INTERNATIONAL TELECOMMUNICATION UNION

CCITT X.511

THE INTERNATIONAL (11/1988)
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

SERIES X: DATA COMMUNICATION NETWORKS
DIRECTORY

THE DIRECTORY — ABSTRACT SERVICE
DEFINITION

Reedition of CCITT Recommendation X.511 published in
the Blue Book, Fascicle VIII.8 (1988)

NOTES

1 CCITT Recommendation X.511 was published in Fascicle V111.8 of the Blue Book. This file is an extract from
the Blue Book. While the presentation and layout of the text might be slightly different from the Blue Book version, the
contents of the file are identical to the Blue Book version and copyright conditions remain unchanged (see below).

2 In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

© ITU 1988, 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written
permission of ITU.

Recommendation X.511

THE DIRECTORY —ABSTRACT SERVICE DEFINITION 1

Introduction

Scope and field of application

SECTION 1 - General

a b~ W DN

References
Definitions
Abbreviations

Conventions

SECTION 2 — Abstract service

6
7
8
9
10
11
12

Overview of the directory service
Information types

Bind and unbind operations
Directory read operations
Directory search operations
Directory modify operations

Errors

Annex A — Abstract servicein ASN.1

Annex B — Directory object identifiers

(Melbourne, 1988)

CONTENTS

Y Recommendation X.511 and 1SO 9594-3, Information Processing Systems — Open Systems Interconnection — The

Directory — Abstract Service Definition, were developed in close collaboration and are technically aligned.

Fasciculo VII1.8 —Rec. X.511

1

0 Introduction

0.1 This document, together with the others of the series, has been produced to facilitate the interconnection of
information processing systems to provide directory services. The set of all such systems, together with the directory
information which they hold, can be viewed as an integrated whole, called the Directory. The information held by the
Directory, collectively known as the Directory Information Base (DIB), is typically used to facilitate communication
between, with or about objects such as application-entities, people, terminals, and distribution lists.

0.2 The Directory plays a significant role in Open Systems Interconnection, whose aim is to alow, with a
minimum of technical agreement outside of the interconnection standards themselves, the interconnection of information
processing systems:

— from different manufacturers;
— under different managements;
— of different levels of complexity; and
— of different ages.
0.3 This Recommendation defines the capabilities provided by the Directory to its users.

04 Annex A provides the ASN.1 module which contains all the definitions associated with the abstract service.
1 Scope and field of application

11 This Recommendation defines in an abstract way the externally visible service provided by the Directory.
12 This Recommendation does not specify individual implementation or products.

SECTION 1 — General

2 References

Recommendation X.200 — Open Systems I nterconnection — Basic Reference Model.
Recommendation X.208 — Specification of Abstract Syntax Notation One (ASN.1).
Recommendation X.500 — The Directory — Overview of Concepts, Models and Services.
Recommendation X.501 — The Directory — Models.

Recommendation X.518 — The Directory — Procedures for Distributed Operation.
Recommendation X.519 — The Directory — Protocol Specifications.

Recommendation X.520 — The Directory — Selected Attribute Types.

Recommendation X.521 — The Directory — Selected Object Classes.

Recommendation X.509 — The Directory — Authentication Framework.
Recommendation X.219 — Remote Operations— Model, Notation and Service Definition.
Recommendation X.229 — Remote Operations — Protocol Specification.

Recommendation X.407 — Abstract Service Definition Conventions.

3 Definitions

31 Basic Directory definitions
This Recommendation makes use of the following terms defined in Recommendation X.500:
a) Directory;
b) Directory Information Base (DIB);

c) (Directory) User.

2 FascicleVII1.8 —Rec. X.511

3.2

33

34

35

3.6

3.7

Directory model definitions

This Recommendation makes use of the following terms defined in Recommendation X.501:

a)
b)

Directory System Agent;
Directory User Agent.

Directory information base definitions

This Recommendation makes use of the following terms defined in Recommendation X.501:

a)
b)
©)
d)
€)
f)
9)
h)
i)
)

alias entry;

Directory Information Tree;
(Directory) entry;

immediate superior;

immediately superior entry/object;
object;

object class;

object entry;

subordinate;

superior.

Directory entry definitions

This Recommendation makes use of the following terms defined in Recommendation X.501:

a)
b)
<)
d)

attribute;
attribute type;
attribute value;

attribute value assertion.

Name definitions

This Recommendation makes use of the following terms defined in Recommendation X.501:

a)
b)
<)
d)

e

alias, alias name;
distinguished name;
(directory) name;
purported name;

relative distinguished name.

Distributed operations definitions

This Recommendation makes use of the following terms defined in Recommendation X.518:

a)
b)

chaining;
referral.

Abstract service definitions

This Recommendation defines the following terms:

a)

filter: an assertion about the presence or value of certain attributes of an entry in order to limit the scope
of asearch;

Fascicle V1.8 —Rec. X.511 3

b) service controls: parameters conveyed as part of an abstract-operation which constrain various aspects of
its performance;

C) originator: the user that originated an operation.

4 Abbreviations
This Recommendation makes use of the following abbreviations:
AVA Attribute Value Assertion
DIB Directory Information Base
DIT Directory Information Tree
DMD Directory Management Domain
DSA Directory System Agent
DUA Directory User Agent
RDN Relative Distinguished Name

5 Conventions

This Recommendation makes use of the abstract service definition conventions defined in
Recommendation X.407.

SECTION 2 — Abstract service

6 Overview of the directory service

6.1 As described in Recommendation X.501 the services of the Directory are provided through access points to
DUAs, each acting on behalf of a user. These concepts are depicted in Figure 1/X.511.

Access Point

Directory The
user Directory

T0704480-88
FIGURE 1/X.511
Accessto the Directory
6.2 In principle, access points to the Directory may be of different types, providing different combinations of

services. It is valuable to consider the Directory as an object, supporting a number of types of port. Each port defines a
particular kind of interaction which the Directory can participate in with a DUA. Each access point corresponds to a
particular combination of port types.

6.3 Using the notation defined in Recommendation X.407 the Directory can be defined as follows:

directory
OBJECT
PORTS({ readPort [],
searchPort [9],
modifyPort [S]}

::= id-ot-directory

4 FascicleVII1.8 —Rec. X.511

The Directory supplies operations via: Read Ports, which support reading information from a particular named
entry in the DIB; Search Ports, which allow more "exploration" of the DIB; and Modify Ports, which enable the
modification of entriesin the DIB.

Note — It isintended that in the future there may be other types of Directory port.
6.4 Similarly, aDUA (from the viewpoint of the Directory) can be defined as follows:
dua
OBJECT

PORTS{ readPort [C],
searchPort [C],
modifyPort [C]}
;= id-ot-dua
The DUA consumes the services provided by the Directory.
6.5 The ports cited from 6.2 to 6.4 can be defined as follows:

readPort
PORT
CONSUMER INVOKES{
Read, Compare, Abandon}

::= id-pt-search
sear chPort

PORT

CONSUMER INVOKES{
List, Search}

::= id-pt-search
modifyPort

PORT

CONSUMER INVOKES{
AddEntry, RemoveEntry,
ModifyEntry, M odifyRDN}

::= id-pt-modify
6.6 The operations from the readPort, searchPort and the modifyPort are defined in 8§89, 10, and 11
respectively.
6.7 These ports are used only as a method of structuring the description of the Directory service. Conformance to

the Directory operations is specified in Recommendation X.519.

7 I nfor mation types

7.1 Introduction

711 This paragraph identifies, and in some cases defines, a number of information types which are subsequently
used in the definition of Directory operations. The information types concerned are those which are common to more
than one operation, are likely to be in the future, or which are sufficiently complex or self-contained as to merit being
defined separately from the operation which uses them.

7.12 Severa of the information types used in the definition of the Directory service are actually defined elsewhere.
Paragraph 7.2 identifies types and indicates the source of their definition. Each of the remaining 88 (7.3 to 7.10)
identifies and defines an information type.

7.2 Information types defined elsewhere

721 The following information types are defined in Recommendation X.501:
a) Attribute;
b) AttributeType;

Fascicle V1.8 —Rec. X.511 5

c) AttributeValue;
d) AttributeValueAssertion;
€) DistinguishedName;
f) Name
0) RelativeDistinguishedName.

722 The following information type is defined in Recommendation X.520:
a) PresentationAddress.

7.2.3 The following information types are defined in Recommendation X.509:
a) Certificate,
b) SIGNED;
¢) CertificationPath.

724 The following information type is defined in Recommendation X.219:
a) InvokelD.

725 The following information types are defined in Recommendation X.518:
a) OperationProgress;

b) ContinuationReference.

7.3 Common arguments

731 The CommonArguments information may be present to qualify the invocation of each operation that the
Directory can perform.

CommonArguments::= SET {
[30] ServiceControls DEFAULT { },
[29] SecurityParametersDEFAULT { },
requestor [28] DistinguishedName
OPTIONAL,
[27] OperationProgress DEFAULT notStarted,
aliasedRDNs [26] INTEGER OPTIONAL,
extensions[25] SET OF EXTENSION OPTIONAL}

Extension ;= SET{
identifier [0] INTEGER,
critical [1] BOOLEAN DEFAULT FALSE,
item [2] ANY DEFINED BY identifier}

7.3.2 The various components have the meanings as defined in 88 7.3.2.1t0 7.3.2.4.

7.3.21 The ServiceControls component is specified in § 7.5. Its absence is deemed eguivalent to there being an
empty set of controls.

7.3.2.2 The SecurityParameters component is specified in § 7.9. Its absence is deemed equivalent to there being an
empty set of security parameters.

7.3.23 The requestor DistinguishedName identifies the originator of a particular abstract- operation. It holds the
name of the user as identified at the time of binding to the Directory. It may be required when the request is to be signed
(see § 7.10), and shall hold the name of the user who initiated the request.

7.3.24 The OperationProgr ess defines the role that the DSA isto play in the distributed evaluation of the request. It
is more fully defined in Recommendation X.518.

7.3.25 The aliasedRDNs component indicates to the DSA that the object component of the operation was created by
the dereferencing of an alias on an earlier operation attempt. The integer value indicates the number of RDNs in the
object that came from dereferencing the alias. (The value would have been set in the referral response of the previous
operation.)

