
Superseded by a more recent version

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.511
TELECOMMUNICATION (11/93)
STANDARDIZATION SECTOR
OF ITU

DATA NETWORK AND OPEN SYSTEM
COMMUNICATIONS
DIRECTORY

INFORMATION TECHNOLOGY –
OPEN SYSTEMS INTERCONNECTION –
THE DIRECTORY: ABSTRACT SERVICE
DEFINITION

ITU-T Recommendation X.511
Superseded by a more recent version
(Previously “CCITT Recommendation”)

Superseded by a more recent version

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU.
Some 179 member countries, 84 telecom operating entities, 145 scientific and industrial organizations and
38 international organizations participate in ITU-T which is the body which sets world telecommunications standards
(Recommendations).

The approval of Recommendations by the Members of ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1 (Helsinki, 1993). In addition, the World Telecommunication Standardization Conference (WTSC),
which meets every four years, approves Recommendations submitted to it and establishes the study programme for the
following period.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC. The text of ITU-T Recommendation X.511 was approved on 16th of
November 1993. The identical text is also published as ISO/IEC International Standard 9594-3.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

 ITU 1995

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Superseded by a more recent version

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

(February 1994)

ORGANIZATION OF X-SERIES RECOMMENDATIONS

Subject area Recommendation
series

PUBLIC DATA NETWORKS

Services and Facilities X.1-X.19

Interfaces X.20-X.49

Transmission, Signalling and Switching X.50-X.89

Network Aspects X.90-X.149

Maintenance X.150-X.179

Administrative Arrangements X.180-X.199

OPEN SYSTEMS INTERCONNECTION

Model and Notation X.200-X.209

Service Definitions X.210-X.219

Connection-mode Protocol Specifications X.220-X.229

Connectionless-mode Protocol Specifications X.230-X.239

PICS Proformas X.240-X.259

Protocol Identification X.260-X.269

Security Protocols X.270-X.279

Layer Managed Objects X.280-X.289

Conformance Testing X.290-X.299

INTERWORKING BETWEEN NETWORKS

General X.300-X.349

Mobile Data Transmission Systems X.350-X.369

Management X.370-X.399

MESSAGE HANDLING SYSTEMS X.400-X.499

DIRECTORY X.500-X.599

OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600-X.649

Naming, Addressing and Registration X.650-X.679

Abstract Syntax Notation One (ASN.1) X.680-X.699

OSI MANAGEMENT X.700-X.799

SECURITY X.800-X.849

OSI APPLICATIONS

Commitment, Concurrency and Recovery X.850-X.859

Transaction Processing X.860-X.879

Remote Operations X.880-X.899

OPEN DISTRIBUTED PROCESSING X.900-X.999

Superseded by a more recent version

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version i

Contents
ITU-T Rec. X.511 (1993 E)

Page

1 Scope .. 1

2 Normative references.. 1

2.1 Identical Recommendations | International Standards... 1

2.2 Paired Recommendations | International Standards equivalent in technical content........................... 2

3 Definitions .. 2

3.1 Basic Directory definitions.. 2

3.2 Directory model definitions... 2

3.3 Directory Information Base definitions... 2

3.4 Directory entry definitions .. 2

3.5 Name definitions ... 3

3.6 Distributed operations definitions ... 3

3.7 Abstract Service definitions .. 3

4 Abbreviations ... 3

5 Conventions .. 3

6 Overview of the Directory Service ... 4

7 Information types and common procedures.. 4

7.1 Introduction ... 4

7.2 Information types defined elsewhere... 5

7.3 Common arguments... 5

7.4 Common results... 6

7.5 Service controls ... 7

7.6 Entry information selection ... 8

7.7 Entry information .. 9

7.8 Filter .. 9

7.9 Paged results.. 11

7.10 Security parameters ... 12

7.11 Common elements of procedure for basic-access-control... 13

7.12 Optionally-signed parameters.. 14

8 Bind and Unbind operations ... 14

8.1 Directory Bind... 14

8.2 Directory Unbind... 16

9 Directory Read operations .. 16

9.1 Read... 16

9.2 Compare .. 18

9.3 Abandon .. 19

10 Directory Search operations ... 19

10.1 List... 19

10.2 Search .. 21

Superseded by a more recent version

ii ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

Page

11 Directory Modify operations .. 24

11.1 Add Entry .. 24

11.2 Remove Entry.. 25

11.3 Modify Entry ... 26

11.4 Modify DN .. 28

12 Errors .. 30

12.1 Error precedence ... 30

12.2 Abandoned .. 30

12.3 Abandon Failed ... 31

12.4 Attribute Error ... 31

12.5 Name Error .. 32

12.6 Referral.. 32

12.7 Security Error .. 32

12.8 Service Error ... 33

12.9 Update Error .. 34

Annex A – Abstract Service in ASN.1 .. 35

Annex B – Operational semantics for Basic Access Control... 42

Annex C – Amendments and corrigenda ... 57

Superseded by a more recent version

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version iii

Summary

This Recommendation | International Standard defines in an abstract way the externally visible service provided by the
Directory, including bind and unbind operations, read operations, search operations, modify operations and errors.

Superseded by a more recent version

iv ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

Introduction

This Recommendation | International Standard, together with the other Recommendations | International Standards, has
been produced to facilitate the interconnection of information processing systems to provide directory services. A set of
such systems, together with the directory information which they hold, can be viewed as an integrated whole, called the
Directory. The information held by the Directory, collectively known as the Directory Information Base (DIB), is
typically used to facilitate communication between, with or about objects such as application entities, people, terminals,
and distribution lists.

The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow, with a minimum of
technical agreement outside of the interconnection standards themselves, the interconnection of information processing
systems:

• from different manufacturers;

• under different managements;

• of different levels of complexity; and

• of different ages.

This Recommendation | International Standard defines the capabilities provided by the Directory to its users.

This second edition technically revises and enhances, but does not replace, the first edition of this Recommendation |
International Standard. Implementations may still claim conformance to the first edition.

This second edition specifies version 1 of the Directory service and protocols. The first edition also specifies version 1.
Differences between the services and between the protocols defined in the two editions are accommodated using the
rules of extensibility defined in this edition of X.519 | ISO/IEC 9594-5.

Annex A, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for the
directory abstract service.

Annex B, which is an integral part of this Recommendation | International Standard, provides charts that describe the
semantics associated with Basic Access Control as it applies to the processing of a Directory operation.

Annex C, which is not an integral part of this Recommendation | International Standard, lists the amendments and defect
reports that have been incorporated to form this edition of this Recommendation | International Standard.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 1

INTERNATIONAL STANDARD
Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)
ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY – OPEN SYSTEMS INTERCONNECTION –
THE DIRECTORY: ABSTRACT SERVICE DEFINITION

1 Scope

This Recommendation | International Standard defines in an abstract way the externally visible service provided by the
Directory.

This Recommendation | International Standard does not specify individual implementations or products.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard part. At the time of publication, the editions
indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on
this Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
editions of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

– ITU-T Recommendation X.500 (1993) | ISO/IEC 9594-1:1994, Information technology – Open Systems
Interconnection – The Directory: Overview of concepts, models and services.

– ITU-T Recommendation X.501 (1993) | ISO/IEC 9594-2:1994, Information technology – Open Systems
Interconnection –The Directory: Models.

– ITU-T Recommendation X.518 (1993) | ISO/IEC 9594-4:1994, Information technology – Open Systems
Interconnection –The Directory: Procedures for distributed operation.

– ITU-T Recommendation X.519 (1993) | ISO/IEC 9594-5:1994, Information technology – Open Systems
Interconnection –The Directory: Protocol specifications.

– ITU-T Recommendation X.520 (1993) | ISO/IEC 9594-6:1994, Information technology – Open Systems
Interconnection –The Directory: Selected attribute types.

– ITU-T Recommendation X.521 (1993) | ISO/IEC 9594-7:1994, Information technology – Open Systems
Interconnection –The Directory: Selected object classes.

– ITU-T Recommendation X.509 (1993) | ISO/IEC 9594-8:1994, Information technology – Open Systems
Interconnection –The Directory: Authentication framework.

– ITU-T Recommendation X.525 (1993) | ISO/IEC 9594-9:1994, Information technology – Open Systems
Interconnection – The Directory: Replication

– ITU-T Recommendation X.680 (1994) | ISO/IEC 8824-1:1994, Information technology – Abstract Syntax
Notation One (ASN.1): Specification of basic notation.

– ITU-T Recommendation X.681 (1994) | ISO/IEC 8824-2:1994, Information technology – Abstract Syntax
Notation One (ASN.1): Information object specification.

– ITU-T Recommendation X.682 (1994) | ISO/IEC 8824-3:1994, Information technology – Abstract Syntax
Notation One (ASN.1): Constraint specification.

– ITU-T Recommendation X.683 (1994) | ISO/IEC 8824-4:1994, Information technology – Abstract Syntax
Notation One (ASN.1): Parameterization of ASN.1 specifications.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

2 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

– ITU-T Recommendation X.880 (1994) | ISO/IEC 13712-1:1994, Information technology – Remote
Operations: Concepts, model and notation.

– ITU-T Recommendation X.881 (1994) | ISO/IEC 13712-2:1994, Information technology – Remote
Operations: OSI realizations – Remote Operations Service Element (ROSE) service definition.

2.2 Paired Recommendations | International Standards equivalent in technical content

– CCITT Recommendation X.200 (1988) Reference Model of Open Systems Interconnection for CCITT
Applications.

ISO 7498:1984/Corr.1:1988, Information Processing Systems – Open Systems Interconnection – Basic
Reference Model.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 Basic Directory definitions

The following terms are defined in ITU-T Rec. X.500 | ISO/IEC 9594-1:

a) Directory;

b) Directory Information Base;

c) (Directory) User.

3.2 Directory model definitions

The following terms aree defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:

a) Directory System Agent;

b) Directory User Agent.

3.3 Directory Information Base definitions

The following terms are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:

a) alias entry;

b) Directory Information Tree;

c) (Directory) entry;

d) immediate superior;

e) immediately superior entry/object;

f) object;

g) object class;

h) object entry;

i) subordinate;

j) superior.

3.4 Directory entry definitions

The following terms are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:

a) attribute;

b) attribute type;

c) attribute value;

d) attribute value assertion;

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 3

e) operational attribute;

f) user attribute;

g) matching rule.

3.5 Name definitions

The following terms are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:

a) alias, alias name;

b) distinguished name;

c) (directory) name;

d) purported name;

e) relative distinguished name.

3.6 Distributed operations definitions

The following terms are defined in ITU-T Rec. X.518 | ISO/IEC 9594-4:

a) chaining;

b) referral.

3.7 Abstract Service definitions

The following terms are defined in this Recomendation | International Standard:

3.7.1 filter: An assertion about the presence or value of certain attributes of an entry in order to limit the scope of a
search.

3.7.2 originator: The user that originated an operation.

3.7.3 service controls: Parameters conveyed as part of an operation which constrain various aspects of its
performance.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:

AVA Attribute Value Assertion

DIB Directory Information Base

DIT Directory Information Tree

DSA Directory System Agent

DUA Directory User Agent

DMD Directory Management Domain

RDN Relative Distinguished Name

5 Conventions

With minor exceptions this Directory Specification has been prepared according to the “Presentation of ITU-T | ISO/IEC
common text” guidelines in the Guide for ITU-TS and ISO/IEC JTC 1 Cooperation, March 1993.

The term “Directory Specification” (as in “this Directory Specification”) shall be taken to mean ITU-T Rec. X.511 |
ISO/IEC 9594-3. The term “Directory Specifications” shall be taken to mean the X.500-Series Recommendations and all
parts of ISO/IEC 9594.

This Directory Specification uses the term “1988 edition systems” to refer to systems conforming to the previous (1988)
edition of the Directory Specifications, i.e. the 1988 edition of the series of ITU-T X.500 Recommendations and the
ISO/IEC 9594:1990 edition. Systems conforming to the current Directory Specifications are referred to as “1993 edition
systems”.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

4 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

If the items in a list are numbered (as opposed to using “–” or letters), then the items shall be considered steps in a
procedure.

This Directory Specification defines directory operations using the Remote Operation notation defined in ITU-T
Rec. X.880 | ISO/IEC 9072-1.

6 Overview of the Directory Service

As described in ITU-T Rec. X.501 | ISO/IEC 9594-2, the services of the Directory are provided through access points to
DUAs, each acting on behalf of a user. These concepts are depicted in Figure 1. Through an access point the Directory
provides service to its users by means of a number of Directory operations.

TISO3050-94/d01

DUA

Access Point

 The
Directory

Directory
 user

Figure 1 – Access to the Directory

FIGURE 1/X.511...[D01] = 5.5 CM

The Directory operations are of three different kinds:

a) Directory Read operations, which interrogate a single Directory entry;

b) Directory Search operations, which interrogate potentially several Directory entries; and

c) Directory Modify operations.

The Directory Read operations, the Directory Search operations and the Directory Modify operations are specified
in clauses 9, 10, and 11, respectively. Conformance to Directory operations is specified in ITU-T Rec. X.519 |
ISO/IEC 9594-5.

7 Information types and common procedures

7.1 Introduction

This clause identifies, and in some cases defines, a number of information types which are subsequently used in the
definition of Directory operations. The information types concerned are those which are common to more than one
operation, are likely to be in the future, or which are sufficiently complex or self-contained as to merit being defined
separately from the operation which uses them.

Several of the information types used in the definition of the Directory service are actually defined elsewhere. Subclause
7.2 identifies these types and indicates the source of their definition. Each of the remaining subclauses (7.3 through 7.11)
identifies and defines an information type.

This clause also specifies some common elements of procedure that apply to most or all of the Directory operations.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 5

7.2 Information types defined elsewhere

The following information types are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:

a) Attribute;

b) AttributeType;

c) AttributeValue;

d) AttributeValueAssertion;

e) DistinguishedName;

f) Name;

g) RelativeDistinguishedName.

The following information type is defined in ITU-T Rec. X.520 | ISO/IEC 9594-6:

– PresentationAddress.

The following information types are defined in ITU-T Rec. X.509 | ISO/IEC 9594-8:

a) Certificate;

b) SIGNED;

c) CertificationPath.

The following information types are defined in ITU-T Rec. X.880 | ISO/IEC 9072-1:

– InvokeID.

The following information types are defined in ITU-T Rec. X.518 | ISO/IEC 9594-4:

a) OperationProgress;

b) ContinuationReference.

7.3 Common arguments

The CommonArguments information may be present to qualify the invocation of each operation that the Directory can
perform.

CommonArguments ::= SET {
serviceControls [30] ServiceControls DEFAULT {},
securityParameters [29] SecurityParameters OPTIONAL,
requestor [28] DistinguishedName OPTIONAL,
operationProgress [27] OperationProgress

DEFAULT { nameResolutionPhase notStarted },
aliasedRDNs [26] INTEGER OPTIONAL,
criticalExtensions [25] BIT STRING OPTIONAL,
referenceType [24] ReferenceType OPTIONAL,
entryOnly [23] BOOLEAN DEFAULT TRUE,
exclusions [22] Exclusions OPTIONAL,
nameResolveOnMaster

[21] BOOLEAN DEFAULT FALSE }

The ServiceControls component is specified in 7.5. Its absence is deemed equivalent to there being an empty set of
controls.

The SecurityParameters component is specified in 7.9. Its absence is deemed equivalent to there being an empty set of
security parameters.

The requestor Distinguished Name identifies the originator of a particular operation. It holds the name of the user as
identified at the time of binding to the Directory. It may be required when the request is to be signed (see 7.10), and shall
hold the name of the user who initiated the request.

The operationProgress, referenceType, entryOnly, exclusions, and nameResolveOnMaster components are defined
in ITU-T Rec. X.518 | ISO/IEC 9594-4. They are supplied by a DUA only when acting on a continuation reference
returned by a DSA in response to an earlier operation, and their values are copied by the DUA from the continuation
reference.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

6 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

The aliasedRDNs component indicates to the DSA that the object component of the operation was created by the
dereferencing of an alias on an earlier operation attempt. The integer value indicates the number of RDNs in the name
that came from dereferencing the alias. (The value would have been set in the referral response of the previous
operation.)

