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Summary 

Recommendation ITU-T X.694 | ISO/IEC 8825-5 defines rules for mapping an XSD Schema (a schema conforming to the 

W3C XML Schema specification) to an Abstract Syntax Notation One (ASN.1) schema in order to use ASN.1 encoding 

rules such as the Basic Encoding Rules (BER), the Distinguished Encoding Rules (DER), the Packed Encoding Rules 

(PER) or the XML Encoding Rules (XER) for the transfer of information defined by the XSD Schema. 

The use of this Recommendation | International Standard with the ASN.1 Extended XML Encoding Rules (EXTENDED-

XER) provides the same Extensible Markup Language (XML) representation of values as that defined by the original XSD 

Schema, but also provides the ability to encode the specified XML with an efficient binary representation (binary XML). 

An XML document can be converted to binary XML (for storage or transfer) using the ASN.1 generated by this mapping, 

and the resulting binary can be converted back to the same XML document for further XML processing. 

Two versions of the mapping are defined. Version 1 of the mapping was published in 2004, and a Corrigendum was 

subsequently issued renaming the types DATE-TIME and DURATION in Annex A (in order to avoid conflict with the 

DATE-TIME and DURATION types defined in Rec. ITU-T X.680 | ISO/IEC 8824-1). The version 2 mapping is more 

efficient in two areas: the ASN.1 time types are used rather than VisibleString for mappings of dates and times; the 

FastInfoset specification (Rec. ITU-T X.891 | ISO/IEC 24824-1) is used for the mapping of XSD wild-cards. Both these 

changes to the mapping provide much more compact binary encodings for the XML specified by the XSD. 

NOTE − The specification of the version 1 mapping (with applicable corrections) will be maintained in the next edition of this 

Recommendation | International Standard, but it is expected that subsequent editions will document only the version 2 mapping. 

Application of the ASN.1 extended XML Encoding Rules to both versions of the mapping will produce the same XML 

(which is the same as that specified by the XSD). However, application of other ASN.1 encoding rules to the version 1 

mapping results in a verbose character-based encoding of date and time types and of XSD wild-cards, whilst application 

of the version 2 mapping results in a more compact binary encoding using ASN.1 time types and the FastInfoset 

specification. 
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FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication 

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, 

operating and tariff questions and issuing Recommendations on them with a view to standardizing 

telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes 

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 

prepared on a collaborative basis with ISO and IEC. 

 

 

 

NOTE 

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a 

telecommunication administration and a recognized operating agency. 

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain 

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the 

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other 

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of 

such words does not suggest that compliance with the Recommendation is required of any party. 
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Introduction 

This Recommendation | International Standard specifies version 1 and version 2 of a mapping from a W3C XML Schema 

definition (an XSD Schema) into an Abstract Syntax Notation One (ASN.1) schema. The mappings can be applied to any 

XSD Schema. Both mappings specify the generation of one or more ASN.1 modules containing type definitions, together 

with ASN.1 XER encoding instructions. These are jointly described as an ASN.1 schema for Extensible Markup Language 

(XML) documents. This ASN.1 schema (produced by either version of the mapping), when used with the ASN.1 Extended 

XML Encoding Rules (EXTENDED-XER), can be used to generate and to validate the same set of W3C XML 1.0 

documents as the original XSD Schema. The resulting ASN.1 types and encodings support the same semantic content as 

the XSD Schema. Thus ASN.1 tools can be used interchangeably with XSD tools for the generation and processing of 

the specified XML documents. 

Other standardized ASN.1 encoding rules, such as the Distinguished Encoding Rules (DER) or the Packed Encoding 

Rules (PER), can be used in conjunction with this standardized mapping, but produce encodings for version 2 of the 

mapping that differ from (and are less verbose than) those produced by version 1 for XSD constructs involving dates and 

times or wildcards. 

The combination of this Recommendation | International Standard with ASN.1 Encoding Rules provides fully 

standardized and vendor-independent compact and canonical binary encodings for data originally defined using an XSD 

Schema. 

The ASN.1 schema provides a clear separation between the specification of the information content of messages 

(their abstract syntax) and the precise form of the XML document (e.g., use of attributes instead of elements).  This results 

in both a clearer and generally a less verbose schema than the original XSD Schema. 

Annex A forms an integral part of this Recommendation | International Standard, and is an ASN.1 module containing a 

set of ASN.1 type assignments that correspond to each of the XSD built-in types for version 1 of the mapping.  Mappings 

of XSD Schemas into ASN.1 schemas either import the type reference names of those type assignments or include the 

type definitions in-line. 

Annex B also forms an integral part of this Recommendation | International Standard and provides the ASN.1 module for 

version 2 of the mapping. 

Annex C does not form an integral part of this Recommendation | International Standard, and summarizes the object 

identifier, OID internationalized resource identifier and object descriptor values assigned in this Recommendation | 

International Standard.  

Annex D does not form an integral part of this Recommendation | International Standard, and gives examples of the 

mapping of XSD Schemas into ASN.1 schemas. 

Annex E does not form an integral part of this Recommendation | International Standard, and describes the use of the 

mapping defined in this Recommendation | International Standard, in conjunction with standardized ASN.1 Encoding 

Rules, to provide compact and canonical encodings for data defined using an XSD Schema. 
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INTERNATIONAL STANDARD 

ITU-T RECOMMENDATION  

Information technology – ASN.1 encoding rules: Mapping W3C XML  

schema definitions into ASN.1 

1 Scope 

This Recommendation | International Standard specifies two versions of a mapping from any XSD Schema into an 

Abstract Syntax Notation One (ASN.1) schema. The ASN.1 schema for both versions support the same semantics and 

validate the same set of XML documents. 

This Recommendation | International Standard specifies the final XER encoding instructions that are to be applied as part 

of the defined mapping to ASN.1 types, but does not specify which syntactic form is to be used for the specification of 

those final XER encoding instructions, or the order or manner of their assignment. 

NOTE – Implementers of tools generating these mappings may choose any syntactic form or order of assignment that results in the 

specified final XER encoding instructions being applied. Examples in this Recommendation | International Standard generally use 

the type prefix form, but use of an XER Encoding Control Section may be preferred for the mapping of a complete XSD Schema, 

as a matter of style. 

There are different ways (syntactically) of assigning XER encoding instructions for use in EXTENDED-XER encodings 

(e.g., use of ASN.1 type prefix encoding instructions or use of an XER encoding control section). The choice of these 

syntactic forms is a matter of style and lies outside the scope of this Recommendation | International Standard. 

2 Normative references 

The following Recommendations | International Standards and W3C specifications contain provisions which, through 

reference in this text, constitute provisions of this Recommendation | International Standard. At the time of publication, 

the editions indicated were valid. All Recommendations, International Standards and W3C specifications are subject to 

revision, and parties to agreements based on this Recommendation | International Standard are encouraged to investigate 

the possibility of applying the most recent edition of the Recommendations, International Standards and W3C 

specifications listed below. Members of IEC and ISO maintain registers of currently valid International Standards. The 

Telecommunication Standardization Bureau of the ITU maintains a list of currently valid ITU-T Recommendations. The 

W3C maintains a list of currently valid W3C specifications. The reference to a document within this Recommendation | 

International Standard does not give it, as a stand-alone document, the status of a Recommendation or International 

Standard. 

2.1 Identical Recommendations | International Standards 

NOTE – The complete set of ASN.1 Recommendations | International Standards is listed in this clause, as these documents can all 

be applicable in particular uses of this Recommendation | International Standard. Where these are not directly referenced in the 

body of this Recommendation | International Standard, a † symbol is added to the reference. 

– Recommendation ITU-T X.680 (2021) |ISO/IEC 8824-1:2021, Information technology – Abstract Syntax 

Notation One (ASN.1): Specification of basic notation. 

– Recommendation ITU-T X.681 (2021) | ISO/IEC 8824-2:2021, Information technology – Abstract Syntax 

Notation One (ASN.1): Information object specification. 

– Recommendation ITU-T X.682 (2021) | ISO/IEC 8824-3:2021, Information technology – Abstract Syntax 

Notation One (ASN.1): Constraint specification. 

– Recommendation ITU-T X.683 (2021) | ISO/IEC 8824-4:2021, Information technology – Abstract Syntax 

Notation One (ASN.1): Parameterization of ASN.1 specifications. 

– Recommendation ITU-T X.690 (2021) | ISO/IEC 8825-1:2021, Information technology – ASN.1 encoding 

Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished 

Encoding Rules (DER). 

– Recommendation ITU-T X.691 (2021) | ISO/IEC 8825-2:2021, Information technology – ASN.1 encoding 

rules: Specification of Packed Encoding Rules (PER). 

– Recommendation ITU-T X.692 (2021) | ISO/IEC 8825-3:2021, Information technology – ASN.1 encoding 

rules: Specification of Encoding Control Notation (ECN). 

– Recommendation ITU-T X.693 (2021) | ISO/IEC 8825-4:2021, Information technology – ASN.1 encoding 

rules: XML Encoding Rules (XER). 
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– Recommendation ITU-T X.891 (2005) | ISO/IEC 24824-1:2007, Information technology – Generic 

applications of ASN.1: Fast infoset. 

NOTE – The references above shall be interpreted as references to the identified Recommendations | International Standards 

together with all their published amendments and technical corrigenda. 

2.2 Additional references 

– ISO 8601:2019, Date and time – Representation for information interchange – Part 1: Basic rules. 

– W3C XML 1.0:2008, Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation, 

Copyright © [26 November 2008] World Wide Web Consortium (Massachusetts Institute of Technology, 

Institut National de Recherche en Informatique et en Automatique, Keio University), 

http://www.w3.org/TR/xml/. 

– W3C XML Namespaces:1999, Namespaces in XML, W3C Recommendation, Copyright © [14 January 

1999] World Wide Web Consortium (Massachusetts Institute of Technology, Institut National de 

Recherche en Informatique et en Automatique, Keio University), http://www.w3.org/TR/1999/REC-xml-

names-19990114. 

– W3C XML Information Set:2004, XML Information Set (Second Edition), W3C Recommendation, 

Copyright © [4 February 2004] World Wide Web Consortium (Massachusetts Institute of Technology, 

Institut National de Recherche en Informatique et en Automatique, Keio University), 

http://www.w3.org/TR/xml-infoset/. 

– W3C XML Schema:2004, XML Schema Part 1: Structures (Second Edition), W3C Recommendation, 

Copyright © [28 October 2004] World Wide Web Consortium (Massachusetts Institute of Technology, 

Institut National de Recherche en Informatique et en Automatique, Keio University), 

http://www.w3.org/TR/xmlschema-1/. 

– W3C XML Schema:2004, XML Schema Part 2: Datatypes (Second Edition), W3C Recommendation, 

Copyright © [28 October 2004] World Wide Web Consortium (Massachusetts Institute of Technology, 

Institut National de Recherche en Informatique et en Automatique, Keio University),  

http://www.w3.org/TR/xmlschema-2/. 

NOTE – When the reference "W3C XML Schema" is used in this Recommendation | International Standard, it 

refers to W3C XML Schema Part 1 and W3C XML Schema Part 2. 

– IETF RFC 2396 (1998), Uniform resource identifiers (URI): Generic syntax. 

– IETF RFC 3066 (2001), Tags for the Identification of Languages. 

3 Definitions 

For the purposes of this Recommendation | International Standard, the following definitions apply. 

3.1 Imported definitions 

3.1.1 This Recommendation | International Standard uses the terms defined in Rec. ITU-T X.680 | ISO/IEC 8824-1 

and in Rec. ITU-T X.693 | ISO/IEC 8825-4. 

NOTE – In particular, the terms "final encoding instructions", "type prefix" and "XER encoding control section" are defined in the 

Recommendations | International Standards mentioned in this clause. 

3.1.2 This Recommendation | International Standard also uses the terms defined in W3C XML Schema and W3C 

XML Information Set. 

NOTE 1 – It is believed that these terms do not conflict with the terms referenced in 3.1.1. If such a conflict occurs, the definition 

of the term in 3.1.1 applies. 

NOTE 2 – In particular, the terms "schema component" is defined in W3C XML Schema, and the terms "element information 

item" and "attribute information item" are defined in W3C XML Information Set. 

NOTE 3 – The terms "top-level simple type definition" and "top-level complex type definition" do not include XSD built-in types, when 

used in this Recommendation | International Standard. 

http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
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3.2 Additional definitions 

For the purposes of this Recommendation | International Standard, the following additional definitions apply: 

3.2.1 XSD namespace: A namespace with a uniform resource identifier of "http://www.w3.org/2001/XMLSchema". 

3.2.2 XSI namespace: A namespace with a uniform resource identifier of 

"http://www.w3.org/2001/XMLSchema-instance". 

3.2.3 XML namespace: A namespace with a uniform resource identifier of "http://www.w3.org/XML/1998/namespace". 

4 Abbreviations 

For the purposes of this Recommendation | International Standard, the following abbreviations apply: 

ASN.1 Abstract Syntax Notation One 

BER (ASN.1) Basic Encoding Rules 

DER (ASN.1) Distinguished Encoding Rules 

OID Object Identifier 

PER (ASN.1) Packed Encoding Rules 

URI (IETF) Uniform Resource Identifier 

XER (ASN.1) XML Encoding Rules 

XML  (W3C) Extensible Markup Language 

XSD (W3C) XML Schema 

5 Notation 

5.1 This Recommendation | International Standard references the notation defined by Rec. ITU-T X.680 | ISO/IEC 

8824-1, Rec. ITU-T X.682 | ISO/IEC 8824-3, W3C XML 1.0 and W3C XML Schema. 

5.2 When it is necessary in the body of this Recommendation | International Standard to specify, either formally or 

in examples, the assignment of XER encoding instructions, the type prefix notation is generally used (but see 6.3 and 6.4). 

In Annex A, an XER encoding control section is used. 

5.3 In this Recommendation | International Standard, bold Courier is used for ASN.1 notation and bold Arial is 

used for XSD notation and for XSD terms and concepts. 

5.4 The XSD Schemas used in the examples in this Recommendation | International Standard use the prefix xsd: to 

identify the XSD namespace. 

6 Purpose and extent of standardization 

6.1 The mapping to ASN.1 that is specified in this Recommendation | International Standard ensures that: 

a) any resulting ASN.1 modules generated by tools conforming to this Recommendation | International 

Standard (from the same XSD Schema) define the same (structured) abstract values; 

b) all BASIC-XER, CXER, EXTENDED-XER, and binary encodings of that resulting ASN.1 specification 

will produce the same encodings (subject to encoder's options); and 

c) all XML documents that conform to the source XSD Schema are valid EXTENDED-XER encodings of 

abstract values of that ASN.1 specification. 

6.2 There are many aspects of an ASN.1 definition (such as the use of white-space, or of encoding control sections 

or type prefixes) that affect neither the abstract values being defined nor the XER or binary encodings of those values. 

Such aspects of the ASN.1 definition are generally not standardized in this Recommendation | International Standard. 

6.3 There are many different ways in ASN.1 of assigning an XER encoding instruction to a type, including: 

a) use of a type prefix for every encoding instruction to be assigned; or 

b) use of an encoding control section, with a separate encoding instruction for each required assignment; or 

c) use of an encoding control section, with a single encoding instruction making a global assignment, possibly 

supplemented by use of a negating encoding instruction for specific types. 

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchemainstance
http://www.w3.org/XML/1998/namespace
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6.4 This Recommendation | International Standard specifies when a final XER encoding instruction shall be present, 

and uses the syntax of 6.3 a) in most of its examples. However, the use of the different options in 6.3 is not standardized, 

and conforming implementations of the mapping may choose any syntactic form (or a mixture of syntactic forms) for the 

assignment of final XER encoding instructions. 

NOTE – The choice among these options does not affect the final binary or XML encodings. 

6.5 A formal specification of the required mapping is not provided. 

6.6 This Recommendation | International Standard is concerned only with the mapping of XSD Schemas that 

conform to W3C XML Schema. 

NOTE – Such conformance can be either by the provision of one or more W3C XSD schema documents or by other means as 

specified in W3C XML Schema. 

7 Mapping XSD Schemas 

7.1 A mapping is based on a source XSD Schema, which is a set of schema components (see W3C XML Schema 

Part 1, 2.2). No particular representation of schema components or sets of schema components is required or assumed for 

the mapping, although it is expected that the source XSD Schema will usually be provided as one or more XML schema 

documents (see W3C XML Schema Part 1, 3.15.2). 

NOTE 1 – The schema components represented in multiple XML schema documents become part of the same XSD Schema through 

the use of the xsd:include, xsd:redefine, and xsd:import element information items. 

NOTE 2 – Since the mapping is defined in terms of schema components (and not in terms of their XML representation), it is not 

affected by details of the XML representation, such as the use of multiple schema documents linked by xsd:include and 

xsd:redefine element information items, the placement of element information items in one or another schema documents, the 

order of xsd:attribute element information items within a xsd:complexType element information item, and so on. 

NOTE 3 – Two sets of schema documents that differ in many aspects but represent the same set of schema components generate 

the same set of ASN.1 type assignments, with the same final encoding instructions assigned to them and to their components to 

any depth. 

7.2 The source XSD Schema shall meet all the constraints imposed by the XSD specification. If the source XSD 

Schema is represented (in part or all) as a set of XML schema documents, each schema document shall be valid according 

to the XSD Schema for Schemas (see W3C XML Schema Part 1, Appendix A). 

7.3 One or more ASN.1 modules shall be generated for a source XSD Schema. The number of ASN.1 modules 

generated is an implementation option. Each ASN.1 module shall contain zero or more type assignments corresponding 

to top-level schema components (see 7.6), and zero or more special ASN.1 type assignments (see clauses 29, 30, and 31). 

The physical order of type assignments within each ASN.1 module is an implementation option. When multiple ASN.1 

modules are generated, the way the generated type assignments are distributed across those ASN.1 modules is also an 

implementation option. 

NOTE 1 – The inclusion in the same ASN.1 module of type assignments generated from XSD schema components with different 

target namespaces is permitted by this clause but not recommended. The preferred mapping is to generate one ASN.1 module per 

namespace whenever possible. It is also recommended that each special ASN.1 type assignment be inserted in the same ASN.1 

module as its associated ASN.1 type assignment (see 29.5, 30.4, and 31.4). 

NOTE 2 – The generation of ASN.1 type assignments (see 7.6 and 10.4) is not affected by the number of ASN.1 modules being 

generated (except for the possible use of "ExternalTypeReference" as specified in 10.2.2), nor by the way the generated type 

assignments are distributed across those modules, nor by the physical order of the type assignments within each module. In 

particular, the type reference names of those type assignments are the same whatever mapping style is used by the implementation. 

NOTE 3 – A full description of the relationship between the namespace concept of W3C XML Namespaces and naming in ASN.1 

is provided in Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 16. Type reference names and identifiers defined in an ASN.1 module 

are assigned a namespace by means of a NAMESPACE encoding instruction, and otherwise do not have a namespace. The mapping 

generates NAMESPACE encoding instructions where needed. 

7.4 All ASN.1 modules generated by the mapping shall contain (in the XER encoding control section) a GLOBAL-

DEFAULTS MODIFIED-ENCODINGS encoding instruction and a GLOBAL-DEFAULTS CONTROL-NAMESPACE encoding 

instruction specifying the XSI namespace. 

7.5 A source XSD Schema shall be processed as follows: 

a) for each top-level element declaration, an ASN.1 type assignment shall be generated by applying clause 14 

to the element declaration; 

b) for each top-level attribute declaration, an ASN.1 type assignment shall be generated by applying clause 15 

to the attribute declaration; 

c) for each top-level simple type definition, an ASN.1 type assignment shall be generated by applying clause 

13 to the simple type definition; 
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d) for each top-level complex type definition, an ASN.1 type assignment shall be generated by applying clause 

20 to the complex type definition; 

e) for each model group definition whose model group has a compositor of sequence or choice, an ASN.1 type 

assignment shall be generated by applying clause 17 to the model group definition. 

NOTE 1 – The remaining schema components of the source XSD schema will be processed as a result of mapping these schema 

components. 

NOTE 2 – The order in which schema components are to be mapped is specified in 10.4. The order of the items of the foregoing 

list has no significance for the mapping. 

7.6 Column 1 of Table 1 lists schema components. Column 2 gives the reference to the clause in W3C XML Schema 

that defines the schema component. Column 3 lists the clause that defines the mapping of those schema components into 

ASN.1. 

Table 1 – Mapping of XSD schema components 

XSD schema component W3C XML Schema reference Mapping defined by 

attribute declaration Part 1, 3.2 Clause 15 

element declaration Part 1, 3.3 Clause 14 

complex type definition Part 1, 3.4 Clause 20 

attribute use Part 1, 3.5 Clause 22 

attribute group definition Part 1, 3.6 not mapped as such 

model group definition Part 1, 3.7 Clause 17 

model group Part 1, 3.8 Clause 18 

particle Part 1, 3.9 Clause 19 

wildcard Part 1, 3.10 Clause 21 

identity-constraint definition Part 1, 3.11 ignored by the mapping 

notation declaration Part 1, 3.12 ignored by the mapping 

annotation Part 1, 3.13 ignored by the mapping 

simple type definition Part 1, 3.14 Clauses 11, 13 

schema Part 1, 3.15 Clause 9 

ordered Part 2, 4.2.2.1 ignored by the mapping 

bounded Part 2, 4.2.3.1 ignored by the mapping 

cardinality Part 2, 4.2.4.1 ignored by the mapping 

numeric Part 2, 4.2.5.1 ignored by the mapping 

length Part 2, 4.3.1.1 Clause 12 

minLength Part 2, 4.3.2.1 Clause 12 

maxLength Part 2, 4.3.3.1 Clause 12 

pattern Part 2, 4.3.4.1 Clause 12 

enumeration Part 2, 4.3.5.1 Clause 12 

whiteSpace Part 2, 4.3.6.1 Clause 12 

maxInclusive Part 2, 4.3.7.1 Clause 12 

maxExclusive Part 2, 4.3.8.1 Clause 12 

minExclusive Part 2, 4.3.9.1 Clause 12 

minInclusive Part 2, 4.3.10.1 Clause 12 

totalDigits Part 2, 4.3.11.1 Clause 12 

fractionDigits Part 2, 4.3.12.1 Clause 12 

8 Ignored schema components and properties 

8.1 The mapping shall ignore the schema components and properties that are listed in this clause. 

8.2 All annotations (see W3C XML Schema Part 1, 3.13) shall be ignored. 

NOTE – All attribute information items in a schema document with names qualified with namespaces other than the XSD 

namespace (see W3C XML Schema Part 1, 3.13.1) are a property of annotations, and are ignored. 
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8.3 All identity-constraint definitions (see W3C XML Schema Part 1, 3.11) shall be ignored. 

NOTE – The identity-constraint definition provides mechanisms for specifying referential constraints that can be required in a 

valid instance. ASN.1 currently has no concept of such constraints, and such constraints cannot be mapped into a formal ASN.1 

specification, but they may be included as normative comments that are binding on an application implementation. 

8.4 All notation declarations (see W3C XML Schema Part 1, 3.12) shall be ignored. 

8.5 All schema components that are the fundamental facets (ordered, bounded, cardinality, numeric) of simple type 

definitions (see W3C XML Schema Part 2, 4.2) shall be ignored. 

8.6 The properties identity-constraint definitions, substitution group exclusions and disallowed substitutions of element 

declarations shall be ignored. 

8.7 The properties final, abstract, and prohibited substitutions of complex type definitions shall be ignored. 

8.8 The property process contents of wildcards shall be ignored. 

NOTE – There is no support in ASN.1 for any action other than skip. 

8.9 The properties fundamental facets and final of simple type definitions shall be ignored. 

8.10 All value constraints that are present on any element declarations or attribute declarations whose type definition is 

either xsd:QName or a simple type definition derived from xsd:QName or xsd:NOTATION shall be ignored. 

8.11 All attribute group definitions shall be ignored. 

NOTE – The attribute uses in an attribute group definition become part of the attribute uses of the complex type definitions whose XML 

representation contains a reference to the attribute group definition. 

9 ASN.1 modules 

9.1 The mapping of an XSD Schema generates one or more ASN.1 modules (see 7.3). 

9.2 The ASN.1 "ModuleIdentifier" (see Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 13) to be generated by the 

mapping is not standardized. Where IMPORTS statements are used, the ASN.1 module names and module identifiers in 

the IMPORTS statements shall be those generated for the ASN.1 modules generated by the mapping. 

NOTE – The choice of "ModuleIdentifier" does not affect the encodings in any of the standard encoding rules. 

9.3 The ASN.1 modules shall have a "TagDefault" of AUTOMATIC TAGS. 

9.4 In each ASN.1 module generated by a version 1 mapping, there shall be an ASN.1 IMPORTS statement importing 

the ASN.1 type reference names in the module named XSD {joint-iso-itu-t asn1(1) specification(0) 

modules(0) xsd-module(2) version1(1)} specified in Annex A that are referenced in the ASN.1 module. 

9.5 In each ASN.1 module generated by a Version 2 mapping, there shall be an ASN.1 IMPORTS statement 

importing the ASN.1 type reference names in the module named XSD {joint-iso-itu-t asn1(1) 

specification(0) modules(0) xsd-module(2) version2(2)} specified in Annex B that are referenced in the 

generated ASN.1 module. 

NOTE – The term "XSD module" in this Recommendation | International Standard refers to the module defined in Annex A 

(version 1 mapping) or in Annex B (version 2 mapping), according to the version of the mapping. 

9.6 The IMPORTS statement shall also import the ASN.1 type reference names of type assignments that have been 

placed (as a result of the mapping) in other ASN.1 modules but are referenced in this ASN.1 module. 

9.7 There shall be no EXPORTS statement. 

NOTE – This means that all ASN.1 type reference names in the ASN.1 module can be imported into other modules. 

