl-process (Path(1)) and vice
versa (Path(2)).

Figure 3: Example of communication between meta-processes

3.4 Physical Structure of The Formal Definition

The Static Semantics (Annex F.2) is divided into three main parts:

 1. The Domain definitions for AS0

 2. The Domain definitions for the Semantic Domains

 3. The Meta-IV functions checking well-formedness conditions and defining how AS0 is transformed
into AS1.

The Domain definitions for AS1 which are used in part 2 and 3 are to be found in Z.100 and summarized in Annex B
of Z.100. They are not repeated in the formal definition. Annex F.2 also includes cross-indices on Meta-IV function
names and domain names (both defining occurrence and applied occurrences) and a cross index on the well-formedness
conditions applied.

The Dynamic Semantics (Annex F.3) is divided into five major sections:

 1. Domain definitions for the Communication Domains

 2. Domain definitions for the Semantic Domains (Entity-diet)

 3. The Meta-process definitions and attached functions for the model of the underlying system

 4. The Meta-process definitions and attached functions for the interpretation of the SDL-process

 5. The creation of the internal, domain Entity-diet. Entity-diet is used by the SDL-processes and it is
therefore created before any SDL-processes are interpreted.

 6 Fascicle X.3 Rec. 2.100 -. Annex F.1

 Fascicle X.3 – Rec. Z.100 Annex F1 6

Annex F.3, like Annex F.2 also contains a number of indices covering domain names, function names, Meta-process
names, error conditions etc.

The volume of material (especially in Annex F.2) might seem frightening at a first glance. However, more than half of
the space contains annotations for the Domains, function and process definitions.

The layout for a function and process definition follows a scheme:

 1. First, the function or process definition is specified, by:

 (a) heading defining the process or function name and the names of its formal parameters

 (b) its body (algorithm)

 (c) a type clause specifying the type (domain) of the formal parameters and the type of the result (if any).

 2. Then follows the itemized (plain english) annotations attached to the process or function definition:

 Objective Explains the purpose of the function or process

 Parameters Explains the purpose of every formal parameter to the function or process

 Result Explains the object returned (if any).

 Algorithm Explains, on a line by line base, the algorithm used in the function or process.

Example

The outermost function definition-of-SDL from Annex F.2 which ties together the Static Semantics (transform-system)
and the Dynamic Semantics (by starting the Meta-process system) is as follows:

Objective Define the properties of SDL

Parameters

 extparms Some External-Information (see annex F.2 section 2.3).

 systemdef The AS0-tree representing the SDL system

 predefsorts The predefined data in AS0 form.

Algorithm

 Line 1 Transform the system into the abstract syntax form (AS1 form).

 Line 2 If static errors are found (i.e. if no AS1 representation could be derived) then the behavior is not
 defined.

 Line 4 If no static errors are found then

 Line 5 Select the set of Block-identifaerls denoting the consistent subset.

 Line 6 Create a system instance, i.e. create a Meta-IV process which behaves like the underlying
system.

 Fascicle X.3 – Rec. Z.100 Annex F1 7

4 How to Use the Formal Definition

4.1 The SDL Users

The Formal Definition is not intended as a users reference manual on SDL. Newcomers on SDL may find the User
Guidelines (annex D in Z.100) appropriate for achieving an overview of concepts (and their rationale) in the language,
while the Z.100 Recommendation itself serves as a reference manual on SDL, but there might be some cases where
Z.100 is inadequate. For instance

 • if some properties are missing (e.g. some expected static condition), if some stated properties contradict
other properties or

 • if the exact meaning of some stated properties is difficult to understand or

 • if some properties (due to the lack of cross index in Z.100) are difficult to find or

 • if the user wants to achieve a deeper understanding of more complex matters like the abstract SDL
machine, when and how to select a consistent subset, resolution by context, the inheritance mechanism
etc.

In such cases the Formal Definition might be a useful supporting document. The user must of course first gain insight in
the structure of the Formal Definition, how the functions are organized and what the Domains are used for. A certain
amount of knowledge about the Meta-IV notation is also required, but as the functions are extensively annotated, it may
be possible to read Meta-IV by reading the functions in conjunction with the annotations after having read the
introduction on Meta-IV (section 5 below). When looking up in the Formal Definition, the users may take advantage of
using the table of contents and the cross indices.