NOTE – This component is provided for compatibility with 1988 edition implementations of the Directory. DUAs (and
DSAs) implemented according to later editons of the Directory specifications shall always omit this parameter from the
CommonArguments of a subsequent request. In this way, the Directory will not signal an error if aliases dereference to further
aliases.

7.3.1 Critical extensions

The criticalExtensions component provides a mechanism to list a set of extensions which are critical to the performance
of a Directory operation. If the originator of the extended operation wishes to indicate that the operation shall be
performed with one or more extensions (i.e. that performing the operation without these extensions is not acceptable), it
does so by setting the criticalExtensions bit(s) which corresponds to the extension(s). If the Directory, or some part of
it, is unable to perform a critical extension it returns an indication of unavailableCriticalExtension (as a ServiceError
or PartialOutcomeQualifier). If the Directory is unable to perform an extension which is not critical, it ignores the
presence of the extension.

This document defines a number of extensions which are available to 1993 edition implementations of the Directory.
The extensions take such forms as additional numbered bits in a BIT STRING, or additional components of a SET or
SEQUENCE, and are ignored by 1988 edition systems. Each such extension is assigned an integer identifier, which is
the number of the bit which may be set in criticalExtensions. If the criticality of an extension is defined to be critical,
the DUA shall set the corresponding bit in criticalExtensions. If the defined criticality is non-critical, the DUA may or
may not set the corresponding bit in criticalExtensions.

The extensions, their identifiers, the operations in which they are permitted, the recommended criticality, and the clauses
in which they are defined are shown in Table 1.

Table 1 – Extensions

7.4 Common results

The CommonResults information should be present to qualify the result of each retrieval operation that the Directory
can perform.

Extension Identifier Operations Criticality Defined
(subclauses)

subentries 11 all non-critical 17.5

copyShallDo 12 Read, Compare, List, Search non-critical 17.5

attribute size limit 13 Read, Search non-critical 17.5

extraAttributes 14 Read, Search non-critical 17.6

modifyRightsRequest 15 Read non-critical 19.1

pagedResultsRequest 16 List, Search non-critical 10.1

matchedValuesOnly 17 Search non-critical 10.2

extendedFilter 18 Search non-critical 10.2

targetSystem 19 AddEntry critical 11.1

useAliasOnUpdate 10 AddEntry, RemoveEntry, ModifyEntry critical 11.1

newSuperior 11 ModifyDN critical 11.4

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 7

CommonResults ::= SET {
securityParameters [30] SecurityParameters OPTIONAL,
performer [29] DistinguishedName OPTIONAL,
aliasDereferenced [28] BOOLEAN DEFAULT FALSE }

The SecurityParameters component is specified in 7.9. Its absence is deemed equivalent to there being an empty set of
security parameters.

The performer Distinguished Name identifies the performer of a particular operation. It may be required when the result
is to be signed (see 7.10) and shall hold the name of the DSA which signed the result.

The aliasDereferenced component is set to TRUE when the purported name of an object or base object which is the
target of the operation included any aliases which were dereferenced.

7.5 Service controls

A ServiceControls parameter contains the controls, if any, that are to direct or constrain the provision of the service.

ServiceControls ::= SET {
options [0] BIT STRING {

preferChaining (0),
chainingProhibited (1),
localScope (2),
dontUseCopy (3),
dontDereferenceAliases (4),
subentries (5),
copyShallDo (6) } DEFAULT {},

priority [1] INTEGER { low (0), medium (1), high (2) } DEFAULT medium,
timeLimit [2] INTEGER OPTIONAL,
sizeLimit [3] INTEGER OPTIONAL,
scopeOfReferral [4] INTEGER { dmd(0), country(1) } OPTIONAL,
attributeSizeLimit [5] INTEGER OPTIONAL }

The options component contains a number of indications, each of which, if set, asserts the condition suggested. Thus:

a) preferChaining indicates that the preference is that chaining, rather than referrals, be used to provide the
service. The Directory is not obliged to follow this preference.

b) chainingProhibited indicates that chaining, and other methods of distributing the request around the
Directory, are prohibited.

c) localScope indicates that the operation is to be limited to a local scope. The definition of this option is
itself a local matter, for example, within a single DSA or a single DMD.

d) dontUseCopy indicates that copied information (as defined in ITU-T Rec. X.518 | ISO/IEC 9594-4 shall
not be used to provide the service.

e) dontDereferenceAliases indicates that any alias used to identify the entry affected by an operation is not
to be dereferenced.

NOTE 1 – This is necessary to allow reference to an alias entry itself rather than the aliased entry, e.g., in order
to read the alias entry.

f) subentries indicates that a Search or List operation is to access subentries only; normal entries become
inaccessible – i.e. the Directory behaves as though normal entries do not exist. If this service control is not
set, then the operation accesses normal entries only and subentries become inaccessible. The service
control is ignored for operations other than Search or List.

NOTE 2 – The effects of subentries on access control, schema, and collective attributes are still observed even if
subentries are inaccessible.

NOTE 3 – If this service control is set, normal entries may still be specified as the base object of an operation.

g) copyShallDo indicates that if the Directory is able to partly but not fully satisfy a query at a copy of an
entry, it shall not chain the query. It is meaningful only if dontUseCopy is not set. If copyShallDo is not
set, the Directory will use shadow data only if it is sufficiently complete to allow the operation to be fully
satisfied at the copy. A query may be only partly satisfied because some of the requested attributes are
missing in the shadow copy, or because the DSA holding the shadowed data does not support the
requested matching rules on that data. If copyShallDo is set and the Directory is not able to fully satisfy a
query, it shall set incompleteEntry in the the returned entry information.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

8 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

If this component is omitted, the following are assumed: no preference for chaining but chaining not prohibited, no limit
on the scope of the operation, use of copy permitted, aliases shall be dereferenced (except for modify operations for
which alias dereferencing is not supported), subentries are not accessible, and operations not fully satisfiable with
shadowed data are subject to further chaining.

The priority (low, medium, or high) at which the service is to be provided. Note that this is not a guaranteed service in
that the Directory, as a whole, does not implement queuing. There is no relationship implied with the use of priorities in
underlying layers.

The timeLimit indicates the maximum elapsed time, in seconds, within which the service shall be provided. If the
constraint cannot be met, an error is reported. If this component is omitted, no time limit is implied. In the case of time
limit exceeded on a List or Search, the result is an arbitrary selection of the accumulated results.

NOTE 4 – This component does not imply the length of time spent processing the request during the elapsed
time: any number of DSAs may be involved in processing the request during the elapsed time.

The sizeLimit is only applicable to List and Search operations. It indicates the maximum number of objects to be
returned. In the case of size limit exceeded, the results of List and Search may be an arbitrary selection of the
accumulated results, equal in number to the size limit. Any further results shall be discarded.

The scopeOfReferral indicates the scope to which a referral returned by a DSA should be relevant. Depending on
whether the values dmd or country are selected, only referrals to other DSAs within the selected scope shall be
returned. This applies to the referrals in both a Referral error and the unexplored parameter of List and Search results.

The attributeSizeLimit indicates the largest size of any attribute (i.e. the type and all its values) that is included in
returned entry information. If an attribute exceeds this limit, all of its values are omitted from the returned entry
information and incompleteEntry is set in the returned entry information. The size of an attribute is taken to be its size
in octets in the local concrete syntax of the DSA holding the data. Because of different ways applications store the data,
the limit is imprecise. If this parameter is not specified, no limit is implied.

NOTE 5 – Attribute values returned as part of an entry’s Distinguished Name are exempt from this limit.

Certain combinations of priority, timeLimit, and sizeLimit may result in conflicts. For example, a short time limit
could conflict with low priority; a high size limit could conflict with a low time limit, etc.

7.6 Entry information selection

An EntryInformationSelection parameter indicates what information is being requested from an entry in a retrieval
service.

EntryInformationSelection ::= SET {
attributes CHOICE {

allUserAttributes [0] NULL,
select [1] SET OF AttributeType
-- empty set implies no attributes are requested -- } DEFAULT allUserAttributes : NULL,

infoTypes [2] INTEGER {
attributeTypesOnly (0),
attributeTypesAndValues (1) } DEFAULT attributeTypesAndValues,

extraAttributes CHOICE {
allOperationalAttributes [3] NULL,
select [4] SET OF AttributeType } OPTIONAL }

The attributes component specifies the user and operational attributes about which information is requested:

a) If the select option is chosen, then the attributes involved are listed. If the list is empty, then no attributes
shall be returned. Information about a selected attribute shall be returned if the attribute is present. An
AttributeError with the noSuchAttributeOrValue problem shall only be returned if none of the
attributes selected is present.

b) If the allUserAttributes option is selected, then information is requested about all user attributes in the
entry.

Attribute information is only returned if access rights are sufficient. A SecurityError (with an insufficientAccessRights
problem) shall only be returned in the case where access rights preclude the reading of all attribute values requested.

The infoTypes component specifies whether both attribute type and attribute value information (the default) or attribute
type information only is requested. If the attributes component is such as to request no attributes, then this component is
not meaningful.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 9

The extraAttributes component specifies a set of additional user and operational attributes about which information is
requested. If the allOperationalAttributes option is chosen, then information is requested about all directory
operational attributes in the entry. If the select option is chosen, then information about the listed attributes is requested.

NOTE – This component may be used to request information about, for example, specific operational attributes when
attributes is set to allUserAttributes, or about all operational attributes. If the same attribute is listed or implied in both attributes
and extraAttributes, it is treated as though it has been requested only once.

A request for a particular attribute is always treated as a request for the attribute and all subtypes of that attribute (except
for requests processed by1988-edition systems).

In responding to a request for attribute information, the Directory treats all collective attributes of an entry as if they
were actual user attributes of the entry, i.e. they are selected like other user attributes and are merged into the returned
entry information. A request for allUserAttributes requests all collective attributes of the entry as well as ordinary
attributes of the entry. An attribute is a collective attribute of an entry if all of the following are true:

a) it is located in a subentry whose subtree specification includes the entry;

b) it is not excluded by the presence in the entry of a collectiveExclusions attribute value equal to the
collective attribute type; and

c) it is permitted by the content rule for the structural object class for the entry.

7.7 Entry information

An EntryInformation parameter conveys selected information from an entry.

EntryInformation ::= SEQUENCE {
name Name,
fromEntry BOOLEAN DEFAULT TRUE,
information SET OF CHOICE {

attributeType AttributeType,
attribute Attribute } OPTIONAL,

incompleteEntry [3] BOOLEAN DEFAULT FALSE -- not in 1988-edition systems -- }

The Name parameter indicates the Distinguished Name of the entry or the name of an alias to the entry. The
Distinguished Name of the entry is returned whenever permitted by the access control policy. If access is allowed to the
attributes of the entry but not to its Distinguished Name, the Directory may return either an error or the name of a valid
alias to the entry.

NOTES

1 If the entry was located using an alias, then that alias is known to be a valid alias. Otherwise, how it is ensured that
the alias is valid is outside the scope of these Directory Specifications.

2 Where a particular component of the Directory has a choice of alias names available to it for return, it is
recommended that where possible it choose the same alias name for repeated requests by the same requestor, in order to provide a
consistent service.

The fromEntry parameter indicates whether the information was obtained from the entry (TRUE) or a copy of the entry
(FALSE).

The information parameter is included if any attribute information from the entry is being returned, and contains a set of
attributeTypes and attributes, as appropriate.

The incompleteEntry parameter is included and set to TRUE whenever the returned entry information is incomplete in
relation to the user’s request, e.g. because attributes or attribute values are omitted for reasons of access control (and
their existence is permitted to be disclosed), the presence of incomplete shadow information together with copyShallDo,
or because the attributeSizeLimit has been exceeded. It is not set to TRUE because an alias name has been returned
instead of the Distinguished Name.

7.8 Filter

7.8.1 Filter

A Filter parameter applies a test that is either satisfied or not by a particular entry. The filter is expressed in terms of
assertions about the presence or value of certain attributes of the entry, and is satisfied if and only if it evaluates to
TRUE.

NOTE – A Filter may be TRUE, FALSE, or undefined.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

10 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

Filter ::= CHOICE {
item [0] FilterItem,
and [1] SET OF Filter,
or [2] SET OF Filter,
not [3] Filter }

FilterItem ::= CHOICE {
equality [0] AttributeValueAssertion,
substrings [1] SEQUENCE {

type ATTRIBUTE.&id({SupportedAttributes}),
strings SEQUENCE OF CHOICE {

initial [0] ATTRIBUTE.&Type
({SupportedAttributes}{@substrings.type}),

any [1] ATTRIBUTE.&Type
({SupportedAttributes}{@substrings.type}),

final [2] ATTRIBUTE.&Type
({SupportedAttributes}{@substrings.type})}},

greaterOrEqual [2] AttributeValueAssertion,
lessOrEqual [3] AttributeValueAssertion,
present [4] AttributeType,
approximateMatch [5] AttributeValueAssertion,
extensibleMatch [6] MatchingRuleAssertion }

MatchingRuleAssertion ::= SEQUENCE {
matchingRule [1] SET SIZE (1..MAX) OF MATCHING-RULE.&id,
type [2] AttributeType OPTIONAL,
matchValue [3] MATCHING-RULE.&AssertionType (CONSTRAINED BY {

– matchValue must be a value of type specified by the &AssertionType field of
-- one of the MATCHING-RULE information objects identified by matchingRule -- }),

dnAttributes [4] BOOLEAN DEFAULT FALSE }

A Filter is either a FilterItem (see 7.8.2), or an expression involving simpler filters composed together with the logical
operators and, or, and not.

A Filter which is a FilterItem has the value of the FilterItem (i.e. TRUE, FALSE, or undefined).

A Filter which is the and of a set of filters is TRUE if the set is empty or if each filter is TRUE; it is FALSE if at least
one filter is FALSE; otherwise it is undefined (i.e. if at least one filter is undefined and no filters are FALSE).

A Filter which is the or of a set of filters is FALSE if the set is empty or if each filter is FALSE; it is TRUE if at least
one filter is TRUE; otherwise it is undefined (i.e. if at least one filter is undefined and no filters are TRUE).

A Filter which is the not of a filter is TRUE if the filter is FALSE; FALSE if it is TRUE; and undefined if it is
undefined.

7.8.2 Filter item

A FilterItem is an assertion about the presence or value(s) of attributes in the entry under test. An assertion about a
particular attribute type is also satisfied if the entry contains a subtype of the attribute and the assertion is TRUE for the
subtype, or if there is a collective attribute of the entry (see 7.6) for which the assertion is TRUE. Each assertion is
TRUE, FALSE, or undefined.

Every FilterItem includes or implies one or more AttributeTypes which identifies the particular attribute(s) concerned.

Any assertion about the values of such an attribute is only defined if the AttributeType is known by the evaluating
mechanism, the purported AttributeValue(s) conforms to the attribute syntax defined for that attribute type, the implied
or indicated matching rule is applicable to that attribute type, and (when used) a presented matchValue conforms to the
syntax defined for the indicated matching rules.

NOTE 1 – Where these conditions are not met the FilterItem is undefined.

NOTE 2 – Access control restrictions may affect the evaluation of the FilterItem.

Attribute value assertions in filter items are evaluated using the matching rules defined for that attribute type. Matching
rule assertions are evaluated as specified in their definition. A matching rule defined for a particular syntax can only be
used to make assertions about attributes of that syntax or subtypes of that syntax.