10 Name conversion 

10.1 General 

10.1.1 This Recommendation | International Standard specifies the generation of: 

a) ASN.1 type reference names corresponding to the names of model group definitions, top-level element 

declarations, top-level attribute declarations, top-level complex type definitions, and top-level simple type 

definitions; 

b) ASN.1 identifiers corresponding to the names of top-level element declarations, top-level attribute 

declarations, local element declarations, and local attribute declarations; 



ISO/IEC 8825-5:2021 (E) 

  Rec. ITU-T X.694 (02/2021) 7 

c) ASN.1 identifiers for the mapping of certain simple type definitions with an enumeration facet (see 12.4.1 

and 12.4.2); 

d) ASN.1 type reference names of special type assignments (see clauses 29, 30, and 31); and 

e) ASN.1 identifiers of certain sequence components introduced by the mapping (see clause 20). 

10.1.2 All of these ASN.1 names are generated by applying 10.3 either to the name of the corresponding schema 

component, or to a member of the value of an enumeration facet, or to a specified character string, as specified in the 

relevant clauses of this Recommendation | International Standard. 

10.2 Generating ASN.1 type definitions that are references to ASN.1 type assignments 

10.2.1 This subclause applies as explicitly invoked by other clauses of this Recommendation | International Standard 

to generate an ASN.1 type (a "DefinedType") definition that is a reference to an ASN.1 type assignment. 

10.2.2 If a "DefinedType" is to be inserted in an ASN.1 module (M, say) other than the ASN.1 module where the 

referenced ASN.1 type assignment is being inserted, then the "DefinedType" shall be either a "typereference" or an 

"ExternalTypeReference" for that type assignment, as an implementation option. Otherwise, it shall be a "typereference" 

for that type assignment. 

NOTE – All ASN.1 "typereference"s created by the mapping are unique for any legal input schema, so a type defined in another 

ASN.1 module does not need to be an "ExternalTypeReference". 

10.3 Generating identifiers and type reference names 

10.3.1 This subclause applies as explicitly invoked by other clauses of this Recommendation | International Standard 

to generate an ASN.1 type reference name or identifier. 

10.3.2 Names of attribute declarations, element declarations, model group definitions, top-level simple type definitions, and 

top-level complex type definitions can be identical to ASN.1 reserved words or can contain characters not allowed in ASN.1 

identifiers or in ASN.1 type reference names. In addition, there are cases in which ASN.1 names are required to be distinct 

where the names of the corresponding XSD schema components (from which the ASN.1 names are mapped) are allowed 

to be identical. 

10.3.3 The following transformations shall be applied, in order, to each character string being mapped to an ASN.1 

name, where each transformation (except the first) is applied to the result of the previous transformation: 

– the characters " " (SPACE), "." (FULL STOP), and "_" (LOW LINE) shall all be replaced by a "-" 

(HYPHEN-MINUS); and 

– any character except "A" to "Z" (LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z), "a" to 

"z" (LATIN SMALL LETTER A to LATIN SMALL LETTER Z), "0" to "9" (DIGIT ZERO to DIGIT 

NINE), and "-" (HYPHEN-MINUS) shall be removed; and 

– a sequence of two or more HYPHEN-MINUS characters shall be replaced with a single 

HYPHEN-MINUS; and 

– HYPHEN-MINUS characters occurring at the beginning or at the end of the name shall be removed; and 

– if a character string that is to be used as a type reference name starts with a lower-case letter, the first letter 

shall be capitalized (converted to upper-case); if it starts with a digit (DIGIT ZERO to DIGIT NINE), it 

shall be prefixed with an "X" (LATIN CAPITAL LETTER X) character; and 

– if a character string that is to be used as an identifier starts with an upper-case letter, the first letter shall be 

uncapitalized (converted to lower-case); if it starts with a digit (DIGIT ZERO to DIGIT NINE), it shall be 

prefixed with an "x" (LATIN SMALL LETTER X) character; and 

– if a character string that is to be used as a type reference name is empty, it shall be replaced by "X" (LATIN 

CAPITAL LETTER X); and 

– if a character string that is to be used as an identifier is empty, it shall be replaced by "x" (LATIN SMALL 

LETTER X). 

10.3.4 Depending on the kind of name being generated, one of the three following subclauses applies. 

10.3.4.1 If the name being generated is the type reference name of an ASN.1 type assignment and the character string 

generated by 10.3.3 is identical to: 

a) the type reference name of another ASN.1 type assignment previously (see 10.4) generated by the mapping 

(in any ASN.1 module); or 

b) the type reference name of a type assignment in the XSD module (see Annex A); or 
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c) one of the reserved words specified in Rec. ITU-T X.680 | ISO/IEC 8824-1, 12.38, 

then a suffix shall be appended to the character string generated by 10.3.3. The suffix shall consist of a HYPHEN-MINUS 

followed by the canonical lexical representation (see W3C XML Schema Part 2, 2.3.1) of an integer. This integer shall 

be the least positive integer such that the new name is different from the type reference name of any other ASN.1 type 

assignment previously generated (in any ASN.1 module). 

NOTE – As a consequence of this rule, all type reference names defined in an ASN.1 specification generated from a source XSD 

schema (including the standardized type references defined in the XSD module) will be unique within that ASN.1 specification. 

This allows maximum flexibility in the way that the generated ASN.1 type assignments are distributed across multiple ASN.1 

modules (see 7.3). 

10.3.4.2 If the name being generated is the identifier of a component of a sequence, set, or choice type, and the character 

string generated by 10.3.3 is identical to the identifier of a previously generated component of the same sequence, set, or 

choice type, then a suffix shall be appended to the character string generated by 10.3.3. The suffix shall consist of a 

HYPHEN-MINUS followed by the canonical lexical representation (see W3C XML Schema Part 2, 2.3.1) of an integer. 

This integer shall be the least positive integer such that the new identifier is different from the identifier of any previously 

generated component of that sequence, set, or choice type. 

10.3.4.3 If the name being generated is the "identifier" in an "EnumerationItem" of an enumerated type, and the character 

string generated by 10.3.3 is identical to the "identifier" in another "EnumerationItem" previously generated in the same 

enumerated type, then a suffix shall be appended to the character string generated by 10.3.3. The suffix shall consist of a 

HYPHEN-MINUS followed by the canonical lexical representation (see W3C XML Schema Part 2, 2.3.1) of an integer. 

This integer shall be the least positive integer such that the new identifier is different from the "identifier" in any other 

"EnumerationItem" already present in that ASN.1 enumerated type. 

10.3.5 For an ASN.1 type reference name (or identifier) that is generated by applying this subclause 10.3 to the name 

of an element declaration, attribute declaration, top-level complex type definition or top-level simple type definition, if the type 

reference name (or identifier) generated is different from the name, a final NAME encoding instruction shall be assigned to 

the ASN.1 type assignment with that type reference name (or to the component with that identifier) as specified in the 

three following subclauses. 

10.3.5.1 If the only difference is the case of the first letter (which is upper case in the type reference name and lower 

case in the name), then the "Keyword" in the NAME encoding instruction shall be UNCAPITALIZED. 

10.3.5.2 If the only difference is the case of the first letter (which is lower case in the identifier and upper case in the 

name), then the "Keyword" in the NAME encoding instruction shall be CAPITALIZED. 

10.3.5.3 Otherwise, the "NewName" in the NAME encoding instruction shall be the name. 

EXAMPLE – The top-level complex type definition: 

 <xsd:complexType name="COMPONENTS"> 
 <xsd:sequence> 
  <xsd:element name="Elem" type="xsd:boolean"/> 
  <xsd:element name="elem" type="xsd:integer"/> 
  <xsd:element name="Elem-1" type="xsd:boolean"/> 
  <xsd:element name="elem-1" type="xsd:integer"/> 
 </xsd:sequence> 
</xsd:complexType> 

is mapped to the ASN.1 type assignment: 
COMPONENTS-1 ::= [NAME AS "COMPONENTS"] SEQUENCE {  

elem     [NAME AS CAPITALIZED] BOOLEAN,  

elem-1   [NAME AS "elem"] INTEGER,  

elem-1-1 [NAME AS "Elem-1"] BOOLEAN,  

elem-1-2 [NAME AS "elem-1"] INTEGER } 

10.3.6 For an ASN.1 type reference name (or identifier) that is generated by applying this subclause 10.3 to the name 

of an element declaration, attribute declaration, top-level complex type definition or user-defined top-level simple type 

definition, if the target namespace of the schema component is not absent, then a final NAMESPACE encoding instruction 

shall be assigned to the ASN.1 type assignment with that type reference name (or to the named type with that identifier) 

and shall specify the target namespace of the schema component. 

10.3.7 For an ASN.1 identifier that is generated by this subclause 10.3 for the mapping of a simple type definition with 

an enumeration facet where the identifier generated is different from the corresponding member of the value of the 

enumeration facet, a final TEXT encoding instruction shall be assigned to the ASN.1 enumerated type, with qualifying 

information specifying the "identifier" in the "EnumerationItem" of the enumerated type. One of the two following 

subclauses applies. 
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10.3.7.1 If the only difference is the case of the first letter (which is lower case in the identifier and upper case in the 

member of the value of the enumeration facet), then the "Keyword" in the TEXT encoding instruction shall be 
CAPITALIZED. 

10.3.7.2 Otherwise, the "NewName" in the TEXT encoding instruction shall be the member of the value of the enumeration 

facet. 

10.4 Order of the mapping 

10.4.1 An order is imposed on the top-level schema components of the source XSD Schema on which the mapping is 

performed. This applies to model group definitions, top-level complex type definitions, top-level simple type definitions, top-

level attribute declarations, and top-level element declarations. 

NOTE – Other top-level schema components are not mapped to ASN.1, and XSD built-in types are mapped in a special way. 

10.4.2 The order is specified in the three following subclauses. 

10.4.2.1 Top-level schema components shall first be ordered by their target namespace, with the absent namespace 

preceding all namespace names specified in the XSD schema in ascending lexicographical order. 

10.4.2.2 Within each target namespace, top-level schema components shall be divided into four sets ordered as follows: 

a) element declarations; 

b) attribute declarations; 

c) complex type definitions and simple type definitions; 

d) model group definitions. 

10.4.2.3 Within each set (see 10.4.2.2), schema components shall be ordered by name in ascending lexicographical order. 

10.4.3 Two sets of ASN.1 type assignments are generated by the mapping: 

a) one set of ASN.1 type assignments (generated by clauses 13, 14, 15, 17, and 20) correspond directly to 

top-level schema components, and their type reference names are derived from the name of the schema 

component with no suffix appended; 

b) another set of ASN.1 type assignments (generated by clauses 29, 30, and 31) correspond to special uses of 

top-level schema components, and their type reference names are generated from the name of the schema 

component followed by a suffix and (in some cases) by a post-suffix. 

NOTE − For each top-level schema component in the source XSD Schema, at most one ASN.1 type assignment in the set in 

10.4.3 a) can be generated, but multiple ASN.1 type assignments in the set in 10.4.3 b) can be generated. 

10.4.4 ASN.1 type assignments in the set in 10.4.3 a) shall be generated in the order of the corresponding XSD schema 

components (see 10.4.1), and shall all be generated before any type assignments in 10.4.3 b) are generated. 

10.4.5 ASN.1 type assignments in 10.4.3 b) shall be generated in the following order: 

a) given two top-level schema components SC1 and SC2, where SC1 precedes SC2 in the order specified in 

10.4.1, all the ASN.1 type assignments corresponding to SC1 (if any) shall be generated before any type 

assignments corresponding to SC2 are generated; 

b) within each set of type assignments corresponding to any given schema component, type assignments shall 

be generated in an order based on the suffix specified in clauses 29 to 31, as follows: 

1) suffix "-nillable"; 

2) suffix "-nillable-default-"; 

3) suffix "-nillable-fixed-"; 

4) suffix "-derivations"; 

5) suffix "-deriv-default-"; 

6) suffix "-deriv-fixed-"; 

7) suffix "-deriv-nillable"; 

8) suffix "-deriv-nillable-default-"; 

9) suffix "-deriv-nillable-fixed-"; 

10) suffix "-group"; 
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c) for items 2, 3, 5, 6, 8, and 9 of b), within each set of type assignments corresponding to any given schema 

component and any given suffix, type assignments shall be generated in ascending lexicographical order 

of the post-suffix specified in clause 29 (if any). 

11 Mapping uses of XSD built-in types 

11.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 type definition corresponding to the use of an XSD built-in type. 

NOTE – All XSD built-in types are simple type definitions with the exception of xsd:anyType, which is a complex type definition. 

11.2 A use of an XSD built-in type shall be mapped to an ASN.1 type definition in accordance with Table 2, which 

gives the ASN.1 type definition to be used. The notation "XSD.Name" indicates that the ASN.1 type definition shall be 

the ASN.1 type definition (a "DefinedType") generated by applying 10.2 to the corresponding ASN.1 type assignment 

present in the XSD {joint-iso-itu-t asn1(1) specification(0) modules(0) xsd-module(2) 

version1(1)} module (version 1 mapping – see Annex A) or the XSD {joint-iso-itu-t asn1(1) 

specification(0) modules(0) xsd-module(2) version2(2)} module (version 2 mapping − see Annex B). 

Table 2 – ASN.1 type definitions corresponding to uses of XSD built-in types 

XSD built-in type ASN.1 type definition XSD built-in type ASN.1 type definition 

anyURI XSD.AnyURI Int XSD.Int 

anySimpleType XSD.AnySimpleType Integer INTEGER 

anyType XSD.AnyType or 
XSD.AnyType-nillable 

(see 11.3) 

language XSD.Language 

base64Binary [BASE64] OCTET STRING long XSD.Long 

boolean BOOLEAN Name XSD.Name 

byte INTEGER (-128..127) NCName XSD.NCName 

date XSD.Date negativeInteger INTEGER (MIN..-1) 

dateTime XSD.DateTime NMTOKEN XSD.NMTOKEN 

decimal XSD.Decimal NMTOKENS XSD.NMTOKENS 

double XSD.Double nonNegativeInteger INTEGER (0..MAX) 

duration XSD.Duration nonPositiveInteger INTEGER (MIN..0) 

ENTITIES XSD.ENTITIES normalizedString XSD.NormalizedString 

ENTITY XSD.ENTITY NOTATION XSD.NOTATION 

float XSD.Float positiveInteger INTEGER (1..MAX) 

gDay XSD.GDay QName XSD.QName 

gMonth XSD.GMonth short XSD.Short 

gMonthDay XSD.GMonthDay string XSD.String 

gYear XSD.GYear time XSD.Time 

gYearMonth XSD.GYearMonth token XSD.Token 

hexBinary OCTET STRING unsignedByte INTEGER (0..255) 

ID XSD.ID unsignedInt XSD.UnsignedInt 

IDREF XSD.IDREF unsignedLong XSD.UnsignedLong 

IDREFS XSD.IDREFS unsignedShort XSD.UnsignedShort 

11.3 A use of xsd:anyType as the type definition of an element declaration that is not nillable shall be mapped to 

XSD.AnyType. A use of xsd:anyType as the type definition of an element declaration that is nillable shall be mapped to 

XSD.AnyType-nillable. 

12 Mapping facets 

This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to map a facet 

of a simple type definition. A facet of a simple type definition STD is mapped to an ASN.1 constraint applied to the ASN.1 

type definition corresponding to the STD, unless the STD has an enumeration facet that is being mapped to an ASN.1 
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"Enumeration" (see 12.4.1 and 12.4.2). In this case, no ASN.1 constraint is generated from the facet (see 12.1.2, 12.2.1, 

12.3.1, and 12.5.1). 

12.1 The length, minLength, and maxLength facets 

12.1.1 The length, minLength, and maxLength facets shall be ignored for the XSD built-in types xsd:QName and 

xsd:NOTATION and for any simple type definition derived from these by restriction. 

12.1.2 If a length, minLength, or maxLength facet belongs to a simple type definition that has also an enumeration facet 

being mapped to an ASN.1 "Enumeration" (see 12.4.1 and 12.4.2), then no "EnumerationItem"s shall be included in the 

"Enumeration" for the members (if any) of the value of the enumeration facet that do not satisfy the length, minLength, or 

maxLength facet. 

12.1.3 Otherwise, the length, minLength, and maxLength facets of the simple type definition shall be mapped to an ASN.1 

size constraint according to Table 3. 

Table 3 – ASN.1 size constraints corresponding to the length, minLength,  

and maxLength facets 

XSD facet ASN.1 size constraint 

length=value (SIZE(value)) 

minLength=min (SIZE(min .. MAX)) 

maxLength=max (SIZE(0 .. max)) 

minLength=min    maxLength=max (SIZE(min .. max)) 

12.2 The pattern facet 

12.2.1 If a pattern facet belongs to a simple type definition that has also an enumeration facet being mapped to an ASN.1 

"Enumeration" (see 12.4.1 and 12.4.2), then no "EnumerationItem"s shall be included in the "Enumeration" for the 

members (if any) of the value of the enumeration facet that do not satisfy the pattern facet. 

12.2.2 Otherwise, the pattern facet shall be mapped to a user-defined constraint. One of the two following subclauses 

applies. 

12.2.2.1 If the value of the pattern facet is a single regular expression, the user-defined constraint shall be: 
(CONSTRAINED BY {/* XML representation of the XSD pattern "xyz" */}) 

where "xyz" is the XML representation of the value of the pattern facet, except that if the substring "*/" appears in the value 

of the pattern facet, it shall be replaced by the character string "*&#x2F;". 

12.2.2.2 If the value of the pattern facet is a conjunction of unions of regular expressions (the general case), the user-

defined constraint is not specified (but see 12.5.4). 

12.3 The whiteSpace facet 

12.3.1 If a whiteSpace facet with a value of replace or collapse belongs to a simple type definition that has also an 

enumeration facet being mapped to an ASN.1 "Enumeration" (see 12.4.1 and 12.4.2), then the three following subclauses 

apply. 

12.3.1.1 No "EnumerationItem"s shall be included in the "Enumeration" for the members (if any) of the value of the 

enumeration facet that contain any of the characters HORIZONTAL TABULATION, NEWLINE or CARRIAGE 

RETURN, or (in the case of collapse) contain leading, trailing, or multiple consecutive SPACE characters. 

12.3.1.2 If the value of the whiteSpace facet is replace and a final TEXT encoding instruction with qualifying information 

is being assigned to the ASN.1 type definition, then a final WHITESPACE REPLACE encoding instruction shall also be 

assigned to it. 

12.3.1.3 If the value of the whiteSpace facet is collapse and a final TEXT encoding instruction with qualifying information 

is being assigned to the ASN.1 type definition, then a final WHITESPACE COLLAPSE encoding instruction shall also be 

assigned to it. 

12.3.2 Otherwise, at most one of the three following subclauses applies: 

12.3.2.1 If the value of the whiteSpace facet is preserve, then the whiteSpace facet shall be ignored. 



ISO/IEC 8825-5:2021 (E) 

12 Rec. ITU-T X.694 (02/2021) 

12.3.2.2 If the value of the whiteSpace facet is replace and the ASN.1 type definition corresponding to the simple type 

definition is an ASN.1 restricted character string type, then a permitted alphabet constraint shall be added to the ASN.1 

type definition to remove HORIZONTAL TABULATION, NEWLINE, and CARRIAGE RETURN characters. A final 

WHITESPACE REPLACE encoding instruction shall be assigned to the ASN.1 type definition. The following or an 

equivalent permitted alphabet constraint shall be used: 
(FROM ({0, 0, 0, 32} .. {0, 16, 255, 255})) 

12.3.2.3 If the value of the whiteSpace facet is collapse and the ASN.1 type definition corresponding to the simple type 

definition is an ASN.1 restricted character string type, then both a permitted alphabet constraint as specified in 12.3.2.2 

and a pattern constraint that forbids leading, trailing, and multiple consecutive SPACE characters shall be added to the 

ASN.1 type definition. A final WHITESPACE COLLAPSE encoding instruction shall be assigned to the ASN.1 type 

definition. The following or an equivalent pattern constraint shall be used: 
(PATTERN "([^ ]([^ ]| [^ ])*)?") 

12.4 The enumeration facet 

12.4.1 An enumeration facet belonging to a simple type definition with a variety of atomic that is derived by restriction 

(directly or indirectly) from xsd:string shall not be mapped to an ASN.1 constraint. Instead, the facet shall be mapped to 

the "Enumeration" of the ASN.1 enumerated type corresponding to the simple type definition (see 13.4) as specified in the 

four following subclauses. 

12.4.1.1 For each member of the value of the enumeration facet, an "EnumerationItem" that is an "identifier" shall be 

added to the "Enumeration" (subject to 12.1.2, 12.2.1, 12.3.1, and 12.5.1). 

12.4.1.2 Each "identifier" shall be generated by applying 10.3 to the corresponding member of the value of the 

enumeration facet. 

12.4.1.3 The members of the value of the enumeration facet shall be mapped in ascending lexicographical order and any 

duplicate members shall be discarded. 

12.4.1.4 If the simple type definition has a whiteSpace facet with the value preserve or replace, then the enumerated type 

shall be assigned at least one final TEXT encoding instruction with qualifying information indicating one or more of the 

"EnumerationItem"s, and without "TextToBeUsed". 

NOTE – An important example of this is a restriction of xsd:string with an enumeration facet, which has whiteSpace preserve by 

default. 

12.4.2 An enumeration facet belonging to a simple type definition with a variety of atomic that is derived by restriction 

(directly or indirectly) from xsd:integer shall not be mapped to an ASN.1 constraint. Instead, the facet shall be mapped to 

the "Enumeration" of the ASN.1 enumerated type corresponding to the simple type definition (see 13.5) as specified in the 

three following subclauses. 

12.4.2.1 For each member of the value of the enumeration facet, an "EnumerationItem" that is a "NamedNumber" shall 

be added to the "Enumeration" (subject to 12.1.2, 12.2.1, 12.3.1, and 12.5.1). 

12.4.2.2 The "identifier" in each "NamedNumber" shall be generated by concatenating the character string "int" with 

the canonical lexical representation (see W3C XML Schema Part 2, 2.3.1) of the corresponding member of the value of 

the enumeration facet. The "SignedNumber" in the "NamedNumber" shall be the ASN.1 value notation for the member 

(an integer number). 

12.4.2.3 The members of the value of the enumeration facet shall be mapped in ascending numerical order and any 

duplicate members shall be discarded. 

12.4.3 Any other enumeration facet shall be mapped to an ASN.1 constraint that is either a single value or a union of 

single values corresponding to the members of the value of the enumeration. 

NOTE – The enumeration facet applies to the value space of the base type definition. Therefore, for an enumeration of the XSD built-

in types xsd:QName or xsd:NOTATION, the value of the uri component of the [USE-QNAME] SEQUENCE produced as a single value 

ASN.1 constraint is determined, in the XML representation of an XSD Schema, by the namespace declarations whose scope 

includes the xsd:QName or xsd:NOTATION, and by the prefix (if any) of the xsd:QName or xsd:NOTATION. 

EXAMPLE 1 – The following represents a top-level simple type definition that is a restriction of xsd:string with an 

enumeration facet: 

<xsd:simpleType name="state"> 
<xsd:restriction base="xsd:string"> 
 <xsd:enumeration value="off"/> 
 <xsd:enumeration value="on"/> 
</xsd:restriction> 

                  </xsd:simpleType> 



ISO/IEC 8825-5:2021 (E) 

  Rec. ITU-T X.694 (02/2021) 13 

It is mapped to the ASN.1 type assignment: 
 State ::= [NAME AS UNCAPITALIZED] ENUMERATED {off, on} 

EXAMPLE 2 – The following represents a top-level simple type definition that is a restriction of xsd:integer with an 

enumeration facet: 

<xsd:simpleType name="integer-0-5-10"> 
<xsd:restriction base="xsd:integer"> 
 <xsd:enumeration value="0"/> 
 <xsd:enumeration value="5"/> 
 <xsd:enumeration value="10"/> 
</xsd:restriction> 

                   </xsd:simpleType> 

It is mapped to the ASN.1 type assignment: 
Integer-0-5-10 ::= [NAME AS UNCAPITALIZED] [USE-NUMBER] ENUMERATED {int0(0), int5(5), 

int10(10)} 

EXAMPLE 3 – The following represents a top-level simple type definition that is a restriction of xsd:integer with a 

minInclusive and a maxInclusive facet: 

<xsd:simpleType name="integer-1-10"> 
<xsd:restriction base="xsd:integer"> 
 <xsd:minInclusive value="1"/> 
 <xsd:maxInclusive value="10"/> 
</xsd:restriction> 

                  </xsd:simpleType> 

It is mapped to the ASN.1 type assignment: 
Integer-1-10 ::= [NAME AS UNCAPITALIZED] INTEGER(1..10) 

EXAMPLE 4 – The following represents a top-level simple type definition that is a restriction (with a minExclusive facet) 

of another simple type definition, derived by restriction from xsd:integer with the addition of a minInclusive and a 

maxInclusive facet: 

<xsd:simpleType name="multiple-of-4"> 
<xsd:restriction> 
 <xsd:simpleType> 
  <xsd:restriction base="xsd:integer"> 
   <xsd:minInclusive value="1"/> 
   <xsd:maxInclusive value="10"/> 
  </xsd:restriction> 
 </xsd:simpleType> 
 <xsd:minExclusive value="5"/> 
</xsd:restriction> 

                  </xsd:simpleType> 

It is mapped to the ASN.1 type assignment: 
 Multiple-of-4 ::= [NAME AS UNCAPITALIZED] INTEGER(5<..10) 

EXAMPLE 5 – The following represents a top-level simple type definition that is a restriction (with a minLength and a 

maxLength facet) of another simple type definition, derived by restriction from xsd:string with the addition of an enumeration 

facet: 

<xsd:simpleType name="color"> 
<xsd:restriction> 
 <xsd:simpleType> 
  <xsd:restriction base="xsd:string"> 
   <xsd:enumeration value="white"/> 
   <xsd:enumeration value="black"/> 
   <xsd:enumeration value="red"/> 
  </xsd:restriction> 
 </xsd:simpleType> 
 <xsd:minLength value="2"/> 
 <xsd:maxLength value="4"/> 
</xsd:restriction> 

                  </xsd:simpleType> 

It is mapped to the ASN.1 type assignment: 
 Color ::= [NAME AS UNCAPITALIZED] ENUMERATED {red} 
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12.5 Other facets 

12.5.1 If a totalDigits, fractionDigits, maxInclusive, maxExclusive, minExclusive, or minInclusive facet belongs to a simple 

type definition that has also an enumeration facet being mapped to an ASN.1 "Enumeration" (see 12.4.1 and 12.4.2), then 

no "EnumerationItem"s shall be included in the "Enumeration" for the members (if any) of the value of the enumeration 

facet that do not satisfy the totalDigits, fractionDigits, maxInclusive, maxExclusive, minExclusive, or minInclusive facet. 