4.2 The Implementors

As mentioned earlier, the Meta-IV approach allows implementors to derive an implementation systematically (i.e. static
analyzer, simulator etc.) from the Meta-1V specification. For SDL, it is possible to derive a static analyzer from
Annex F.2 and a simulator from Annex F.3. It is advised to use the AS1 representation (generated by the static analyzer)
as a basis for simulation. The reasons are that context information for identifiers is missing in AS0 (they are normally not
qualified in AS0) and that the dynamic semantics of a specification on ASo form may be difficult to derive due to the
large number of shorthands in SDL (especially for concepts like data types).

It should be noted that the derivation into an implementation is systematical, but it is not mechanical.

The following points must be considered:
 • Appropriate datatypes must be found for representing the ideal data types (domains) in Meta-IV such as

mappings, lists and sets used in AS0, AS1 and the Semantic Domains.
 • Due to the visibility rules in SDL (the fact that identifiers may be used before they are defined) a so-called

“fixpoint equation” is (for convenience) used in the Static Semantics (see section 3.1 of Annex F.2). In an
implementation, the Semantic Domains may be created gradually by going through the ASo tree a number
of times (e.g. descriptors for signals must be created before any descriptors for channels are created as
channels refers to signals in their definitions).

 • The initial algebra approach implies that the Formal Definition manipulates infinite objects. Also AS1
contains infinitely objects. It is therefore necessary to modify AS1 slightly and to impose restrictions on
the use of data types or to use some abstraction technique in which these objects can be encoded.

5 Introduction to Meta-IV

This section contains an informal introduction to Meta-IV and to how Meta-IV has been used in the Formal Definition,
i.e. Meta-IV is explained in terms of the Formal Definition (abbreviated as FD) which means that only those parts of
Meta-IV which have been used in the FD are explained.

5.1 General Structure

The FD consists of:
 • A set of function and process definitions defining the semantics of SDL. Processes (in Meta-IV and in the

FD called processors) are used for modelling concurrency and are therefore only used in the Dynamic
Semantics. Syntactically, processor definitions look like function definitions (except for the keyword
processor following the processor name), therefore, the following description of the function concept also
applies for processors.

 Fascicle X.3 – Rec. Z.100 Annex F1 8

 • A set of domain definitions which define the type of the objects manipulated with by the functions. Terms
denoting certain groups of domain definitions are introduced in order to classify them logically. We have
the AS0 domains denoting the representation of the concrete syntax, the ASI domains denoting the
abstract syntax of SDL and the sets of domains Diet and Entity-did denoting the “internal” utility domains
(semantic domains) of the Static- and Dynamic Semantics respectively. In this section, we will often use
“value” as a synonym for object and “type” as a synonym for domain.

 • A set of global constant definitions. In the FD, only two such definitions are present. They are defined in
section 3.13 of the Static Semantics. They are not essential for understanding the FD.

Definitions may be specified in any order and names introduced in definitions may be used before they textually are
defined.

5.2 Function Definitions

A function definition consists of three parts:

 1. The heading starts with the function name and is followed by one or two formal parameter lists. Each
formal parameter list is enclosed in parenthesis. There is no formal significance in dividing the parameters
between two lists. Often some parameters are put into a separate (second) parameter list if they are of
secondary importance for the evaluation. For instance in the case of the semantic domains which often are
used by the functions and supplied in a separate parameter list.

 2. The body of the function which can either be an expression or a sequence of statements. A function does
not have to deliver any result (see below).

 3. The type clause specifying the type of the formal parameters and the type of the result. First, the type of
the first parameter list is specified, then the type of the second parameter list (if any) separated by the first
parameter list by an arrow (→ or ⇒), then another arrow and then the result.

Example

f(a, b)(d)

In this example we have:

f is the name of the function

a, b, d are formal parameters. a and b are contained in the first formal parameter list and d is contained in the
second parameter list. The type of a is DomX, the type of b is DomY and the type of d is DomZ. The type
of the result is Dom W. The domains DomX, Dom Y, DomZ and DomW must be defined in some domain
definitions.