A FilterItem may be undefined (as described above). Otherwise, where the FilterItem asserts:

a) equality – It is TRUE if and only if there is a value of the attribute or one of its subtypes for which the
equality matching rule applied to that value and the presented value returns TRUE.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 11

b) substrings – It is TRUE if and only if there is a value of the attribute or one of its subtypes for which the
substring matching rule applied to that value and the presented value in strings returns TRUE. See
ITU-T Rec. X.520 | ISO/IEC 9594-6 for a description of the semantics of the presented value.

c) greaterOrEqual – It is TRUE if and only if there is a value of the attribute or one of its subtypes for
which the ordering matching rule applied to that value and the presented value returns FALSE. I.E., there
is a value of the attribute which is greater than or equal to the presented value.

d) lessOrEqual – It is TRUE if and only if there is a value of the attribute or one of its subtypes for which
either the equality matching rule or the ordering matching rule applied to that value and the presented
value returns TRUE, i.e. there is a value of the attribute which is less than or equal to the presented value.

e) present – It is TRUE if and only if the attribute or one of its subtypes is present in the entry.

f) approximateMatch – It is TRUE if and only if there is a value of the attribute or one of its subtypes for
which some locally-defined approximate matching algorithm (e.g. spelling variations, phonetic match,
etc.) returns TRUE. There are no specific guidelines for approximate matching in this edition of this
Directory Specification. If approximate matching is not supported, this FilterItem should be treated as a
match for equality.

g) extensibleMatch – It is TRUE if and only if there is a value of the attribute with the indicated type or one
of its subtypes for which the matching rule specified in matchingRule applied to that value and the
presented value matchValue returns TRUE.

If several matching rules are given, the way in which these rules are combined into a new rule is
unspecified (it is a locally-defined algorithm, which reflects the semantics of the constituent matching
rules – e.g. phonetic + keyword match).

If type is omitted, the match is made against all attribute types which are compatible with that matching
rule. If dnAttributes is TRUE, the attributes of the Distinguished Name of the entry are used in addition
to those of the entry in evaluating the match.

If an extensibleMatch is requested in a filter (rather than an extendedFilter), the extendedFilter bit in
the criticalExtensions parameter in CommonArguments shall be set, indicating that the extension is
critical.

NOTE 3 – An extensibleMatch is not permitted for 1988-edition systems.

7.9 Paged results

A PagedResultsRequest parameter is used by the DUA to request that the results of a list or search operation be
returned to it “page-by-page”: It requests the DSA to return only a subset – a page – of the results of the operation, in
particular the next pageSize subordinates or entries, and to return a queryReference which can be used to request the
next set of results on a follow-up query. It shall not be used if results are to be signed, and is not supported by 1988-
edition systems. Although a DUA may request pagedResults, a DSA is permitted to ignore the request and return its
results in the normal manner.

PagedResultsRequest ::= CHOICE {
newRequest SEQUENCE {

pageSize INTEGER,
sortKeys SEQUENCE OF SortKey OPTIONAL,
reverse [1] BOOLEAN DEFAULT FALSE,
unmerged [2] BOOLEAN DEFAULT FALSE },

queryReference OCTET STRING }

SortKey ::= SEQUENCE {
type AttributeType,
orderingRule MATCHING-RULE.&id OPTIONAL }

For a new list or search operation, the PagedResultsRequest is set to newRequest, which consists of the following
parameters:

a) The pageSize parameter specifies the maximum number of subordinates or entries to return in the results.
The DSA shall return up to but not more than the requested number of entries. The sizeLimit, if any, is
ignored.

b) The sortKeys parameter specifies a sequence of attribute types with optional ordering matching rules to
use as sort keys for sorting the returned entries prior to return to the DUA. The entries are sorted
according to their values of the type attribute of the first SortKey in the sequence, and in the event of
multiple entries having the same sort position, of the next SortKey in the sequence, and so on.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

12 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

For a particular SortKey, the DSA uses the orderingRule matching rule if it is present, otherwise the
ordering matching rule of the attribute if one is defined; it ignores the sort key if none is defined. If the
attribute type is multivalued, the “least” value is used; if the attribute type is missing from the returned
results, it is regarded as “greater” than all other matched values. A DSA is permitted to support only
certain sort key sequences (thus, a DSA that holds and returns its data in the internal order “alphabetic by
surname” will be able to comply with only one sort key sequence). If it cannot support the requested
sequence, it shall use a default sort sequence.

c) If the reverse parameter is TRUE then the DSA will return the sorted results in reverse order (i.e. from
“greatest” to “least” – if the attribute type is multivalued, the “greatest” is used; if the attribute type is
missing from the returned results, it is regarded as “less” than all other matched values). If it is false, the
DSA returns them in forward order. If no sortKeys parameter is specified, this parameter is ignored.

d) If the unmerged parameter is TRUE and the DSA must merge results from a number of other DSAs, it
shall return all the data from one DSA (in sort order) before returning data from the next DSA. If the
parameter is false, the DSA shall collect the results from all other DSAs and sort the merged data before
returning any of it. If no sortKeys parameter is specified, this parameter is ignored.

For a followup request, i.e. to request the next set of paged results, the DUA makes the same list or search request as
before, but sets PagedResultsRequest to queryReference, with the value of this parameter the same as that returned in
the PartialOutcomeQualifier of the previous results. The DUA has no understanding of the queryReference, which is
available to a DSA to use as it wishes to record context information for the query. The DSA uses this information to
determine which results to return next.

NOTES

1 If the DIB changes between search requests, the DUA may not see the effects of these changes. This is
implementation dependent.

2 A query-reference may remain valid even if a DUA begins a new list or search operation. A DUA may request paged
results with several queries and then return to an earlier query and request the next page of results using the query-reference supplied
for it. The number of “active” query references to which a DUA can return is a local DSA implementation option, as is the lifetime of
those query-references.

3 Paged results are not supported in the Directory System Protocol. Paged results are provided entirely by the DSA to
which the DUA has connected.

7.10 Security parameters

The SecurityParameters govern the operation of various security features associated with a Directory operation.

NOTE – These parameters are conveyed from sender to recipient. Where the parameters appear in the argument of an
operation the requestor is the sender, and the performer is the recipient. In a result, the roles are reversed.

SecurityParameters ::= SET {
certification-path [0] CertificationPath OPTIONAL,
name [1] DistinguishedName OPTIONAL,
time [2] UTCTime OPTIONAL,
random [3] BIT STRING OPTIONAL,
target [4] ProtectionRequest OPTIONAL }

ProtectionRequest ::= INTEGER { none(0), signed (1) }

The CertificationPath component consists of the sender’s certificate, and, optionally, a sequence of certificate pairs. The
certificate is used to associate the sender’s public key and distinguished name, and may be used to verify the signature on
the argument or result. This parameter shall be present if the argument or result is signed. The sequence of certification
pairs consists of certification authority cross certificates. It is used to enable the sender’s certificate to be validated. It is
not required if the recipient shares the same certification authority as the sender. If the recipient requires a valid set of
certificate pairs, and this parameter is not present, whether the recipient rejects the signature on the argument or result, or
attempts to generate the certification path, is a local matter.

The name is the distinguished name of the first intended recipient of the argument or result. For example, if a DUA
generates a signed argument, the name is the distinguished name of the DSA to which the operation is submitted.

The time is the intended expiry time for the validity of the signature, when signed arguments are used. It is used in
conjunction with the random number to enable the detection of replay attacks.

The random number is a number which should be different for each unexpired token. It is used in conjunction with the
time parameter to enable the detection of replay attacks when the argument or result has been signed.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 13

The target ProtectionRequest may appear only in the request for an operation to be carried out, and indicates the
requestor’s preference regarding the degree of protection to be provided to the result. Two levels are provided: none (no
protection requested, the default), and signed (the Directory is requested to sign the result). The degree of protection
actually provided to the result is indicated by the form of result and may be equal to or lower than that requested, based
on the limitations of the Directory.

7.11 Common elements of procedure for basic-access-control

This subclause defines the elements of procedure that are common to all abstract service operations when basic-access-
control is in effect.

7.11.1 Alias dereferencing

If, in the process of locating a target object entry (identified in the argument of an abstract service operation), alias
dereferencing is required, no specific permissions are necessary for alias dereferencing to take place. However, if alias
dereferencing would result in a ContinuationReference being returned (i.e. in a Referral), the following sequence of
access controls applies. These access controls shall also be applied to a referral that is received in a response from
another DSA. That is, the DSA shall police all referrals whether they were generated locally or remotely.

1) Read permission is required to the alias entry. If permission is not granted, the operation fails in
accordance to the procedure described in 7.11.3.

2) Read permission is required to the AliasedObjectName attribute and to the single value that it contains.
If permission is not granted the operation fails and the error NameError with problem
aliasDereferencingProblem shall be returned. The matched element shall contain the name of the alias
entry.

NOTE – In addition to the access controls described above, security policy may prevent the disclosure of knowledge
information which would otherwise be conveyed as a ContinuationReference in Referral. If such a policy is in effect and if a DUA
constrains the service by specifying chainingProhibited the Directory may return a ServiceError with problem chainingRequired.
Otherwise, a SecurityError with problem insufficientAccessRights or noInformation shall be returned.

7.11.2 Return of NameError

If, while performing an abstract service operation, the specified target object (alias or entry) – e.g. the Name of an entry
to be read or the baseObject in a Search – could not be found, a NameError with problem noSuchObject shall be
returned. The matched element shall either contain the name of the next superior entry to which DiscloseOnError
permission is granted, or the name of the DIT root (i.e. an empty RDNSequence).

NOTE – The second alternative may be taken by a DSA which does not have access to all superior entries.

7.11.3 Non-disclosure of the existence of an entry

If, while performing an abstract service operation, the necessary entry level permission is not granted to the specified
target object entry – e.g. the entry to be read – the operation fails and the error returned is one of: if DiscloseOnError
permission is granted to the target entry, a SecurityError with problem insufficientAccessRights or noInformation
shall be returned; otherwise, a NameError with problem noSuchObject shall be returned. The matched element shall
either contain the name of the next superior entry to which DiscloseOnError permission is granted, or the name of the
DIT root (i.e. an empty RDNSequence).

NOTE – The second alternative may be taken by a DSA which does not have access to all superior entries.

Additionally, whenever the Directory detects an operational error (including a Referral) it shall ensure that in returning
that error it does not compromise the existence of the named target entry and any of its superiors. For example, before
returning a ServiceError with problem timeLimitExceeded or an UpdateError with problem
notAllowedOnNonLeaf, the Directory verifies that discloseOnError permission is granted to the target entry. If it is not,
the procedure described in the paragraph above shall be followed.

7.11.4 Return of Distinguished Name

In a Compare, List, or Search operation, ReturnDN permission is required to the object (or baseObject) entry if as a
result of dereferencing an alias, the object’s distinguished name is to be returned in the name parameter of the operation
result (see 9.2.3). If this permission is not granted, the Directory shall return an alias name for the entry instead, as
described in 7.7, or shall omit the name parameter altogether.

In a Read or Search operation, ReturnDN permission is required to an entry in order to return its distinguished name in
EntryInformation. If this permission is not granted, the Directory shall return the name of an alias instead, as described
in 7.7, or if no alias name is available shall fail the operation with a NameError (in the case of Read) or omit the entry
from the results (in the case of Search).

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

14 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

If the user supplied alias name is returned in the result, then the aliasDeferenced flag of CommonResults shall not be
set to TRUE.

7.12 Optionally-signed parameters

An OPTIONALLY-SIGNED information type is one whose values may, at the option of the generator, be
accompanied by their digital signature. This capability is specified by means of the following type:

OPTIONALLY-SIGNED {Type} ::= CHOICE {
unsigned Type,
signed SIGNED {Type}}

The SIGNED type, which describes the form of the signed form of the information, is specified in ITU-T Rec. X.509 |
ISO/IEC 9594-8.

8 Bind and Unbind operations

The DirectoryBind and DirectoryUnbind operations, defined in 8.1 and 8.2 respectively, are used by the DUA at the
beginning and end of a particular period of accessing the Directory.

8.1 Directory Bind

8.1.1 Directory Bind syntax

A DirectoryBind operation is used at the beginning of a period of accessing the Directory.

directoryBind OPERATION ::= {
ARGUMENT DirectoryBindArgument
RESULT DirectoryBindResult
ERRORS {directoryBindError }}

DirectoryBindArgument ::= SET {
credentials [0] Credentials OPTIONAL,
versions [1] Versions DEFAULT {v1}}

Credentials ::= CHOICE {
simple [0] SimpleCredentials,
strong [1] StrongCredentials,
externalProcedure [2] EXTERNAL }

SimpleCredentials ::= SEQUENCE {
name [0] DistinguishedName,
validity [1] SET {

time1 [0] UTCTime OPTIONAL,
time2 [1] UTCTime OPTIONAL,
random1 [2] BIT STRING OPTIONAL,
random2 [3] BIT STRING OPTIONAL} OPTIONAL,

password [2] CHOICE {
unprotected OCTET STRING,
protected SIGNATURE {OCTET STRING} } OPTIONAL}

StrongCredentials ::= SET {
certification-path [0] CertificationPath OPTIONAL,
bind-token [1] Token,
name [2] DistinguishedName OPTIONAL }

Token ::= SIGNED { SEQUENCE {
algorithm [0] AlgorithmIdentifier,
name [1] DistinguishedName,
time [2] UTCTime,
random [3] BIT STRING }}

Versions ::= BIT STRING {v1(0)}

DirectoryBindResult ::= DirectoryBindArgument

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 15

directoryBindError ERROR ::= {
PARAMETER SET {

versions [0] Versions DEFAULT {v1},
error CHOICE {
serviceError [1] ServiceProblem,
securityError [2] SecurityProblem }}}

8.1.2 Directory Bind arguments

The credentials argument of the DirectoryBindArgument allows the Directory to establish the identity of the user. The
credentials may be simple, or strong or externally defined (externalProcedure) (as described in ITU-T Rec. X.509 |
ISO/IEC 9594-8.

If simple is used, it consists of a name (always the distinguished name of an object), an optional validity, and an
optional password. This provides a limited degree of security. The password may be unprotected, or it may be
protected (either Protected1 or Protected2) as described in clause 5 of ITU-T Rec. X.509 | ISO/IEC 9594-8. The
validity supplies time1, time2, random1 and random2 arguments, which derive their meaning by bilateral agreement,
and which may be used to detect replay. In some instances a protected password may be checked by an object which
knows the password only after locally regenerating the protection to its own copy of the password and comparing the
result with the value in the bind argument (password). In other instances a direct comparison may be possible.

If strong is used, it consists of a bind-token, and, optionally, a certification-path (certificate and sequence of
certification-authority cross-certificates, as defined in ITU-T Rec. X.509 | ISO/IEC 9594-8) and the name of the
requestor. This enables the Directory to authenticate the identity of the requestor establishing the association, and vice
versa.

The arguments of the bind token are used as follows. algorithm is the identifier of the algorithm employed to sign this
information. name is the name of the intended recipient. The time parameter contains the expiry time of the token. The
random number is a number which should be different for each unexpired token, and may be used by the recipient to
detect replay attacks.

If externalProcedure is used, then the semantics of the authentication scheme being used is outside the scope of the
Directory Specifications.

The versions argument of the DirectoryBindArgument identifies the versions of the service which the DUA is
prepared to participate in. For this version of the protocol the value shall be set to v1(0).

Migration to future versions of the Directory should be facilitated by:

a) Any elements of DirectoryBindArgument other than those defined in this Directory Specification shall
be accepted and ignored.

b) Additional options for named bits of DirectoryBindArgument (e.g. Versions) not defined shall be
accepted and ignored.

8.1.3 Directory Bind results

Should the bind request succeed, a result shall be returned.

The credentials argument of the DirectoryBindResult allows the user to establish the identity of the Directory. It
allows information identifying the DSA (that is directly providing the Directory service) to be conveyed to the DUA. It
shall be of the same form (i.e. CHOICE) as that supplied by the user.

The versions parameter of the DirectoryBindResult indicates which of the versions of the service requested by the
DUA is actually going to be provided by the DSA.

8.1.4 Directory Bind errors

Should the bind request fail, a bind error shall be returned.

The versions parameter of the DirectoryBindError indicates which versions are supported by the DSA.

A securityError or serviceError shall be supplied as follows:

• securityError inappropriateAuthentication
invalidCredentials

• serviceError unavailable

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

16 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

8.2 Directory Unbind

A DirectoryUnbind operation is used at the end of a period of accessing the Directory.

directoryUnbind OPERATION ::= emptyUnbind

The DirectoryUnbind has no arguments.

9 Directory Read operations

There are two ‘read-like’ operations: read and compare, defined in 9.1 and 9.2, respectively. The Abandon operation,
defined in 9.3, is grouped with these operations for convenience.