12.5.2 If a maxInclusive, maxExclusive, minExclusive, or minInclusive facet belongs to a simple type definition without an 

enumeration facet or with an enumeration facet which is not being mapped to an ASN.1 "Enumeration" (see 12.4.1 and 

12.4.2), then one of the two following subclauses applies: 

12.5.2.1 If the simple type definition is derived by restriction (directly or indirectly) from an XSD built-in date or time 

type (xsd:date, xsd:dateTime, xsd:duration, xsd:gDay, xsd:gMonth, xsd:gYear, xsd:gYearMonth, xsd:gMonthDay, or xsd:time), 

then the maxInclusive, maxExclusive, minExclusive, and minInclusive facets of the simple type definition shall be mapped to 

an ASN.1 user-defined constraint (see 12.5.4). 

12.5.2.2 Otherwise, the maxInclusive, maxExclusive, minExclusive and minInclusive facets of the simple type definition shall 

be mapped to an ASN.1 value range or single value constraint in accordance with Table 4. 

Table 4 – ASN.1 constraints corresponding to the maxInclusive, maxExclusive,  

minExclusive, and minInclusive facets 

XSD facet ASN.1 constraint 

maxInclusive=ub (MIN .. ub) 

maxExclusive=ub (MIN .. < ub) 

minExclusive=lb (lb <.. MAX) 

minInclusive=lb (lb .. MAX) 

minInclusive=ub  maxInclusive=lb (lb .. ub) 

minInclusive=v  maxInclusive=v (v) 

minInclusive=ub  maxExclusive=lb (lb ..< ub) 

minExclusive=ub  maxInclusive=lb (lb <.. ub) 

minExclusive=ub  maxExclusive=lb (lb <..< ub) 

12.5.3 If a totalDigits or fractionDigits facet belongs to a simple type definition without an enumeration facet or with an 

enumeration facet which is not mapped to an ASN.1 "Enumeration" (see 12.4.1 and 12.4.2), then the totalDigits and 

fractionDigits facets of the simple type definition shall be mapped to a user-defined constraint (see 12.5.4). 

12.5.4 When a facet is mapped to an ASN.1 user-defined constraint, it is recommended that the facet and its value 

appear in an ASN.1 comment in the user-defined constraint. The precise form of the user-defined constraint is not 

specified. 

13 Mapping simple type definitions 

13.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 type assignment or ASN.1 type definition corresponding to a simple type definition. 

NOTE – This clause is not invoked for simple type definitions that are XSD built-in types. 

13.2 A top-level simple type definition shall be mapped to an ASN.1 type assignment. The "typereference" in the 

"TypeAssignment" shall be generated by applying 10.3 to the name of the simple type definition and the "Type" in the 

"TypeAssignment" shall be an ASN.1 type definition as specified in subclauses 13.4 to 13.9. 

13.3 An anonymous simple type definition shall be mapped to an ASN.1 type definition as specified in subclauses 13.4 

to 13.9. 

13.4 For a simple type definition with a variety of atomic with an enumeration facet that is derived by restriction (directly 

or indirectly) from xsd:string, the ASN.1 type definition shall be an ASN.1 enumerated type whose "Enumeration" shall 

be generated as specified in 12.4.1. 
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13.5 For a simple type definition with a variety of atomic with an enumeration facet that is derived by restriction (directly 

or indirectly) from xsd:integer, the ASN.1 type definition shall be an ASN.1 enumerated type whose "Enumeration" shall 

be generated as specified in 12.4.2. A final USE-NUMBER encoding instruction shall be assigned to the ASN.1 enumerated 

type. 

13.6 For any other simple type definition (D, say) with any variety that is derived by restriction (directly or indirectly) 

from a top-level simple type definition, the ASN.1 type definition shall be generated by applying clause 23 to the top-level 

simple type definition (B, say) such that: 

a) D is derived by restriction (directly or indirectly) from B; and 

b) either B is the base type definition of D, or all intermediate derivation steps from B to D are anonymous 

simple type definitions. 

Then, for each of the facets of D (if any), an ASN.1 constraint generated by applying clause 12 to the facet shall be added 

to the ASN.1 type definition. 

13.7 For any other simple type definition (D, say) with a variety of atomic, the ASN.1 type definition shall be generated 

by applying clause 23 to the XSD built-in type (B, say) such that: 

a) D is derived by restriction (directly or indirectly) from B; and 

b) either B is the base type definition of D, or all intermediate derivation steps from B to D are anonymous 

simple type definitions. 

Then, for each of the facets of D, an ASN.1 constraint generated by applying clause 12 to the facet shall be added to the 

ASN.1 type definition. 

13.8 For any other simple type definition (D, say) with a variety of list, the five following subclauses apply. 

13.8.1 The ASN.1 type definition shall be an ASN.1 sequence-of type whose component shall be a "Type" generated 

by applying clause 23 to the item type definition. 

13.8.2 For each of the facets of D, an ASN.1 constraint generated by applying clause 12 to the facet shall be added to 

the ASN.1 sequence-of type. 

13.8.3 If the item type definition of the list is xsd:string or a restriction of xsd:string and is mapped to an ASN.1 character 

string type, then the permitted alphabet constraint (FROM((0, 0, 0, 33) .. (0, 16, 255, 253))) shall be applied 

to the ASN.1 character string type. 

13.8.4 If the item type definition of the list is a union type, then the subtype constraint specified in 13.8.3 shall be applied 

to each alternative of the ASN.1 choice type that is a character string type by using an inner subtype constraint applied to 

the choice type. 

13.8.5 A final LIST encoding instruction shall be assigned to the ASN.1 sequence-of type. 

EXAMPLE – The following represents a top-level simple type definition that is a list of xsd:float: 

<xsd:simpleType name="list-of-float"> 
<xsd:list itemType="xsd:float"/> 

                </xsd:simpleType> 

It is mapped to the ASN.1 type assignment: 
List-of-float ::= [LIST] [NAME AS UNCAPITALIZED] SEQUENCE OF XSD.Float 

13.9 For any other simple type definition (D, say) with a variety of union, the five following subclauses apply. 

13.9.1 The ASN.1 type definition shall be an ASN.1 choice type with one alternative for each member of the member 

type definitions. 

13.9.2 For each member of the member type definitions, the "identifier" in the "NamedType" of the corresponding 

alternative shall be generated by applying 10.3 either to the name of the member (if the member is an XSD built-in type 

or a top-level simple type definition) or to the character string "alt" (if the member is an anonymous simple type definition), 

and the "Type" in the "NamedType" shall be the ASN.1 type definition generated by applying clause 23 to the member 

of the member type definitions. 

13.9.3  For each member of the member type definitions that is an anonymous simple type definition, the corresponding 

"NamedType" shall have a final NAME AS "" encoding instruction. 

13.9.4 For each of the facets of D, an ASN.1 constraint generated by applying clause 12 to the facet shall be added to 

the ASN.1 choice type. 

13.9.5 A final USE-UNION encoding instruction shall be assigned to the ASN.1 choice type. 
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EXAMPLE – The following represents a top-level simple type definition that is a union of two anonymous simple type 

definitions: 

<xsd:simpleType name="decimalOrBinary"> 
<xsd:union>  
 <xsd:simpleType> 
  <xsd:restriction base="xsd:decimal"/> 
 </xsd:simpleType> 
 <xsd:simpleType> 
  <xsd:restriction base="xsd:float"/> 
 </xsd:simpleType> 
</xsd:union> 

                 </xsd:simpleType> 

It is mapped to the ASN.1 type assignment: 
 DecimalOrBinary ::= [NAME AS UNCAPITALIZED] [USE-UNION] CHOICE { 

  alt   [NAME AS ""] XSD.Decimal, 

  alt-1  [NAME AS ""] XSD.Float } 

14 Mapping element declarations 

14.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 type assignment or ASN.1 type definition corresponding to an element declaration. 

NOTE – The presence of a value constraint on an element declaration normally affects the mapping. However, 8.10 implies that an 

element declaration that has a value constraint and whose type definition is xsd:QName or xsd:NOTATION or a restriction of these XSD 

built-in types is mapped as if it had no value constraint. 

14.2 A top-level element declaration that is abstract shall be ignored. 

14.3 A top-level element declaration that is not abstract shall be mapped to an ASN.1 type assignment. The 

"typereference" in the "TypeAssignment" shall be generated by applying 10.3 to the name of the element declaration and 

the "Type" in the "TypeAssignment" shall be an ASN.1 type definition as specified in 14.5. 

14.4 A local element declaration shall be mapped to an ASN.1 type definition as specified in 14.5. 

14.5 The ASN.1 type definition shall be generated either by applying clause 23, clause 26, or clause 27 (see 14.6) to 

the simple or complex type definition that is the type definition of the element declaration, or by applying 10.2 to the ASN.1 

type assignment generated by applying clause 29 to the type definition. In both cases, the value constraint in the element 

declaration (if any) shall be provided to the applicable clause (23, 26, 27, or 29) and shall be used when generating the 

ASN.1 type definition as specified in that clause. 

14.6 The applicable clause number shall be obtained from the last column of Table 5 after selecting a row of the 

table based on the following conditions: 

a) whether the element declaration has a substitutable or a non-substitutable type definition (see 14.7); 

b) whether the element declaration is nillable or non-nillable; 

c)  whether the type definition is a simple type definition or a complex type definition; and 

d)  whether the type definition is an XSD built-in, anonymous, or top-level type definition. 

Table 5 – Applicable clause numbers for the mapping of element declarations 

substitutable nillable simple / complex type definition 

applicable 

clause 

number 

No no simple or complex 
XSD built-in, anonymous, 

or top-level 
23 

No yes simple 
XSD built-in 
or anonymous 

26 

no yes simple top-level 29 

no yes complex 
XSD built-in 
or anonymous 

27 

no yes complex top-level 29 

yes 
yes 

or no 
simple or complex 

XSD built-in, anonymous, 
or top-level 

29 
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14.7 The phrase "has a substitutable type definition", applied to an element declaration, means that the type definition of 

the element declaration is a top-level simple type definition or complex type definition that occurs as the base type definition of 

another top-level simple type definition or complex type definition. 

NOTE – According to this definition, element declarations whose type definition is the XSD built-in type xsd:anyType do not have a 

substitutable type definition. 

15 Mapping attribute declarations 

15.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 type assignment or ASN.1 type definition corresponding to an attribute declaration. 

15.2 A top-level attribute declaration shall be mapped to an ASN.1 type assignment. The "typereference" in the 

"TypeAssignment" shall be generated by applying 10.3 to the name of the attribute declaration, and the "Type" in the 

"TypeAssignment" shall be an ASN.1 type definition as specified in 15.4. A final ATTRIBUTE encoding instruction shall 

be assigned to the ASN.1 type assignment. 

15.3 A local attribute declaration shall be mapped to an ASN.1 type definition as specified in 15.4. 

15.4 The ASN.1 type definition shall be generated by applying clause 23 to the type definition of the attribute 
declaration. 

16 Mapping values of simple type definitions 

16.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 "Value" corresponding to a value in the value space of a simple type definition. 

16.2 Given a value V in the value space of a simple type definition, and: 

a) the ASN.1 type definition mapped from this simple type definition; and 

b) the canonical lexical representation (see W3C XML Schema Part 2, 2.3.1) of V, 

V shall be mapped to an ASN.1 basic value notation for the abstract value of the ASN.1 type definition for which, in 

EXTENDED-XER, the canonical lexical representation is a valid "ExtendedXMLValue" encoding. 

17 Mapping model group definitions 

17.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 type assignment corresponding to a model group definition. 

17.2 A model group definition whose model group has a compositor of sequence or choice shall be mapped to an ASN.1 

type assignment. The "typereference" in the "TypeAssignment" shall be generated by applying 10.3 to the name of the 

model group definition and the "Type" in the "TypeAssignment" shall be generated by applying clause 18 to the model 

group of the model group definition. 

NOTE – Model group definitions whose model group has a compositor of all are not mapped to ASN.1. 

18 Mapping model groups 

18.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 type definition corresponding to a model group. 

NOTE – This clause is not invoked for every model group. For example, a model group with a compositor of all is not mapped to 

ASN.1, but its particles are mapped as specified in 20.9. 

18.2 A model group with a compositor of sequence shall be mapped to an ASN.1 sequence type. For each particle in 

the model group in order, an ordered list of zero or more ASN.1 "NamedType"s shall be generated by applying clause 19 

to the particle, and those "NamedType"s shall be added to the sequence type in the same order. A final UNTAGGED encoding 

instruction shall be assigned to the sequence type. 

18.3 A model group with a compositor of choice having at least one particle shall be mapped to an ASN.1 choice type. 

For each particle in the model group in order, a "NamedType" shall be generated by applying clause 19 to the particle, and 

that "NamedType" shall be added to the choice type as one of its alternatives. A final UNTAGGED encoding instruction 

shall be assigned to the choice type. 

18.4 A model group with a compositor of choice having no particles shall be mapped to the ASN.1 built-in type NULL. 
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19 Mapping particles 

19.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ordered list of zero or more ASN.1 "NamedType"s corresponding to a particle. 

NOTE 1 – This clause is not invoked for all particles. For example, the (topmost) particle of the content type of a complex type definition 

is mapped in a special way if its term is a model group with a compositor of sequence or all (see 20.8). 

NOTE 2 – In most cases, this clause generates a single "NamedType". It can generate zero "NamedType"s or two or more 

"NamedType"s only when a sequence model group particle contains another sequence model group particle with both min occurs 

and max occurs equal to one, in which case the particles of the inner sequence model group are mapped to ASN.1 as though they 

were particles of the outer sequence model group. 

19.2 The three following subclauses define terms that are used in the remainder of this clause 19. 

19.2.1 If both min occurs and max occurs of a particle are one, then: 

a) if the term of the particle is a model group with a compositor of sequence unrelated to a model group definition 

and the particle itself belongs to a model group with a compositor of sequence, the particle is called a 

"pointless sequence particle"; 

b) otherwise, the particle is called a "mandatory presence particle". 

19.2.2 If min occurs is zero and max occurs is one, then: 

a) if the mapping of the particle is to generate a component of an ASN.1 sequence type, the particle is called 

an "optional presence particle"; 

b) otherwise, the particle is called an "optional single-occurrence particle". 

19.2.3 If max occurs is two or more, the particle is called a "multiple-occurrence particle". 

19.3 A "pointless sequence particle" shall be mapped to an ordered list (L, say) of zero or more "NamedType"s as 

follows. The list L shall be initially empty. For each particle (P, say) in the model group that is the term of the particle in 

order, an ordered list of zero or more "NamedType"s shall be generated by recursively applying clause 19 to the particle 

P, and those "NamedType"s shall be added to the list L in the same order. 

19.4 A "mandatory presence particle" or "optional presence particle" shall be mapped to a "NamedType" as specified 

in the two following subclauses. 

19.4.1 The "identifier" in the "NamedType" shall be generated by applying 10.3 to the character string specified in 

19.6 and the "Type" in the "NamedType" shall be generated by applying 19.7 to the term of the particle. 

19.4.2 If the particle is an "optional presence particle", the "NamedType" shall be followed by the OPTIONAL keyword. 

19.5 An "optional single-occurrence particle" or a "multiple-occurrence particle" shall be mapped to a "NamedType" 

as specified in the six following subclauses. 

19.5.1 The "identifier" in the "NamedType" shall be generated by applying 10.3 to the character string obtained by 

appending the suffix "-list" to the character string specified in 19.6. The "Type" in the "NamedType" shall be a 

sequence-of type. 

19.5.2 Unless min occurs is zero and max occurs is unbounded, a size constraint shall be added to the sequence-of type 

in accordance with Table 6. 

Table 6 – ASN.1 size constraint corresponding to min occurs and max occurs 

min occurs and max occurs ASN.1 size constraint 

min occurs = n  max occurs = n 
 n ≥ 2 

SIZE (n) 

min occurs = min  max occurs = max 
 max > min and max ≥ 2 

SIZE (min .. max) 

min occurs = 0  max occurs = 1 SIZE (0 .. 1) 

min occurs = min  max occurs = unbounded 

min ≥ 1 
SIZE (min .. MAX) 

19.5.3 If the term of the particle is an element declaration, then the component of the sequence-of type shall be a 

"NamedType". The "identifier" in this "NamedType" shall be generated by applying 10.3 to the name of the element 

declaration and the "Type" in this "NamedType" shall be generated by applying 19.7 to the term of the particle. 
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19.5.4 If the term of the particle is a wildcard, then the component of the sequence-of type shall be a "NamedType". The 

"identifier" in this "NamedType" shall be elem and the "Type" in this "NamedType" shall be generated by applying 19.7 

to the term of the particle. 

19.5.5 If the term of the particle is a model group, then the component of the sequence-of type shall be a "Type" and 

shall be generated by applying 19.7 to the term of the particle. 

19.5.6 A final UNTAGGED encoding instruction shall be assigned to the sequence-of type. 

19.6 The character string used in the generation of the "identifier" in the "NamedType" corresponding to the particle 

shall be: 

a)  if the term of the particle is an element declaration, the name of the element declaration; 

b)  if the term of the particle is the model group of a model group definition, the name of the model group definition; 

c) if the term of the particle is a model group with a compositor of sequence unrelated to a model group definition, 

the character string "sequence"; 

d)  if the term of the particle is a model group with a compositor of choice unrelated to a model group definition, 

the character string "choice"; 

e)  if the term of the particle is a wildcard, the character string "elem". 

19.7 The "Type" in the "NamedType" corresponding to the particle (see 19.4) or the "Type" in the "NamedType" in 

the "SequenceOfType" corresponding to the particle (see 19.5) shall be: 

a) if the term of the particle is a top-level element declaration which is the head of an element substitution group 

containing only the head itself, the ASN.1 type definition (a "DefinedType") generated by applying 10.2 

to the ASN.1 type assignment generated by applying clause 14 to the element declaration; 

NOTE 1 – This includes the frequent case in which there is no element declaration that references this element declaration 

as its substitution group affiliation. 

b) if the term of the particle is a top-level element declaration which is the head of an element substitution group 

containing at least one member other than the head, the ASN.1 type definition (a "DefinedType") generated 

by applying 10.2 to the ASN.1 type assignment generated by applying clause 31 to the element declaration; 

NOTE 2 – If the head is an element declaration that is abstract, it is not itself a member of the substitution group. If, in 

this case, the substitution group has at least one member, then this item b) applies, and if the number of members is 

exactly one, then the substitution group will be mapped to an ASN.1 choice with a single alternative. 

c) if the term of the particle is an abstract top-level element declaration which is the head of an empty element 

substitution group, the ASN.1 built-in type NULL; 

d) if the term of the particle is a local element declaration, the ASN.1 type definition generated by applying 

clause 14 to the element declaration; 

e) if the term of the particle is the model group of a model group definition, the ASN.1 type definition 

(a "DefinedType") generated by applying 10.2 to the ASN.1 type assignment generated by applying 

clause 17 to the model group definition; 

f) if the term of the particle is a model group unrelated to a model group definition, the ASN.1 type definition 

generated by applying clause 18 to the model group; 

NOTE 3 – This includes the case in which a model group definition within a redefine contains a self-reference. The model 

group of the original model group definition, copied into the new schema, is here considered unrelated to a model group 

definition because the original model group definition itself is not copied into the new schema (the new model group definition 

will have a different model group, which will contain a copy of the original model group). 

g) if the term of the particle is a wildcard, the ASN.1 type definition generated by applying clause 21 to the 

wildcard. 

20 Mapping complex type definitions 

20.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 type assignment or ASN.1 type definition corresponding to a complex type definition. 

NOTE – This clause is not invoked for complex type definitions that are XSD built-in types. 

20.2 A top-level complex type definition shall be mapped to an ASN.1 type assignment. The "typereference" in the 

"TypeAssignment" shall be generated by applying 10.3 to the name of the complex type definition and the "Type" in the 

"TypeAssignment" shall be an ASN.1 type definition as specified in subclauses 20.4 to 20.11. 

20.3 An anonymous complex type definition shall be mapped to an ASN.1 type definition as specified in 

subclauses 20.4 to 20.11. 
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20.4 The ASN.1 type definition shall be an ASN.1 sequence type, and zero or more components shall be added to 

it as specified in the following subclauses 20.5 to 20.11, in the specified order. 

20.5 If the content type of the complex type definition is a mixed content model, then a component shall be added to the 

ASN.1 sequence type. The "identifier" in the "NamedType" of this component shall be embed-values and the "Type" 

in the "NamedType" shall be a sequence-of type whose component shall be a "Type" generated by applying clause 23 to 

the XSD built-in type xsd:string. A final EMBED-VALUES encoding instruction shall be assigned to the ASN.1 sequence 

type. 

20.6 If the content type of the complex type definition is a particle whose term is a model group with a compositor of all, 

then a component shall be added to the ASN.1 sequence type. The "identifier" in the "NamedType" of the component 

shall be order and the "Type" in the "NamedType" shall be a sequence-of type whose component shall be an 

"EnumeratedType". For each particle of the model group (whose term is always an element declaration), an 

"EnumerationItem" that is an "identifier" identical to the "identifier" in the "NamedType" corresponding to each particle 

shall be added to the "Enumeration" in order. A final USE-ORDER encoding instruction shall be assigned to the ASN.1 

sequence type. 

NOTE – The "identifier"s in the "NamedType"s being mapped from the particles are generated (applying 10.3) as each component 

is added to the sequence type. Therefore, even though the order component is placed in a position that textually precedes the 

positions of those components within the ASN.1 sequence type, the generation of the order component can only be completed 

after all the particles have been mapped to sequence components. 

20.7 If the complex type definition has attribute uses, then components generated by applying clause 22 to the attribute 

uses shall be added to the ASN.1 sequence type in an order based on the target namespace and name of the attribute 

declaration of each attribute use. The attribute uses shall first be ordered by target namespace of the attribute declaration 

(with the keyword absent preceding all namespace names sorted in ascending lexicographical order) and then by name of 

the attribute declaration within each target namespace (also in ascending lexicographical order). 

20.8 If the complex type definition has an attribute wildcard, then a component generated from the attribute wildcard as 

specified in clause 21 shall be added to the ASN.1 sequence type. 

20.9 If the content type of the complex type definition is a particle, then one of the four following subclauses applies. 

20.9.1 If the term of the particle is a model group with a compositor of sequence whose min occurs and max occurs are 

both one, then, for each particle of the model group in order, an ordered list of zero or more ASN.1 "NamedType"s shall 

be generated by applying clause 19 to the particle in the model group, and those "NamedType"s shall be added to the 

ASN.1 sequence type in the same order. 

20.9.2 If the term of the particle is a model group with a compositor of sequence whose min occurs and max occurs are 

not both one, then a component generated by applying clause 19 to the particle in the content type shall be added to the 

ASN.1 sequence type. 

20.9.3 If the term of the particle is a model group with a compositor of all, then, for each particle of the model group in 

order, a component generated by applying clause 19 to the particle of the model group shall be added to the ASN.1 sequence 

type. If the particle in the content type of the complex type definition has min occurs zero, each of the particles of the model 

group with min occurs one shall be mapped as if it had min occurs zero. 

20.9.4 If the term of the particle is a model group with a compositor of choice, then a component generated by applying 

clause 19 to the particle in the content type shall be added to the ASN.1 sequence type. 

20.10 If the content type of the complex type definition is a simple type definition, then a component shall be added to the 

ASN.1 sequence type. The "identifier" in the "NamedType" of the component shall be generated by applying 10.3 to the 

character string "base" and the "Type" in the "NamedType" shall be the ASN.1 type definition generated by applying 

clause 23 to the content type. A final UNTAGGED encoding instruction shall be assigned to the component. 

20.11 If the content type of the complex type definition is empty, then no further components shall be added to the ASN.1 

sequence type. 

21 Mapping wildcards 

21.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 type definition or a "NamedType" corresponding to a wildcard. 

21.2 For a version 1 mapping, 21.3 shall be applied. For a version 2 mapping, 21.4 shall be applied. 

21.3 A wildcard that is the term of a particle shall be mapped to the ASN.1 type definition generated by applying 

clause 23 to the XSD built-in type xsd:string. A final ANY-ELEMENT encoding instruction shall be assigned to the ASN.1 

type definition. 
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21.4 A wildcard that is the term of a particle shall be mapped as specified in the following subclauses 21.4.1 to 21.4.7. 

21.4.1 The phrase "wildcard mapping attribute" (used only in this clause) designates an attribute information item with 

a [namespace name] property of "urn:oid:2.1.5.2.0.1" and a [local name] property of "wildcard-mapping", which is a 

member of the attributes of an annotation present in a wildcard. The phrase "value of a wildcard mapping attribute" (used 

only in this clause) designates the [normalized value] property of a wildcard mapping attribute. 

NOTE – The namespace name specified in this subclause is the ASN.1 namespace name defined in Rec. ITU-T X.693 | 

ISO/IEC 8825-4, 16.9. 

21.4.2 A wildcard mapping attribute shall have one of the following values: "CHOICE-FI", "CHOICE-UTF-8", "FI", and 

"UTF-8". 

EXAMPLE – The following is an example of a wildcard mapping attribute: 

<xsd:any> 
<xsd:annotation  
 a:wildcard-mapping="FI" 
 xmlns:a="urn:oid:2.1.5.2.0.1"/> 

                   </xsd:any>   

21.4.3 A wildcard without a wildcard mapping attribute shall be treated as though it has a wildcard mapping attribute 

with the value "CHOICE-FI" (if process contents is strict or lax) or "FI" (if process contents is skip). 