6 FascicleVII1.8 —Rec. X.511

7.3.26 The extensions component provides a mechanism to express standardized extensions to the form of the
argument of a Directory abstract-operation.

Note — The form of the result of such an extended abstract-operation is identical to that of the non-extended
version. (Nonetheless, the result of a particular extended abstract-operation may differ from its non-extended
counterpart).

The subcomponents are as defined in 8§ 7.3.2.6.1 t0 7.3.2.6.3.

7.3.2.6.1 The identifier serves to identify a particular extension. Values of this component shall be assigned only by
future versions of this series of Recommendations.

7.3.2.6.2 The critical subcomponent alows the originator of the extended abstract-operation to indicate that the
performance of only the extended form of the abstract-operation is acceptable (i.e. that the non-extended form is not
acceptable). In this case the extension is a critical extension. If the Directory, or some part of it, is unable to perform a
critical extension it returns an indication of unavailableCriticalExtension (as a ServiceError or
PartialOutcomeQualifier). If the Directory is unable to perform an extension which is not critical, it ignores the
presence of the extension.

7.3.2.6.3 Theitem subcomponent provides the information needed for the Directory to perform the extended form of the
abstract-operation.

7.4 Common results

74.1 The CommonResults information should be present to qualify the result of each retrieval operation that the
Directory can perform.

CommonResults = SET {
[30] SecurityParameters OPTIONAL,
performer [29] DistinguishedName
OPTIONAL,
aliasDer eferenced [28] BOOLEAN
DEFAULT FALSE}

742 The various components have the meanings as defined in 88 7.4.2.1t0 7.4.2.3.

7421 The SecurityParameters component is specified in § 7.9. Its absence is deemed equivalent to there being an
empty set of security parameters.

7.4.2.2 The performer DistinguishedName identifies the performer of a particular operation. It may be required
when the result is to be signed (see § 7.10), and shall hold the name of the DSA which signed the resullt.

7.4.2.3 ThealiasDereferenced Component is set to TRUE when the purported name of an object or base object which
isthe target of the operation included on alias which was dereferenced.

7.5 Service controls

75.1 A ServiceControls parameter contains the controls, if any, that are to direct or constrain the provision of the
service.

ServiceControls = SET {
options[0] BIT STRING {

prefer Chaining(0)
chainingProhibited (1),
local Scope (2),
dontUseCopy (3),
dontDer eferenceAliases(4)}
DEFAULT {},

priority [1] INTEGER {
low (0),
medium (1),
high (2) } DEFAULT medium,

timeLimit [2] INTEGER OPTIONAL,
sizel imit [3] INTEGER OPTIONAL,

Fascicle V1.8 —Rec. X.511 7

scopeOfReferral [4] INTEGER {
dmd(0),
country(1)}
OPTIONAL }

752 The various components have the meanings as defined in 88 7.5.2.1t0 7.5.2.5.

7521 The options component contains anumber of indications, each of which, if set, asserts the condition suggested.
Thus:

a) preferChaining indicates that the preference is that chaining, rather than referrals, be used to provide the
service. The Directory is not obliged to follow this preference;

b) chainingProhibited indicates that chaining, and other methods of distributing the request around the
Directory, are prohibited;

¢) localScope indicates that the operation is to be limited to a local scope. The definition of this option is
itself alocal matter. For example, within asingle DSA or asingle DMD;

d) dontUseCopy indicates that copied information (as defined in Recommendation X.518) shall not be used
to provide the service;

e) dontDereferenceAliases indicate that any alias used to identify the entry affected by an operation is not
to be dereferenced;

Note — This is hecessary to allow reference to an alias entry itself rather than the aliased entry, e.g. in order to
read the alias entry.

If this component is omitted, the following are assumed: no preference for chaining but chaining not
prohibited, no limit on the scope of the operation, use of copy permitted, and aliases will be dereferenced (except for
modify operations where aliases will never be dereferenced).

7.5.22 The priority (low, medium or high) at which the service is to be provided. Note that this is not a guaranteed
service in that Directory, as a whole, does not implement queuing. There is no relationship implied with the use of
"priorities" in underlying layers.

7.5.2.3 ThetimeLimit indicates the maximum elapsed time, in seconds, within which the service shall be provided. If
the constraint cannot be met, an error is reported. If this component is omitted, no time limit is implied. In the case of
time limit exceeded on aList or Sear ch, the result is an arbitrary selection of the accumulated results.

Note — This component does not imply the length of time spent processing the request during the elapsed time:
any number of DSAs may beinvolved in processing the request during the elapsed time.

75.24 ThesizeLimit isonly applicable to List and Search operations. It indicates the maximum number of objectsto
be returned. In the case of size limit exceeded, the results of List and Search may be an arbitrary selection of the
accumulated results, equal in number to the size limit. Any further results shall be discarded.

7.5.25 The scopeOfReferral indicates the scope to which areferral returned by a DSA should be relevant. Depending
on whether the value dmd or country are selected, only referrals to other DSAs within the selected scope will be
returned.

This appliesto the referralsin both a ReferralError and the unexplored parameter of List and Sear ch results.

753 Certain combinations of priority, timeLimit, and sizeL imit may result in conflicts. For example, a short time
limit could conflict with low priority; a high size limit could conflict with alow time limit, etc.

7.6 Entry information selection

7.6.1 An EntrylnformationSelection parameter indicates what information is being requested from an entry in a
retrieval service.

EntrylnformationSelection ::= SET {
attributeTypes

CHOICE {
allAttributes[0] NULL,
select [1]] SET OF AttributeType
-- empty set implies no attributes
-- arerequested --}

DEFAULT allAttributesNULL,

8 FascicleVII1.8 —Rec. X.511

InfoTypes[2] INTEGER {
attributeTypesOnly (0),
attributeTypesAndValues(1) }
DEFAULT attributeTypesAndValues}

7.6.2 The various components have the meanings as defined in 88 7.6.2.1 and 7.6.2.2.
7.6.21 TheattributeTypes component specifiesthe set of attributes about which information is requested:

a) if the select option is chosen, then the attributes involved are listed. If the list is empty, then no attributes
will be returned. Information about a selected attribute shall be returned if the attribute is present. An
AttributeError with the noSuchAttribute problem shall only be returned if none of the attributes
selected is present;

b) if theallAttributes option is selected, then information is requested about all attributesin the entry.

Attribute information is only returned if access rights are sufficient. A SecurityError (with an
insufficientAccessRights problem) will only be returned in the case where access rights preclude the reading of al
attribute values requested.

7.6.22 TheinfoTypes component specifies whether both attribute type and attribute value information (the default) or
attribute type information only is requested. If the attributeTypes component (8 7.6.2.1) is such as to request no
attributes, then this component is not meaningful.

7.7 Entry information
7.7.1 An Entrylnformation parameter conveys selected information from an entry.

Entrylnformation = SEQUENCE {
DistinguishedName,
fromEntry BOOLEAN DEFAULT TRUE,
SET OF CHOICE {
AttributeType,
Attribute} OPTIONAL }

7.7.2 The DistinguishedName of the entry is aways included.

7.7.3 The fromEntry parameter indicates whether the information was obtained from the entry (TRUE) or a copy of
the entry (FAL SE).

7.74 A set of AttributeTypes or Attributes are included, if relevant, each of which may be alone or accompanied
by one or more attribute val ues.

7.8 Filter

7.8.1 A Filter parameter applies a test that is either satisfied or not by a particular entry. The filter is expressed in
terms of assertions about the presence or value of certain attributes of the entry, and is satisfied if and only if it evaluates
to TRUE.

Note — A Filter may be TRUE, FAL SE, or undefined.

Filter ::= CHOICE{
item [Q] Filterltem,
and [1] SET OF Filter,
or [2] SET OF Filter,
not [3] Filter }

Filterltem ::=CHOICE {
equality [0] AttributeValueAssertion,
substrings [1] SEQUENCE {
type AttributeType,
strings SEQUENCE OF CHOICE {

Initial [Q] AttributeValue,

any [1] AttributeValue,

final [2] AttributeValue}},
greaterOrEqual [2] AttributeValueAssertion,
lessOr Equal [3] AttributeValueAssertion,
present [4] AttributeType,

approximateM atch [5] AttributeValueAssertion }

Fascicle V1.8 —Rec. X.511 9

7.8.2 A Filter is either a Filterltem (see §7.8.3), or an expression involving simpler Filters composed together
using the logical operators and, or, and not. The Filter is undefined if it is a Filterltem which is undefined, or if it
involves one or more simpler Filters, al of which are undefined. Otherwise, where the Filter is:

a) anitem,itisTRUE if and only if the corresponding Filterltem is TRUE;
b) anand,itis TRUE unlessany of the nested Filtersis FAL SE;
Note— Thus, if there are no nested Filter sthe and evaluates to TRUE.
c) anor,itisFALSE unlessany of the nested Filtersis TRUE;
Note — Thus, if there are no nested Filtersthe or evaluatesto FAL SE.
d) anot,itisTRUE if and only if the nested Filter isFAL SE.

7.8.3 A Filterltem is an assertion about the presence or value(s) of an attribute of a particular type in the entry under
test. Each such assertion is TRUE, FAL SE, or undefined.

7.8.3.1 Every Filterltem includes an AttributeType which identifies the particular attribute concerned.

7.8.3.2 Any assertion about the value of such an attribute is only defined if the AttributeType is known, and the
purported AttributeValue(s) conforms to the attribute syntax defined for that attribute type.

Note 1 — Where these conditions are not met the Filter Item is undefined.
Note 2 — Access control restrictions may require that the Filter [tem be considered undefined.

7.8.3.3 Assartions about the value of an attribute are evaluated using the matching rules associated with the attribute
syntax defined for that attribute type. A matching rule not defined for a particular attribute syntax cannot be used to make
assertions about that attribute.

Note — Where this condition is not met, the FilterItem is undefined.

7834 A Filterltem may be undefined (as described in 887.8.3.2 and 7.8.3.3 above). Otherwise, where the
FilterItem asserts:

a) equality, itisTRUE if and only if thereis avalue of the attribute which is equal to that asserted,;

b) substrings, it is TRUE if and only if there is a value of the attribute in which the specified substrings
appear in the given order. The substrings shall be non-overlapping, and may (but need not) be separated
from the ends of the attribute value and from one another by zero or more string elements.