9.1 Read

9.1.1 Read syntax

A read operation is used to extract information from an explicitly identified entry. It may also be used to verify a
distinguished name. The arguments of the operation may optionally be signed (see 7.10) by the requestor. If so
requested, the Directory may sign the result.

read OPERATION ::= {
ARGUMENT ReadArgument
RESULT ReadResult
ERRORS { attributeError | nameError | serviceError | referral | abandoned |

securityError }
CODE id-opcode-read }

ReadArgument ::= OPTIONALLY-SIGNED { SET {
object [0] Name,
selection [1] EntryInformationSelection DEFAULT { },
modifyRightsRequest

[2] BOOLEAN DEFAULT FALSE,
COMPONENTS OF CommonArguments }}

ReadResult ::= OPTIONALLY-SIGNED { SET {
entry [0] EntryInformation,
modifyRights [1] ModifyRights OPTIONAL,
COMPONENTS OF CommonResults }}

ModifyRights ::= SET OF SEQUENCE {
item CHOICE {

entry [0] NULL,
attribute [1] AttributeType,
value [2] AttributeValueAssertion },

permission [3] BIT STRING { add (0), remove (1), rename (2) , move(3) }}

9.1.2 Read arguments

The object argument identifies the object entry from which information is requested. Should the Name involve one or
more aliases, they are dereferenced (unless this is prohibited by the relevant service controls).

The selection argument indicates what information from the entry is requested (see 7.6). However, it should not be
assumed that the attributes returned are the same as or limited to those requested.

The CommonArguments (see 7.3) include a specification of the service controls applying to the request. For the
purposes of this operation the sizeLimit component is not relevant and is ignored if provided.

The modifyRightsRequest argument is used to request return of the requestor’s modification rights to the entry and its
attributes.

9.1.3 Read results

Should the request succeed, the result shall be returned.

The entry result parameter holds the requested information (see 7.7).

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 17

The modifyRights parameter is present if it was requested via the modifyRightsRequest argument, and the user has
modification privileges to some or all of the requested entry information, and the return of this information is permitted
by the local security policy. If returned, the modification rights of the requestor are returned for the entry and for the
attributes specified in the selection argument. The parameter contains the following:

– An element of the SET is returned for the entry; for each user attribute requested which the user has the
right to add or remove; and for each returned attribute value for which the user’s rights to add or remove
it differ from those of the corresponding attribute.

– The returned permission indicates what operations or actions on the entry by the user would succeed. In
the case of an entry, remove indicates that a RemoveEntry operation would succeed; rename indicates
that a ModifyDN operation with the newSuperior parameter absent would succeed; and move that a
ModifyDN operation with the newSuperior parameter present and an unchanged RDN would succeed.

In the case of attributes and values, add indicates that a ModifyEntry operation that adds the attribute or
value would succeed; and remove indicates that a ModifyEntry operation that removes the attribute or
value would succeed.

NOTE – An operation to move an entry to a new superior may also depend on permissions associated with the
new superior (as for example with basic-access-control). These are ignored when determining permission.

9.1.4 Read errors

Should the request fail, one of the listed errors shall be reported. If none of the attributes explicitly listed in selection can
be returned, then an AttributeError with problem noSuchAttributeOrValue shall be reported. The circumstances
under which other errors shall be reported are defined in clause 12.

9.1.5 Read operation decision points for basic-access-control

If basic-access-control is in effect for the entry being read, the following sequence of access controls applies.

1) Read permission is required to the entry being read. If permission is not granted, the operation fails in
accordance with 7.11.3.

2) If the infoTypes element of selection specifies that attribute types only are to be returned, then for each
attribute type that is to be returned, Read permission is required. If permission is not granted, the attribute
type is omitted from the ReadResult. If as a consequence of applying these controls no attribute
information is returned, the entire operation fails in accordance with 9.1.5.1.

3) If the infoTypes element of selection specifies that attribute types and values are to be returned, then for
each attribute type and for each value that is to be returned, Read permission is required. If permission to
an attribute type is not granted, the attribute is omitted from ReadResult. If permission to an attribute
value is not granted, the value is omitted from its corresponding attribute. In the event that permission is
not granted to any of the values within the attribute, an Attribute element containing an empty SET OF
AttributeValue is returned. If as a consequence of applying these controls no attribute information is
returned, the entire operation fails in accordance with 9.1.5.1.

9.1.5.1 Error returns

If the operation fails as defined in 9.1.5 items 2) or 3), the valid error returns are one of:

a) If an open-ended option was specified (i.e. allUserAttributes or allOperationalAttributes), a
SecurityError with problem insufficientAccessRights or noInformation shall be returned.

b) Otherwise, if a select option was specified (in attributes and/or in extraAttributes), then if the
DiscloseOnError permission is granted to any of the selected attributes a SecurityError with problem
insufficientAccessRights or noInformation shall be returned. Otherwise, an AttributeError with
problem noSuchAttributeOrValue shall be returned.

9.1.5.2 Non-disclosure of incomplete results

If an incomplete result is being returned in EntryInformation, i.e. some of the attributes or attribute values have been
omitted because of the applicable access controls, the incompleteEntry element shall be set to TRUE if
DiscloseOnError permission is granted to at least one attribute type withheld from the result, or at least one attribute
value withheld from the result (for which attribute type Read permission was granted).

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

18 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

9.2 Compare

9.2.1 Compare syntax

A compare operation is used to compare a value (which is supplied as an argument of the request) with the value(s) of a
particular attribute type in a particular object entry. The arguments of the operation may optionally be signed (see 7.10)
by the requestor. If so requested, the Directory may sign the result.

compare OPERATION ::= {
ARGUMENT CompareArgument
RESULT CompareResult
ERRORS { attributeError | nameError | serviceError | referral | abandoned |

securityError }
CODE id-opcode-compare }

CompareArgument ::= OPTIONALLY-SIGNED { SET {
object [0] Name,
purported [1] AttributeValueAssertion,
COMPONENTS OF CommonArguments }}

CompareResult ::= OPTIONALLY-SIGNED { SET {
name Name OPTIONAL,
matched [0] BOOLEAN,
fromEntry [1] BOOLEAN DEFAULT TRUE,
matchedSubtype [2] AttributeType OPTIONAL,
COMPONENTS OF CommonResults }}

9.2.2 Compare arguments

The object argument is the name the particular object entry concerned. Should the Name involve one or more aliases,
they are dereferenced (unless prohibited by the relevant service control).

The purported argument identifies the attribute type and value to be compared with that in the entry. The comparison is
TRUE if the entry holds the purported attribute type or one of its subtypes, or there is a collective attribute of the entry
which is the purported attribute type or one of its subtypes (see 7.6), and if there is a value of that attribute which
matches the purported value using the attribute’s equality matching rule.

The CommonArguments (see 7.3) specify the service controls applying to the request. For the purposes of this
operation the sizeLimit component is not relevant and is ignored, if provided.

9.2.3 Compare results

Should the request succeed (i.e. the comparison is actually carried out), the result shall be returned.

The name is the distinguished name of the entry or an alias name of the entry, as described in 7.7. It is present only if an
alias has been dereferenced and the name to be returned differs from the object name supplied in the operation
argument.

The matched result parameter, holds the result of the comparison. The parameter takes the value TRUE if the values
were compared and matched, and FALSE if they did not.

If fromEntry is TRUE the information was compared against the entry; if FALSE the information was compared
against a copy.

The matchedSubtype parameter is present only if the result of the match was TRUE and if the match succeeded because
a subtype of the purported attribute was matched. It contains the matched subtype. If more than one such subtype is
available, the one highest in the hierarchy is returned.

9.2.4 Compare errors

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors
shall be reported are defined in clause 12.

9.2.5 Compare operation decision points for basic-access-control

If basic-access-control is in effect for the entry being compared, the following sequence of access controls applies.

1) Read permission is required to the entry to be compared. If permission is not granted, the operation fails
in accordance with 7.11.3.

2) Compare permission is required to the attribute being compared. If permission is not granted, the
operation fails in accordance to 9.2.5.1.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 19

3) If there exists a value within the attribute being compared that matches the purported argument and for
which Compare permission is granted, the operation returns the value TRUE in the matched result
parameter of the CompareResult. Otherwise, the operation returns the value FALSE.

9.2.5.1 Error returns

If the operation fails as defined in 9.2.5 item 2), the valid error returns are one of: if the DiscloseOnError permission is
granted to the attribute being compared, a SecurityError with problem insufficientAccessRights or noInformation
shall be returned; otherwise, an AttributeError with problem noSuchAttributeOrValue shall be returned.

9.3 Abandon

Operations that interrogate the Directory may be abandoned using the Abandon operation if the user is no longer
interested in the result.

abandon OPERATION ::= {
ARGUMENT AbandonArgument
RESULT AbandonResult
ERRORS { abandonFailed }
CODE id-opcode-abandon }

AbandonArgument ::= SEQUENCE {
invokeID [0] InvokeId}

AbandonResult ::= NULL

There is a single argument, the invokeID which identifies the operation that is to be abandoned. The value of the
invokeID is the same invokeID which was used to invoke the operation which is to be abandoned.

Should the request succeed, a result shall be returned, although no information shall be conveyed with it. The original
operation shall fail with an Abandoned error.

Should the request fail, the AbandonFailed error shall be reported. As a local matter, a DSA may choose not to abandon
the operation and shall then return the AbandonFailed error. This error is described in 12.3.

Abandon is only applicable to interrogation operations, i.e. Read, Compare, List, and Search.

A DSA may abandon an operation locally. If the DSA has chained or multicasted the operation to other DSAs, it may in
turn request them to abandon the operation.

10 Directory Search operations

There are two ’search-like’ operations: list and search, defined in 10.1 and 10.2 respectively.

10.1 List

10.1.1 List syntax

A list operation is used to obtain a list of the immediate subordinates of an explicitly identified entry. Under some
circumstances, the list returned may be incomplete. The arguments of the operation may optionally be signed (see 7.10)
by the requestor. If so requested, the Directory may sign the result.

list OPERATION ::= {
ARGUMENT ListArgument
RESULT ListResult
ERRORS { nameError | serviceError | referral | abandoned | securityError }
CODE id-opcode-list }

ListArgument ::= OPTIONALLY-SIGNED { SET {
object [0] Name,
pagedResults [1] PagedResultsRequest OPTIONAL,
COMPONENTS OF CommonArguments }}

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

20 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

ListResult ::= OPTIONALLY-SIGNED { CHOICE {
listInfo SET {

name Name OPTIONAL,
subordinates [1] SET OF SEQUENCE {

rdn RelativeDistinguishedName,
aliasEntry [0] BOOLEAN DEFAULT FALSE,
fromEntry [1] BOOLEAN DEFAULT TRUE },

partialOutcomeQualifier [2] PartialOutcomeQualifier OPTIONAL,
COMPONENTS OF CommonResults},

uncorrelatedListInfo
[0] SET OF ListResult }}

PartialOutcomeQualifier ::= SET {
limitProblem [0] LimitProblem OPTIONAL,
unexplored [1] SET OF ContinuationReference OPTIONAL,
unavailableCriticalExtensions

[2] BOOLEAN DEFAULT FALSE,
unknownErrors [3] SET OF ABSTRACT-SYNTAX.&Type OPTIONAL,
queryReference [4] OCTET STRING OPTIONAL }

LimitProblem ::= INTEGER {
timeLimitExceeded (0), sizeLimitExceeded (1), administrativeLimitExceeded (2) }

10.1.2 List arguments

The object argument identifies the object entry (or possibly the root) whose immediate subordinates are to be listed.
Should the Name involve one or more aliases, they are dereferenced (unless prohibited by the relevant service control).

The pagedResults argument is used to request that results of the operation be returned page-by-page, as described
in 7.9.

10.1.3 List results

The request succeeds if the object is located, regardless of whether there is any subordinate information to return.

The name is the distinguished name of the entry or an alias name of the entry, as described in 7.7. It is present only if an
alias has been dereferenced and the name to be returned differs from the baseObject name supplied in the operation
argument.

The subordinates parameter conveys the information on the immediate subordinates, if any, of the named entry. Should
any of the subordinate entries be aliases, they shall not be dereferenced.

The rdn parameter is the relative distinguished name of the subordinate.

The fromEntry parameter indicates whether the information was obtained from the entry (TRUE) or a copy of the entry
(FALSE).

The aliasEntry parameter indicates whether the subordinate entry is an alias entry (TRUE) or not (FALSE).

The partialOutcomeQualifier consists of five subcomponents as described below. This parameter shall be present
whenever the result is incomplete because of a time limit, size limit, or administrative limit problem, because regions of
the DIT were not explored, because some critical extensions were unavailable, because an unknown error was received,
or because paged results are being returned.

a) The LimitProblem parameter indicates whether the time limit, the size limit, or an administrative limit
has been exceeded. The results being returned are those which were available when the limit was reached.

b) The unexplored parameter shall be present if regions of the DIT were not explored. Its information
allows the DUA to continue the processing of the List operation by contacting other access points if it so
chooses. The parameter consists of a set (possibly empty) of ContinuationReferences, each consisting of
the name of a base object from which the operation may be progressed, an appropriate value of
OperationProgress, and a set of access points from which the request may be further progressed. The
ContinuationReferences that are returned shall be within the scope of referral requested in the operation
service control.

c) The unavailableCriticalExtensions parameter indicates, if present, that one or more critical extensions
were unavailable in some part of the Directory.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 21

d) The unknownErrors parameter is used to return unknown error types or parameters received from other
DSAs in the processing of the operation. Each member of the SET contains one such unknown error. See
ITU-T Rec. X.519 | ISO/IEC 9594-5 7.5.2.4.

e) The queryReference parameter shall be present when the DUA has requested paged results and the DSA
has not returned all the available results. See 7.9

When the DUA has requested a protection request of signed, the uncorrelatedListInfo parameter may comprise a
number of sets of result parameters originating from and signed by different components of the Directory. If no DSA in
the chain can correlate all the results, the DUA must assemble the actual result from the various pieces.

10.1.4 List errors

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors
shall be reported are defined in clause 12.

10.1.5 List operation decision points for basic-access-control

If basic-access-control is in effect for the portion of the DIB where the List operation is being performed, the following
sequence of access controls applies.

1) No specific permission is required to the entry identified by the object argument.

2) For each immediate subordinate for which a RelativeDistinguishedName is to be returned in
subordinates, Browse and ReturnDN permissions are required to that entry. Entries for which these
permissions are not granted are ignored. If as a consequence of applying these controls no subordinate
information (excluding any ContinuationReferences in PartialOutcomeQualifier) is returned and if
DiscloseOnError permission is not granted to the entry identified by the object argument, the operation
fails and a NameError with problem noSuchObject shall be returned. The matched element shall either
contain the name of the next superior entry to which DiscloseOnError permission is granted, or the name
of the DIT root (i.e. an empty RDNSequence). Otherwise, the operation succeeds but no subordinate
information (excluding any ContinuationReferences in PartialOutcomeQualifier) is conveyed with it.

NOTE 1 – In the case of a NameError being returned, the empty RDNSequence may be used by a DSA which
does not have access to all superior entries.

NOTE 2 – Security policy may prevent the disclosure of subordinate information which would otherwise be
conveyed as ContinuationReferences in PartialOutcomeQualifier. If such a policy is in effect and if a DUA
constrains the service by specifying chainingProhibited the Directory may return a ServiceError with problem
chainingRequired. Otherwise, the procedure described in item 2) above is followed.

NOTE 3 – Security policy may prevent the Directory from indicating that a listed subordinate entry is an alias
entry. For example, if the DUA is not granted Read access to the alias entry, its ObjectClass attribute and the value
alias that it contains the Directory may omit the aliasEntry component of subordinates from the ListResult or set it
to FALSE.

NOTE 4 – If DiscloseOnError permission is not granted to the entry identified by the object argument, a
partialOutcomeQualifier indicating a limitProblem or unavailableCriticalExtensions should not be returned as it
may compromise the security of this entry.