21.4.4 A wildcard whose process contents is skip shall not have a wildcard mapping attribute with the value "CHOICE-

FI" or "CHOICE-UTF-8". 

21.4.5 A wildcard whose wildcard mapping attribute has the value "UTF-8" shall be mapped to the ASN.1 built-in type 

UTF8String with the following user-defined constraint: 
(CONSTRAINED BY 

{/* Every character string abstract value shall be a well-formed XML document 

encoded in UTF-8. */}) 

and with a final ANY-ELEMENT encoding instruction. 

21.4.6 A wildcard whose wildcard mapping attribute has the value "FI" shall be mapped to the ASN.1 built-in type 

OCTET STRING with the following user-defined constraint: 
(CONSTRAINED BY 

{/* Every octet string abstract value shall be a well-formed fast infoset 

document (see Rec. ITU-T X.891 | ISO/IEC 24824-1). */}) 

and with a final ANY-ELEMENT encoding instruction. 

21.4.7 A wildcard whose wildcard mapping attribute has the value "CHOICE-FI" or "CHOICE-UTF-8" shall be mapped to 

an ASN.1 choice type constructed as follows: 

a) one alternative shall be added to the choice type for each top-level element declaration in the source XSD 

Schema which is not abstract and whose target namespace is a namespace name (or the absent namespace) 

allowed by the namespace constraint of the wildcard; 

b) for each alternative, the "identifier" in the "NamedType" shall be generated by applying 10.3 to the name 

of the top-level element declaration corresponding to the alternative, and the "Type" in the "NamedType" 

shall be the ASN.1 type definition (a "DefinedType") generated by applying 10.2 to the ASN.1 type 

assignment generated by applying clause 14 to the top-level element declaration; 

c) these alternatives shall be added to the choice type in an order based on the target namespace and name of 

the top-level element declarations; the element declarations shall first be ordered by target namespace (with 

the absent namespace preceding all namespace names sorted in ascending lexicographical order) and then 

by name (also in ascending lexicographical order) within each target namespace; 

d) if the wildcard mapping attribute has the value "CHOICE-UTF-8", another alternative shall be added to the 

end of the choice type; the "identifier" in the "NamedType" shall be generated by applying 10.3 to the 

character string "elem", and the "Type" in the "NamedType" shall be the ASN.1 type specified in 21.4.5; 

e) if the wildcard mapping attribute has the value "CHOICE-FI", another alternative shall be added to the end 

of the choice type; the "identifier" in the "NamedType" shall be generated by applying 10.3 to the character 

string "elem", and the "Type" in the "NamedType" shall be the ASN.1 type specified in 21.4.6; 

f) if process contents is strict, then the following user-defined constraint shall be applied to the choice type: 
(CONSTRAINED BY 

{/* The last alternative shall be used if and only if xsi:type is present*/}) 

g) if process contents is lax, then the following user-defined constraint shall be applied to the choice type: 
(CONSTRAINED BY 
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{/* The last alternative shall be used when xsi:type is present, and shall 

not be used when xsi:type is not present and one of the other alternatives 

can be used. */}) 

h) a final UNTAGGED encoding instruction shall be assigned to the choice type. 

21.5 A wildcard that is the attribute wildcard of a complex type shall be mapped to a "NamedType". The "identifier" in 

the "NamedType" shall be generated by applying 10.3 to the character string "attr" and the "Type" in the "NamedType" 

shall be a sequence-of type. The component of the sequence-of type shall be a "Type" generated by applying clause 23 to 

the XSD built-in type xsd:string. The following user-defined constraint shall be applied to the sequence-of type: 
(CONSTRAINED BY 

{/* Each item shall conform to the "AnyAttributeFormat" specified in 

   Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 18 */}) 

A final ANY-ATTRIBUTES encoding instruction shall be assigned to the sequence-of type. 

21.6 If the wildcard has a namespace constraint, this shall be mapped to a "NameSpaceRestriction" in the 

ANY-ELEMENT or ANY-ATTRIBUTES encoding instruction. 

22 Mapping attribute uses 

22.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 "NamedType" corresponding to an attribute use. 

22.2 An attribute use shall be mapped to a "NamedType". 

22.3 The "identifier" in the "NamedType" shall be generated by applying 10.3 to the name of the attribute declaration 

of the attribute use, and the "Type" in the "NamedType" shall be: 

a) if the attribute use has a top-level attribute declaration, the ASN.1 type definition (a "DefinedType") 

generated by applying 10.2 to the ASN.1 type assignment generated by applying clause 15 to the attribute 

declaration; 

b) if the attribute use has a local attribute declaration, the ASN.1 type definition generated by applying 

clause 15 to the attribute declaration. 

22.4 If either the attribute use or its attribute declaration has a value constraint and the attribute use is not required, the 

"NamedType" shall be followed by the keyword DEFAULT and by a "Value" generated by applying clause 16 either to the 

value in the value constraint of the attribute use (if the attribute use has a value constraint), or to the value in the value 

constraint of its attribute declaration (otherwise). 

22.5 If either the attribute use or its attribute declaration has a value constraint that is a fixed value, then an ASN.1 single 

value constraint shall be added to the "NamedType". The "Value" in the ASN.1 single value constraint shall be generated 

by applying clause 16 either to the value in the value constraint of the attribute use (if the attribute use has a value constraint), 

or to the value in the value constraint of its attribute declaration (otherwise). 

22.6 If the attribute use is not required and neither the attribute use nor its attribute declaration has a value constraint, 

the "NamedType" shall be followed by the keyword OPTIONAL. 

22.7 A final ATTRIBUTE encoding instruction shall be assigned to the "Type" in the "NamedType". 

23 Mapping uses of simple and complex type definitions (general case) 

23.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 type definition corresponding to one of the following uses of a top-level, anonymous, or XSD built-in 

simple type definition or complex type definition: 

a) a simple type definition used as the base type of another simple type definition; 

b) a simple type definition used as the item type of a list type; 

c) a simple type definition used as the member type of a union type; 

d)  a simple or complex type definition used as the type definition of element declarations that do not have a 

substitutable type definition (see 14.7) and are not nillable; 

e) a simple type definition used as the type definition of an attribute declaration; 

f) a simple type definition used as the content type of a complex type definition; and 
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g)  a simple type definition used as the type definition of an element declaration that does not have a substitutable 

type definition (see 14.7) and is nillable. 

23.2 A use of an XSD built-in type simple type definition or complex type definition shall be mapped to an ASN.1 type 

definition (a "DefinedType") as specified in clause 11. 

23.3 A use of a top-level simple type definition shall be mapped to the ASN.1 type definition (a "DefinedType") 

generated by applying 10.2 to the ASN.1 type assignment generated by applying clause 13 to the simple type definition. 

23.4 A use of a top-level complex type definition shall be mapped to the ASN.1 type definition (a "DefinedType") 

generated by applying 10.2 to the ASN.1 type assignment generated by applying clause 20 to the complex type definition. 

23.5 A use of an anonymous simple type definition is not distinguished from the simple type definition itself, and shall 

be mapped as specified in clause 13 for the simple type definition. 

23.6 A use of an anonymous complex type definition is not distinguished from the complex type definition itself, and 

shall be mapped as specified in clause 20 for the complex type definition. 

23.7 If a value constraint has been provided in the invocation of this clause, then a final DEFAULT-FOR-EMPTY 

encoding instruction shall be assigned to the ASN.1 type definition, and one of the three following subclauses applies. 

23.7.1 For a simple type definition, the "Value" in the final DEFAULT-FOR-EMPTY encoding instruction shall be 

generated by applying clause 16 to the value in the value constraint considered as a value in the value space of the simple 

type definition. 

23.7.2 For a complex type definition whose content type is a simple type definition, the "Value" in the final DEFAULT-FOR-

EMPTY encoding instruction shall be generated by applying clause 16 to the value in the value constraint considered as a 

value in the value space of the simple type definition. 

23.7.3 For a complex type definition with a mixed content type, the "Value" in the final DEFAULT-FOR-EMPTY encoding 

instruction shall be generated by applying clause 16 to the value in the value constraint considered as a value in the value 

space of xsd:string with whiteSpace preserve. 

23.8 If a value constraint has been provided in the invocation of this clause and the value in the value constraint is a 

fixed value, then one of the three following subclauses applies. 

23.8.1 For a simple type definition, an ASN.1 single value constraint with a "Value" identical to the "Value" in the final 

DEFAULT-FOR-EMPTY encoding instruction shall be added to the ASN.1 definition. 

23.8.2 For a complex type definition whose content type is a simple type definition, an ASN.1 inner subtype constraint shall 

be added to the ASN.1 definition and shall apply to the base component a single value constraint with a "Value" identical 

to the "Value" in the final DEFAULT-FOR-EMPTY encoding instruction. 

23.8.3 For a complex type definition with a mixed content type, an ASN.1 inner subtype constraint shall be added to 

the ASN.1 definition and shall apply to the embed-values component an ASN.1 single value constraint with a "Value" 

consisting in a single occurrence of a "Value" identical to the "Value" in the final DEFAULT-FOR-EMPTY encoding 

instruction. 

24 Mapping special uses of simple and complex type definitions (substitutable) 

24.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 type definition corresponding to a top-level simple type definition or complex type definition used as the 

type definition of element declarations that have a substitutable type definition (see 14.7) and are not nillable. 

24.2 A use of a simple type definition (STD, say) or complex type definition (CTD, say) shall be mapped to an ASN.1 

choice type. 

24.3 One alternative shall be added to the ASN.1 choice type for STD or CTD itself and one alternative shall be 

added for each top-level simple type definition and complex type definition in the source XSD Schema that is derived by 

restriction or extension (directly or indirectly) from STD or CTD. 

24.4 For each alternative, the "identifier" in the "NamedType" shall be generated by applying 10.3 to the name of the 

simple type definition or complex type definition corresponding to the alternative, and the "Type" in the "NamedType" shall 

be the ASN.1 type definition generated by applying clause 23 to the simple type definition or complex type definition. 

24.5 The first alternative added to the choice type shall be the one corresponding to STD or CTD itself. The 

subsequent alternatives shall be added to the choice type in an order based on the target namespace and name of the simple 

type definitions and complex type definitions. Type definitions shall first be ordered by target namespace (with the absent 
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namespace preceding all namespace names sorted in ascending lexicographical order) and then by name (also in ascending 

lexicographical order) within each target namespace. 

24.6 A final USE-TYPE encoding instruction shall be assigned to the ASN.1 choice type. 

24.7 If a value constraint has been provided in the invocation of this clause, then a final DEFAULT-FOR-EMPTY 

encoding instruction shall be assigned to each alternative of the ASN.1 choice type corresponding to a simple or complex 

type definition that would validate a hypothetical element containing the canonical lexical representation of the value in 

the value constraint, but not to the other alternatives (if any). One of the three following subclauses applies. 

24.7.1 If the alternative corresponds to a simple type definition, the "Value" in the final DEFAULT-FOR-EMPTY encoding 

instruction shall be generated by applying clause 16 to the value in the value constraint considered as a value in the value 

space of the simple type definition. 

24.7.2 If the alternative corresponds to a complex type definition whose content type is a simple type definition, the "Value" 

in the final DEFAULT-FOR-EMPTY encoding instruction shall be generated by applying clause 16 to the value in the value 

constraint considered as a value in the value space of the simple type definition. 

24.7.3 If the alternative corresponds to a complex type definition with a mixed content type, the "Value" in the final 

DEFAULT-FOR-EMPTY encoding instruction shall be generated by applying clause 16 to the value in the value constraint 

considered as a value in the value space of xsd:string with whiteSpace preserve. 

24.8 If a value constraint has been provided in the invocation of this clause and the value in the value constraint is a 

fixed value, then an ASN.1 inner subtype constraint shall be added to the ASN.1 choice type. One of the four following 

subclauses applies to each alternative of the choice type. 

24.8.1 If the alternative has been assigned a final DEFAULT-FOR-EMPTY encoding instruction in 24.7 and corresponds 

to a simple type definition, the inner subtype constraint shall apply to the alternative an ASN.1 single value constraint with 

a "Value" identical to the "Value" in the final DEFAULT-FOR-EMPTY encoding instruction. 

24.8.2 If the alternative has been assigned a final DEFAULT-FOR-EMPTY encoding instruction in 24.7 and corresponds 

to a complex type definition whose content type is a simple type definition, the inner subtype constraint shall apply to the 

alternative an additionalASN.1 inner subtype constraint that applies to the base component a single value constraint 

with a "Value" identical to the "Value" in the final DEFAULT-FOR-EMPTY encoding instruction. 

24.8.3 If the alternative has been assigned a final DEFAULT-FOR-EMPTY encoding instruction in 24.7 and corresponds 

to a complex type definition with a mixed content type, the inner subtype constraint shall apply to the alternative an additional 

ASN.1 inner subtype constraint, which in turn shall apply to the embed-values component an ASN.1 single value 

constraint with a "Value" consisting in a single occurrence of a "Value" identical to the "Value" in the final DEFAULT-

FOR-EMPTY encoding instruction. 

24.8.4 If the alternative has not been assigned a final DEFAULT-FOR-EMPTY encoding instruction in 24.7, the inner 

subtype constraint shall apply a presence constraint of ABSENT to the alternative. 

25 Mapping special uses of simple and complex type definitions (substitutable, nillable) 

25.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 type definition corresponding to a top-level simple type definition or complex type definition used as the 

type definition of element declarations that have a substitutable type definition (see 14.7) and are nillable. 

25.2 A use of a simple type definition (STD, say) or complex type definition (CTD, say) shall be mapped to an ASN.1 

choice type. 

25.3 One alternative shall be added to the ASN.1 choice type for STD or CTD itself and one alternative shall be 

added for each top-level simple type definition and complex type definition in the source XSD Schema that is derived by 

restriction or extension (directly or indirectly) from STD or CTD. 

25.4 For each alternative, the "identifier" in the "NamedType" shall be generated by applying 10.3 to the name of the 

simple type definition or complex type definition corresponding to the alternative, and the "Type" in the "NamedType" shall 

be the ASN.1 type definition (a "DefinedType") generated by applying 10.2 to the ASN.1 type assignment generated by 

applying clause 30 to the simple type definition or complex type definition. 

25.5 The first alternative added to the choice type shall be the one corresponding to STD or CTD itself. The 

subsequent alternatives shall be added to the choice type in an order based on the target namespace and name of the simple 

type definitions and complex type definitions. Type definitions shall first be ordered by target namespace (with the absent 

namespace preceding all namespace names sorted in ascending lexicographical order) and then by name (also in ascending 

lexicographical order) within each target namespace. 
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25.6 A final USE-TYPE encoding instruction shall be assigned to the ASN.1 choice type. 

25.7 If a value constraint has been provided in the invocation of this clause, then a final DEFAULT-FOR-EMPTY 

encoding instruction shall be assigned to each alternative of the ASN.1 choice type corresponding to a simple or complex 

type definition that would validate a hypothetical element containing the canonical lexical representation of the value in 

the value constraint, but not to the other alternatives (if any). One of the three following subclauses applies. 

25.7.1 If the alternative corresponds to a simple type definition, the "Value" in the final DEFAULT-FOR-EMPTY encoding 

instruction shall be generated by applying clause 16 to the value in the value constraint considered as a value in the value 

space of the simple type definition. 

25.7.2 If the alternative corresponds to a complex type definition whose content type is a simple type definition, the "Value" 

in the final DEFAULT-FOR-EMPTY encoding instruction shall be generated by applying clause 16 to the value in the value 

constraint considered as a value in the value space of the simple type definition. 

25.7.3 If the alternative corresponds to a complex type definition with a mixed content type, the "Value" in the final 

DEFAULT-FOR-EMPTY encoding instruction shall be generated by applying clause 16 to the value in the value constraint 

considered as a value in the value space of xsd:string with whiteSpace preserve. 

25.8 If a value constraint has been provided in the invocation of this clause and the value in the value constraint is a 

fixed value, then an ASN.1 inner subtype constraint shall be added to the ASN.1 choice type. One of the four following 

subclauses applies to each alternative of the choice type. 

25.8.1 If the alternative has been assigned a final DEFAULT-FOR-EMPTY encoding instruction in 25.7 and corresponds 

to a simple type definition, the inner subtype constraint shall apply to the alternative (which is an ASN.1 sequence type with 

a final USE-NIL encoding instruction) another ASN.1 inner subtype constraint, which in turn shall apply to the content 

component the keyword PRESENT and an ASN.1 single value constraint with a "Value" identical to the "Value" in the 

final DEFAULT-FOR-EMPTY encoding instruction. 

25.8.2 If the alternative has been assigned a final DEFAULT-FOR-EMPTY encoding instruction in 25.7 and corresponds 

to a complex type definition whose content type is a simple type definition, the inner subtype constraint shall apply to the 

alternative (which is an ASN.1 sequence type with a final USE-NIL encoding instruction) another ASN.1 inner subtype 

constraint that applies to the content component the keyword PRESENT and an ASN.1 single value constraint with a 

"Value" identical to the "Value" in the final DEFAULT-FOR-EMPTY encoding instruction. 

25.8.3 If the alternative has been assigned a final DEFAULT-FOR-EMPTY encoding instruction in 25.7 and corresponds 

to a complex type definition with a mixed content type, the inner subtype constraint shall apply to the alternative (which is 

an ASN.1 sequence type with a final USE-NIL encoding instruction) another ASN.1 inner subtype constraint that applies: 

a) to the embed-values component, an ASN.1 single value constraint with a "Value" consisting in a single 

occurrence of a "Value" identical to the "Value" in the final DEFAULT-FOR-EMPTY encoding instruction; 

and 

b)  to the content component, the keyword PRESENT. 

25.8.4 If the alternative has not been assigned a final DEFAULT-FOR-EMPTY encoding instruction in 25.7, the inner 

subtype constraint shall apply a presence constraint of ABSENT to the alternative. 

26 Mapping special uses of simple type definitions (nillable) 

26.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 type definition corresponding to either: 

a) a top-level, anonymous, or XSD built-in simple type definition used as the type definition of element 

declarations that do not have a substitutable type definition (see 14.7) and are nillable; or 

b) a top-level simple type definition that is a member of the derivation hierarchy of the type definition of element 

declarations that have a substitutable type definition (see 14.7) and are nillable. 

26.2 A use of a simple type definition shall be mapped to an ASN.1 sequence type with one OPTIONAL component. 

26.3 The "identifier" in the "NamedType" of the component shall be content and the "Type" in the "NamedType" 

shall be the ASN.1 type definition generated by applying clause 23 to the simple type definition. 

26.4 A final USE-NIL encoding instruction shall be assigned to the ASN.1 sequence type. 

26.5 If a value constraint has been provided in the invocation of this clause, then a final DEFAULT-FOR-EMPTY 

encoding instruction shall be assigned to the ASN.1 sequence type. The "Value" in the final DEFAULT-FOR-EMPTY 

encoding instruction shall be generated by applying clause 16 to the value in the value constraint. 
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26.6 If a value constraint has been provided in the invocation of this clause and the value in the value constraint is a 

fixed value, then an ASN.1 inner subtype constraint shall be added to the ASN.1 sequence type. The inner subtype 

constraint shall apply to the content component an ASN.1 single value constraint with a "Value" identical to the "Value" 

in the final DEFAULT-FOR-EMPTY encoding instruction. The inner subtype constraint shall also apply the keyword 

PRESENT to the content component. 

27 Mapping special uses of complex type definitions (nillable) 

27.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 type definition corresponding to either: 

a)  a top-level, anonymous, or XSD built-in complex type definition used as the type definition of element 

declarations that do not have a substitutable type definition (see 14.7) and are nillable; or 

b) a top-level complex type definition that is a member of the derivation hierarchy of the type definition of 

element declarations that have a substitutable type definition (see 14.7) and are nillable. 

27.2 A use of an XSD built-in complex type definition shall be mapped to an ASN.1 type definition (a "DefinedType") 

as specified in clause 11. 

27.3 A use of a top-level or anonymous complex type definition shall be mapped to an ASN.1 type definition as 

specified in subclauses 27.4 to 27.12. 

27.4 The ASN.1 type definition shall be an ASN.1 sequence type and one or more components shall be added to it 

as specified in 27.5 to 27.11, in the specified order. 

27.5 If the content type of the complex type definition is a mixed content model, then an embed-values component 

shall be added to the ASN.1 sequence type as specified in 20.5. 

27.6 If the content type of the complex type definition is a particle whose term is a model group with a compositor of all, 

then an order component shall be added to the ASN.1 sequence type as specified in 20.6. 

27.7 If the complex type definition has attribute uses, components mapped from the attribute uses shall be added to the 

ASN.1 sequence type as specified in 20.7. 

27.8 If the complex type definition has an attribute wildcard, then a component generated from the attribute wildcard shall 

be added to the ASN.1 sequence type as specified in 20.8. 

27.9 If the content type of the complex type definition is a particle, then one of the three following subclauses applies. 

27.9.1 If the term of the particle is a model group with a compositor of sequence whose min occurs and max occurs are 

both one, then an OPTIONAL component shall be added to the ASN.1 sequence type. The "identifier" in the "NamedType" 

of the component shall be generated by applying 10.3 to the character string "content" and the "Type" in the 

"NamedType" shall be an ASN.1 sequence type generated as follows. For each particle of the model group in order, an 

ordered list of zero or more "NamedType"s shall be generated by applying clause 19 to the particle in the model group, and 

those "NamedType"s shall be added to the inner ASN.1 sequence type in the same order. 

27.9.2 If the term of the particle is a model group with a compositor of sequence whose min occurs and max occurs are 

not both one, or a model group with a compositor of choice, then an OPTIONAL component shall be added to the ASN.1 

sequence type. The "identifier" in the "NamedType" of the component shall be generated by applying 10.3 to the character 

string "content" and the "Type" in the "NamedType" shall be an ASN.1 sequence type with a single component, which 

shall be generated by applying clause 19 to the particle in the content type. 

27.9.3 If the term of the particle is a model group with a compositor of all, then an OPTIONAL component shall be added 

to the ASN.1 sequence type. The "identifier" in the "NamedType" of the component shall be generated by applying 10.3 

to the character string "content" and the "Type" in the "NamedType" shall be an ASN.1 sequence type. For each particle 

of the model group in order, a component generated by applying clause 19 to the particle of the model group shall be added 

to the inner ASN.1 sequence type. If the particle in the content type of the complex type definition has min occurs zero, each 

of the particles of the model group with min occurs one shall be mapped as if it had min occurs zero. 

27.10 If the content type of the complex type definition is a simple type definition, then an OPTIONAL component shall be 

added to the ASN.1 sequence type. The "identifier" in the "NamedType" of the component shall be generated by applying 

10.3 to the character string "content" and the "Type" in the "NamedType" shall be the ASN.1 type definition generated 

by applying clause 23 to the content type. 

27.11 If the content type of the complex type definition is empty, then an OPTIONAL component shall be added to the 

ASN.1 sequence type. The "identifier" in the "NamedType" of the component shall be generated by applying 10.3 to the 

character string "content" and the "Type" in the "NamedType" shall be the ASN.1 built-in type NULL. 
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27.12 A final USE-NIL encoding instruction shall be assigned to the ASN.1 sequence type. 

27.13 If a value constraint has been provided in the invocation of this clause, then a final DEFAULT-FOR-EMPTY 

encoding instruction shall be assigned to the ASN.1 sequence type. One of the two following subclauses applies. 

27.13.1 If the content type of the complex type definition is a simple type definition, the "Value" in the final DEFAULT-FOR-

EMPTY encoding instruction shall be generated by applying clause 16 to the value in the value constraint considered as a 

value in the value space of the simple type definition. 

27.13.2 If the content type of the complex type definition is a mixed content type, the "Value" in the final DEFAULT-FOR-

EMPTY encoding instruction shall be generated by applying clause 16 to the value in the value constraint considered as a 

value in the value space of xsd:string with whiteSpace preserve. 

27.14 If a value constraint has been provided in the invocation of this clause and the value in the value constraint is a 

fixed value, then an ASN.1 inner subtype constraint shall be added to the ASN.1 sequence type. The inner subtype 

constraint shall apply the keyword PRESENT to the content component. One of the two following subclauses applies. 

27.14.1 If the content type of the complex type definition is a simple type definition, the inner subtype constraint shall apply 

to the content component an ASN.1 single value constraint with a "Value" identical to the "Value" in the final 

DEFAULT-FOR-EMPTY encoding instruction. 

27.14.2 If the content type of the complex type definition is a mixed content type, the inner subtype constraint shall apply: 

a) to the embed-values component, an ASN.1 single value constraint with a "Value" consisting in a single 

occurrence of a "Value" identical to the "Value" in the final DEFAULT-FOR-EMPTY encoding instruction; 

and 

b)  to the content component, the keyword PRESENT. 

28 Mapping special uses of element declarations (head of element substitution group) 

28.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 type definition corresponding to a top-level element declaration that is the head of an element 

substitution group and is used as the term of particles. 

28.2 A use of a top-level element declaration (H, say) shall be mapped to an ASN.1 choice type. 

28.3 One alternative shall be added to the ASN.1 choice type for each top-level element declaration (including H 

itself) in the source XSD Schema which is not abstract and is a member of the substitution group headed by H. 

NOTE – In XSD, substitution group membership is transitive, i.e., the members of a substitution group ESG1 whose head is a 

member of another substitution group ESG2 are all also members of ESG2. 

28.4 For each alternative, the "identifier" in the "NamedType" shall be generated by applying 10.3 to the name of the 

top-level element declaration corresponding to the alternative, and the "Type" in the "NamedType" shall be the ASN.1 type 

definition (a "DefinedType") generated by applying 10.2 to the ASN.1 type assignment generated by applying clause 14 

to the top-level element declaration. 

28.5 Alternatives shall be added to the choice type in an order based on the target namespace and name of the top-

level element declarations. The element declarations shall first be ordered by target namespace (with the absent namespace 

preceding all namespace names sorted in ascending lexicographical order) and then by name (also in ascending 

lexicographical order) within each target namespace. 