If initial is present, the substring shall match the initial substring of the attribute value; if final is present,
the substring shall match the final substring of the attribute value; if any is present, the substring may
match any substring in the attribute value;

c) greaterOrEqual, it is TRUE if and only if the relative ordering (as defined by the appropriate ordering
algorithm) places the supplied value before or equal to any value of the attribute;

d) lessOrEqual, it is TRUE if and only if the relative ordering (as defined by the appropriate ordering
algorithm) places the supplied value after or equal to any value of the attribute;

€) present, itisTRUE if and only if such an attribute is present in the entry;

f) approximateMatch, itis TRUE if and only if there is avalue of the attribute which matches that which is
asserted by some locally-defined approximate matching algorithm (e.g. spelling variations, phonetic
match, etc.). There are no specific guidelines for approximate matching in this version of the
Recommendation. If approximate matching is not supported, this FilterItem should be treated as a match
for equality.

79 Security Parameters

79.1 The SecurityParameters govern the operation of various security features associated with a Directory
operation.

Note — These parameters are conveyed from sender to recipient. Where the parameters appear in the argument
of an abstract-operation the requestor is the sender, and the performer is the recipient. In aresult, the roles are reversed.

10 Fascicle VII1.8 —Rec. X.511

SecurityParameters = SET {

certification-path [Q]
CertificationPath OPTIONAL,
name [1] DistinguishedName
OPTIONAL,
time [2] UTCTime OPTIONAL,
random [3] BIT STRING OPTIONAL,
target [4] ProtectionRequest OPTIONAL
}
ProtectionRequest = INTEGER {
none(0),
signed (1)}

7.9.2 The various components have the meanings as defined in 88 7.9.2.1t0 7.9.2.5.

7.9.21 The CertificationPath component consists of the sender's certificate, and, optionally, a sequence of certificate
pairs. The certificate is used to associate the sender's public key and distinguished name, and may be used to verify the
signature on the argument or result. This parameter shall be present if the argument or result is signed. The sequence of
certification pairs consists of certification authority cross certificates. It is used to enable the sender's certificate to be
validated. It is not required if the recipient shares the same certification authority as the sender. If the recipient requires a
valid set of certificate pairs, and this parameter is not present, whether the recipient regjects the signature on the argument
or result, or attempts to generate the certification path, isalocal matter.

7.9.22 The name is the distinguished name of the first intended recipient of the argument or result. For example, if a
DUA generates a signed argument, the name is the distinguished name of the DSA to which the operation is submitted.

7.9.23 The time is the intended expiry time for the validity of the signature, when signed arguments are used. It is
used in conjunction with the random number to enable the detection of replay attacks.

7.9.24 The random component is a number which should be different for each unexpired token. It is used in
conjunction with the time parameter to enable the detection of replay attacks when the argument or result has been
signed.

7.9.25 Thetarget ProtectionRequest may appear only in the request for an operation to be carried out, and indicates
the requestor’s preference regarding the degree of protection to be provided to the result. Two levels are provided: none
(no protection requested), and signed (the Directory is requested to sign the result, the default). The degree of protection
actually provided to the result is indicated by the form of result and may be equal to or lower than that requested, based
on the limitations of the Directory.

7.10 OPTIONALLY-SGNED

7.10.1 An OPTIONALLY-SIGNED information type is one whose values may, at the option of the generator, be
accompanied by their digital signature. This capability is specified by means of the following macro:

OPTIONALLY-SIGNED MACRO =
BEGIN

TYPE NOTATION type (Type)
VALUE NOTATION value (VALUE
CHOICE { Type, SIGNED Type})

END

7.10.2 The SIGNED macro, which describes the form of the signed form of the information, is specified in
Recommendation X.509.

8 Bind and unbind operations

The DirectoryBind and DirectoryUnbind operations, defined in § 8.1 and § 8.2 respectively, are used by the
DUA at the beginning and end of a particular period of accessing the Directory.

Fascicle V1.8 —Rec. X.511 11

8.1 Directory bhind
811 A DirectoryBind operation is used at the beginning of a period of accessing the Directory.

DirectoryBind = ABSTRACT-BIND
TO { readPort, searchPort, modifyPort }
BIND
ARGUMENT DirectoryBindArgument
RESULT DirectoryBindResult
BIND-ERROR DirectoryBindError
DirectoryBind Argument = SET (
credentials [0] Credentials OPTIONAL,
versions [11 Versions DEFAULT
v1988}
Credentials == CHOICE (
simple [0] SimpleCredentials,
strong [StrongCredentials,
externalProcedure [2] EXTERNAL }
SimpleCredentials o= SEQUENCE {
name [0] DistinguishedName,
validity [11 SET{

timel [01 UTCTime OPTIONAL,

Time2 nm UTCTime OPTIONAL,

randoml [2] BIT STRING OPTIONAL,

random2 [3] BIT STRING OPTIONAL } OPTIONAL,
-- in most instances the argument for

-- time and random are relevant in

-- dialogues employing protected password

-- mechanisms and derive their meaning

-~ as per bilateral agreements

password [2] OCTET STRING OPTIONAL }
—— the value could be an unprotected
-- password or Protectedl or Protected?2
-- as specified in Recommendation X.509.

StrongCredentials i= SET {
certification-path[0] CertificationPath
OPTIONAL,
bind-token [Token }

Token == SIGNED SEQUENCE {
algorithm [0] Algorithmldentifier,
name [1 DistinguishedName,
time [2] UTCTime,
random 31 BIT STRING }

Versions == BIT STRING ({v1988(0)}

DirectoryBindResult := DirectoryBind Argument

DirectoryBindError o= SET {
versions [0] Versions DEFAULT v1988,
CHOICE {

serviceError [1] ServiceProblem
securityError 2] SecurityProblem

n
8.12 The various arguments have the meanings as defined in 88 8.1.2.1t0 8.1.2.2.

8.1.2.1 The Credentials of the DirectoryBindArgument alow the Directory to establish the identity of the user.
They may be either simple, strong (as described in Recommendation X.509) or externally defined (exter nal Procedure).

8.1.2.1.1 SimpleCredentials consist of a name (aways the distinguished name of an object) and (optionally) a
password. This provides a limited degree of security. If the password is protected as described in 85 of
Recommendation X.509, then SimpleCredentials includes name, password and (optionally) time and/or random
numbers which are used to detect replay. In some instances a protected password may be checked by an object which

12 Fascicle VII1.8 —Rec. X.511

knows the password only after locally regenerating the protection to its own copy of the password and computing the
result with the value in the bind argument (password). In other instances a direct compare may be possible.

8.1.2.1.2 StrongCredentials consist of a bind token and, optionally, a certificate and sequence of certification-authority
cross-certificate (as defined in Recommendation X.509). This enables the Directory to authenticate the identity of the
request establishing the association, and vice versa.

The arguments of the bind token are used as follows: algorithm is the identifier of the algorithm employed to
sign the information; name is the name of the intended recipient. The time parameter contains the expiry time of the
token. The random number is a number which should be different for each unexpired token, and may be used by the
recipient to detect replay attacks.

8.1.2.1.3 If externalProcedure is used then the semantics of the authentication scheme being used is outside the scope
of the Directory document.

8.1.2.2 The Versions argument of the DirectoryBindArgument identifies the versions of the service which the DUA
is prepared to participate in. For this version of the protocol the value shall be set to v1988(0).

8.1.2.3 Migration to future versions of the Directory should be facilitated by:

a) any elements of DirectoryBindArgument other than those defined in this Recommendation shall be
accepted and ignored;

b) additional options for named bits of DirectoryBindArgument (e.g. Versions) not defined shall be
accepted and ignored.

8.1.3 Should the bind request succeed, a result will be returned. The result parameters have the meanings as defined
in888.1.3.1and 8.1.3.2.

8.1.3.1 The Credentials of the DirectoryBindResult allow the user to establish the identity of the DSA. They alow
information identifying the DSA (that is directly providing the Directory service) to be conveyed to the DUA. They shall
be of the same form (i.e. CHOICE) as those supplied by the user.

8.1.3.2 The Versions parameter of the DirectoryBindResult indicates which of the versions of the service requested
by the DUA is actually going to be provided by this DSA.

8.14 Should the bind request fail, abind error will be returned as defined in 88 8.1.4.1 and 8.1.4.2.
8.1.4.1 TheVersionsparameter of the DirectoryBindError indicates which versions are supported by this DSA.

8.1.4.2 A securityError or serviceError shall be supplied asfollows:

— securityError inappropriateAuthentication
invalidCredentials
— serviceError unavailable.
8.2 Directory unbind

821 A DirectoryUnbind operation is used at the end of a period of accessing the Directory.

DirectoryUnbind = ABSTRACT-UNBIND
FROM {readPort, searchPort, modifyPort }

8.2.2 The DirectoryUnbind has no arguments.

9 Directory read operations

There are two “"read-like" operations. Read and Compare, defined in 889.1 and 9.2, respectively. The
Abandon operation, defined in 8§ 9.3, is grouped with the Read operations for convenience.

9.1 Read

911 A Read operation is used to extract information from an explicitly identified entry. It may aso be used to
verify adistinguished name. The arguments of the operation may optionally be signed (see § 7.10) by the requestor. If so
requested, the Directory may sign the result.

Read ::= ABSTRACT-OPERATION
ARGUMENT ReadArgument
RESULT ReadResult

Fascicle V1.8 —Rec. X.511 13

ERRORS{
AttributeError, NameError,
ServiceError, Referral, Abandoned,
SecurityError }

ReadArgument ::= OPTIONALLY-SIGNED SET {
obj ect [Q] Name,
selection [1] Selection F* EntrylnformationSelection
DEFAULT {}
COMPONENTS OF CommonArguments}
ReadResult ::= OPTIONALLY-SIGNED SET {
entry [Q] Entrylnfor mation,

COMPONENTS OF CommonResults}
9.12 The various arguments have the meanings as defined in 8§ 9.1.2.1t09.1.2.3.