10.2 Search

10.2.1 Search syntax

A search operation is used to search a portion of the DIT for entries of interest, and to return selected information from
those entries. The arguments of the operation may optionally be signed (see 7.10) by the requestor. If so requested, the
Directory may sign the result.

search OPERATION ::= {
ARGUMENT SearchArgument
RESULT SearchResult
ERRORS { attributeError | nameError | serviceError | referral | abandoned |

securityError }
CODE id-opcode-search }

SearchArgument ::= OPTIONALLY-SIGNED { SET {
baseObject [0] Name,
subset [1] INTEGER {

baseObject(0), oneLevel(1), wholeSubtree(2)} DEFAULT baseObject,
filter [2] Filter DEFAULT and : { },
searchAliases [3] BOOLEAN DEFAULT TRUE,

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

22 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

selection [4] EntryInformationSelection DEFAULT { },
pagedResults [5] PagedResultsRequest OPTIONAL,
matchedValuesOnly

[6] BOOLEAN DEFAULT FALSE,
extendedFilter [7] Filter OPTIONAL,
COMPONENTS OF CommonArguments }}

SearchResult ::= OPTIONALLY-SIGNED { CHOICE {
searchInfo SET {

name Name OPTIONAL,
entries [0] SET OF EntryInformation,
partialOutcomeQualifier [2] PartialOutcomeQualifier OPTIONAL,
COMPONENTS OF CommonResults },

uncorrelatedSearchInfo
[0] SET OF SearchResult }}

10.2.2 Search arguments

The baseObject argument identifies the object entry (or possibly the root) relative to which the search is to take place.

The subset argument indicates whether the search is to be applied to:

a) the baseObject only;

b) the immediate subordinates of the base object only (oneLevel);

c) the base object and all its subordinates (wholeSubtree).

The filter argument is used to eliminate entries from the search space which are not of interest. Information shall only be
returned on entries which satisfy the filter (see 7.8).

NOTE 1 – If the filter is overspecified, it may eliminate all entries from the search result, even though there are candidate
entries matching portions of the filter. The user must simplify the filter and try again. The Directory provides no support for
identifying these entries, or for identifying the changes that should be made to the filter.

Aliases shall be dereferenced while locating the base object, subject to the setting of the dontDereferenceAliases
service control. Aliases among the subordinates of the base object shall be dereferenced during the search, subject to the
setting of the searchAliases parameter. If the searchAliases parameter is TRUE, aliases shall be dereferenced, if the
parameter is FALSE, aliases shall not be dereferenced. If the searchAliases parameter is TRUE, the search shall
continue in the subtree of the aliased entry.

The selection argument indicates what information from the entries is requested (see 7.6). However, it should not be
assumed that the attributes returned are the same as or limited to those requested.

The pagedResults argument is used to request that results of the operation be returned page-by-page, as described
in 7.9.

The matchedValuesOnly argument indicates that certain attribute values are to be omitted from the returned entry
information. Specifically, where an attribute to be returned is multivalued, and some but not all of the values of that
attribute contributed to the search filter returning TRUE via filter items other than equality or present, then the values
that did not so contribute are omitted from the returned entry information.

The extendedFilter argument is used in mixed version environments to specify an alternative filter to that described
above. When this argument is present, the filter argument (if any) shall be ignored by 1993-edition systems. The
extendedFilter is always ignored by 1988-edition systems.

NOTE 2 – By including both filters, a DUA can specify one filter to be used by 1988-edition systems and a different filter
to be used by 1993-edition systems in the distributed processing of the Search request. 1988-edition systems do not support attribute
polymorphism or matching rule assertions.

10.2.3 Search results

The request succeeds if the baseObject is located, regardless of whether there are any subordinates to return.
NOTE 1 – As a corollary to this, the outcome of an unfiltered search applied to a single entry may not be identical to a read

which seeks to interrogate the same set of attributes of the entry. This is because the latter shall return an AttributeError if none of
the selected attributes exist in the entry.

The name is the distinguished name of the entry or an alias name of the entry, as described in 7.7. It is present only if an
alias has been dereferenced and the name to be returned differs from the baseObject name supplied in the operation
argument.

The entries parameter conveys the requested information from each entry (zero or more) which satisfied the filter
(see 7.5).

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 23

The partialOutcomeQualifier is as described in 10.1.3.

NOTE 2 – Where returned entry information is incomplete for a particular entry, it is indicated via the incompleteEntry
parameter in the returned entry information.

The uncorrelatedSearchInfo parameter is as described for uncorrelatedListInfo in 10.1.3.

10.2.4 Search errors

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors
shall be reported are defined in clause 12.

10.2.5 Search operation decision points for basic-access-control

If basic-access-control is in effect for the portion of the DIT to be searched, the following sequence of access controls
applies:

1) No specific permission is required to the entry identified by the baseObject argument.

NOTE 1 – If the baseObject is within the scope of the SearchArgument (i.e. when the subset argument
specifies baseObject or wholeSubtree) the access controls specified in items 2) through 4) apply.

2) For each entry within the scope of the SearchArgument which is to be a candidate for consideration,
Browse permission is required. Entries for which this permission is not granted are ignored.

3) The filter argument is applied to each entry left to be considered after taking item 2) into account, in
accordance with the following:

a) For each FilterItem which specifies an attribute, FilterMatch permission for the attribute type is
required before the FilterItem can be evaluated as either TRUE or FALSE. A FilterItem for which
this permission is not granted evaluates as undefined.

b) For each FilterItem which additionally specifies an attribute value, FilterMatch permission is
required for each stored attribute value which is to be considered for the purposes of matching. If
there is a value which both matches the FilterItem and for which permission is granted, the
FilterItem evaluates to TRUE, otherwise it evaluates to FALSE.

4) Once the procedures defined in 2) and 3) have been applied, the entry is either selected or discarded. If as
a consequence of applying these controls to the entire scoped subtree no entries have been selected
(excluding any ContinuationReferences in partialOutcomeQualifier) and if DiscloseOnError
permission is not granted to the entry identified by the baseObject argument, the operation fails and a
NameError with problem noSuchObject shall be returned. The matched element shall either contain the
name of the next superior entry to which DiscloseOnError permission is granted, or the name of the DIT
root (i.e. an empty RDNSequence). Otherwise, the operation succeeds but no subordinate information is
conveyed with it.

NOTE 2 – In the case of a NameError being returned, the empty RDNSequence may be used by a DSA which
does not have access to all superior entries.

NOTE 3 – Security policy may prevent the disclosure of knowledge information which would otherwise be
conveyed as ContinuationReferences in partialOutcomeQualifier. If such a policy is in effect and if a DUA
constrains the service by specifying chainingProhibited the Directory may return a ServiceError with problem
chainingRequired. Otherwise, the ContinuationReference is omitted from partialOutcomeQualifier.

5) Otherwise, for each selected entry the information returned is as follows:

a) If the infoTypes element of selection specifies that attribute types only are to be returned, then for
each attribute type that is to be returned, Read permission is required. If permission is not granted,
the attribute type is omitted from EntryInformation. If as a consequence of applying these controls
no attribute type information is selected, the EntryInformation element is returned but no attribute
type information is conveyed with it (i.e. the SET OF CHOICE element is omitted or empty).

b) If the infoTypes element of selection specifies that attribute types and values are to be returned, then
for each attribute type and for each value that is to be returned, Read permission is required. If
permission to an attribute type is not granted, the attribute is omitted from EntryInformation. If
permission to an attribute value is not granted, the value is omitted from its corresponding attribute.
In the event that permission is not granted to any of the values within the attribute, an Attribute
element containing an empty SET OF AttributeValue is returned. If as a consequence of applying
these controls no attribute information is selected, the EntryInformation element is returned but no
attribute information is conveyed with it (i.e. the SET OF CHOICE element is omitted or empty).

NOTE 4 – If DiscloseOnError permission is not granted to the entry identified by the baseObject
argument, a partialOutcomeQualifier indicating a limitProblem or unavailableCriticalExtensions should not
be returned as it may compromise the security of this entry.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

24 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

10.2.5.1 Alias dereferencing during Search

No specific permissions are necessary for alias dereferencing to take place in the course of a Search operation (subject
to the searchAliases parameter being set to TRUE). However, for each alias entry encountered, if alias dereferencing
would result in a ContinuationReference being returned in partialOutcomeQualifier, the following access controls
apply: Read permission is required to the alias entry, the AliasedObjectName attribute and to the single value that it
contains. If any of these permissions is not granted, the ContinuationReference shall be omitted from
partialOutcomeQualifier. These access controls shall also be applied to a continuationReference that is received in a
response from another DSA. That is, the DSA shall police all continuationReferences whether they were generated
locally or not.

NOTE – In addition to the access controls described above, security policy may prevent the disclosure of knowledge
information which would otherwise be conveyed as ContinuationReferences in partialOutcomeQualifier. If such a policy is in
effect and if a DUA constrains the service by specifying chainingProhibited the Directory may return a ServiceError with problem
chainingRequired. Otherwise, the ContinuationReference is omitted from partialOutcomeQualifier.

10.2.5.2 Non-disclosure of incomplete results

If an incomplete result is being returned in EntryInformation, i.e. some of the attributes or attribute values have been
omitted because of the applicable access controls, the incompleteEntry element shall be set to TRUE if
DiscloseOnError permission is granted to at least one attribute type withheld from the result, or at least one attribute
value withheld from the result (for which attribute type Read permission was granted).

11 Directory Modify operations

There are four operations to modify the Directory: addEntry, removeEntry, modifyEntry, and modifyDN defined
in 11.1 through 11.4, respectively.

NOTES

1 Each of these operations identifies the target entry by means of its distinguished name.

2 The success of AddEntry, RemoveEntry, and ModifyDN operations may depend on the physical distribution of
the DIB across the Directory. Failure shall be reported with an UpdateError and problem affectsMultipleDSAs. See ITU-T
Rec. X.518 | ISO/IEC 9594-4.

3 In the event of failure of the underlying communications mechanism, the outcome of the operations is undetermined.
The user must use Directory interrogation operations to check whether the attempted modification operation succeeded or not.

11.1 Add Entry

11.1.1 Add Entry syntax

An addEntry operation is used to add a leaf entry (either an object entry or an alias entry) to the DIT. The arguments of
the operation may optionally be signed (see 7.10) by the requestor.

addEntry OPERATION ::= {
ARGUMENT AddEntryArgument
RESULT AddEntryResult
ERRORS { attributeError | nameError | serviceError | referral | securityError |

updateError }
CODE id-opcode-addEntry }

AddEntryArgument ::= OPTIONALLY-SIGNED { SET {
object [0] Name,
entry [1] SET OF Attribute,
targetSystem [2] AccessPoint OPTIONAL,
COMPONENTS OF CommonArguments}}

AddEntryResult ::= NULL

11.1.2 Add Entry arguments

The object argument identifies the entry to be added. Its immediate superior, which must already exist for the operation
to succeed, is determined by removing the last RDN component (which belongs to the entry to be created).

The entry argument contains the attribute information which, together with that from the RDN, constitutes the entry to
be created. The Directory shall ensure that the entry conforms to the Directory schema. Where the entry being created is
an alias, no check is made to ensure that the aliasedObjectName attribute points to a valid entry.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 25

The targetSystem argument indicates the DSA to hold the new entry. If this argument is absent, it shall be taken to
mean the same DSA as holds the superior of the new object. If the argument is present, it shall be the DSA with the
specified AccessPoint. The parameter shall be absent when subentries are to be added.

If the argument is present, the targetSystem bit in the criticalExtensions parameter in CommonArguments shall be
set, indicating that this extension is critical.

NOTE 1 – If the choice of indicated or implied DSA conflicts with local adminstrative policy, the operation is not
performed and an error is returned.

The CommonArguments (see 7.3) include a specification of the service controls applying to the request. The
dontDereferenceAlias option is ignored (and treated as set) unless the useAliasOnUpdate critical extension bit is set in
criticalExtensions. Thus aliases are dereferenced by this operation only if dontDereferenceAlias is not set and
useAliasOnUpdate is set. The sizeLimit component is ignored if provided.

NOTE 2 – Update operations that involve dereferencing of an alias name will always fail if they encounter
1988-edition DSAs.

11.1.3 Add Entry results

Should the request succeed, a result shall be returned, although no information shall be conveyed with it.

11.1.4 Add Entry errors

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors
shall be reported are defined in clause 12.

11.1.5 Add operation decision points for basic-access-control

If basic-access-control is in effect for the entry being added, the following sequence of access controls applies:

1) No specific permission is required to the immediate superior of the entry identified by the object
argument.

NOTE 1 – Security policy may prevent Directory users from adding entries across DSA boundaries (e.g. using
the targetSystem argument). In this event, an appropriate NameError, ServiceError, SecurityError or
UpdateError may be returned provided that it does not compromise the existence of the immediate superior entry. If
it does (i.e. DiscloseOnError is not granted to the superior entry), the procedure defined in 7.11.3 shall be followed
with respect to the superior entry.

2) If an entry already exists with a distinguished name equal to the object argument, the operation fails in
accordance with 11.1.5.1, item a).

3) Add permission is required for the new entry being added. If this permission is not granted, the operation
fails in accordance with 11.1.5.1, item b).

NOTE 2 – The Add permission must be provided as prescriptive ACI.

4) For each attribute type and for each value that is to be added, Add permission is required. If any
permission is absent, the operation fails in accordance with 11.1.5.1, item c).

11.1.5.1 Error returns

If the operation fails as defined in 11.1.5, the following procedure applies:

a) If the operation fails as defined in 11.1.5 item 2), the valid error returns are one of: if DiscloseOnError or
Add permission is granted to the existing entry, an UpdateError with problem entryAlreadyExists shall
be returned. Otherwise, the procedure described in 7.11.3 is followed with respect to the entry being
added.

b) If the operation fails as defined in 11.1.5 item 3), the procedure described in 7.11.3 is followed with
respect to the entry being added.

c) If the operation fails as defined in 11.1.5 item 4), the valid error return is SecurityError with problem
insufficientAccessRights or noInformation.

11.2 Remove Entry

11.2.1 Remove Entry syntax

A removeEntry operation is used to remove a leaf entry (either an object entry or an alias entry) from the DIT. The
arguments of the operation may optionally be signed (see 7.10) by the requestor.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

26 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

removeEntry OPERATION ::= {
ARGUMENT RemoveEntryArgument
RESULT RemoveEntryResult
ERRORS { nameError | serviceError | referral | securityError | updateError }
CODE id-opcode-removeEntry }

RemoveEntryArgument ::= OPTIONALLY-SIGNED { SET {
object [0] Name,
COMPONENTS OF CommonArguments }}

RemoveEntryResult ::= NULL

11.2.2 Remove Entry arguments

The object argument identifies the entry to be deleted.

The CommonArguments (see 7.3) include a specification of the service controls applying to the request. The
dontDereferenceAlias option is ignored (and treated as set) unless the useAliasOnUpdate critical extension bit is set in
criticalExtensions. Thus aliases are dereferenced by this operation only if dontDereferenceAlias is not set and
useAliasOnUpdate is set. The sizeLimit component is ignored if provided.

NOTE – Update operations that involve dereferencing of an alias name will always fail if they encounter
1988-edition DSAs.

11.2.3 Remove Entry results

Should the request succeed, a result shall be returned, although no information shall be conveyed with it.

11.2.4 Remove Entry errors

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors
shall be reported are defined in clause 12.

11.2.5 Remove Entry operation decision points for basic-access-control

If basic-access-control is in effect for the entry being removed, the following access controls apply:

– Remove permission is required for the entry being removed. If this permission is not granted, the
operation fails in accordance with 7.11.3.

NOTE – No specific permissions are required for any of the attributes and attribute values present within the
entry being removed.

11.3 Modify Entry

11.3.1 Modify Entry syntax

The modifyEntry operation is used to perform a series of one or more of the following modifications to a single entry:

a) add a new attribute;

b) remove an attribute;

c) add attribute values;

d) remove attribute values;

e) replace attribute values;

f) modify an alias.

The arguments of the operation may optionally be signed (see 7.10) by the requestor.

modifyEntry OPERATION ::= {
ARGUMENT ModifyEntryArgument
RESULT ModifyEntryResult
ERRORS { attributeError | nameError | serviceError | referral | securityError |

updateError }
CODE id-opcode-modifyEntry }

ModifyEntryArgument ::= OPTIONALLY-SIGNED { SET {
object [0] Name,
changes [1] SEQUENCE OF EntryModification,
COMPONENTS OF CommonArguments }}

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 27

ModifyEntryResult ::= NULL

EntryModification ::= CHOICE {
addAttribute [0] Attribute,
removeAttribute [1] AttributeType,
addValues [2] Attribute,
removeValues [3] Attribute}

11.3.2 ModifyEntry arguments

The object argument identifies the entry to which the modifications should be applied.