If the formal parameters or the result are not used in accordance with the type clause, there is an error in the Meta-IV
specification. In the example above informal Meta-IV text (the text enclosed in /* */) is used to denote some Meta-IV
expression which for reasons of economy in space has been left out. Informal Meta-IV text is similar to informal text in
SDL and it is extensively used in the examples of this section.

Normally, a distinction is made between applicative and imperative functions. Applicative functions are functions which
do not refer to parts of the global state (variables), that is, the result of such functions are only depending on the value of
the applied actual parameters. The body of an applicative function is restricted to be an expression as statements impose
some change of state. Applicative functions must always deliver a result. Imperative functions are functions which refer
to or even change- the global state (functions with side effects). If a function is imperative, it must be reflected in the
type clause by using ⇒ instead of → when specifying the result.

That is:

In the FD, the Static Semantics and the creation of the internal Domain Entity-diet in the Dynamic Semantics are
applicative.

 Fascicle X.3 – Rec. Z.100 Annex F1 9

5.3 Variable Definitions

Global variables are defined at the outermost level in processor definitions. They are visible to all functions used by the
processor defining the variable even though the functions normally are defined outside processor definitions. However, a
function which is shared by two or more processors is not allowed to access variables. When several instances of a given
processor exist, several instances of variables defined by the processor also exist. (There are no shared variables).

Variable definitions are introduced by specifying the keyword dcl followed by a list of variable names, optionally
followed by an initial expression and ending with the type of the variable.

Example

dcl vi := 5 type Intg;
dcl v2 type DomD;

Here we have defined two variables v1 and v2, vl is of type integer and is initialized to 5. v2 is of type DomD. Note that
variables can always be distinguished syntactically from other names since they are not italicised. An alternative syntax
of variable definitions is:

dcl vl := 5 type Intg,
 v2 type DomD;

The value associated to variables is accessed by using, the contents operator which is the keyword c.

Example

5.4 Domains

Domains are usually defined in the beginning of a document. Domain names can be distinguished syntactically from
other names since the first letter is in capital. A. domain is defined by specifying the domain name followed by a “::”
symbol (or by a “=” in the case of a synonym name as explained in section 5.4.1) and then followed by a domain
expression reflecting its properties (for an introduction to the domain notation see also §1.5.1 of Z.100).

Example

This example is taken from the abstract syntax of SDL (for clarity, all the names of AS1 are suffixed by a “1” in the FD).
It defines a named tree, that is, a record-Iike datatype where the name of the recordtype is Output-node1 and it's fields are
of the type Signal-identifier1, [Expressions1]*, [Signal-destinations1] and Direct-via1.

The most important operator for named trees is the mk- (make) operator which is used for composing and decomposing
tree objects (i.e. record values).

For example, if a name sigid denotes an object of domain Signal-identifier1, a name exprlist denotes an object of domain
[Expressions1]*, a name dest denotes an object of type [Signal-destination1] and a name via denotes an object of domain
Direct-vial then an object of domain Output-node1 is constructed by writing:

mk-Output-node1 (sigid, exprlist, deal, via)

which can be used in Meta-IV expressions. Note that the order in which the arguments are specified in the mk- operator
is significant. This applies for function calls as well. Similarly, if we have an object, named outputnode; of domain
Output-node1 and we want to access the fields, we can introduce names for the fields by decomposing it (the same names
as above are chosen here):

let mk-Output-node1 (sigid, exprlist, dest, via) = outputnode in
/* some expression using the fields */

By means of the let construct we have introduced names to denote the fields in the object outputnode. Using the let
construct is the general way of introducing names for objects (not only in combination with the mk- operator). The let
construct is explained further in section 5.5

 Fascicle X.3 – Rec. Z.100 Annex F1 10

If some of the fields are not used in the expression we can omit the corresponding names in the decomposition. For
instance, if sigid is not used in the expression, we can write:

let mk-Output-node1 (, exprlist, dest, via) = outputnode in
/* some expression using exprlist and dest */

If we only want to use the Signal-Identifier1 in the expression we can alternatively use the field select operator s-:

let sigid s-Signal-Identifier1 (outputnode) in
/* some expression using sigid */

The field select operator can only be used if the field can be uniquely determined by mentioning the domain name.

We can choose to decompose (i.e. introduce names for the contained elements) the formal parameters in the function
head instead of in the body if we find it more readable. That is

is equivalent to

Note that in this example we also have a second parameter list containing the formal parameter diet of the domain
Entity-diet.