9.1.21 The object argument identifies the object entry from which the information is requested. Should the Name
involve one or more aliases, they are dereferenced (unless thisis prohibited by the relevant service controls).

9.1.2.2 The sdlection argument indicates what information from the entry is requested (see § 7.6).

9.1.2.3 The CommonArguments (see § 7.3) include a specification of the service controls applying to the request. For
the purposes of this operation the sizeL. imit component is not relevant and isignored if provided.

9.1.3 Should the request succeed, the result will be returned. The result parameters have the meanings as defined in
§9.1.31and§7.4.

9.1.3.1 Theentry result parameter holds the requested information (see 8 7.7).

9.14 Should the request fail, one of the listed errors will be reported. If none of the attributes explicitly listed in
selection can be returned, then an AttributeError with problem noSuchAttribute will be reported. The circumstances
under which other errors will be reported are defined in § 12.

9.2 Compare

921 A Compare operation is used to compare a value (which is supplied as an argument of the request) with the
value(s) of a particular attribute type in a particular object entry. The arguments of the operation may optionally be
signed (see § 7.10) by the requestor. If so requested, the Directory may sign the resullt.

Compare n= ABSTRACT-OPERATION
ARGUMENT CompareArgument
RESULT CompareResult
ERRORS{

AttributeError, NameError,
ServiceError, Referral, Abandoned,
SecurityError }

CompareArgument = OPTIONALLY-SIGNED
SET {
obj ect [Q] Name,
purported [1] AttributeValueAssertion,
COMPONENTS OF CommonArguments}
CompareResult = OPTIONALLY-SIGNED
SET {
DistinguishedName OPTIONAL,
matched [0] BOOLEAN,
from Entry [1] BOOLEAN DEFAULT TRUE,

COMPONENTS OF CommonResults}
9.2.2 The various arguments have the meanings as defined in 88 9.2.2.110 9.2.2.3.

9.22.1 The object argument is the name of the particular object entry concerned. Should the Name involve one or
more aiases, they are dereferenced (unless prohibited by the relevant service contral).

9.2.2.2 Thepurported argument identifies the attribute type and the value to be compared with that in the entry.

9.2.2.3 The CommonArguments (see § 7.3) specify the service controls applying to the request. For the purposes of
this operation the sizel imit component is not relevant and isignored, if provided.

14 Fascicle VII1.8 —Rec. X.511

9.23 Should the request succeed (i.e. the comparison is actually carried out), the result will be returned. The result
parameters have the meanings as described in § 9.2.3.1, §9.2.3.2and § 7.4.

9.2.3.1 The DistinguishedName is present if an alias was dereferenced and represents the distinguished name of the
object itself.

9.2.3.2 The matched result parameter, holds the result of the comparison. The parameter takes the value TRUE if the
values were compared and matched, and FAL SE if they did not.

9.2.3.3 If fromEntry is TRUE the information was compared against the entry; if FAL SE some of the information
was compared against a copy.

9.24 Should the request fail, one of the listed errors will be reported. The circumstances under which the particular
errors will be reported are defined in § 12.
9.3 Abandon

931 Operations that interrogate the Directory may be abandoned using the Abandon operation if the user is no
longer interested in the result.

Abandon n= ABSTRACT-OPERATION
ARGUMENT AbandonArgument
RESULT AbandonResult

ERRORS {AbandonFailed}

AbandonArgument ::= SEQUENCE {
Invokel D [O] Invokel D}

AbandonResult = NULL

9.32 There is a single argument, the Invokel D which identifies the operation that is to be abandoned. The value of
theinvokel D is the sameinvokel D which was used to invoke the operation which isto be abandoned.

9.33 Should the request succeed, a result will be returned, although no information will be conveyed with it. The
original operation will fail with an Abandoned error.

9.34 Should the request fail, the AbandonFailed error will be reported. This error is described in § 12.3.
9.35 Abandon is only applicable to interrogation operations, i.e., Read, Compare, List and Sear ch.

9.3.6 A DSA may abandon an operation locally. If the DSA has chained or multicasted the operation to other DSAS,
it may in turn request them to abandon the operation. A DSA may choose not to abandon the operation and shall then
return the AbandonFailed error.

10 Directory search operations

There are two "search-like" operations: List and Sear ch, defined in § 10.1 and § 10.2 respectively.

10.1 List

10.1.1 A List operation is used to obtain a list of the immediate subordinates of an explicitly identified entry. Under
some circumstances, the list returned may be incomplete. The arguments of the operation may optionally be signed (see
§ 7.10) by the requestor. If so requested, the Directory may sign the result.

Fascicle V1.8 —Rec. X.511 15

List == ABSTRACT-OPERATION

ARGUMENT ListArgument
RESULT ListResult
ERRORS {

NameError

ServiceError, Referral, Abandoned,
SecurityError }

List Argument := OPTIONALLY-SIGNED SET {
object [0] Name,
COMPONENTS OF CommonArguments }
ListResult u= OPTIONALLY-SIGNED
CHOICE {

listInfo SET (

DistinguishedName OPTIONAL,

subordinates [1] SET OF SEQUENCE {
RelativeDistinguishedName,
aliasEntry [0] BOOLEAN DEFAULT FALSE
fromEntry [I]] BOOLEAN DEFAULT TRUE},

partialOutcomeQualifier [2]
PartialOutcomeQualifier = OPTIONAL
COMPONENTS OF CommonResulits },
uncorrelatedListinfo [0] SET OF
ListResult }

PartialOutcomeQualifier := SET {
limitProblem [0] LimitProblem
OPTIONAL,

unexplored [1] SET OF
ContinuationReference OPTIONAL,
unavailableCriticalExtensions [2] BOOLEAN DEFAULT FALSE }

LimitProblem == INTEGER {
timeLimitExceeded (0),
sizeLimitExceeded (1),
administrativeLimitExceeded (2) }

10.1.2 Thevarious arguments have the meanings as defined in § 10.1.2.1 and § 7.3.

10.1.2.1 The object argument identifies the object entry (or possibly the root) whose immediate subordinates are to be
listed. Should the Name involve one or more aliases, they are dereferenced (unless prohibited by the relevant service
control).

10.1.3 The request succeeds if the object is located regardless of whether there is any subordinate information to
return. The result parameters have the meanings as defined in 88 10.1.3.1t0 10.1.3.4 and § 7.4.

10.1.3.1 The DistinguishedName is present if an alias was dereferenced. It represents the distinguished name of the
object itself.

10.1.3.2 The subordinates parameter conveys the information on the immediate subordinate, if any, of the named
entry. Should any of the subordinate entries be aliases, they will not be dereferenced.

10.1.3.2.1 The RelativeDistinguishedName is that of the subordinate.

10.1.3.2.2 The fromEntry parameter indicates whether the information was obtained from the entry (TRUE) or a
copy of the entry (FAL SE).

10.1.3.2.3 The aliasEntry parameter indicates whether the subordinate entry is an alias entry (TRUE) or not
(FALSE).

10.1.3.3 The PartialOutcomeQualifier consists of three subcomponents as defined in 88 10.1.3.3.1 to 10.1.3.3.3. This
parameter shall be present whenever the result isincomplete.

10.1.3.3.1 The LimitProblem parameter indicates whether the time limit, the size limit, or an administrative limit
has been exceeded. The results being returned are those which were available when the limit was reached.

10.1.3.3.2 The unexplor ed parameter shall be present if regions of the DIT were not explored. Its information allows
the DUA to continue the processing of the List operation by contacting other access points if it so chooses. The
parameter consists of a set (possibly empty) of ContinuationRefer ences, each consisting of the name of a base object

16 Fascicle VII1.8 —Rec. X.511

from which the operation may be progressed, an appropriate value of OperationProgress, and a set of access points
from which the request may be further progressed. The ContinuationRefer ences that are returned shall be within the
scope of referral requested in the operation service control.

10.1.3.3.3 The unavailableCriticalExtensions parameter indicates, if present, that one or more critical extensions
were unavailable in some part of the Directory.

10.1.3.4 When the DUA has requested a protection request of signed, the uncorrelatedListinfo parameter may
comprise a number of sets of result parameters originating from and signed by different components of the Directory. If
no DSA in the chain can correlate al the results, the DUA must assemble the actual result from the various pieces.

10.1.4 Should the request fail, one of the listed errors will be reported. The circumstances under which the particular
errors will be reported are defined in § 12.

10.2 Search

10.21 A Search operation is used to search a portion of the DIT for entries of interest and to return selected
information from those entries. The arguments of the operation may optionally be signed (see § 7.10) by the requestor. If
SO requested, the Directory may sign the result.

Search = ABSTRACT-OPERATION
ARGUMENT SearchArgument
RESULT SearchResult
ERRORS {

AttributeError, NameError,
ServiceError, Referral, Abandoned,
SecurityError }

SearchArgument = OPTIONALLY-SIGNED
SET {
baseObject [0] Name,
subset [1] INTEGER ({
baseObject (0),
oneLevel(1),
wholeSubtree(2)} DEFAULT baseObject,
filter [2] Filter DEFAULT and ().

searchAliases [3] BOOLEAN DEFAULT TRUE,
selection [4] EntryInformationSelection DEFAULT (}
COMPONENTS OF CommonArguments }

SearchResult == OPTIONALLY-SIGNED

CHOICE {

searchInfo SET {

DistinguishedName OPTIONAL,

entries [0] SET OF EntryInformation,

partialOutcomeQualifier

[2]PartialOutcomeQualifier OPTIONAL,

COMPONENTS OF CommonResults },
uncorrelatedSearchInfo [0] SET OF

SearchResult }

10.2.2 The various arguments have the meanings as defined in 88 10.2.2.1t0 10.2.2.3, § 10.2.2.5, and § 7.3.

10.2.2.1 The baseObject argument identifies the object entry (or possibly the root) relative to which the search is to
take place.

10.2.2.2 The subset argument indicates whether the search isto be applied to:
a) thebaseObject only;
b) theimmediate subordinates of the base object only (oneL evel);
¢) thebase object and al its subordinates (wholeSubtree).

10.2.2.3 The filter argument is used to eliminate entries from the search space which are not of interest. Information
will only be returned on entries which satisfy thefilter (see § 7.8).