NOTE – The element declaration that is the head of the element substitution group is ordered together with the other element 

declarations that belong to the element substitution group. 

28.6 A final UNTAGGED encoding instruction shall be assigned to the choice type. 

29 Generating special ASN.1 type assignments for types used in element declarations 

29.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 type assignment corresponding to a top-level simple type definition or complex type definition used as 

the type definition of element declarations that have a substitutable type definition (see 14.7) or are nillable. 

29.2 This clause generates a special ASN.1 type assignment for a given combination of the following conditions and 

data provided in the invocation of this clause: 

a) whether the element declaration has a substitutable or a non-substitutable type definition (see 14.7); 

b) whether the element declaration is nillable or non-nillable; 
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c)  whether the type definition is a simple type definition or a complex type definition; 

d) whether the element declaration has a value constraint, and if it does, whether the value in the value constraint 

is a default value or a fixed value; 

e)  the name of the type definition; and 

f) the value in the value constraint (if any). 

29.3 One and only one special ASN.1 type assignment shall be generated for each different combination of items a) 

to f) in 29.2 that actually occurs in one or more invocations of this clause over the mapping of a source XSD Schema (but 

see 29.4). 

NOTE – For example, if two element declarations in a large XSD Schema have identical type definitions, are both nillable, and both 

have a value constraint that is a default value and is the same value, then a single special ASN.1 type assignment is generated. The 

type reference name of this type assignment will occur in the "Type" in the "TypeAssignment"s corresponding to both element 

declarations. 

29.4 When this clause is invoked for a simple type definition or complex type definition used as the type definition of an 

element declaration that is nillable and does not have a substitutable type definition, it produces an ASN.1 type assignment 

(using the suffix "-nillable") which could also be produced by an invocation of clause 30 for the same simple type 

definition or complex type definition. In such cases, there shall be only one such ASN.1 type assignment generated either by 

this clause or by clause 30, whichever is invoked first. 

29.5 The term "associated ASN.1 type assignment" designates the ASN.1 type assignment being mapped from the 

simple type definition or complex type definition that is the type definition of the element declaration for which a special ASN.1 

type assignment is generated, by applying clause 13 or clause 20, respectively. 

NOTE – Any special ASN.1 type assignment has an associated ASN.1 type assignment, as this clause applies only when the type 

definition of an element declaration is a top-level simple type definition or complex type definition. All such simple type definitions and 

complex type definitions are mapped to ASN.1 type assignments. 

29.6 For a given element declaration, the "typereference" in the "TypeAssignment" for a special ASN.1 type 

assignment shall be constructed by appending a suffix (see 29.7) and a post-suffix (see 29.7) to the type reference name 

of the associated ASN.1 type assignment and applying 10.3 to the resulting character string, and the "Type" in the 

"TypeAssignment" shall be the ASN.1 type definition generated by one of the clauses 24, 25, 26, and 27 (see 29.7) to the 

simple type definition or complex type definition that is the type definition of the element declaration. The value constraint in the 

element declaration (if any) shall be provided to the applicable clause (24, 25, 26 or 27) and shall be used when generating 

the ASN.1 type definition as specified in that clause. 

29.7 The suffix and the applicable clause number shall be obtained from the last two columns of Table 7 after 

selecting a row of the table based on the conditions listed in 29.2 a) to d). If there is a value constraint, the post-suffix shall 

be the canonical lexical representation (see W3C XML Schema Part 2, 2.3.1) of the value in the value constraint, otherwise 

it shall be an empty string. 

Table 7 – Suffixes and applicable clause numbers for the generation of special ASN.1 type assignments 

Substitutable nillable simple / complex 
value 

constraint 
Suffix 

Applicable 

clause 

number 

no yes simple none -nillable 26 

no yes simple default -nillable-default- 26 

no yes simple fixed -nillable-fixed- 26 

no yes complex none -nillable 27 

no yes complex default -nillable-default- 27 

no yes complex fixed -nillable-fixed- 27 

yes no simple or complex none -derivations 24 

yes no simple or complex default -deriv-default- 24 

yes no simple or complex fixed -deriv-fixed- 24 

yes yes simple or complex none -deriv-nillable 25 

yes yes simple or complex default -deriv-nillable-default- 25 

yes yes simple or complex fixed -deriv-nillable-fixed- 25 
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30 Generating special ASN.1 type assignments for types belonging to a derivation 

hierarchy 

30.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 type assignment corresponding to a top-level simple type definition or complex type definition that belongs 

to the derivation hierarchy of the type definition of element declarations that have a substitutable type definition (see 14.7) 

and are nillable. 

30.2 This clause generates a special ASN.1 type assignment for a simple type definition or complex type definition 

provided in the invocation of this clause. 

30.3 One and only one special ASN.1 type assignment shall be generated for each simple type definition or complex 

type definition that actually occurs in one or more invocations of this clause over the mapping of a source XSD Schema 

(but see 29.4). 

30.4 The term "associated ASN.1 type assignment" designates the ASN.1 type assignment being mapped from the 

simple type definition or complex type definition by applying clause 13 or clause 20, respectively. 

30.5 The "typereference" in the "TypeAssignment" for a special ASN.1 type assignment shall be constructed by 

appending the suffix "-nillable" to the type reference name of the associated ASN.1 type assignment and applying 10.3 

to the resulting character string, and the "Type" in the "TypeAssignment" shall be the ASN.1 type definition generated 

by applying either clause 26 or clause 27 to the simple type definition or complex type definition, respectively. 

NOTE – This clause specifies only the suffix "-nillable" (and not the suffixes "-nillable-default-" and  

"-nillable-fixed-"), because even if the element declaration has a value constraint, that value constraint is not visible to clauses 26 

and 27 when invoked by this clause. 

31 Generating special ASN.1 type assignments for element substitution groups 

31.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to 

generate an ASN.1 type assignment corresponding to a particle whose term is a top-level element declaration that is the 

head of an element substitution group. 

31.2 This clause generates a special ASN.1 type assignment for a top-level element declaration provided in the 

invocation of this clause. 

31.3 One and only one special ASN.1 type assignment shall be generated for each top-level element declaration that 

actually occurs in one or more invocations of this clause over the mapping of a source XSD Schema. 

31.4 The term "associated ASN.1 type assignment" designates the ASN.1 type assignment being mapped from the 

top-level element declaration by applying clause 14. 

31.5 The "typereference" in the "TypeAssignment" for a special ASN.1 type assignment shall be constructed by 

appending the suffix "-group" to the type reference name of the associated ASN.1 type assignment and applying 10.3 to 

the resulting character string, and the "Type" in the "TypeAssignment" shall be the ASN.1 type definition generated by 

applying clause 28 to the top-level element declaration. 
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Annex A 

 

ASN.1 type definitions corresponding to XSD built-in types for the version 1 mapping 

(This annex forms an integral part of this Recommendation | International Standard.) 

A.1 This annex specifies a module that defines the ASN.1 types that correspond to the XSD built-in types that are 

used for the mapping from W3C XML Schema to ASN.1 for the version 1 mapping. 

A.2 W3C XML Schema defines many built-in date and time types to represent durations, instants or recurring 

instants. Although they are all derived from ISO 8601, there are some extensions and restrictions. The XSD built-in date 

and time types are mapped to VisibleString with a user-defined constraint referencing the applicable XSD clause. 

A permitted alphabet constraint is added to provide a more efficient encoding with the Packed Encoding Rules (PER), 

since user-defined constraints are not PER-visible (and hence are not used in optimizing encodings). 

A.3 The XSD module for the version 1 mapping is: 
XSD {joint-iso-itu-t asn1(1) specification(0) modules(0) xsd-module(2) version1(1)} 

"/ASN.1/Specification/Modules/XSD-Module/Version1" 

DEFINITIONS 

AUTOMATIC TAGS ::= 

BEGIN 

/* xsd:anySimpleType */ 

AnySimpleType ::= XMLCompatibleString 

/* xsd:anyType */ 

AnyType ::= SEQUENCE { 

embed-values SEQUENCE OF String, 

attr SEQUENCE 

  (CONSTRAINED BY { 

    /* Each item shall conform to the "AnyAttributeFormat" specified 

 in Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 18 */ } ) OF String, 

elem-list SEQUENCE OF elem String 

  (CONSTRAINED BY { 

     /* Shall conform to the "AnyElementFormat" specified 

        in Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 19 */ } ) } 

                 (CONSTRAINED BY { 

               /* Shall conform to Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 25 */ } ) 

AnyType-nillable ::= SEQUENCE { 

embed-values SEQUENCE OF String, 

attr SEQUENCE 

  (CONSTRAINED BY { 

    /* Each item shall conform to the "AnyAttributeFormat" specified 

 in Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 18 */ } ) OF String, 

content SEQUENCE { 

 elem-list SEQUENCE OF elem String 

   (CONSTRAINED BY { 

       /* Shall conform to the "AnyElementFormat" specified 

          in Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 19 */ } )  

} OPTIONAL } 

(CONSTRAINED BY { 

/* Shall conform to Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 25 */ } ) 

/* xsd:anyUri */ 

AnyURI ::= XMLStringWithNoCRLFHT 

(CONSTRAINED BY { 

    /* The XMLStringWithNoCRLFHT shall be a valid URI as defined in IETF RFC 

  2396.  Note that 2396 allows any valid IRI format without escaping 

   non-ASCII characters.  Use of the IANA oid: URI/IRI scheme should be 

   considered. */ } ) 

/* xsd:date */ 

Date ::= DateTimeType (DateOnly) 

/* xsd:dateTime */ 

DateTime ::= DateTimeType 

/* xsd:decimal */ 

Decimal ::= REAL (0 | WITH COMPONENTS {..., base(10)}) 

/* xsd:double */ 

Double ::= REAL (0 | MINUS-INFINITY | PLUS-INFINITY | NOT-A-NUMBER | WITH COMPONENTS { 

   mantissa(-9007199254740991..9007199254740991), 

   base(2), 

   exponent(-1074..971)}) 
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/* xsd:duration */ 

Duration ::= DurationType 

/* xsd:ENTITIES */ 

ENTITIES ::= SEQUENCE (SIZE(1..MAX)) OF ENTITY 

/* xsd:ENIITY */ 

ENTITY ::= NCName 

/* xsd:float */ 

Float ::= REAL (0 | MINUS-INFINITY | PLUS-INFINITY | NOT-A-NUMBER | WITH COMPONENTS { 

   mantissa(-16777215..16777215), 

   base(2), 

   exponent(-149..104)}) 

/* xsd:gDay */ 

GDay ::= DateTimeType (Day) 

/* xsd:gMonth */ 

GMonth ::= DateTimeType (Month) 

/* xsd:gMonthDay */ 

GMonthDay ::= DateTimeType (MonthDay) 

/* xsd:gYear */ 

GYear ::= DateTimeType (Year) 

/* xsd:gYearMonth */ 

GYearMonth ::= DateTimeType (YearMonth) 

/* xsd:ID */ 

ID ::= NCName 

/* xsd:IDREF */ 

IDREF ::= NCName 

/* xsd:IDREFS */ 

IDREFS ::= SEQUENCE (SIZE(1..MAX)) OF IDREF 

/* xsd:int */ 

Int ::= INTEGER (-2147483648..2147483647)  

/* xsd:language */ 

Language ::= VisibleString (FROM ("a".."z" | "A".."Z" | "-" | "0".."9")) 

(PATTERN 

 "[a-zA-Z]#(1,8)(-[a-zA-Z0-9]#(1,8))*") 

   /* The semantics of Language is specified in IETF RFC 3066 */ 

/* xsd:long */ 

Long ::= INTEGER (-9223372036854775808..9223372036854775807) 

/* xsd:name */ 

Name ::= Token (XMLStringWithNoWhitespace) 

(CONSTRAINED BY { 

               /* The Token shall be a Name as defined in W3C XML 1.0, 2.3 */ } ) 

/* xsd:NCName */ 

NCName ::= Name 

 (CONSTRAINED BY { 

                 /* The Name shall be an NCName as defined in W3C XML Namespaces, 2 */ } ) 

/* xsd:NMTOKEN */ 

NMTOKEN ::= Token (XMLStringWithNoWhitespace) 

 (CONSTRAINED BY {  

                   /* The Token shall be an NMTOKEN as defined in W3C XML 1.0, 2.3 */ } ) 

/* xsd:NMTOKENS */ 

NMTOKENS ::= SEQUENCE (SIZE(1..MAX)) OF NMTOKEN 

/* xsd:normalizedString */ 

NormalizedString ::= String (XMLStringWithNoCRLFHT) 

(CONSTRAINED BY { 

    /* The String shall be a normalizedString as defined in W3C XML Schema 

       Part 2, 3.3.1 */}) 

/* xsd:NOTATION */ 

NOTATION ::= QName 

/* xsd:QName */ 

QName ::= SEQUENCE { 

uri  AnyURI OPTIONAL, 

name  NCName } 

/* xsd:short */ 

Short ::= INTEGER (-32768..32767) 

/* xsd:string */ 

String ::= XMLCompatibleString 

/* xsd:time */ 

Time ::= DateTimeType (TimeOnly) 

/* xsd:token */ 

Token ::= NormalizedString (CONSTRAINED BY { 

/* The NormalizedString shall be a token as defined in W3C XML Schema Part 2, 

   3.3.2 */}) 
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/* xsd:unsignedInt */ 

UnsignedInt ::= INTEGER (0..4294967295) 

/* xsd:unsignedLong */ 

UnsignedLong ::=  INTEGER (0..18446744073709551615) 

/* xsd:unsignedShort */ 

UnsignedShort ::= INTEGER (0..65535) 
 

/* ASN.1 type definitions supporting the mapping of W3C XML Schema built-in types */ 

XMLCompatibleString ::= UTF8String (FROM(  

{0, 0, 0, 9} | 

{0, 0, 0, 10} | 

{0, 0, 0, 13} | 

{0, 0, 0, 32} .. {0, 0, 215, 255} |  

{0, 0, 224, 0} .. {0, 0, 255, 253} |  

{0, 1, 0, 0} .. {0, 16, 255, 253})) 

XMLStringWithNoWhitespace ::= UTF8String (FROM(  

{0, 0, 0, 33} .. {0, 0, 215, 255} |  

{0, 0, 224, 0} .. {0, 0, 255, 253} |  

{0, 1, 0, 0} .. {0, 16, 255, 253})) 

XMLStringWithNoCRLFHT ::= UTF8String (FROM(  

{0, 0, 0, 32} .. {0, 0, 215, 255} |  

{0, 0, 224, 0} .. {0, 0, 255, 253} |  

{0, 1, 0, 0} .. {0, 16, 255, 253})) 
 

/* ASN.1 type definitions supporting the mapping of W3C XML Schema built-in date 

and time types */ 

DurationType ::= VisibleString (FROM ("0".."9" | "DHMPSTY:.+-")) 

    (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.6 */}) 

DateTimeType ::= VisibleString (FROM ("0".."9" | "TZ:.+-")) 

    (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.7 */}) 

DateOnly ::= DateTimeType (FROM ("0".."9" | "Z:+-")) 

    (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.9 */}) 

Day ::= DateTimeType  (FROM ("0".."9" | "Z:+-")) 

   (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.13 */}) 

Month ::= DateTimeType  (FROM ("0".."9" | "Z:+-")) 

   (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.14 */}) 

MonthDay ::= DateTimeType(FROM ("0".."9" | "Z:+-")) 

   (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.12 */}) 

Year ::= DateTimeType  (FROM ("0".."9" | "Z:+-")) 

    (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.11 */}) 

YearMonth ::= DateTimeType  (FROM ("0".."9" | "Z:+-")) 

    (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.10 */}) 

TimeOnly ::= DateTimeType  (FROM ("0".."9" | "Z:.+-")) 

    (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.8 */}) 

ENCODING-CONTROL XER 

 GLOBAL-DEFAULTS MODIFIED-ENCODINGS 

 GLOBAL-DEFAULTS CONTROL-NAMESPACE 

  "http://www.w3.org/2001/XMLSchema-instance" 

  PREFIX "xsi" 

 NAMESPACE ALL, ALL IN ALL AS  

  "http://www.w3.org/2001/XMLSchema"  

  PREFIX "xsd" 

 USE-QNAME QName 

 DECIMAL Decimal 

 LIST ENTITIES, IDREFS, NMTOKENS 

 EMBED-VALUES AnyType, AnyType-nillable 

 ANY-ATTRIBUTES AnyType.attr, AnyType-nillable.attr 

 ANY-ELEMENT AnyType.elem-list.*, AnyType-nillable.content.elem-list.* 

 UNTAGGED AnyType.elem-list, AnyType-nillable.content.elem-list 

  NAME AnySimpleType, AnyURI, Boolean, 

   Byte, Date, DateTime, Decimal, Double, Duration, 

  Float, GDay, GMonth, GMonthDay, GYear, GYearMonth, 

  Int, Language, Long, 

  NormalizedString, Short,  

  String, Time, Token, 

  UnsignedInt, UnsignedLong, UnsignedShort 

  AS UNCAPITALIZED 

 USE-NIL AnyType-nillable 

 WHITESPACE AnyURI, Language, Token, DurationType, DateTimeType COLLAPSE 

 WHITESPACE NormalizedString REPLACE 

END  
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Annex B 

 

ASN.1 type definitions corresponding to XSD built-in types for the version 2 mapping 

(This annex forms an integral part of this Recommendation | International Standard.) 

B.1 This annex specifies a module that defines the ASN.1 types that correspond to the XSD built-in types that are 

used for the mapping from W3C XML Schema to ASN.1 for the version 2 mapping. 

B.2 W3C XML Schema defines many built-in date and time types to represent durations, instants or recurring 

instants. Although they are all derived from ISO 8601, there are some extensions and restrictions. The XSD built-in date 

and time types are normally mapped to one of the ASN.1 time types, but where XSD provides additional abstract values, 

the mapping is to a CHOICE of an ASN.1 time type and a VisibleString with a user-defined constraint referencing 

the applicable XSD clause. 

B.3 The XSD module for the version 2 mapping is: 
XSD {joint-iso-itu-t asn1(1) specification(0) modules(0) xsd-module(2) version2(2)} 

"/ASN.1/Specification/Modules/XSD-Module/Version2" 

DEFINITIONS 

AUTOMATIC TAGS ::= 

BEGIN 

/* xsd:anySimpleType */ 

AnySimpleType ::= XMLCompatibleString 

/* xsd:anyType */ 

AnyType ::= SEQUENCE { 

embed-values SEQUENCE OF String, 

attr SEQUENCE 

  (CONSTRAINED BY { 

    /* Each item shall conform to the "AnyAttributeFormat" specified 

 in Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 18 */ } ) OF String, 

elem-list SEQUENCE OF elem String 

  (CONSTRAINED BY { 

     /* Shall conform to the "AnyElementFormat" specified 

        in Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 19 */ } ) } 

                 (CONSTRAINED BY { 

               /* Shall conform to Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 25 */ } ) 

AnyType-nillable ::= SEQUENCE { 

embed-values SEQUENCE OF String, 

attr SEQUENCE 

  (CONSTRAINED BY { 

    /* Each item shall conform to the "AnyAttributeFormat" specified 

 in Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 18 */ } ) OF String, 

content SEQUENCE { 

 elem-list SEQUENCE OF elem String 

   (CONSTRAINED BY { 

       /* Shall conform to the "AnyElementFormat" specified 

          in Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 19 */ } )  

} OPTIONAL } 

                 (CONSTRAINED BY { 

               /* Shall conform to Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 25 

*/ } ) 

/* xsd:anyUri */ 

AnyURI ::= XMLStringWithNoCRLFHT 

(CONSTRAINED BY { 

    /* The XMLStringWithNoCRLFHT shall be a valid URI as defined in IETF RFC 

  2396.  Note that 2396 allows any valid IRI format without escaping 

   non-ASCII characters.  Use of the IANA oid: URI/IRI scheme should be 

   considered. */ } ) 

/* xsd:date */ 

Date ::= GenericTimeTypeChoice { 

   TIME (SETTINGS "Basic=Date Date=YMD"), 

   VisibleString 

                   (FROM ("0".."9" | "DHMPSTY:.+-")) 

       (CONSTRAINED BY {/* W3C XML Schema 1.0 Part 2, 3.2.9 

                                   and used if a time-zone is present */})} 

 

/* xsd:dateTime */ 

DateTime ::= TIME ((SETTINGS "Basic=Date-Time Date=YMD Midnight=Start")) 
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(CONSTRAINED BY {/*The time-zone shall be in the range -14 to +14*/}) 

(CONSTRAINED BY {/*The seconds and fractions of a second shall be less 

                   than 60 (no leap seconds supported, in accordance with 

                   W3C XML Schema 1.0 Part 2, 3.2.7)*/})  

(CONSTRAINED BY {/*The type is constrained to "Time=HMSFn" for any n*/}) 

/* xsd:decimal */ 

Decimal ::= REAL (0 | WITH COMPONENTS {..., base(10)}) 

/* xsd:double */ 

Double ::= REAL (0 | MINUS-INFINITY | PLUS-INFINITY | NOT-A-NUMBER | WITH COMPONENTS { 

   mantissa(-9007199254740991..9007199254740991), 

   base(2), 

   exponent(-1074..971)}) 

/* xsd:duration */ 

Duration ::= GenericTimeTypeChoice { 

   DURATION 

                  ((WITH COMPONENTS {..., 

                                     seconds ABSENT, 

                                     fractional-part ABSENT})| 

                   (WITH COMPONENTS {..., 

                                     seconds PRESENT})), 

   VisibleString 

                   (FROM ("0".."9" | "DHMPSTY:.+-")) 

       (CONSTRAINED BY {/* W3C XML Schema 1.0 Part 2, 3.2.6 

                                   and used for negative durations */})}  

 

/* xsd:ENTITIES */ 

ENTITIES ::= SEQUENCE (SIZE(1..MAX)) OF ENTITY 

/* xsd:ENIITY */ 

ENTITY ::= NCName 

/* xsd:float */ 

Float ::= REAL (0 | MINUS-INFINITY | PLUS-INFINITY | NOT-A-NUMBER | WITH COMPONENTS { 

   mantissa(-16777215..16777215), 

   base(2), 

   exponent(-149..104)}) 

/* xsd:gDay */ 

GDay ::= DateTimeType (Day) 

/* This is an integer followed optionally by a time-zone. 