5.4.1 Synonyms

Using the field select operator is only possible if the field in the domain definition is rep-resented by a name. If for
instance we want to use the select operator on the second field of objects of the domain Output-node1, we must define
Output-node1 in a slightly different way:

This Output-node1 is exactly the same domain as the Output-node1 previously defined. The only difference is that we
have given the second field a name i.e. we have defined a synonym or shorthand for the domain expression
[Expressions]* (the “=” symbol is used when defining synonyms). Often there are other reasons for defining synonyms
such as if the same domain expression is used at several places or for the sake of readability. For instance, in the abstract
syntax of SDL, we have Channel-name1, Block-name1, Process-name1 etc. which all are synonyms for the domain
Names, but which carries information to the reader about the objects represented by the various Name's being of certain
entity classes. Another typical case is where we have a long list of alternatives. For instance, the abstract syntax for
Expression1 is

 Fascicle X.3 – Rec. Z.100 Annex F1 11

which better reflects the grouping of the various kinds of expressions than

5.4.2 Unnamed Trees

In some cases, we don't need to name a tree definition. Unnamed trees are extensively used in the FD, but they are
anonymous since they often don't have to be defined explicitly.

Example

The first line in the definition of Entity-dict in the Dynamic Semantics is:

which expresses that the Entity-diet includes a mapping from the two domains Identifier1 and Entityclass into some
descriptor (Entitydescr). These two domains constitute an unnamed tree. If a named tree should be used, we would have
to rewrite the definition into:

Example

Reachability in the dynamic semantics is defined as

Here we have defined a synonym for an unnamed tree containing three fields:

 1. A field which can contain either a process identifier or the quotation literal ENVIRONMENT

 2. A field which contains a set of signal identifiers

 3. A field of the domain Path

As shown, parenthesis are in the domain definitions both used for defining unnamed trees and for grouping alternatives.

Example

The function make-formal-parameters in the Dynamic Semanticsis defined as:

This function returns two objects- FormparmD* and Entity-diet which means that it in fact returns an unnamed tree
consisting of two objects.

The mk- operator cannot be used on unnamed trees. Composition and decomposition of these is obtained by enclosing
the fields in parenthesis.

 Fascicle X.3 – Rec. Z.100 Annex F1 12

Example

composition of a Reachability object where a denotes a Process-Identifier1, b denotes a signal identifier set and d denotes
a Path:

(a, b, d)

if, for the sake of readability, we want to denote the object by a name (it is easier to deal with a name than with (a,b,d),
especially if (a,b,d) is used several times in an expression) then we can again use the let construct, that is, the expression:

/* some expression using “(a,b,d)” */

is equivalent to

(let reach = (a, b, d) in
/* some expression using “reach” */)

The let construct is also used for decomposing objects of unnamed trees. For example a decomposition of a Reachability
object named reach where we for some reason don't use the signal identifier set is:

let (a, , d) = reach in
/* some expression using a and d */

When we call a function, it is usual to decompose unnamed trees which are the result of the function call i.e.:

let (parmlist, pathlist) = make-formal-parameters (...,...) in
/* some expression using the function results parmlist and pathlist */

is equivalent to:

let parminf = make-formal-parameters (...,...) in
let (parmlist, pathlist) = parminf in
/* some expression using the function results parmlist and pathlist */

5.4.3 Branching Constructs

In some cases, it must be possible to distinguish a number of tree objects from each other. For instance, objects of the
Imperative-operators synonym previously defined is either a Now-expression1, a Pid-expression1, a View-expression1 etc.
With an Imperative-operators in hand, we must first determine the type of the Imperative-operators before we can
evaluate it. For that purpose, we can use the case expression/statement. For instance, the function which evaluates the
imperative SDL expressions could look like:

Note that we branch on the type of the Imperative-operator- not on the actual value of the fields in the tree. T denotes an
“otherwise” clause which is used here because the final alternative in Imperative-operator1 (Pid-expression1) is a
synonym representing four other alternatives which we don't want to distinguish here. The evaluation of these
alternatives is deferred to eval-pid-expression.

 Fascicle X.3 – Rec. Z.100 Annex F1 13

Another way of doing it is by using the boolean operator is- which returns true if the object given as argument is of a
certain domain, e.g.