The changes argument defines a sequence of modifications that are applied in the order specified. If any of the
individual modifications fails, then an AttributeError is generated and the entry left in the state it was prior to the
operation. That is, the operation is atomic. The end result of the sequence of modifications shall not violate the Directory
schema. However, it is possible, and sometimes necessary, for the individual EntryModification changes to appear to
do so. The following types of modification may occur:

a) addAttribute – This identifies a new attribute to be added to the entry, which is fully specified by the
argument. Any attempt to add an already existing attribute results in an AttributeError.

b) removeAttribute – The argument identifies (by its type) an attribute to be removed from the entry. Any
attempt to remove a non-existing attribute results in an AttributeError.

NOTE 1 – This operation is not allowed if the attribute type is present in the RDN.

c) addValues – This identifies an attribute by the attribute type in the argument, and specifies one or more
attribute values to be added to the attribute. An attempt to add an already existing value results in an error.
An attempt to add a value to a non-existent type results in an error.

d) removeValues – This identifies an attribute by the attribute type in the argument, and specifies one or
more attribute values to be removed from the attribute. If the values are not present in the attribute, this
results in an AttributeError.

NOTE 2 – This operation is not allowed if one of the values is present in the RDN.

Values may be replaced by a combination of addValues and removeValues in a single ModifyEntry operation.

The CommonArguments (see 7.3) include a specification of the service controls applying to the request. The
dontDereferenceAlias option is ignored (and treated as set) unless the useAliasOnUpdate critical extension bit is set in
criticalExtensions. Thus aliases are dereferenced by this operation only if dontDereferenceAlias is not set and
useAliasOnUpdate is set. The sizeLimit component is ignored if provided.

NOTE 3 – Update operations that involve dereferencing of an alias name will always fail if they encounter
1988-edition DSAs.

The operation may be used to modify directory operational attributes. Only those directory operational attributes which
are not classified noUserModification (and to which the user has effective modification access rights) may be modified.

NOTE 4 – Whether or not user modification is permitted, the Directory may change the values of directory operational
attributes as a side effect of other Directory operations.

The operation may be used to modify collective attributes only if the service control subentries is TRUE and if the
object is the subentry actually holding the collective attribute(s) to be modified.

NOTE 5 – Caution should therefore be exercised when modifying the information returned on reading an entry: some of
the information may be from collective attributes, and cannot be modified in an operation directed at the entry itself. For example, it is
not possible to delete a collective attribute from an (ordinary) entry via a removeAttribute entry modification to the entry (an
attributeError with problem noSuchAttributeOrValue would be returned).

The operation may be used to modify an entry’s Object Class attribute value if the values specify auxiliary object
classes. However, an attempt to change an Object Class value which specifies an entry’s structural object class shall
result in an updateError with problem objectClassModificationProhibited. Any modification to auxiliary object
classes shall leave the superclass chains consistent and correct with the resultant object class definition.

11.3.3 Modify Entry results

Should the request succeed, a result shall be returned, although no information shall be conveyed with it.

11.3.4 Modify Entry errors

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors
shall be reported are defined in clause 12.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

28 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

11.3.5 Modify Entry operation decision points for basic-access-control

If basic-access-control is in effect for the entry being modified, the following sequence of access controls applies:

1) Modify permission is required for the entry being modified. If this permission is not granted, the operation
fails in accordance with 7.11.3.

2) For each of the specified EntryModification arguments applied in sequence, the following permissions
are required:

i) Add permission for the attribute type and for each of the values specified in an addAttribute
parameter. If these permissions are not granted or the attribute already exists, the operation fails in
accordance with 11.3.5.1, item a).

ii) Remove permission for the attribute type specified in a removeAttribute parameter. If this
permission is not granted, the operation fails in accordance with 11.3.5.1, item b).

NOTE 1 – No specific permissions are required for any of the attribute values present within the attribute
being removed.

iii) Add permission on each of the attribute values specified in an addValues parameter. If these
permissions are not granted or any of the attribute values already exist, the operation fails in
accordance with 11.3.5.1, item c).

iv) Remove permission on each of the values specified in a removeValues parameter. If these
permissions are not granted, the operation fails in accordance with 11.3.5.1, item d).

NOTE 2 – If the end result of a removeValues modification is to remove the last value of an attribute
(which causes the attribute itself to be removed), Remove permission is also required on the specified attribute
type.

11.3.5.1 Error returns

If the operation fails as defined in 11.3.5, the following procedure applies:

a) If the operation fails as defined in 11.3.5 item 2), subitem i), the valid error returns are one of: if the
attribute already exists and discloseOnError or add is granted to that attribute, an AttributeError with
problem attributeOrValueAlreadyExists shall be returned; otherwise a SecurityError with problem
insufficientAccessRights or noInformation. shall be returned.

b) If the operation fails as defined in 11.3.5 item 2), subitem ii), the valid error returns are one of: if
DiscloseOnError permission is granted to the attribute being removed and the attribute exists, a
SecurityError with problem insufficientAccessRights or noInformation shall be returned; otherwise,
an AttributeError with problem noSuchAttributeOrValue shall be returned.

c) If the operation fails as defined in 11.3.5 item 2), subitem iii), the valid error returns are one of: if an
attribute value already exists and discloseOnError or add is granted to that attribute value, an
AttributeError with problem attributeOrValueAlreadyExists shall be returned; otherwise,
discloseOnError permission at the attribute level must be verified. If discloseOnError is granted to the
attribute, a SecurityError with problem insufficientAccessRights or noInformation. shall be returned;
otherwise, an AttributeError with problem noSuchAttributeOrValue shall be returned.

d) If the operation fails as defined in 11.3.5 item 2), subitem iv), the valid error returns are one of: if
DiscloseOnError permission is granted to any of the attribute values being removed, a SecurityError
with problem insufficientAccessRights or noInformation shall be returned; otherwise, an
AttributeError with problem noSuchAttributeOrValue shall be returned.

11.4 Modify DN

11.4.1 Modify DN syntax

The modifyDN operation is used to change the Relative Distinguished Name of an entry, move an entry to a new
superior in the DIT, or do both. It may be used with object entries or alias entries. If the entry has subordinates, then all
subordinates are renamed or moved accordingly (i.e. the subtree remains intact). The arguments of the operation may
optionally be signed (see 7.10) by the requestor.

NOTES

1 1988-edition systems may use the operation only to change the Relative Distinguished Name of a leaf entry.

2 1993-edition systems may use the operation to move entries to a new superior only if the old superior, the new
superior, the entry, and all its subordinates are in the one DSA.

3 The operation does not move entries to a new DSA; all entries remain in the original DSA.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 29

4 The operation either succeeds or fails in its entirety; it shall not fail with some entries moved and some not moved.
No intermediate states of the operation shall be externally visible to users of the Directory.

5 Some offline activity may be required following this operation to preserve consistency, for example to update
attributes in any entries that hold Distinguished Name values that refer to the renamed or moved entry(ies).

6 The modifyTimeStamp attribute is not updated for entries subordinate to the renamed or moved entry.

modifyDN OPERATION ::= {
ARGUMENT ModifyDNArgument
RESULT ModifyDNResult
ERRORS { nameError | serviceError | referral | securityError | updateError }
CODE id-opcode-modifyDN }

ModifyDNArgument ::= OPTIONALLY-SIGNED { SET {
object [0] DistinguishedName,
newRDN [1] RelativeDistinguishedName,
deleteOldRDN [2] BOOLEAN DEFAULT FALSE,
newSuperior [3] DistinguishedName OPTIONAL,
COMPONENTS OF CommonArguments }}

ModifyDNResult ::= NULL

11.4.2 Modify DN arguments

The object argument identifies the entry whose Distinguished Name is to be modified. Aliases in the name shall not be
dereferenced.

The newRDN argument specifies the new RDN of the entry. If the operation moves the entry to a new superior without
changing its RDN, the old RDN is supplied for this parameter.

If an attribute value in the new RDN does not already exist in the entry (either as part of the old RDN or as a non-
distinguished value) it is added. If it cannot be added, an error is returned.

If the deleteOldRDN flag is set, all attribute values in the old RDN which are not in the new RDN are deleted. If this
flag is not set, the old values should remain in the entry (not as a part of the RDN). The flag shall be set where a single
value attribute in the RDN has its value changed by the operation. If this operation removes the last attribute value of an
attribute, that attribute shall be deleted.

The newSuperior argument, if present, specifies that the entry is to be moved to a new superior in the DIT. The entry
becomes an immediate subordinate of the entry with the indicated Distinguished Name, which must be an already
existing object entry. The new superior shall not be the entry itself or any of its subordinates, or an alias, or such that
the moved entry violates any DIT structure rules. It is possible that entries subordinate to the moved entry may violate
the active subschema, in which case it is the responsibility of the Subschema Administrative Authority to
make subsequent adjustments to these entries to make them consistent with the subschema, as described in ITU-T
Rec. X.501 | ISO/IEC 9594-2, clause 13.

If the argument is present, the newSuperior bit in the criticalExtensions parameter in CommonArguments shall be set,
indicating that this extension is critical.

The CommonArguments (see 7.3) include a specification of the service controls applying to the request. For the
purposes of this operation the dontDereferenceAlias option and the sizeLimit component are not relevant and are
ignored if provided. Aliases are never dereferenced by this operation.

11.4.3 Modify DN results

Should the request succeed, a result shall be returned, although no information shall be conveyed with it.

11.4.4 Modify DN errors

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors
shall be returned are defined in clause 12.

11.4.5 ModifyDN decision points for basic-access-control

If basic-access-control is in effect for the entry being renamed, the following access controls apply.

– If the effect of the operation is to change the RDN of the entry, Rename permission is required for the
entry being renamed (considered with its original name). If this permission is not granted, the operation
fails in accordance with 11.4.5.1.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

30 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

– If the effect of the operation is to move an entry to a new superior in the DIT, Export permission is
required for the entry being considered with its original name, and Import permission is required for the
entry being considered with its new name. If either of these permissions is not granted, the operation fails
in accordance with 11.4.5.1.

NOTES

1 The Import permission must be provided as prescriptive ACI.

2 No additional permissions are required even if, as a result of modifying the last RDN of the name, a new
distinguished value needs to be added or an old one removed.

11.4.5.1 Error returns

If the operation fails as defined in 11.4.5, the procedure described in 7.11.3 is followed with respect to the entry being
renamed (considered with its original name).

12 Errors

12.1 Error precedence

The Directory does not continue to perform an operation beyond the point at which it determines that an error is to be
reported.

NOTES

1 An implication of this rule is that the first error encountered can differ for repeated instances of the same query, as
there is not a specific logical order in which to process a given query. For example, DSAs may be searched in different orders.

2 The rules of error precedence specified here apply only to the abstract service provided by the Directory as a whole.
Different rules apply when the internal structure of the Directory is taken into account.

Should the Directory simultaneously detect more than one error, the following list determines which error is reported.
An error higher in the list has a higher logical precedence than one below it, and is the error which is reported.

a) NameError;

b) UpdateError;

c) AttributeError;

d) SecurityError;

e) ServiceError.

The following errors do not present any precedence conflicts:

a) AbandonFailed, because it is specific to one operation, Abandon, which can encounter no other error;

b) Abandoned, which is not reported if an Abandon operation is received simultaneously with the detection
of an error. In this case an AbandonFailed error, reporting the problem tooLate is reported along with
the report of the actual error encountered;

c) Referral, which is not a "real" error, only an indication that the Directory has detected that the DUA must
present its request to another access point.

12.2 Abandoned

This outcome may be reported for any outstanding directory enquiry operation (i.e. Read, Search, Compare, List) if the
DUA invokes an Abandon operation with the appropriate InvokeID.

abandoned ERROR ::= { -- not literally an "error"

CODE id-errcode-abandoned }

There are no parameters associated with this error.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 31

12.3 Abandon Failed

The AbandonFailed error reports a problem encountered during an attempt to abandon an operation.

abandonFailed ERROR ::= {
PARAMETER SET {

problem [0] AbandonProblem,
operation [1] InvokeId}

CODE id-errcode-abandonFailed }

AbandonProblem ::= INTEGER { noSuchOperation (1), tooLate (2), cannotAbandon (3) }

The various parameters have the following meanings.

The particular problem encountered is specified. Any of the following problems may be indicated:

a) noSuchOperation – When the Directory has no knowledge of the operation which is to be abandoned
(this could be because no such invoke took place, or because the Directory has forgotten about it);

b) tooLate – When the Directory has already responded to the operation;

c) cannotAbandon – When an attempt has been made to abandon an operation for which this is prohibited
(e.g. modify), or the abandon could not be performed.

The identification of the particular operation (invocation) to be abandoned.

12.4 Attribute Error

An AttributeError reports an attribute-related problem.

attributeError ERROR ::= {
PARAMETER SET {

object [0] Name,
problems [1] SET OF SEQUENCE {

problem [0] AttributeProblem,
type [1] AttributeType,
value [2] AttributeValue OPTIONAL }}

CODE id-errcode-attributeError }

AttributeProblem ::= INTEGER {
noSuchAttributeOrValue (1),
invalidAttributeSyntax (2),
undefinedAttributeType (3),
inappropriateMatching (4),
constraintViolation (5),
attributeOrValueAlreadyExists (6) }

The various parameters have the following meanings.

The object parameter identifies the entry to which the operation was being applied when the error occurred.

One or more problems may be specified. Each problem (identified below) is accompanied by an indication of the
attribute type, and, if necessary to avoid ambiguity, the value, which caused the problem:

a) noSuchAttributeOrValue – The named entry lacks one of the attributes or attribute values specified as
an argument of the operation.

b) invalidAttributeSyntax – A purported attribute value, specified as an argument of the operation, does
not conform to the attribute syntax of the attribute type.

c) undefinedAttributeType – An undefined attribute type was provided as an argument to the operation.
This error may occur only in relation to AddEntry or ModifyEntry operations.

d) inappropriateMatching – An attempt was made, e.g. in a filter, to use a matching rule not defined for
the attribute type concerned.

e) constraintViolation – An attribute value supplied in the argument of an operation does not conform to
the constraints imposed by ITU-T Rec. X.501 | ISO/IEC 9594-2 or by the attribute definition (e.g. the
value exceeds the maximum size allowed).

f) attributeOrValueAlreadyExists – An attempt was made to add an attribute which already existed in the
entry, or a value which already existed in the attribute.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

32 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

12.5 Name Error

A NameError reports a problem related to the name provided as an argument to an operation.

nameError ERROR ::= {
PARAMETER SET {

problem [0] NameProblem,
matched [1] Name }

CODE id-errcode-nameError}

NameProblem ::= INTEGER {
noSuchObject (1),
aliasProblem (2),
invalidAttributeSyntax (3),
aliasDereferencingProblem (4) }

The various parameters have the following meanings.

The particular problem encountered. Any of the following problems may be indicated:

a) noSuchObject – The name supplied does not match the name of any object.

b) aliasProblem – An alias has been dereferenced which names no object.

c) invalidAttributeSyntax – An attribute type and its accompanying attribute value in an AVA in the name
are incompatible.

d) aliasDereferencingProblem – An alias was encountered in a situation where it was not allowed or where
access was denied.

The matched parameter contains the name of the lowest entry (object or alias) in the DIT that was matched, and is a
truncated form of the name provided or, if an alias has been dereferenced, of the resulting name.

NOTE – If there is a problem with the attribute types and/or values in the name offered in a Directory operation argument,
this is reported via a NameError (with problem invalidAttributeSyntax) rather than as an AttributeError or an UpdateError.

12.6 Referral

A Referral redirects the service-user to one or more access points better equipped to carry out the requested operation.

referral ERROR ::= { -- not literally an "error"
PARAMETER SET {

candidate [0] ContinuationReference }
CODE id-errcode-referral }

The error has a single parameter which contains a ContinuationReference which can be used to progress the operation
(see ITU-T Rec. X.518 | ISO/IEC 9594-4).