   It is not supported in either ISO 8601 or in ASN.1, so the Version 1 

   mapping has been retained (similarly for other "G" types). */ 

/* xsd:gMonth */ 

GMonth ::= DateTimeType (Month) 

/* xsd:gMonthDay */ 

GMonthDay ::= DateTimeType (MonthDay) 

/* xsd:gYear */ 

GYear ::= GenericTimeTypeChoice { 

   TIME (SETTINGS "Basic=Date Date=Y"), 

   VisibleString 

                   (FROM ("0".."9" | "Z:+-")) 

       (CONSTRAINED BY {/* W3C XML Schema 1.0 Part 2, 3.2.11 

                                   and used if a time-zone is present */})} 

 

/* xsd:gYearMonth */ 

GYearMonth ::= GenericTimeTypeChoice { 

   TIME (SETTINGS "Basic=Date Date=YM"), 

   VisibleString 

                   (FROM ("0".."9" | "Z:+-")) 

       (CONSTRAINED BY {/* W3C XML Schema 1.0 Part 2, 3.2.14 

                                   and used if a time-zone is present */})} 

/* xsd:ID */ 

ID ::= NCName 

/* xsd:IDREF */ 

IDREF ::= NCName 

/* xsd:IDREFS */ 

IDREFS ::= SEQUENCE (SIZE(1..MAX)) OF IDREF 

/* xsd:int */ 

Int ::= INTEGER (-2147483648..2147483647)  

/* xsd:language */ 

Language ::= VisibleString (FROM ("a".."z" | "A".."Z" | "-" | "0".."9")) 

(PATTERN 

 "[a-zA-Z]#(1,8)(-[a-zA-Z0-9]#(1,8))*") 

   /* The semantics of Language is specified in IETF RFC 3066 */ 
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/* xsd:long */ 

Long ::= INTEGER (-9223372036854775808..9223372036854775807) 

/* xsd:name */ 

Name ::= Token (XMLStringWithNoWhitespace) 

(CONSTRAINED BY { 

               /* The Token shall be a Name as defined in W3C XML 1.0, 2.3 */ } ) 

/* xsd:NCName */ 

NCName ::= Name 

 (CONSTRAINED BY { 

                 /* The Name shall be an NCName as defined in W3C XML Namespaces, 2 */ } ) 

/* xsd:NMTOKEN */ 

NMTOKEN ::= Token (XMLStringWithNoWhitespace) 

 (CONSTRAINED BY {  

                   /* The Token shall be an NMTOKEN as defined in W3C XML 1.0, 2.3 */ } ) 

/* xsd:NMTOKENS */ 

NMTOKENS ::= SEQUENCE (SIZE(1..MAX)) OF NMTOKEN 

/* xsd:normalizedString */ 

NormalizedString ::= String (XMLStringWithNoCRLFHT) 

(CONSTRAINED BY { 

    /* The String shall be a normalizedString as defined in W3C XML Schema 

       Part 2, 3.3.1 */}) 

/* xsd:NOTATION */ 

NOTATION ::= QName 

/* xsd:QName */ 

QName ::= SEQUENCE { 

uri  AnyURI OPTIONAL, 

name  NCName } 

/* xsd:short */ 

Short ::= INTEGER (-32768..32767) 

/* xsd:string */ 

String ::= XMLCompatibleString 

/* xsd:time */ 

Time ::= TIME ((SETTINGS "Basic=Time") 

                         EXCEPT (SETTINGS "Midnight=End")) 

(CONSTRAINED BY {/*The time-zone shall be in the range -14 to +14*/}) 

(CONSTRAINED BY {/*The seconds and fractions of a second shall be less 

                   than 60 (no leap seconds supported, in accordance with 

                   W3C XML Schema 1.0 Part 2, D.2)*/})  

(CONSTRAINED BY {/*Constrained to "Time=HMSFn" for any n*/}) 

/* xsd:token */ 

Token ::= NormalizedString (CONSTRAINED BY { 

/* The NormalizedString shall be a token as defined in W3C XML Schema Part 2, 

   3.3.2 */}) 

/* xsd:unsignedInt */ 

UnsignedInt ::= INTEGER (0..4294967295) 

/* xsd:unsignedLong */ 

UnsignedLong ::=  INTEGER (0..18446744073709551615) 

/* xsd:unsignedShort */ 

UnsignedShort ::= INTEGER (0..65535) 

 

/* ASN.1 type definitions supporting the mapping of W3C XML Schema built-in types */ 

XMLCompatibleString ::= UTF8String (FROM(  

{0, 0, 0, 9} | 

{0, 0, 0, 10} | 

{0, 0, 0, 13} | 

{0, 0, 0, 32} .. {0, 0, 215, 255} |  

{0, 0, 224, 0} .. {0, 0, 255, 253} |  

{0, 1, 0, 0} .. {0, 16, 255, 253})) 

XMLStringWithNoWhitespace ::= UTF8String (FROM(  

{0, 0, 0, 33} .. {0, 0, 215, 255} |  

{0, 0, 224, 0} .. {0, 0, 255, 253} |  

{0, 1, 0, 0} .. {0, 16, 255, 253})) 

XMLStringWithNoCRLFHT ::= UTF8String (FROM(  

{0, 0, 0, 32} .. {0, 0, 215, 255} |  

{0, 0, 224, 0} .. {0, 0, 255, 253} |  

{0, 1, 0, 0} .. {0, 16, 255, 253})) 

/* ASN.1 type definitions supporting the mapping of W3C XML Schema built-in date 

and time types */ 

GenericTimeTypeChoice {BasicType, Alternative} ::= CHOICE { 

           asn1supportedvalue BasicType, 
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  othervalues   Alternative} 

  (CONSTRAINED BY 

             {/* The "othervalues" alternative shall not be used for abstract 

                 values in the "asn1supportedvalue" alternative */})  

 

DateTimeType ::= VisibleString (FROM ("0".."9" | "TZ:.+-")) 

  (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.7 */}) 

Day ::= DateTimeType  (FROM ("0".."9" | "Z:+-")) 

   (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.13 */}) 

Month ::= DateTimeType  (FROM ("0".."9" | "Z:+-")) 

   (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.14 */}) 

MonthDay ::= DateTimeType(FROM ("0".."9" | "Z:+-")) 

   (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.12 */}) 

ENCODING-CONTROL XER 

 GLOBAL-DEFAULTS MODIFIED-ENCODINGS 

 GLOBAL-DEFAULTS CONTROL-NAMESPACE 

  "http://www.w3.org/2001/XMLSchema-instance" 

  PREFIX "xsi" 

 NAMESPACE ALL, ALL IN ALL AS  

  "http://www.w3.org/2001/XMLSchema"  

  PREFIX "xsd" 

 USE-QNAME QName 

 DECIMAL Decimal 

 LIST ENTITIES, IDREFS, NMTOKENS 

 EMBED-VALUES AnyType, AnyType-nillable 

 ANY-ATTRIBUTES AnyType.attr, AnyType-nillable.attr 

 ANY-ELEMENT AnyType.elem-list.*, AnyType-nillable.content.elem-list.* 

 UNTAGGED AnyType.elem-list, AnyType-nillable.content.elem-list 

  NAME AnySimpleType, AnyURI, Date, DateTime, Decimal, Double, Duration, 

  Float, GDay, GMonth, GMonthDay, GYear, GYearMonth, 

  Int, Language, Long, 

    NormalizedString, Short,  

  String, Time, Token, 

  UnsignedInt, UnsignedLong, UnsignedShort 

  AS UNCAPITALIZED 

 NAME GenericTimeTypeChoice.ALL AS "" 

 USE-NIL AnyType-nillable 

 USE-UNION GenericTimeTypeChoice  

 WHITESPACE AnyURI, Language, Token, DateTimeType COLLAPSE 

 WHITESPACE NormalizedString REPLACE 

END 
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Annex C 

 

Identification of the XSD module 

(This annex does not form an integral part of this Recommendation | International Standard.) 

The following object identifier, OID internationalized resource identifier and object descriptor values are assigned in this 

Recommendation | International Standard: 

For the module defining ASN.1 types corresponding to the XSD built-in types: 
{ joint-iso-itu-t asn1(1) specification(0) modules(0) xsd-module(2) version1(1)} 

"/ASN.1/Specification/Modules/XSD-Module/Version1" 

"ASN.1 XSD Module for Version 1 mapping" 

{ joint-iso-itu-t asn1(1) specification(0) modules(0) xsd-module(2) version2(2)} 

"/ASN.1/Specification/Modules/XSD-Module/Version2" 

"ASN.1 XSD Module for Version 2 mapping" 
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Annex D 

 

Examples of mappings 

(This annex does not form an integral part of this Recommendation | International Standard.) 

This annex illustrates the version 1 mapping specified in this Recommendation | International Standard by giving an 

ASN.1 module corresponding to an XSD Schema. The version 2 mapping is similar, and differs (for this example) only 

in the use of the XSD module from Annex B instead of the XSD module from Annex A. 

D.1 A Schema using simple type definitions 

The following Schema contains examples of XSD built-in types (xsd:string, xsd:decimal, xsd:integer, xsd:int, xsd:date), 

other simple type definitions and complex type definitions. 

<?xml version="1.0" encoding="UTF-8"?> 
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" elementFormDefault="unqualified"> 
 <xsd:element name="EXAMPLES"> 
  <xsd:complexType> 
   <xsd:sequence> 
    <xsd:element ref="personnelRecord"/> 
    <xsd:element name="decimal" type="xsd:decimal"/> 
    <xsd:element name="daysOfTheWeek" type="ListOfDays"/> 
    <xsd:element ref="namesOfMemberNations"/> 
    <xsd:element ref="fileIdentifier" maxOccurs="unbounded"/> 
   </xsd:sequence> 
  </xsd:complexType> 
 </xsd:element> 
 <xsd:element name="personnelRecord"> 
  <xsd:complexType> 
   <xsd:sequence> 
    <xsd:element name="name" type="name"/> 
    <xsd:element name="title" type="xsd:string"/> 
    <xsd:element name="decimal" type="xsd:integer"/> 
    <xsd:element name="dateOfHire" type="xsd:date"/> 
    <xsd:element ref="nameOfSpouse"/> 
    <xsd:element ref="children"/> 
   </xsd:sequence> 
  </xsd:complexType> 
 </xsd:element> 
 <xsd:element name="nameOfSpouse" type="name"/> 
 <xsd:complexType name="name"> 
  <xsd:sequence> 
   <xsd:element name="givenName" type="xsd:string"/> 
   <xsd:element name="initial" type="xsd:string"/> 
   <xsd:element name="familyName" type="xsd:string"/> 
  </xsd:sequence> 
 </xsd:complexType> 
 <xsd:element name="children"> 
  <xsd:complexType> 
   <xsd:sequence> 
    <xsd:element ref="ChildInformation" minOccurs="0" 
maxOccurs="unbounded"/> 
   </xsd:sequence> 
  </xsd:complexType> 
 </xsd:element> 
 <xsd:element name="ChildInformation"> 
  <xsd:complexType> 
   <xsd:sequence> 
    <xsd:element name="name" type="name"/> 
    <xsd:element name="dateOfBirth" type="xsd:date"/> 
   </xsd:sequence> 
  </xsd:complexType> 
 </xsd:element> 
 <xsd:simpleType name="ListOfDays"> 
  <xsd:list itemType="Day"/> 
 </xsd:simpleType> 
 <xsd:simpleType name="Day"> 
  <xsd:restriction base="xsd:string"> 
   <xsd:enumeration value="monday"/> 
   <xsd:enumeration value="tuesday"/> 
   <xsd:enumeration value="wednesday"/> 
   <xsd:enumeration value="thursday"/> 
   <xsd:enumeration value="friday"/> 
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   <xsd:enumeration value="saturday"/> 
   <xsd:enumeration value="sunday"/> 
  </xsd:restriction> 
 </xsd:simpleType> 
 <xsd:element name="namesOfMemberNations"> 
  <xsd:simpleType> 
   <xsd:list itemType="xsd:string"/> 
  </xsd:simpleType> 
 </xsd:element> 
 <xsd:element name="fileIdentifier"> 
  <xsd:complexType> 
   <xsd:choice> 
    <xsd:element name="serialNumber" type="xsd:int"/> 
    <xsd:element name="relativeName" type="xsd:string"/> 
    <xsd:element ref="unidentified"/> 
   </xsd:choice> 
  </xsd:complexType> 
 </xsd:element> 
 <xsd:element name="unidentified" type="xsd:anyType"/> 
</xsd:schema> 

D.2 The corresponding ASN.1 definitions 

The following is the corresponding ASN.1 specification and validates the same XML documents as the XSD Schema: 
EXAMPLES{joint-iso-itu-t asn1(1) examples(999) xml-defined-types(3)} 

"ASN.1/Examples/XML-defined-types" 

DEFINITIONS  

XER INSTRUCTIONS AUTOMATIC TAGS ::= 

BEGIN 

IMPORTS String, Decimal, Int, Date, AnyType 

   

FROM XSD 

  {joint-iso-itu-t asn1(1) specification(0) modules(0) xsd-module(2) version1(1)}; 

/* For a version 2 mapping, the last component of the module identifier would be 

version2(2) */ 

EXAMPLES ::=  SEQUENCE { 

personnelRecord      PersonnelRecord, 

number               Decimal, 

daysOfTheWeek        ListOfDays, 

namesOfMemberNations NamesOfMemberNations, 

fileIdentifier-list  [UNTAGGED] 

       SEQUENCE (SIZE(1..MAX)) OF fileidentifier FileIdentifier }  

PersonnelRecord  ::=  [NAME AS UNCAPITALIZED] SEQUENCE { 

name    Name, 

title   XSD.String, 

number   INTEGER, 

dateOfHire   XSD.Date, 

nameOfSpouse  NameOfSpouse, 

children   Children }  

NameOfSpouse ::=  [NAME AS UNCAPITALIZED] Name 

Name ::= [NAME AS UNCAPITALIZED] SEQUENCE { 

givenName   XSD.String, 

initial   XSD.String, 

familyName   XSD.String }  

Children ::= [NAME AS UNCAPITALIZED] SEQUENCE { 

childInformation-list [UNTAGGED] 

  SEQUENCE OF 

  childInformation [NAME AS CAPITALIZED] ChildInformation } 

ChildInformation ::=  SEQUENCE { 

name    Name, 

dateOfBirth  XSD.Date } 

ListOfDays ::= [LIST] SEQUENCE OF Day 

Day ::=  ENUMERATED 

{ friday, monday, saturday, sunday, thursday, tuesday, wednesday } 

-- Note that 12.4.1.3 specifies use of a lexicographical order, as 

-- the members of an enumeration are not ordered in an XML Schema 

NamesOfMemberNations ::= [NAME AS UNCAPITALIZED] [LIST] SEQUENCE OF 

XSD.String (FROM({0, 0, 0, 33} .. {0, 16, 255, 253})) 

FileIdentifier ::= [NAME AS UNCAPITALIZED] SEQUENCE { 

choice [UNTAGGED] CHOICE { 

 serialNumber  XSD.Int, 

 relativeName  XSD.String, 
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 unidentified  Unidentified   } } 

Unidentified ::=  [NAME AS UNCAPITALIZED] XSD.AnyType 

ENCODING-CONTROL XER 

GLOBAL-DEFAULTS MODIFIED-ENCODINGS 

GLOBAL-DEFAULTS CONTROL-NAMESPACE 

 "http://www.w3.org/2001/XMLSchema-instance" PREFIX "xsi" 

TEXT Day:ALL 

END 

D.3 Further examples 

In this subclause, all the partial examples (the examples that do not contain the schema element) assume that the XML 

elements representing the XSD syntax are in the scope of a default namespace declaration whose namespace name is the 

target namespace of the schema. 

D.3.1 Schema documents with import and include element information items 

The following XSD Schema is composed of two namespaces that are composed from four schema files: 

<!-- file "http://example.com/xyz/schema.xsd" --> 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
 xmlns:xyz="http://example.com/xyz" 

targetNamespace="http://example.com/xyz"> 

 <xsd:element name="xyz-elem" type="xsd:string"/> 

 <xsd:complexType name="Xyz-type"> 
 <xsd:attribute name="xyz-attr" type="xsd:boolean"/> 
</xsd:complexType> 

</xsd:schema> 

<!-- file "http://example.com/abc/main.xsd" --> 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
 xmlns:xyz="http://example.com/xyz" 
 xmlns:abc="http://example.com/abc" 
 targetNamespace="http://example.com/abc"> 

 <xsd:import namespace="http://example.com/xyz"  
 schemaLocation="http://example.com/xyz/schema.xsd"/> 

 <xsd:include schemaLocation="http://example.com/abc/sub1.xsd"/> 

 <xsd:include schemaLocation="http://example.com/abc/sub2.xsd"/> 

 <xsd:element name="abc-elem" type="xyz:Xyz-type"/> 
</xsd:schema> 

<!-- file "http://example.com/abc/sub1.xsd" --> 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:abc="http://example.com/abc" 
targetNamespace="http://example.com/abc"> 

 <xsd:element name="sub1-elem" type="xsd:string"/> 
</xsd:schema> 

<!-- file "http://example.com/abc/sub2.xsd" --> 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:abc="http://example.com/abc" 
targetNamespace="http://example.com/abc"> 
 
<xsd:element name="sub2-elem " type="xsd:string"/> 
<xsd:attribute name="sub2-attr" type="xsd:string"/> 

</xsd:schema> 

Those four schema documents are mapped to the two following ASN.1 modules: 
 XYZ -- The module reference is not standardized 

DEFINITIONS XER INSTRUCTIONS AUTOMATIC TAGS ::= 

BEGIN 

IMPORTS 

String FROM XSD{joint-iso-itu-t asn1(1) specification(0) modules(0) 

       xsd-module(2) version1(1)} 

   /* For a version 2 mapping, the last component of the module 

                    identifier would be version2(2) */ 

; 
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Xyz-elem ::= [NAME AS UNCAPITALIZED] XSD.String 

Xyz-type ::= SEQUENCE { 

 xyz-attr [ATTRIBUTE] BOOLEAN OPTIONAL } 

 

ENCODING-CONTROL XER 

 GLOBAL-DEFAULTS MODIFIED-ENCODINGS 

 GLOBAL-DEFAULTS CONTROL-NAMESPACE 

  "http://www.w3.org/2001/XMLSchema-instance" 

  PREFIX "xsi" 

 NAMESPACE ALL AS "http://example.com/xyz" 

  PREFIX "xyz" 

END 

 ABC -- The module reference is not standardized 

DEFINITIONS XER INSTRUCTIONS AUTOMATIC TAGS ::= 

BEGIN 

IMPORTS  

Xyz-type FROM XYZ 

String FROM XSD {joint-iso-itu-t asn1(1) specification(0) modules(0) 

       xsd-module(2) version1(1)} 

     /* For a version 2 mapping, the last component of the module 

        identifier would be version2(2) */ 

; 

 

Abc-elem ::= [NAME AS UNCAPITALIZED] Xyz-type 

Sub1-elem ::= [NAME AS UNCAPITALIZED] XSD.String 

Sub2-elem ::= [NAME AS UNCAPITALIZED] XSD.String 

Sub2-attr ::= [NAME AS UNCAPITALIZED] [ATTRIBUTE] XSD.String 

 

ENCODING-CONTROL XER 

 GLOBAL-DEFAULTS MODIFIED-ENCODINGS 

 GLOBAL-DEFAULTS CONTROL-NAMESPACE 

  "http://www.w3.org/2001/XMLSchema-instance" 

  PREFIX "xsi" 

 NAMESPACE ALL AS "http://example.com/abc" 

  PREFIX "abc" 

END 

D.3.2 Mapping simple type definitions 

D.3.2.1 simple type definition derived by restriction 

For a complete set of examples of simple type restrictions, see the examples of facets in D.3.3. 

D.3.2.2 simple type definition derived by list 

<xsd:simpleType name="Int-list"> 
 <xsd:list itemType="xsd:integer"/> 
</xsd:simpleType> 

<xsd:simpleType name="Int-10-to-100-list"> 
 <xsd:list> 
  <xsd:simpleType> 
   <xsd:restriction base="xsd:integer"> 
    <xsd:minInclusive value="10"/> 
    <xsd:maxInclusive value="100"/> 
   </xsd:restriction> 
  </xsd:simpleType> 
 </xsd:list> 
</xsd:simpleType> 

These simple type definitions are mapped to the following ASN.1 type assignments: 
Int-list ::= [LIST] SEQUENCE OF INTEGER 

Int-10-to-100-list ::= [LIST] SEQUENCE OF INTEGER (10..100) 

D.3.2.3 simple type definition derived by union 

<xsd:simpleType name="Int-or-boolean"> 
 <xsd:union memberType="xsd:integer xsd:boolean"/> 
</xsd:simpleType> 

<xsd:simpleType name="Time-or-int-or-boolean--or-dateRestriction"> 
 <xsd:union memberType=" xsd:time Int-or-boolean"> 
  <xsd:simpleType> 
   <xsd:restriction base="xsd:date"> 
    <xsd:minInclusive value="2003-01-01"/> 
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   </xsd:restriction>    
  </xsd:simpleType> 
 </xsd:union> 
</xsd:simpleType> 

These simple type definitions are mapped to the following ASN.1 type assignments: 
Int-or-boolean ::= [USE-UNION] CHOICE { 

integer [NAMESPACE "http://www.w3.org/2001/XMLSchema"] INTEGER, 

boolean [NAMESPACE "http://www.w3.org/2001/XMLSchema"] BOOLEAN } 

Time-or-int-or-boolean-or-dateRestriction ::= [USE-UNION] CHOICE { 

time [NAMESPACE "http://www.w3.org/2001/XMLSchema"] XSD.Time, 

integer [NAMESPACE "http://www.w3.org/2001/XMLSchema"] INTEGER, 

boolean [NAMESPACE "http://www.w3.org/2001/XMLSchema"] BOOLEAN, 

alt [NAME AS ""] XSD.Date (CONSTRAINED BY  

 { /* minInclusive="2003-01-01" */ }) } 

D.3.2.4 Mapping type derivation hierarchies for simple type definitions 

<xsd:simpleType name="Int-10-to-50"> 
 <xsd:restriction base="xsd:integer"> 
  <xsd:minExclusive value="10"/> 
  <xsd:maxExclusive value="50"/> 
 </xsd:restriction> 
</xsd:simpleType> 

<xsd:simpleType name="Ten-multiples"> 
 <xsd:restriction base="Int-10-to-50"> 
  <xsd:enumeration value="20"/> 
  <xsd:enumeration value="30"/> 
  <xsd:enumeration value="40"/> 
 </xsd:restriction> 
</xsd:simpleType> 

<xsd:simpleType name="Twenty-multiples"> 
 <xsd:restriction base="Ten-multiples"> 
  <xsd:pattern value=".*[02468]0|0"/> 
 </xsd:restriction> 
</xsd:simpleType> 

<xsd:complexType name="Stock-level"> 
<xsd:simpleContent> 

  <xsd:extension base="Int-10-to-50"> 
   <xsd:attribute name="procurement" type="Int-10-to-50"/> 
  </xsd:extension> 

</xsd:simpleContent> 
</xsd:complexType> 

These simple type definitions are mapped to the following ASN.1 type assignments: 

 
Int-10-to-50 ::= INTEGER (10<..<50) 

Ten-multiples ::= [USE-NUMBER] ENUMERATED {int20(20), int30(30), int40(40)} 

Twenty-multiples ::= [USE-NUMBER] ENUMERATED {int20(20), int40(40)} 

Stock-level ::= SEQUENCE { 

procurement [ATTRIBUTE] Int-10-to-50 OPTIONAL, 

base        [UNTAGGED] Int-10-to-50 } 

Ten-multiples-derivations ::= [USE-TYPE] CHOICE { 

ten-multiples    [NAME AS CAPITALIZED] Ten-multiples, 

twenty-multiples [NAME AS CAPITALIZED] Twenty-multiples } 

Int-10-to-50-derivations ::= [USE-TYPE] CHOICE { 

int-10-to-50     [NAME AS CAPITALIZED] Int-10-to-50, 

stock-level      [NAME AS CAPITALIZED] Stock-level, 

ten-multiples    [NAME AS CAPITALIZED] Ten-multiples, 

twenty-multiples [NAME AS CAPITALIZED] Twenty-multiples } 

if and only if: 

a)  the simple type definition "Int-10-to-50" occurs as the type definition of at least one element declaration (not 

shown in the example) that is being mapped to ASN.1; 

b)  the simple type definition "Ten-multiples" occurs as the type definition of at least one element declaration (not 

shown in the example) that is being mapped to ASN.1; and 

c)  there are no other schema components being mapped to ASN.1 which are generating the ASN.1 type 

reference names Int-10-to-50, Ten-multiples, Twenty-multiples, Stock-level, Ten-

multiples-derivations, and Int-10-to-50-derivations. 
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D.3.3 Mapping facets 

D.3.3.1 length, minLength, and maxLength 

<xsd:simpleType name="String-10"> 
<xsd:restriction base="xsd:string"> 
 <xsd:length value="10"/> 
</xsd:restriction> 

</xsd:simpleType> 

<xsd:simpleType name="String-5-to-10"> 
<xsd:restriction base="xsd:string"> 
 <xsd:minLength value="5"/> 
 <xsd:maxLength value="10"/> 
</xsd:restriction> 

</xsd:simpleType> 

These two simple type definitions are mapped to the following ASN.1 type assignments: 
String-10 ::= XSD.String (SIZE(10)) 

String-5-to-10 ::= XSD.String (SIZE(5..10)) 

D.3.3.2 pattern 

<xsd:simpleType name="My-filename"> 
<xsd:restriction base="xsd:string"> 
 <xsd:pattern value="[&#x20;-&#xFF;]*"/> 
 <xsd:pattern value="/?([^/]*/)*[^/]*/*" /> 
</xsd:restriction> 

</xsd:simpleType> 

This simple type definition is mapped to the following ASN.1 type assignment: 
My-filename ::= XSD.String 

(CONSTRAINED BY  

 {/* XML representation of the XSD pattern 

     "[&#x20;-&#xFF;]*" "/?([^/]*&#x2F;)*[^/]*&#x2F;*" */}) 

D.3.3.3 whiteSpace 

<xsd:simpleType name="My-String"> 
<xsd:restriction base="xsd:string"> 
 <xsd:whiteSpace value="preserve"/> 
</xsd:restriction> 

</xsd:simpleType> 

<xsd:simpleType name="My-NormalizedString"> 
<xsd:restriction base="xsd:string"> 
 <xsd:whiteSpace value="replace"/> 
</xsd:restriction> 

</xsd:simpleType> 

<xsd:simpleType name="My-TokenString"> 
<xsd:restriction base="xsd:string"> 
 <xsd:whiteSpace value="collapse"/> 
</xsd:restriction> 

</xsd:simpleType> 

These simple type definitions are mapped to the following ASN.1 type assignments: 
My-String ::= XSD.String 

My-NormalizedString ::= [WHITESPACE REPLACE] XSD.String  

 (FROM ({0, 0, 0, 32} .. {0, 16, 255, 255})) 

My-TokenString ::= [WHITESPACE COLLAPSE] XSD.String  

 (FROM ({0, 0, 0, 32} .. {0, 16, 255, 255})) 

 (PATTERN "([^ ]([^ ]| [^ ])*)?") 

D.3.3.4  minInclusive, minExclusive, maxInclusive, and maxExclusive 

<xsd:simpleType name="Int-10-to-100"> 
<xsd:restriction base="xsd:integer"> 
 <xsd:minExclusive value="10"/> 
 <xsd:maxInclusive value="100"/> 
</xsd:restriction> 

</xsd:simpleType> 

<xsd:simpleType name="Pi-approximation"> 
<xsd:restriction base="xsd:double"> 
 <xsd:minExclusive value="3.14159"/> 
 <xsd:maxExclusive value="3.1416"/> 
</xsd:restriction> 
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</xsd:simpleType> 

<xsd:simpleType name="Morning"> 
<xsd:restriction base="xsd:time"> 
 <xsd:minInclusive value="00:00:00"/> 
 <xsd:maxExclusive value="12:00:00"/> 
</xsd:restriction> 

</xsd:simpleType> 

These simple type definitions are mapped to the following ASN.1 type assignments: 
Int-10-to-100 ::= INTEGER (10<..100) 

Pi-approximation ::= XSD.Double (3.14159<..<3.1416) 

Morning ::= XSD.Time (CONSTRAINED BY 

{/* minInclusive="00:00:00" maxExclusive="12:00:00" */ }) 

D.3.3.5 totalDigits and fractionDigits 

<xsd:simpleType name="RefundableExpenses"> 
<xsd:restriction base="xsd:decimal"> 
 <xsd:totalDigits value="5"/> 
 <xsd:fractionDigits value="2"/> 
</xsd:restriction> 

</xsd:simpleType> 

This simple type definition is mapped to the following ASN.1 type assignment: 
RefundableExpenses ::= XSD.Decimal (CONSTRAINED BY 

{/* totalDigits="5" fractionDigits="2" */ }) 

D.3.3.6 enumeration 

<xsd:simpleType name="FarmAnimals"> 
<xsd:restriction base="xsd:normalizedString"> 
 <xsd:enumeration value="Horse"/> 
 <xsd:enumeration value="Bull"/> 
 <xsd:enumeration value="Cow"/> 
 <xsd:enumeration value="Pig"/> 
 <xsd:enumeration value="Duck"/> 
 <xsd:enumeration value="Goose"/> 
</xsd:restriction> 

                  </xsd:simpleType> 

<xsd:simpleType name="PrimeNumbersBelow30"> 
<xsd:restriction base="xsd:integer"> 
 <xsd:enumeration value="2"/> 
 <xsd:enumeration value="3"/> 
 <xsd:enumeration value="5"/> 
 <xsd:enumeration value="7"/> 
 <xsd:enumeration value="11"/> 
 <xsd:enumeration value="13"/> 
 <xsd:enumeration value="17"/> 
 <xsd:enumeration value="19"/> 
 <xsd:enumeration value="23"/> 
 <xsd:enumeration value="29"/> 
</xsd:restriction> 

</xsd:simpleType> 

<xsd:simpleType name="X680-release"> 
<xsd:restriction base="xsd:gYearMonth"> 
 <xsd:enumeration value="2002-07"/> 
 <xsd:enumeration value="1997-12"/> 
 <xsd:enumeration value="1994-07"/> 
</xsd:restriction> 

</xsd:simpleType> 

These simple type definitions are mapped to the following ASN.1 type assignments: 
FarmAnimals ::= [WHITESPACE REPLACE] 

-- This encoding instruction ensures that an enumeration such as 

-- value="Slow Loris" (containing a space) is encoded correctly.   