Note that both access to the fields by decomposition (line 8) and access to the fields by means of the field selection
operator (line 5) are illustrated here.

As in most other programming- and specification languages, it is required that the alternatives in the case
expression/statement are “constant” (as they are when we branch on the tree type) which means that if the alternatives
are of a dynamic nature (say variables or formal parameters) the if-then-else construct must be used. However, there is
another notation for the if-then-else construct, the so-called Mc-Carthy construct which is more convenient if there are
many alternatives:

Note that, some FD function names also start with “is-”. These cases can easily be distinguished from the “is-" operator
since they are not in boldface.

5.4.4 Elementary domains

Meta-IV provides a number of predefined elementary domains. Their notation and the associated operators are described
in the following.

5.4.4.1 Boolean

The Meta-IV name Bool denotes the domain of truth values, i.e. the set {true,false} Operators for Boolean:

 Fascicle X.3 – Rec. Z.100 Annex F1 14

Example

5.4.4.2 Integer

Three domain names are predefined for the integer values:

 • The name Intg denotes the domain of all integer values, i.e. the set {... -2,-1,0,1,2,...}

 • The name N0 denotes the domain of non-negative integer values, i.e. the set {0,1,2,...}

 • The name N1 denotes the domain of positive integer values, i.e. the set {1,2,...}

Operators for Integer:

5.4.4.3 Character

The Meta-IV name Char denotes the domain of ASCII character values. For the printable characters, there exist object
representations which are enclosed in quotation marks, e.g. ”a”, ”Z”, ” ”.

Operators for Character:

The relational operators are applied on the associated ASCII numerical values.

For the sake of readability, objects of the domain Char+ may be represented by a sequence of characters enclosed in
quotation marks e.g ”abc” is the same as (”a”,”b”,”c”) (see section 5.4.6)

5.4.4.4 Quotation

The Meta-IV name Quot denotes the domain of quotations. They are distinct elementary objects and they are represented
as any bold-face sequence of uppercase letters and digits e.q. ENVIRONMENT, REVERSE.

 Fascicle X.3 – Rec. Z.100 Annex F1 15

Operators for Quotations:

As opposed to other domains, objects of Quot may occur in domain definitions when only certain object(s) of Quot are
possible in the given context, for example, in the abstract syntax of Z.100, Originating-blocks is defined to be

 1 Originating-block1 = Block-identifier1 | ENVIRONMENT

alternatively, Originating-blocky could have been defined using Quot:

 2 Originating-block1 = Block-identifier1 | Quot

however, using ENVIRONMENT in the domain definition is more precise, since this object is the only Quot value
possible in that context.

54.4.5 Token

The Meta-IV name Token denotes the domain of tokens. This domain can be considered as consisting of a potentially
infinite set of distinct elementary objects for which no representations are required.

Operators for Tokens:

Example

Name1 in the abstract syntax of Z.100 is defined to be

 1 Name1 :: Token

The only property needed for Name's during interpretation is equality. A Name1 therefore consist of a Token value (the
actual spelling of names is irrelevant).

5.4.4.6 Ellipsis

The Ellipsis domain (represented by ...) denotes an unspecified construct. It is used in domain definitions or in
expressions

 • whenever the actual domain or expression is of no importance for the semantics or

 • whenever the elaboration of the domain or expression is outside the scope of the specification.

Example

Informal-text1 in the abstract syntax of Z.100 is defined to be

 1 Informal-text1 :: ...

Informal-text1 cannot be interpreted using Meta-IV. Informal-text1 therefore contains some further unspecified object.

5.4.5 Set Domains

A set domain is constructed by postfixing the element domain by the keyword -set (the dash is significant). For example

 2 State-node1 :: State-name1
 Save-signalset1
 Input-node1 -set
 3 Save-signalset :: Signal-Identifier1 -set

expresses that objects of the domain State-node1 consist of a state name, a save signalset, which contains a set of signal
identifiers, and a set of Input-nodes. Set values can be constructed by using an explicit set constructor which is an
expression list enclosed by braces, i.e.