12.7 Security Error

A SecurityError reports a problem in carrying out an operation for security reasons.

securityError ERROR ::= {
PARAMETER SET {

problem [0] SecurityProblem }
CODE id-errcode-securityError }

SecurityProblem ::= INTEGER {
inappropriateAuthentication (1),
invalidCredentials (2),
insufficientAccessRights (3),
invalidSignature (4),
protectionRequired (5),
noInformation (6) }

The error has a single parameter, which reports the particular problem encountered. The following problems may be
indicated:

a) inappropriateAuthentication – The level of security associated with the requestor’s credentials is
inconsistent with the level of protection requested, e.g. simple credentials were supplied while strong
credentials were required.

b) invalidCredentials – The supplied credentials were invalid.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 33

c) insufficientAccessRights – The requestor does not have the right to carry out the requested operation.

d) invalidSignature – The signature of the request was found to be invalid.

e) protectionRequired – The Directory was unwilling to carry out the requested operation because the
argument was not signed.

f) noInformation – The requested operation produced a security error for which no information is
available.

12.8 Service Error

A ServiceError reports a problem related to the provision of the service.

serviceError ERROR ::= {
PARAMETER SET {

problem [0] ServiceProblem}
CODE id-errcode-serviceError }

ServiceProblem ::= INTEGER {
busy (1),
unavailable (2),
unwillingToPerform (3),
chainingRequired (4),
unableToProceed (5),
invalidReference (6),
timeLimitExceeded (7),
administrativeLimitExceeded (8),
loopDetected (9),
unavailableCriticalExtension (10),
outOfScope (11),
ditError (12),
invalidQueryReference (13) }

The error has a single parameter which reports the particular problem encountered. The following problems may be
indicated:

a) busy – The Directory, or some part of it, is presently too busy to perform the requested operation, but
may be able to do so after a short while.

b) unavailable – The Directory, or some part of it, is currently unavailable.

c) unwillingToPerform – The Directory, or some part of it, is not prepared to execute this request,
e.g. because it would lead to excessive consumption of resources or violates the policy of an
Administrative Authority involved.

d) chainingRequired – The Directory is unable to accomplish the request other than by chaining, however
chaining was prohibited by means of the chainingProhibited service control option.

e) unableToProceed – The DSA returning this error did not have administrative authority for the
appropriate naming context and as a consequence was not able to participate in name resolution.

f) invalidReference – The DSA was unable to perform the request as directed by the DUA, (via
OperationProgress) – This may have arisen due to using an invalid referral.

g) timeLimitExceeded – The Directory has reached the limit of time set by the user in a service control. No
partial results are available to return to the user.

h) administrativeLimitExceeded – The Directory has reached some limit set by an administrative authority,
and no partial results are available to return to the user.

i) loopDetected – The Directory is unable to accomplish this request due to an internal loop.

j) unavailableCriticalExtension – The Directory was unable to satisfy the request because one or more
critical extensions were not available.

k) outOfScope – No referrals were available within the requested scope.

l) ditError – The Directory is unable to accomplish the request due to a DIT consistency problem.

m) invalidQueryReference – The parameters of the requested operation are invalid. This problem is
reported if the queryReference in paged results is invalid.
NOTE – This problem is not supported by 1988 edition systems.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

34 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

12.9 Update Error

An UpdateError reports problems related to attempts to add, delete, or modify information in the DIB.

updateError ERROR ::= {
PARAMETER SET {

problem [0] UpdateProblem }
CODE id-errcode-updateError }

UpdateProblem ::= INTEGER {
namingViolation (1),
objectClassViolation (2),
notAllowedOnNonLeaf (3),
notAllowedOnRDN (4),
entryAlreadyExists (5),
affectsMultipleDSAs (6),
objectClassModificationProhibited (7) }

The error has a single parameter, which reports the particular problem encountered. The following problems may be
indicated:

a) namingViolation – The attempted addition or modification would violate the structure rules of the DIT as
defined in the Directory schema and ITU-T Recommendation X.501 | ISO/IEC 9594-2. That is, it would
place an entry as the subordinate of an alias entry, or in a region of the DIT not permitted to a member of
its object class, or would define an RDN for an entry to include a forbidden attribute type.

b) objectClassViolation – The attempted update would produce an entry inconsistent with the rules for
entry content; for example, its object class definition, the DIT content rules, or with the definitions of
ITU-T Rec. X.501 | ISO/IEC 9594-2 as they pertain to object classes.

c) notAllowedOnNonLeaf – The attempted operation is only allowed on leaf entries of the DIT.

d) notAllowedOnRDN – The attempted operation would affect the RDN (e.g. removal of an attribute which
is a part of the RDN).

e) entryAlreadyExists – An attempted AddEntry or ModifyDN operation names an entry which already
exists.

f) affectsMultipleDSAs – An attempted update would need to operate on multiple DSAs where this
operation is not permitted.

g) objectClassModificationProhibited – An operation attempted to modify the structural object class of an
entry.

NOTE – The UpdateError is not used to report problems with attribute types, values, or constraint violations encountered
in an AddEntry, RemoveEntry, ModifyEntry, or ModifyDN operation. Such problems are reported via an AttributeError.

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 35

Annex A

Abstract Service in ASN.1
(This annex forms an integral part of this Recommendation | International Standard)

This annex includes all of the ASN.1 type, value and information object definitions contained in this Directory
Specification in the form of the ASN.1 module DirectoryAbstractService.

DirectoryAbstractService {joint-iso-ccitt ds(5) module(1) directoryAbstractService(2) 2}
DEFINITIONS ::=
BEGIN

-- EXPORTS All --

-- The types and values defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but this will not constrain
-- extensions and modifications needed to maintain or improve the Directory service.

IMPORTS
informationFramework, distributedOperations, authenticationFramework, dap

FROM UsefulDefinitions {joint-iso-ccitt ds(5) module(1) usefulDefinitions(0) 2}

Attribute, AttributeType, AttributeValue, AttributeValueAssertion, DistinguishedName, Name,
RelativeDistinguishedName, SupportedAttributes, ATTRIBUTE, MATCHING-RULE

FROM InformationFramework informationFramework

OperationProgress, ReferenceType, Exclusions, AccessPoint, ContinuationReference
FROM DistributedOperations distributedOperations

CertificationPath, SIGNED {}, SIGNATURE {}, AlgorithmIdentifier
FROM AuthenticationFramework authenticationFramework

id-opcode-read, id-opcode-compare, id-opcode-abandon, id-opcode-list, id-opcode-search,
id-opcode-addEntry, id-opcode-removeEntry, id-opcode-modifyEntry, id-opcode-modifyDN,
id-errcode-abandoned, id-errcode-abandonFailed, id-errcode-attributeError,
id-errcode-nameError, id-errcode-referral, id-errcode-securityError, id-errcode-serviceError,
id-errcode-updateError

FROM DirectoryAccessProtocol dap

OPERATION, ERROR
FROM Remote-Operations-Information-Objects {joint-iso-ccitt remote-operations(4)

informationObjects(5) version1(0) }

emptyUnbind
FROM Remote-Operations-Useful-Definitions {joint-iso-ccitt remote-operations(4)

useful-definitions(7) version1(0)}

InvokeId
FROM Remote-Operations-Generic-ROS-PDUs {joint-iso-ccitt remote-operations(4)

generic-ROS-PDUs(6) version1(0)} ;

-- Parameterized type for representing optional signing --

OPTIONALLY-SIGNED {Type} ::= CHOICE {
unsigned Type,
signed SIGNED {Type}}

-- Common data types --

CommonArguments ::= SET {
serviceControls [30] ServiceControls DEFAULT {},
securityParameters [29] SecurityParameters OPTIONAL,
requestor [28] DistinguishedName OPTIONAL,
operationProgress [27] OperationProgress

DEFAULT { nameResolutionPhase notStarted },
aliasedRDNs [26] INTEGER OPTIONAL,
criticalExtensions [25] BIT STRING OPTIONAL,

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

36 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

referenceType [24] ReferenceType OPTIONAL,
entryOnly [23] BOOLEAN DEFAULT TRUE,
exclusions [22] Exclusions OPTIONAL,
nameResolveOnMaster

[21] BOOLEAN DEFAULT FALSE }

CommonResults ::= SET {
securityParameters [30] SecurityParameters OPTIONAL,
performer [29] DistinguishedName OPTIONAL,
aliasDereferenced [28] BOOLEAN DEFAULT FALSE }

ServiceControls ::= SET {
options [0] BIT STRING {

preferChaining (0),
chainingProhibited (1),
localScope (2),
dontUseCopy (3),
dontDereferenceAliases (4),
subentries (5),
copyShallDo (6) } DEFAULT {},

priority [1] INTEGER { low (0), medium (1), high (2) } DEFAULT medium,
timeLimit [2] INTEGER OPTIONAL,
sizeLimit [3] INTEGER OPTIONAL,
scopeOfReferral [4] INTEGER { dmd(0), country(1) } OPTIONAL,
attributeSizeLimit [5] INTEGER OPTIONAL }

EntryInformationSelection ::= SET {
attributes CHOICE {

allUserAttributes [0] NULL,
select [1] SET OF AttributeType
-- empty set implies no attributes are requested -- } DEFAULT allUserAttributes : NULL,

infoTypes [2] INTEGER {
attributeTypesOnly (0),
attributeTypesAndValues (1) } DEFAULT attributeTypesAndValues,

extraAttributes CHOICE {
allOperationalAttributes [3] NULL,
select [4] SET OF AttributeType } OPTIONAL }

EntryInformation ::= SEQUENCE {
name Name,
fromEntry BOOLEAN DEFAULT TRUE,
information SET OF CHOICE {

attributeType AttributeType,
attribute Attribute } OPTIONAL,

incompleteEntry [3] BOOLEAN DEFAULT FALSE -- not in 1988-edition systems -- }

Filter ::= CHOICE {
item [0] FilterItem,
and [1] SET OF Filter,
or [2] SET OF Filter,
not [3] Filter }

FilterItem ::= CHOICE {
equality [0] AttributeValueAssertion,
substrings [1] SEQUENCE {

type ATTRIBUTE.&id ({SupportedAttributes}),
strings SEQUENCE OF CHOICE {

initial [0] ATTRIBUTE.&Type
({SupportedAttributes}{@substrings.type}),

any [1] ATTRIBUTE.&Type
({SupportedAttributes}{@substrings.type}),

final [2] ATTRIBUTE.&Type
({SupportedAttributes}{@substrings.type})}},

greaterOrEqual [2] AttributeValueAssertion,
lessOrEqual [3] AttributeValueAssertion,
present [4] AttributeType,
approximateMatch [5] AttributeValueAssertion,
extensibleMatch [6] MatchingRuleAssertion }

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 37

MatchingRuleAssertion ::= SEQUENCE {
matchingRule [1] SET SIZE (1..MAX) OF MATCHING-RULE.&id,
type [2] AttributeType OPTIONAL,
matchValue [3] MATCHING-RULE.&AssertionType (CONSTRAINED BY {

-- matchValue must be a value of type specified by the &AssertionType field of
-- one of the MATCHING-RULE information objects identified by matchingRule -- }),

dnAttributes [4] BOOLEAN DEFAULT FALSE }

PagedResultsRequest ::= CHOICE {
newRequest SEQUENCE {

pageSize INTEGER,
sortKeys SEQUENCE OF SortKey OPTIONAL,
reverse [1] BOOLEAN DEFAULT FALSE,
unmerged [2] BOOLEAN DEFAULT FALSE },

queryReference OCTET STRING }

SortKey ::= SEQUENCE {
type AttributeType,
orderingRule MATCHING-RULE.&id OPTIONAL }

SecurityParameters ::= SET {
certification-path [0] CertificationPath OPTIONAL,
name [1] DistinguishedName OPTIONAL,
time [2] UTCTime OPTIONAL,
random [3] BIT STRING OPTIONAL,
target [4] ProtectionRequest OPTIONAL }

ProtectionRequest ::= INTEGER { none(0), signed (1) }

-- Bind and unbind operations --

directoryBind OPERATION ::= {
ARGUMENT DirectoryBindArgument
RESULT DirectoryBindResult
ERRORS { directoryBindError } }

DirectoryBindArgument ::= SET {
credentials [0] Credentials OPTIONAL,
versions [1] Versions DEFAULT {v1}}

Credentials ::= CHOICE {
simple [0] SimpleCredentials,
strong [1] StrongCredentials,
externalProcedure [2] EXTERNAL }

SimpleCredentials ::= SEQUENCE {
name [0] DistinguishedName,
validity [1] SET {

time1 [0] UTCTime OPTIONAL,
time2 [1] UTCTime OPTIONAL,
random1 [2] BIT STRING OPTIONAL,
random2 [3] BIT STRING OPTIONAL} OPTIONAL,

password [2] CHOICE {
unprotected OCTET STRING,
protected SIGNATURE {OCTET STRING} } OPTIONAL}

StrongCredentials ::= SET {
certification-path [0] CertificationPath OPTIONAL,
bind-token [1] Token,
name [2] DistinguishedName OPTIONAL }

Token ::= SIGNED { SEQUENCE {
algorithm [0] AlgorithmIdentifier,
name [1] DistinguishedName,
time [2] UTCTime,
random [3] BIT STRING }}

Versions ::= BIT STRING {v1(0)}

DirectoryBindResult ::= DirectoryBindArgument

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

38 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

directoryBindError ERROR ::= {
PARAMETER SET {

versions [0] Versions DEFAULT {v1},
error CHOICE {
serviceError 1] ServiceProblem,
securityError [2] SecurityProblem }}}

directoryUnbind OPERATION ::= emptyUnbind

-- Operations, arguments, and results --

read OPERATION ::= {
ARGUMENT ReadArgument
RESULT ReadResult
ERRORS { attributeError | nameError | serviceError | referral | abandoned |

securityError }
CODE id-opcode-read }

ReadArgument ::= OPTIONALLY-SIGNED { SET {
object [0] Name,
selection [1] EntryInformationSelection DEFAULT { },
modifyRightsRequest

[2] BOOLEAN DEFAULT FALSE,
COMPONENTS OF CommonArguments }}

ReadResult ::= OPTIONALLY-SIGNED { SET {
entry [0] EntryInformation,
modifyRights [1] ModifyRights OPTIONAL,
COMPONENTS OF CommonResults }}

ModifyRights ::= SET OF SEQUENCE {
item CHOICE {

entry [0] NULL,
attribute [1] AttributeType,
value [2] AttributeValueAssertion },

permission [3] BIT STRING { add (0), remove (1), rename (2) , move(3) }}

compare OPERATION ::= {
ARGUMENT CompareArgument
RESULT CompareResult
ERRORS { attributeError | nameError | serviceError | referral | abandoned |

securityError }
CODE id-opcode-compare }

CompareArgument ::= OPTIONALLY-SIGNED { SET {
object [0] Name,
purported [1] AttributeValueAssertion,
COMPONENTS OF CommonArguments }}

CompareResult ::= OPTIONALLY-SIGNED { SET {
name Name OPTIONAL,
matched [0] BOOLEAN,
fromEntry [1] BOOLEAN DEFAULT TRUE,
matchedSubtype [2] AttributeType OPTIONAL,
COMPONENTS OF CommonResults }}

abandon OPERATION ::= {
ARGUMENT AbandonArgument
RESULT AbandonResult
ERRORS { abandonFailed }
CODE id-opcode-abandon }

AbandonArgument ::= SEQUENCE {
invokeID [0] InvokeId }

AbandonResult ::= NULL

list OPERATION ::= {
ARGUMENT ListArgument
RESULT ListResult
ERRORS { nameError | serviceError | referral | abandoned | securityError }
CODE id-opcode-list }

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 39

ListArgument ::= OPTIONALLY-SIGNED { SET {
object [0] Name,
pagedResults [1] PagedResultsRequest OPTIONAL,
COMPONENTS OF CommonArguments }}