Fascicle V1.8 —Rec. X.511 17

10.2.2.4 Aliases shal be dereferenced while locating the base object, subject to the setting of the
dontDer eferenceAliasesServiceControl. Aliases among the subordinates of the base object shall be dereferenced during
the search, subject to the setting of the searchAliases parameter. If the sear chAliases parameter is TRUE, aliases shall
be dereferenced, if the parameter is FAL SE, aliases shall not be dereferenced. If the sear chAliases parameter is TRUE,
the search shall continue in the subtree of the aliased object.

10.2.2.5 The selection argument indicates what information from the entriesis requested (see § 7.6).
10.2.3 Therequest succeedsif the base object islocated, regardless of whether there are any subordinates to return.

Note — As a corollary to this, the outcome of an (unfiltered) Search applied to a single entry may not be
identical to a Read which seeks to interrogate the same set of attributes of the entry. Thisis because the latter will return
an AttributeError if none of the selected attributes exist in the entry.

The result parameters have the meanings as defined in 88 10.2.3.1t0 10.2.3.4 and § 7.3.

10.2.3.1 The DistinguishedName is present if an alias was dereferenced, and represents the distinguished name of the
base object.

10.2.3.2 The entries parameter conveys the requested information from each entry (zero or more) which satisfied the
filter (see § 7.5).

10.2.3.3 The PartialOutcomeQualifier consists of two subcomponents as described for the List operation in
§10.1.3.4.

10.2.3.4 TheuncorrelatedSear chlnfo parameter is as described for uncorrelatedListinfoin § 10.1.3.4.

10.2.4 Should the request fail, one of the listed errors will be reported. The circumstances under which the particular
errors will be reported are defined in § 12.

11 Directory modify operations

There are four operations to modify the Directory: AddEntry, RemoveEntry, ModifyEntry and M odifyRDN
defined in 88 11.1 to 11.4 respectively.

Note 1 — Each of these abstract-operations identifies the target entry by means of its distinguished name.

Note 2 — The success of AddEntry, RemoveEntry, and ModifyRDN operations will be dependent on the
physical distribution of the DIB across the Directory. Failure will be reported with an UpdateError and problem
affectsM ultipleDSAs. See Recommendation X.518.

111 Add entry

11.1.1 An AddEntry operation is used to add a leaf entry (either an object entry, or an alias entry) to the DIT. The
arguments of the operation may optionally be signed (see § 7.10) by the requestor.

AddEntry = ABSTRACT-OPERATION
ARGUMENT AddEntryArgument
RESULT AddEntryResult
ERRORS{

AttributeError, NameError,
ServiceError, Referral, SecurityError,
UpdateError }

AddEntryArgument = OPTIONALLY-SIGNED
SET {
obj ect [Q] DistinguishedName,
entry [1] SET OF Attribute,
COMPONENTS OF CommonArguments}
AddEntryResult = NULL

11.1.2 Thevarious arguments have the meanings asdefined in §§ 11.1.2.1t0 11.1.2.3.

11.1.2.1 The object argument identifies the entry to be added. Its immediate superior, which must already exist for the
operation to succeed, can be determined by removing the last RDN component (which belongs to the entry to be
created).

18 Fascicle VII1.8 —Rec. X.511

11.1.2.2 The entry argument contains the attribute information which, together with that from the RDN, constitutes the
entry to be created. The Directory shall ensure that the entry conforms to the Directory schema. Where the entry being
created is an alias, no check is made to ensure that the aliasedObjectName attribute points to avalid entry.

11.1.2.3 The CommonArguments (see § 7.3) include a specification of the service controls applying to the request. For
the purposes of this operation the dontDer efer enceAlias option and the sizel imit component are not relevant and are
ignored if provided. Aliases are never dereferenced by this operation.

11.1.3 Should the request succeed, aresult will be returned, although no information will be conveyed with it.

11.1.4 Should the request fail, one of the listed errors will be reported. The circumstances under which the particular
errors will be reported are defined in § 12.

11.2 Remove Entry

11.21 A RemoveEntry operation is used to remove a leaf entry (either an object entry or an dias entry) from the
DIT. The arguments of the operation may optionally be signed (see § 7.10) by the requestor.

RemoveEntry ::= ABSTRACT-OPERATION
ARGUMENT RemoveEntryArgument
RESULT RemoveEntryResult
ERRORS{

NameError,
ServiceError, Referral, SecurityError,
UpdateError}

RemoveEntryArgument ::= OPTIONALLY-SIGNED SET {
object [0] DistinguishedName,
COMPONENTS OF CommonArguments}

RemoveEntryResult ::= NULL
11.2.2 The various arguments have the meanings as defined in 88 11.2.2.1 and 11.2.2.2.
11.2.2.1 The object argument identifies the entry to be deleted. Aliasesin the name will not be dereferenced.

11.2.2.2 The CommonArguments (see § 7.3) include a specification of the service controls applying to the request. For
the purposes of this operation the dontDer efer enceAlias option and the sizeL imit component are not relevant and are
ignored if provided. Aliases are never dereferenced by this operation.

11.2.3 Should the request succeed, aresult will be returned, although no information will be conveyed with it.

11.2.4 Should the request fail, one of the listed errors will be reported. The circumstances under which the particular
errors will be reported are defined in § 12.

11.3 Modify Entry

11.31 The ModifyEntry operation is used to perform a series of one or more of the following modifications to a
single entry:

a) add anew attribute;

b) remove an attribute;

c) add attribute values,

d) remove attribute values;

€) replace attribute values,

f) modify an dlias.

The arguments of the operation may optionally be signed (see § 7.10) by the requestor.

ModifyEntry ::= ABSTRACT-OPERATION
ARGUMENT ModifyEntryArgument
RESULT ModifyEntryResult
ERRORS{

AttributeError, NameError,
ServiceError, Referral, SecurityError,
UpdateError }

Fascicle V1.8 —Rec. X.511 19

M odifyEntryArgument ::= OPTIONALLY-SIGNED SET {

obj ect [Q] DistinguishedName,
changes [1] SEQUENCE OF EntryM odification,
COMPONENTS OF CommonArguments}

ModifyEntryResult = NULL

EntryM odification = CHOICE{
addAttribute [Q] Attribute,
removeAttribute [1] AttributeType,
addValues [2] Attribute,
removeValues [3] Attribute}

11.3.2 Thevarious arguments have the meanings as defined in §§ 11.3.2.1 and 11.3.2.2.

11.3.2.1 The object argument identifies the entry to which the modifications should be applied. Any aliases in the name
will not be dereferenced.

11.3.2.2 The changes argument defines a sequence of modifications, which are applied in the order specified. If any of
the individual modifications fails, then an AttributeError is generated and the entry |eft in the state it was prior to the
operation. That is, the operation is atomic. The end result of the sequence of modifications shall not violate the Directory
schema. However, it is possible, and sometimes necessary, for the individual EntryM odification changes to appear to
do so. The following types of modification may occur:

a) addAttribute: This identifies a new attribute to be added to the entry, which is fully specified by the
argument. Any attempt to add an already existing attribute resultsin an AttributeError;

b) removeAttribute The argument identifies (by its type) an attribute to be removed from the entry. Any
attempt to remove a hon-existing attribute resultsin an AttributeError;

Note — This operation is not allowed if the attribute type is present in the RDN.

¢) addValues: This identifies an attribute by the attribute type in the argument, and specifies one or more
attribute values to be added to the attribute. An attempt to add an already existing value resultsin an error.
An attempt to add a value to a non-existent type resultsin an error;

d) removeValues: Thisidentifies an attribute by the attribute type in the argument and specifies one or more
attribute values to be removed from the attribute. If the values are not present in the attribute, this results
in an AttributeError. If an attempt is made to modify the object class attribute, an update error is
returned.

Note — This operation is now alowed if one of the valuesis present in the RDN.

Values may be replaced by a combination of addValues and removeValues in a single ModifyEntry
operation.

11.3.2.3 The CommonArguments (see § 7.3) include a specification of the service controls applying to the request. For
the purposes of this operation the dontDer efer enceAlias option and the sizel imit component are not relevant and are
ignored if provided. Aliases are never dereferenced by this operation.

11.3.3 Should the request succeed, aresult will be returned athough no information will be conveyed with it.

11.3.4 Should the request fail, one of the listed errors will be reported. The circumstances under which the particular
errors will be reported are defined in § 12.

114 Modify RDN

1141 The ModifyRDN operation is used to change the Relative Distinguished Name of aleaf entry (either an object
entry or an alias entry) in the DIT. The arguments of the operation may optionally be signed (see §7.10) by the
requestor.

ModifyRDN ::= ABSTRACT-OPERATION
ARGUMENT M odifyRDNArgument
RESULT ModifyRDNResult
ERRORS{

NameError,

ServiceError, Referral, SecurityError,
UpdateError }

M odifyRDNArgument ::= OPTIONALLY-SIGNED SET {

20 Fascicle VII1.8 —Rec. X.511

obj ect [Q] DistinguishedName,

newRDN [1] RelativeDistinguishedName,
deleteOIdRDN [2] BOOLEAN DEFAULT FALSE,
COMPONENTS OF CommonArguments}

ModifyRDNResult = NULL
1142 Thevarious parameters have the meanings as defined in 88 11.4.2.1t0 11.4.2.5.

11.4.2.1 The object argument identifies the entry whose Relative Distinguished Name is to be modified. Aliases in the
name will not be dereferenced. The immediate superior entry shall not have any Non-Specific Subordinate References
(see Recommendation X.518).

11.4.2.2 The newRDN argument specifies the new RDN of the entry.

11.4.2.3 If an attribute value in the new RDN does not already exist in the entry (either as part of the old RDN or as a
non-distinguished value) it is added. If it cannot be added, an error is returned.

11.4.2.4 If the deleteOIdRDN flag is set, all attribute values in the old RDN which are not in the new RDN are del eted.
If this flag is not set, the old values should remain in the entry (not as a part of the RDN). The flag shall be set where a
single value attribute in the RDN has its value changed by the operation. If this operation removes the last attribute value
of an attribute, that attribute shall be deleted.

11.4.25 The Common Arguments (see 8§ 7.3) include a specification of the service controls applying to the request.
For the purposes of this operation the dontDer efer enceAlias option and the sizel imit component are not relevant and
areignored if provided. Aliases are never dereferenced by this operation.