{1,3,5,1}

 Fascicle X.3 – Rec. Z.100 Annex F1 16

denotes an object of the domain Intg-set and it contains the three Intg values 1,3,5. A more usual form is the so-called
implicit set constructor where the set includes all those elements which satisfy a certain condition (predicate). For
example

defines the set

{0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, ...}

It reads: The set of those values on the left hand side of the vertical bar (possibly qualified by a value or by a domain) for
which the expression on the right hand side of the vertical bar holds.

The empty set is denoted by {}.

In the following explanation of the semantics of the operators on sets, s denotes the set {1,3,5}:

 Fascicle X.3 – Rec. Z.100 Annex F1 17

5.4.6 List Domains

A list or tuple domain is constructed by postfixing the element domain by a “*” in the case of a possibly empty list and
otherwise by a “+”

Example

 4 Signal-definition1 :: Signal-name1
 Sort-reference-identifier1*

This domain definition expresses that a signal definition consists of a signal name and a possibly empty list of sort
identifiers.

A list value can be constructed by using an explicit tuple constructor. This is an expression list enclosed in angular
brackets, i.e.

〈11, 12, 13, 14〉

denotes an object of the domain Intg+ (or Intg*) and it contains 5 ordered elements.

The empty list is denoted by 〈〉.

There are also implicit list constructors similar to those for sets. For instance, in the function int-output-node in the
Dynamic Semantic we construct a tuple (vall) which contains the values of all the actual parameters (exprl) in an output
node:

let vall = (eval-expression(exprl[i])(dict) | 1 ≤ i ≤ len exprl) in

which corresponds to an explicit enumeration of all the elements in the list:

let vall = 〈eval-expression(exprl[1])(dict),
 eval-expression(exprl [21)(did),
 eval-expression (exprl[3])(dict),
 ...〉 in

 Fascicle X.3 – Rec. Z.100 Annex F1 18

Example

In terms of Meta-IV expressions, the properties of the list operators hd, tl, ind, dents and cone can be illustrated as
follows:

5.4.7 Map Domains

 • we lookup in the mapping by applying an object of the unnamed tree (Identifier1 Entityclass) and the

result is an object of domain Entitydescr or

 • we apply the Quot value ENVIRONMENT and the result is an object of domain Reachability-set or

 • we apply the Quot value EXPIREDF and the result is an object of domain Is-expired or

 • we apply the Quot value PIDSORT and the result is an object of domain Identifier1 or

 • we apply the Quot value NULLVALUE and the result is an object of domain Identifier1 or

 • we apply the Quot value TRUEVALUE and the result is an object of domain Identifier1 or

 • we apply the Quot value FALSEVALU E and the result is an object of domain Identifier1.

We can only apply a value if it previously has been put into the mapping object, as opposed to functions where the
correspondence between argument values and result values are fixed and defined when the function is defined.

 Fascicle X.3 – Rec. Z.100 Annex F1 19

Mapping values can be constructed by using an explicit mapping constructor which is a list of pairs of entry values and
range values enclosed in square brackets, i.e.

[1 → D,
2 → AA,
4 → BB,
9 → ABC,
5 → XYZ]

denotes a mapping value of domain Intg Quot.

Also implicit mappings may be constructed. For example the implicit mapping

is equivalent to the infinite mapping

[1 → 1,
2 → 4,
3 → 9,
... → ...]

In the following explanation of the semantics of the operators on mappings in denotes the first of the mapping specified
explicitly above:

The empty mapping is denoted by [] (two square brackets very close to each other)

 Fascicle X.3 – Rec. Z.100 Annex F1 20

Example

In terms of Meta-IV expressions, the properties of the mapping operators \, + and merge can be illustrated as follows:

5.4.8 Pid Domains

A Pid domain (corresponding to the Pid sort in SDL) is constructed by means of the II symbol. Optionally it may be
qualified by the processor type to indicate which kind of Pid values the domain denotes, for example

 6 Discard-Signals :: Π (input-port)

The Discard-Signals domain (defined in the Dynamic Semantics) contains Pid objects qualified by the processor type
input-port. The Meta-IV Pid values should not be confused with the SDL Pid values which in SDL are Ground-term1s,
i.e. The domain of the SDL Pid values are defined in the Dynamic Semantics to be:

 7 Pid-Value = Value
 8 Value = Ground-term1

Meta-IV Pid values are created when applying the start statement/expression. It corresponds to the create request action
in SDL. For example, when the system processor creates an instance of a timer processor with the actual parameter
timerf, it looks like:

example

start timer(timerf)

When the start construct is used as an expression, it creates a processor instance and returns the Meta-IV Pid value of this
instance (corresponding to the OFFSPRING value in SDL). For example when the sdl-process processor starts its input-
port processor:

start input-port(selfp, dict(EXPIRED))

an instance of the input-port processor is created and the resulting Meta-IV Pid value is used by the sdl-process for
identifying the input-port. The parameters selfp and dict(EXPIRED) are given to the created instance.