ListResult ::= OPTIONALLY-SIGNED { CHOICE {
listInfo SET {

name Name OPTIONAL,
subordinates [1] SET OF SEQUENCE {

rdn RelativeDistinguishedName,
aliasEntry [0] BOOLEAN DEFAULT FALSE,
fromEntry [1] BOOLEAN DEFAULT TRUE },

partialOutcomeQualifier [2] PartialOutcomeQualifier OPTIONAL,
COMPONENTS OF CommonResults},

uncorrelatedListInfo
[0] SET OF ListResult }}

PartialOutcomeQualifier ::= SET {
limitProblem [0] LimitProblem OPTIONAL,
unexplored [1] SET OF ContinuationReference OPTIONAL,

unavailableCriticalExtensions
[2] BOOLEAN DEFAULT FALSE,

unknownErrors [3] SET OF ABSTRACT-SYNTAX.&Type OPTIONAL,
queryReference [4] OCTET STRING OPTIONAL }

LimitProblem ::= INTEGER {
timeLimitExceeded (0), sizeLimitExceeded (1), administrativeLimitExceeded (2) }

search OPERATION ::= {
ARGUMENT SearchArgument
RESULT SearchResult
ERRORS { attributeError | nameError | serviceError | referral | abandoned |

securityError }
CODE id-opcode-search }

SearchArgument ::= OPTIONALLY-SIGNED { SET {
baseObject [0] Name,
subset [1] INTEGER {

baseObject(0), oneLevel(1), wholeSubtree(2)} DEFAULT baseObject,
filter [2] Filter DEFAULT and : { },
searchAliases [3] BOOLEAN DEFAULT TRUE,
selection [4] EntryInformationSelection DEFAULT { },
pagedResults [5] PagedResultsRequest OPTIONAL,
matchedValuesOnly

[6] BOOLEAN DEFAULT FALSE,
extendedFilter [7] Filter OPTIONAL,
COMPONENTS OF CommonArguments }}

SearchResult ::= OPTIONALLY-SIGNED { CHOICE {
searchInfo SET {

name Name OPTIONAL,
entries [0] SET OF EntryInformation,
partialOutcomeQualifier [2] PartialOutcomeQualifier OPTIONAL,
COMPONENTS OF CommonResults },

uncorrelatedSearchInfo
[0] SET OF SearchResult }}

addEntry OPERATION ::= {
ARGUMENT AddEntryArgument
RESULT AddEntryResult
ERRORS { attributeError | nameError | serviceError | referral | securityError |

updateError }
CODE id-opcode-addEntry }

AddEntryArgument ::= OPTIONALLY-SIGNED { SET {
object [0] Name,
entry [1] SET OF Attribute,
targetSystem [2] AccessPoint OPTIONAL,
COMPONENTS OF CommonArguments}}

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

40 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

AddEntryResult ::= NULL

removeEntry OPERATION ::= {
ARGUMENT RemoveEntryArgument
RESULT RemoveEntryResult
ERRORS { nameError | serviceError | referral | securityError | updateError }
CODE id-opcode-removeEntry }

RemoveEntryArgument ::= OPTIONALLY-SIGNED { SET {
object [0] Name,
COMPONENTS OF CommonArguments }}

RemoveEntryResult ::= NULL

modifyEntry OPERATION ::= {
ARGUMENT ModifyEntryArgument
RESULT ModifyEntryResult
ERRORS { attributeError | nameError | serviceError | referral | securityError |

updateError }
CODE id-opcode-modifyEntry }

ModifyEntryArgument ::= OPTIONALLY-SIGNED { SET {
object [0] Name,
changes [1] SEQUENCE OF EntryModification,
COMPONENTS OF CommonArguments }}

ModifyEntryResult ::= NULL

EntryModification ::= CHOICE {
addAttribute [0] Attribute,
removeAttribute [1] AttributeType,
addValues [2] Attribute,
removeValues [3] Attribute}

modifyDN OPERATION ::= {
ARGUMENT ModifyDNArgument
RESULT ModifyDNResult
ERRORS { nameError | serviceError | referral | securityError | updateError }
CODE id-opcode-modifyDN }

ModifyDNArgument ::= OPTIONALLY-SIGNED { SET {
object [0] DistinguishedName,
newRDN [1] RelativeDistinguishedName,
deleteOldRDN [2] BOOLEAN DEFAULT FALSE,
newSuperior [3] DistinguishedName OPTIONAL,
COMPONENTS OF CommonArguments }}

ModifyDNResult ::= NULL

-- Errors and parameters --

abandoned ERROR ::= { -- not literally an "error"
CODE id-errcode-abandoned }

abandonFailed ERROR ::= {
PARAMETER SET {

problem [0] AbandonProblem,
operation [1] InvokeId }

CODE id-errcode-abandonFailed }

AbandonProblem ::= INTEGER { noSuchOperation (1), tooLate (2), cannotAbandon (3) }

attributeError ERROR ::= {
PARAMETER SET {

object [0] Name,
problems [1] SET OF SEQUENCE {

problem [0] AttributeProblem,
type [1] AttributeType,
value [2] AttributeValue OPTIONAL }}

CODE id-errcode-attributeError }

AttributeProblem ::= INTEGER {
noSuchAttributeOrValue (1),
invalidAttributeSyntax (2),
undefinedAttributeType (3),

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 41

inappropriateMatching (4),
constraintViolation (5),
attributeOrValueAlreadyExists (6)}

nameError ERROR ::= {
PARAMETER SET {

problem [0] NameProblem,
matched [1] Name }

CODE id-errcode-nameError}

NameProblem ::= INTEGER {
noSuchObject (1),
aliasProblem (2),
invalidAttributeSyntax (3),
aliasDereferencingProblem (4) }

referral ERROR ::= { -- not literally an "error"
PARAMETER SET {

candidate [0] ContinuationReference }
CODE id-errcode-referral }

securityError ERROR ::= {
PARAMETER SET {

problem [0] SecurityProblem }
CODE id-errcode-securityError }

SecurityProblem ::= INTEGER {
inappropriateAuthentication (1),
invalidCredentials (2),
insufficientAccessRights (3),
invalidSignature (4),
protectionRequired (5),
noInformation (6)}

serviceError ERROR ::= {
PARAMETER SET {

problem [0] ServiceProblem}
CODE id-errcode-serviceError }

ServiceProblem ::= INTEGER {
busy (1),
unavailable (2),
unwillingToPerform (3),
chainingRequired (4),
unableToProceed (5),
invalidReference (6),
timeLimitExceeded (7),
administrativeLimitExceeded (8),
loopDetected (9),
unavailableCriticalExtension (10),
outOfScope (11),
ditError (12),
invalidQueryReference (13) }

updateError ERROR ::= {
PARAMETER SET {

problem [0] UpdateProblem }
CODE id-errcode-updateError }

UpdateProblem ::= INTEGER {
namingViolation (1),
objectClassViolation (2),
notAllowedOnNonLeaf (3),
notAllowedOnRDN (4),
entryAlreadyExists (5),
affectsMultipleDSAs (6),
objectClassModificationProhibited (7)}

END

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

42 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

Annex B

Operational semantics for Basic Access Control
(This annex does not form an integral part of this Recommendation | International Standard)

This annex contains a number of charts that describe the semantics associated with Basic Access Control as it applies to
the processing of a Directory operation (see Figures B.1 to B.16).

TISO3060-94/d02

Alias Dereferencing on Name Resolution

result in
ContinuationReference?

No Continue

Continue

Read granted to
alias entry?

Non-disclosure procedureNo

Yes

Yes

YesRead granted to
AliasedObjectName attribute

type and its value?

matched = name of alias

NameError with
aliasDereferencingProblem

No

Figure B.1 – Alias Dereferencing in Name Resolution

TISO3070-94/d03

Return of NameError Procedure

Matched object corresponds to next superior
entry for which DisclosureOnError is granted

(root if no such entry can be found)

NameError with
noSuchObject

Figure B.2 – Return of Name Error

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 43

TISO3080-94/d04

Non-Disclosure Procedure

DiscloseOnError
granted for entry?

No

Yes

List or Search?
No

Yes
Return of NameError

procedure

SecurityError with
insufficientAccessRights or

noInformation

return empty set of results

Figure B.3 – Non-Disclosure of the Existence of an Entry

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

44 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

TISO3090-94/d05

Return of DN

ReturnDN granted ?

Yes

Return DN of entry

List operation ?

No

Yes

omit RDN from result

Yes

No

alias name available?

Return alias name or (base)
object name as supplied by

DAP operation if entry
correspond to (base) object

No

Yesentry corresponds
to (base) object of DAP

operation?

Return (base) object name as
supplied by DAP operation

omit entry information
(in Search)

Figure B.4 – Return of Distinguished Name

No

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 45

TISO3100-94/d06

Read Operation

Read granted to entry?
No Non-disclosure procedure

Yes

incompleteEntry = FALSE
Return of DN procedure to obtain

name to be supplied in result

Yesselection
emply?

return Read
result

No

For each attribute in selection
Finished

No Such Attribute or Value –
Read Procedure

YesYes

No

Attribute
present in

entry?

Read
granted to
attribute

type?
No

No
Yes

DiscloseOnError granted to
attribute type?

Attribute types and values
required?

No
Yes

incompleteEntry = TRUE
include attribute type

Finished

For each attribute value

Read granted to attribute
value?

Yes

No

No

Yes

DiscloseOnError granted to
attribute value?

incompleteEntry = TRUE include attribute value

Figure B.5 – Read Operation

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

46 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

TISO3110-94/d07

NoSuchAttributeOrValue-Read

attribute information
to be returned?

Obtain name to be
supplied in result by

performing the
Return of DN

procedure

Return Read
result

Yes

No

NoAre attributes in
selection present in

entry?

AttributeError with problem
NoSuchAttributeOrValue

Yes

NoAny specific attributes
selected ?

SecurityError with problem
insufficientAccessRights or

noInformation

Yes

DiscloseOnError
granted to any attributes

selected?

AttributeError with problem
NoSuchAttributeOrValue

Yes

SecurityError with problem
insufficientAccessRights or

noInformation

No

Figure B.6 – No Such Attribute Or Value for Read

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 47

TISO3120-94/d08

Compare Operation

Read granted to
entry?

Non-disclosure procedureNo

No

No

Yes

Yes

Yes

attribute or subtype
present?

AttributeError with problem
NoSuchAttributeOrValue

Compare granted
for attribute type or

subtypes?

DiscloseOnError granted
for attribute?

For each attribute value
of relevant type

Finished
Security Error with problem

InvalidAccessRights or
NoInformation

No Compare granted for
attribute value?

Yes

attribute value matches
supplied value?

No

matched = TRUE matched = FALSE

Yes

Obtain name to be supplied in
result by performing the
Returnof DN procedure

Return Compare

Figure B.7– Compare Operation

No

Yes

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

48 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

TISO3130-94/d09

List Operation

For each immediate subordinate
Finished

Browse and ReturnDN
granted to entry?

Any subordinate found?No

Yes

Yes

No

include RDN in result Non-disclosure procedure
for base object

return result

Figure B.8 – List Operation

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 49

TISO3140-94/d10

Search Operation

For each entry in scope Finished
Finished

alias and searchAliases
true?

Alias Dereference on
Search Any Entries or Cross

References exist?

Yes

Yes

No No

No Browse granted to
entry?

Non-disclosure procedure

Yes

For each filter item
Finished

FilterMatch granted
for attr. and attr. is present

in entry?

No

Yes

Present match?

evaluate TRUE evaluate UNDEFINED evaluate FALSE

Present match?No Yes

No

Yes

For each attribute value
evaluate filterFinished?

No FilterMatch granted
for value and value

matches?

TRUE?No

Yes

evaluate TRUE evaluate FALSE
Entry Selection in Search

Procedure

Figure B.9 – Search Operation

Yes

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

50 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

TISO3150-94/d11

Alias Dereference on Search

alias object name
to be considered?

evaluate alias

No

e.g. not already included;
does not lead to search loopYes

Continuation Reference
required?

Add to search scope as
appropriate

Yes

NoRead granted to alias
entry?

Yes

NoRead granted to
AliasedObjectName attribute

type and value?

Yes

No

Yes

security
policy permits disclosure

of reference?

include CR in result

continue

Figure B.10 – Alias Dereference in Search

No

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 51

TISO3160-94/d12

Entry Selection in Search

For each attribute in selection
Finished

No Such Attribute or Value –
Read Procedure

No Yes Yes
attribute present

in entry?

Read
granted to
attribute
type ?

No Yes
DiscloseOnError granted

to attribute type?

attribute types and
values required?

Yes No

incompleteEntry = TRUE
include attribute type

Finished

For each attribute value

Read granted to
attribute value?

Yes

No

No DiscloseOnError granted
to attribute value?

incompleteEntry = FALSE include attribute value

Figure B.11 – Entry Selection in Search

No

Yes

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

52 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

TISO3170-94/d13

AddEntry Operation

No

Yes

entry already exists?

DiscloseOnError or Add
granted?

Non-disclosure procedure
(for the entry itself)

UpdateError with problem
entryAlreadyExists

Yes

NoAdd granted
to new entry?

No

Yes

Finished For each attribute

Add granted
to attribute type?

SecurityError with problem
insufficientAccessRights or

noInformation

No

Yes

for each value finished

Add granted to value?
No

SecurityError with problem
insufficientAccessRights or

noInformation

Yes

perform requested operation

Figure B.12 – Add Entry Operation

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 53

TISO3180-94/d14

RemoveEntry Operation

Remove granted
to entry?

No Non-disclosure procedure

perform requested operation

Figure B.13 – Remove Entry Operation

Yes

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

54 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

TISO3190-94/d15

ModifyEntry Operation

Modify granted
for entry being modified?

No
Non-disclosure procedure

Yes

For each modification

Finished perform requested operation

(remove-Attribute) Add attribute or value) (removeValues)

No

Yes

No

Yes

attribute
exists?

Modify Add Attribute or
Values Procedure attribute

exists?

YesRemove granted
for attribute?

For each value to
be removed

Finished

No

No

value exists?

Yes

Yes Remove granted
for value?

DiscloseOnError
granted for
attribute?

No

No

Yes
Yes DiscloseOnError

granted for
value?

SecurityError with problem
insufficientAccessRights or

noInformatioin AttributeError with problem
noSuchAttributeOrValue

No

Figure B.14 – Modify Entry Operation

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 55

TISO3200-94/d16

ModifyDN Operation

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

effect is to modify last
RDN?

Rename granted to
entry being removed?

Non-disclosure procedure

effect is to modify
name of immediate

superior entry?

Exportgranted to
entry with old name?

Importgranted to
entry with new name?

perform requested operation

Figure B.15 – ModifyDN Operation

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

56 ITU-T Rec. X.511 (1993 E) Superseded by a more recent version

TISO3210-94/d17

Modify Add Attribute or Values

(addAttribute) (addValues)

Yes Noattribute
exists?

attribute
exists?

No

No

Yes

Add granted or
attribute?

Finished For each value
to be added

Success

Yes
value exists?

No

Yes Yes NoAdd granted for
attribute value?

DiscloseOnError
granted for
attribute?

No

No Yes

Yes No

DiscloseOnError
granted for

value?

DiscloseOnError
granted for
attribute?

AttributeError with problem
attributeOrValueAIreadyExists

SecurityError with problem
insufficientAccessRights or

noInformation

AttributeError with problem
noSuchAttributeOrValue

Figure B.16 – Modify Add Attribute or Values

Yes

Superseded by a more recent version ISO/IEC 9594-3 : 1995 (E)

ITU-T Rec. X.511 (1993 E) Superseded by a more recent version 57

Annex C

Amendments and corrigenda
(This annex does not form an integral part of this Recommendation | International Standard)

This edition of this Directory Specification includes the following amendments:

– Amendment 1 – Access Control.

– Amendment 2 – Replication, Schema and Enhanced Search.

This edition of this Directory Specification includes the following technical corrigenda correcting the defects reported in
the following defect reports (some parts of some of the following Technical Corrigenda may have been subsumed by the
amendments that formed this edition of this Directory Specification):

– Technical Corrigendum 1 (covering Defect Reports 001, 007, 012, 014, 020, 032);

– Technical Corrigendum 2 (covering Defect Reports 038, 042);

– Technical Corrigendum 3 (covering Defect Report 052);

– Technical Corrigendum 4 (covering Defect Reports 041, 054, 060, 063, 068, 069);

– Technical Corrigendum 5 (covering Defect Report 067).