11.4.3 Should the request succeed, aresult will be returned, although no information will be conveyed with it.

11.4.4 Should the request fail, one of the listed errors will be reported. The circumstances under which the particular
errors will be returned are defined in § 12.

11.45 Asdefined in this Recommendation this operation may only be used on aleaf entry.

12 Errors

12.1 Error Precedence

12.1.1 The Directory does not continue to perform an operation beyond the point at which it determines that an error
isto be reported.

Note 1 — An implication of this rule is that the first error encountered can differ for repeated instances of the
same query, as there is not a specific logical order in which to process a given query. For example, DSAs may be
searched in different orders.

Note 2 — The rules of error precedence specified here apply only to the abstract service provided by the
Directory asawhole. Different rules apply when the internal structure of the Directory is taken into account.

12.1.2 Should the Directory simultaneously detect more than one error, the following list determines which error is
reported. An error higher in thelist has a higher logical precedence than one below it and is the error which is reported.

a NameError
b) UpdateError
c) AttributeError
d) SecurityError
€) ServiceError.
12.1.3 Thefollowing errors do not present any precedence conflicts:
a) AbandonFailed, becauseit is specific to one operation, Abandon, which can encounter no other error;

b) Abandoned, which is not reported if an Abandon operation is received simultaneously with the detection
of an error. In this case an AbandonFailed error, reporting the problem tool ate is reported along with the
report of the actual error encountered;

¢) Referral, whichisnota"rea" error, only an indication that the Directory has detected that the DUA must
present its request to another access point.

Fascicle V1.8 —Rec. X.511 21

122
1221

Abandoned

This outcome may be reported for any outstanding directory enquiry operation (i.e. Read, Search, Compare,

List) if the DUA invokes an Abandon operation with the appropriate | nvokel D.

1222

12.3
1231

12.3.2
12321

12322

124
1241

124.2
12421
12422

Abandoned ::= ABSTRACT-ERROR -- not literally an "error"

There are no parameters associated with this error.

Abandon Failed
The AbandonFailed error reports a problem encountered during an attempt to abandon an operation.

AbandonFailed ::= ABSTRACT-ERROR
PARAMETER SET {
problem [0] AbandonProblem,
operation [1] Invokel D}

AbandonProblem ::= INTEGER
noSuchOperation (1),
tooL ate (2),
cannotAbandon (3) }

The various parameters have the meanings as defined in 8§ 12.3.2.1 and 12.3.2.2.
The particular problem encountered is specified. Any of the following problems may be indicated:

a) noSuchOperation, when the Directory has no knowledge of the operation which is to be abandoned (this
could be because no such invoke took place or because the Directory has forgotten about it);

b) tool ate, when the Directory has already responded to the operation;

¢) cannotAbandon, when an attempt has been made to abandon an operation for which this is prohibited
(e.g. modify), or the abandon could not be performed.

Theidentification of the particular operation (invocation) to be abandoned.

Attribute Error
An AttributeError reports an attribute-related problem.

AttributeError ::= ABSTRACT-ERROR
PARAMETER SET {

object [Q] Name,

problems|[1] SET OF SEQUENCE {
problem [O] AttributeProblem,
type [1] AttributeType,
value [2] AttributeValue

OPTIONAL }}

AttributeProblem ::= INTEGER {
noSuchAttributeOrValue (1),
InvalidAttributeSyntax (2),
undefinedAttributeType (3),

I nappropriateM atching (4),
constraintViolation (5)
attributeOrValueAlreadyExists (6) }

The various parameters have the meanings as described in 8§ 12.4.2.1 and 12.4.2.2.
The object parameter identifies the entry to which the operation was being applied when the error occurred.

One or more problems may be specified. Each problem identified below is accompanied by an indication of

the attribute type, and if necessary to avoid ambiguity, the value, which caused the problem:

22

a) noSuchAttributeOrValue: The named entry lacks one of the attributes or attribute values specified as an
argument of the operation;

Fascicle VII1.8 —Rec. X.511

b) invalidAttributeSyntax: A purported attribute value, specified as an argument of the operation, does not
conform to the attribute syntax of the attribute type;

¢) undefinedAttributeType: An undefined attribute type was provided as an argument to the operation.
This error may occur only in relation to Add, Remove, M odify or M odifyRDN operations;

d) inappropriateMatching: An attempt was made, e.g. in afilter, to use a matching rule not defined for the
attribute type concerned;

€) congtraintViolation: An attribute or attribute value supplied in the argument of abstract- operation does
not conform to the constraints imposed by Recommendation X.501 or by the attribute definition (e.g. the
value exceeds the maximum size allowed);

f) attributeOrValueAlreadyExists: An attempt was made to add an attribute which already existed in the
entry, or avalue which already existed in the attribute.

125 Name Error
125.1 A NameError reports aproblem related to the name provided as an argument to an operation.

NameError ::= ABSTRACT-ERROR
PARAMETER SET {
problem [0] NameProblem,
matched [1] Name}

NameProblem ::= INTEGER {
noSuchObject (1),
aliasProblem (2),
invalidAttributeSyntax (3),
aliasDer eferencingProblem (4) }

12.5.2 The various parameters have the meanings as described in 8§ 12.5.2.1 and 12.5.2.2.
12.5.2.1 The particular problem encountered. Any of the following problems may be indicated:
a) noSuchObject: The name supplied does not match the name of any object;

¢) invalidAttributeSyntax: An attribute type and its accompanying attribute value in AVA in the name are
incompatible;

d) aliasDereferencingProblem: An alias was encountered in a situation where it was not allowed.

12.5.2.2 The matched parameter contains the name of the lowest entry (object or alias) in the DIT that was matched
and is atruncated form of the name provided or, if an aias has been dereferenced, of the resulting name.

Note — If there is a problem with the attribute types and/or values in the name offered in a directory operation
argument, this is reported via a NameError (with problem invalidAttributeSyntax) rather than as an AttributeError
or an UpdateError.

12.6 Referral

126.1 A Referral redirects the service-user to one or more access points better equipped to carry out the requested
operation.

Referral ::= ABSTRACT-ERROR -- not literally an " error”
PARAMETER SET {
candidate [0] ContinuationReference}

12.6.2 The error has a single parameter which contains a ContinuationRefer ence which can be used to progress the
operation (see Recommendation X.518).

12.7 Security Error
12.7.1 A SecurityError reportsaproblem in carrying out an operation for security reasons.

SecurityError ::= ABSTRACT-ERROR
PARAMETER SET {
problem [0] SecurityProblem }

SecurityProblem ::= INTEGER {

Fascicle V1.8 —Rec. X.511 23

I nappropriateAuthentication (1),
InvalidCredentials (2),

I nsufficientAccessRights (3),
InvalidSignature (4),
protectionRequired (5),

nol nformation (6) }

12.7.2 The error has a single parameter, which reports the particular problem encountered. The following problems
may be indicated:

a) inappropriateAuthentication: The level of security associated with the requestor's credentiads is
inconsistent with the level of protection requested, e.g. simple credentials were supplied while strong
credentials were required;

b) invalidCredentials: The supplied credentials were invalid;

¢) insufficientAccessRights: The requestor does not have the right to carry out the requested operation;

d) invalidSignature: The signature of the request was found to beinvalid;

€) protectionRequired: The Directory was unwilling to carry out the requested operation because the
argument was not signed;

f) nolnformation: The requested operation produced a security error for which no information is available.

12.8 Service Error
12.8.1 A ServiceError reports aproblem related to the provision of the service.
ServiceError ::= ABSTRACT-ERROR
PARAMETER SET {
problem [0] ServiceProblem },
ServiceProblem ::= INTEGER {
busy (1),
unavailable (2),
unwillingT oPerform (3),
chainingRequired (4),
unableT oProceed (5),
invalidReference (6),
timeL imitExceeded (7),
administrativel imitExceeded (8),
loopDetected (9),
unavailableCriticalExtension (10),
outOfScope (11),
ditError (12) }
12.8.2 The error has a single parameter, which reports the particular problem encountered. The following problems
may be indicated:

a) busy: The Directory, or some part of it, is presently too busy to perform the requested operation, but may
be able to do so after a short while;

b) unavailable: The Directory, or some part of it, is currently unavailable;

¢) unwillingToPerform: The Directory, or some part of it, is not prepared to execute this request, e.g.
because it would lead to excessive consumption of resources or violate the policy of an Administrative
Authority involved;

d) chainingRequired: The Directory is unable to accomplish the request other than by chaining, however
chaining was prohibited by means of the chainingProhibited service control option;

€) unableToProceed: The DSA returning this error did not have administrative authority for the appropriate
naming context and as a consequence was nhot able to participate in name resolution;

f) invalidReference: The DSA was unable to perform the request as directed by the DUA (in
OperationProgress). This may have arisen dueto using an invalid referral;

g) timeLimitExceeded: The Directory has reached the limit of time set by the user in a service control. No

24

partial results are available to return to the user;

Fascicle VII1.8 —Rec. X.511

h)
i)
)
K)
1)

administrativel imitExceeded: The Directory has reached some limit set by an administrative authority,
and no partial results are available to return to the user;

loopDetected: The Directory is unable to accomplish the request due to an internal loop;

unavailableCriticalExtension: The Directory was unable to execute the request because one or more
critical extensions were not available;

outOfScope: No referrals were available within the requested scope;
ditError: The Directory is unable to accomplish the request due to aDIT consistency problem.