ENUMERATED { bull, cow, duck, goose, horse, pig } 

PrimeNumbersBelow30 ::= [USE-NUMBER] ENUMERATED {int2(2), int3(3), int5(5),  int7(7), 

int11(11), int13(13), int17(17), int19(19), int23(23), int29(29)} 

X680-release ::= XSD.GYearMonth ("2002-07" | "1997-12" | "1994-07") 

The following encoding instruction is included in the XER encoding control section: 
TEXT FarmAnimals:ALL AS CAPITALIZED 
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D.3.3.7 enumeration in conjunction with other facets 

The following examples are based on the inheritance of facets using the restriction of some of the types defined in D.3.3.6. 

<xsd:simpleType name="FarmAnimals-subset"> 
<xsd:restriction base="FarmAnimals"> 
 <xsd:minLength value="4"/> 
 <xsd:pattern value="[^oe]*"/> 
</xsd:restriction> 

</xsd:simpleType> 

<xsd:simpleType name="PrimeNumbersBelow30-subset"> 
 <xsd:restriction base="PrimeNumbersBelow30"> 
  <xsd:minExclusive value="5"/> 
  <xsd:pattern value=".*[23].*"/> 
 </xsd:restriction> 
</xsd:simpleType> 

These simple type definitions are mapped to the following ASN.1 type assignments: 
/* Horse and Goose do not satisfy the pattern facet 

   Cow and Pig do not satisfy the minLength facet */ 

FarmAnimals-subset ::= [WHITESPACE REPLACE] ENUMERATED {bull, duck} 

/* 2, 3 and 5 do not satisfy the minExclusive facet 

   2, 5, 7, 11, 17 and 19 do not satisfy  the pattern facet */ 

PrimeNumbersBelow30-subset ::= [USE-NUMBER] ENUMERATED {int13(13), int23(23), 

           int29(29)} 

The following encoding instruction is included in the XER encoding control section: 
TEXT FarmAnimals-subset:ALL AS CAPITALIZED 

D.3.4 Mapping element declarations 

D.3.4.1 element declarations whose type definition is a top-level simple type definition or complex type definition 

<xsd:element name="Forename" type="xsd:token"/> 

<xsd:element name="File" type="My-filename"/> 

<xsd:element name="Value" type="Int-10-to-50"/> 

These element declarations are mapped to the following ASN.1 type assignments: 
Forename ::= XSD.Token 

File ::= My-filename 

Value ::= Int-10-to-50-derivations 

NOTE – The type "My-filename" and its mapping to ASN.1 is defined in D.3.3.2; the type "Int-10-to-50" and its mapping to ASN.1 

is defined in D.3.2.4. 

D.3.4.2 element declarations whose type definition is an anonymous simple type definition or complex type definition 

<xsd:element name="maxOccurs"> 
 <xsd:simpleType> 
  <xsd:union memberTypes="xsd:nonNegativeInteger"> 
   <xsd:simpleType> 
    <xsd:restriction base="xsd:token"> 
     <xsd:enumeration value="unbounded"/> 
    </xsd:restriction> 
   </xsd:simpleType> 
  </xsd:union> 
 </xsd:simpleType> 
</xsd:element> 

<xsd:element name="address"> 
 <xsd:complexType> 
  <xsd:sequence> 
   <xsd:element name="line-1" type="xsd:token"/> 
   <xsd:element name="line-2" type="xsd:token"/> 
   <xsd:element name="city" type="xsd:token"/> 
   <xsd:element name="state" type="xsd:token" minOccurs="0"/> 
   <xsd:element name="zip" type="xsd:token"/> 
  </xsd:sequence> 
  <xsd:attribute name="country" type="xsd:token"/> 
 </xsd:complexType> 
</xsd:element> 

These element declarations are mapped to the following ASN.1 type assignments: 
MaxOccurs ::= [NAME AS UNCAPITALIZED] [USE-UNION] CHOICE { 

nonNegativeInteger [NAMESPACE AS "http://www.w3.org/2001/XMLSchema"] 

       INTEGER (0..MAX), 
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alt                [NAME AS ""]    ENUMERATED {unbounded} } 

Address ::= [NAME AS UNCAPITALIZED] SEQUENCE { 

country      [ATTRIBUTE] XSD.Token OPTIONAL, 

line-1       XSD.Token, 

line-2       XSD.Token, 

city         XSD.Token, 

state        XSD.Token OPTIONAL, 

zip          XSD.Token } 

D.3.4.3 element declarations which are the head of an element substitution group 

<xsd:element name="Tic" type="xsd:integer"  abstract="true"/> 

<xsd:element name="Tac" type="xsd:byte" substitutionGroup="Tic"/> 

<xsd:element name="Toe" substitutionGroup="Tic"/> 

<xsd:element name="Foo" type="xsd:date"/> 

<xsd:element name="Bar" substitutionGroup="Foo"/> 

These element declarations are mapped to: 
Tac ::=  INTEGER (-128..127) 

Toe ::= INTEGER 

Tic-group ::= [UNTAGGED] CHOICE { 

tac [NAME AS CAPITALIZED] Tac, 

toe [NAME AS CAPITALIZED] Toe } 

Foo ::= XSD.Date 

Bar ::= XSD.Date 

Foo-group ::= [UNTAGGED] CHOICE { 

bar [NAME AS CAPITALIZED] Bar, 

foo [NAME AS CAPITALIZED] Foo } 

if and only if: 

a)  the element declaration "Tic" occurs as the term of at least one particle (not shown in the example) that is 

being mapped to ASN.1; 

b)  the element declaration "Foo" occurs as the term of at least one particle (not shown in the example) that is 

being mapped to ASN.1; and 

c)  there are no other schema components being mapped to ASN.1 which are generating the ASN.1 type 

reference names Tac, Toe, Foo, Bar, Tic-group, and Foo-group. 

D.3.4.4 element declarations with a value constraint that is a default value 

D.3.4.4.1 The following is an element declaration with an anonymous simple type definition, not used as the base type 

definition of any type. 

<xsd:element name="Telephone" type="xsd:token" default="undefined"/> 

This element declaration is mapped to the following ASN.1 type assignment: 
Telephone ::= [DEFAULT-FOR-EMPTY AS "undefined"] XSD.Token 

D.3.4.4.2 The following is an element declaration with an anonymous complex type definition with simple content, not used 

as the base type definition of any type. 

<xsd:element name="InternationalTelephone" default="undefined"> 
<xsd:complexType> 

  <xsd:simpleContent> 
   <xsd:extension base="xsd:token"> 
    <xsd:attribute name="country-code" type="xsd:integer"/> 
   </xsd:extension> 
  </xsd:simpleContent> 

</xsd:complexType> 
</xsd:element> 

This element declaration is mapped to the following ASN.1 type assignment: 
InternationalTelephone ::= [DEFAULT-FOR-EMPTY AS "undefined"] SEQUENCE { 

country-code  [ATTRIBUTE] INTEGER OPTIONAL, 

base          [UNTAGGED]  XSD.Token } 

D.3.4.4.3 The following is an element declaration with an anonymous complex type definition. The complex type definition 

has complex content that is mixed and emptiable, and is not used as the base type definition of any type. 

<xsd:element name="Description" default="absent"> 
<xsd:complexType mixed="true"> 
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  <xsd:choice minOccurs="0" maxOccurs="unbounded"> 
   <xsd:element name="bold" type="xsd:string"/> 
   <xsd:element name="italic" type="xsd:string"/> 
  </xsd:choice> 

</xsd:complexType> 
</xsd:element> 

This element declaration is mapped to the following ASN.1 type assignment: 
Description ::= [EMBED-VALUES] [DEFAULT-FOR-EMPTY AS "absent"] SEQUENCE { 

embed-values  SEQUENCE OF XSD.String, 

choice-list   [UNTAGGED] SEQUENCE OF [UNTAGGED] CHOICE { 

 bold   XSD.String, 

 italic  XSD.String } } (CONSTRAINED BY  

{/* Shall conform to Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 25 */}) 

D.3.4.4.4 The type definition of the element declaration in the following example is used as the base type definition of another 

type. 

This example uses the XSD and ASN.1 types of the example in D.3.2.4. 

<xsd:element name="Quantity" type="Int-10-to-50" default="20"/> 

This element declaration is mapped to the following ASN.1 type assignment: 
Quantity ::= Int-10-to-50-deriv-default-20 

If no ASN.1 type corresponding to Int-10-to-50, with a default value of "20" has already been generated, the following 

type is also generated: 
Int-10-to-50-deriv-default-20 ::= [USE-TYPE] CHOICE { 

int-10-to-50     [NAME AS CAPITALIZED] [DEFAULT-FOR-EMPTY AS 20]  

                                  Int-10-to-50, 

stock-level      [NAME AS CAPITALIZED] [DEFAULT-FOR-EMPTY AS 20]  

                                  Stock-level, 

ten-multiples    [NAME AS CAPITALIZED] [DEFAULT-FOR-EMPTY AS int20]  

                                  Ten-multiples, 

twenty-multiples [NAME AS CAPITALIZED] [DEFAULT-FOR-EMPTY AS int20] 

                                  Twenty-multiples } 

D.3.4.5 element declaration with a value constraint that is a fixed value 

D.3.4.5.1 The following is an element declaration with an anonymous simple type definition, which is not used as the base 

type definition of any type. 

<xsd:element name="UnknownTelephone" type="xsd:token" fixed="undefined"/> 

This element declaration is mapped to the following ASN.1 type assignment: 
UnknownTelephone ::= [DEFAULT-FOR-EMPTY AS "undefined"] XSD.Token ("undefined") 

D.3.4.5.2 The following is an element declaration with an anonymous complex type definition.  The complex type definition 

has simple content and is not used as the base type definition of any type. 

<xsd:element name="UnknownInternationalTelephone" fixed="undefined"> 
<xsd:complexType> 

  <xsd:simpleContent> 
   <xsd:extension base="xsd:token"> 
    <xsd:attribute name="country-code" type="xsd:integer"/> 
   </xsd:extension> 
  </xsd:simpleContent> 

</xsd:complexType> 
</xsd:element> 

This element declaration is mapped to the following ASN.1 type assignment: 
UnknownInternationalTelephone ::= [DEFAULT-FOR-EMPTY AS "undefined"] SEQUENCE { 

country-code    [ATTRIBUTE] INTEGER OPTIONAL, 

base            [UNTAGGED] XSD.Token } 

 (WITH COMPONENTS {..., base ("undefined")}) 

D.3.4.5.3 The following is an element declaration with an anonymous complex type definition. The complex type definition 

has complex content that is mixed and emptiable, and is not used as the base type definition of any type. 

<xsd:element name="UnknownDescription" fixed="absent"> 
<xsd:complexType mixed="true"> 

  <xsd:choice minOccurs="0" maxOccurs="unbounded"> 
   <xsd:element name="bold" type="xsd:string"/> 
   <xsd:element name="italic" type="xsd:string"/> 
  </xsd:choice> 

</xsd:complexType> 
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</xsd:element> 

This element declaration is mapped to the following ASN.1 type assignment: 
UnknownDescription ::= [EMBED-VALUES] [DEFAULT-FOR-EMPTY AS "absent"] SEQUENCE { 

embed-values      SEQUENCE OF XSD.String, 

choice-list       [UNTAGGED] SEQUENCE OF [UNTAGGED] CHOICE { 

 bold    XSD.String, 

 italic   XSD.String } }  

(CONSTRAINED BY  

 {/* Shall conform to Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 25 */}) 

(WITH COMPONENTS {embed-values ({"absent"}), 

    choice-list (SIZE(0))}) 

D.3.4.5.4 The type definition of the following element declaration is a simple type definition used as the base type definition of 

another type. 

This example uses the XSD and ASN.1 types of the example in D.3.2.4. 

<xsd:element name="Quantity" type="Int-10-to-50" fixed="20"/> 

This element declaration is mapped to the following ASN.1 type assignment: 
Quantity ::= Int-10-to-50-deriv-fixed-20 

If no ASN.1 type corresponding to Int-10-to-50 with a fixed value of "20" has already been generated, the following 

type is also generated: 
Int-10-to-50-deriv-fixed-20 ::= [USE-TYPE] CHOICE { 

int-10-to-50  [NAME AS CAPITALIZED] [DEFAULT-FOR-EMPTY AS 20]  

                         Int-10-to-50, 

stock-level  [NAME AS CAPITALIZED] [DEFAULT-FOR-EMPTY AS 20] 

      Stock-level, 

ten-multiples  [NAME AS CAPITALIZED] [DEFAULT-FOR-EMPTY AS int20] 

                         Ten-multiples, 

twenty-multiples [NAME AS CAPITALIZED] [DEFAULT-FOR-EMPTY AS int20] 

                         Twenty-multiples } 

 (WITH COMPONENTS { 

 int-10-to-50 (20), 

 stock-level (WITH COMPONENTS {..., base (20)}), 

 ten-multiples (int20), 

 twenty-multiples (int20) }) 

D.3.4.6 element declarations that are nillable 

D.3.4.6.1 The following example shows an element declaration that is nillable and whose type definition is an XSD built-in 

type. 

<xsd:element name="Nillable-1" type="xsd:string" nillable="true"/> 

This element declaration is mapped to the following ASN.1 type assignment: 
Nillable-1 ::= [USE-NIL] SEQUENCE { 

content XSD.String OPTIONAL } 

D.3.4.6.2 The following example shows an element declaration that is nillable and whose type definition is an anonymous 

complex type definition. 

<xsd:element name="Nillable-2" nillable="true"> 
<xsd:complexType> 
 <xsd:sequence> 
  <xsd:element name="a" type="xsd:string"/> 
  <xsd:element name="b" type="xsd:string"/> 
 </xsd:sequence> 
 <xsd:attribute name="b" type="xsd:boolean"/> 
     </xsd:complexType> 

</xsd:element> 

This element declaration is mapped to the following ASN.1 type assignment: 
Nillable-2 ::= [USE-NIL] SEQUENCE { 

b   [ATTRIBUTE] BOOLEAN OPTIONAL, 

content SEQUENCE { 

 a   XSD.String, 

 b   XSD.String } OPTIONAL } 

D.3.4.6.3 The following example shows an element declaration that is nillable, and whose type definition is a top-level 

complex type definition. 
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<xsd:complexType name="Foo"> 
<xsd:sequence> 
 <xsd:element name="a" type="xsd:string"/> 
 <xsd:element name="b" type="xsd:string"/> 
</xsd:sequence> 
<xsd:attribute name="b" type="xsd:boolean"/> 

</xsd:complexType> 

<xsd:element name="Nillable-3" type="Foo" nillable="true"/> 

These schema components are mapped to the following ASN.1 type assignments: 
Foo ::= SEQUENCE { 

b  [ATTRIBUTE] BOOLEAN OPTIONAL, 

a  XSD.String, 

b-1  [NAME AS "b"] XSD.String } 

Foo-nillable ::= [USE-NIL] SEQUENCE { 

b   [ATTRIBUTE] BOOLEAN OPTIONAL, 

content  SEQUENCE { 

 a   XSD.String, 

 b   XSD.String } OPTIONAL } 

Nillable-3 ::= Foo-nillable 

D.3.4.6.4 The following example shows an element declaration that is nillable, whose type definition is a top-level complex 

type definition, and which is used as the base type definition of another complex type definition. 

The following schema components are defined in addition to the schema components of D.3.4.6.3: 

<xsd:complexType name="Bar"> 
<xsd:complexContent> 
 <xsd:extension base="Foo"> 
  <xsd:sequence> 
   <xsd:element name="z" type="xsd:string"/> 
  </xsd:sequence> 
  <xsd:attribute name="c" type="xsd:boolean"/> 
 </xsd:extension> 
</xsd:complexContent> 

</xsd:complexType> 

<xsd:element name="Nillable-4" type="Foo" nillable="true"/> 

In addition to the type Foo of D.3.4.6.3, the following ASN.1 types are generated: 
Bar ::= SEQUENCE { 

b  [ATTRIBUTE] BOOLEAN OPTIONAL, 

c  [ATTRIBUTE] BOOLEAN OPTIONAL, 

a  XSD.String, 

b-1  [NAME AS "b"] XSD.String, 

z  XSD.String } 

Foo-nillable ::= [USE-NIL] SEQUENCE { 

b   [ATTRIBUTE] BOOLEAN OPTIONAL, 

content  SEQUENCE { 

 a   XSD.String, 

 b   XSD.String } OPTIONAL } 

Bar-nillable ::= [USE-NIL] SEQUENCE { 

b   [ATTRIBUTE] BOOLEAN OPTIONAL, 

c   [ATTRIBUTE] BOOLEAN OPTIONAL, 

content  SEQUENCE { 

 a   XSD.String, 

 b   XSD.String, 

 z   XSD.String } OPTIONAL } 

Foo-deriv-nillable ::= [USE-TYPE] CHOICE { 

foo   [NAME AS CAPITALIZED] Foo-nillable, 

bar   [NAME AS CAPITALIZED] Bar-nillable } 

Nillable-4 ::= Foo-deriv-nillable 

D.3.5 Mapping attribute uses and attribute declarations 

D.3.5.1 The following is an example of a top-level attribute declaration whose type definition is a top-level simple type 

definition. 

<xsd:attribute name="name" type="xsd:NCName"/> 

This attribute declaration is mapped to the following ASN.1 type assignment: 
Name ::= [NAME AS UNCAPITALIZED] [ATTRIBUTE] XSD.NCName 
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D.3.5.2 The following is an example of a top-level attribute declaration whose type definition is an anonymous simple type 

definition. 

<xsd:attribute name="form"> 
 <xsd:simpleType> 
  <xsd:restriction base="xsd:token"> 
   <xsd:enumeration value="qualified"/> 
   <xsd:enumeration value="unqualified"/> 
  </xsd:restriction> 
 </xsd:simpleType> 
</xsd:attribute> 

This attribute declaration is mapped to the following ASN.1 type assignment: 
Form ::= [NAME AS UNCAPITALIZED] [ATTRIBUTE] ENUMERATED {qualified, unqualified} 

D.3.5.3 The following example is an attribute use with a value constraint that is a default value. 

The attribute declaration whose name is "form" and that is referenced in this example is defined in D.3.5.2. 

<xsd:complexType name="element"> 
 <xsd:attribute name="name" type="xsd:NCName" default="NAME"/> 
 <xsd:attribute ref="form" default="qualified"/> 
</xsd:complexType> 

This complex type definition is mapped to the following ASN.1 type assignment: 
Element ::= [NAME AS UNCAPITALIZED] SEQUENCE { 

form [ATTRIBUTE] Form DEFAULT qualified, 

name [ATTRIBUTE] XSD.NCName DEFAULT "NAME" } 

D.3.5.4 This example shows a top-level attribute declaration with a value constraint that is a default value and an attribute 

use with this attribute declaration. 

<xsd:attribute name="minOccurs" type="xsd:nonNegativeInteger" default="1"/> 

<xsd:attribute name="maxOccurs" default="1"> 
 <xsd:simpleType> 
  <xsd:union memberTypes="xsd:nonNegativeInteger" > 
   <xsd:simpleType> 
    <xsd:restriction base="xsd:NMTOKEN"> 
     <xsd:enumeration value="unbounded"/> 
    </xsd:restriction> 
   </xsd:simpleType> 
  </xsd:union> 
 </xsd:simpleType> 
</xsd:attribute> 

<xsd:complexType name="Particle"> 
 <xsd:sequence> 
  <xsd:element name="particle"/> 
 </xsd:sequence> 
 <xsd:attribute ref="minOccurs"/> 
 <xsd:attribute ref="maxOccurs" default="unbounded"/> 
</xsd:complexType> 

These schema components are mapped to the following ASN.1 type assignments: 
MinOccurs ::= [ATTRIBUTE] [NAME AS UNCAPITALIZED] INTEGER (0..MAX) 

MaxOccurs ::= [ATTRIBUTE] [NAME AS UNCAPITALIZED] [USE-UNION] CHOICE { 

nonNegativeInteger  [NAMESPACE AS "http://www.w3.org/2001/XMLSchema"] 

      INTEGER (0..MAX), 

alt     [NAME AS ""] 

    [WHITESPACE COLLAPSE] ENUMERATED {unbounded} } 

Particle ::= SEQUENCE { 

maxOccurs   [ATTRIBUTE] MaxOccurs DEFAULT alt : unbounded, 

minOccurs   [ATTRIBUTE] MinOccurs DEFAULT 1, 

particle   XSD.AnyType } 

D.3.5.5 This example shows an attribute use whose attribute declaration has a target namespace that is not absent. 

<xsd:complexType name="Ack"> 
 <xsd:attribute name="number" type="xsd:integer" form="qualified" /> 
</xsd:complexType> 

This complex type definition is mapped to the following ASN.1 type assignment: 
Ack ::= SEQUENCE { 

number [NAMESPACE AS "http://targetnamespaceForExample"] [ATTRIBUTE] 

    INTEGER OPTIONAL } 
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D.3.6 Mapping model group definitions 

D.3.6.1 The following is a model group definition whose model group has a compositor of sequence. 

<xsd:group name="mySequence"> 
 <xsd:sequence> 
  <xsd:element name="a" type="xsd:string"/> 
  <xsd:element name="b" type="xsd:boolean"/> 
 </xsd:sequence> 
</xsd:group> 

This model group definition is mapped to the following ASN.1 type assignment: 
MySequence ::= [UNTAGGED] SEQUENCE { 

a XSD.String, 

b BOOLEAN } 

D.3.6.2 The following is a model group definition whose model group has a compositor of all. 

<xsd:group name="myAll"> 
 <xsd:all> 
  <xsd:element name="a" type="xsd:string"/> 
  <xsd:element name="b" type="xsd:boolean"/> 
 </xsd:all> 
</xsd:group> 

This model group definition is not mapped to ASN.1. See D.3.8.3.1 for an example of the mapping of a complex type 

definition where the model group of this model group definition occurs as the topmost model group. 

D.3.6.3 The following is a model group definition whose model group has a compositor of choice. 

<xsd:group name="myChoice"> 
 <xsd:choice> 
  <xsd:element name="am" type="xsd:string"/> 
  <xsd:element name="bm" type="xsd:boolean"/> 
 </xsd:choice> 
</xsd:group> 

This model group definition is mapped to the following ASN.1 type assignment: 
MyChoice ::= [UNTAGGED] CHOICE { 

am XSD.String, 

bm BOOLEAN } 

D.3.7 Mapping particles 

The model group definition of D.3.6.3 and its corresponding ASN.1 type are used in some of the particle examples. 

D.3.7.1 The following example shows particles of a model group with a compositor of sequence. 

<xsd:complexType name="ElementSequence"> 
 <xsd:sequence> 
  <xsd:element name="elem1" type="xsd:boolean"/> 
  <xsd:element name="elem2" type="xsd:boolean" minOccurs="0"/> 
  <xsd:element name="elem3" type="xsd:boolean" minOccurs="2" maxOccurs="5"/> 
  <xsd:element name="elem4" type="xsd:boolean" minOccurs="0" maxOccurs="unbounded"/> 
  <xsd:element name="elem5" type="xsd:boolean" minOccurs="5" maxOccurs="unbounded"/> 
 </xsd:sequence> 
</xsd:complexType> 

<xsd:complexType name="ModelGroupSequence"> 
 <xsd:sequence> 
  <xsd:group ref="myChoice"/> 
  <xsd:choice> 
   <xsd:element name="a" type="xsd:string"/> 
   <xsd:element name="b" type="xsd:string"/> 
  </xsd:choice> 
  <xsd:sequence> 
   <xsd:element name="c" type="xsd:string"/> 
   <xsd:element name="d" type="xsd:string"/> 
  </xsd:sequence> 
  <xsd:choice minOccurs="3" maxOccurs="12"> 
   <xsd:element name="e" type="xsd:string"/> 
   <xsd:element name="f" type="xsd:string"/> 
  </xsd:choice> 
 
 </xsd:sequence> 
</xsd:complexType> 
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These complex type definitions are mapped to the following ASN.1 type assignments: 
ElementSequence ::= SEQUENCE { 

elem1   BOOLEAN, 

elem2   BOOLEAN OPTIONAL, 

elem3-list   [UNTAGGED] SEQUENCE (SIZE(2..5)) OF elem3 BOOLEAN, 

elem4-list   [UNTAGGED] SEQUENCE OF elem4 BOOLEAN, 

elem5-list   [UNTAGGED] SEQUENCE (SIZE(5..MAX)) OF elem5 BOOLEAN } 

ModelGroupSequence ::= SEQUENCE { 

myChoice   MyChoice, 

choice   [UNTAGGED] CHOICE { 

 a    XSD.String, 

 b    XSD.String }, 

c    XSD.String, 

d    XSD.String, 

choice-list  [UNTAGGED] SEQUENCE (SIZE(3..12)) OF [UNTAGGED] CHOICE { 

 e    XSD.String, 

 f    XSD.String } } 

D.3.7.2 The following example shows particles of a model group with a compositor of all. 