Communication is performed by the synchronous communication primitives input and out-put. In the output construct,
we can either choose to communicate with a specific processor instance or we can choose to communicate with an
unspecified instance of a specific processor type.

Example

output mk-Some-tree(somevalue, someothervalue, ...) to p

where p either denotes a Pid value or p is the name of a processor type. The values sent by the processor are usually
encapsulated in a named tree object (of some communication domain) and such trees can therefore be equated to the
signal concept in SDL, i.e. Some-tree can be regarded as a signal.

In the input construct, we both specify the communication object we want to receive and the action which should be
taken when the object is received. In addition, we may specify a name which after the reception of the object denotes the
Pid value of the sending processor (corresponding to SENDER in SDL) or which restricts the possible senders i.e.

After reception of Some-tree, a, b and d will denote the values conveyed by Some-tree and for p there are three possible
interpretations:

 • If p is a processor type name then the input should be received from an instance of that particular
processor type

 • If p is a name which is not already defined then this occurence is the defining occurence of the name and
it is visible in the expression or statements which follow the input clause. It denotes the Meta-IV Pid value
of the sender.

 Fascicle X.3 – Rec. Z.100 Annex F1 21

 • If p is an expression then it must be of the type II and the input will be received from the processor
instance denoted by the expression.

If one of several inputs may be received, a number of input constructs separated by comma are specified and the number
is enclosed by braces, i.e.

In some cases we may want to specify that either an input or an output should be made, depending on which
communication first is possible (not applicable in SDL due to the fact that in SDL communication is asynchronous). In
such cases, output constructs are included in the set of communication events, i.e.

Often the cycle construct is used in conjunction with input and output, if the communication should be repeated, i.e.

which means that after a communication event, the processor instance will take the appropriate action and then start
waiting for a new event to happen.

5.4.9 Reference Domains

When a Meta-IV variable is declared by

dcl v type Intg;

a Meta-IV storage location is allocated and the variable (v) will denote a reference to the location. When the content of
the location is accessed, the c operator (contents operator) is used as shown earlier. When the variable is used without the
contents operator the result is a value of the ref domain, that is, a reference to the storage location. ref domains are
specified by using the keyword ref, followed by the appropriate domain. For example

 9 VarD :: Variable-identifier1 Sort-reference-identifier1
 [REVEALED] ref Stg

The variable descriptor includes a reference to the domain Stg. The VarD descriptor is defined in the Dynamic Semantics
and it is described further in the associated annotations.

5.4.10 Optional Domains

The square brackets which are extensively used in the domain definitions mean optionality.

Example

expresses that in objects of the tree Signal-definition1, the object of the domain Signal-refinement may or may not be
present. If it is not present, the field will contain the type-less value nil

 Fascicle X.3 – Rec. Z.100 Annex F1 22

Example

5.5 The let and def Constructs

As shown earlier, the let construct can be used for composing and decomposing objects. The let construct is more
generally used whenever we want some name to denote some specific object (often it is just in order to avoid too
complicated and unreadable expressions). The names occuring on the left •hand side of the equal sign in the let construct
are the defining occurences (except for domain names which must always be defined somewhere in a domain

 Fascicle X.3 – Rec. Z.100 Annex F1 23

 Fascicle X.3 – Rec. Z.100 Annex F1 24

Example

This function returns true if and only if there exist exactly one (Identifier1) in the set p for which the length of its
qualifier (q) is equal to 1.

Alternatively, we can choose to decompose the identifier in the predicate expression instead of in the quantification, that
is

Note that apostrophe and. dash are legal characters in Meta-IV names.

5.7 Auxiliary Statements

 • Identity statement
 The keyword I indicates an empty statement i.e. a statement which doesn't do anything.