129 Update Error

129.1 AnUpdateError reports problems related to attempts to add, delete, or modify information in the DIB.
UpdateError ::= ABSTRACT-ERROR

PARAMETER SET {
problem [0] UpdateProblem }

UpdateProblem ::= INTEGER {

namingViolation (1),
objectClassViolation (2),
notAllowedOnNonL eaf (3),
notAllowedOnRDN (4),
entryAlreadyExists (5),

affectsM ultipleDSASs (6),

objectClassM odificationProhibited (7) }

12.9.2 The error has a single problem parameter, which reports the particular problem encountered. The following
problems may be indicated:

a)

b)

namingViolation: The attempted addition or modification would violate the structure rules of the DIT as
defined in the Directory schema and Recommendation X.501. That is, it would place an entry as the
subordinate of an alias entry, or in aregion of the DIT not permitted to a member of its object class or
would define an RDN for an entry to include a forbidden attribute type;

objectClassViolation: The attempted update would produce an entry inconsistent with the definition
provided by its object class or with the definitions of Recommendation X.501 as they pertain to object
classes;

notAllowedOnNonL eaf: The attempted operation is only allowed on leaf entries of the DIT;

notAllowedOnRDN: The attempted operation would affect the RDN (e.g. removal of an attribute which
isapart of the RDN);

entryAlreadyExists: An attempted AddEntry operation names an entry which aready exists;

affectsM ultipleDSAs. An attempted update would need to operate on multiple DSAs, which is not
permitted;

objectClassM adificationProhibited: An operation attempted to modify the object class attribute.

Note — The UpdateError is not used to report problems with attribute types, values or constraint
violations encountered in an AddEntry, RemoveEntry, ModifyEntry or ModifyRDN operation. Such
problems are reported via an AttributeError.

ANNEX A
(to Recommendation X.511)
Abstract servicein ASN.1

This Annex is part of the standard.

This Annex includes all of the ASN.1 type, value and macro definitions contained in this Recommendation in
the form of the ASN.1 module Dir ectoryAbstractService.

Fascicle V1.8 —Rec. X.511 25

DirectoryAbstractService {joint-ISO-CCITT ds(5) modules(1) directoryAbstractService(2)}
DEFINITIONS ::=
BEGIN

EXPORTS
directory, readPort, searchPort, modifyPort,
DirectoryBind, DirectoryBindArgument,
DirectoryUnbind,
Read, ReadArgument, ReadResult,
Abandon, AbandonArgument, AbandonResult,
Compare, CompareArgument, CompareResult,
List, ListArgument, ListResult,
Search, SearchArgument, SearchResult,
AddEntry, AddEntryArgument, AddEntryResult,
RemoveEntry, RemoveEntryArgument, RemoveEntryResult,
ModifyEntry, ModifyEntryArgument, ModifyEntryResult,
ModifyRDN, ModifyRDNArgument, ModifyRDNResult,
Abandoned, AbandonFailed, AttributeError, NameError,
Referral, SecurityError, ServiceError, UpdateError,
SecurityParameters;

IMPORTS
informationFramework, authenticationFramework,

distributedOperations, directoryObjectldentifiers
FROM UsefulDefinitions {joint-iso-ccitt ds(5) modules(1)
usefulDefinitions(0)}

OBJECT, PORT, ABSTRACT-BIND, ABSTRACT-UNBIND,
ABSTRACT-OPERATION, ABSTRACT-ERROR
FROM AbstractServiceNotation {joint-iso-ccitt mhs-motis(6)
asdc(2) modules(0) notation(1) }

Attribute, AttributeType, AttributeValue, AttributeValueAssertion,
DistinguishedName, Name, RelativeDistinguishedName
FROM InformationFramework InformationFramework

id-ot-directory, id-ot-dua, id-pt-read, id-pt-search, id-pt-modify
FROM DirectoryObjectIdentifiers directoryObjectIdentifiers

ContinuationReference, OperationProgress
FROM DistributedOperations distributedOperations

Certificate, CertificationPath, SIGNED,
PROTECTED, AlgorithmIdentifier
FROM AuthenticationFramework authenticationFramework
InvokelD,
FROM Remote-Operations-Notation {joint-iso-ccitt
remoteOperations(4) notation(0)};

-- macro for representing optional signing --

OPTIONALLY-SIGNED MACRO :=
BEGIN

TYPE NOTATION := type (Type)

VALUE NOTATION := value (VALUE CHOICE { Type, SIGNED Type})

END
-- objects and ports --

directory
OBJECT
PORTS { readPort [S].
searchPort [S],
modifyPort [S]}

== id-ot-directory

26 Fascicle VII1.8 —Rec. X.511

dua
OBJECT
PORTS { readPort [C],
searchPort [C]
modifyPort [C])

== id-ot-dua

readPort
PORT
CONSUMER INVOKES {
Read, Compare, Abandon}
== id-pt-read

searchPort
PORT
CONSUMER INVOKES (
List, Search)}
== id-pt-search

modifyPort
PORT
CONSUMER INVOKES {
AddEntry, RemoveEntry,
ModifyEntry, ModifyRDN})
== id-pt-modify

-- bind and unbind --

DirectoryBind ::= ABSTRACT-BIND
TO { readPort, searchPort, modifyPort }
BIND
ARGUMENT DirectoryBindArgument
RESULT DirectoryBindResult
BIND-ERROR DirectoryBindError

DirectoryBindArgument = SET (
credentials [0] Credentials OPTIONAL,
versions [1] Versions DEFAULT v1988}

Credentials = CHOICE {
simple [0] SimpleCredentials,
strong [1] StrongCredentials,
externalProcedure [2] EXTERNAL }

SimpleCredentials ::= SEQUENCE ({

name [0] DistinguishedName,

validity [1] SET {
timel [0] UTCTime OPTIONAL,
time2 [1] UTCTime OPTIONAL,
randoml [2] BIT STRING OPTIONAL,
random2 [3] BIT STRING OPTIONAL }

OPTIONAL,

password [2] OCTET STRING OPTIONAL }

StrongCredentials ::= SET {
certification-path [0] CertificationPath OPTIONAL,

bind-token [1] Token)}

Token := SIGNED SEQUENCE (
algorithm [0] AlgorithmIdentifier
name [1] DistinguishedName,
time [2] UTCTime,
random [3] BIT STRING }

Versions = BIT STRING (v1988(0))
DirectoryBindResult = DirectoryBindArgument

Fascicle V1.8 —Rec. X.511

27

28

DirectoryBindError == SET {
versions [0] Versions DEFAULT v1988,
CHOICE (
serviceError [1] ServiceProblem,
securityError [2] SecurityProblem }}

DirectoryUnbind := ABSTRACT-UNBIND
FROM ({readPort, searchPort, modifyPort }

-— operations, arguments, and results --

Read := ABSTRACT-OPERATION
ARGUMENT ReadArgument
RESULT ReadResult
ERRORS {
AttributeError, NameError,
ServiceError, Referral, Abandoned,
SecurityError }

ReadArgument ::= OPTIONALLY-SIGNED SET (
object [0] Name,
selection [1] EntryInformationSelection
DEFAULT (},
COMPONENTS OF CommonArguments }

ReadResult = OPTIONALLY-SIGNED SET {
entry [0] EntryInformation,
COMPONENTS OF CommonResults }

Compare := ABSTRACT-OPERATION
ARGUMENT CompareArgument
RESULT CompareResult
ERRORS {

AttributeError, NameError,
ServiceError, Referral, Abandoned,
SecurityError }

CompareArgument = OPTIONALLY-SIGNED SET {

object [0] Name,
purported [1] AttributeValueAssertion,
COMPONENTS OF CommonArguments }

CompareResult = OPTIONALLY-SIGNED SET {
DistinguishedName OPTIONAL,
matched [0] BOOLEAN,
fromEntry [1] BOOLEAN DEFAULT TRUE,
COMPONENTS OF CommonResults }

Abandon := ABSTRACT-OPERATION
ARGUMENT AbandonArgument
RESULT AbandonResult
ERRORS {AbandonFailed)

AbandonArgument ::= SEQUENCE {
InvokelID [0] InvokeID}

AbandonResult = NULL

List == ABSTRACT-OPERATION
ARGUMENT ListArgument
RESULT ListResult
ERRORS {
AttributeError, NameError,
ServiceError, Referral, Abandoned,
SecurityError }

ListArgument = OPTIONALLY-SIGNED SET {
object [0] Name,
COMPONENTS OF CommonArguments }

Fascicle VII1.8 —Rec. X.511

ListResult == OPTIONALLY-SIGNED CHOICE{

listInfo SET {

DistinguishedName OPTIONAL

subordinates [1] SET OF SEQUENCE (
RelativeDistinguishedName,
aliasEntry [0] BOOLEAN DEFAULT FALSE,
fromEntry [1] BOOLEAN DEFAULT TRUE },
partialOutcomeQualifier [2] PartialOutcomeQualifier

OPTIONAL,

COMPONENTS OF CommonResults},

uncorrelatedListInfo [0] SET OF
ListResult }

PartialOutcomeQualifier == SET
limitProblem [0] LimitProblem OPTIONAL,
unexplored [1] SET OF
ContinuationReference OPTIONAL,
unavailableCriticalExtensions [2] BOOLEAN DEFAULT FALSE }

LimitProblem := INTEGER (
timeLimitExceeded (0),
sizeLimitExceeded (1),
administrativeLimitExceeded (2) }

Search = ABSTRACT-OPERATION
ARGUMENT SearchArgument
RESULT SearchResult
ERRORS {

AttributeError, NameError,
ServiceError, Referral, Abandoned,
SecurityError }

SearchArgument == OPTIONALLY-SIGNED SET {
baseObject [0] Name,
subset [11 INTEGER {
baseObject(0),
oneLevel(1),
wholeSubtree(2)} DEFAULT baseObject,
filter [2] Filter DEFAULT and (},
searchAliases [3] BOOLEAN DEFAULT TRUE,
selection [4] EntryInformationSelection DEFAULT (]},
COMPONENTS OF CommonArguments }

SearchResult = OPTIONALLY-SIGNED
CHOICE {
searchInfo SET (
DistinguishedName OPTIONAL,
entries [0] SET OF EntryInformation,
partialOutcomeQualifier

[2] partialOutcomeQualifier OPTIONAL,
COMPONENTS OF CommonResults },
uncorrelatedSearchInfo [0] SET OF
SearchResult })

AddEntry = ABSTRACT-OPERATION
ARGUMENT AddEntryArgument
RESULT AddEntryResult
ERRORS {

AttributeError, NameError,
ServiceError, Referral, SecurityError
UpdateError }

AddEntryArgument = OPTIONALLY-SIGNED SET ({
object [0] DistinguishedName,
entry [1] SET OF Attribute,
COMPONENTS OF CommonArguments})