<xsd:complexType name="ElementAll"> 
 <xsd:all> 
  <xsd:element name="elem1" type="xsd:boolean"/> 
  <xsd:element name="elem2" type="xsd:boolean" minOccurs="0"/> 
 </xsd:all> 
</xsd:complexType> 

This complex type definition is mapped to the following ASN.1 type assignments: 
ElementAll ::= [USE-ORDER] SEQUENCE { 

order SEQUENCE OF ENUMERATED {elem1, elem2}, 

elem1 XSD.String, 

elem2 XSD.String OPTIONAL }  

(CONSTRAINED BY  

 {/* Shall conform to Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 35 */})  

D.3.7.3 The following example shows particles of a model group with a compositor of choice. 

<xsd:complexType name="ElementSequence"> 
 <xsd:choice> 
  <xsd:element name="elem1" type="xsd:boolean"/> 
  <xsd:element name="elem2" type="xsd:boolean" minOccurs="0"/> 
  <xsd:element name="elem3" type="xsd:boolean" minOccurs="2" maxOccurs="5"/> 
  <xsd:element name="elem4" type="xsd:boolean" minOccurs="0" maxOccurs="unbounded"/> 
  <xsd:element name="elem5" type="xsd:boolean" minOccurs="5" maxOccurs="unbounded"/> 
 </xsd:choice> 
</xsd:complexType> 

<xsd:complexType name="ModelGroupChoice"> 
 <xsd:choice> 
  <xsd:group ref="myChoice"/> 
  <xsd:choice> 
   <xsd:element name="a" type="xsd:string"/> 
   <xsd:element name="b" type="xsd:string"/> 
  </xsd:choice> 
  <xsd:sequence> 
   <xsd:element name="c" type="xsd:string"/> 
   <xsd:element name="d" type="xsd:string"/> 
  </xsd:sequence> 
  <xsd:choice minOccurs="3" maxOccurs="12"> 
   <xsd:element name="e" type="xsd:string"/> 
   <xsd:element name="f" type="xsd:string"/> 
  </xsd:choice> 
 </xsd:choice> 
</xsd:complexType> 

These complex type definitions are mapped to the following ASN.1 type assignments: 
ElementSequence ::= SEQUENCE { 

choice [UNTAGGED] CHOICE { 

 elem1  BOOLEAN, 

 elem2-list [UNTAGGED] SEQUENCE (SIZE(0..1)) OF elem2 BOOLEAN, 

 elem3-list [UNTAGGED] SEQUENCE (SIZE(2..5)) OF elem3 BOOLEAN, 

 elem4-list [UNTAGGED] SEQUENCE OF elem4 BOOLEAN, 

 elem5-list [UNTAGGED] SEQUENCE (SIZE(5..MAX)) OF elem5 BOOLEAN } } 

ModelGroupChoice ::= SEQUENCE { 

choice [UNTAGGED] CHOICE { 

 myChoice  MyChoice, 
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 choice  [UNTAGGED] CHOICE { 

  a   XSD.String, 

  b   XSD.String }, 

 sequence  [UNTAGGED] SEQUENCE { 

  c   XSD.String, 

  d   XSD.String }, 

 choice-list [UNTAGGED] SEQUENCE (SIZE(3..12)) OF [UNTAGGED] CHOICE { 

  e   XSD.String, 

  f   XSD.String } } } 

D.3.8 Mapping complex type definitions 

D.3.8.1 The following example is a complex type definition whose content type is empty. 

<xsd:complexType name="Null"/> 

<xsd:complexType name="Ack"> 
 <xsd:sequence/> 
 <xsd:attribute name="packetNumber" type="xsd:integer"/> 
</xsd:complexType> 

These complex type definitions are mapped to the following ASN.1 type assignments: 
Null ::= SEQUENCE {} 

Ack ::= SEQUENCE { 

packetNumber [ATTRIBUTE] INTEGER OPTIONAL } 

D.3.8.2 The following example is a complex type definition whose content type is a simple type definition. 

<xsd:complexType name="Formatted"> 
 <xsd:simpleContent> 
  <xsd:extension base="xsd:token"> 
   <xsd:attribute name="format"> 
    <xsd:simpleType> 
     <xsd:restriction base="xsd:token"> 
      <xsd:enumeration value="bold"/> 
      <xsd:enumeration value="italic"/> 
     </xsd:restriction> 
    </xsd:simpleType> 
   </xsd:attribute> 
  </xsd:extension> 
 </xsd:simpleContent> 
</xsd:complexType> 

This complex type definition is mapped to the following ASN.1 type assignment: 
Formatted ::= SEQUENCE { 

format  [ATTRIBUTE][WHITESPACE COLLAPSE] 

     ENUMERATED {bold, italic} OPTIONAL, 

base   [UNTAGGED] XSD.Token } 

D.3.8.3 The following examples are complex type definitions whose content type is an element-only content model. 

D.3.8.3.1 In the following example, the content type is the model group of a model group definition. 

This example uses the types defined in D.3.6. 

<xsd:complexType name="MyComplexType-1"> 
<xsd:group ref="myAll"/> 

</xsd:complexType> 

<xsd:complexType name="MyComplexType-2"> 
<xsd:group ref="myChoice" /> 

</xsd:complexType> 

<xsd:complexType name="MyComplexType-3"> 
<xsd:group ref="mySequence" maxOccurs="100"/> 

</xsd:complexType> 

These complex type definitions are mapped to the following ASN.1 type assignments: 
MyComplexType-1 ::= [USE-ORDER] SEQUENCE { 

order  SEQUENCE OF ENUMERATED {a,b}, 

a   XSD.String, 

b BOOLEAN }  

(CONSTRAINED BY  

 {/* Shall conform to Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 35 */}) 

MyComplexType-2 ::= SEQUENCE { 

myChoice MyChoice } 

MyComplexType-3 ::= SEQUENCE { 
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mySequence-list SEQUENCE (SIZE(1..100)) OF MySequence } 

 

D.3.8.3.2 In the following example, the content type is a model group whose compositor is choice. 

<xsd:complexType name="MyComplexType-4"> 
 <xsd:choice> 
  <xsd:element name="a" type="xsd:string"/> 
  <xsd:element name="b" type="xsd:boolean"/> 
 </xsd:choice> 
</xsd:complexType> 

<xsd:complexType name="MyComplexType-5"> 
 <xsd:choice minOccurs="0"> 
  <xsd:element name="a" type="xsd:string"/> 
  <xsd:element name="b" type="xsd:boolean"/> 
 </xsd:choice> 
</xsd:complexType> 

<xsd:complexType name="MyComplexType-6"> 
 <xsd:choice maxOccurs="5"> 
  <xsd:element name="a" type="xsd:string"/> 
  <xsd:element name="b" type="xsd:boolean"/> 
 </xsd:choice> 
</xsd:complexType> 

These complex type definitions are mapped to the following ASN.1 type assignments: 
MyComplexType-4 ::= SEQUENCE { 

choice [UNTAGGED] CHOICE { 

 a XSD.String, 

 b BOOLEAN } } 

MyComplexType-5 ::= SEQUENCE { 

choice [UNTAGGED] CHOICE { 

 a XSD.String, 

 b BOOLEAN } OPTIONAL } 

MyComplexType-6 ::= SEQUENCE { 

choice-list [UNTAGGED] SEQUENCE (SIZE(1..5)) OF [UNTAGGED] CHOICE { 

 a XSD.String, 

 b BOOLEAN } } 

D.3.8.3.3 In the following example, the content type is a model group whose compositor is all. 

<xsd:complexType name="MyComplexType-7"> 
 <xsd:all> 
  <xsd:element name="a" type="xsd:string"/> 
  <xsd:element name="b" type="xsd:boolean"/> 
 </xsd:all> 
</xsd:complexType> 

<xsd:complexType name="MyComplexType-8"> 
 <xsd:all minOccurs="0"> 
  <xsd:element name="a" type="xsd:string"/> 
  <xsd:element name="b" type="xsd:boolean"/> 
 </xsd:all> 
</xsd:complexType> 

These complex type definitions are mapped to the following ASN.1 type assignments: 
MyComplexType-7 ::= [USE-ORDER] SEQUENCE { 

order  SEQUENCE OF ENUMERATED {a,b}, 

a   XSD.String, 

b   BOOLEAN }  

(CONSTRAINED BY  

 {/* Shall conform to Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 35 */})  

MyComplexType-8 ::= [USE-ORDER] SEQUENCE { 

order  SEQUENCE OF ENUMERATED {a,b}, 

a   XSD.String OPTIONAL, 

b   BOOLEAN OPTIONAL } 

(CONSTRAINED BY  

 {/* Shall conform to Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 35 */ }) 

D.3.8.3.4 In the following example, the content type is a model group whose compositor is sequence. 

<xsd:complexType name="MyComplexType-9"> 
 <xsd:sequence> 
  <xsd:element name="a" type="xsd:string"/> 
  <xsd:element name="b" type="xsd:boolean"/> 
 </xsd:sequence> 
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</xsd:complexType> 

<xsd:complexType name="MyComplexType-10"> 
 <xsd:sequence minOccurs="0"> 
  <xsd:element name="a" type="xsd:string"/> 
  <xsd:element name="b" type="xsd:boolean"/> 
 </xsd:sequence> 
</xsd:complexType> 

<xsd:complexType name="MyComplexType-11"> 
 <xsd:sequence maxOccurs="5"> 
  <xsd:element name="a" type="xsd:string"/> 
  <xsd:element name="b" type="xsd:boolean"/> 
 </xsd:sequence> 
</xsd:complexType> 

These complex type definitions are mapped to the following ASN.1 type assignments: 
MyComplexType-9 ::= SEQUENCE { 

a XSD.String, 

b BOOLEAN } 

MyComplexType-10 ::= SEQUENCE { 

sequence [UNTAGGED] SEQUENCE { 

 a XSD.String, 

 b BOOLEAN } OPTIONAL } 

MyComplexType-11 ::= SEQUENCE { 

sequence-list [UNTAGGED] SEQUENCE (SIZE(1..5)) OF [UNTAGGED] SEQUENCE { 

 a XSD.String, 

 b BOOLEAN } } 

D.3.8.4 The following example shows a complex type definition whose content type is a mixed content model. 

<xsd:complexType name="MyComplexType-12" mixed="true"> 
 <xsd:sequence> 
  <xsd:element name="a" type="xsd:string"/> 
  <xsd:element name="b" type="xsd:boolean"/> 
 </xsd:sequence> 
</xsd:complexType> 

<xsd:complexType name="MyComplexType-13" mixed="true"> 
 <xsd:all> 
  <xsd:element name="a" type="xsd:string"/> 
  <xsd:element name="b" type="xsd:boolean"/> 
 </xsd:all> 
</xsd:complexType> 

<xsd:complexType name="MyComplexType-14" mixed="true"> 
 <xsd:choice> 
  <xsd:element name="a" type="xsd:string"/> 
  <xsd:element name="b" type="xsd:boolean"/> 
 </xsd:choice> 
</xsd:complexType> 

<xsd:complexType name="MyComplexType-15" mixed="true"> 
 <xsd:all minOccurs="0"> 
  <xsd:element name="a" type="xsd:string"/> 
  <xsd:element name="b" type="xsd:boolean"/> 
 </xsd:all> 
</xsd:complexType> 

<xsd:complexType name="MyComplexType-16" mixed="true"> 
 <xsd:sequence maxOccurs="unbounded" minOccurs="0"> 
  <xsd:element name="a" type="xsd:string"/> 
  <xsd:element name="b" type="xsd:boolean"/> 
 </xsd:sequence> 
</xsd:complexType> 

These complex type definitions are mapped to the following ASN.1 type assignments: 
MyComplexType-12 ::= [EMBED-VALUES] SEQUENCE { 

embed-values  SEQUENCE OF XSD.String, 

a   XSD.String, 

b    BOOLEAN }  

(CONSTRAINED BY 

 {/* Shall conform to Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 25 */}) 

MyComplexType-13 ::= [EMBED-VALUES] [USE-ORDER] SEQUENCE { 

embed-values SEQUENCE OF XSD.String, 

order   SEQUENCE OF ENUMERATED {a,b}, 

a    XSD.String, 

b    BOOLEAN }  
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(CONSTRAINED BY 

   {/* Shall conform to Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 25 */}) 

(CONSTRAINED BY  

   {/* Shall conform to Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 35 */}) 

MyComplexType-14 ::= [EMBED-VALUES] SEQUENCE { 

embed-values  SEQUENCE OF XSD.String, 

choice   [UNTAGGED] CHOICE { 

 a    XSD.String, 

 b    BOOLEAN } }  

(CONSTRAINED BY 

 {/* Shall conform to Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 25 */}) 

MyComplexType-15 ::= [EMBED-VALUES] [USE-ORDER] SEQUENCE { 

embed-values  SEQUENCE OF XSD.String, 

order   SEQUENCE OF ENUMERATED {a,b}, 

a    XSD.String OPTIONAL, 

b    BOOLEAN OPTIONAL }  

(CONSTRAINED BY  

 {/* Shall conform to Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 35 */}) 

(CONSTRAINED BY 

 {/* Shall conform to Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 25 */}) 

MyComplexType-16 ::= [EMBED-VALUES] SEQUENCE { 

embed-values  SEQUENCE OF XSD.String, 

sequence-list  [UNTAGGED] SEQUENCE OF [UNTAGGED] SEQUENCE { 

 a    XSD.String, 

 b    BOOLEAN } }  

(CONSTRAINED BY 

 {/* Shall conform to Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 25 */}) 

D.3.8.5 The following example shows attribute uses of a complex type definition built using an attribute group definition. 

<xsd:attributeGroup name="AG1"> 
 <xsd:attribute name="a1" type="xs:string"/> 
 <xsd:attribute name="a2" type="xs:string"/> 
 <xsd:attribute name="a3" type="xs:decimal"/> 
</xsd:attributeGroup> 

<xsd:attributeGroup name="AG2"> 
 <xsd:attribute name="a1" use="prohibited"/> 
 <xsd:attribute name="a3" type="xs:integer"/> 
</xsd:attributeGroup> 

<xsd:complexType name="MyComplexType-17"> 
<xsd:attribute name="a4" type="xs:boolean"/> 
<xsd:attribute name="a5" type="xs:boolean"/> 
<xsd:attributeGroup ref="AG1"/> 

                     </xsd:complexType> 

<xsd:complexType name="MyComplexType-18"> 
<xsd:complexContent> 
 <xsd:restriction base="MyComplexType-17"> 
  <xsd:attributeGroup ref="AG2"/> 
  <xsd:attribute name="a4" use="prohibited"/> 
 </xsd:restriction> 
</xsd:complexContent> 

                   </xsd:complexType> 

These complex type definitions are mapped to the following ASN.1 type assignments: 
MyComplexType-17 ::= SEQUENCE { 

a1 [ATTRIBUTE] XSD.String OPTIONAL, 

a2 [ATTRIBUTE] XSD.String OPTIONAL, 

a3 [ATTRIBUTE] XSD.Decimal OPTIONAL, 

a4 [ATTRIBUTE] BOOLEAN OPTIONAL, 

a5 [ATTRIBUTE] BOOLEAN OPTIONAL } 

MyComplexType-18 ::= SEQUENCE { 

a2 [ATTRIBUTE] XSD.String OPTIONAL, 

a3 [ATTRIBUTE] INTEGER OPTIONAL, 

a5 [ATTRIBUTE] BOOLEAN OPTIONAL } 

D.3.8.6 Derivation of complex type definitions. 

<xsd:complexType name="MyComplexType-19"> 
 <xsd:sequence minOccurs="0" maxOccurs="unbounded"> 
  <xsd:element name="a" type="xsd:string"/> 
  <xsd:element name="b" type="xsd:boolean"/> 
  <xsd:element name="c" type="xsd:boolean" minOccurs="0"/> 
 </xsd:sequence> 
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 <xsd:attribute name="attr1" type="xsd:short" use="required"/> 
 <xsd:attribute name="attr2" type="xsd:short"/> 
</xsd:complexType> 

<xsd:complexType name="MyComplexType-20"> 
 <xsd:complexContent> 
  <xsd:restriction base="MyComplexType-19"> 
   <xsd:sequence> 
    <xsd:element name="a" type="xsd:token"/> 
    <xsd:element name="b" type="xsd:boolean"/> 
   </xsd:sequence> 
   <xsd:attribute name="attr2" type="xsd:short" use="prohibited"/> 
  </xsd:restriction> 
 </xsd:complexContent> 
</xsd:complexType> 

<xsd:complexType name="MyComplexType-21"> 
 <xsd:complexContent> 
  <xsd:extension base="MyComplexType-20"> 
   <xsd:sequence> 
    <xsd:element name="d" type="xsd:string"/> 
   </xsd:sequence> 
   <xsd:attribute name="attr3" type="xsd:boolean"/> 
  </xsd:extension> 
 </xsd:complexContent> 
</xsd:complexType> 

These complex type definitions are mapped to the following ASN.1 type assignments: 
MyComplexType-19 ::= SEQUENCE { 

attr1   [ATTRIBUTE] XSD.Short, 

attr2   [ATTRIBUTE] XSD.Short OPTIONAL, 

sequence-list  [UNTAGGED] SEQUENCE OF [UNTAGGED] SEQUENCE { 

 a    XSD.String, 

 b    BOOLEAN, 

 c    BOOLEAN OPTIONAL } } 

MyComplexType-20 ::= SEQUENCE { 

attr1   [ATTRIBUTE] XSD.Short, 

a    XSD.Token, 

b    BOOLEAN } 

MyComplexType-21 ::= SEQUENCE { 

attr1   [ATTRIBUTE] XSD.Short, 

attr3   [ATTRIBUTE] BOOLEAN OPTIONAL, 

a    XSD.String, 

b    BOOLEAN, 

d    XSD.String } 

MyComplexType-20-derivations ::= [USE-TYPE] CHOICE { 

myComplexType-20 [NAME AS CAPITALIZED] MyComplexType-20, 

myComplexType-21 [NAME AS CAPITALIZED] MyComplexType-21 } 

MyComplexType-19-derivations ::= [USE-TYPE] CHOICE { 

myComplexType-19 [NAME AS CAPITALIZED] MyComplexType-19, 

myComplexType-20 [NAME AS CAPITALIZED] MyComplexType-20, 

myComplexType-21 [NAME AS CAPITALIZED] MyComplexType-21 } 

if and only if: 

a)  the simple type definition "MyComplexType-19" occurs as the type definition of at least one element declaration 

(not shown in the example) that is being mapped to ASN.1; 

b)  the simple type definition "MyComplexType-20" occurs as the type definition of at least one element declaration 

(not shown in the example) that is being mapped to ASN.1; and 

c)  there are no other schema components being mapped to ASN.1 which are generating the ASN.1 type 

reference names MyComplexType-19, MyComplexType-20, MyComplexType-21, MyComplexType-

19-derivations, and MyComplexType-20-derivations. 

D.3.9 Mapping wildcards 

For these examples, the target namespace is assumed to be the following uniform resource identifier (URI): 

"http://www.asn1.org/X694/wildcard". 

D.3.9.1 Attribute wildcard. 

<xsd:complexType name="AnyAttribute-1"> 
 <xsd:anyAttribute namespace="##any"/> 
</xsd:complexType> 
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<xsd:complexType name="AnyAttribute-2"> 
 <xsd:anyAttribute namespace="##other"/> 
</xsd:complexType> 

<xsd:complexType name="AnyAttribute-3"> 
 <xsd:anyAttribute namespace="##targetNamespace"/> 
</xsd:complexType> 

<xsd:complexType name="AnyAttribute-4"> 
 <xsd:anyAttribute namespace="##local http://www.asn1.org/X694/attribute"/> 
</xsd:complexType> 

<xsd:complexType name="AnyAttribute-5"> 
 <xsd:complexContent> 
  <xsd:extension base="AnyAttribute-4"> 
   <xsd:anyAttribute namespace="##targetNamespace"/> 
  </xsd:extension> 
 </xsd:complexContent> 
</xsd:complexType> 

These complex type definitions are mapped to the following ASN.1 type assignments: 
AnyAttribute-1 ::= SEQUENCE { 

attr [ANY-ATTRIBUTES] SEQUENCE (CONSTRAINED BY { 

     /* Each item shall conform to the "AnyAttributeFormat" specified in 

  Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 18 */})  

 OF XSD.String } 

AnyAttribute-2 ::= SEQUENCE { 

attr [ANY-ATTRIBUTES EXCEPT ABSENT "http://www.asn1.org/X694/wildcard"]  

 SEQUENCE (CONSTRAINED BY { 

     /* Each item shall conform to the "AnyAttributeFormat" specified in 

  Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 18 */}) 

 OF XSD.String } 

AnyAttribute-3 ::= SEQUENCE { 

attr [ANY-ATTRIBUTES FROM "http://www.asn1.org/X694/wildcard"]  

 SEQUENCE (CONSTRAINED BY {  

     /* Each item shall conform to the "AnyAttributeFormat" specified in 

  Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 18 */})  

 OF XSD.String } 

AnyAttribute-4 ::= SEQUENCE { 

attr [ANY-ATTRIBUTES FROM ABSENT 

         "http://www.asn1.org/X694/attribute"] 

 SEQUENCE (CONSTRAINED BY  { 

     /* Each item shall conform to the "AnyAttributeFormat" specified in 

  Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 18 */})  

 OF XSD.String } 

AnyAttribute-5 ::= SEQUENCE { 

attr [ANY-ATTRIBUTES FROM ABSENT  

         "http://www.asn1.org/X694/attribute" 

         "http://www.asn1.org/X694/wildcard"]  

 SEQUENCE (CONSTRAINED BY { 

     /* Each item shall conform to the "AnyAttributeFormat" specified in 

  Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 18 */})  

 OF XSD.String } 

D.3.9.2 The following is an example of a content model wildcard. 

<xsd:complexType name="Any-1"> 
 <xsd:sequence> 
  <xsd:any namespace="##any"/> 
 </xsd:sequence> 
</xsd:complexType> 

<xsd:complexType name="Any-2"> 
 <xsd:sequence> 
  <xsd:any minOccurs="0" namespace="##other"/> 
 </xsd:sequence> 
</xsd:complexType> 

<xsd:complexType name="Any-3"> 
 <xsd:sequence> 
  <xsd:any minOccurs="0" maxOccurs="unbounded" namespace="##local"/> 
 </xsd:sequence>  
</xsd:complexType> 

These complex type definitions are mapped to the following ASN.1 type assignments: 
Any-1 ::= SEQUENCE { 

elem [ANY-ELEMENT] XSD.String (CONSTRAINED BY { 
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  /* Shall conform to the "AnyElementFormat" specified in 

   Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 19 */}) } 

Any-2 ::= SEQUENCE { 

elem [ANY-ELEMENT EXCEPT ABSENT  

     "http://www.asn1.org/X694/wildcard"]  

 XSD.String (CONSTRAINED BY { 

  /* Shall conform to the "AnyElementFormat" specified in 

   Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 19 */}) 

   OPTIONAL } 

Any-3 ::= SEQUENCE { 

elem-list [UNTAGGED] SEQUENCE OF elem  

 [ANY-ELEMENT FROM ABSENT] XSD.String (CONSTRAINED BY { 

  /* Shall conform to the "AnyElementFormat" specified in 

   Rec. ITU-T X.693 | ISO/IEC 8825-4, clause 19 */}) } 

NOTE – For more examples on the computation of the "NamespaceRestriction", see examples on attribute wildcards in D.3.9.1. 
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Annex E 

 

Use of the mapping to provide binary encodings for W3C XML Schema 

(This annex does not form an integral part of this Recommendation | International Standard.) 

This annex describes the use of the mapping specified in this Recommendation | International Standard in conjunction 

with standardized ASN.1 Encoding Rules to provide canonical and compact binary encodings for data defined by an XSD 

Schema. 

E.1 Encoding XSD Schemas 

E.1.1 XSD Schemas can be mapped to ASN.1 type definitions as specified in the body of this Recommendation | 

International Standard, and the top-level type can then be encoded using any of the ASN.1 encoding rules specified in 

Rec. ITU-T X.690 | ISO/IEC 8825-1, Rec. ITU-T X.691 | ISO/IEC 8825-2, and Rec. ITU-T X.693 | ISO/IEC 8825-4. 

E.1.2 Each of these encodings has an associated OID and OID internationalized resource identifier value that can be 

used to identify the encoding in transfer. The way in which such identification is communicated to a decoder is outside 

the scope of this Recommendation | International Standard. The associated object descriptor value can also be used for 

human readability, but is not necessarily unambiguous. 

E.1.3 When the XSD Schema is not sent to the receiver by the method described in E.3, the way in which the receiver 

obtains the Schema is outside the scope of this Recommendation | International Standard. 

E.2 Transfer without using the XSD Schema for Schemas 

E.2.1 This method makes the assumption that the receiver knows the XSD Schema used by the sender. 

E.2.2 Figure E.1 shows how to use the mapping defined in this Recommendation | International Standard to encode 

XML documents by means of ASN.1 encoding rules. 

E.2.3 The sender and the receiver use the same (fixed) XSD Schema to generate an ASN.1 schema which in turn is 

given to an ASN.1 compiler to generate the BER, DER, PER or XER encoding table for XML documents conforming to 

that XSD Schema. 

E.3 Transfer using the XSD Schema for Schemas 

E.3.1 Since a unique XSD Schema for Schemas is available, it is possible to proceed in two steps (see Figure E.2). 

E.3.2 The sender and the receiver build an ASN.1 module and an encoder/decoder from the XSD Schema for 

Schemas. 

E.3.3 In the first step, the sender encodes in BER, DER or PER the XSD Schema for the document and sends the 

encoded Schema to the receiver. The receiver decodes that Schema and, using the mapping from XSD Schema to ASN.1 

and an ASN.1 compiler, generates an ASN.1 module and an encoder/decoder for XML documents conforming to that 

Schema. 

E.3.4 In the second step, the sender encodes in BER, DER, PER, or XER the XML document and sends the encoded 

document to the receiver. 
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Figure E.1 – Transfer of an XML document using the mapping from XSD to ASN.1 
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Figure E.2 – Transfer of an XSD Schema and an XML document using the mapping from XSD to ASN.1 
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