 • Undefined statement/expression
 The keyword undefined indicates that no semantics can be given.

 • Return statement
 The keyword return followed by an expression terminates the elaboration of an imperative function and

the result is the given expression.

 Fascicle X.3 – Rec. Z.100 Annex F1 25

 • Error statement/expression.
 The keyword error indicates in the FD a dynamic SDL error.

 • Assign statement.
 Like in SDL. The contents operator (c) is not used when assigning to variables.

 • For and while statement.
 Same (well-known) concept as in CHILL. The statements to be repeated are enclosed in parenthesis.

 • Trap and exit statement/expression.
 Trap (handle) any exits caused by an exit statement/expression. If an argument is given to the exit

statement, it is only trapped if the expression given matches the value given in the trap exit statement. A
special version of the trap exit mechanism- the tixe construct have been used in the functions
int-process-graph and int-procedure-graph. The tixe construct is explained in the associated annotations.

5.8 Deviations from the notation used in the Formal Definition of CHILL

 • In the formal definition of CHILL, the predefined domain names consist of boldface uppercase letters
(e.g. BOOL, INTG) and names denoting semantic domains may consist of uppercase letters only.

 In the formal definition of SDL, all domain names are in italic, the first letter is in uppercase and they
contain at least one lowercase letter.

 • In the formal definition of CHILL, all objects are finite.

 In the formal definition of SDL, objects may be infinite. The semantics of some of the operators are not
well-defined when applied on such objects, e.g. operators like cardinality and equality have not been used
on potentially infinite objects.

 In addition, a special constant infinite has been used in transform-process in Annex F.2. for representing
the ”unbounded number of instances” in AS1.

 • In the formal definition of SDL, the Meta-IV notation has been extended to include the elementary
domain Char and the character strings objects (see section 5.4.4.3).

 • In the path processor in Annex F.3. a so-called ”output guard” has been used. The concept is described in
the annotations attached to the Path processor as well as in [4].

5.9 Example: Demon game specified in Meta-IV

In the following, it is shown how Meta-IV can be used for defining the semantics of Demon game. For further details
about Demon game, refer to Z.100 §2.9.

 Fascicle X.3 – Rec. Z.100 Annex F1 26

 Fascicle X.3 – Rec. Z.100 Annex F1 27

 Fascicle X.3 – Rec. Z.100 Annex F1 28

References

 [1] Dines Bjorner and Cliff B. Jones
 Formal specification and software development
 Prentice-Hall Publ. 1982

 [2] The Formal Definition of CHILL
 CCITT Manual
 ITU, Geneva 1981

 [3] P. Folkjaer, D. Bjorner
 A formal model of a generalized CSP-like language,
 IFIP 8th World Computer Conference
 Proceedings, North-Holland Publ. 1980

 [4] C.A.R. Hoare
 Communicating Sequential Processes
 Prentice-Hall 1985

Printed in Switzerland

Geneva, 2008

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

	UNION INTERNATIONALE DES TÉLÉCOMMUNICATIONS Z.100 Annex F1 (11/1988) ANNEX F1 TO RECOMMENDATION Z.100: SDL FORMAL DEFINITION
	CONTENTS OF FASCICLE X.3 OF THE BLUE BOOK
	Contents
	1 Preface
	2 Motivation
	2.1 The Meta Language

	3 Modelling Technique
	3.1 Static Semantics
	3.2 The Dynamic Semantics
	3.3 Example
	3.4 Physical Structure of The Formal Definition

	4 How to Use the Formal Definition
	4.1 The SDL Users
	4.2 The Implementors

	5 Introduction to Meta-IV
	5.1 General Structure
	5.2 Function Definitions
	5.3 Variable Definitions
	5.4 Domains
	5.4.1 Synonyms
	5.4.2 Unnamed Trees
	5.4.3 Branching Constructs
	5.4.4 Elementary domains
	5.4.5 Set Domains
	5.4.6 List Domains
	5.4.7 Map Domains
	5.4.8 Pid Domains
	5.4.9 Reference Domains
	5.4.10 Optional Domains
	5.5 The let and def Constructs
	5.7 Auxiliary Statements
	5.8 Deviations from the notation used in the Formal Definition of CHILL
	5.9 Example: Demon game specified in Meta-IV