AddEntryResult == NULL

Fascicle V1.8 —Rec. X.511

29

30

RemoveEntry ::== ABSTRACT-OPERATION
ARGUMENT RemoveEntryArgument
RESULT RemoveEntryResult
ERRORS {

NameError,
ServiceError, Referral, SecurityError,
UpdateError)

RemoveEntryArgument = OPTIONALLY-SIGNED SET
object [0] DistinguishedName,
COMPONENTS OF CommonArguments }

RemoveEntryResult == NULL

ModifyEntry = ABSTRACT-OPERATION
ARGUMENT ModifyEntryArgument
RESULT ModifyEntryResult
ERRORS {

AttributeError, NameError,
ServiceError, Referral, SecurityError,
UpdateError}

ModifyEntryArgument = OPTIONALLY-SIGNED SET ({
object [0] DistinguishedName,
changes [1] SEQUENCE OF EntryModification,
COMPONENTS OF CommonArguments }

ModifyEntryResult = NULL

EntryModification := CHOICE {
addAttribute [0] Attribute,
removeAttribute [1] AttributeType,
addValues [2] Attribute,
removeValues [3] Attribute)

ModifyRDN = ABSTRACT-OPERATION
ARGUMENT ModifyRDNArgument

RESULT ModifyRDNResult
ERRORS {
NameError,

ServiceError, Referral, SecurityError,
UpdateError }

ModifyRDNArgument = OPTIONALLY-SIGNED SET {
object [0] DistinguishedName,
newRDN [1] RelativeDistinguishedName,
deleteoldRDN [2] BOOLEAN DEFAULT FALSE,
COMPONENTS OF CommonArguments }

ModifyRDNResult = NULL
-~ errors and parameters --

Abandoned = ABSTRACT-ERROR -- not literally an "error”

AbandonFailed := ABSTRACT-ERROR
PARAMETER SET {
problem [0] AbandonProblem,
operation [1] InvokeID)

AbandonProblem := INTEGER {
noSuchOperation (1),
tooLate (2),
cannotAbandon (3)}

Fascicle VII1.8 —Rec. X.511

AttributeError = ABSTRACT-ERROR
PARAMETER SET (
object [0] Name,
problems [1] SET OF SEQUENCE {

problem [0] AttributeProblem,
type [1] AttributeType,
value [2] AttributeValue OPTIONAL })
AttributeProblem :=
INTEGER {

noSuchAttributeOrValue (1),
invalidAttributeSyntax (2),
undefinedAttributeType (3),
inappropriateMatching (4),
constraintViolation (5),
attributeOrValueAlreadyEcxists (6) }

NameError = ABSTRACT-ERROR
PARAMETER SET (
problem [0] NameProblem,
matched [1] Name}

NameProblem := INTEGER {
noSuchObject (1),
aliasProblem (2),
invalidAttributeSyntax (3),
aliasDereferencingProblem (4)})

Referral ::= ABSTRACT-ERROR -- not literally an "error”
PARAMETER SET {
candidate [0] ContinuationReference}

SecurityError = ABSTRACT-ERROR
PARAMETER SET (
problem [0] SecurityProblem }

SecurityProblem := INTEGER {
inappropriateAuthentication (1),
invalidCredentials (2),
insufficientAccessRights (3),
invalidSignature (4),
protectionRequired (5),
nolnformation (6) }

ServiceError = ABSTRACT-ERROR
PARAMETER SET (
problem [0] ServiceProblem }

ServiceProblem := INTEGER {
busy (1),
unavailable (2),
unwillingToPerform (3),
chainingRequired (4),
unableToProceed (5),
invalidReference (6),
timeLimitExceeded (7),
administrativeLimitExceeded (8),
loopDetected (9),
unavailableCriticalExtension (10),
outOfScope (11),
ditError (12) }

UpdateError = ABSTRACT-ERROR
PARAMETER SET {
problem [0] UpdateProblem }

Fascicle V1.8 —Rec. X.511

31

UpdateProblem := INTEGER {
namingViolation (1),
objectClassViolation (2),
notAllowedOnNonLeaf (3),
notAllowedOnRDN (4),
entryAlreadyEcxists (5),
affectsMultipleDSAs (6),
objectClassModificationProhibited (7))

-- common arguments/results --

CommonArguments == SET {
[30] ServiceControls DEFAULT ()}
[29] SecurityParameters DEFAULT {},
requestor [28] DistinguishedName OPTIONAL,
[27] OperationProgress DEFAULT notStarted,
aliasedRDNs [26] INTEGER OPTIONAL,
extensions [25] SET OF Extension OPTIONAL }

Extension z= SET {
identifier [0] INTEGER,
critical [1] BOOLEAN DEFAULT FALSE,
item [2] ANY DEFINED BY identifier }

CommonResults z= SET {
[30] SecurityParameters OPTIONAL,
performer [29] DistinguishedName OPTIONAL,
aliasDereferenced [28] BOOLEAN DEFAULT FALSE}

-- common data types --

ServiceControls := SET ({
options [0] BIT STRING {
preferChaining (0),
chainingProhibited (1),
localScope (2),
dontUseCopy (3),
dontDereferenceAliases(4))

DEFAULTY{},

priority [1] INTEGER (
low (0),
medium (1),
high (2) } DEFAULT medium,

timeLimit [2] INTEGER OPTIONAL,
sizeLimit [3] INTEGER OPTIONAL,

scopeOfReferral [4] INTEGER (
dmd(0),
country(1)}
OPTIONAL)}

EntryInformationSelection == SET ({
attributeTypes
CHOICE (
allAttributes [0] NULL,
select [1] SET OF AttributeType
-- empty set implies no attributes
-- are requested --)
DEFAULT allAttributes NULL,

infoTypes [2] INTEGER {
attributeTypesOnly (0),
attributeTypesAndValues (1) } DEFAULT
attributeTypesandValues }

32 Fascicle VII1.8 —Rec. X.511

Entrylnformation = SEQUENCE {
DistinguishedName,
fromEntry BOOLEAN DEFAULT TRUE,
SET OF CHOICE {

AttributeType,
Attribute} OPTIONAL }
Filter == CHOICE {
item [0] FilterItem,
and [1] SET OF Filter,
or [2] SET OF Filter,
not [3] Filter }
FilterItem = CHOICE {
equality [0] AttributeValueAssertion,

substrings [11 SEQUENCE (
type AttributeType,
strings SEQUENCE OF CHOICE {
initial [0] AttributeValue,
any [1] AttributeValue,
final [2] AttributeValue}},

greaterOrEqual [2] AttributeValueAssertion,
lessOrEqual 3] AttributeValueAssertion,
present [4] AttributeType,

approximateMatch [51 AttributeValueAssertion }

SecurityParameters == SET {
certification-Path [0] CertificationPath OPTIONAL,
name [1] DistinguishedName OPTIONAL,
time [2] UTCTime OPTIONAL,
random [3] BIT STRING OPTIONAL,
target [4] ProtectionRequest OPTIONAL }

ProtectionRequest ::= INTEGER (
none(0),
signed (1)}

ANNEX B
(to Recommendation X.511)

Directory object identifiers

This Annex is part of the standard.

This Annex includes all of the ASN.1 object identifiers contained in this Recommendation in the form of the
ASN.1 module "DirectoryObjectl dentifiers'.

DirectoryObjectldentifiers{joint-1SO-CCITT ds(5) modules(1)
directoryObjectl dentifier 5(9)}

DEFINITIONS ::=
BEGIN

EXPORTS
id-ot-directory, id-ot-dua, id-pt-read, id-pt-sear ch, id-pt-modify;

IMPORTS
id-ot, id-pt
FROM Useful Definitions {joint-iso-ccitt ds(5) modules(1),
useful Definitions(0)};

Fascicle V1.8 —Rec. X.511 33

34

-- Objects --

id-ot-directory OBJECT IDENTIFIER
id-ot-dua OBJECT IDENTIFIER
-- Port Types --

id-pt-read OBJECT IDENTIFIER
id-pt-search OBJECT IDENTIFIER
id-pt-modify OBJECT IDENTIFIER
END

Fascicle VII1.8 —Rec. X.511

{id-ot 1}
{id-ot 2}

{id-pt 1}
{id-pt 2}
{id-pt 3}

SeriesA
SeriesB
SeriesC
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|
SeriesJ
SeriesK
SeriesL
SeriesM

SeriesN
SeriesO
SeriesP
SeriesQ
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

ITU-T RECOMMENDATIONS SERIES

Organization of the work of the ITU-T

Means of expression: definitions, symbols, classification

General telecommunication statistics

General tariff principles

Overal network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant

TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networ ks and open system communications

Global information infrastructure and Internet protocol aspects

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2008

	ITU-T Rec. X.511 (11/1988) – THE DIRECTORY – ABSTRACT SERVICE DEFINITION
	CONTENTS
	0 Introduction
	1 Scope and field of application
	2 References
	3 Definitions
	3.1 Basic Directory definitions
	3.2 Directory model definitions
	3.3 Directory information base definitions
	3.4 Directory entry definitions
	3.5 Name definitions
	3.6 Distributed operations definitions
	3.7 Abstract service definitions

	4 Abbreviations
	5 Conventions
	6 Overview of the directory service
	7 Information types
	7.1 Introduction
	7.2 Information types defined elsewhere
	7.3 Common arguments
	7.4 Common results
	7.5 Service controls
	7.6 Entry information selection
	7.7 Entry information
	7.8 Filter
	7.9 Security Parameters
	7.10 OPTIONALLY-SIGNED

	8 Bind and unbind operations
	8.1 Directory bind
	8.2 Directory unbind

	9 Directory read operations
	9.1 Read
	9.2 Compare
	9.3 Abandon

	10 Directory search operations
	10.1 List
	10.2 Search

	11 Directory modify operations
	11.1 Add entry
	11.2 Remove Entry
	11.3 Modify Entry
	11.4 Modify RDN

	12 Errors
	12.1 Error Precedence
	12.2 Abandoned
	12.3 Abandon Failed
	12.4 Attribute Error
	12.5 Name Error
	12.6 Referral
	12.7 Security Error
	12.8 Service Error
	12.9 Update Error

	ANNEX A – Abstract service in ASN.1
	ANNEX B – Directory object identifiers

